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ABSTRACT: In the HARP experiment the large-angle spectrometer is using a cylindrical TPC as
main tracking and particle identification detector. The momentum scale of reconstructed tracks
in the TPC is the most important systematic error for the majority of kinematic bins used for
the HARP measurements of the double-differential production cross-section of charged pions in
proton interactions on nuclear targets at large angle. The HARP TPC operated with a number of
hardware shortfalls and operational mistakes. Thus it was important to control and characterize its
momentum calibration. While it was not possible to enter a direct particle beam into the sensitive
volume of the TPC to calibrate the detector, a set of physicalprocesses and detector properties
were exploited to achieve a precise calibration of the apparatus. In the following we recall the
main issues concerning the momentum measurement in the HARPTPC, and describe the cross-
checks made to validate the momentum scale. As a conclusion,this analysis demonstrates that the
measurement of momentum is correct within the published precision of 3%.

KEYWORDS: Time projection chambers, Detector alignment and calibration methods.
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1. Introduction

The HARP experiment [1, 2] at the CERN PS was designed to make measurements of hadron
yields from a large range of nuclear targets and for incidentparticle momenta from 1.5 GeV/c to
15 GeV/c. The main aims are to measure pion yields for a quantitative design of the proton driver
of a future neutrino factory, to provide hadron production cross-sections for precision calculations
of the atmospheric neutrino flux [3] and to measure particle yields as input for the flux calculation
of accelerator neutrino experiments, such as K2K [4], MiniBooNE and SciBooNE [5].
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Figure 1. Left panel: schematic layout of the TPC. The beam enters fromthe left. Starting from the outside,
first the return yoke of the magnet is seen, closed with an end-cap at the upstream end, and open at the
downstream end. The field cage is positioned in the middle of the magnetic volume. The inner field cage is
visible as a short cylinder entering from the left. The ITC trigger counter and target holder are located inside
of the inner field cage. Right panel: mechanical drawing of a sector of the TPC pad plane, the layout of the
pads is indicated.

The HARP experiment makes use of a large-acceptance spectrometer consisting of a forward
and large-angle detection system. A detailed description of the experimental apparatus can be
found in reference [2]. The forward spectrometer — based on large area drift chambers [6] and
a dipole magnet complemented by a set of detectors for particle identification (PID): a time-of-
flight wall [7] (TOFW), a large Cherenkov detector (CHE) and an electromagnetic calorimeter —
covers polar angles up to 250 mrad which is well matched to theangular range of interest for the
measurement of hadron production to calculate the properties of conventional neutrino beams.

The large-angle spectrometer — based on a Time Projection Chamber (TPC) and Resistive
Plate Chambers (RPCs), located inside a solenoidal magnet —has a large acceptance in the mo-
mentum and angular range for the pions relevant to the production of the muons in a neutrino
factory. It covers the large majority (∼ 70%) of the pions accepted in the focusing system of a
typical design.

1.1 The HARP TPC

The HARP TPC was designed and built in a record time of about 1.5 years. Its main design features
are an almost full solid angle acceptance and high-event rate capabilities. It was operated in the
years 2001 and 2002 at the CERN PS. Additional specialized calibration runs were performed in
2003.

The TPC consists of a cylindrical volume 1.5 m long and 0.8 m diameter filled with a 91% Ar,
9% CH4 gas mixture positioned in a solenoidal magnet with a field of 0.7 T. A 12 kV electric field
drives the ionization charges at a velocity of 5 cm/µs to the read-out plane, where the induction
signals are collected by 3972 pads arranged in 20 concentricrows. The pad signals are digitized
in 100 ns time bins, corresponding to about 5 mm bins in the longitudinal direction. A sketch of
the HARP TPC and of its pad plane is shown in Fig. 1. More technical details can be found in
reference [2]. The TPC is the key detector for the analysis oftracks emerging from the target at
large angles with respect to the incoming beam direction.
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The HARP TPC suffered from a number of shortcomings that werediscovered during and
after the data taking [2]:

1. A rather large number of deficient electronic channels (∼ 15%) due to poor soldering of a
fraction of cables to the back of the pad plane.

2. Static distortions caused by the inhomogeneity of the magnetic field, the accidental HV mis-
match (about 2%) between the inner and outer field cage and edge effects near the inner and
outer field cage.

3. Dynamic distortions caused by build up of ion-charge density in the drift volume during the
400 ms long beam spill, caused by a partial ’transparency’ ofthe cathode wire grid. Given
the beam intensity and the data acquisition rate with the 5% interaction length targets, it
follows that HARP operated under conditions of a high dead time (higher than 90%). The
number of events collected in each spill was on average about300.

4. Cross-talk between pads caused by capacitive coupling between signal lines in the multilayer
printed boards.

A description of the measures taken to correct for the effects of items 1, 2, and 4 is given in [2, 8].
The treatment of the dynamic distortions and some detail of the track fitting procedure are described
in Appendix A. We recall here that in large angle cross section results published so far [8, 9], only
the first part of the spill (about 30% of the total events), where the dynamic distortions are negligible
were used (as discussed in Appendix A the distortions can be monitored by a physical parameter
namedd′

◦). This provides very little penalty in measuring cross sections because already with this
statistics systematic errors dominate in most of kinematicbins [8, 9].

Under these experimental conditions, in the absence of an appropriate calibration system and
without the possibility of exposing the TPC to test-beams, awide range of experimental cross-
checks has been employed to assess the momentum scale in the HARP TPC, as described in the
following.

1.2 Procedure used to determine the absolute calibration ofthe momentum scale

The momentum measurement in the HARP TPC is a direct result ofthe calculation based on the
measured track curvature and the known magnetic field, noad hoccorrection factor has been
applied to make the measurement agree with the benchmarks. Thus, the determination of the scale
should be considered as a cross-check rather than a calibration.

A bias on the momentum scale as measured by a TPC is typically related to a sagitta error:

δ (pT)/pT = s·8·q· pT/(0.3·B ·L2) (1.1)

Where the sagittasand the track lengthL are in meters (0.5 m is the typical track length in HARP),
the magnetic fieldB in Tesla (0.7 T in HARP), the track momentumpT is in GeV/c, q is the sign
of the charge of the particle.

Unfortunately, it was not possible to send a direct beam of particles into the sensitive volume
of the TPC. In the absence of such a beam, well defined procedures were used to determine the
absolute calibration of the absolute momentum calibrationof the TPC.
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• The momentum scale in the TPC was characterized by using proton–proton elastic scattering
data as benchmark, see Section 2, in two different ways:

1. By using the incident proton momentum and direction (measured by the beam MWPCs)
and the momentum and direction of the proton scattered at large angle, measured by
the TPC, the missing mass squaredM2

x is determined for every event (see Section 2.1).
A bias in the momentum scale would reflect in a bias in theM2

x calculation.

2. The angle of the forward scattered particle is used (measured by the forward spectrom-
eter) together with the momentum and direction of the incoming proton to predict from
the kinematics of the elastic scattering the recoil proton momentum and direction. This
prediction is then compared with the measured momentum of the recoil proton (see
Section 2.2). Special care has been devoted in this test to avoid any bias due to the
different energy losses of protons (measured in elastic scattering events) against pions
(cross section measurements), as described1 in Section 2.2.3.

• As an additional cross-check, one can also look at the dE/dx distribution, see Section 4. A
satisfactory description of thep–dE/dx distribution is obtained after the TPC calibration. Al-
though less precise than the elastic scattering kinematicsthis method can be used to exclude
large biases.

• A sagitta error would have opposite sign for positively and negatively charged particles and
would grow linearly withpT. It would thus be detectable, regardless of the absolute scale,
by a dependence of the measured total momentum on the track angle for samples of tracks
with different angles for which one can ensure that they havethe same total momentum.
These samples, as discussed in Section 4.2, can be defined using protons in fixed regions of
relatively high dE/dx (dE/dx depends only on the total momentum).

• The p–β relation using the time-of-flight measurement with the RPCscan also be used as
a relatively weak cross-check, see Section 5. The precisionof this method is limited by
the understanding of the detector physics of the RPCs in combination with the very short
flight-path.

2. Elastic scattering data

2.1 Measure of the missing mass squared

This analysis has been already published in [2] and it is onlybriefly summarized here. Events
from the 3 GeV/c momentum runs are selected by requiring standard beam selection criteria for
protons and only 1 or 2 prong events in the TPC. The 2-prong events are determined by very
loose kinematical cuts:|(φ1 − φ2)− π| < 0.3 rad and(θ1 + θ2) < 1.75 rad, whereφ1, φ2, θ1, θ2

are, respectively, the azimuthal and polar angles of the twotracks. Further selection criteria are
applied to the large-angle track, that is used for the final analysis: the particle is positively charged

1In principle it is enough to measure the angle of the scattered proton to predict its momentum. We did not follow
this method because a) we use the angle to select a clean sample of elastic scattering events and b) the angle of protons
is affected by multiple scattering in the material around the target
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Figure 2. Missing mass in 3 GeV/c pp scattering. The result (solid line) is centered very close to the PDG
value of the squared proton mass. An artificial shift of 15% ofthe momentum measured was applied to
obtain the dashed histogram. Such a shift is clearly excluded by the data (see the text).

and well measured over a minimum of 10 points; the reconstructed momentum is in the range
320 MeV/c ≤ p < 620 MeV/c. The tracks must come from the target2 and must be recognized
as a proton with a dE/dx selection.

The missing mass is then computed as:

M2
x = (pbeam+ ptarget− pTPC)

2 (2.1)

wherepbeam, ptarget , pTPC are the 4-momenta of the incoming beam particle, target particle and the
particle scattered at large angle and measured in the TPC, respectively.

The result of this analysis is shown in Fig. 2. A fit to the distribution of Fig. 2 provides
〈M2

x〉 = 0.8819±0.0032 GeV2/c4 (χ2/ndof= 20.5/17 in the 0.55−1.4 GeV2/c4 range for a fit
using a Gaussian plus a linear background as description) inagreement with the PDG value of
0.88035 GeV2/c4.

To study the effect of a momentum scale bias over the reconstructed missing mass, we have
reconstructed the same distribution by displacing the momentum of the reconstructed track by 15%.
As shown in Fig. 2 such a bias would produce a displacement of about 0.085 GeV2/c4 on M2

x .

Systematic errors to this measurement come from uncertainties on the primary beam particle
momentum, correction for proton energy losses in the material of the cryogenic target and inner
field cage. As a result, the momentum scale is estimated to be correct to better than 3.5% (at one
standard deviation).

2Longitudinal position of the point of minimum distance between the beam axis and the track extrapolation in the
direction of the interaction vertex must be in the range of−50 mm ≤ z< 70 mm, wherez is the coordinate along the
beam direction

– 5 –



2.2 Comparison of the measured proton momentum with the elastic scattering predictions

Elastic scattering interactions of protons and pions off hydrogen provide events where the kinemat-
ics is fully determined by any of the kinematic quantities and in particular by the direction of the
forward scattered beam particle. These kinematic properties of the elastic scattering reaction were
exploited to provide a known ‘beam’ of protons pointing intothe TPC sensitive volume. Data were
taken with liquid hydrogen targets at beam momenta of 3 GeV/c, 5 GeV/c and 8 GeV/c.

2.2.1 Data selection

A good fraction of forward scattered protons or pions in the elastic scattering reaction enter into
the acceptance of the forward spectrometer (about 50% depending on the beam momentum).

Both direction and momentum of the recoil proton are then predicted.

Selecting events with one and only one track in the forward spectrometer and requiring that the
measured momentum and angle of the forward track are consistent with an elastic reaction already
provides an enriched sample of elastic events. To be counted, tracks need not to be inside the
acceptance of the dipole magnet, but need only to be detectedin the upstream drift chamber which
covers the full acceptance of particles exiting the aperture of the solenoid magnet which houses the
TPC. By requiring that only one barrel RPC hit is recorded at the position predicted for an elastic
event (the precision of the prediction from the forward spectrometer is within the RPC pad size)
and within a time window consistent with a proton time-of-flight, a sample of recoil protons with
known momentum vector is obtained with a purity of about 99%.

The requirement of one RPC hit is relaxed for events where therecoil proton momentum is
predicted to be low enough that it can be absorbed in the material in front of the RPCs. In such
cases also events without any RPC hit are accepted. The additional requirement that the recoil
angle is consistent with elastic scattering is then used to ensure a pure sample. At beam momenta
in the range 3 GeV/c–8 GeV/c the kinematics are such that these protons point into the TPCwith
angles of≈ 70◦ with respect to the beam direction.

The correlation of the forward scattering angle and recoil proton momentum introduces an un-
avoidable threshold in recoil proton momentum (≈ 350 MeV/c) which translates into a minimum
angle for the scattered particle. The threshold is relatively high due to the need to detect the proton
also in the barrel RPC system outside the outer field cage of the TPC. As mentioned above, this
requirement can be removed only in cases where a somewhat larger background can be tolerated.

Due to the geometry of the rectangular aperture of the dipolemagnet of the forward spec-
trometer only two small horizontal sectors of the TPC can be populated with recoil protons above
threshold momentum in the 3 GeV/c beam. In the 5 GeV/c beam the situation is much better
and all azimuthal angles can be populated, although not yet homogeneously. In the 8 GeV/c beam
the population is homogeneous inφ , but the error propagation of the measurement of the forward
scattering angle into the prediction of momentum and angle of the recoil proton becomes less fa-
vorable.

The numbers of selected elastic events amount to about 15,000 for the 8 GeV/c data sam-
ple, and 5,000 for each of the 5 GeV/c and 3 GeV/c data samples. The exposures with higher
momentum beams have not been used for this study.
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Figure 3. Left panel:pT of the recoil protons in used in the proton and pion elastic scattering data (5 GeV/c
runs) using the forward spectrometer to determine the kinematics. Right panel: typical distribution of thepT

of pion tracks used in the cross section measurement for 8.9 GeV/c p–Be interactions in the angular range
of the analysis beforep andpT cuts.

2.2.2 Protons versus Pions

With elastic scattering we can check the reconstructed momentum of protons, while in cross section
measurements we are interested in the momentum of pions. If the momentum scale is influenced
by a bias, however, protons are a robust check provided that their momentum in elastic scattering
events is similar to the momentum of pions in cross section measurements and that their higher
energy losses do not influence the measurement. The comparison of thepT of protons from elastic
events and thepT of pions in a typical setting, Fig. 3, shows that with elasticscattering most of the
range of interest is covered.

The possibility that the energy loss of low momentum protonscan alter the momentum recon-
struction is discussed in the following section.

2.2.3 The “unconstrained fit”

Since the energy loss in the material of the cryogenic target, trigger counter, and inner field cage
is large for protons in the energy range covered by elastic scattering, there is a significant change
of curvature of their trajectory in that region of the detector. This effect introduces a bias in the
measurement of the momentum if one uses the vertex constraint for these low-momentum protons.
Therefore, the behaviour of the momentum measurement for protons was studied without making
use of the vertex constraint. If one would use a vertex constraint in the fit for these protons one
would either have to modify the algorithm to take into account the change of curvature induced by
the large energy loss in the inner field cage or one would have to correcta posteriori for the bias.
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Figure 4. Comparison of the unconstrained (p1) and constrained (p2) momentum (p1/p2−1) for pions
(above 350 MeV/c) using data (from different target materials) and the corresponding Monte Carlo. The
data are indicated by the black histogram and the Monte Carloby the dashed histogram. The position of the
peak is at zero well within 1% and the mean is 2% both for data and MC. The first 50 events in the spill are
used.

The former option, the use of a modified algorithm, would not validate the standard code used for
the minimum ionizing pions. The latter option is used in the analysis described in Section 2.1.
Inside the TPC gas volume the energy losses of protons are negligible so that they can indeed be
used to validate the procedures in a way also applicable to the situation for pions.

Constrained and unconstrained fits are sensitive in the identical way to any sagitta error, since
the vertex position is not influenced by distortions in the TPC.

For pions and high momentum protons it was checked independently that the constrained fit
is unbiased with respect to the unconstrained fit for tracks reconstructed in the real data and in the
simulated data. In Fig. 4 it is shown that the vertex constraint does not introduce biases for those
particle trajectories and that the simulation provides an excellent description of the behaviour of the
resolution function. The comparison of the unconstrained (p1) and constrained (p2) momentum
(p1/p2−1) for data and Monte Carlo shows that the position of the peakis centered at zero well
within 1% and that the average is about 2% both for data and MC.

2.2.4 Results with the standard data selection

In this comparison, only the first 50 events in the spill were used in order to avoid the effect of
dynamic distortions in the unconstrained fit (see also Appendix A). Given the beam conditions
of the run under study here, this condition guarantees the same data quality as in the analyses of
references [8, 9].

– 8 –



Figure 5. The momentum bias of the fit without vertex constraint measured with elastic scattering data
(3 GeV/c: open squares, 5 GeV/c: open circles) as a function of the momentum predicted by theforward
scattered track. In the absence of a clear trend, the averageof the points constrains the bias to be smaller
than 3%. For these comparisons only the first 50 events in the spill are used since the unconstrained fit is
sensitive to dynamic distortions beyond this value.

The comparison of predicted momentum and the momentum reconstructed without vertex con-
straint is shown as a function of predicted momentum in Fig. 5. The relative average difference is
(2± 1)%, and shows no clear momentum dependence. From this observation one concludes that
the momentum scale is known to better than 3% (at one standarddeviation). Systematic uncertain-
ties such as the absolute beam momentum scale, the precisionin the measurement of the kinematic
quantities of the forward scattered track and the need for energy loss corrections limit this test to a
precision of about 2%. Since the sensitivity of the benchmark is similar to the shift observed it is
not justified to adjust the momentum scale to the benchmark.

2.2.5 High statistics benchmarks

To improve the statistics of this check, we make use of the full statistics by applying the correction
of the dynamic corrections (see Appendix A) and we add elastic scatteringπ+ − p events to the
proton elastic scattering sample and analyse separatelyπ− − p events3. One should note that
the effect of a trajectory distortion creates the same momentum shift if a systematic shift on the
sagitta is caused by anE×B effect, since both the effect and the curvature for protons change
sign simultaneously. Therefore these two settings are expected to provide consistent results. The

3In the following figures the label “positives” indicates therecoil protons in elastic scattering events in the positive
beam, and “negatives” is used to label the protons in the negative beam.
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Figure 6. ∆(p−1)/p−1 plot for protons produced inπ+ p and pp elastic scattering, combining data from the
3, 5 and 8 GeV/c primary beam momenta. Left panel: first 50 events in the spill, no corrections for dynamic
distortions. Central panel: first 100 events in the spill, with corrections for dynamic distortions. Right panel:
events 101–200 in the spill, with corrections for dynamic distortions.

Figure 7. ∆p−1/p−1 plot for π− p elastic scattering, combining data from the 3, 5 and 8 GeV/c primary
beam momenta, computed with the corrections for dynamic distortions of the TPC. Left panel: first 100
events in the spill, right panel: events 101–200 in the spill.

difference between the predicted and the measured 1/p (after corrections for the energy loss of the
proton prior to entering the TPC), is shown in Fig. 6. As mentioned above, this procedure has an
intrinsic 2% systematic error coming from the determination of the incoming beam momentum and
from the angle measurement with the forward spectrometer.

The following results were obtained:

• The elastic scattering sample using the first 50 events (without corrections for dynamic dis-
tortions) and the elastic scattering sample using the events, corrected for dynamic distortions,
from 1 to 100 and from 101 to 200 are fully compatible (see Fig.6);

• With the larger statistics allowed by the use of 200 events per spill it is now possible to
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Figure 8. Average momentum of particles with a dE/dx in the TPC corresponding to 7-8 MIP, as measured
in 31 different settings. The horizontal dashed lines correspond to a variation of±2% around the average
value of 340 MeV/c. The different settings are labeled with the material of thetarget and the momentum, in
GeV/c, of the incident beam.

compare “positives” (π+ p and pp) (Fig. 6) and “negatives” (π− p) (Fig. 7).

The distribution for “positives” has an average∆(p−1)/p−1 equal to−0.0148±0.0047 while the
distribution for “negatives” has〈∆(p−1)/p−1〉 = 0.0096± 0.0113. The combination of the two
polarities gives〈∆(p−1)/p−1〉=−0.011±0.004. Again, taking into account the systematic errors,
we conclude that no bias on momentum is observed with a precision of 3%.

2.2.6 Stability of the elastic results with other settings

To check that the results obtained with the elastic events onthe hydrogen target are stable in the
other data taking settings, we have selected a narrow dE/dx region corresponding to 7–8 MIP. In
this region the pion contamination is negligible and protons have an average momentum of 340
MeV/c.

The average reconstructed momentum of protons in this band is shown in Fig. 8 for 31 different
settings. All the settings provide an average momentum within ±2% around the average value of
340 MeV/c, demonstrating the stability of the momentum scale measured with elastics during the
overall HARP data taking. Particles were only accepted whenthey were nearly perpendicular to
the beam direction, so that the averagepT of this sample is 310 MeV/c.
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Figure 9. Left panel: the mean residual∆(Rφ) for each pad row of the TPC measured using aB field positive
polarity setting (+5 GeV/c Carbon target data). Top:∆(Rφ) in mm. Bottom:∆(Rφ) in fraction of RMS .
Right panel: Same using aB field negative polarity setting (−5 GeV/c Carbon target data). Changing the
B field polarity, the swap in sign of the mean residuals in the innermost and outermost pad ring is clearly
visible

3. Track residuals with positive and negative settings

A way to monitor the presence of residual distortions (when the dynamic distortion correction is
not applied) is to look at the∆(Rφ) difference between the coordinate of the track measured in each
pad row of the TPC and the trajectory estimated by the circular fit. To do this we have selected
tracks (vertex constrained) hitting the center of the RPC overlap to be able to fix an external point.
The cuts applied in the standard analysis have been used. Thesame residual distributions can be
obtained separately for positive and negative magnetic field direction. In this case anE×B effect
changes sign for the two polarities. For this test we used a carbon 5% nuclear interaction length
(λI ) target with beam momenta of±5 GeV/c respectively.

The analysis of the distributions of the residuals shows that the biases are small (in the range
of ±200 microns). As expected row number 1 (the innermost) and row number 20 (the outermost)
display edge effects (−800 µm and +300µm respectively) which are not fully addressed by the
distortion correction for static misalignment between theinner and outer field cage voltages. The
fact that the residual is larger in the inner row and of opposite sign to that in the outer row is
consistent with the hypothesis that the effect is due to a residual electrostatic field, see Fig. 9 (left).

A further confirmation was obtained by looking at the residual distribution for the tracks of the
−5 GeV/c sample where the magnetic field polarity was inverted. In this last case the behaviour
is the same but the sign of the residual of the innermost and outermost row is now inverted (+380
µm and−635µm respectively), see Fig. 9 (right).

By excluding rows 1 and 20 from the fit, one can place a limit of less than 1% on the effect of
the residual distortion effects on the momentum measurement.
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Figure 10. dE/dx− p plot of HARP data, 5% Ta target at 5 GeV/c, fitted with the modified Bethe-Bloch
function (see the text), including the resolution bars for every fitted slice in momentum and dE/dx. The bars
are computed from the published momentum resolution and dE/dx resolution for all points. The dashed
curve is the 1/β 2 curve.

4. Consistency checks of the momentum calibration with dE/dx

The dE/dx cannot be used in HARP to estimate the momentum scale with a precision similar to the
elastic scattering method because both the scale and offsetcalibration of dE/dx are free parameters
and the resolution in dE/dx, about 17%, is insufficient to achieve such a precision. Nevertheless,
the dE/dx–p plot provides a qualitative cross-check of the TPC momentumcalibration. Indeed we
find good agreement as shown in Fig. 10.

It has been claimed that the disagreement of the dE/dx plots we published in [8] with a 1/β 2

curve is a clear symptom of a TPC momentum bias, up to 15% [10].Since the free parameters of
the dE/dx curve can only be fixed using the point at which particles are minimum ionizing, it will
be immediately clear that a 1/β 2 description, which reaches its minimum asymptotically, cannot
be an adequate approximation as shown in the comparison of the correct curve and this simple
approximation in Fig. 10. Since this was not immediately obvious to the authors of Ref. [10], we
include here a rather pedantic discussion of dE/dx. Theaverageenergy loss is described with the
standard Bethe-Bloch formula [11]:

−
dE
dx

= Kz2 Z
A

1
β 2

[

1
2

ln
2mec2β 2γ2Tmax

I2 −β 2−
δ (βγ)

2

]

. (4.1)

For particle identification a truncated mean is tuned to correctly estimate the Landau peak
position (discarding the 20% of points with the highest dE/dx), and not the mean dE/dx (for
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Figure 11. Average reconstructed momentum as a function of event number in spill for protons using a high
value of dE/dx for the selection. The analysis is performed for the combined data set taken with 3 GeV/c,
5 GeV/c, 8 GeV/c and 12 GeV/c beams on Be, C, Cu, Sn, Ta and Pb targets. The solid line shows the
average for protons for the first 100 events in the spill. The two dotted lines show the±3% variation around
the average.

which the standard Bethe-Bloch theory applies). Hence eachpoint on the dE/dx–p scatter-plot
represents the calculation of the most probable dE/dx per TPC pad row, integrated over the tracks’
effective path length across each pad row (therefore it represents the peak value of a convolution of
Landau distributions). Its phenomenology can be describedsufficiently accurately by a modified
Bethe-Bloch formula [12], as shown in Fig. 10: the dE/dx for protons, pions, the positions of the
dE/dx of a minimum ionizing particle (MIP), and intersection points of the bands for different
particle types are all consistent.

To avoid the effect of dynamic distortions the above analyses were done using only the first
50 events in each spill. It was checked that the constrained fit remains stable, well within 3%, for
about 100 events in the spill as will be described in the following section.

4.1 Stability against dynamic distortions

One can select samples of tracks with a well defined momentum by accepting narrow enough
dE/dx intervals in the region of high values (the so-called “1/β 2” region). The dE/dx resolution
is sufficient to select such a proton sample with only a 10% RMSspread in “true” momentum. If
the measured average momentum of such samples is compared asa function of event number in
the spillNevt strong constraints on the influence of dynamic distortions on the momentum measure-
ments can be obtained.

In this analysis particles were selected in narrow bands of dE/dx in regions where dE/dx
depends strongly on momentum. To select a sample with the highest possible momentum, the
protons were further required to reach the RPC system (low momentum protons would be absorbed
before reaching the RPCs). A further selection 1.0 rad< θ < 1.5 rad ensures a limited range of
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pT. In addition to a momentum selection also a PID-selection isperformed with the same cuts.
The analysis was performed for the combined data set taken with 3 GeV/c, 5 GeV/c, 8 GeV/c and
12 GeV/c beams on Be, C, Cu, Sn, Ta and Pb targets.

The average momentum obtained from a Gaussian fit to the momentum distribution shows that
the average momentum stays constant within a few percent up to Nevt = 100 atpT ≈ 350 MeV/c
(see Fig. 11).

One observes that the behaviour is not compatible with a linear dependence as a function of
time but the average momentum stays constant over a long period before a downward trend sets
in. One of the reasons is the fact that the distortion effect does not have a linear dependence at
the beginning of the spill, owing to the fact that the first ions need to exit the amplification zone
before they distort the field in the drift zone. This is shown in a little more detail in the Appendix.
This effect “protects” the first fifty events in the spill veryefficiently. Another reason for increased
stability of the constrained fit under the condition of distortions is simply that the weight of the
vertex constraint compensates very well for the distortions, up to the point where, when dynamic
corrections are not applied, the tracks are so distorted that the reconstruction efficiency is affected.

It has been shown with elastic scattering that the absolute track finding efficiency does not
change as a function of event number in the spill. This resultindicates that the distortions are
continuous and smooth as a function ofzandR. However, once quality criteria are applied, mainly
the requirement that the tracks emerge from the target, the efficiency is reduced when the distortions
are increasing during the growth of the ion charge. Since this requirement removes tracks shifting
out of the acceptance at one side, and since the measurementsof curvature and of the minimum
distance to the interaction point are correlated, the deviation of the average measured momentum
from a constant is thus a single-sided efficiency effect.

The pT-range covered by this cross-check represents a large rangeof the kinematic domain
used in the analysis.

4.2 Sagitta errors from momentum-angle correlations

Using a sample of tracks within a fixed interval of dE/dx where the average momentum is∼
340 MeV/c, and considering thatpT = ptotsinθ , it is possible to look for a sagitta bias (acting on
pT) through any correlation between〈p〉 and sinθ . Unlike previous analyses where the RPC hits
were used to set a minimum range, here such a requirement was avoided not to introduce an angular
dependence in the definition of the average energy of the sample. From the fits to Fig. 12 (left) we
conclude that a null bias is measured with a precision of about 3%. This analysis has been repeated
using positive and negative pions and the correction for dynamic distortions with incomingπ+ in
the positive beam andπ− in the negative beam (Ta target, 8 GeV/c). As shown in Fig. 12 (right),
for both magnet polarities there is no significant dependence on sinθ .

Since the curvature of the protons and of distortions (if of theE×B type) are both inverted,
the slope for protons (if any) is expected to have the same sign for positive and negative beams.
The fact that there is no significant dependence on sinθ confirms the reliability of the HARP TPC
calibration.
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Figure 12. Left panel: average momentum in a fixed slice of dE/dx as a function of sinθ . Data are collected
with Be, C, Cu, Sn, Ta and Pb targets at 3, 5 and 8 GeV/c, no correction for dynamic distortions. A fixed
shift in sagitta would show up as a linear change of average momentum. These data have been fitted with a
constant term, with a linear function (the best fit corresponds to a momentum bias of∼ 2.5% at 500 MeV/c)
and with a linear function with a slope corresponding to a 10%bias (dashed line). While the constant term
is compatible with the linear function (∆χ2 = 0.8), a 10% bias has∆χ2 ≃ 20. Thus, it is excluded at more
than 5 sigma level. Right panel: same analysis forπ+ (black squares) andπ− (open circles) incident beams
and with the full spill correction for dynamic distortions.These data were taken with opposite magnetic field
polarities. Data are collected for 8 GeV/c incident beam on Ta target only. A fixed shift in sagitta would
show up with the same slope for positives and negatives. In this case, given a smaller statistics, a 10% bias
is excluded at about 90% C.L. (∆χ2 ≃ 4.1).

5. Comparison with time-of-flight measurements

The HARP RPC system [13] is positioned as a barrel around the TPC chamber, about 50 cm from
the interaction target. It can in principle be used to check the momentum calibration comparing the
β–p relation of pions and protons, whereβ is measured using the time-of-flight to reach the RPC
system.

This cross-check is limited in precision due to the short flight distance of the particles and the
rather large corrections needed to convert the measured threshold crossing time into a measurement
of time-of-arrival of the particle. For example the range ofthe correction for the “time-slewing” of
the threshold crossing time for different measured integrated charge collected in the RPCs is 2 ns,
similar to the total time-of-flight of pions to reach the RPCs[13]. As an additional complication,
the momentum range of the particles for which ap–β comparison can be made is in the region
where pions are minimum ionizing and where protons are heavily ionizing (with a different dE/dx
by a factor of up to 8). Thus one first has to ascertain that the response of the RPC system is well
understood before one can use the time-of-flight as a mean to calibrate the momentum measurement
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Figure 13. Analysis of∆ TOF = (measured− predicted) time-of-flight for pions (left panel) and protons
(right panel). The measured time is provided by the RPC signal time and the predicted time is based on the
track momentum measured in the TPC. The numbers refer to RPC pad ring (equivalent toZ position; with
pad 3 in the most backward direction). Whereas the pion data are centered near zero, the proton data are
shifted to negative times with a positive slope. The dashed line is the prediction for∆ TOF for a sagitta bias
of 1 mm and a track length of 0.5 m.

in the TPC.

Fig. 13 taken from reference [13] shows the difference of thetime-of-arrival measured with
the RPCs,tm, and the time-of-arrival predicted using the momentum measured in the TPC,tp.

This plot had been used in [10] to claim a 15% bias in the HARP TPC momentum scale.

If a momentum bias would be caused by an error in the measurement of the trajectory sagitta,
it would reflect on theβ of protons and not on theβ of pions, which already saturateβ at the
HARP momenta. The RPC calibration has been performed using pions, so that one would expect
that these display a vanishing average offset as is the case in Fig. 13. However, the behaviour of the
measured∆(TOF) for protons does not agree with that predicted by the sagittamodel, see Eq (1.1).
While data, Fig. 13, exhibits a clear slope, the sagitta model predicts a rather flat dependence of
∆(TOF) on the measured momentum. This flatness comes from the particular momentum range
of the protons whereδ (p)/p increases linearly withp, while ∆(TOF) decreases withp becauseβ
of the protons saturates.

The question whether the RPC time measurement suffers from systematic effects due to the
large difference in primary ionization caused by pions and protons in the momentum range available
for these calibrations had been addressed with a dedicated RPC calibration analysis studying proton
and pion elastic scattering off the cryogenic hydrogen target and reported in reference [14].

As for the measurement of the momentum scale, see Section 2, such a measurement makes it
possible to send a “controlled beam” of slow protons throughthe TPC and towards the RPC system
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Figure 14. The difference of the time offset measured in pad ring 3 from the expected time offset for
protons as a function of the momentum along its flight path (inthe gas volume of the TPC). The filled
circles show the results of measurements using elastic scattering on hydrogen, the points without marker
represent the simulation of the measurement using the same reconstruction procedure. The momentum was
predicted using the kinematics of elastic scattering. Consistency of the simulated time difference with zero
shows that the prediction of the flight time (and thus of the momenta) using the elastic scattering kinematics
and Monte Carlo corrections in the reconstruction procedure for respective energy losses are correct. From
reference [14].

without the need to measure the momentum of the recoil protonwith the TPC.
An exposure of the HARP detector where a 5 GeV/c beam of protons and pions is directed

onto a 60 mm long liquid hydrogen target was used.
Results of this analysis are shown in Fig. 14. Due to the kinematics of elastic scattering the

vast majority of selected recoil protons which reach the RPCsystem is measured in pad ring 3.
The data exhibit a clear deviation pointing to a difference in RPC time response to protons as

a function of the momentum. The difference can only be due to the different response of the RPCs
to heavily ionizing compared to minimum ionizing particles. The observed effect accounts for the
largest fraction of the absolute values and the shape of the deviations observed in Fig. 13.

The remaining difference observed between the points of Fig. 13 and Fig. 14 is of the order
of (150± 100) ps at 450 MeV/c, where the error is estimated from the spread of the points for
the different pad rings. The central value of 150 ps corresponds to a momentum shift of≈4.5% at
450 MeV/c.

Several important systematic errors affect this measurement:

• The momentum prediction with elastic scattering needs a correction for energy loss in the
region of the inner field cage of the TPC. Although the description of the physical processes
is very accurate it is possible that a slightly larger amountof material is present than that
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accounted for in the calculations (the opposite is excluded). If the calculation is repeated
with 10% more material a 1%–2% shift in predicted momentum isinduced which would
reducethe apparent difference.

• Background hits in the RPC pads can only create an earlier time measurement, since single-
hit TDCs were used to read out the system. Given the charged track multiplicities and the
corresponding number of converted photons fromπ0 decays this overlap probability is esti-
mated to be≈ 5%. The effect of such background is not easy to estimate, butthe resulting
measurement is shifted towards shorter time-of-arrival. This background is not present in
elastic scattering events.

• There is a 20 ps–30 ps difference in measured arrival time for∼ 400 MeV/c π+ versusπ−.
However in the negative beams this is as small as 0 ps–10 ps. The difference with opposite
B field shows already that the RPCs have this kind of systematic. The latter can be due to
the position-dependent slewing correction to the amplifierposition which has as maximum
swing 180 ps, and assumes exact knowledge of where the first electron was detected. (there
is a symmetry breaking due to the amplifier position always toone side.)

• There is a 1% difference in the average pulse-height forπ+ andπ− with ∼ 400 MeV/c in the
90◦ direction. There the production cross-sections are equal.The difference can come from
theE×B effect for the avalanche electrons which can induce a different space-charge effect
due to the different angle of incidence of theπ+ andπ− in the RPC measurement gap due to
the opposite curvature of their trajectories in the TPC. This can explain a±15 ps difference
of threshold crossing, keeping in mind that the threshold was relatively high, considering that
the full time slewing correction is∼ 2000 ps.

Therefore, the RPC system cannot provide a cross-check of the same quality as the elastic scat-
tering data. As a conclusion, the observed time-of-arrivalof protons at the RPC barrel is consistent
with an unbiased measurement of momentum within a relatively large error of 5%.

6. Conclusions

Asserting the correctness of the momentum reconstruction in the HARP TPC has not been easy, as
can be expected from a chamber affected by a large number of dead channels, cross-talk, static and
dynamic distortions in the absence of the possibility to usea direct particle beam for calibration.
By a series of dedicated cross-checks with benchmarks, the experimental verification could never-
theless be made. This allowed us to conclude that the TPC momentum reconstruction developed
by the HARP collaboration is correct within the precision of±3%. This confirms the systematic
error associated to the momentum scale used in determining the large angle production of charged
pions by protons in [8, 9].

The calibrations and cross-checks include

• reconstruction of the missing mass squared of pp elastic scattering data;
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• comparison of the momentum of the proton scattered at large angle as measured by the TPC
and as calculated from the scattering angle of the forward particle in pp andπ±p elastic
scattering events;

• dependence of residuals upon polar angle and upon magnetic field polarity reversal, for tracks
reconstructed with and without vertex constraint during the fit;

• absence of slope in the momentum versus sinθ plots in a fixed slice of dE/dx;

• comparison of the dE/dx curves in the region of high ionization where the ionizationvaries
very quickly with momentum, allowing a sensitive verification of the momentum scale.

We also revisited methods of lesser precision, such as dE/dx in the region near the minimum
ionization, for which we found that it is crucial to use a complete Bethe-Bloch formula to reach
reasonable conclusions. Once this is done we find a good matchbetween dE/dx theoretical curves
and our data, in comfort of our momentum reconstruction.

Finally a careful analysis of the time response of the RPC system ascertains that no momentum
bias is present beyond the uncertainties of this method. While investigating any possibility of
systematic effect on the momentum measurement, the presence of a systematic effect in the time
measurement of the RPCs has been demonstrated.

As a conclusion, none of the benchmarks has revealed any significant bias in the momentum
measurement beyond a systematic error of 3% for the momentumscale in the TPC.
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Figure 15. Averaged′
0 as a function of event number in spill for 8.9 GeV/c Be data. (left panel uncorrected;

right panel: dynamic distortion corrections applied.) After the “default” correction for the static distortions
(equal for each setting) a small residual effect at the beginning of the spill is visible atNevt = 0 (left panel).
This is due to the fact that the inner and outer field cages werepowered with individual HV supplies. A
setting-by-setting correction compatible with the reproducibility of the power supplies is applied for the data
of the right panel together with the dynamic distortion correction.
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A. Appendix: Treatment of the Dynamic Distortions

Given the beam intensity, the data acquisition rate and the target length (5% of the nuclear inter-
action length), it is computed that HARP operated dead time larger than 90%. The electrons are
normally amplified near the TPC pad plane with an amplification factor of the order of 105, pro-
ducing an equivalent number of Argon ions. Any inefficiency of the gating grid at the level of 10−3

or even 10−4 would let an overwhelming number of ions drift into the TPC gas volume.
This indeed turns out to be the case. The dynamic distortionscan be monitored using the

average value of the extrapolated minimum distance of secondary tracks from the incoming beam
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Figure 16. Analysis ofQ/pT for the highest statistics data sample: p-Be at 8.9 GeV/c. Left panel: distor-
tions are not corrected; six curves are drawn, each for the next 50 events in the spill. Right panel: dynamical
distortions are corrected; the six curves are almost not distinguishable

particle trajectoryd′
0. This is a similar procedure as the one being used for the STARTPC [15].

Using calibration data sets, the deterioration of the performance of the detector, see Fig. 15 (left),
is determined as a function of the strength of the distortions characterized by an average value of
d′

0: for each particular setting only that part of the data for which the systematic error was under
control was used for the first analysis (of the order of 30% of available statistics) [8, 9]. As a second
step, a physics model fully describing the time developmentof dynamic distortions during physics
spills has been developed and benchmarked, as well as a correction algorithm [16] implemented.

In addition to the physics model, direct measurements of thedisplacements of the positions
measured at the pad plane of the TPC were performed by predicting the full track trajectory in space
using elastic scattering kinematics. The direct measurement and the model show good agreement,
indicating that the effect is fully understood. The effectsof this correction can be appreciated in
Fig. 15 (right). The comparison of results obtained using the uncorrected first part of the spill, as
in the first HARP analysis, with those using the full corrected spill (see Fig. 16) shows excellent
agreement. This provides ana posterioriconfirmation with 2 to 3 times better statistics that the
approach used in the first HARP analysis was correct. This is not unexpected, since, owing to their
limited mobility the first ions created in the amplification region need about 25 ms to reach the drift
region and subsequently the steady flow of ions into this region only starts approximately 100 ms
after the start of the spill, with a gradual transition between these two regimes.
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