Yeast - For peer review only

The molecular characterization of new types of *S. cerevisiae* x *S. kudriavzevii* hybrid yeasts unveils a high genetic diversity

Journal:	Yeast
Manuscript ID:	YEA-Jun-11-0053.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Peris, David; Universitat de València, Inst. Cavanilles de Biodiversitat i Biologia Evolutiva Belloch, Carmela; CSIC, Universitat de Valencia, Departamento de Biotecnologia de Alimentos, Instituto de Agroquimica y Technologia de Alimentos Lopandić, Ksenija; University of Natural Resources and Applied Life Sciences, Viena, Institute of Applied Microbiology Álvarez-Pérez, José; Universidad de León, Instituto de Investigación de la Viña y el Vino, , Campus de Ponferrada Querol, Amparo; CSIC, Universitat de Valencia, Departamento de Biotecnologia de Alimentos, Instituto de Agroquimica y Technologia de Alimentos Barrio, Eladio; Universitat de València, Inst. Cavanilles de Biodiversitat i Biologia Evolutiva
Keywords:	Saccharomyces
	·

Ī

2 3 4	1	The molecular characterization of new types of <i>S. cerevisiae</i> x <i>S.</i>
5 6	2	kudriavzevii hybrid yeasts unveils a high genetic diversity.
7 8 9 10	3 4	David Peris ¹ , Carmela Belloch ² , Ksenja Lopandić ⁴ , José Manuel Álvarez-
11 12 13	5	Pérez ³ , Amparo Querol ² and Eladio Barrio ¹
14 15 16	6 7	¹ Institute Cavanilles of Biodiversity and Evolutionary Biology, University of
17 18	8	Valencia, Valencia, Spain.
19 20 21	9	² Department of Biotecnology, Institute of Agrochemistry and Food Technology
21 22 23	10	(CSIC), Valencia, Spain.
24 25	11	³ Vine and Wine Research Institute, University of León, 24400-Ponferrada,
26 27 28	12	Spain
29 30	13	⁴ Austrian Center of Biological Resources and Applied Mycology, Institute of
31 32	14	Applied Microbiology, University of Natural Resources and Applied Life
33 34 35	15	Sciences, Muthgasse 18, 1190 Vienna, Austria.
36 37	16	
38 39 40	17	Corresponding author:
41 42	18 19	Dr. Eladio Barrio Institut 'Cavanilles' de Biodiversitat i Biologia Evolutiva
43 44	20	Universitat de València
45	21	P.O. Box 22085
46	22	E-460/1 Valencia
47 48	23	
49	24	Tel.: +34 903 543 007
50	25	Fax: +34 903 543 670
51 52	26	E-mail: eladio.barrio@uv.es
53 54	27	Running Title: A high genetic diversity among S. cerevisiae x S. kudriavzevii
55 56 57	28	hybrids
58 59	29	Keywords: Saccharomyces hybrids, S. cerevisiae, S. kudriavzevii, wine,
60	30	dietary, clinical yeasts.

31 Abstract

New double and triple hybrid *Saccharomyces* yeasts were characterized by using PCR-restriction fragment length polymorphism of 35 nuclear genes, located at different chromosome arms, and the sequencing of one nuclear and one mitochondrial genes. Most of these new hybrids were originally isolated from fermentations, however, two of them correspond to clinical and dietary supplement isolates. This is the first time that the presence of double hybrids S. cerevisiae x S. kudriavzevii in non-fermentative substrates is reported and investigated. The phylogenetic analysis of the *MET6* nuclear gene confirmed the double or triple parental origin of the new hybrids. The restriction analysis of gene regions in these hybrids revealed a high diversity of genome types. From these molecular characterizations, a reduction of the S. kudriavzevii fraction of the hybrid genomes is observed in most hybrids. Mitochondrial inheritance in hybrids was deduced from the analysis of the mitochondrial COX2 gene sequences, which showed that most hybrids received the mitochondrial genome from the *S. kudriavzevii* parent. However, two strains inherited a S. cerevisiae COX2, being the first report of S. cerevisiae x S. kudriavzevii hybrids with S. cerevisiae mitochondrial genomes. These two strains are those showing a higher S. kudriavzevii nuclear genome reduction, especially in the wine hybrid AMH. This may be due to the release of selective pressures acting on the other hybrids to maintain kudriavzevii mitochondria-interacting genes.

54	
55	Introduction
56	The genus Saccharomyces consists of eight species, three of them
57	associated with industrial fermentation processes (S. bayanus, S. cerevisiae,
58	and S. pastorianus), and five isolated from natural habitats (S. arboriculus, S.
59	cariocanus, S. kudriavzevii, S. mikatae and S. paradoxus) (Kurtzman 2003;
60	Wang and Bai 2008). S. cerevisiae, the predominant species responsible for the
61	alcohol fermentation, has been found associated to diverse fermentation
62	processes including baking, brewing, distilling, wine making, cider production,
63	etc. and also in different traditional fermented beverages and foods around the
64	world . The species S. bayanus includes two recognized varieties, bayanus and
65	uvarum (Vaughan-Martini and Martini 2011). S. bayanus var. uvarum is present
66	in wine and cider fermentations from cold regions of Europe (as examples see
67	Naumov et al. 2001; Demuyter et al. 2004). The S. pastorianus taxon includes
68	hybrid strains between S. bayanus and S. cerevisiae, which are responsible for
69	the production of lager beer (Kodama et al. 2005). The rest of the species are
70	only associated with natural habitats, with the exception of some S. paradoxus
71	strains isolated from Croatian vineyards (Redzepović et al. 2002), that show a
72	good winemaking performance (Orlić <i>et al.</i> 2010).
73	During their evolution, yeasts have suffered diverse selective processes to
74	become adapted to the fermentation conditions (Querol et al. 2003). Diverse
75	molecular mechanisms were involved in the generation of the evolutionary
76	novelties that allowed the adaptation of yeasts to the fermentation processes
77	(for a review see Barrio et al. 2006). In the case of the genus Saccharomyces,

78 one of the most interesting mechanisms involved in their adaptation to industrial

processes, is the generation of interspecific hybrids (Querol and Bond 2009).
Hybrids between *S. cerevisiae* and *S. bayanus* were already identified several
decades ago (for a review see Kodama *et al.* 2005). In the last years, a new
type of hybrids, between *S. cerevisiae* x *S. kudriavzevii*, have been found both
in winemaking and brewing (Bradbury *et al.* 2006; González *et al.* 2006, 2008;
Lopandić *et al.* 2007).

In the present study we characterize the genome composition of new S. *cerevisiae* x *S. kudriavzevii* hybrids. These new hybrids include two strains isolated from wine regions located in the southernmost limits of the Oceanic and Continental Europe, and two hybrids isolated for the first time from non-fermentative sources, such as a human respiratory tract isolate (deLlanos et al. 2004) and a strain employed as dietary supplement. Other hybrids, molecularly characterized for the first time in this study, are some commercial wine strains described as such by Bradbury et al. (2006) and some of the Austrian wine hybrids (Lopandić et al. 2007), as well as two triple hybrids S. bayanus x S. cerevisiae x S. kudriavzevii CID1 (Groth et al. 1999) and CBS2834 (González et al. 2006). The genetic characterization was performed by restriction analysis of 35 nuclear genes located in different chromosomes, and by sequencing the nuclear gene *MET6* and the mitochondrial *COX2* genes. Accordingly, these new hybrids were compared to those characterized in our previous study (González et al. 2008).

101 Materials and methods

103 Yeast strains and culture media

Yeast - For peer review only

2 3 4	104	The natural yeast hybrids S. cerevisiae x S. kudriavzevii used in this
5 6	105	study were originally isolated from different sources and locations as described
7 8 9	106	in Table 1. Yeast strains were grown at 28°C in GPY medium (2% glucose,
9 10 11	107	0.5% peptone, 0.5% yeast extract).
12 13	108	
14 15 16	109	PCR amplification and restriction analysis of 35 nuclear gene regions
17 18	110	Characterization of the hybrids was performed by PCR amplification and
19 20	111	restriction of 35 gene regions located in different chromosome arms (Fig. 2).
21 22 23	112	DNA was extracted following the procedure described by Querol et al. (1992).
24 25	113	Amplification and digestion of the nuclear genes was performed by using the
26 27	114	methodology described in González et al. (2008) except for the subtelomeric
28 29 30	115	MNT2 gene, that failed to amplify the S. kudriavzevii gene and, hence, it was
31 32	116	replaced by GCN1. Primers used for amplification of GCN1 gene were GCN1-5
33 34 25	117	(GGTTTRGTKAAAGGTTAYGG) and GCN1-3' (CACCAGCYAAAATRGTTGG)
36 37	118	and PCR conditions were as in González et al. (2008), but using an annealing
38 39	119	temperature of 55.5 °C.
40 41 42	120	
43 44	121	Amplification, sequencing and phylogenetic analysis of COX2 and MET6 genes
45 46	122	The genes COX2 and MET6 were amplified by PCR using the primers
47 48 49	123	and conditions described in Belloch et al. (2000) and González et al. (2006),
50 51	124	respectively. PCR products were cleaned with the Perfectprep Gel Cleanup kit
52 53	125	(Eppendorf, Hamburg, Germany) and both strands of the DNA were directly
54 55 56	126	sequenced using the BigDyeTM Terminator V3.0 Cycle Sequencing Kit (Applied
57 58 59 60	127	Biosystems, Warrington, UK), following the manufacturer's instructions, in an

Yeast - For peer review only

2 3 4	128	Applied Biosystems automatic DNA sequencer Model ABI 3730I (Life
5 6	129	Technologies Coorporation, Carlsbad, California).
7 8 9	130	COX2 and MET6 sequences obtained for the present study are listed in
10 11	131	Table 1 with their accession numbers. Other sequences from hybrids were
12 13	132	retrieved from sequence databases (accession numbers for MET6 sequences
14 15 16	133	AJ973280-AJ973295 and AJ973305-AJ973322; and for COX2 sequences
17 18	134	AJ938037-AJ93844, AJ938047, AJ938048 and AJ966727-AJ966733).
19 20 21	135	Finally, MET6 sequences from reference or type strains of S. bayanus
21 22 23	136	var. <i>uvarum</i> (MCYC 623), <i>S. cerevisiae</i> (S288C), <i>S. kudriavzevii</i> (IFO 1802 ^T), <i>S.</i>
24 25	137	<i>mikatae</i> (IFO 1815 ^T) and <i>S. paradoxus</i> (CECT 1939 ^{NT}) were retrieved from the
26 27 28	138	fungal alignment viewer of the Saccharomyces Genome Database
29 30	139	(http://db.yeastgenome.org/cgi-bin/FUNGI/showAlign).
31 32	140	Each set of homologous sequences was aligned in MEGA 4 (Tamura et
33 34 35	141	al. 2007). The sequence evolution model that fits our sequence data best was
36 37	142	optimized using the corrected Akaike Information Criterion (AICc) with a BioNJ
38 39 40	143	tree as the initial tree, implemented in jModelTest program (Posada 2008). The
40 41 42	144	best fitting model of evolution for MET6 sequences was TIM1 model (Posada
43 44	145	2003) with a gamma distribution (G) of substitution rates with a shape
45 46 47	146	parameter α = 0.35; and for <i>COX2</i> gene sequences the TVM model (Posada
48 49	147	2003) with a gamma distribution (G) of substitution rates with a shape
50 51	148	parameter α = 0.123 and 46.2% of invariable sites (I). The parameters of each
52 53 54	149	model, estimated in the previous analysis, were used to obtain the best trees
55 56	150	under optimality criterion of maximum-likelihood (ML). Tree reliability was
57 58 59 60	151	assessed using non-parametric bootstrap re-sampling of 1000 pseudo-

2	
- 3 4	152
5 6	153
7 8 9	154
9 10 11	155
12 13	156
14 15 16	157
17 18	158
19 20	159
21 22 23	160
24 25	161
26 27	162
28 29 30	163
31 32	164
33 34	165
35 36 37	166
38 39	167
40 41	168
42 43 44	169
45 46	170
47 48 40	171
49 50 51	172
52 53	173
54 55	174
50 57 58	175
59 60	

replicates. Phylogenetic analyses were performed using PhyML 3.0 program (Guindon et al. 2010).

In the case of COX2 sequences, due to evidences of recombination obtained from sequence comparisons, a Neighbor-net network analysis was also performed with SPLITSTREE4 program (Huson and Bryant 2006).

Results

Analysis of the hybrid nature of the strains by the phylogenetic analysis of

MET6 gene sequences.

To confirm the hybrid nature of the strains under study and their genealogical relationships, we performed phylogenetic analyses of partial sequences of a nuclear (MET6) and a mitochondrial (COX2) genes, because such sequences are also available for other hybrids (González et al. 2006, 2008).

Three different *MET6* sequence types were found in hybrids that correspond to those of the reference strains of the parental species S. bayanus, S. cerevisiae and S. kudriavzevii (Fig. 1). Thus, the average number of nucleotide subtitutions among S. cerevisiae alleles is 0.97 ± 0.88 (from 0 to 3 differences), among S. kudriavzevii alleles is 0.23 ± 0.59 (from 0 to 3) and among S. bayanus var. uvarum is 0 ± 0 . In contrast, average numbers of nucleotide differences between species are 83.89 ± 0.78 (S. cerevisiae vs. S. kudriavzevii alleles, 83 to 87 nucleotide differences), 66.78 ± 0.84 (S. bayanus var. uvarum vs. S. cerevisiae alleles, 65-68 differences) and 60.11 \pm 0.42 (S. *bayanus* var. *uvarum* vs. *S. kudriavzevii* alleles, 60-62).

Yeast - For peer review only

Page 8 of 34

2	
3	
4	
5	
6	
7	
8	
g	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
30	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
19 19	
40 40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
60	
00	

1

176 All double and triple hybrids included in the analysis contain two or three 177 *MET6* alleles coming from their parental species (B, C and K), except double 178 hybrids HA1841 and AMH that lost the S. kudriavzevii MET6 allele. These 179 results confirm the hybrid nature of the new strains. 180 181 Nuclear genome characterization of Saccharomyces hybrids 182 The restriction patterns of the 35 genes for the differentiation of the S. 183 cerevisiae and S. kudriavzevii alleles were described in González et al. (2008) 184 with the exception of *MNT2* which was replaced in the present study by *GCN1*. 185 The restriction analysis of the GCN1 gene region yielded the following 186 fragments: HaeIII, S. cerevisiae 462 + 302 + 144 + 114 bp, and S. kudriavzevii 187 450 + 366 + 206 bp; *Msp*I, *S. cerevisiae* 514 + 508 bp, and *S. kudriavzevii* 1022 188 bp; and Cfol, S. cerevisiae 766 + 256 bp, and S. kudriavzevii 634 + 388 bp. 189 Hybrids characterized in a previous study (González et al., 2008) were also 190 assayed for this gene, resulting in the presence of both parental copies in all of 191 them. 192 The PCR-RFLP patterns of the 10 newly characterized S. cerevisiae x S. 193 *kudriavzevi* hybrids, and the 2 triple hybrids are depicted in Figures 2 and 3, 194 respectively. The specific alleles present in each hybrid strain are given in the 195 Supplementary Table S1 and the new restriction patterns in Supplementary 196 Table S2. 197 Since the S. cerevisiae and S. kudriavzevii genomes are colineal (Kellis et 198 al. 2003), the locations of the gene regions under analysis were chosen to 199 obtain information about the presence of possible chromosomal

200 rearrangements in the hybrid genomes, as described in other hybrids (González

1	
2	
3	
4	
5	
6	
7	
2 2	
0	
3	
10	
11	
12	
13	
14	
15	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
60	
00	

201	et al. 2008; Belloch et al. 2009). This way, the absence in the hybrids of S.
202	kudriavzevii alleles for genes located in the same chromosome likely resulted
203	from the loss of the whole chromosome. However, the loss of one gene located
204	in a chromosome but not the other genes of the same chromosome can be
205	postulated as a result of recombination between homeologous chromosomes,
206	as demonstrated for some hybrids (Belloch et al., 2009). This resulted in the
207	replacement of the missing segment by the homologous segment from the other
208	chromosome of different parental origin (see Figures 2 and 3).
209	This way, chromosomal rearrangements can be postulated as occurred in
210	chromosomes IV (AMH), V (IF6), VII (AMH, VIN7, IF6 and MR25), IX (IF6,
211	MR25), X (IF6, MR25), XI (PB7 and IF6), XIII (IF6, MR25), XIV (MR25), XV
212	(AMH) and XVI (IF6). In four wine hybrids (SOY3, from Croatia, and HA 1835,
213	HA 1837 and HA 1842 from Austria) no rearrangement can be deduced
214	because they contain both parental alleles for all genes.
215	In general, the S. cerevisiae genome fraction is maintained in all these
216	double hybrids whereas a progressive loss of the <i>S. kudriavzevii</i> genes is
217	observed. This reduction is more evident in the case of hybrid AMH, which has
218	lost most of the S. kudriavzevii chromosomes.
219	In the case of the triple hybrids (Fig. 3), the typical restriction pattern of S.
220	bayanus var. uvarum was found in addition to those of S. cerevisiae and S.
221	kudriavzevii alleles, indicating that they contain chromosomes from the three
222	parental species. The S. cerevisiae and S. kudriavzevii chromosomes are co-
223	lineal (synthenic), however, the chromosomes of S. bayanus var. uvarum
224	contain 4 differential reciprocal translocations (Kellis et al. 2003), as depicted in

Page 10 of 34

Figure 3. In the case of triple hybrids, a higher preservation of the *S. bayanus* var. uvarum fraction is observed. The comparison of the RFLP patterns obtained in this study for the new hybrids and those described by González et al. (2008, see their figure 3) reveals a considerable diversity in the genome structure of S. cerevisiae x S. kudriavzevii hybrids, although certain similarities among strains are observed as

well. Accordingly, double hybrid strains can be classified in three groups

according to the parental genome rearrangements. The first group includes

hybrids that maintain the complete genome from both parents (most HA strains

and SOY3) or have independently lost from 1-2 chromosomes or chromosome

regions from *S. kudriavzevii* (wine strains PB7, VIN7 and most brewing hybrids),

the second group comprises strains with a moderate loss (3-4) of S.

kudriavzevii chromosomes or chromosome regions, including 3 shared events (Swiss wine hybrids and the brewing strain CECT 11003), and the third group includes strains with moderate (MR25, 6 losses) to large S. kudriavzevii gene

losses (CECT 11002, IF6 and AMH, with 9, 11 and 13, respectively).

Mitochondrial inheritance in hybrids

The analysis of mitochondrial COX2 gene sequences has been shown as useful to decipher which parental species contributed with their mitochondria to the hybrid strains (González et al. 2006).

The comparative analysis of *COX2* sequences with those previously described (González et al. 2006), showed the presence of new haplotypes in hybrids PB7, AMH and IF6 (Fig. 2 and 3). The wine hybrids AMH and IF6 contain COX2 sequences more related to S. cerevisiae (1 and 14 differences,

1	
2	
3 4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
23	
24	
25	
26	
28	
29	
30	
31	
32 33	
34	
35	
36	
37	
39	
40	
41	
42	
43 44	
45	
46	
47	
48 ⊿0	
49 50	
51	
52	
53	
54 55	
56	
57	
58	
59	
60	

250 respectively being the first description of S. cerevisiae x S. kudriavzevii hybrids 251 that received their mitochondrial genomes from a *S. cerevisiae* parent. 252 The other new hybrids contain COX2 sequences that correspond to 253 previously described haplotypes. Thus, with the exception of PB7, all new wine 254 hybrids contain haplotype K4, already described in the triple hybrid CBS 2834. 255 This haplotype is closely related to haplotypes K2 and K3 from Swiss wine 256 hybrids (1 and 2 nucleotide differences, respectively) and haplotypes exhibited 257 by the Japanese type (haplotype K1, 5 differences) and European strains from 258 S. kudriavzevii (haplotypes K8 and 9, with 1 and 3 differences, respectively). 259 The clinical isolate MR25 exhibits the same haplotype K6 described in brewing 260 hybrids, which is related to haplotype K10 present in the wine hybrid PB7 (6 261 nucleotide differences). 262 However, a detailed analysis of the *COX2* sequence alignment suggested 263 the possibility of reticulate evolution due to recombination (Table 2). This way, 264 haplotypes K5 (triple hybrid CID1), K6 (brewing hybrids CECT 1388, 1990, 265 11002, 11011 and the clinical strain MR25) and K10 (wine hybrid PB7) appear 266 as putative recombinant sequences with similarities to S. kudriavzevii, S. 267 cerevisiae and S. paradoxus sequences in their 5'-end, central and 3'-end 268 regions, respectively (see Table 2). 269 In the case of reticulate evolution due to recombination, a better 270 representation of the phylogenetic relationships is obtained by a Neighbor-net 271 network analysis (Figure 4). Most wine hybrids (except PB7 and AMH) and two 272 Trappist beer hybrids (CECT 11003 and 11004) inherited their mitochondrial 273 genomes (haplotypes K2, K3 and K4) from S. kudriavzevii, AMH and IF6

274 received their mitochondrial genomes from *S. cerevisiae*, although IF6 *COX2*

appears in a striking intermediate position between S. cerevisiae and S. paradoxus-S.mikatae clades, likely due to its highly divergent 3' end. Finally, most brewing hybrids and the clinical isolate (haplotype K6), the cider CID1 (K5) and the wine PB7 (K10) hybrids appear in an intermediate position due to their chimerical *COX2* sequences. Different groups of hybrids according to their nuclear and mitochondrial genome constitutions The combined analysis of the nuclear and mitochondrial genome compositions of *S. kudriavzevii* double and triple hybrids indicates a higher genetic diversity. Strains that differed in a few chromosomal rearrangements contain different mitochondrial haplotypes (e.g. PB7 and the Austrian and Croatian hybrids) and others showing important chromosomal differences share the same mitochondrial sequences (e.g. MR25 and brewing hybrids). In other cases, there is a certain association between the nuclear and mitochondrial diversities. This way, the two hybrids with a S. cerevisiae mitochondrial DNA are those that lost a higher fraction of S. kudriavzevii nuclear genome. As well, with the mentioned exception of PB7, wine hybrids appear in two closely related clusters, the Austrian-Croatian cluster (also including VIN7) with low number of chromosomal rearrangements and the sharing the same S. kudriavzevii-like mitochondrial haplotype K4, and the Swiss cluster (also including Trappist hybrids CECT11003 and 11004), which share several fixed rearrangements (Belloch et al. 2009) and the S. kudriavzevii-like mitochondrial haplotype K2 (including the derived K3).

3
3
3
3
ະ າ
3
3
3
3
3
3
3
3
3
3
3
3
3
ז ר
3
3
3
3
3
3
3

299	In the case of the two triple hybrids known so far, they also show important
300	differences both in their mitochondrial and nuclear genomes. Thus, these
301	strains do not share any common chromosomal rearrangements indicating
302	independent losses in the three fractions of their hybrid genomes. Moreover, the
303	wine triple hybrid inherited a S. kudriavzevii mitochondrial genome similar to
304	that present in wine double hybrids, whilst the cider hybrid contains a
305	mitochondrial COX2 closely related to that present in most brewing, the clinical
306	and a wine hybrid with similarities intermediate between S. cerevisiae and S.
307	kudriavzevii.
308	
309	Discussion
310	New strains expanding the distribution range of Saccharomyces kudriavzevii
311	hybrids
312	It is more than a decade since an unusual S. bayanus x S. cerevisiae
313	hybrid, CID1, isolated from home-made Breton cider, was identified as bearing
314	a mitochondrial genome coming from <i>S. kudriavzevii</i> (Masneuf et al. 1998;
315	Groth et al. 1999). Later, a S. kudriavzevii contribution to a fraction of the
316	chimerical nuclear genome of this strain was demonstrated (Naumova et al.
317	2005; González <i>et al.</i> 2006).
318	Some years later, a new type of natural hybrid strains between S.
319	cerevisiae x S. kudriavzevii was described in wine fermentations (Bradbury et
320	al., 2006; González et al., 2006; Lopandić et al., 2007). and brewing
321	environments (González <i>et al.</i> , 2008).
322	In the present study, new S. cerevisae x S. kudriavzevii hybrid yeasts are
323	described and molecularly characterized. These hybrids contribute to expand

Page 14 of 34

the geographical distribution range of this type of hybrids as well as the sourceswhence they can be isolated.

This way, the new wine hybrids (PB7 and SO3) were isolated from wine fermentation in the southernmost locations where this kind of hybrids has been isolated so far (Pajares de los Oteros, in Northwestern Spain, and Daruvar, in Central Croatia, respectively). These new descriptions extend the distribution limits of S. cerevisiae x S. kudriavzevii hybrids to the Southern limit of the European wine regions of Oceanic and Continental climate, where these hybrids have been found so far associated to fermentation processes. In these wine regions, hybrids can be predominant (Schütz and Gafner 1994; González et al. 2006; Lopandić et al. 2007) likely due to a better adaptation to lower temperatures compared to S. cerevisiae (González et al. 2007).

The molecular characterization of PB7 showed that, although its nuclear genome composition is similar to other wine hybrids, exhibits a recombinant mitochondrial genome different but closely related to brewing hybrids. Its marginal distribution and its peculiar genome characteristics are indicative of a putative independent origin from other wine hybrids. However, the genome composition of the Croatian SOY3 hybrid was identical to Austrian hybrids, predominant in another wine region of the same Pannonian basin (Lopandić et al. 2007), with similar climatologic characteristics as well as historical links in the development of viticulture and enology.

In these Southern locations where the new wine hybrids were isolated,
hybrids did not appear as predominant. In both cases, these wine hybrids were
found at low frequencies and coexisting with the dominant *S. cerevisiae* strains
during the first stages of the wine fermentations. Perhaps the milder

1		
2 3 4	349	temperatures at which spontaneous fermentations occur in these Southern
5 6 7	350	regions still allow S. cerevisiae to outcompete these hybrids.
7 8 9	351	The present study also describes for the first time S. cerevisiae x S.
10 11	352	kudriavzevii hybrids isolated from non-fermentative environments. Strain MR25
12 13	353	is a human respiratory isolate from 'Hospital del Vall d'Hebron', Barcelona,
14 15 16	354	Spain; and IF6, is commercialized as a dietary supplement. These hybrids are
16 17 18	355	quite different at the genome level, particularly in their mitochondrial genomes.
19 20 21	356	The clinical isolate MR25 shares a COX2 sequence identical to that present in 4
21 22 23	357	brewing hybrids, indicating that beer could likely be the source of infection, and
24 25	358	the dietary supplement IF6 exhibits a S. cerevisiae mitochondrial DNA.
26 27 28	359	
29 30	360	The high genetic diversity among Saccharomyces kudriavzevii hybrids suggests
31 32	361	independent hybridization origins
33 34 35	362	The analysis of the nuclear and mitochondrial genome compositions of S.
36 37	363	kudriavzevii double and triple hybrids unveiled a high diversity, which likely is
38 39	364	indicative of independent primary, as well as secondary, hybridization events.
40 41 42	365	The fact that hybrids inherited 3 types of mitochondrial genomes (S .
43 44	366	cerevisiae-like, S. kudriavzevii-like and recombinant) from their parental
45 46 47	367	ancestors is indicative of at least 3 different origins. Moreover, the important
47 48 49	368	differences in their nuclear genome compositions could also be taken as
50 51	369	evidences of independent primary hybridization events.
52 53 54 55 56	370	The presence of recombinant mitochondrial genomes in hybrids can be
	371	explained by recombination events occurring after the fusion of mitochondria
57 58	372	observed in conjugating Saccharomyces spores or cells. This kind of
59 60	373	recombination events were already described in S. cerevisiae at the within-

Yeast - For peer review only

Page 16 of 34

2	
3	
4	
5	
6 7	
1	
ð	
9	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
20	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40 11	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
56	
57	
58	
59	
60	

1

species level (Berger and Yaffe 2000), but this is the first time that is described
in hybrids at the between-species level. However, we suspect that these
recombination events are limited to this *COX2* region because sequences from
the next downstream gene, *COX3*, correspond to *S. kudriavzevii* (data not
shown).

379 In addition, the existence of natural triple S. bayanus var. uvarum x S. 380 *cerevisiae* x *S. kudriavzevii* hybrids can be explained by secondary 381 hybridization between either S. cerevisiae x S. kudriavzevii hybrids with S. 382 bayanus var. uvarum strains or S. bayanus var. uvarum x S. cerevisiae hybrids 383 with *S. kudriavzevii* strains. Although both types of double hybrids have been 384 found associated to fermentation environments, the first type of secondary 385 hybridization event could be more probable because *S. kudriavzevii* seems to 386 be present only in natural environments (Sampaio and Gonçalves 2008; Lopes 387 et al. 2010) and is outcompeted by S. cerevisae in experimental wine 388 fermentations (Arroyo-López et al. 2011), whilst S. bayanus var. uvarum 389 coexists with, or even replaces, S. cerevisiae in wine fermentations from cold 390 regions of Europe (Torriani et al. 1999; Naumov et al. 2000; 2002; Rementería 391 et al. 2003; Demuyter et al. 2004). However, a secondary hybridization event in 392 natural environments, involving a S. kudriavzevii and a S. bayanus x S. 393 cerevisiae, cannot be totally discarded. 394 After hybridization, the hybrid genome suffers random genomic 395 rearrangements mediated by crossing-over between homeologous 396 chromosomes (Belloch et al. 2009). If these rearrangements were randomly 397 fixed, hybrids with a higher number of rearrangements should derive from older

398 hybridization events, and hybrids with no rearrangements should be very

Page 17 of 34

recent. However, double hybrids showed a trend to maintain the S. cerevisiae genome and to reduce the *S. kudriavzevii* that can only be explained by selection acting under the strong restrictive conditions prevailing during fermentation (nutrient depletion, osmotic stress, fermenting temperature, increasing levels of ethanol, etc.). The better adaptation of *S. cerevisiae* to these prevailing conditions constrains the loss of the S. cerevisiae fraction of the hybrid genome, and only the S. kudriavzevii genome fraction of selective importance for the hybrid (e.g. involved in adaptation to low fermentation temperatures) would be maintained. The fact that hybrids with a *S. kudriavzevii* mitochondrial genome maintain a larger fraction of the *S.kudriavzevii* genome than hybrids with a *S. cerevisiae* mitochondrial DNA, such as AMH and IF6, is also indicative that the inheritance of a S. kudriavzevii mitochondrial genome constrains to maintain those *S. kudriavzevii* genes involved in the proper function and maintenance of the mitochondria. Incompatibility between nuclear and mitochondrial genes has been reported for artificial S. cerevisiae x S. *bayanus* hybrids (Lee *et al.* 2008). Accordingly, strains possessing *S*. cerevisiae-inherited mitochondria overcome this restriction and may lose these S. kudriavzevii mitochondrial-related genes from their nuclear genome. Acknowledgements We thank Helmut Gangl, Rosa de Llanos, Silvia LLopis, Sandi Orlić, Lallemand Bio and Anchor Wine Yeasts for providing yeast strains. This work was supported by Spanish Government projects AGL2009-12673-CO2-01 and AGL2009-12673-CO2-02 to AQ and EB, respectively, and Generalitat

423 Valenciana (project PROMETEO/2009/019) to AQ, EB and CB. DP and JMA-P

3 4	424	acknowledge to the Spanish Government for their FPI (Ministerio de Ciencia e
5 6 7	425	Innovación) and FPU (Ministerio de Educación) fellowships, respectively.
, 8 9	426	
10 11	427	References
12 13	428 429	Arroyo-López FN, Pérez-Través L, Querol A, Barrio E. 2011. Exclusion of
14 15	430	Saccharomyces kudriavzevii from a wine model system mediated by
16 17	431	Saccharomyces cerevisiae. Yeast 28: 423-435.
18 19 20	432	Barrio E, González SS, Arias A, Belloch C, Querol A. 2006. Molecular mechanisms
20 21 22	433	involved in the adaptive evolution of industrial yeasts. In Yeasts in Food and
23 24	434	Beverages, Querol A, Fleet GH (eds). Springer-Verlag, Berlin; 153-174.
25 26	435	Belloch C, Querol A, García MD, Barrio E. 2000. Phylogeny of the genus
27 28	436	Kluyveromyces inferred from mitochondrial cytochrome-c oxidase II gene. Int J
29 30	437	Syst Evol Microbiol 50: 405-416.
31 32 33	438	Belloch C, Pérez-Torrado R, González SS, Pérez-Ortín JE, García-Martínez J, Querol
34 35	439	A, Barrio E. 2009. Chimeric genomes of natural hybrids of Saccharomyces
36 37	440	cerevisiae and Saccharomyces kudriavzevii. Appl Environ Microbiol 75: 2534-
38 39	441	2544.
40 41	442	Berger KH, Yaffe MP. 2000. Mitochondrial DNA inheritance in Saccharomyces
42 43	443	cerevisiae. Trends Microbiol 8: 508-513.
44 45 46	444	Bradbury J, Richards K, Niederer H, Lee S, Rod Dunbar P, Gardner R. 2006. A
47 48	445	homozygous diploid subset of commercial wine yeast strains. Antonie van
49 50	446	Leeuwenhoek 89: 27-37.
51 52	447	deLlanos R, Querol A, Planes AM, Fernández-Espinar MT. 2004. Molecular
53 54	448	characterization of clinical Saccharomyces cerevisiae isolates and their
55 56 57 58 59 60	449	associaton with non-clinical strains. Syst Appl Microbiol 27: 427-435.

2		
3 4	450	Demuyter C, Lollier M, Legras JL, Le Jeune C. 2004. Predominance of <i>Saccharomyces</i>
6 7 8 9 10 11 12 13 14 15 16 17	451	uvarum during spontaneous alcoholic fermentation, for three consecutive years,
	452	in an Alsatian winery. J Appl Microbiol 97: 1140-1148.
	453	González SS, Barrio E, Gafner J, Querol A. 2006. Natural hybrids from Saccharomyces
	454	cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine
	455	fermentations. FEMS Yeast Res 6: 1221-1234.
	456	González SS, Barrio E, Querol A. 2008. Molecular characterization of new natural
18 19	457	hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii
20 21	458	from brewing. Appl Environ Microbiol 74: 2314-2320.
22 23	459	González SS, Gallo L, Climent MD, Barrio E, Querol A. 2007. Enological
24 25	460	characterization of natural hybrids from Saccharomyces cerevisiae and S.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	461	kudriavzevii. Int J Food Microbiol 116: 11-18.
	462	Groth C, Hansen J, Piškur J. 1999. A natural chimeric yeast containing genetic material
	463	from three species. Int J Syst Bacteriol 49: 1933-1938.
	464	Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New
	465	algorithms and methods to estimate maximum-likelihood phylogenies: assessing
	466	the performance of PhyML 3.0. Syst Biol 59: 307-321.
	467	Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary
	468	studies. <i>Mol Biol Evol</i> 23: 254-267.
44 45	469	Kellis M, Patterson N, Endrizzi M, Birren BW, Lander ES. 2003. Sequencing and
46 47 48 49 50 51 52 53 54 55 55	470	comparison of yeast species to identify genes and regulatory elements. Nature
	471	423: 241-254.
	472	Kodama Y, Kielland-Brandt MC, Hansen J. 2005. Lager brewing yeast. In Comparative
	473	Genomics: using fungi as models, Sunnerhagen P, Piškur J (eds). Springer-
	474	Verlag, Berlin, Germany; 145-164.
57 58	475	Kurtzman CP. 2003. Phylogenetic circumscription of Saccharomyces, Kluyveromyces
59 60	476	and other members of the Saccharomycetaceae, and the proposal of the new

477	genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and								
478	Zygotorulaspora. FEMS Yeast Res 4: 233-245.								
479	Lee HY, Chou JY, Cheong L, Chang NH, Yang SY, Leu JY. 2008. Incompatibility of								
480	nuclear and mitochondrial genomes causes hybrid sterility between two yeast								
481	species. <i>Cell</i> 135: 1065-1073.								
482	Lopandić K, Gangl H, Wallner E, Tscheik G, Leitner G, Querol A, Borth N, Breitenbach								
483	M, Prillinger H, Tiefenbrunner W. 2007. Genetically different wine yeasts isolated								
484	from Austrian vine-growing regions influence wine aroma differently and contain								
485	putative hybrids between Saccharomyces cerevisiae and Saccharomyces								
486	kudriavzevii. FEMS Yeast Res 7: 953-965.								
487	Lopes CA, Barrio E, Querol A. 2010. Natural hybrids of Saccharomyces cerevisiae x								
488	Saccharomyces kudriavzevii share alleles with European wild populations of S.								
489	kudriavzevii. FEMS Yeast Res 10: 412-421.								
490	Masneuf I, Hansen J, Groth C, Piškur J, Dubourdieu D. 1998. New hybrids between								
491	Saccharomyces sensu stricto yeast species found among wine and cider								
492	production strains. Appl Environ Microbiol 64: 3887-3892.								
493	Naumov GI, Masneuf I, Naumova ES, Aigle M, Dubourdieu D. 2000. Association of								
494	Saccharomyces bayanus var. uvarum with some French wines: genetic analysis								
495	of yeast populations. <i>Res Microbiol</i> 151: 683-691.								
496	Naumov GI, Naumova ES, Antunovics Z, Sipiczki M. 2002. Saccharomyces bayanus								
497	var. uvarum in Tokaj wine-making of Slovakia and Hungary. Appl Microbiol								
498	Biotechnol 59: 727-730.								
499	Naumov GI, Nguyen HV, Naumova ES, Michel A, Aigle M, Gaillardin C. 2001. Genetic								
500	identification of Saccharomyces bayanus var. uvarum, a cider-fermenting yeast.								
501	Int J Food Microbiol 65: 163-171.								
502	Naumova ES, Naumov GI, Masneuf-Pomarède I, Aigle M, Dubourdieu D. 2005.								
503	Molecular genetic study of introgression between Saccharomyces bayanus and								
504	<i>S. cerevisiae. Yeast</i> 22: 1099-1115.								
	477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 490 491 492 493 494 495 496 497 498 495 496 497 498 499 500 501 502 503 504								

1 2		
2 3 4	505	Orlić S, Arroyo-López FN, Huic-Babić K, Lucilla I, Querol A, Barrio E. 2010. A
5 6 7 8 9 10 11	506	comparative study of the wine fermentation performance of Saccharomyces
	507	paradoxus under different nitrogen concentrations and glucose/fructose ratios. J
	508	Appl Microbiol 108: 73-80.
11 12	509	Posada D. 2003. Inferring Evolutionary Relationships: Using Modeltest and PAUP* to
13 14 15 16 17	510	select a model of nucleotide substitution. In Current Protocols in Bioinformatics,
	511	Baxevanis AD, Page RDM, Petsko GA, Stein LD, Stormo GD (eds). John Wiley &
18 19	512	Sons,6.5.1-6.5.14.
20 21	513	Posada D. 2008. jModelTest: phylogenetic model averaging. Mol Biol Evol 25: 1253-
22 23	514	1256.
24 25	515	Querol A, Barrio E, Huerta T, Ramón D. 1992. Molecular monitoring of wine
26 27 28 29 30 31 32 33 34	516	fermentations conducted by active dry yeast strains. Appl Environ Microbiol 58:
	517	2948-2953.
	518	Querol A, Fernández-Espinar MT, del Olmo M, Barrio E. 2003. Adaptative evolution of
	519	wine yeast. Int J Food Microbiol 86: 3-10.
35 36	520	Querol, A. and U. Bond. 2009. The complex and dynamic genomes of industrial yeasts.
37 38 20	521	FEMS Microbiol. Lett. 9999:
40 41	522	Redzepović S, Orlić S, Sikora S, Majdak A, Pretorius IS. 2002. Identification and
42 43	523	characterization of Saccharomyces cerevisiae and Saccharomyces paradoxus
44 45	524	strains isolated from Croatian vineyards. Lett Appl Microbiol 35: 305-310.
46 47	525	Rementería A, Rodríguez JA, Cadaval A, Amenábar R, Muguruza JR, Hernando FL,
48 49	526	Sevilla MJ. 2003. Yeast associated with spontaneous fermentations of white
50 51 52	527	wines from the "Txakoli de Bizkaia" region (Basque Country, North Spain). Int J
52 53 54	528	Food Microbiol 86: 201-207.
55 56	529	Sampaio JP, Gonçalves P. 2008. Natural populations of Saccharomyces kudriavzevii in
57 58	530	Portugal are associated with oak bark and sympatric with S. cerevisiae and S.
59 60	531	paradoxus. Appl Environ Microbiol 74: 2144-2152.

- Schütz M, Gafner J. 1994. Dynamics of the yeast strain population during spontaneous
 alcoholic fermentation determined by CHEF gel electrophoresis. *Lett Appl Microbiol* 19: 253-257.
- 535 Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular evolutionary genetics
 536 analysis (MEGA) software version 4.0. *Mol Biol Evol* 24: 1596-1599.
- 537 Torriani S, Zapparoli G, Suzzi G. 1999. Genetic and phenotypic diversity of
- 538 Saccharomyces sensu stricto strains isolated from Amarone wine. Antonie van
 539 Leeuwenhoek **75:** 207-215.
- 540 Vaughan-Martini A, Martini A. 2011. Saccharomyces Meyen ex Reess (1870). In The
 - *yeasts: a taxonomic study. 5th ed.*, Kurtzman CP, Fell JW, Boekhout T (eds).
- 542 Elsevier, London; 733-746.
- 543 Wang SA, Bai FY. 2008. *Saccharomyces arboricolus* sp. nov., a yeast species from
 - 544 tree bark. Int J Syst Evol Microbiol **58:** 510-514.

1		
2 3 4	546	Figure legends
5 6 7	547	
7 8 9	548	Figure 1. Phylogenetic tree obtained with partial sequences of the nuclear
10 11	549	MET6 gene from hybrid strains and reference strains of Saccharomyces. The
12 13 14	550	new hybrids are indicated in bold gray characters. Hybrid strains contain one,
15 16	551	two or three different MET6 alleles named C (S. cerevisiae), B (S. bayanus var.
17 18	552	uvarum) or K (S. kudriavzevii) according to the closest parental relative.
19 20 21	553	Numbers at the nodes correspond to bootstrap values based on 1000 pseudo-
22 23	554	replicates. The scale is given in nucleotide substitutions per site.
24 25	555	
26 27 28	556	Figure 2. RFLPs analysis of 35 nuclear genes from double hybrids. Each
29 30	557	square corresponds to a copy of each gene region according to its chromosome
31 32 22	558	location, indicated on the left map. Alleles of S. cerevisiae are indicated as
33 34 35	559	white squares and <i>S. kudriavzevii</i> alleles are represented as black squares.
36 37	560	
38 39 40	561	Figure 3. RFLPs of 35 nuclear genes from triple hybrids. Each square
41 42	562	corresponds to a copy of each gene region according to its chromosome
43 44	563	location, indicated on the left map. Alleles of S. cerevisiae are indicated as
45 46 47	564	white squares, S. kudriavzevii alleles are represented as black squares and S.
48 49	565	bayanus alleles are depicted in grey squares. Squares filled with two colors
50 51	566	indicate that the presence of any of these alleles is possible. Gene orders are
52 53 54	567	the same for S. cerevisiae and S. kudriavzevii because their genomes are
55 56	568	colineal, however, gene orders differ for <i>S. bayanus</i> var. <i>uvarum</i> because this
57 58	569	species exhibits a series of reciprocal translocations as depicted.
59 60	570	

3
4
4
5
6
7
, Q
0
9
10
11
12
12
13
14
15
16
17
40
18
19
20
21
22
22
23
24
25
26
27
20
20
29
30
31
32
22
33
34
35
36
37
20
30
39
40
41
42
12
43
44
45
46
47
18
40
49
50
51
52
52
55
54
55
56
57
58
50
59
60

> 571 Figure 4. Phylogenetic Neighbor-net network obtained with partial sequences of

- the mitochondrial COX2 gene from hybrid strains and reference 572
- 573 Saccharomyces strains. The new hybrids are indicated in bold gray characters.
- 574 The different *COX2* sequence haplotypes are named by the initial of the species
- 575 name of the closest parental (C, for S. cerevisiae; and K, for S. kudriavzevii)
- 576 followed by a number, according to González et al. (2008). The new COX2
- , rese , pe are give. 577 haplotypes described in the present study are indicated in italics. Strains
- 578 sharing the same haplotype are given at the left.

579

24 http://mc.manuscriptcentral.com/yeast Table 1. List of strains used in this study. Double hybrids correspond to S. cerevisiae x S. kudriavzevii hybrids and triple hybrids to S.

bayanus x *S. cerevisiae* x *S. kudriavzevii* hybrids. Accession numbers of new gene sequences are indicated.

Strain type	Strain	Isolation source	COX2	MET6-C	<i>МЕТ6-</i> К
	reference				
Double hybrids	AMH	Commercial strain, Pinot noir wine, Assmanshausen, Germany	HQ414035	HQ414054	
	HA1835	Weißer Burgunder (Pinot blanc) grapes, Perchtoldsdorf, Austria	HQ414039	HQ414049	HQ414059
	HA1837	Weißer Burgunder grapes, Perchtoldsdorf, Austria	HQ414040	HQ414050	HQ414060
	HA1841	Weißer Burgunder grapes, Perchtoldsdorf, Austria	HQ414041	HQ414051	
	HA1842	Weißer Burgunder grapes, Perchtoldsdorf, Austria	HQ414042	HQ414052	HQ414061
	IF6	Brewer's yeast dietary supplement, Barcelona, Spain	HQ414034	HQ414057	HQ414072
	MR25	Human respiratory tract isolate, Barcelona, Spain	HQ414033	HQ414058	HQ414065
	PB7	Pietro Picudo wine, Los Oteros Winery, León, Spain	HQ414036	HQ414056	HQ414064
	SOY3	Graševina (Welschriesling) must fermentation, Daruvar, Croatia	HQ414032	HQ414055	HQ414063
	VIN7	Commercial strain of unknown origin, Anchor, South Africa	HQ414031	HQ414053	HQ414062
Triple hybrids	CBS 2834	Wine, Wädenswil, Switzerland			
	CID1	Home-made cider, Brittany, France			
S. kudriavzevii	ZP542	Oak bark, Adagoi, Portugal	HQ414038		
	ZP591	Oak bark, Castelo de Vide, Portugal	HQ414037		
Triple hybrids <i>S. kudriavzevii</i>	CBS 2834 CID1 ZP542 ZP591	Wine, Wädenswil, Switzerland Home-made cider, Brittany, France Oak bark, Adagoi, Portugal Oak bark, Castelo de Vide, Portugal	HQ414038 HQ414037		

Table 2. Comparison of *COX2* haplotype sequences from hybrid and type and reference strains of *Saccharomyces* species. A dot indicates nucleotides identical to that from the type strain of *S. cerevisiae* CECT 1942^T. *COX2* regions in hybrids that exhibit a higher similarity to *S. cerevisiae*, *S. kudriavzevii* and *S. paradoxus COX2* sequences are indicated in squared white, black and grey backgrounds, respectively.

			COX2 variable nucleotide positions (in vertical)
		COX2	1111111233333344444455555555555555555555
Species	Strains	haplotype	446790233355750127999233568800111111222222333344455566
			064342404647534380147403734728014789034569258901403658
S. cerevisiae	CECT1942	C1	ATTAATTTATTTTATATTCTATTATTTTACTCTAGCATTCTGGTGACATATGGC
Hybrids	AMH	C2	
	IF6	C3	
	CID1	K5	TACTCAGACA.TC.A.TCCT
	PB7	K10	TACTCAGACA.TC.A.TCCT <mark>CA.</mark> CA.C.CTGACCAAT
	MR25 & brewing	K6	TACTCAGACA.TTCCTGCA.CAC.CTGACCAAT
	Swiss & 11003-4	K2	TACTCAGACA.TA.AT.CTAAAAG.AT.T.TCAG.ATA.
	W46	K3	TACTCAGACA.TA.AT.CTAAAAG.AT.TTCAG.ATCA.
	HAs, SOY3, VIN7	K4	TACTCAGACA.TA.AT.CTAAAAG.AT.TTCAG.AAA.
S. kudriavzevii	IFO1802 ^T	K1	TACTCAGACA.TCA.AT.CT.AAAG.ATCTTCAGA.
	ZP542	K8	TACTCAGACA.TA.AT.CTAAAAG.AT.T.CCAG.A.AA.
	ZP591	K9	TACT.CCAGA.A.TA.AT.CTAAAA.AT.T.TCAG.A.AA.
S. paradoxus	CECT1939 ^{NT}	K2	
S. mikatae	IFO1815 ^T	K2	GTA.TCCA.TGCAGCAGCACTGACC.AT

Figure 1. Phylogenetic tree obtained with partial sequences of the nuclear *MET6* gene from hybrid strains and reference strains of *Saccharomyces*. The new hybrids are indicated in bold gray characters. Hybrid strains contain one, two or three different *MET6* alleles named C (*S. cerevisiae*), B (*S. bayanus* var. *uvarum*) or K (*S. kudriavzevii*) according to the closest parental relative.
Numbers at the nodes correspond to bootstrap values based on 1000 pseudo-replicates. The scale is given in nucleotide substitutions per site. 119x175mm (600 x 600 DPI)

Figure 2. RFLPs analysis of 35 nuclear genes from double hybrids. Each square corresponds to a copy of each gene region according to its chromosome location, indicated on the left map. Alleles of *S. cerevisiae* are indicated as white squares and *S. kudriavzevii* alleles are represented as black

squares. 115x86mm (600 x 600 DPI)

http://mc.manuscriptcentral.com/yeast

10

11

12

13

14 15

16

17

18

19

20

21

22 23

24

25

26

27

28

29

30

31 32

33

34

35

36

37

38

39

40

41

42

47

48

49

50

51

52

CID1 CBS 2834 CYC3 BUD14 Ι MRC1 KIN82 ш NPR2 MET6 v GCN1 KEL2 VII UBP7 DAL1 IX BAS1 XI PPR MAG2 XII CAT8 ORC1 XIII – JIP5 GAL4 XVI Ĭ EPL1 GSY1PEX2 CYR1 DAL5 VI Х - XtVI VItX CBP2 MNL1 ATF1 RRI2 VIII • XV VIIItXV RRI2 V **XVtVIII** -EUG1 UGA3 RPN4 IV 님 OPY1 APM3 PKC1 II ĘGT2 BRE5 XIV IVtIItII -IItIItXIV **XIVtIItIV**

Figure 3. RFLPs of 35 nuclear genes from triple hybrids. Each square corresponds to a copy of each gene region according to its chromosome location, indicated on the left map. Alleles of *S. cerevisiae* are indicated as white squares, *S. kudriavzevii* alleles are represented as black squares and *S. bayanus* var. *uvarum* alleles are depicted in grey squares. Squares filled with two colors indicate that the presence of any of these alleles is possible. Gene orders are the same for *S. cerevisiae* and *S. kudriavzevii* because their genomes are colineal, however, gene orders differ for *S. bayanus* var. *uvarum* because this species exhibits a series of reciprocal translocations as depicted. 160x232mm (600 x 600 DPI)

Figure 4. Phylogenetic Neighbor-net network obtained with partial sequences of the mitochondrial *COX2* gene from hybrid strains and reference Saccharomyces strains. The new hybrids are indicated in bold gray characters. The different *COX2* sequence haplotypes are named by the initial of the species name of the closest parental (C, for *S. cerevisiae*; and K, for *S. kudriavzevii*) followed by a number, according to González *et al.* (2008). The new *COX2* haplotypes described in the present study are indicated in italics. Strains sharing the same haplotype are given at the left. 115x86mm (600 x 600 DPI)

http://mc.manuscriptcentral.com/yeast

Yeast - For peer review only

Table S1. Conformation of the *S. cerevisiae x S. kudriavzevii* hybrids for each gene region according to the composite restriction patterns exhibited. For a description of the composite restriction patterns, see Gonzalez *et al.* (2008); Lopes *et al.* (2010) and Table S2. C: *S. cerevisiae* alleles, K: *S. kudriavzevii* alleles, B: *S. bayanus* var. *uvarum* alleles

Chromo						Doble	hybrids					Triple h	ybrids
some	Gene	PB7	1835	1842	1837	1841	SOY3	AMH	Vin7	IF6	MR25	CBS 2834	CID1
I	СҮСЗ	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1	C1	C1B1	C1B1K1
	BUD14	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1	C1	C1	C1B1K1
II	PKC1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1K1	C1K1	C1K1	C1B1
	OPY1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1K1	C1K1	C1B1	C1B1
	APM3	C1K2	C1K2	C1K2	C1K2	C1K2	C1K2	C1	C1K2	C1K2	C1K1	C1B1K2	C1B1K1
III	MRC1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1	C1	C1K1	C1B1K1	C1B1K1
	KIN82	C1K1	C1K1	C1K1	C1K1	C1K1	C1K2	C1	C1	C1	C1K1	C1B1K1	C1B1K1
IV	UGA3	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1B1	C1B1
	RPN4	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1K1	C1K1	C1B1K1	C1B1K1
	EUG1	C1K2	C1K2	C1K2	C1K2	C1K2	C1K2	C1	C1K2	C1K2	C1K2	C1B1	C1B1K1
V	NPR2	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1	C1K1	C1	C1K1	C1B1K1	C1B1K1
	MET6	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1	C1K1	C1	C1K1	C1B1K1	C1B1K1
VI	EPL1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K2	C1K1	C1K1	C1	C1K1	K1	C1B1K1
	GSY1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	B1K1	C1B1K1
VII	GCN1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1B1K1	C1B1K1
	KEL2	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1	C1	C1	C1B1K1	C1B1K1
VIII	CBP2	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1K1	C1K1	C1B1	C1B1K1
	MNL1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1K1	C1K1	C1B1	C1B1K1
IX	UBP7	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1	C1B1K1	B1K1

	JIP5	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1K1	C1K1	C1B1K1	C1B1K1
XVI	GAL4	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1K1	C1K1	C1B1K1	C1B1K1
	ATF1	C1K1	B1K1	C1B1K1									
XV	RRI2	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1K1	C1K1	C1B1K1	C1B1K1
	BRE5	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1K1	C1	C1B1K1	B2K1
XIV	EGT2	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1K1	C1K1	C1B1	C1B1K1
	CAT8	C1K1	C1	C1K1	C1B1K1	C1B1K1							
XIII	ORC1	C1K1	C1	C1B1K1	C1B1K1								
	MAG2	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1	C1K1	B1	C1K1
XII	PPR1	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1K1	C1K1	C1B1	C1B1K1
	BAS1	C1K2	C1K2	C1K2	C1K2	C1K2	C1K2	C1	C1K2	C2K3	CK2	C1B1K2	C1B1
XI	CBT1	C1	C1K2	C1K2	C1K2	C1K2	C1K2	C1	C1K2	C1K2	C1K2	C1B1K2	C1B1
	DAL5	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1K1	C1K1	C1B1	C1B1K1
	CYR1	C1K2	C1K2	C1K2	C1K2	C1K2	C1K2	C1	C1K2	C1K1	C1K1	C1B1K2	C1B1K2
Х	PEX2	C1K1	C1K1	C1K1	C1K1	C1K1	C1K1	C1	C1K1	C1	C2	C1B1K1	B2K1
	DAL1	C1K1	C1B1K1	C1B1									

Table S2. New restriction patterns found in *S. cerevisiae* x *S. kudriavzevii* hybrids deriving from those described in González *et al.* (2008) and Lopes *et al.* (2010).

Chromosome	Gene	Restriction enzyme	New patterns	
X	PEX2	Hae III	330 210 120 40	B2
XI	BAS1	Hae III	690 380	B2
XI	BAS1	Hae III	485 485 110	C2
XI	BAS1	Hae III	700 180 140 110	K4

Reference List

González SS, Barrio E, Querol A. 2008. Molecular characterization of new natural hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii from brewing. Appl Environ Microbiol 74: 2314-2320.

. Natu ir share aller. 12-21 Lopes CA, Barrio E, Querol A. 2010. Natural hybrids of Saccharomyces cerevisiae x Saccharomyces kudriavzevii share alleles with European wild populations of S. kudriavzevii.

FEMS Yeast Res 10: 412-421.