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Three vip3 genes were identified in two Bacillus thuringiensis Spanish collections. Sequence analysis revealed a novel Vip3 pro-
tein class (Vip3C). Preliminary bioassays of larvae from 10 different lepidopteran species indicated that Vip3Ca3 caused more
than 70% mortality in four species after 10 days at 4 �g/cm2.

Vegetative insecticidal proteins (Vip) are secretable proteins
from Bacillus thuringiensis (4, 19) which do not share se-

quence homology with known Cry proteins and display insecti-
cidal activity against a wide variety of lepidopterans (5, 21) and
coleopterans (19) and some sap-sucking insect pests (17). The
members of the Vip3 family characterized to date exhibit activity
against lepidopterans, and several of them do not compete with
Cry proteins for binding sites (12, 18). They are classified into two
subfamilies (Vip3A and Vip3B), and some are especially toxic for
species with little susceptibility to several Cry proteins (4, 14). All
of these features have made Vips a research target for broadening
the host-range of B. thuringiensis-based biopesticides and for the
management of insect resistance to B. thuringiensis proteins (2).

This work aimed to identify novel vip3-like genes from two
Spanish B. thuringiensis collections. Around 800 strains were pre-
viously screened by PCR with primers from conserved vip3 gene
sequences (vip3-sc.fw and vip3-sc.rev) (7). Most of the genes iden-
tified showed very high similarity to those previously described
(7). Strains NaB8.1 and NaB8.3 were isolated from barley husk in
Miranda de Arga (Navarra, Spain) and maize dust in Allo (Na-
varra, Spain), respectively, two localities located 30 km apart (11).
Strain V-MU2.21 was isolated from a storehouse dust sample col-
lected 810 km away from the other two, in Murcia (Spain) (7).
Each of the three strains yielded a single amplicon using the vip3-
specific primers and showed Sau3AI and AluI restriction endonu-
clease profiles distinct from those of other known vip3 genes (7).
Amplicons were cloned into pGEM-T Easy (Promega) and se-
quenced. Full-length open reading frames (ORFs) were obtained
by a genome walking strategy, completely amplified from the orig-
inal strains, and cloned into expression vectors pET-28b(�) (for
strains NaB8.1 and NaB8.3) and pMaab10 (for strain V-MU2.21).
Each full-length ORF was 2,412 bp long and encoded 803-residue
proteins with 90.8-kDa predicted molecular masses and 99.8%
identity among them. Sequence alignment with known Vip3
proteins revealed identities within the 45 to 78% range. They
therefore constituted a new Vip3 subfamily designated Vip3C
by the B. thuringiensis Nomenclature Committee (http://www
.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), and the pro-
teins (from strains NaB8.1, V-MU2.21, and NaB8.3, respectively)
were named Vip3Ca1 (ADZ46178), Vip3Ca2 (AEE98106), and
Vip3Ca3 (HQ876489). In the new Vip3 protein dendrogram, the
novel Vip3Ca proteins were grouped in a separate branch (Fig. 1).

Differences between the Vip3Ca and Vip3Aa1 amino acid se-
quences were found over the entire length but were more frequent
toward the C terminus, as was previously reported for differences
between Vip3Ba1 and Vip3Aa1 (15). The signal peptide (SP), po-
tentially involved in Vip3 secretion (4, 15), remained highly con-
served and differed in only two amino acids. It is not clear whether
these few changes modify the insecticidal properties of Vip3, but
the N terminus seems to be required for the correct formation
of the trypsin-resistant core fragment in some Vip3 proteins (13).
The two proteolytic processing sites (PPSs), PPS1 and PPS2, were
less conserved. Protease treatment of Vip3Aa1 has been reported
to give rise to four major protein products with molecular masses
of approximately 22, 33, 45, and 66 kDa (5). The 22-kDa fragment
constitutes the N-terminal portion of Vip3Aa1, whereas the 66-
kDa fragment comprises the rest of the protein. This fragment
may vary in size from 62 to 66 kDa among different Vip3 proteins
and is occasionally known as the “trypsin-resistant core” (13).
Proteolytic processing of the 66-kDa fragment renders both the
33- and 45-kDa fragments (4, 5, 15). How the few changes in the
Vip3Ca PPSs may modify either the protein activity or the host
range is uncertain, but different Vip3 proteins have shown very
distinct insecticidal properties (4, 15). Other remarkable differ-
ences were the presence of two insertions immediately down-
stream of PPS1 and PPS2 that, together with another one at the C
terminus, may also increase the size of the trypsin-resistant core
fragment described for Vip3Aa1 (4, 5, 15) from 66 kDa to approx-
imately 69 kDa. Finally, Vip3C proteins maintained only one of
the three residues of the C terminus stabilizing domain described
for Vip3Aa1 (5). This higher divergence toward the C terminus
might indicate lower functional constraints and, consequently,
more permissibility to nonsynonymous substitutions (20).

The only differences among the three novel Vip3Ca proteins
consisted of two point mutations rendering nonsynonymous sub-
stitutions. The first one, at position 3, modified the predicted sec-
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ondary structure of the putative SP from a turn (Vip3Ca1 and
Vip3Ca3) to an alpha-helix (Vip3Ca2). The second one, at posi-
tion 215, caused a slight enlargement of the predicted secondary
structure (alpha-helix) of the trypsin-resistant core in Vip3Ca3.
The three Vip3Ca proteins had identical PPSs. These few differ-
ences are not attributable to laboratory contamination or PCR
failure since they were cloned in two different laboratories and
obtained in independent replications.

For a preliminary screening of the insecticidal properties of
Vip3Ca (host range and toxicity), Vip3Ca3 was picked because of
its high yields, expressed in Escherichia coli, column purified,
quantified by densitometry, and used to challenge larvae of 10
different lepidopteran species (Table 1). Bioassays were con-
ducted with neonate larvae that were placed over a surface-con-
taminated artificial diet. Two protein concentrations (0.4 and 4
�g/cm2) were tested for all species except Lobesia botrana, which
was challenged with 10 and 100 �g/ml of diet (16). Water was used
as a negative control. Sixteen larvae were used for each protein
concentration, and each bioassay was repeated twice. Bioassays
were conducted at 25°C, 60% � 5% relative humidity, and a 16:
8-h (light/dark) photoperiod. Absolute and functional mortality
rates (dead larvae plus larvae remaining in the first instar) were
scored after 10 days. Chrysodeixis chalcites, Helicoverpa armigera,
Mamestra brassicae, Trichoplusia ni, and Spodoptera littoralis
seemed to be moderately to highly susceptible to the toxin, partic-
ularly C. chalcites. Compared with previously characterized Vip3
or Cry proteins, several differences in their insecticidal activity
could be detected (4, 15; http://www.glfc.forestry.ca/bacillus

/BtSearch.cfm). For example, in H. armigera, higher mortality
rates have been obtained with other Vip3 or Cry toxins (3, 8),
whereas M. brassicae mortality rates obtained with Vip3Ca3 were
in a range similar to that of the mean lethal concentration (LC50)
of several Cry1 proteins (9). Nevertheless, determination of the
LC50 of the three Vip3Ca proteins will allow more reliable com-
parisons among the Vip3C proteins and between Vip3C proteins
and other B. thuringiensis toxins.

Strong growth inhibition was observed in S. exigua and S. fru-

FIG 1 Dendrogram of Vip3 proteins from different subfamilies, including novel Vip3Ca1, Vip3Ca2, and Vip3Ca3 proteins. Branch lengths represent the
number of substitutions per site of the multiple-sequence alignment as a measure of divergence.

TABLE 1 Effect of toxin Vip3Ca3 on larvae of 10 lepidopteran species

Insect species

Mean mortality rateb (%) � SD

Absolute Functional

0.4 �g/cm2 4 �g/cm2 0.4 �g/cm2 4 �g/cm2

A. ipsilon 16 � 1.5 22 � 3.5 16 � 1.5 22 � 3.5
C. chalcites 73 � 2.9 79 � 5.9 73 � 2.9 79 � 5.9
H. armigera 15 � 2.9 65 � 2.9 38 � 5.9 83 � 5.9
L. botranaa 5 � 0.00 12 � 4.5 5 � 0.00 16 � 4.9
M. brassicae 42 � 2.9 80 � 2.9 44 � 5.9 85 � 5.9
O. nubilalis 3 � 0.0 6 � 0.0 3 � 0.0 6 � 0.0
S. exigua 8 � 2.5 19 � 11.2 21 � 0.7 86 � 13.4
S. frugiperda 10 � 9.6 27 � 7.1 20 � 9.5 54 � 2.7
S. littoralis 19 � 2.9 73 � 2.9 21 � 5.9 88 � 5.9
T. ni 35 � 3.4 94 � 1.0 35 � 3.4 94 � 1.0
a For L. botrana bioassays, the Vip3Ca toxin was incorporated into the diet at 10 and
100 �g protein/ml of diet.
b Absolute mortality rates were corrected for the background mortality rate (control).
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giperda, as reflected by the effective mortality rates. This outcome
has already been reported for other B. thuringiensis toxins (1, 6,
10) but seems to be a particular response in certain host-toxin
combinations and does not always occur. Actually, Vip3Ca3 had
little or no effect on the growth (of surviving larvae) of 7 of the 10
species analyzed here.

Finally, two of the species tested showed very low susceptibility
to Vip3Ca3. One of them was Ostrinia nubilalis, for which no toxic
effects of any of the Vip3Aa proteins assayed so far have been
reported (4, 12, 21). The other one was L. botrana, which has been
challenged with Vip3 for the first time.
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