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Abstract 

In the present manuscript, an extension of the previously defined Graph Derivative 

Indices (GDIs) is discussed. To achieve this objective, the concept of a hypermatrix, 

conceived from the calculation of the frequencies of triple and quadruple atom relations in a 

set of connected sub-graphs, is introduced. This set of subgraphs is generated following a 

predefined criterion, known as the event (S), being in this particular case the connectivity 

among atoms. The triple and quadruple relations frequency matrices serve as a basis for the 

computation of triple and quadruple discrete derivative indices, respectively. The GDIs are 

implemented in a computational program denominated DIVATI (acronym for DIscrete 

DeriVAtive Type Indices), a module of TOMOCOMD-CARDD program. Shannon‟s 

entropy-based variability analysis demonstrates that the GDIs show major variability than 

others indices used in QSAR/QSPR researches. In addition, it can be appreciated when the 

indices are extended over n-elements from the graph, its quality increases, principally when 

they are used in a combined way. QSPR modeling of the physicochemical properties Log P 

and Log K of the 2-furylethylenes derivatives reveals that the GDIs obtained using the triple 
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and quadruple matrix approaches yield superior performance to the duplex matrix approach. 

Moreover, the statistical parameters for models obtained with the GDI method are superior to 

those reported in the literature by using other methods. It can therefore be suggested that the 

GDI method, seem to be a promissory tool to reckon on in QSAR/QSPR studies, virtual 

screening of compound datasets and similarity/dissimilarity evaluations. 

 
1 Introduction 

A representation of an object that only provides information on the number of elements 

composing it and their connectivity is known as a topological representation. For a molecular 

structure, a topological representation is achieved through the so-called molecular graphs [1-

3]. However, such representations are non-numeric in nature, which makes computational 

treatment of chemical information provided by these rather difficult. In this sense, topological 

indices (TIs) constitute a practical aperture as they provide a numeric interpretation of 

information codified by molecular graphs (G) [1]. The TIs (also known as graph-theoretical 

invariants) account for structural information contained in bi-dimensional representations of 

molecules and are among the most important molecular descriptors (MDs) used nowadays in 

the theoretical description of chemical, physicochemical and biological properties of 

molecular structures [4-11]. 

 The TIs are divided into 2 categories: topo-structural and topo-chemical indices. The 

topo-structural indices are concerned with the adjacency and distances between vertices in a 

G while topo-chemical indices in addition to offering the information on the topology of a G, 

also codify information on the nature of the vertices such as their chemical identity or 

hybridization state. 

Recently, a new family of TIs has been published that could be defined as an overlap of 

both classifications, previously noted [12, 13]. This set of MDs, collectively denominated as 

Graph Derivative Indices (GDIs), is based on the concept of derivatives in discrete 

mathematics, metaphorical to the derivative concept in classical mathematical analysis [12]. 

The Discrete Derivative SG   is defined on a weighted undirected graph <V,(U, P)>, whose 

bearer coincides with that of a model determined by a chosen event (S) [14]. These new TIs 

have been applied over the data set proposed by the Mathematical-Chemistry Academy for 

the validation of new MDs, and they have been used in several applications with good results 

[12, 13]. The GDIs can be obtained in a local way, detecting a relation between the values of 

the atomic indices [Local Vertex invariants (LOVIs)] and the chemical nature of each atom in 

the molecular structure. It has been probed in previous experiments that the LOVI value for 

each atom has a direct relation with the electronic environment of those atoms. The GDs can 

be obtained in a global way applying many different mathematical strategies (aggregation 

operators), as it is going to be showed in other epigraph. The obtaining of GDIs in a global 

way also allows establishing a differentiation among isomers of chain, position and 

geometrical isomers [13]. In addition, a new matrix representation denominated the relations 

-398-



 
 

frequency matrix, F, has been presented. This matrix representation arises from the 

exploration of duplex participation frequencies of connected sub-graphs (event initially used) 

in the formation of a G [12].  

The present report is aimed at introducing the concept of a hypermatrix, conceived from 

the evaluation of the n-tuple (n>2) participation frequencies of connected sub-graphs in the 

formation of a G. Although the participation frequencies are unbounded, our attention will be 

focused on triple (n=3) and quadruple (n=4) participation frequencies. These hypermatrix 

representations will permit us to “redefine” the GDIs in a “more generalized” way (for n-

tuples). 

With the aim of evaluating the quality of the GDIs in terms of their sensitivity to 

variations in the molecular structure, Shannon‟s entropy-based variability analysis [15] is 

performed and comparisons between duplex and higher dimensional GDIs are carried out. On 

the other hand, in order to assess the performance of the proposed MDs in modeling tasks, the 

1-octanol/water partition coefficient (Log P) and the specific rate constant for nucleophilic 

addition of a thiol group to the exo-cyclic double bond (Log K) of the 34 derivatives of 2-

furylethylenes are studied; and the statistical parameters of the best models obtained for these 

physicochemical properties using the proposed GDIs are compared with those of other 

approaches reported in the literature.  

 

2 Theoretical Scaffold 

2.1 Frequency hypermatrix representation of a molecular graph  

First, a brief recapitulation of the aspects presented in a previous publication will be 

performed to ease in the definitions and notations discussed in this report.  

To begin with, an event S is defined as the criterion followed in the generation of a 

collection of conditions representative of a predefined model. In other words, the event 

provides the context for the model. Consider the following paragraph as a model.  

“In any reaction, enthalpy and entropy change when the reactants are used up to obtain 

products.” 

The event in this case would be a thermodynamic description of chemical reactions. 

Each description is comprised of a collection of conditions (words) as “building blocks” 

which form a model in the defined event space. The key interest in this case is to analyze the 

contributions of the different characters (or combinations of these) in the set of conditions that 

collectively constitute the model, as a means of acquiring knowledge about the diversity of 

the model. The contributions (frequencies) of the different characters constitute a frequency 

relations matrix.  
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Let us consider two letter participation frequencies in the formation of words (duplex 

participation frequencies) using the model above, as an example. The letters {a, e} 

simultaneously contribute in the formation of the words: reaction, changes, enthalpy, react, 

i.e. participate four times to the creation of words that comprise the model, fae = 4. The 

participation frequencies of all possible two component subsets of letters (fij) are similarly 

explored, as well as the participation frequencies of each letter (fi) that constitute these 

words. These contributions (frequencies) are the components for the frequency relations 

matrix, F. In a preceding manuscript, only duplex participation frequencies were considered, 

although a purely mathematical interpretation based on generalized incidence matrices was 

used [12]. The preference for the exploratory method discussed in the present manuscript is 

because it offers a simpler interpretation of the event-based method, favoring the 

generalization of the graph derivative method to higher dimensions.  

A natural extension of the duplex-based approach involves the evaluation of the 

concurrent participation frequencies of n (n ≥ 3) letters in the formation of words in the 

model. The present manuscript enunciates the procedure adopted for the analysis of the event 

space on a higher dimensional scale. Consider the participation of the letters {a, e, n} and {e, 

n, t, y} in the formation of words in the model given above: the letters {a, e, n} 

simultaneously contribute to the words: reaction, changes, enthalpy, i.e. participate three 

times in the formation of word of the model, faen = 3. On the other hand, the letters {e, n, t, y} 

participate concurrently in the formation of the words: enthalpy, entropy, i.e. possess a 

participation frequency of two (fenty). An exploration of the participation of subsets of 5, 6, 

7…n letters in the formation of words of the model could be performed as well. Nevertheless, 

this analysis will be limited to triple and quadruple participation frequencies for simplicity. 

In view of the ease provided by the matrix-based operations in computational chemistry, 

these participation frequencies are condensed in three- and four-dimensional matrices, which 

we will designate triple and quadruple hypermatrices (3- and 4-order tensors), respectively.  

This set of rules is applicable to any system of discrete macroarrangements that are in 

turn comprised of microunits such as genetic codes or chemical structures. Our interest is in 

the latter. Given a molecular structure G, this is partitioned into a set of substructures, 

according to a predefined criterion. This criterion is the event (S) and provides the context in 

which the substructures are formed. In the preceding manuscript, connectivity was used as a 

rule and thus the ensuing substructures were denominated connected subgraphs. The concepts 

of sub-graphs orders and types (according to Kier-Hall‟s nomenclature, namely: path (p), 

cluster (c) and path-cluster (pc) were taken into account). In this sense, the conditions (letters 
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of the model) are the vertices (atomic nuclei) that comprise the substructures, while the 

collection of conditions is the connected sub-graphs analogical to the words of the model. 

An example of the application of this set of rules in chemical structure characterization, on a 

higher dimensional perspective, will now be given. Take as an example the molecular graph 

of N,N-dimethylpropionamide (see Figure 1) describing the skeleton of this molecule.  

 

 

Fig. 1. The chemical structure [H (implicit)-depleted structure] and molecular graph of N,N-

dimethylpropionamide [the numbers correspond to the labels that are assigned to the atoms (vertices) in 

the molecular structure]. 

Following the connectivity criterion, a set of sub-graphs of different orders and types 

are obtained (see Table 1). Accordingly, these connected sub-graphs are the set of words 

(sub-structures) that constitute the model space, while the vertices (atoms) for G, [C1, N2, C3, 

C4, C5, C6 and O7] are the letters. From this set of connected sub-graphs, an exploration of the  

Table 1: Connected sub-graphs of different orders and types from N,N-dimethylpropionamide. 

Order Type Sub-graph Order Type Sub-graph 

Order 0 

paths C1 

Order 3 

paths C1-N2-C3-C4 

paths N2 paths C1-N2-C3-O7 

paths C3 cluster C1-N2-C3-C6 

paths C4 paths N2-C3-C4-C5 

paths C5 paths N2-C3-C6-O7 

paths  C6 paths N2-C3-C4-C6 

paths O7 cluster N2-C3-C4-O7 

Order 1 

paths C1-N2 paths C3-C4-C5-O7 

paths N2-C3 

Order 4 

paths C1-N2-C3-C4-C5 

paths N2-C6 paths-cluster C1-N2-C3-C4-O7 

paths C3-C4 paths-cluster C1-N2-C3-C4-C6 

paths C3-O7 paths N2-C3-C4-C5-C6 

paths C4-C5 paths-cluster N2-C3-C4-C5-O7 

Order 2 

paths C1-N2-C3 paths-cluster N2-C3-C4-C6-O7 

paths C1-N2-C6 paths-cluster C1-N2-C3-C6-O7 

paths N2-C3-C6 

Order 5 

paths-cluster C1-N2-C3-C4-C5-C6 

paths N2-C3-C4 paths-cluster C1-N2-C3-C4-C5-O7 

paths N2-C3-O7 paths-cluster N2-C3-C4-C5-C6-O7 

paths C3-C4-C5 paths-cluster C1-N2-C3-C4-C6-O7 

paths C3-C4-O7 Order 6 paths-cluster C1-N2-C3-C4-C5-C6-O7 
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frequency of concurrent participation of three- or four vertex subsets, corresponding to triple 

and quadruple matrices, respectively, is performed. These frequencies are components of the 

respective hypermatrices.  

Triple Matrix 

1  2  3  4  

5  6  7  

Fig. 2. The triple matrix generated for the Graph of N,N-dimethylpropionamide. 

As an example, the set of vertices [C1, N2, O7] are included in connected sub-graphs: C1-

N2-C3-O7, C1-N2-C3-C4-O7, C1-N2-C3-C6-O7, C1-N2-C3-C4-C5-O7, C1-N2-C3-C4-C6-O7 and C1-

N2-C3-C4-C5-C6-O7. Thus the participation frequency of the set of vertices [C1, N2, O7] is six 

[see entry (1, 2, 7)] in the triple matrix represented below (see Figure 2). For clarity, the slides 

(bi-dimensional matrices) that comprise this matrix are “extracted”. For bi-dimensional 

representation of quadruple matrix see supporting information SI1. 

2.2 Graph’s discrete derivative-based indices 

The triple and quadruple relations frequency matrices serve as a basis for the 

computation of triple and quadruple discrete derivative indices, respectively and these are 

expressed as follows:  

Triple derivative index 
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where, fi is the participation frequency of vertex i, fij is the simultaneous participation 

frequency of vertices i and j, and fijk is the participation frequency of vertices i, j and k. 

Quadruple derivative index 
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where, fi is the participation frequency of vertex i, fij is the simultaneous participation 

frequency of vertices i and j, fijk is the participation frequency of vertices i, j and k and fijkl is 

the participation frequency of vertices i, j, k and l. 

Generalizing the formula for n-tuples derivatives we obtain: 
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  (2.3)         

An illustration for the computation of the derivative index will now be given, using the 

triple relations frequency matrix generated for the molecular structure of N,N-

dimethylpropionamide represented in the figure 1. Using the equation 2.1 the derivatives for 

all three vertex combinations are computed. Let us take (1, 2, 3) as an example: 

   
  

  
(        )  
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The rest of the values for the derivatives over three vertex combinations for the event 

space generated for the molecular structure of N,N-dimethylpropionamide are:  

  

  
(        )         

  

  
(        )         

  

  
(        )         

  

  
(        )

       

  

  
(        )         

  

  
(        )         

  

  
(        )         

  

  
(        )

       

  

  
(        )         

  

  
(        )        

  

  
(        )         

  

  
(        )

      

  

  
(        )        

  

  
(        )        

  

  
(        )        

  

  
(         )         

  

  
(         )        

  

  
(         )

       

  

  
(        )        

  

  
(         )         

  

  
(         )        

  

  
(        )

       

  

  
(        )       

  

  
(        )        

-403-



 

 

  

  
(         )       

  

  
(         )        

  

  
(         )       

  

  
(         )        

  

  
(         )       

  

  
(         )        

  

  
(        )         

  

  
(        )       

  

  
(        )         

  

  
(         )       

From the triple (or quadruple) derivatives Local Vertex Invariants (LOVIs) also known 

as atomic derivatives are computed using the following formulas, for triple and quadruple 

derivatives, respectively: 
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Therefore, for the molecule of N,N-dimethylpropionamide the atomic derivatives 

obtained following triple vertex relations are: 

                                              

                                 

With these atomic derivatives   , a vector of LOVIs is constructed: 

VL = (56.704, 28.537, 26.768, 35.350, 65.650, 56.704, 54.752)  

It is interesting to note that atomic derivatives (atomic indices) for the vertexes 1 and 6 

are the same. These results coincide with chemical reality, because both atoms are chemically 

equivalent. Note that peripheral atoms possess high atomic derivative values, while the lowest 

value belongs to atom 2 (nitrogen), which is the most buried within the molecular structure. In 

previous paper is evident that the increase of the electronic density in a region of the molecule 

implies major values of LOVIs for involved atoms, respect to a same structure without double 

or triple bonds.[13] This is a logical result, taking into account the probed relation among 

GDIs and the electronic properties of atoms and molecules [13]. In fact, for the N,N-

dimethylpropionamide molecule, the value of the atomic indices (LOVIs) from the atoms of 

oxygen (O7) and carbon 3 (C3) is higher than the value hoped if it wouldn‟t  exists a double 

bond among them, however there isn‟t an alteration in the regularity of the LOVIs values 

from each atom of the molecule respect to another, as it was exposed in the beginning of the 

paragraph.  
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A linear combination of the components of VL yields the global discrete derivative 

index as defined in equation 2.1. Therefore, for the molecule of N,N-dimethylpropionamide 

yields a global discrete derivative value is 324.465.  
 

2.3 Application of aggregation operators as a generalization of the linear 

combination of vector components to yield global derivative indices 

Motivated by the understanding that global characterizations of chemical systems do not 

necessary follow the additive rule (nonextensive systems), aggregation operators are applied 

to the vector of LOVIs as a generalization of the use of the summation as exclusive operator 

applicable to the vector VL to obtain global (or local) derivative indices. Indeed it has been 

demonstrated in previous reports that global indices obtained with the summation do not 

necessary provide the best correlations when modeling molecular properties [16]. These 

aggregation operators are classified into three major groups (see Table 2 for more 

information): 

 Norms (or Metrics): Minkowski‟s norms (N1, N2, N3) and Penrose‟s size (PN). Note 

that the summation operation is analogous to Minkowski’s first norm (N1) in our case. 

  Mean Invariants (first statistical moment): Geometric Mean (G), Arithmetic Mean 

(M), Quadratic Mean (P2), Potential Mean (P3) and Harmonic Mean (A). 

 Statistical Invariants (highest statistical moments): Variance (V), Skewness (S), 

Kurtosis (K), Standard Deviation (DE), Variation Coefficient (CV), Range (R), 

Percentile 25 (Q1), Percentile 50 (Q2), Percentile 75 (Q3), Inter-quartile Range (I50), 

Maximum X (MX) and Minimum X (MN). 

2.2.1 Codification of heteroatoms and multiple bonds: The degeneracy of several 

topostructural indices generally arises from the inability to discriminate isomorphic structures 

with distinct functional groups or bond types. This is mainly because the majority of the 

topostructural indices are globally defined and thus do not permit the assignation of weights 

on the vertices (or bonds). Therefore, with the aim of bolstering the discriminating power of 

the GDIs, a scheme for weighting vertices and/or bonds is introduced. 

Consider as example the N,N-dimethylpropionamide molecule (see Figure 1). The 

notion here is to assign labels to the atoms based on their physicochemical, chemical or 

topological properties in order to achieve the discrimination of these structures from their 

topological isomorphs. 
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Given a vector of weights Vw, the component (  ) included in Vw reciprocally 

corresponds to element i for a given property. The distinct weights for each atom are 

determined according to the relationship        ⁄ , where P represents a characteristic 

property of each atom (for example: atomic mass, electronegativity, etc.) and δ is the vertex 

degree (number of bonds). 

Atomic electronegativity (according to Pauling‟s scale) will be used as an example of 

weights for each atom. The weights for the different atoms in the molecular structure of N,N-

dimethylpropionamide are calculated as follows:  

 (  )  
   

 
      (  )  

   

 
      (  )  

   

 
        (  )  

   

 
        

 (  )  
   

 
      (  )  

   

 
      (  )  

   

 
      

 

Therefore the resulting vector of weights, Vw = (2.5, 1.0, 0.625, 1.25, 2.5, 2.5, 1.75). 

The inner product of the vectors VL and Vw (VL [x] VW) yields the weighted vector of atomic 

derivatives (
W

VL). The atomic weight  i may also be directly introduced into the frequency 

hypermatrix (  [      ]  ), by multiplying each frequency with the weights of the involved 

atoms. In this way, a weighted relations frequency hypermatrix (   [  
     

]  ) is 

constructed and the equations for computing the n-tuple discrete derivative applied. Using the 

equations 2.4 or 2.5, a weighted vector of atomic derivatives (
w
VL-f) is obtained. 

 
Table 2: Invariants functions to derive molecular descriptors (total and local) from local vertex 

invariants (LOVIs). The xi is LOVI associated to the atoms vi and n is the number of atoms. 
No. Group Name ID Formula

a
 

1 

Norms 

(Metrics) 

Minkowski norms (p = 1) 

Manhattan norm 
N1 




n

i

iL
1

N1  

2 
Minkowski norms (p = 2) 

Euclidean norm 
N2 




n

i

iL
1

2
N2  

3 Minkowski norms (p = 3) N3 

 

3

1

3
N3 




n

i

iL  

 

4 Chebyshev distance NI 

n
n

i

n

i
n

L

1

1

limNI 







 


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5 Penrose size PN 

2

1
2

)(
1

PN 







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

n

i

iL
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6 

Mean 
(first 

statistical 

moment) 

Geometric Mean G n
n

i
iL




1
G  

7 
Arithmetic Mean 

(Power mean of degree α = 1) 

M (or M1) 

α
1

n

α
nL...

α
2L

α
1L













 
αM  

8 
Quadratic Mean 

(Power mean of degree α = 2) 

P2(or M2) 

9 Power mean of degree α = 3 P3(or M3) 

10 
Harmonic Mean 

(Power mean of degree α = -1) 
A(or M-1) 

11 

Statistical 

(highest 

statistical 

moments): 

Variance V 

 

1-n

n

1i

2
MiL




V
 

12 Skewness S 

 S  = n(X3)/[(n-1)(n-2)(DE)
3
] 

n, number of vertices. 

X3 =  



n

i
MiL

1

3
 

M, arithmetic mean 

DE, standard deviation 

13 Kurtosis K 

 K  = [n(n+1)(X4)- 3(X2)(X2)(n-

1)] /[(n-1)(n-2)(n-

3)(DE)
4
]  

n, number of vertices 

Xj =  



n

i

j
MiL

1
 

M, arithmetic mean 

DE, standard deviation 

14 Standard Deviation DE 
 

1

2

DE


 


n

MiL
 

15 Variation Coefficient CV 
M

DECV  

16 Range R         
minmaxR LL   

17 Percentile 25 Q1 









2

1

4
 Q1

N
      N, Li 

number  

18 Percentile 50 Q2 









2

1

2
 Q2

N
     N, Li 

number 

19 Percentile 75 Q3 









2

1

4

3
 Q3

N
    N, Li 

number 

20 Inter-quartile Range I50  13I50 QQ   

21 Maximum value MX  MX = Li max  

22 Minimum value MN  MN = Li min 

Note: The formulae used in these invariants, are simplified forms of general equations given that the vector   ̅ is 

constituted of the coordinates of the origin. For example, in the case of the Euclidean norm (N2), the general 

formula is: ‖ ̅‖  √∑ (     )
  (     )

 
 (     )

  
    However given that   ̅ = (0, 0, 0), this formula 

reduces to 




n

1i

2

i2
xx . 
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Note that changing the step where the weighting scheme may be applied along the GDI 

algorithm yields non-identical vectors of LOVIs (i.e. applying the weights to the vector of 

LOVIs does not yield the same result as when applied directly to the relations frequency 

hypermatrix).  

The use of the vectors of LOVIs (VL,
 w

VL ,
 w

VL-f) in the GDI method allows the 

computation of local GDIs for types or groups of atom [(for example, in TOMOCOMD-

CARDD program [17] the following local indices may be calculated: Proton Acceptors (AH), 

Proton Donors (DH), Heteroatoms (HT), Halogens (HL), Carbons (Cb), Methyl Carbons 

(MC) and Unsaturations (IS)].  

Finally, the equations for triplex and quadruple derivatives are analyzed, it is evident 

that restrictions on the span for the values of i, j, k and l are not considered (i.e. their values 

extend over the entire range [1, n], where n is the number of vertices that contain G). 

Restrictions to these equations may be included allowing to define GDIs that codify particular 

type of information on atom relations in the event space (See Table 3).  

Note that the aggregation operators introduced in section 2.2 (see Table 2) may be 

applied not only to the vector of original LOVIs but also to the vector of standardized LOVIs. 

In the standardization procedure, the original LOVI values are converted to standardized ones 

using the following formula: Std. LOVIs = (Original LOVI – mean of LOVIs)/Std. With this 

normalization procedure, the vector of standardized LOVIs has a mean of 0 and standard 

deviation of 1. 

Table 3: Calculation´s conditions and nomenclature of each shape of hipermatrix based calculations. 
Calculation´s Conditions  Nomenclature 

Triple Matrix 

Only the matrix entries that satisfy the condition i ≠ j ≠ k are selected. T 

Only the matrix entries that satisfy the condition i ≠ j ≠ k and i=j || j=k || i=k are selected. T2 

Quadruple Matrix 

Only the matrix entries that satisfy the condition i ≠ j ≠ k ≠ l are selected. C 

Only the matrix entries that satisfy the condition i ≠ j ≠ k ≠ l and i=j || j=k || k=l || i=j || i=k || 

i=l || j=l are selected. 
C3 

Only the matrix entries that satisfy the condition i ≠ j ≠ k ≠ l and i=j=k || i=j=l || i=k=l || j=k=l 

are selected 
C2 

 

While the theoretical algorithms adopted in the definition of MDs may seem to be borne 

out of deep creativity, the true beauty of novel MDs lies in the quality of the information 

codified and their ability to correlate with properties inherent to molecular structures. The 

following sections are dedicated to this analysis. 
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3 Shannon Entropy Based Variability Analysis 

3.1 General information and purpose 

One of the desirable requirements of novel MDs, as proposed by Randic [18], is that 

they should gradually change with gradual variations in structures. Shannon‟s entropy-based 

variability analysis offers a practical procedure for evaluating this attribute [15, 19]. This is an 

unsupervised feature selection method, based on the examination of case-wise statistical 

distribution of MD values in equal discrete intervals (bins). The use of histograms of 

descriptor distributions permits the comparison of descriptors with different units and value 

ranges. To this end, the variable range is determined (xmax - xmin) and divided by the number of 

desired intervals (maximum number of intervals is equal to number of cases) to determine the 

interval size.  

Shannon‟s entropy formula (see equation 2.6) is applied to the resulting probability 

distribution function for each variable: 

i

n

i

i ppSE 2

1

log


                                                                                                      (2.6) 

where, pi is the probability that a case adopts a value within data interval i (bin i).  

Note that this entropic measure is not related to the chemical graph entropy [20], but is 

rather a measure of the variables‟ information content (i.e. relevance)[15, 21] in the sense that 

a variable that changes progressively with changes in chemical structures, as a desirable 

attribute of molecular descriptors [8], possesses high SE values, while low SE values 

correspond to redundant variables (with similar values for chemically different structures). 

To compute the SE of the GDIs proposed in this manuscript, an interactive in house 

software denominated IMMAN (acronym for Information Theory based CheMoMetric 

ANalysis) was used [22]. The IMMAN software has been used by some of the present authors 

in an earlier study to examine the variability of MDs, and is freely available upon request to 

the authors [23].
 

The aim of the present study is to compare, in variability terms, the performance of 

families of known 2D MDs and the proposed GDIs. For this experiment, a small data set of 

41 structurally diverse compounds was used (see Supporting Information SI2), and the 

descriptor calculations carried out using DIVATI, a new module of TOMOCOMD-CARDD 

program. The following configurations were used for the GDI computation: 1) weighting 

scheme: Pauling‟s Electronegativity and the non-weighted option, 2) Dimensions: duplex, 
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triple and quadruple matrix dimensions, and 3) Aggregation Operators: Norms, Means and 

Statistical Invariants.  

With the MDs obtained, the corresponding SE values were computed using a binning 

scheme of 41 intervals (bins), in which case the maximum entropy value, SEmax = log241 = 

5.358 bits, corresponding to equiprobable discrete intervals (pi = 1/N).  

3.2 Comparison for duplex, triple and quadruple dimensional GDIs and 

other 2D-MDs 

For this experiment, a comparison of SE values for the best overall 100 variables (in SE 

terms) of matrix representation (duplex, triple, quadruple) was performed. Better SE 

distributions are obtained for triple and quadruple approaches, although the distribution for 

the duplex matrix approach equally shows satisfactory results. Uniting all approaches based 

on n-dimentional matrix representations as a unique family, the quality‟s distribution 

increases, (see figure 3) showing the major variability from all the compared families.  

 

Fig. 3. Shannon‟s entropy distribution for GDI families. 
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Fig. 4. Shannon‟s entropy distribution for DRAGON‟s and GDI descriptor families. 

 

As it can be observed, it is perfectly justifiable to extend the derivative indices for 

triplex (GDI-T) and quadruple (GDI-Q) matrix representations, obtaining as result a 

qualitative and quantitative improvement, when all the matrix representation are combined as 

a unique indices family (GDIs family). 

Besides, it was developed the comparison of GDIs as a unique family [12 % are Duplex 

relations frequency matrix-based (D), 33 % are Triple frequency matrix-based (T) and 55 % 

Quadruple relations frequency matrix-based (88% for n-tuples GDIs)] respect to the principal 

2D indices used in relation structure-activity researches. 

It can be observed in figure 4 that the GDIs express a major variability respect to the 

rest of the analyzed indices. 

4 QSPR modeling of physico-chemical properties of 2-

furylethylene derivatives 

4.1 QSPR study   

One of the key applications of theoretical MDs is in QSPR/QSAR studies. It is thus 

natural that the practical contribution of these parameters be evaluated in standard modeling 

paradigms to assess their true capacity in codifying useful chemical information. In view of 

the fact that the main aim of the present manuscript is to introduce extensions of the GDI 

method to higher dimensions, it is of interest to assess the contribution, if any, of 
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hypermatrix-based GDIs in QSPR modeling. In this experiment, a dataset of 34 2-

furylethyelenes was used (see Supporting Information SI3), and a search for the best 

regressions for the properties Log P and Log K was performed. Subsequently, the 

performance of these indices was compared with the rest reported in the literature [24, 25].  

The 2-furylethylene derivatives have different substituents in position 5 of the furan 

ring as well as in position β of the exo-cyclic double bond (see Supporting Information SI3). 

The Log P and Log K values of these chemicals have been experimentally determined and 

reported in the literature[26-28]. The lipophilicity and the nucleophilic addition of the 

mercaptoacetic acid to the exocyclic double bond of 2-furylethylene derivatives play a 

significant role in comprehending of the antibacterial activity of these chemicals. Therefore 

modeling such properties using the proposed GDIs provides a preliminary overview about the 

applicability of these indices in QSPR studies.  

The search for optimal QSPR models was performed using Multiple Linear Regression 

method coupled with genetic algorithms (GAs) as the search strategy.  This approach is 

implemented in the MOBYDIGS software (version 1.0 – 2004) [29]. The theoretical basis of 

the GAs has been explained in detail elsewhere [30-34]. The population size was set at 100 

and the reproduction/mutation trade-off (T) at 0.70.  The models were optimized using as 

objective function the statistical parameter Q
2

loo (“leave one out” cross-validation) and 

validated using the strategies “bootstrapping” (Q
2

boot) and “scrambling” (y-SC) [a (R
2
), a 

(Q
2
)]. The former checks the predictive power of the obtained models and the latter evaluates 

the possibility of random correlations, a usual phenomenon when dealing with high 

dimensional data [1, 29]. 

The best QSPR models attained using triple and quadruple matrix-based GDIs, and all 

GDIs-families respectively, are presented below: 

Triple matrix-based GDIs models 
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N = 34   R
2
(%) = 99.72   s = 0.086   Q

2
Loo(%) = 99.53   sCV = 0.097   Q

2
Boot(%) = 98.64   Y-

SC = 0.143   F = 1302 
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                     (4.2) 

N = 34   R
2
(%) = 99.46   s = 0.06   Q

2
Loo(%) = 99.1   sCV = 0.067   Q

2
Boot(%) = 98.95   Y-SC = 

0.153   F = 678.64 

Quadruple matrix-based GDIs models 
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              (4.3) 

N = 34  R
2
(%) = 99.77   s = 0.078  Q

2
Loo(%) = 99.60   sCV = 0.090   Q

2
Boot(%) = 99.31   Y-SC 

= 0.151   F = 1621.43 
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                              (4.4) 

N = 34   R
2
(%) = 99.47   s = 0.059   Q

2
Loo(%) = 99.23   sCV = 0.062   Q

2
Boot(%) = 98.84  Y-SC 

= 0.138   F = 690.65 

Triplex and Quadruple Matrix-based GDI Combined Models 
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                               (4.5) 

N = 34  R
2
(%) = 99.79  s = 0.074   Q

2
Loo(%) = 99.70   sCV = 0.079   Q

2
Boot(%) = 99.54  Y-SC 

= 0.150   F = 1735.42 
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                                                                                               (4.6) 

N = 34   R
2
(%) = 99.53   s = 0.056   Q

2
Loo(%) = 99.34   sCV = 0.057   Q

2
Boot(%) = 99.19  Y-SC 

= 0.153   F = 781.09 

Duplex, Triplex and Quadruple Matrix-based GDI Combined Models 
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(4.7) 

N = 34   R
2
(%) = 99.89   s = 0.055   Q

2
Loo(%) = 99.85   sCV = 0.055  Q

2
Boot(%) = 99.73  Y-SC 

= 0.15   F = 3171.65 
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N = 34   R
2
(%) = 99.67   s = 0.047   Q

2
Loo(%) = 99.44   sCV = 0.053  Q

2
Boot(%) = 99.26  Y-SC 

= 0.152   F = 1108.65 

where, N is the number of compounds, R
2
 is the determination coefficient, SCV is the standard 

deviation of the regression, Q
2

loo and Q
2

boot are the regression coefficients obtained from the 

cross-validation procedures LOO and bootstrapping, respectively; y-SC is the intercept value, 

obtained from the validation technique scrambling, and F is the Fisher ratio.  

The main statistic parameters of equations 4.7 and 4.8 show a better performance once 

all the GDIs families are mixed. All the models since 3 until 7 variables with respectively 

statistic parameters are showed in Supporting Information SI4.  

 

Fig. 5. The linear correlations between the calculated and experimental values of Log K and Log P for 

2-furylethylenes. (Equations 4.7 and 4.8, respectively). 

 

The experimental and calculated values of Log K and Log P according to the models 

4.7 and 4.8, as well the corresponding residual values, are showed on supporting information 

SI5. The linear correlations existing between the calculated and experimental values of Log K 

and Log P for 2-furylethylenes derivatives are illustrated in Figure 5, corresponding to models 

4.7 (Q
2

loo = 99.85) and 4.8 (Q
2

loo
 
= 99.44), respectively. The statistical parameters of these 

models show satisfactory robustness and predictive capacity. 
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4.2 Comparative study 

Finally, regressions of the physicochemical properties (Log P and Log K) for the 2-

furylethylenes obtained using the novel GDIs are compared with those of some of the most 

relevant indices or group of indices in QSPR studies such as: connectivity indices (both 2D 

and 3D as well as edge- and vertex-based), total (global) spectral moment (sum of the trace of 

the bond matrix), local (fragment) spectral moment (partial sum of the trace of the bond 

matrix), linear indices (bond-based stochastic and  non-stochastic), atom- and bond-based 

quadratic indices, 2/3D ITs and quantum chemical descriptors (See Table 4) [28]. 

As can be seen in Table 4, triple and quadruple matrix-based GDIs show superior 

performance, in modeling the considered properties than the rest of the MD families reported 

in the literature. When all the Graph Derivative Indices (GDIs) families are combined, models 

with better performance are obtained. This result reaffirms the theoretical and practical 

contribution of extending the GDI method to higher dimensions.  

Despite the models reported for each GDIs family and group of families have until 7 

independent variables, it can be noted that in almost all cases with only 4 descriptors there are 

founded regression equations more statistically robust that equations reported in the 

specialized literature with 7 parameters.  

Unfortunately, authors of previous studies did not report the values of Q
2

boot, y-SC and 

in some cases for Log K and log P, or Q
2

loo values [24, 25].   

It can therefore be suggested that the DIVATI indices, in general, seem to be a 

promissory tool to reckon on in QSAR/QSPR studies, virtual screening of compound datasets 

as well as in similarity/dissimilarity evaluations.  

5 Concluding Remarks 

A generalization of the previously proposed GDIs to higher dimensions, considering 

triple and quadruple atom relations is discussed. The frequencies of these atom relations are 

condensed in triple and quadruple relations frequency hypermatrices, respectively. A 

Shannon‟s entropy-based variability analysis reveals that the extension of the GDI method to  
 
Table 4: Statistical Parameters of QSPR Models that Describe Physicochemical Properties of 34 

Derivatives of 2-furyletilenes by using Different MDs. 
Indices N  R2 s Q2

loo sCV Q2
boot y-sc F 

1-octanol/water partition coefficient (Log P) 

GDI-D13 7  99.19 0.072 98.72 0.080 98.34 * 453.84 

GDI-D13 6  98.81 0.086 98.16 0.096 97.68 * 374.08 

GDI-D13 5  98.44 0.097 97.81 0.105 97.41 * 352.67 

GDI-D13 4  97.10 0.13 96.19 0.138 95.79 * 242.48 

GDI-T  (Eq. 4.2) 7  99.46 0.06 99.1 0.067 98.95 0.153 678.64 

GDI-T    6  99.11 0.075 98.6 0.083 98.42 0.116 503.94 

GDI-T    5  98.28 0.102 97.46 0.113 97.25 0.077 319.33 
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GDI-T    4  97.07 0.131 95.81 0.145 95.66 0.065 240.61 

GDI-T    3  95.42 0.161 94.12 0.151 93.89 0.028 208.4 

GDI-Q  (Eq. 4.4) 7  99.47 0.059 99.23 0.062 98.84 0.138 690.65 

GDI-Q    6  99.31 0.066 99.09 0.067 98.3 0.04 651.05 

GDI-Q    5  99.0 0.078 98.49 0.087 97.67 0.087 554.94 

GDI-Q    4  98.26 0.101 97.59 0.11 97.35 0.055 408.67 

GDI-Q    3  97.18 0.126 96.27 0.136 96.18 0.022 344.91 

GDI-[T  Q](Eq. 4.6 ) 7  99.53 0.056 99.34 0.057 99.19 0.153 781.09 

GDI-[T  Q] 6  99.36 0.063 99.09 0.067 98.88 0.125 697.42 

GDI-[T  Q] 5  99.05 0.076 98.62 0.083 98.44 0.089 585.47 

GDI-[T  Q] 4  98.45 0.095 97.84 0.104 97.7 0.043 460.95 

GDI-[T  Q] 3  97.19 0.126 96.36 0.135 96.22 0.044 345.29 

GDI-[D, T  Q](Eq. 4.8) 7  99.67 0.047 99.44 0.053 99.26 0.152 1108.65 

GDI-[ D, T  Q] 6  99.47 0.058 99.19 0.064 99.08 0.113 840.73 

GDI-[ D, T  Q] 5  99.11 0.073 98.72 0.08 98.55 0.108 624.97 

GDI-[ D, T  Q] 4  98.48 0.094 97.69 0.107 97.66 0.065 469.64 

GDI-[ D, T  Q] 3  96.39 0.143 95.56 0.149 95.38 0.04 266.69 

Bond-based NS LI 7  97.5 0.127 0.951 * * * 146.80 

Vertex and edge Conn. Indices 7  93.9 0.199 * * * * 56.9 

Topological Descriptors 7  96.4 0.155 * * * * 84.6 

Quantum Chemical Descriptors **  87.5 0.319 * * * * 45.5 

Atom-based NS QI 7  96.9 0.142 95.1 * * * 116.76 

Atom-based NS LI 7  96.8 0.143 93.8 * * * 113.38 

Specific rate constant (Log K) 

GDI-D13 7  99.81 0.069 99.7 0.111 98.47 * 2003.08 

GDI-D13 6  98.86 0.169 98.26 0.186 97.73 * 389.39 

GDI-D13 5  98.47 0.192 97.79 0.209 97.21 * 359.88 

GDI-D13 4  97.92 0.22 97.29 0.231 96.74 * 341.08 

GDI-T   (Eq. 4.1) 7  99.72 0.086 99.53 0.097 98.64 0.143 1302 

GDI-T    6  99.52 0.11 99.30 0.118 98.17 0.126 932.46 

GDI-T    5  98.91 0.163 98.43 0.178 96.51 0.092 508.38 

GDI-T    4  97.64 0.236 96.78 0.254 95.71 0.076 299.67 

GDI-T    3  95.20 0.331 93.51 0.361 91.73 0.034 198.17 

GDI-Q   (Eq. 4.3) 7  99.77 0.078 99.60 0.090 99.31 0.150 1621.43 

GDI-Q    6  99.55 0.107 99.17 0.130 98.72 0.127 990.43 

GDI-Q    5  99.34 0.127 99.06 0.137 98.37 0.097 842.10 

GDI-Q    4  99.09 0.146 98.71 0.161 98.02 0.072 789.91 

GDI-Q    3  98.16 0.205 97.19 0.238 96.86 0.032 533.30 

GDI-[T  Q](Eq. 4.5) 7  99.79 0.074 99.70 0.079 99.54 0.150 1735.42 

GDI-[T  Q] 6  99.75 0.080 99.66 0.084 99.49 0.146 1732.47 

GDI-[T  Q] 5  99.59 0.101 99.42 0.109 99.22 0.162 1321.14 

GDI-[T  Q] 4  99.15 0.143 98.70 0.163 98.28 0.064 813.22 

GDI-[T  Q] 3  98.39 0.194 97.67 0.218 96.92 0.029 589.95 

GDI-[D, T  Q](Eq.4.7) 7  99.89 0.055 99.85 0.055 99.73 0.150 3171.65 

GDI-[ D, T  Q] 6  99.85 0.062 99.81 0.062 99.74 0.118 2942.74 

GDI-[ D, T  Q] 5  99.82 0.066 99.76 0.070 99.70 0.085 3052.76 

GDI-[ D, T  Q] 4  99.71 0.084 99.60 0.090 99.05 0.070 2368.70 

GDI-[ D, T  Q] 3  98.98 0.152 98.53 0.173 98.43 0.047 938.02 

Connectivity Indices 7  82.1 0.681 * * * * 17.1 

Global spectral moments 7  84.3 0.655 * * * * 18.8 

Local spectral moments 7  96.4 0.320 * * * * 70.4 

Quantum Chemical Descriptor 7  96.8 0.288 * * * * 112.2 

Atom-based NS QI 7  96.8 0.922 28.5 * * * 115.14 

Bond-based NS QI 7  96.7 0.940 29.2 * * * 108.79 

Bond-based SS QI 7  97.5 0.958 25.7 * * * 142.07 

GDI-X [X: D(Duplex Matrix-based), T(Triplex Matrix-based), Q(Quadruple Matrix-based), TQ (Triple and 

Quadruple Matrix-based), D,TQ (Duplex, Triplex and Quadruple Matrix-based)] 

*Not reported 

**Used Rogers and Cammarata approach. 
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higher dimensions increases the entropy of the proposed MDs, superior to that of the t 

commonly used MDs in chemoinformatics tasks. Moreover, the GDIs are employed in the 

modeling of the physicochemical properties Log P and Log K of the 2-furylethylenes 

derivatives, obtaining robust models whose respective statistical parameters are comparable to 

superior to those reported in the literature. 

The generalization scheme discussed in the present report could be applied in the 

extension of any family of MDs defined on the basis of atom-pair relations.  

The DIVATI program is free multiplatform software, built following a Master/Worker 

pattern to utilize multiple CPU cores. The software is available upon request to the authors 

(ymarrero77@yahoo.es). 

 

Supplementary Data Available: The Quadruple Hypermatrix for the N,N-

dimethylpropionamide  molecule (SI1), the data set of 41 diverse molecular structures for the 

variability study (SI2), chemical structures and numbering of atoms in the furylethylenes 

compounds used QSPR study (SI3),  models since 3 until 7 variables (SI4) and experimental 

and calculated values of Log K and Log P (SI5) are available free of charge via the Internet. 
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