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Abstract: A photonic crystal fiber is optimized for chromatic dispersi
compensation by using inner cladding modes. To this end, aiopfc-
oriented version of the downhill-simplex algorithm is ewoy#d. The
numerical results show a dispersion profile that accuratempensates the
targeted dispersion curve, as well as its dispersion sl®pe. presented
fiber has a simple structure, while radiation losses candhécesd simply by
adding a few more air-hole rings. Fabrication tolerancesatso considered
showing how fabrication inaccuracies effects can be odéem by just
adjusting the compensation length.
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1. Introduction

Photonic crystal fibers (PCF) are optical fibers with a trensal array of air-holes that extends
along all the fiber’s length [1]. PCFs optical guiding is dodltie multiple interference caused
by the periodical array of air-holes and also by the highinclentrast between silica and air
[2]. The rich geometry of the fiber's microstructure and ibsnplex wave-guiding mechanism
makes PCFs the suitable choice for a great deal of applitasioch as dispersion compensators,
interferometers, super-continuum generators and palésiz maintainers between others [3—
5]. Up to now, the dispersive behavior on PCFs have beenestildoroughly for the core modes
[6-8]. In comparison, little has been deepened in higheerntbdes propagating through the
cladding of a PCF [9], despite of the geometrical richnesktha dispersion control provided
by their cladding structures.

In this work we present, as an example of realistic appbcatiusing inner cladding modes,
a dispersion compensating fiber with a very low residual efisipn. To fulfill this goal, a
photonic-oriented version of the downhill-simplex algbm [10] — utilizing a proper scal-
ing rule for dispersion — has been implemented and is preddmre along with the results
of the optimization process and the fabrication tolerarioeshe proposed fiber (Fig. 1). The
adapted procedure considerably speeds the pace towardsrgence, giving a more optical
criteria to shorten the way through the optimization prec€&omparisons will show the bene-
fits of the introduced modifications, followed by the resolisained for the compensating PCF
using inner cladding modes. In addition, a complete analgkthe fabrication tolerances and
the radiation losses is presented for the proposed fibeallfithe benefits and disadvantages
of this approach will be discussed along with the conclusigfithis proposal.

2. Photonic-oriented optimization method

Since there is a considerable number of parameters invailvéied optimization of the perfor-
mance of a microstructured fiber (e.g., different air-hdentkters, lattice pitch, and others),
it is convenient to get hold of the right tool previous to dedth the optimization process of
the fiber structure. Many methods are available for tackiing task, and some of them has
been used for optimizing guiding microstructures, as ihis ¢ase of stochastic or genetic al-
gorithms [11] or those based on the knowledge of first davieat[5]. The downhill-simplex
method has been successfully applied to optimize optigaliGgiions such as fiber lasers or
nonlinear wavelength converters, as well as in chemisteghanical engineering, biomedical
imaging, geophysics among others fields where a multidimaakunconstrained minimiza-
tion is required [12, 13]. Its geometric nature makes itahlg for customizations as well as
combinations with other optimization methods. Here we &athphis method for a concrete
objective, a compensating fiber, obtaining acceptabldtseaith a low investment of compu-
tation time. Although, it is worth to point out that this emlt@ment does not rely on any detail
of the algorithm, therefore is independent of the optim@amethod.
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Fig. 1. (Color online) Left, initial fiber structure used during the optimizatwacess.
Right, one of the LIP; modes used here for dispersion compensation and a fundamental
mode, LRy, for illustration purposes.

In our case, in order to compensate the chromatic dispeddiarcertain distance of a given
standard single mode fiber (SMF) with the unity distance addmpensating fiber, we define a
merit function

X?[P| =3 {DIP](A)+X Dsmr(A)}?, (1)
A

whereDsyr andD[P] are the dispersion profiles of the single mode fiber and thepeosating
fiber respectively; both must have opposite signs in ordemnitimize x2. The vectorP =
(p1,--., Pn) represents a given configuration defined\bygesign parameterg;, andX is the
compensation factor, that is, the ratio between the lengfthlse SMF and the compensating
fiber. In Eq. (1), the expression between curly bracketsapgutional to the residual dispersion
of the whole system and the sum is performed over a finite nuoflveavelengths in the design
interval (the C band, 1530nri A < 1565nm).

In the search for a minimum of the merit function, the dowiimethod use® + 1 points as
vertices to construct a geometrical object, #fiaplex that evolves in the quest for the lowest
point in theN-dimensional parameter space. The search for configusatidth lower values
of x? includes several geometrical strategies around the Iguast to go “downhill” through
the merit function. Every step in the algorithm tries to ez the worst vertices — with higher
values ofy2 — of the simplex with other points presenting lower valueshef merit function.

In this way the simplex always brings together the set of tbstN + 1 fibers of all those
who have been examined through the optimization procesa. mbkes the downbhill-simplex
method an effective and easy to use optimization technigpieropriate when the derivate of
the merit function is not available or is expensive to ohtain

However, it must be taken into account that any attempt oftsuiting a point of the simplex
implies the evaluation of the merit function at the candedadint to be included in. And, as
the fiber structure grows in complexity, the space of paramsednd the optimization proce-
dure raise in dimensions and in computation time respdgtiVe lessen this disadvantage the
downhill-simplex algorithm can be customized with an exstiep that fastens the convergence.
This new kind of step is based on the magnificatidn of the structure, a geometrical transfor-
mation that has a special relevance since strongly aff@tisad systems. If the total dispersion
of a given configurationD[P], is known, an accurate nonlocal approximation for the stimec
magnified by a factoM, is given by

D[MP}(/\)%I\:;{D[P] (;\A) —Dpy (;\A)}wm()\y @)
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Fig. 2. (Color online) Fitness function vs. number of iterations for thednge (solid red)
and the conventional (dashed blue) simplex algorithm.

whereDy, is the material dispersion [5]. This expression signifigaimhproves the previous
scaling formula for the group velocity dispersion reporite&ef. [6].

Equation (2) establishes a simple link between differemtgan the configuration space that
deserves to be exploited. This link can be noticed morelgldahe parameter space is broken
into different hyperplanes whedd = A//\g is constant, wherd is a typical distance in the
structure, e.g., the pitch. Then the optimization algonitlill seek only into one hyperplane at
the time, while Eq. (2) efficiently determines which hyperm — or equivalentil — is more
appropriate to minimizeg?. In this way, if we replac®|P] with D[MP] in Eq. (1), the original
optimization algorithm can be applied to simplices definedhiose hyperplanes made up of
only N vertices.

On the other hand, minimizing? with respect toM is a straightforward procedure using
Eq. (2). At the end of each iteration, the value\bfvhich minimizex? at one of the vertices is
determined, and then the whole simplex at the current hygeean be transferred to the new
hyperplane at a negligible computational effort. As an gxenof the enhancement obtained
using this procedure, Fig. 2 shows how it overcomes the caior@al algorithm [10].

3. Inner cladding modes for dispersion compensation

The procedure sketched in the previous section has beeie@pplthe optimization of a com-
pensating PCF. As it is shown in Fig. 1, the PCF has four de-hiags with three different
air-hole diameters. The most inner ring, with air-holes iafaketerd; (red circles), constitutes
the inner clad. The other air-hole rings, of diameteandds (blue and green circles) constitute
the outer clad, being all the air-holes arranged in a tritardattice of pitch/\. The modes used
for dispersion compensation will be LPmodes that propagates along the inner clad of the
PCF.

The values for the initial parameter vector wer® = {Ao,d;,dp,d3} =
{1.05um,0.46um,2d;,2d;}. Around these values four other vectors representing other
triangular PCFs were randomly chosen as vertices of thelsikmgescribed in the initial
hyperplane,\ = Ag, or equivalentlyM = 1. At the end of the optimization process, the
obtained fiber configuration should compensate the disperdi a Corning LEAF fiber [14]
multiplied by the compensation factot set to 100 [see Eqg. (1)]. The initial design was
inspired on Dual Concentric Core Fibers (DCCF) [15, 16] wHhiave shown to be a successful
design for achieving highly negative dispersion curvegpiest has only been used, up to our
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Fig. 3. (Color online) (a) Residual dispersion for the optimized fiber vathr {dashed red)
and seven (solid blue) air-hole rings. (b) Radiation losses as a fundtitre @dditional
rings included at the periphery of the cladding.

knowledge, for central core modes applications. It wasrs#tis way to constrain the amount
of modes that can be excited into the internal clad while thal fiesult of the optimization
process was not conditioned to maintain this configuratidtihough the proposed structure is
not original, it is simpler than previous ones used for thigyose.

For the adapted downhill-simplex method, a satisfactomg§is value was obtained after 122
evaluations while the conventional algorithm was staghatea superior local minimum (see
Fig. 2). Though this amount of evaluations seems consitkerilis not if it is compared with
stochastic algorithms [11]. The resulting PCF with= {0.851 0.322 0.794,0.638} um has a
RMS value of the residual dispersion ab08 psnm/km. The residual dispersion represented
by the red dashed curve in Fig. 3(a) shows the low dispergoraining in the system after
compensating 100 km of the single mode fiber with 1 km of theppsed fiber. This could be
further improved, as it is shown by the blue solid curve, vétfinal refinement made after
knowing the results of the analyzes done for the radiatissde and the fabrication tolerance
as presented below. Moreover, the slope of both curves amtyreero at the 1555 nm region,
therefore it also compensates higher order dispersiorts &ithe dispersion-slope. This fact
does not seems to be hampered by small deviations on thendesmigmeters as will be shown
in the next section.

If radiation loss is an issue, additional external air-higs could be included without ap-
preciably affecting the fiber’s dispersion profile. Alsotlwihe aid of Eq. (2)M could be read-
justed to fit the targeted dispersion. Figure 3(b) illustsatow by adding extra air-hole rings,
with diameterd,, radiation loss systematically decreases. Numericalteefar the radiation
losses where performed using the PML method [17], whosedmghtation was validated and
tested by a recent procedure [18]. The blue solid curve in ) shows how well the con-
figuration could be re-optimized using Eq. (2); a rescalihgist M = 1.014 was needed after
adding three outer rings with air-hole diameder

Finally, the recording of a Long Period Grating that excites fundamental mode coming
from the SMF fiber to the cladding mode {JPof the compensating fiber, should not be de-
manding since the effective indexes of the lower order madesvell separated. As a matter
of fact, the difference between the effective index of thgiLdhd the LR; modes (see Fig. 1)
wasAnes = 0.122, while for the LR and the LB, modes wa#\nes = 0.051.

4. Fabrication tolerances

In the same way as the cladding structure conspicuously taestdispersive properties of the
fibers, it can also be a disadvantage when considering thied#bn tolerances. After analyzing
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Fig. 4. (Color online) Residual chromatic dispersion for the optimized fidashed red
curve) delimited by the maximum deviations calculated for tolerances of-{&) and

(b) +5% (dotted red curves). The residual dispersion was severely @ddncadjusting
the free parameteX in Eq. (1) (solid blue bundled curves); differences between all the
considered configurations can not be appreciated within these scales.

all possible cases of fabrication inaccuracies with a 5%imasn deviation, we noticed that the
worst were those cases that formed an unrealistic combmagtween enlargement for some
parameters and contraction for the others. The maximumatote narrows after discarding
these spurious cases, realistically describing the gdugabrication inaccuracies. On Fig. 4,
dotted red curves delimit the allowing fluctuations of up % (&) and 5% (b) o, d;,d» and
ds. Notice that for 5% tolerances, simultaneous fluctuationthé parameters of the proposed
configuration inM andd; implies that the accumulated deviations can exceed a 10%8a0f i
curacies, hampering noticeably the dispersion compeamsdtortunately, as it is well known,
the factorX that multiplies the targeted dispersion in (1) is also a frammeter, thus, it can
be conveniently adjusted to minimize the impact of the fzddion tolerances. In that way the
residual dispersion was severely reduced as it is shownebtyght bundled solid blue curves in
Figures 4 (a) and (b). The change appliecttor the different configurations range from 90.4
to 100.2 and from 65.5 to 182.5 for 1% and 5% tolerances réispbc

5. Conclusion

Albeit exciting cladding modes implies an additional coaxity for fiber dispersion compen-
sators, we have demonstrated that they can be used to pydeiter the dispersion profiles
needed to minimize the residual dispersion along with thel torder dispersion. We have
obtained low residual dispersions in the whole C band, ewending a high compensation
factor and considering up to a 10% tolerance in the faboogtiarameters. Moreover, the pro-
posed structure has a simple geometry compared with otHe€&Hs that have been proposed
in the literature [15, 16]. Also, since the compensatiredding modes are isolated from the
fundamental and other higher order modes, grating recgsdimay not be too demanding. To
achieve these results, a well known optimization methodidess adapted using an approx-
imate analytical expression for magnification. The benefitthe optimized algorithm are a
higher convergence speed while stagnation problems aneedd
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