SOME LOCAL PROPERTIES DEFINING \mathcal{T}_0 -GROUPS AND RELATED CLASSES OF GROUPS A. BALLESTER-BOLINCHES, J. C. BEIDLEMAN, R. ESTEBAN-ROMERO, AND M. F. RAGLAND ABSTRACT. We call G a $\operatorname{Hall}_{\mathcal{X}}$ -group if there exists a normal nilpotent subgroup N of G for which G/N' is an \mathcal{X} -group. We call G a \mathcal{T}_0 -group provided $G/\Phi(G)$ is a \mathcal{T} -group, that is, one in which normality is a transitive relation. We present several new local classes of groups which locally define $\operatorname{Hall}_{\mathcal{X}}$ -groups and \mathcal{T}_0 -groups where $\mathcal{X} \in \{\mathcal{T}, \mathcal{PT}, \mathcal{PST}\}$; the classes \mathcal{PT} and \mathcal{PST} denote, respectively, the classes of groups in which permutability and S-permutability are transitive relations. #### 1. Introduction All groups considered will be finite. All unexplained notation or terminology can be found in [3] or [8]. There is a well-known theorem of Philip Hall which states that if a group G possesses a normal nilpotent subgroup N such that G/N' is nilpotent, then G is nilpotent. It has been the subject of several papers to consider what can be said about the class of groups G possessing a normal nilpotent subgroup N such that G/N' is an \mathcal{X} -group for various classes \mathcal{X} . In particular, the fourth author in [6], for the solvable case, answered this question when \mathcal{X} is any one of the classes \mathcal{T} , \mathcal{PT} , or \mathcal{PST} , that is, respectively, the classes where normality, permutability, and S-permutability are transitive relations. Let us call G a $\mathrm{Hall}_{\mathcal{X}}$ -group if there exists a normal nilpotent subgroup N of G for which G/N' is an \mathcal{X} -group. Since the Fitting subgroup of a group G contains all normal nilpotent subgroups one can simply replace N in the definition just given with F, the Fitting subgroup of G. It is a classical problem to determine the structure of a group G such that $G/\Phi(G)$ is an \mathcal{X} -group for various classes \mathcal{X} . For a class \mathcal{X} , let us call G an \mathcal{X}_0 -group if $G/\Phi(G)$ is an ²⁰¹⁰ Mathematics Subject Classification. Primary 20D10, 20D20, 20D35. Key words and phrases. Subnormal Subgroup, T-Group, PST-Group, Finite Solvable Group. \mathcal{X} -group. The fourth author in [6] characterized the solvable \mathcal{X}_0 -groups when \mathcal{X} is one of the classes \mathcal{T} , \mathcal{PT} , or \mathcal{PST} . In particular, it was shown that within the class of solvable groups, the classes \mathcal{T}_0 , \mathcal{PT}_0 , and \mathcal{PST}_0 coincide. In this paper, we turn to the concept of a "local" characterization theorem for solvable \mathcal{T}_0 -groups and $\text{Hall}_{\mathcal{X}}$ -groups for $\mathcal{X} \in \{\mathcal{T}, \mathcal{PT}, \mathcal{PST}\}$. That is, we are interested in characterizations in terms of the different prime divisors of the orders of such groups. ### 2. Preliminaries The classes \mathscr{C}_p , \mathscr{X}_p , and \mathscr{Y}_p , and the theorems that follow, will be critical in giving the desired local characterization theorems. ## Definition. - (1) \mathscr{C}_p is the class of groups G for which each subgroup of a Sylow p-subgroup P of G is normal in the normalizer, $N_G(P)$, of P. - (2) \mathscr{X}_p is the class of groups G for which each subgroup of a Sylow p-subgroup P of G is permutable in the normalizer, $N_G(P)$, of P. - (3) \mathscr{Y}_p is the class of groups G where $H \leq S \leq P$ with P a Sylow p-subgroup of G, always implies H is S-permutable in the normalizer, $N_G(S)$, of S. # **Theorem 1.** Let G be a group. - (1) (Robinson [7], see also [3, 2.2.2]) G is a solvable \mathcal{T} -group if and only if G is a \mathscr{C}_p -group for all primes p. - (2) (Beidleman, Brewster, and Robinson [5], see also [3, 2.2.3]) G is a solvable \mathcal{PT} -group if and only if G is an \mathscr{X}_p -group for all primes p. - (3) (Ballester-Bolinches and Esteban-Romero [2], see also [3, 2.2.9]) G is a solvable \mathcal{PST} -group if and only if G is a \mathscr{Y}_p -group for all primes p. We will need some results on the classes \mathscr{C}_p , \mathscr{X}_p , and \mathscr{Y}_p to aid in our characterization theorems. **Lemma 1** (Ballester-Bolinches and Esteban-Romero [2], see also [3, 2.2.13]). A group G is a \mathscr{G}_p -group if and only if G is p-nilpotent or G is a \mathscr{C}_p -group with abelian Sylow p-subgroups. **Lemma 2** (Ballester-Bolinches and Esteban-Romero [2], see also [3, 2.2.4]). A group G is an \mathscr{X}_p -group (respectively, \mathscr{C}_p -group) if and only if G is a \mathscr{Y}_p -group and the Sylow p-subgroups of G are Iwasawa (respectively, Dedekind) groups. In the previous lemma, Iwasawa groups (respectively, Dedekind groups) are the groups for which every subgroup is permutable (respectively, normal). **Lemma 3.** Let G be a group with N a normal p'-subgroup of G and M a normal p-subgroup of G. - (1) If G is a \mathscr{Y}_p -group, then G/M is a \mathscr{Y}_p -group. - (2) If G is an \mathscr{X}_p -group, then G/M is an \mathscr{X}_p -group. - (3) If G is a \mathscr{C}_p -group, then G/M is a \mathscr{C}_p -group. - (4) G is a \mathscr{Y}_p -group if and only if G/N is a \mathscr{Y}_p -group. - (5) G is an \mathscr{X}_p -group if and only if G/N is an \mathscr{X}_p -group. - (6) G is a \mathcal{C}_p -group if and only if G/N is a \mathcal{C}_p -group. *Proof.* (1), (2), and (3) follow directly from the definitions of \mathscr{Y}_p , \mathscr{X}_p , and \mathscr{C}_p . - (4). This can be found in [4] as Lemma 6. - (5). This can be found in [1] as Lemma 4.1. - (6). Let G be a \mathscr{C}_p -group. By Lemma 2, this is equivalent to affirming that G is a \mathscr{D}_p -group with Dedekind Sylow p-subgroups. Since the Sylow p-subgroups of G and G/N are isomorphic, by (4) we have that this is equivalent to stating that G/N is a \mathscr{D}_p -group with Dedekind Sylow p-subgroups. By Lemma 2, this is to say that G/N is a \mathscr{C}_p -group. This completes the proof. **Remark.** In fact, the classes \mathscr{C}_p , \mathscr{X}_p , and \mathscr{Y}_p are quotient closed in general, however, this is a much more difficult fact to deduce. For our purposes, quotient closure for normal p'-subgroups and p-subgroups is sufficient. Lastly, we record some results on \mathcal{T}_0 -groups which will be needed. ## Theorem 2. - (1) (Van der Wall and Fransman [9]) The class of solvable \mathcal{T}_0 -groups is a quotient closed class of groups. - (2) (Van der Wall and Fransman [9]) A solvable \mathcal{T}_0 -group is supersolvable. - (3) (Ragland [6]) A group G is a solvable $\operatorname{Hall}_{\mathcal{PST}}$ -group if and only if G is a solvable \mathcal{T}_0 -group. - (4) (Ragland [6]) A group G is a solvable \mathcal{PST}_0 -group if and only if G is a solvable \mathcal{T}_0 -group. - (5) (Ragland [6]) A group G is a solvable \mathcal{T}_0 -group with abelian nilpotent residual if and only if G is a solvable \mathcal{PST} -group. #### 3. Main Results In this section we provide local characterization theorems for the solvable \mathcal{T}_0 -groups, $\text{Hall}_{\mathcal{T}}$ -groups, $\text{Hall}_{\mathcal{PST}}$ -groups, we will need the following definitions: **Definition.** Let p be a prime. For a group G, let $\Phi(G)_p$ denote the Sylow p-subgroup of the Frattini subgroup of G. Let F'_p denote the derived subgroup of the Sylow p-subgroup of the Fitting subgroup, F, of G. Let L'_p denote the derived subgroup of a Sylow p-subgroup of the nilpotent residual, L, of G. If p does not divide the order of $\Phi(G)$ then let us denote by $\Phi(G)_p$ the identity subgroup. Likewise, $F'_p = 1$ if p does not divide the order of F' and $L'_p = 1$ if p does not divide the order of L'. Let \mathscr{Z} be one of the classes \mathscr{C}_p , \mathscr{X}_p , or \mathscr{Y}_p . - (1) Define $\Phi_{\mathscr{Z}}$ to be the class of groups G for which $G/\Phi(G)_p$ is a \mathscr{Z} -group. - (2) Define $\mathscr{F}_{\mathscr{Z}}$ to be the class of groups G for which G/F'_p is a \mathscr{Z} -group. - (3) Define $\mathscr{L}_{\mathscr{Z}}$ to be the class of groups G for which L is p'-nilpotent and G/L'_p is a \mathscr{Z} -group. Since the Frattini factor group of a solvable \mathcal{T}_0 -group is a \mathcal{T} -group, and \mathcal{T} -groups can be locally characterized using the class \mathscr{C}_p , it stands to reason that \mathcal{T}_0 -groups can be locally characterized using the class \mathscr{C}_p with certain conditions involving the Frattini subgroup. This is indeed the case, however, recall that $\mathcal{T}_0 = \mathcal{P}\mathcal{T}_0 = \mathcal{P}\mathcal{S}\mathcal{T}_0$ in the class of solvable groups. So it also stands to reason that one could replace \mathscr{C}_p with \mathscr{X}_p or \mathscr{Y}_p . In view of Theorem 2, part (3), one should be able to characterize the solvable \mathcal{T}_0 -groups using \mathscr{Y}_p with certain conditions placed upon the Fitting subgroup. The details can be found in the following theorem: # **Theorem 3.** The following are equivalent for a group G. - (1) G is an $\mathcal{L}_{\mathcal{Y}_p}$ -group for all primes p. - (2) G is an $\mathscr{F}_{\mathscr{Y}_p}$ -group for all primes p. - (3) G is a solvable $Hall_{PST}$ -group. - (4) G is a $\Phi_{\mathscr{C}_p}$ -group for all primes p. - (5) G is a $\Phi_{\mathscr{X}_p}$ -group for all primes p. - (6) G is a $\Phi_{\mathscr{Y}_p}$ -group for all primes p. - (7) G is a solvable \mathcal{T}_0 -group. *Proof.* Throughout the proof let us denote the nilpotent residual of G by L and the Fitting subgroup of G by F. Also, for any group H, H_p will denote a Sylow p-subgroup of H. - $(1) \Rightarrow (2)$. If G is an $\mathscr{L}_{\mathscr{Y}_p}$ -group for all primes p then L is p'-nilpotent for all primes p and hence nilpotent. Thus $L \leq F$ so that for any prime p we have $L'_p \leq F'_p$. Now since G/L'_p is a \mathscr{Y}_p -group for all primes p, we have, by Lemma 3, part (1), that $(G/L'_p)/(F'_p/L'_p) \simeq G/F'_p$ is a \mathscr{Y}_p -group for all primes p. - $(2) \Rightarrow (3)$. If G is an $\mathscr{F}_{\mathscr{Y}_p}$ -group for all primes p, then G/F'_p is a \mathscr{Y}_p -group for all primes p. Using Lemma 3, part (4), we have $(G/F'_p)/(F'/F'_p) \simeq G/F'$ is a \mathscr{Y}_p -group for all primes p. Hence by Theorem 1, part (3), we have that G/F' is a solvable \mathscr{PST} -group so that G is a solvable $\mathsf{Hall}_{\mathscr{PST}}$ -group. - $(3) \Rightarrow (4)$. If G is a solvable $\operatorname{Hall}_{\mathcal{PST}}$ -group, then, by Theorem 2, part (3), we have that G is a solvable \mathcal{T}_0 -group. Let $\bar{G} = G/\Phi(G)_p$. Then \bar{G} is a solvable \mathcal{T}_0 -group by Theorem 2, part (1). By induction, if $\Phi(G)_p \neq 1$, we have $\bar{G}/\Phi(\bar{G})_p$ is a \mathscr{C}_p -group. But $\Phi(\bar{G})_p = 1$ and so \bar{G} is a \mathscr{C}_p -group. If $\Phi(G)_p = 1$ then one only needs G itself to be a \mathscr{C}_p group. Now $G/\Phi(G)$ is a \mathcal{T} -group and hence a \mathscr{C}_p -group by Theorem 1, part (1). Lemma 3, part (6), gives us that G is a \mathscr{C}_p -group since $\Phi(G)$ is a p'-group. Both $(4) \Rightarrow (5)$ and $(5) \Rightarrow (6)$ follow directly from the definitions of \mathscr{C}_p , \mathscr{X}_p , and \mathscr{Y}_p . - $(6) \Rightarrow (7)$. If G is a $\Phi_{\mathscr{Y}_p}$ -group for all primes p, then $G/\Phi(G)_p$ is a \mathscr{Y}_p -group for all primes p. Since $\Phi(G)/\Phi(G)_p$ is a p'-group for all primes p, we have, by Lemma 3, part (4), that $(G/\Phi(G)_p)/(\Phi(G)/\Phi(G)_p) \simeq G/\Phi(G)$ is a \mathscr{Y}_p -group for all primes p. Thus $G/\Phi(G)$ is a \mathcal{PST} -group by Theorem 1, part (3). Hence G is a solvable \mathcal{PST}_0 -group and thus a solvable \mathcal{T}_0 -group by Theorem 2, part (4). - $(7) \Rightarrow (1)$. If G is a solvable \mathcal{T}_0 -group, then G is supersolvable by Theorem 2, part (2). Thus G' is nilpotent in which case so is L. Hence L is p'-nilpotent for all primes p. Note that if L is abelian then, by Theorem 2, part (5), G is a \mathcal{PST} -group and hence a \mathscr{Y}_p -group for all primes p by Theorem 1, part (3). From Lemma 3, part (1), it would follow that G is a $\mathscr{L}_{\mathscr{Y}_p}$ -group for all primes p if L is abelian. So let us assume L is not abelian. Let $\bar{G} = G/L'_p$ and let \bar{L} be the nilpotent residual of \bar{G} . Now \bar{G} is a solvable \mathcal{T}_0 -group by Theorem 2, part (1). By induction, if $L'_p \neq 1$, we have \bar{G}/\bar{L}'_p is a \mathscr{Y}_p -group. But $\bar{L}'_p = 1$ and so \bar{G} is a \mathscr{Y}_p -group. Assume that $L'_p = 1$. Since L is not abelian there exists a prime $q \neq p$ for which $L'_q \neq 1$. Now let \bar{G} denote G/L'_q with \bar{L} the nilpotent residual of \bar{G} and note \bar{G} is a \mathcal{T}_0 -group by Theorem 2, part (1). So, by induction, \bar{G}/\bar{L}'_p is a \mathscr{Y}_p -group. Thus \bar{G} is a \mathscr{Y}_p -group and hence G is a \mathscr{Y}_p -group by Lemma 3, part (4). It now follows that G is a $\mathscr{L}_{\mathscr{Y}_p}$ -group for all primes p completing the proof. The classes of solvable $\operatorname{Hall}_{\mathcal{T}}$ -groups and $\operatorname{Hall}_{\mathcal{PT}}$ -groups admit similar local characterizations which we provide now. **Theorem 4.** The following are equivalent for a group G. - (1) G is a $\mathscr{F}_{\mathscr{X}_p}$ -group for all primes p. - (2) G is a solvable $Hall_{\mathcal{PT}}$ -group. *Proof.* (1) \Rightarrow (2). The proof is similar to the proof of (2) \Rightarrow (3) from Theorem 3. One only needs to use invoke the appropriate results corresponding to \mathcal{X}_p from Lemma 3 and Theorem 1. $(2) \Rightarrow (1)$. If G is a solvable $\operatorname{Hall}_{\mathcal{PT}}$ -group, then it is a solvable $\operatorname{Hall}_{\mathcal{PST}}$ -group and hence by Theorem 3 we have G/F'_p is a \mathscr{Y}_p -group for all primes p. Now G/F' a solvable \mathcal{PT} -group and thus an \mathscr{X}_p -group for all primes p by Theorem 1, part (2). Hence the Sylow subgroups of G/F' are Iwasawa. Let P denote a Sylow p-subgroup of G. Then $PF'/F' \simeq P/(P \cap F') = P/F'_p$ and thus P/F'_p is an Iwasawa group. Now one can conclude from Theorem 2 that G/F'_p is an \mathscr{X}_p -group for all primes p so that G is a $\mathscr{F}_{\mathscr{X}_p}$ -group for all primes p. **Theorem 5.** The following are equivalent for a group G. - (1) G is a $\mathscr{F}_{\mathscr{C}_p}$ -group for all primes p. - (2) G is a solvable $Hall_{\mathcal{T}}$ -group. *Proof.* Using the appropriate theorems and lemmas, the proof is quite similar to that of Theorem 4 and so we omit the proof. \Box The next theorem shows that the difference between solvable \mathcal{T}_0 -groups and $\text{Hall}_{\mathcal{PT}}$ -groups (Hall_{\mathcal{T}}-groups) amounts to the Sylow structure of G/F'_p for all primes p. **Theorem 6.** Let G be a solvable group with F = Fit(G). Then G is a \mathcal{T}_0 -group where the Sylow p-subgroups of G/F'_p are Iwasawa (Dedekind) groups for all primes p if and only if G is a $\text{Hall}_{\mathcal{PT}}$ -group ($\text{Hall}_{\mathcal{T}}$ -group). *Proof.* Suppose G is a \mathcal{T}_0 -group where the Sylow p-subgroups of G/F'_p are Iwasawa (Dedekind) groups. By Theorem 3, we have G/F'_p is a \mathscr{Y}_p -group for all primes p. By Lemma 2, we must have G/F'_p is an \mathscr{X}_p -group (\mathscr{C}_p -group) for all primes p. We can now deduce from Theorem 4 (2) that G is a $\operatorname{Hall}_{\mathcal{P}\mathcal{T}}$ -group ($\operatorname{Hall}_{\mathcal{T}}$ -group). Suppose G is a $\operatorname{Hall}_{\mathcal{PT}}$ -group ($\operatorname{Hall}_{\mathcal{T}}$ -group). Then Theorem 4 (5) says that G/F'_p is an \mathscr{X}_p -group (\mathscr{C}_p -group) for all primes p. Using Lemma 2, we can deduce that G/F'_p is a \mathscr{Y}_p -group for all primes p and that the Sylow p-subgroups of G/F'_p are Iwasawa (Dedekind) groups. That G is a \mathcal{T}_0 -group follows from Theorem 3. #### ACKNOWLEDGMENTS The first and the third author have been supported by the research project MTM2010-19938-C03-01 from the *Ministerio de Ciencia e Innovación*, Spain. The first author has also been supported by the National Natural Science Foundation of China (Grant No. 11271085). ## References - [1] M. Asaad. Finite groups in which normality or quasinormality is transitive. *Arch. Math. (Basel)*, 83:289–296, 2004. - [2] A. Ballester-Bolinches and R. Esteban-Romero. Sylow permutable subnormal subgroups of finite groups. J. Algebra, 251(2):727–738, 2002. - [3] A. Ballester-Bolinches, R. Esteban-Romero, and M. Asaad. *Products of finite groups*, volume 53 of *de Gruyter Expositions in Mathematics*. Walter de Gruyter, Berlin, 2010. - [4] A. Ballester-Bolinches, R. Esteban-Romero, and M. Ragland. A note on finite PST-groups. J. Group Theory, 10(2):205–210, 2007. - [5] J. C. Beidleman, B. Brewster, and D. J. S. Robinson. Criteria for permutability to be transitive in finite groups. J. Algebra, 222(2):400–412, 1999. - [6] M. F. Ragland. Generalizations of groups in which normality is transitive. Comm. Algebra, 35(10):3242–3252, 2007. - [7] D. J. S. Robinson. A note on finite groups in which normality is transitive. Proc. Amer. Math. Soc., 19:933–937, 1968. - [8] D. J. S. Robinson. A Course in the Theory of Groups. Springer-Verlag, New York, second edition, 1995. - [9] R. W. van der Waall and A. Fransman. On products of groups for which normality is a transitive relation on their Frattini factor groups. *Quaestiones Math.*, 19:59–82, 1996. DEPARTMENT D'ÀLGEBRA, UNIVERSITAT DE VALÈNCIA, DR. MOLINER, 50, E-46100 BURJASSOT, VALÈNCIA, SPAIN E-mail address: Adolfo.Ballester@uv.es DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KY 40605-0027, USA $E\text{-}mail\ address:}$ james.beidleman@uky.edu Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Camí de Vera, s/n, E-46022 València, Spain $E ext{-}mail\ address: resteban@mat.upv.es}$ Current address: Departament d'Àlgebra, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot, València, Spain E-mail address: Ramon.Esteban@uv.es Department of Mathematics, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124-4023 USA $E ext{-}mail\ address: mragland@aum.edu}$