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Resumen 

 

En la industria hortofrutícola se utilizan las bajas temperaturas durante el 

almacenamiento y transporte para retrasar el progreso de la maduración y el 

decaimiento de los frutos, y así, conservar la calidad del fruto tras ser cosechado. A 

pesar de tener un uso extendido, esta tecnología tiene sus restricciones, ya que 

muchos frutos, como el melocotón, son sensibles a las bajas temperaturas y 

desarrollan daño por frío [1] cuando son expuestos a temperaturas entre los 0 y 10ºC. 

La harinosidad (mealiness) o lanosidad (wooliness) del melocotón es un desorden 

textural de la pulpa del fruto caracterizado por la perdida de suculencia [2]. La 

harinosidad es un desorden genéticamente controlado [3] y los análisis genéticos 

indican que el daño por frío en el melocotón es un carácter cuantitativo[4-7]. Los 

frutos de melocotón exhiben un gran grado de variabilidad genética respecto a la 

tolerancia al enfriamiento, dañándose los cultivares más sensibles después de estar 

almacenados una semana en frío, mientras que los más tolerantes pueden permanecer 

sin dañarse hasta cinco semanas [8]. El daño por fío tiene un desarrollo más rápido e 

intenso cuando los frutos susceptibles se almacenan a temperaturas entre los 2.2 y 

7.6ºC (rango de temperaturas de muerte celular) que cuando se almacenan a 0ºC, 

considerada una temperatura que retrasa el desarrollo del daño[8, 9]. Aunque durante 

el frío se han observado algunas alteraciones microscópicas [10], no se desarrollan 

síntomas visibles (o macroscópicos) de daño. De hecho, los síntomas visibles de daño 

por frío, aparecen cuando los frutos se transfieren a temperatura ambiente 

(temperaturas de simulación de vida útil, SLR) para inducir la maduración después del 

almacenamiento [8].  

Con el objetivo de analizar los mecanismos moleculares subyacentes al desarrollo de la 

harinosidad durante el almacenamiento en frío y maduración en condiciones de 

simulación, se han realizado diversos estudios transcriptómicos y proteómicos [11-16]. 

Estos estudios han resultado en la identificación de diferentes funciones celulares 

probablemente importantes para el desarrollo de los síntomas de la harinosidad, 

aunque no profundizan en el análisis y algunos resultados son aparentemente 
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contradictorios. Diferencias entre las aproximaciones experimentales, genotipos, 

condiciones de almacenamiento y simulación de vida útil (tiempo y temperatura), así 

como la forma de determinación del daño, a menudo resultan en la falta de 

consistencia de resultados respecto a la harinosidad. 

El principal objetivo de la tesis que aquí se presenta es proporcionar una visión más 

exhaustiva del desorden denominado harinosidad y de la respuesta de los frutos al frío 

(estadio pre-sintomático) y de la maduración posterior que ocurre tras el 

almacenamiento en frío (estadio sintomático). 

En el primer capítulo hemos combinado el uso de una micromatriz especializada para 

el análisis del daño por frío, Chillpeach [17],con grupos de frutos sensibles (S) o poco 

sensibles (LS) de líneas hermanas de la población Pop-DG, contrastantes en la 

sensibilidad a desarrollar harinosidad [4]. La expresión génica se ha analizado en frutos 

acabados de cosechar, durante la maduración en condiciones de simulación y durante 

el almacenamiento a 5ºC durante 1,2 y 3 semanas. El uso de líneas hermanas Pop-DG 

seleccionadas de acuerdo con su sensibilidad contrastante al daño por frío, está 

compensada en otros caracteres fenotípicos que segregan al azar en la población [18]. 

Así, esperamos revelar genes cuyos patrones de expresión estén ligados a la diferente 

sensibilidad al frío y la harinosidad en estadios pre-sintomáticos, mientras que se 

suavizan diferencias en los transcritos asociadas a otros caracteres fenotípicos, como 

puede ser el caso de la comparación de dos cultivares diferentes. La expresión de los 

genes candidatos para la sensibilidad o tolerancia al enfriamiento se ha validado 

técnicamente utilizando la tecnología Fluidigm RT PCR,  que se podría definir como de 

media capacidad y, que permite el análisis de decenas de genes en decenas de fondos 

genéticos o situaciones. Además, los resultados se han validado biológicamente en 

algunos individuos de la población Pop-DG con diferentes grados de susceptibilidad al 

frío utilizando también la tecnología de Fluidigm RT PCR. 

En el segundo capítulo, integramos los datos de expresión obtenidos en capítulo 1 

con los datos de expresión correspondientes a dos genotipos de melocotón diferentes 

y con diferente sensibilidad hacia el CI para validar los genes candidatos asociados a la 

sensibilidad y tolerancia a la harinosidad en estadio pre-sintomático. En la primera 
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parte del capítulo, los transcriptomas de frutos ‘Oded’ (Od) y ‘Hermoza’ (Hz), recién 

cosechados y sometidos a almacenamiento en frío, se han analizado utilizando la 

micromatriz Chillpeach, y los datos se han validado por qRT-PCR. Para el análisis 

transcriptómico de Od y Hz hemos usado los mismos tiempos de muestreo, referencia 

de RNA, análisis, protocolos y p-valores que se usaron en el capítulo 1 para identificar 

los genes diferencialmente expresados. En la segunda parte del experimento, hemos 

realizado una comparación directa de los niveles de transcritos entre Od, Hz y los dos 

grupos de la población Pop-DG obtenidos en el capítulo 1. Mediante esta comparación, 

esperamos obtener genes regulados por frío comunes a todos los genotipos, y por 

tanto asociados a los programas de tolerancia y sensibilidad. Además los perfiles de 

expresión de Od, Hz y los dos grupos de la población Pop-DG se han analizado también 

con la herramienta bioinformática ROSMETER [19] que proporciona información de la 

especificidad de la respuesta transcriptómica al estrés oxidativo. 

A pesar que el capítulo 1 y el capítulo 2 indican cambios extensivos en el transcriptoma 

durante el almacenamiento en frío asociados al fenotipo de harinosidad extrapolado, 

los síntomas visuales de harinosidad aparecen, no obstante, cuando los frutos se 

transfieren a condiciones de simulación a temperatura ambiente, usadas para inducir 

la maduración tras el almacenamiento [8]. En el tercer capítulo usando los mismos 

grupos de muestras de la población Pop-DG que se han utilizado en los capítulos 1 y 2, 

hemos realizado un análisis transciptómico de serie temporal que cubre diferentes 

estadios desde fruto inmaduro recién cosechado, pasando por frío, hasta SLR. El 

objetivo de este capítulo es identificar nuevos patrones de expresión específicos de 

estadio cuyo análisis funcional revele nuevas asociaciones entre la función del gen y el 

fenotipo de harinosidad/no harinosidad. Finalmente, la tecnología Fluidigm RT PCR de 

media capacidad nos ha permitido validar y extender nuestros resultados a un número 

de líneas hermanas individuales de la población Pop-DG que se caracterizan por tener 

diferentes grados de harinosidad. En muchos de los casos, el valor predictivo de los 

genes candidatos a marcadores asociados a la harinosidad identificados en los grupos 

ha podido ser validado en las líneas hermanas individuales según su sensibilidad al frío. 
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Resum 

A la industria hortofrutícola s’utilitzen les baixes temperatures durant 

l’emmagatzemament i transport per a retardar el progrés de la maduració i el 

decaïment dels fruits, i així conservar la qualitat del fruit després de ser collit. A pesar 

de tenir un us estès, aquesta tecnologia te les seues restriccions, ja que molts fruits, 

com pot ser la bresquilla, son sensibles a les baixes temperatures i desenvolupen dany 

per fred [1] quan son exposat a temperatures entre els 0 i els 10ºC.  

La farinositat (mealiness) o llanositat (woolliness) de la bresquilla es un 

desordre textural de la polpa del fruit caracteritzat per la perduda de suculència [2]. La 

farinositat és un desordre genèticament controlat [3] i els anàlisis genètics indiquen 

que el dany per fred en la bresquilla és un caràcter quantitatiu [4-7]. Els fruits de 

bresquilla exhibeixen un gran grau de variabilitat genètica respecte a la tolerància al 

refredament, danyant-se els cultivars més sensibles després d’estar emmagatzemats 

una setmana en fred, mentre que els més tolerants poden romandre sense dany fins 

cinc setmanes [8]. El dany per fred te un desenvolupament més ràpid i intens quan els 

fruits susceptibles s’emmagatzemen a temperatures entre els 2.2 i 7.6ºC tant a 0ºC 

(rang de temperatures de mort celular) que quan s’emmagatzemen at 0ºC, 

considerada una temperatura que retarda el desenvolupament del dany [8, 9]. Encara 

que durant el fred s’han observat algunes alteracions microscòpiques [10], els 

símptomes visibles de dany (o macroscòpics) no es desenvolupen. Els símptomes 

visibles de dany per fred, de fet, apareixen una vegada els fruits s’han transferit a 

temperatura ambient (temperatures de simulació de vida útil, SLR) per induir la 

maduració després del emmagatzemament [8]. 

Amb l’objectiu d’analitzar els mecanismes moleculars subjacents al 

desenvolupament de la farinosistat durant l’emmagatzemament en fred i maduració 

en condicions de simulació, s’han realitzat diversos estudis transcriptòmics i 

proteòmics [11-16]. Aquests estudis han resultat en la identificació de diferents 

funcions cel·lulars probablement importants per al desenvolupament dels símptomes 

de la farinositat, encara que no aprofundeixen en el anàlisis i alguns resultats son 

aparentment contradictoris. Diferències entre aproximacions experimentals, genotips, 
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condicions d’emmagatzemament i de simulació de vida útil (temps i temperatura), així 

com la forma de determinació del dany, sovint resulten en la falta de consistència de 

resultats respecte a la farinositat. 

El principal objectiu de la tesis que ací es presenta és proporcionar una visió 

més exhaustiva del desordre denominat farinositat i de la resposta dels fruits al fred 

(estadi pre- simptomàtic) i de la maduració posterior que ocorre després de 

l’emmagatzemament en fred (estadi simptomàtic). 

En el primer capítol hem combinat l’ús d’una micromatriu especialitzada per 

a l’anàlisi del dany per fred, Chillpeach [17], amb grups de fruits sensibles (S) o poc 

sensibles (LS) de línees germanes procedents de la població Pop-DG, contrastants en la 

sensibilitat a desenvolupar farinositat [4]. L’expressió gènica s’ha analitzat en fruits 

acabats de collir, durant maduració en condicions de simulació i durant el 

emmagatzemament a 5ºC durant 1,2 i 3 setmanes. L’ús de grups de linees germanes 

Pop-DG seleccionades d’acord amb la seua sensitivitat contrastant al dany per fred, 

està compensda en altres trets fenotípics que segreguen a l’altzar en la població [18]. 

Així, esperem identificar gens els patrons d’expressió dels quals estan lligats a la 

sensibilitat al fred i al desenvolupament de la farinositat, mentre que es suavitzen les 

diferències associades a altres caràcters fenotípics, com pot ser el cas de la  

comparació dos cultivars diferents. L’expressió dels gens candidats per a la sensibilitat 

o tolerància al refredament s’ha validat tècnicament utilitzant la tecnologia Fluidigm 

RT PCR ,que podria definir-se com de mitja capacitat i , que permet l’anàlisi de desenes 

de gens en desenes de fons genètics o situacions. A més els resultats es s’han validat 

biològicament en alguns individus de la població Pop-DG amb diferents graus de 

susceptibilitat al fred utilitzant també la tecnologia Fluidigm RT PCR. 

En el segon capítol, integrem les dades d'expressió obtingudes al capítol 1 amb dades 

d’expressió corresponents a dos genotips de bresquilla diferents i amb diferent 

sensibilitat cap al CI per validar els gens candidats associats a la sensibilitat i tolerància 

a la farinositat en estadi pre-simptomàtic. A la primera part del capítol, els 

transcriptomes de fruits 'Oded' (Od) i 'Hermoza' (Hz), recent collits i sotmesos a 

emmagatzematge en fred, s’han analitzat utilitzant la micromatriu Chillpeach, i les 
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dades s’han validat mitjançant qRT-PCR. Per a l'anàlisi transcriptòmic de Od i Hz hem 

fet servir els mateixos temps de mostreig, referència de RNA, anàlisi, protocols i p-

valors que es van gastar al capítol 1 per identificar els gens diferencialment expressats. 

A la segona part de l'experiment, hem realitzat una comparació directa dels nivells de 

transcrits entre Od, Hz i els dos grups de la població Pop-DG obtinguts en el capítol 1. 

Mitjançant aquesta comparació, esperem obtenir gens regulats per fred comuns a tots 

els genotips, i per tant associats als programes de tolerància i sensibilitat. A més els 

perfils d'expressió de Od, Hz i els dos grups de la població Pop-DG s’han analitzat 

també amb l'eina bioinformàtica ROSMETER [19] que proporciona informació de 

l'especificitat de la resposta transcriptòmica a l'estrès oxidatiu. 

Malgrat que el capítol 1 i el capítol 2 indiquen canvis extensius en el transcriptoma 

durant l'emmagatzematge en fred associats al fenotip de farinositat extrapolat, els 

símptomes visuals de farinositat apareixen, no obstant això, quan els fruits es 

transfereixen a condicions de simulació a temperatura ambient, usades per induir la 

maduració després de l'emmagatzematge [8]. En el tercer capítol utilitzant els 

mateixos grups de mostres de la població Pop-DG que s’han emprat als capítols 1 i 2, 

hem realitzat una anàlisi transciptomic de sèrie temporal que cobreix diferents estadis 

des fruit immadur acabat de collir, passant per fred, fins SLR. L'objectiu d'aquest 

capítol és identificar nous patrons d'expressió específics d'estadi, l'anàlisi funcional 

dels quals rebel·le noves associacions entre la funció del gen i el fenotip de farinositat / 

no farinositat. Finalment, la tecnologia Fluidigm RT PCR de mitjana capacitat ens ha 

permès validar i estendre els nostres resultats a un nombre de línies germanes 

individuals de la població Pop-DG que es caracteritzen per tenir diferents graus de 

farinositat. En molts dels casos, el valor predictiu dels marcadors associats a la 

farinositat  identificats en els grups han pogut ser validats en les línies germanes 

segons la seua sensibilitat al fred. 
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Abstract 

 

Low temperatures are commonly used in the horticultural industry to delay peach 

ripening progress and fruit decay, during storage and transport and therefore to 

preserve fruits quality after harvest. Despite widespread use, this technology has its 

own restrictions, since many fruits, such as peach, are sensitive to low temperatures 

and may develop different forms of chilling injury [1] when exposed to temperatures 

between 0 and 10ºC.  

 Peach mealiness or woolliness is a flesh textural disorder characterized by a lack of 

juiciness [2]. Mealiness is a genetically controlled disorder [3] and genetic analyses 

indicates that chilling injury in peach is a quantitative trait [4-7] Peach exhibits a high 

degree of genetic variability for chilling tolerance, with the most sensitive cultivars 

being damaged after 1 week of cold storage and the most tolerant remaining 

undamaged for at least 5 weeks [8]. CI develops faster and more intensely when 

susceptible fruit are stored at temperatures between 2.2 and 7.6oC (killing 

temperature zone) than when stored at 0°C, considered a chilling injury delaying 

temperature [8, 9]. Although some microscopic alterations had been observed during 

CS [10], no visible injury (or macroscopic) develops. Visual symptoms of CI appeared 

however upon transferring the fruits to the room temperature conditions (shelf life 

ripening temperatures, SLR) that are used for inducing ripening [8]. 

To dissect the molecular mechanisms underlying the WLT development during 

cold storage and shelf life ripening, several transcriptomic and proteomic studies have 

been reported [11-16]. These studies have resulted in the identification of different 

cellular functions as important for the development of the WLT symptoms but they did 

not go deep in the analysis and some results were apparently contradictory. 

Differences between experimental approaches, genotypes, storage and shelf 

conditions (time and temperature) and also in the symptom assessment often result in 

lack of consistency of results.  
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The main goal of the thesis presented here is to give a more comprehensive 

view of WLT disorder and of the response of peach fruits to CS (pre-symptomatic 

stage) and the ripening process(symptomatic stage) occurring after  CS shelf life. 

In the first chapter we have combined the use of de CI-dedicated Chillpeach 

microarray [17] with of pools of fruits from sensitive (S) and low sensitive (LS) Pop-DG 

siblings, with contrasting sensitivity to develop mealiness [4]. The gene expression was 

analyzed at harvest, during ripening at shelf life and during the storage at 5ºC for 1, 2 

and 3 weeks. The use of pools of samples from Pop-DG siblings selected by contrasting 

sensitivity to CI compensates for other phenotypic differences randomly segregating in 

the population [18].Thus we expect to reveal genes whose expression patterns are 

linked to the different cold and WLT sensitivity at pre-symptomatic stage, while 

leveraging transcript differences associated with other phenotypic traits, as would be 

the case of comparing two different cultivars. Candidate gene expression for chilling 

sensitivity or tolerance was technically validated by Fludigm RT PCR technology, which 

could be defined as medium throughput and, that permits to analyze tens of genes in 

tens of genetic backgrounds or situations. Further results were biological validated in 

some individual of the Pop-DG population with different degrees of cold susceptibility 

by using also Fludigm RT PCR technology.  

In the second chapter, we integrated expression data obtained in chapter 1 

with expression data from two different peach genotypes and with different sensibility 

toward CI to validate the candidate genes associated to WLT sensitivity and tolerance 

at pre-symptomatic stage. In the first part of this chapter, the transcriptomes of ‘Oded’ 

(Od) and ‘Hermoza’ (Hz) at harvest and subjected to CS were analyzed using the 

Chillpeach microarray and microarray data was validated by qRT-PCR. For the 

transcriptomic analysis of Od and Hz we used the same sampling time, RNA reference, 

analysis, protocols and p-values as in chapter 1 to identify differentially expressed 

genes. In the second part of the experiment, we performed a direct comparison of 

transcript levels between Od, Hz and the two pools from the Pop-DG population 

obtained in chapter 1. By this comparison, we expect to find cold regulated genes 

common to all genotypes, and therefore associated to the programs for tolerance or 
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sensitivity. Further the expression profiles of Od, Hz and of the two pools from the 

Pop-DG population were also analyzed with the bioinformatic tool ROSMETER [19] that 

provides information on the specificity of the transcriptomic response to oxidative 

stress. 

Despite the chapter 1 and chapter 2 indicated extensive transcriptome 

changes during CS associated to protracted WLT phenotype, visual symptoms of WLT 

appeared, however, upon transferring the fruits to the shelf life ripening temperatures, 

used for inducing ripening after CS [8]. In the third chapter using the same pools from 

the Pop-DG population used in chapter 1 and 2 we conducted a time course 

transcriptomic analysis that covered different stages from unripe harvest fruit, through 

CS, until SLR. The goal of this chapter was to identify novel stage-specific expression 

patterns whose functional analysis would reveal new links between gene function and 

the woolly/non-woolly phenotype. Finally, the Fludigm™ RT PCR technology allowed us 

to validate and to extend our results for a number of individual siblings of the pop-DG 

population which were characterized by different degrees of mealiness. In many cases 

the predictive value of the woolliness associated markers identified in the pools could 

be validated in individual siblings according to their chilling sensibility. 
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Introduction 
 
 
 
 
 
 
 
 
 

Given its importance to agriculture, considerable effort has been directed to 

understanding the mechanisms underlying cold response in plants. Most of efforts has 

focused in unveiling the molecular bases of cold acclimation [20, 21] in vegetative 

tissue. However little is known about the cold response in fruits, since the chilling 

period occurs naturally as winter cold comes, when plants have not yet fruits. A 

general review about cold effect in plants and fruits (especially in peach) is provided in 

this introduction. The first part reviews the state of the art for the molecular response 

to cold in plants and fruits, highlighting differences and similarities between the cold 

response and its regulation in reproductive and vegetative tissues. The second part of 

the introduction summarizes the current knowledge about mealiness in peach, its 

etiology including a review of the approaches used to understand this process. 

 

I.1.Low temperatures and injury 

Low temperature is one of the main factors affecting plant growth and development 

that limits their geographical distribution. This adverse environmental condition is 

especially important in temperate regions where significant temperature variations 

occur during season changes. The effect of low temperatures in plants can be observed 

at all developmental stages, but its intensity depends on the temperature, the 

exposure time, the organ type (reproductive organs and roots are more sensitive that 

vegetative tissues), the organ developmental stage, and the other environmental 

conditions (weather, water and nutrients) where plants grown[22]. Owing to its 

importance to agriculture, considerable effort has been directed to understanding the 

mechanisms underlying cold response in plants. 
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How to cope with low temperatures is a process integrated in the 

developmental programs of plants both from cold and temperate regions. These plants 

have developed mechanisms that allow their cells to adapt during autumn 

temperature descent (cold acclimation, [20, 21]) to survive undamaged when winter 

temperatures reach below 0ºC (freezing temperatures). Despite plants have developed 

strategies to tolerate the temperature conditions of their natural habitat, injury may 

eventually occur when (i) temperatures become extreme [23], (ii) or plants are 

cultivated in a new environment, as would be de case of plants from tropical or 

subtropical origin with agronomical interest [1] or (iii) their reproductive organs are 

exposed to low temperatures as in post-harvest storage [1]. 

The first case concerns to growth and development of plants from temperate 

climates in relation to freezing injury, that is , when temperatures were below a critic 

threshold ranging from -7ºC to 0ºC, in the case of plants chilling tolerant but freezing 

sensitive, or -30ºC to -7ºC, in the case of freezing tolerant plants [23, 24]. The injury 

produced by freezing temperatures presents similar functional alterations to those 

observed in programmed cell death processes [24], even thought they occur more 

rapidly in the case of freezing temperatures and cell death in this case is associated to 

ice-induced dehydration [24] 

The second case is referred to vegetative organs of crops of plants from 

tropical and subtropical climates growing in temperate climates. Low temperatures 

below 15ºC and above 0ºC could result in a physiological and biochemical dysfunction, 

commonly named chilling injury [1]. The most frequent symptoms of chilling injury in 

vegetative tissues range from growth repression, development of soaked and necrotic 

areas, chlorosis, leaf withering from accelerated senescence and in extreme cases the 

death of the whole plant [1, 25]  

The third case is referred to the injury occurring in reproductive organs (fruits,, 

flowers and seeds) during post-harvest storage before human consumption, although 

it also can occur in the field. The horticultural industry uses low temperatures during 

storage and transport to delay ripening progress and fruit decay, and therefore to 

preserve fruits quality after harvest [26]. Despite widespread use, this technology has 
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its own restrictions, since in most of plant species (including those from temperate 

climates) flowering and fructification occurs during the temperate and warm seasons 

and, the chilling period of winter comes, when plants have not yet fruits. as a 

consequence many fruits are sensitive to low temperatures and develop chilling injury 

[1]. The temperature threshold below which injury symptoms developed depends on 

each specie and variety, but are normally comprised between 0-15ºC, in the case of 

fruits from tropical and subtropical origin plants and between 4ºC and 7ºC in the case 

of fruits from temperate plants [1]. In contrast to the chilling injury in vegetative and 

reproductive organs occurring in the field, the post-harvest chilling injury usually 

occurs in stored organs (detached) under controlled darkness and high humidity 

conditions. 

Complicating the matter a little more is the fact that “reproductive organ” is a 

term that encompasses an enormous diversity of different kinds of organs, tissues and 

developmental processes, with huge architecture differences between species and in 

general, different of vegetative organs. Each reproductive organ is specialized in one 

step of the reproductive cycle. The diversity of reproductive organs (flowers, fruits and 

seeds) and the large differences in tissue morphology have as a consequence that 

chilling injury is manifested in each organ in a unique way, thus cold can impact a 

subset of characteristics that might fine tune reproductive programs according to 

environmental conditions and developmental stage. Further in the case of fruits, it 

must be borne in mind that fleshy fruits, such as peach, tomato or apple, undergo a 

ripening process in which the biochemistry, physiology and structure of the organ are 

developmentally altered to influence appearance, texture, flavor and aroma in ways 

designed to attract seed-dispersing organisms [27]. In addition, fruits and vegetables 

usually are harvested when they reach the mature stage, thus unlike vegetative organs, 

no effects on growth are expected. Cold could still affect: cell viability, 

activate/inactivate cell responses to increase cellular fitness in those condition and all 

this could affect some aspects of ripening. 

Despite the set of symptoms associated to fruit chilling injury is diverse but in 

general often lead to incomplete or abnormal ripening, accompanied with flavor and 
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aroma deficiencies [22]. At macroscopic level two groups of fruit can be separated 

according to the general chilling injury symptoms produced [22]. In fruits with thin and 

strong pericarp, like citrus, cucumber and melons, low temperatures induced the 

development of superficial lesions like pots, depressions and decoloured areas. In 

fruits with thick pericarp like peach, tomato and apple chilling injury is characterized by 

textural and colour alterations in the mesocarp, often not visible from the exterior of 

fruit. 

Although chilling injury is manifested in each cell type in different ways some 

commonalities were found at microscopic levels [1, 21, 22, 28]. Chilling injury proceeds 

in two phases [21]: an early reversible stage which occurs at the so called primary sites 

of chilling injury that is followed by an irreversible stage which is characterized by the 

loss of cell compartmentation and a deterioration of cell function that ends upt the in 

death of the affected tissue  

 

I.2.Cold acclimation regulation 

The molecular mechanisms that plant use to respond /adapt to low 

temperature stress is well integrated into plants’ developmental program. Since 1985 

when Guy et al. [29] found that cold acclimation is regulated by changes in gene 

expression, most of the research on the molecular response to low temperatures has 

focused in searching for low temperature responsive genes and determining their role 

in cold acclimation . Most of what we currently know on how plants cope with low 

temperatures stems from the work carried out in the temperate model plant 

Arabidopsis, where it has been studied in relation to cold acclimation [20, 21], a 

process that results in extensive transcriptome, proteome and metabolome 

reorganization [30-34]. This adaptation program appears to act, at least in part, to 

both reduce growth during the cold season and to protect membranes and proteins 

against the severe dehydration stress that occurs with freezing [20]. The molecular 

program induced during cold acclimation is implicated in (i) the stability of subcellular 

structures, essentially membranes [35, 36] and cytoskeleton [37],(ii) the activation of 

enzymatic and non enzymatic protective systems against oxygen species [38, 39], (iii) 
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the accumulation of compatible solutes to protect from osmotic changes [32, 34, 40, 

41], (iv) the accumulation proteins with cryoprotective and antifreezing roles [36, 42, 

43].  

By using mostly seedlings, the regulatory factors influencing the expression of 

cold regulated (COR) genes, [44] and/or the freezing tolerance genes have been 

identified over the last two decades (reviewed in [45-48]). The best understood cold 

regulatory pathway with a role in freezing tolerance is the C-repeat binding factor 

(CBF) pathway. Three cold-induced transcriptional CBF regulatory factors, also known 

as dehydration responsive element binding proteins (DREB) [49-52] control the 

expression of a major regulon of COR genes to confer plant freezing tolerance [30, 53, 

54] although they may also play a role in chronic low temperature adaptation [54]. 

Differences in the levels of tolerance to cold in Arabidopsis accessions are apparently 

due to mutations in CBF genes [55] and their regulatory regions [56, 57]. There are 

evidences which indicate that cold acclimation is not only regulated at the 

transcriptional level, but includes also chromatin [58-63], post-transcriptional [64, 65], 

translational [66, 67] and post-translational levels [68]. 

Up-stream of the CBF regulatory hub, three sensing pathways have been 

described [69, 70]. The two cold dependent ones, involved posttranslational protein 

modification of ICE (Inducer of CBF expression) transcription factors or a calcium 

signaling pathway respectively while the third one is reported as light dependent [71] 

ICE1 ([31, 72] and its paralog ICE2 [69, 70] are the most upstream 

transcription factors in the cold signaling pathway. Until now it was thought that ICE1, 

which is constitutively expressed, worked by activating CBF3 upon exposure to low 

temperature [72], while it was ICE2, the one responding to cold by inducing CBF1 [69]. 

However a recent report [70] suggests that ICE1 and ICE2 are functionally partially 

redundant with different mechanisms for inducing CBF genes. Low temperature 

appears to initiate the transcriptional activation-inactivation feedback cycle of freezing 

tolerance that is necessary to sustain plant development and survival during cold 

acclimation [46, 70]. Low temperature induces a rapid activation of both ICE2 (by an 

unknown mechanism) and of ICE1 protein (by SIZ1-mediated sumoylation [73]). The 
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newly produced ICE1 and ICE2 activate transiently the expression of CBF1, CBF3 

(positive regulators of cold acclimation) and CBF2 (negative regulator of CBF1,3) by 

directly binding their promoters [70]. The coordinated regulation of osmotic 

responsive gene HOS1-mediated ubiquitination with the degradation of ICE proteins 

[70, 74], in parallel the CBF2-mediated repression of CBF1 and CBF3 at the 

transcription level [75, 76] resulted in the attenuation of the cold induction of CBFs 

and their target genes, and in reduced levels of MYB15 [73], a negative regulator of 

CBFs/DREB1A genes [77].  

The other cold sensing pathway involves calcium [78, 79], calmodulin binding 

transcription activators (CAMTA) and possibly calmodulins. The current model 

proposes that during cold acclimation and freezing tolerance development cold 

induces a rapid and transient increase of free cytosolic calcium [78, 79]. In response to 

calcium CAMTA3 and CAMTA1 regulate the expression levels of CBF1, CBF2 (but not 

CBF3), and also the zinc finger protein ZAT12 [80], a negative regulator of CBFs [53],.  

Light also regulates cold-induced CBFs gene expression [81, 82] and both light 

and cold are necessary for plant cold acclimation and freezing tolerance [71]. During 

the warm-long day growing season, the CBF pathway is actively repressed by the 

phytochrome PHYB and two phytochrome interacting factors, PIF4 and PIF7, as a 

mechanism devised to mitigate allocation of energy and nutrient resources toward 

unneeded frost protection [71]. This repression is relieved by shortening day length 

resulting in up-regulation of the CBF pathway and increased freezing tolerance in 

preparation for coming cold temperatures[71]. 

The CBF hub alone cannot explain all the differences in cold tolerance 

genotypes. Although tolerant accessions have generally higher CBF and COR 

expression levels, there are some exceptions [83], indicating that CBF-independent 

pathways may participate in cold acclimation and freezing tolerance. Thus the histone 

deacetylase high expression osmotically responsive gene HOS15 [59], has been 

proposed to be a negative regulator of cold acclimation by promoting deacetylation on 

hystone H4 in COR gene promoters in a CBF-independent way. In addition HOS9, a 

homeodomain protein, has been shown to control freezing tolerance mainly through a 



 47 

constitutive pathway that is different that that of regulon CBF [84]. On the other hand 

the dehydration response induced by low /freezing temperature appears to be 

regulated by HOS10, an R2R3-type MYB transcription factor that positively regulates 

ABA biosynthesis [85]. Both the ABA-independent and -dependent pathways regulate 

cold-responsive genes, and ABA acts synergistically with the cold signal [86]. Consistent 

with that and, with the accepted idea that plant responses to abiotic stresses are 

related and share common signaling pathways, whole transcriptome analyses 

conducted in Arabidopsis have revealed a number of genes that are regulated in 

common by cold and other abiotic stresses such as drought and high salt [87-89] 

Furthermore, although much attention has been paid to ABA in relation to the cold 

response (reviewed in [90], there is growing evidence that other hormones are 

involved, such as auxins (AUX), brassinosteroids (BR), ethylene (ET), jasmonic acid (JA) 

and salicylic acid (SA) [91-98] 

 

I.2.1 Cold acclimation regulation in other plants 

Besides Arabidopsis, the importance of the ICE/CBF pathway in cold 

acclimation and freezing tolerance has been observed in other temperate plants, 

herbaceous [99-102] or woody [102-109] dicots, as well as in monocots [99, 110-112]. 

The functional characterization of some of these systems revealed that the genes in 

the ICE/CBF pathway have similar functions in these plants as described in Arabidopsis. 

Overexpression or ectopic expression of CBF genes resulted in increased freezing 

tolerance in parallel with increased expression of cold-regulated genes, and other 

process associated to cold acclimation such as growth reduction [101, 103]. Similarly, 

ectopic expression of ICE genes conferred enhanced tolerance to cold stresses at 

either chilling or freezing temperatures [102]. However, the regulation of freezing 

tolerance by CBF in woody plants appears to be more complex than in herbaceous 

plants and the role of specific CBF genes can also vary [113]. For instance, ectopic 

expression of peach (Prunus persica) CBF transcription factor in apple tree (Malus 

domestica) results increased cold hardiness [105] but also increased sensitivity to short 
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photoperiod with respect to the onset of dormancy [105], as well early cessation of 

growth and leaf senescence, delayed bud break in the spring, growth inhibition [113] 

ICE/CBF homologues were also found in non-temperate plants [44, 114-117] 

that are unable to undergo cold acclimation. Despite this conservation, some structural 

and regulatory differences have been observed in the CBF cold response pathway 

between tolerant and sensitive plant species [118]. For example, overexpression of 

AtCBF1 in transgenic tomato has been shown to increase the chilling tolerance of 

transgenic tomato plants [115, 119] but it does not increase freezing tolerance nor 

induce the expression of all COR gene homologs [115, 120]. This is partly explained 

because, in tomato neither LeCBF2 nor LeCBF3 are induced in response to low 

temperature, indicating that probably the tomato CBF regulon is significantly smaller 

and has a limited function as compared to the Arabidopsis one [121].  

 

I.2.1.Cold acclimation regulation in fruits 

 Expression o f ICE/CBF genes were also found in fruits of both temperate [107, 

122, 123] and non-temperate plants [108, 117], indicating that central cold response 

processes, can be, in part, shared among different plant species and organs. In fruits, 

however cold might have an impact on a subset of specific fruit characteristics and 

processes and eventually affect ripening [122].Thus apple and some pear cultivars, 

require cold acclimation to initiate ripening [124, 125]. In apple a CBF like gene 

promotes softening in absence of ethylene and, probably, cold and ethylene act 

independently and synergistically with each other to induce fruit softening [124]. In 

tomato fruits, the LeCBF expression level correlates positively with cold tolerance [126]. 

Yet for the normal LeCBF1expression in fruits, both cold and endogenous ethylene are 

necessary [127], which is not the case for Arabidopsis plants [98]. Further, over-

rexpression of SlICE1 in tomato fruits increase chilling tolerance [117] and interestingly 

also promoted the accumulation of metabolites such as carotenes, ascorbic acid, 

glutathione, some aminoacids and amines as well as its antioxidant capacity [128] 
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I.3.Cold response and chilling injury in peach fruits 

Peach trees (Prunus persica) are temperate trees and therefore are exposed 

to freezing temperatures conditions as part of their growth cycle and not surprisingly 

have a functional cold adaptation program (mediated by CBF [109]). However, peach 

fruits that have been subjected to long periods of storage in the cold (CS), to delay 

decay and overripening, are susceptible to develop chilling injury (CI). Interestingly CI 

develops faster and more intensely when susceptible fruit are stored at temperatures 

between 2.2 and 7.6
o
C (killing temperature zone) than when stored at 0°C, considered 

a chilling injury delaying temperature [8, 9]. Although some microscopic alterations 

had been observed during CS [10], no visible (macroscopic) injury develops normally 

during low temperature storage. Visual symptoms of CI appeared however at different 

times after transferring the susceptible fruits from the cold to room temperature 

conditions (shelf life ripening [SLR] temperatures) that are used for inducing ripening 

after CS [8]. 

Low temperatures during storage may induce a range of disorders of different 

etiology that may develop simultaneously or after different storage times [9]. Chilling 

injury (CI) in peach fruits is manifested as flesh browning (FB) and reddening/bleeding 

(FBL) and woolliness/mealiness (WLT),???? [9]The appearance of FB in the fruit flesh is 

thought to be related to tissue deterioration or senescence, which leads to changes in 

membrane permeability and the interaction between phenols and polyphenol oxidase, 

which are generally found in separate compartments in the cell. Kader and Chordas 

[129] found that the browning potential of peaches depended on the total amount of 

phenolic compounds present in the fruit and the level of activity of polyphenol oxidase. 

 FBL has not been studied in depth, but appears to have a large genetic 

component [8, 9]. The symptoms are the dispersion of the anthocyanin pigment which 

is usually confined to an area next to the pit into the surrounding fruit flesh. Although 

this is classed as a chilling related disorder, it does not lead to off-flavours or changes 

in the fruit texture. Current breeding programs include the development of a red 

fleshed peach, since this will increase the nutritive value of the fruit [130].  
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Flesh mealiness or woolliness (WLT) is a flesh textural disorder characterized 

by a lack of juiciness [2]. As this aspect of CI is the one causing the most adverse effect 

on fruits and the object of the study presented here, we will summarize in the sections 

below summarize our current understanding about this disorder.  

 

I.3.1.The influence of the genotype and environment 

Peach exhibits a high degree of genetic variability for chilling tolerance, with 

the most sensitive cultivars being damaged with only 1 week of cold storage and the 

most tolerant remaining undamaged by at least 5 weeks CS [8]. The fact that CI 

susceptibility varied consistently among commercial cultivars and selections when 

stored at either 0ºC or 5ºC [8] indicated that CI is genetically controlled. Different 

environmental conditions, such as orchard factors have been reported as affecting 

peach CI, and included nitrogen fertilization, deficit irrigation regimes, maturity, 

canopy position, crop load, fruit size, environmental conditions, season factor, [3] but 

they were overcome by the genotype as the most important factor..  

WLT, FB and FBL are also reported occurring, singly or jointly, in other stone 

fruits of closely related species (and cross-compatible species) of the Prunus genus [8] 

such as nectarine (Prunus persica var . nectarina), European plum (Prunus domestica), 

Japanese plum (Prunus salicina), apricot (Prunus armeniaca), mume or Japanese 

apricot (Prunus mume) but not in cherry or almond.  

In general, nectarine and plum cultivars were less susceptible to develop CI 

than the peach cultivars [8]. Harvest date and flesh color also affect CI susceptibility. 

Early season yellow-fleshed cultivars, of both peaches and nectarines, were less 

susceptible to develop CI than later season cultivars [8], although this was not the case 

in white-fleshed cultivars. Early plum cultivars are more prone to develop mealiness, 

but no relationship between other CI and harvest data was found in plums [8]. Flesh 

color also influence CI development, thus white-fleshed fruits were consistently 

associated with a higher incidence of FBL, and FL was slightly greater for yellow flesh 

[131].In addition, firmness and textural traits influence development of CI[8, 132]. 

Thus melting flesh (MF) peach cultivars (those that become extremely soft during the 
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melting phase S4II,[133]) were more susceptible to develop CI than the firmer non-

melting flesh (NMF) cultivars [8, 132]. In addition, Freestone trait (F) also influences CI 

[18]. This trait maps to the same locus as the M trait [18], and control adhesion of the 

endocarp (or stone) to the flesh (or mesocarp). Clingstone non melting flesh fruits 

(CNMF) did not get mealy and were less prone to develop FB [4]; while freestone 

melting flesh (FMF) and clingstone melting flesh (CMF) genotypes have the potential to 

develop this FB symptom depending on whether they carry further genes for 

susceptibility [4]. In contrast to mealiness and browning, bleeding was greatest in 

CNMF progeny [4] 

Genetic analysis indicates that chilling injury in peach is a quantitative trait, 

and a number of major and minor QTLs for chilling injury have been mapped to the 

peach genome [4-7]. A gene encoding a cell wall modifying enzyme, endo-

polygalacturonase (endoPG) co-localized with the major QTL affecting mealiness and 

FBL [4] as well as to the Freestone-Melting flesh locus [6, 18]. An gene encoding a 

leucoanthocyanidin dioxygenase (PpLDOX), involved in anthocyanin metabolism, co-

localize with the major browning QTL [5, 6]. Furthermore, several fruit quality traits co-

located within the linkage group where chilling injury QTLs map [6]. More recenty, 

Dagar et al. [134] identified a group of differentially expressed genes between two 

varieties at harvest, which are probably related to their pre-formed tolerance or 

susceptibility to develop CI. 

 

I.3.2.Current knowledge of the molecular basis of mealy phenotype 

During SLR that follows CS, woolly fruit do not go through the phase S4II or 

melting phase [135], the second phase of softening characterized by a rapid loss of 

fruit firmness [133] which normally coincides with the climacteric respiratory peak, 

ethylene burst and juiciness development [136]. This has been related to a reduction in 

ethylene production during CS and subsequent SLR [136, 137]. Woolly fruit, still soften 

gradually, but unlike that of normal ripening fruit, it causes unusual texture with cells 

aggregating in clumps and with reduced fracture upon application of pressure such as 

that when eating [135].  
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Improper cell wall disassembly [8, 9] has traditionally been proposed as key 

determinant for the loss of fruit juiciness during WLT, based on the ability of some cell 

wall components to hold and release fluid [138]. In WLT fruit the most easily 

extractable cell wall pectins (soluble in water or chelator) are reduced in amount and 

are of higher molecular weight and viscosity than in ripened, juicy fruit [139, 140]. The 

degree of methylesterification of pectin is also altered. Cell wall pectin participates in 

the wall in cell-to-cell adhesion, which is accomplished largely by calcium cross-linking 

between partially de-methylesterified homogalacturonan in the middle lamella [141]. 

Ultrastructural observations showed extensive changes in the middle lamella of CS and 

during subsequent SLR of WLT fruit [10, 135]. The contact region between cells in 

woolly fruit was also smaller and the cells assumed a more spherical form with loose 

attachment to their neighbors, while the intercellular spaces were enlarged and 

characterized by the presence of amorphous pectic substances, insoluble 

polysaccharides, cellulose and hemicellulose [10, 135]. The amount of pectins in the 

bigger intercellular spaces [135] and inside parenchyma cells near to vascular bundles 

increased dramatically in 5ºC stored fruits in parallel with the macroscopic chilling 

injury indexes [10] they would develop upon subsequent shelf life ripening. It has been 

suggested that changes to pectin metabolism cause WLT either by cell fluids forming 

calcium-pectate gel complexes with high molecular weight pectin in the middle lamella 

[142], or that the decreased intercellular adhesion in WLT fruit reduces cell rupture 

during biting and chewing, preventing release of cellular contents [135]. 

Most of the molecular work done so far on cold-induced fruit woolliness has 

focused on endo-polygalacturonase (endo-PG) and pectin methylesterase (PME) 

activities [143-145]. These activities are required for normal ripening in melting flesh 

cultivars during the so called melting phase or phase SII [145-149]. Reduced ability to 

depolymerize insoluble homogalacturonan in the middle lamella and to convert it into 

soluble pectins during CS and subsequent SLR, have been attributed to low levels of 

endo-PG activity and persistent pectin de-esterification by PME [135, 150, 151]. 

However, other activities and carbohydrates may contribute to cell wall alterations 

occurring during CS and SLR [11, 12, 135, 152]. This include alterations in pectic 
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arabinose metabolism associated to WLT phenotype [135, 150] as well as expasins, 

pectate lyases, pectin methylesterases and invertases/pectin methylesterase inhibitor, 

glucanases, xylosidades, mannases [11, 12, 14, 15, 135, 152], which have been 

described related to both WLT fruit as healthy fruit. 

To dissect the molecular mechanisms underlying the WLT development during 

cold storage and shelf life ripening, several transcriptomic and proteomic studies have 

been reported [11-16]. These analyses have contributed to the understanding of the 

various processes that are associated to WLT phenotype and revealed some common 

transcriptomic changes that occur across different peach cultivars in addition to those 

related with cell wall. RNA translation and protein assembly, transport, antioxidant 

systems, aminoacid, carbohydrate and secondary metabolism, energy production, 

intracellular trafficking, signaling as well ethylene and auxins account for the 

differences in the sensitivity or tolerance to develop mealiness during cold and shelf 

[11-16] 

 

I.3.3.The problem 

The molecular studies related above have resulted in the identification of different 

cellular functions which are believed important for the development of the WLT 

symptoms but either failed to go deep in the analysis or some results were apparently 

found contradictory. Differences in experimental approaches, genotypes, storage and 

shelf conditions (time and temperature) and also in the symptom assessment methods 

often result in lack of consistency of results. In addition, these results could not be 

correlated quantitatively with different sensitivity levels, since the experiments were 

based in a single genotype [11-13, 15, 16] or only two genotypes differing in the cold 

response [14] in addition to differing in other phenotypic traits, thus results may 

reflect the background genotype of the varieties and/o their environmental history. 

Moreover, previous reports were either based in a single genotype subjected or no to 

CS providing only a single time /snapshot of the WLT developmental process. In 

addition, in the case of comparison between large scale studies, technological 

differences and cutoffs used for the identification of differentially expressed genes, the 
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different genes represented on each platform and technical differences in RNA 

labelling and hybridization, analysis protocols and references used to normalize, often 

hinder the identification of common regulated genes [95]. 

 

I.3.4.Available genetic and omics tools for the study of chilling injury in 

peach 

Modern breeding of peaches started in the USA towards the end of the 19th 

century and was based on a very limited number of genotypes [153]. Thus, because of 

this and because of their high degree of natural self-pollination, peach cultivars are 

known to have low genetic variability [154]. Although the genetic background of 

peaches is very limited, there are differences between cultivars in their resistance to 

prolonged cold storage and chilling injury. Contrasting genotypes can serve as a 

powerful tool for understanding the physiological and molecular mechanisms of 

chilling tolerance in peach. In an attempt to study the genetic basis for chilling injury 

three peach CI segregating populations were created. The first, Pop-DG population [18] 

derived from a cross between the commercial cultivars ‘Dr. Davis’ and ‘Georgia Belle’. 

‘Dr. Davis’ produces yellow, clingstone, nonmelting flesh (NMF) fruit and is a major 

cultivar grown in California for the canning industry, while ‘Georgia Belle’ is an old 

cultivar producing white, freestone, MF fruit that are eaten fresh [131, 155, 

156].‘Georgia Belle’ is particularly susceptible to CI, while ‘Dr. Davis’ exhibits resistance 

to most symptoms. The second, Pop-G [18], was derived by selfpollination of ‘Georgia 

Belle’. The third, V×BT population, derived from across between the cultivars ‘Venus’ 

and ‘BigTop’ ‘Venus’ is a FMF (freestone melting flesh) nectarine cultivar whereas 

‘BigTop’ is a CMF (clingstone melting flesh) nectarine cultivar. The progeny of all three 

populations segregated in their sensitivity CI [4, 5, 131, 157], however the V×BT 

population showed lower susceptibility to CI symptoms Pop-DG and Pop-G populations 

[157]  

Sources of information for candidate gene functional genomic study of peach chilling 

injury include published work in physiology and biochemistry previously described, as 

well as extensive Rosaceae expressed sequence tag (EST) data from the Genome 
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Database for Rosaceae (GDR [158]), ESTree [159, 160] and ChillPeach collection [17]. 

Further medium and high-throughput expression platforms were created and used to 

approach CI in peaches [11, 13, 14, 16, 17, 134]. The macroarray covering 847 non-

redundant EST [11] and μPeach 1.0 oligo microarray [161], representing 4800 

unigenes, were created by using genes expressed during ripening. Chillpeach EST 

collection and cDNA microarray covering 4200 unigenes [17] were enriched with 

sequences of genes that are directly involved with CI development. They were created 

from a EST libraries of fruit tissue from two full-sib progeny individuals of Pop-DG 

population with contrasting susceptibility to CI and subjected to various cold storage 

durations and ripening regimes to facilitate speedy detection of genetic factors 

responsible for CI in peach and nectarine and, possibly, other stone fruits [17].  

The use of these expression platforms in combination with pools of siblings from the 

populations with contrasting susceptibility to CI and subjected to various cold / 

ripening regimes provide adequate tools to approach the CI problem with a genomics 

view. Thus pools of fruits with the same horticultural characteristics and 

environmental history recapitulate information from siblings with contrasting 

sensitivity to develop CI, but compensated in the pool for other individual phenotypic 

differences [162, 163]. The use of pool of fruit samples obtained from siblings of the 

Pop-DG population [18], with contrasting sensitivity to CI, has been proven useful to 

identify mealiness associated QTLs [6, 7, 18] and candidates genes for mealiness 

tolerance/sensitivity identified at pre-symptomatic CS stages [17, 134]. However, 

although DNA information and RNA expression data alone are insufficient for 

establishing a clear link between a gene/protein and the trait of interest, 

transcriptomics they can be used as an important first step to explore potential novel 

candidate genes for a particular process. 
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Aim of this thesis 

The main objective of this thesis is to give a more comprehensive view of the WLT 

disorder and of the response of peach fruits to CS and the ripening processes occurring 

during shelf life ripening  after CS. We plan to do that by combining the use of pools of 

fruit from siblings from the Pop-DG population [18], with contrasting sensitivity to 

develop mealiness, with transcriptome analysis using Chillpeach microarray [17]. Thus 

we expect to reveal genes whose expression patterns are linked to cold sensitivity, 

while leveraging transcript differences associated with other phenotypic traits, as 

would be the case of comparing directly only two different cultivars 

 

Objectives  

 

1. To analyze the expression profiles of peach fruit during cold storage and 

identify genes which at pres-symptomatic stage are associated to the 

sensitivity or tolerance to develop mealiness. 

2. To analyze the expression profiles of peach fruit during normal ripening, 

during cold storage and subsequent ripening and identify peach genes 

associated to development of mealiness and /or associated to the sensitivity 

or tolerance to develop mealiness during shelf life ripening after CS.  

3. Validate and extend the expression results of candidate genes obtained for 

the pools to individual genotypes with a range of sensitivities to develop 

chilling injury. 
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Materials and methods 

 

M1.Plant material  

For most of the work presented in this thesis siblings from Pop-DG mapping population 

[18], segregating for chilling injury (Figure 1A and [4]), were used. Fifteen individual 

lines (Figure 1B) were selected because their sensitivity phenotype was consistent for 

3 years prior this study. Mesocarp samples from fruits of the following Pop-DG siblings 

were used for build the pools used in microarray and by medium throughput qRT-PCR 

analyses: 49/59, 84/85, 86/87 and 132/133 with high sensitivity to mealiness (S) and 

71/72, 88/89, 134/135, 142/143 with low sensitivity (LS). Genotypes were selected 

because they had similar horticultural characteristics but differed in the sensitivity to 

wooliness development, although not in the incidence of other CI disorders such as 

flesh bleeding and flesh browning (Table 1). The rest of individual siblings, together  

Figure 1.Mealiness index in the Pop-DG siblings after cold storage at 5ºC plus 2 
days at shelf life ripening at 20ºC. A) Frequency of the individuals with a given MI 
Index in the Pop-DG population. Symptoms were scored after 1 week of cold 
storage plus 2 days shelf life ripening 
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with those composing the pools, were used in the biological validation analyses of 

candidate genes by medium throughput qRT-PCR. Fruits of the Pop-DG population 

were obtained from Kearney Agricultural Center (Parlier, CA, USA). 

 

Table 1. Fruit quality parameters at harvest of the siblings of the Pop-DG population used for 
build the pools and storage disorders measured after cold storage at 5ºC plus 2 days of shelf 
life ripening at 20ºC 

SSC, TA, Browing and bleeding are not significant different in a t-test between sensitive and tolerant pools at 
p-value<0.05 
ª Mealiness is expressed as the proportion of fruits with mealiness after one week of CS 
* Browning scored on a scale of 1 (no browning) to 6 (severe browning) after three weeks of CS.  
**Bleeding is expressed as the proportion of fruits with bleeding after three weeks of CS 
 

An early-season variety peach [Prunus persica (L.) Batsch ‘Oded’] (Od) and a 

mid-season variety peach [Prunus persica (L.) Batsch ‘Hermoza’] (Hz) with different 

sensitivity to CI were used for the microarray analysis performed in chapter 2. Fruit of 

both cultivars were harvested from a commercial orchard in Israel in 2009.  

To avoid potential distortions caused by maturity stage, fruits were harvested 

when reached the same commercial mature stage (M) according to Kader & Mitchel 

[164] with flesh firmness of 12–14 lb (or 53-62 Newtons), soluble solid content (SSC) of 

11-14% and tritrable acidity (TA) of 0.5-0.7 %. Fruit and physiological parameters at 

harvest of Pop-DG siblings composing the pools are recorded in Table 1. In the case of 

Od and Hz genotypes physiological parameters at harvest are recorded in table 2. 

Pooled mesocarp tissue from at least 6 fruit was flash frozen with liquid nitrogen and 

  Maturity parameters chilling injury symtoms 

Sibling Pools SSC 

(ºBrix) 

TA 

(g 100g-1 FW) 

Flesh color mealinessª Browning 

(1-6)* 

Bleeding** 

086/087 Pool S 11.66 0.900 Yellow 0.8 2.989 0.000 

049/050 Pool S 14.46 0.502 Yellow 0.6 3.160 0.011 

084/085 Pool S 12.76 0.494 Yellow 1.0 1.088 0.000 

132/133 Pool S 11.94 0.492 White 0.8 2.861 0.026 

142/143 Pool LS 11.424 0.673 White 0.0 2.288 0.010 

071/072 Pool LS 11.54 0.656 White 0.0 1.212 0.047 

134/135 Pool LS 11.93 0.633 White 0.0 1.434 0.000 

088/089 Pool LS 12.36 0.594 White 0.0 1.602 0.000 
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stored at −80°C until further analysis. The pools S and LS were build using equal 

amounts of RNA from each genotype in a given control or treatment group. 

 

Table 2.Physiological parameters of ‘Oded’ and ‘Hermoza’ at harvest 

Different letters indicate significant differences at P < 0.05 (t-test). 

 

M2.Physiological parameter measurement 

Physiological parameters were measured and averaged from 13-15 fruit following the 

protocol described in Zhou et al. [165]. Firmness was measured on two pared sides of 

each fruit using a penetrometer fitted with an 8-mm diameter plunger. A wedge-

shaped slice (approx. 5 g) was removed from each fruit in the replicates and the 

pooled sample was passed through an electric juicer (Moulinex, type 753, France) for 

the measurement of soluble solids content (SSC) and titratable acidity (TA). SSC was 

determined by a digital refractometer (Atago, Tokyo, Japan). The TA was determined 

by titration of 2 mL juice to pH 8.2 with 0.1 N NaOH and expressed as percentage of 

malic acid. Ethylene was determined by closing individual fruit in a 650 ml jar for 1 h, 

sampling the air in the container with a syringe and injecting into a gas chromatograph 

with a FID detector. 

 

M3.Post-harvest treatments and chilling injury evaluation 

A group of 12 fruits M were directly allowed to ripen at 20°C to the edible 

firmness of 2–3 lb (14 Newtons) and used as controls (R samples). For different 

degrees of mealiness M fruits were forced-air cooled at 0–2°C within 6h of harvest and 

then stored at 5°C with 90% relative humidity for 1, 2 and 3 weeks (CS samples) and 

subsequently allowed to ripen during 2-3 days at 20ºC (CSR samples). Pooled mesocarp 

tissue from at least 6 fruits was flash frozen with liquid nitrogen and stored at −80°C 

until further analysis.  

Cultivar 
Weight 

(g) 

Ethylene 

(μL kg
−1

 h
−1

) 

SSC 

(%) 

TA 

(%) 

Firmness 

(Newton) 

Oded 141 ± 15.0b 0.69 ± 0.53a 11.9 ± 0.90b 0.43 ± 0.05a 54.0 ± 7.2a 

Hermoza 200 ± 30.6a 0.78 ± 1.00a 14.3 ± 0.46a 0.33 ± 0.03b 62.8 ± 11.2a 



 64 

Fruit were evaluated for different CI symptoms such as expressible of juice, 

hard textured fruit with no juice upon squeezing or woolly texture (WLT), flesh 

browning or pit cavity browning (FB) and internal reddening or flesh bleeding (FBL). 

Observations were made on 15 fruit at each observation time. 

Visual evaluation of CI symptoms was performed after each fruit was cut into 

two halves through the suture plane. WLT was scored on a 5-grade scale, according to 

amount of juice released upon hand squeezing, as follows: 1, very juicy; 1.5, moderate 

juicy; 2, less juicy; 2.5, small amount of juice; and 3.0, almost no juice. FB and FBL were 

also scored according to a 5-grade scale, based on area covered as follows: 1, no 

browning or reddening; 1.5, affected area < 5%; 2, affected area ≥ 5% and < 25%; 2.5, 

affected area ≥ 25% and < 50%; and 3.0, affected area ≥ 50%. Results for WLT, FB and 

FBL were expressed as an index calculated as the percentage of the average of fruit 

with each CI level in the treatment. 

Mealiness index (MI), i.e the proportion of measured fruits with mealiness 

when ripened for 2-3 days at 20ºC., was determined as the percentage of free juice 

content in total tissue. In the case of siblings of the Pop-DG population, expressible 

juice is determined accordingly to Campos-Vargas et al. [166] using the quantitative 

method described by Crisosto et al. [167]. In the case of Od and Hz, expressible juice 

was determined as described in Dagar et al. [168] using the method described by Lill et 

al. [169]. Both methods follow the same fundamental. Briefly, juice, obtained through 

pressing fruit tissue, was centrifuged. Recovered supernatant was weighed in order to 

determine the percentage of juice relative to original weight of the sample. The 

difference between the way they extract juice from fruit tissue: one uses a press [167] 

and the other a syringe [169]. 

 

M4.Microarray hybridization, scanning and data pretreatment 

RNA purification, sample preparation and hybridization to Chillpeach microarray were 

performed as described in Ogundiwin et al. [17]. All samples were compared using a 

dye-swap design against a common superpool reference, composed of equal amounts 

of RNA obtained from all the mesocarp samples composing the pools [17]. Three 
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replicates from each sample pool were hybridized in each case, one of them dye-

swapped. 

Intensity values were obtained as the median of ratios using GenePix 4000B scanner 

(Axon Instruments). Data files were imported into Acuity 4.0 (Axon Instruments) for 

normalization and analysis. Only spots with intensity values higher than the 

background plus two standard deviations of the background median, in at least one 

channel, were used for analyses. Before normalization, the median local feature 

background was subtracted. Data were normalized by Lowess (locally weighted scatter 

plot smoothing) with a centered print-pin tip using the Acuity default values. To 

generate the raw data to be used for the expression analysis, a Lowess M Log Ratio 

was used as the expression value, and patterns with more than 80% of non missing 

values were selected. In all, around 78% of the ChillPeach probes met the threshold for 

hybridization quality in all of the experiments. 

 

M5.Microarray expression analysis  

Differentially expressed genes were identified from the raw dataset using the 

Significance Analysis of Microarray software [170]. Missing values were imputed by 10-

Nearest Neighbors Imputer algorithm, with 100 blocked permutations and a random 

seed value set by default in the program. PCA and 2D-hierachical cluster analyses were 

performed on the significant data using Acuity (Axon instruments). A principal 

component analysis (PCA) was calculated for those factors explaining 100% of variance. 

For calculations spots with missing values were replaced with the average values 

across the arrays. Profiles with the same shape pattern were centered around the 

mean value across arrays, to avoid the effect that the magnitude of response might 

have on the average profile. For the hierarchical cluster, a Pearson correlation 

centered on 0 was used as a similarity metrics. A complete linkage was used to link 

clusters together to produce the tree. Transcripts and/or samples were ordered in the 

clusters according to their contribution to principal component 1 of the PCA performed 

with the same dataset.  
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M6.Correlation analysis between transcript levels in pools S and LS and 

degree of mealiness. 

Correlations between transcript levels in pools S and LS and degree of mealiness in 

chapter 1 were calculated by the Pearson product
 
moment correlation method using 

Matlab 2007 (The MathWorks, Inc.). P values below 0.01 were selected for statistical 

significance. A statistical significance level of 1% was assessed with the correlation 

coefficients over 0.8. Those genes whose expression profiles contained 100% of data 

points in the samples analyzed were used to calculate correlations. The complete list 

of the microarray-wide gene expression correlations with the Mealiness Index (MI) are 

listed in Table S2. Functional enrichment is performed as indicated above. 

 

M7.Functional annotation of Chillpeach genes: functional categories, 

specific process/pathways, and relation to stress and hormones 

ChillPeach unigenes were functionally annotated as indicated in Ogundiwin et al. [17]. 

The ChillPeach genes were classified into 34 distinct functional categories and 702 

specific processes (Table S2) by extensively reviewing the literature and by searching in 

reference databases: PubMed [171], UniProt [172],prosite [173], BRENDA [174], TAIR 

[175], The Gene Index Project [176], KEEG [177, 178], Plant Metabolic Network [179, 

180], and Plant Transcription Factor Database 2.0 [181].  

To classify Chillpeach genes as stress and hormone responsive genes the AIG code of 

the Arabidopsis orthologues were used in a data mining strategy for interrogating the 

gene expression files from the following databases or papers:  

Stress responsive genes:  

(1) Cold, the ColdArrayDB (http://cold.stanford.edu/cgi-bin/data.cgi,) [53] a 

database that contains global expression profiles of Arabidopsis genes in 

response to cold. We use the same searching conditions as in [17]. 

(2) Cold, drought and salinity responsive genes, the results obtained with Affymetrix 

forward and reverse tiling arrays [87]  

http://cold.stanford.edu/cgi-bin/data.cgi
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(3)  darkness responsive genes the results obtained using a Arabidopsis Functional 

Genomics Consortium or 11K AFGC cDNA microarray by [182] 

(4) Pathogen- virus responsive genes results obtained using 22K Affimetrix ATH1 

GeneChip by [183].  

Hormone related genes:  

(1) Abscisic acid (ABA), auxin (Aux), brassinosteroid (Br), cytokinin (CK), ethylene (Et), 

gibberellin (GAs), jasmonic acid (JA) and salicylic acid (SA): Arabidopsis Hormone 

Database (http://ahd.cbi.pku.edu.cn, [184]) a comprehensive database based on 

data from mutant studies, transgenic analysis, and gene ontology (GO) 

annotation for the hormones  

(2) ABA, AUX, Br, CK, Et, GAs and JA responsive genes in the results obtained using 

Affimetrix ATH1 GeneChip as part of the AtGenExpress project by [185] and 

[186] 

(3) ABA responsive genes using Arabidopsis Affymetrix tiling arrays identified by [87] 

(4) ET-responsive genes by using cDNA-AFLP and a VIB Arabidopsis 6K cDNA 

microarray analysis as identified by [187] 

Functional enrichment on a ranked list of genes on the differential expressed datasets 

was performed with, a local, customized version of 'catscore.pl' Perl script described in 

Cheung et al. [188], using a two-tailed Fisher exact t-test with adjusted p-value cut-off 

of 0.05. Results of functional enrichment were visualized using Matrix2png [189] 

 

M8.A medium-throughput quantitative RT-PCR analysis using a 

dynamic array by Fluidigm  

The 96.96 dynamic arrays were obtained from the Fluidigm Corporation and were used 

to perform up to 96 qRT-PCR reactions in cDNA preparations corresponding to up to 48 

samples: 15 genotypes in the M stage and/or CS1 or/and CSR1 samples and 7 pools 

(M-S, M-LS, CS1-S, CS1-LS, CSR1-S, CSR1-LS and the reference superpool used for the 

microarray analyses). Two biological replicates were included in each array for all the 

15 genotypes and pools, each one representing at least three different fruits. Two 

replicated 96.96 Fluidigm dynamic arrays were used. 

http://ahd.cbi.pku.edu.cn/
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For the Fluidigm analysis, 96 genes were selected from our microarray results. Out of 

them, in the chapter 1, 72 genes (Table S5) were analyzed by qRT PCR in 64 cDNA 

preparations corresponding to 37 samples: 15 genotypes in the M stage and/or CS1 

samples and 5 pools (M-S, M-LS, CS1-S, CS1-LS and the reference superpool). In the 

chapter 3, 96 genes (Table S14) were analyzed by qRT PCR in 62 cDNA preparation 

corresponding to 31 samples: 13 genotypes in the CS1 and /or CSR1 samples and 5 

pools (CS1-S, CS1-LS, CSR1-S, CSR1-LS and the reference superpool). 

Oligo pairs for selected genes were obtained using the Primer Express version 2.0 

software (Applied Biosystems). To design primers, the following conditions were used: 

Tm 58-60ºC, GC content 20-80%, primer length 20-22 base pairs and an amplicon size 

of 140-150bp. A virtual PCR was carried out for each oligo pair obtained with the 

'primersearch' program from the EMBOSS open software suite [190], using the full set 

of known peach sequences as potential template sequences. The interrogated peach 

sequence databases included the ChillPeachDB [17], ESTreeDB [160] and GDR_Prunus 

[191] sequences. Only the oligo pairs yielding a single PCR product from each unique 

gene, based on the sequence assembly of all the known Prunus sequences, were 

considered. When more than one specific oligo was obtained for a gene, the oligo pair 

with the lowest penalty value (as provided by the Primer Express version 2.0 software 

for oligo identification), and which mapped most of the 3' end of the gene, was 

selected using custom Perl scripts. 

Three genes were selected to normalize qRT-PCR results on the basis of low variability 

in the chillpeach microarray under all conditions analyzed in this paper: a gene with 

unknown function (PPN036E09), an ABC1 family protein(PPN076G09) and, an 

esterase/lipase/thioesterase gene (PPN078E12) [17] They were validated by qRT-PCR 

as described in [17]. The comparative ΔΔCt method, as described by in Livak and 

Schmittgen [192], was used to confirm a flat pattern throughout the samples. 

For the Fluidigm analysis, the cDNA synthesized from total RNA following standard 

methods was diluted to 1:10 using the DA Assay Loading Buffer (Fluidigm). The 

Nanoflex 4-IFC Controller and the BioMark Real Time PCR system by the Fluidigm 

Corporation were used to run the dynamic arrays under the standard conditions 
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employed at the General Hospital lab, Valencia, Spain. The cycling program consisted 

of 10 min at 95ºC followed by 40 cycles of 95ºC for 5 sec and 1 min at 60ºC. 

The relative gene expression values were determined using PerlqXpress (manuscript in 

preparation). PerlqXpress was used to calculate “fold expression values” (FC) from the 

Ct values obtained directly from the BioMark Real-Time PCR Analysis Software 

(Fluidigm).Briefly, PerlqXpress filter outliers within a sample, corrected differences in 

background control levels, centers and scales data. The mean centered and scaled Ct 

values were transformed into relative quantities (RQ) using the exponential function 

with the efficiency of PCR reaction as its base. For each gene the RQ was corrected 

using a normalization factor. FC is calculated by dividing normalized RQ to reference 

sample in each biological replicate (in this case reference pool used in the microarrays). 

Mean, standard deviation, and coefficient variation were calculated for each replicate. 

Replicates were filtered by the coefficient variations. At least 4 good replicates were 

used to calculate “fold expression change” values. 

To extend the validity of the results obtained in the pools to individual lines, for which 

we had individual MI index values, qRT-PCRs were performed on up 15 individual 

peach genotypes from the popDG progeny. In the chapter 1, for each gene pair in a 

predefined expression set, the Pearson correlation coefficients between their 

expression profiles in the individual Pop-DG siblings were obtained by Gitools 1.8.2 

[193]. A gene was selected as consistent and was confirmed over the individual lines 

when it was associated with a predefined expression pattern. In the chapter 3, for each 

gene in a predefined expression set, Pearson correlation coefficients and its associated 

p-value between its expression values in all individual Pop-DG siblings and MI was 

calculated. Correlation values above 0.2 represent non-random correlations 

 

M9.Comparison of the cold response of ‘Oded’ (Od), ‘Hermoza’ (Hz) 

and pools of siblings from the Pop-DG population 

In order to examine transcript abundance changes across different peach fruit differing 

in their sensitivity to chilling injury, and to compare these with the transcript 

abundance profiles generated from this study, transcriptome data from pools of 
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siblings from the Pop-DG population at harvest and after one and two weeks of cold 

storage at 5°C were retrieved from chapter 1. For the comparative analysis genes with 

high quality values in the two experiments (see above) and differentially expressed 

between Hz and Od and between highly sensitive (S) and less sensitive (LS) pools after 

one week of cold storage were selected. A dataset of 2207 genes was generated and 

used for the comparison. Clustering of total transcript accumulation within a specific 

treatment and fruit type was done using Euclidean distance and the k-means 

unsupervised clustering Acuity ™ (Axon instruments). For calculations the number of k 

clusters was set to 12 and the centroid for each cluster was randomly assigned. Spots 

with missing values were replaced with the average values across the arrays. Profiles 

with the same shape pattern were centered and scaled around the mean value across 

arrays. Transcripts were ordered in the clusters according to their contribution to 

principal component 1 of the PCA performed with the same dataset. 

 

M10.Real-time quantitative reverse transcriptase-PCR analysis 

The transcript abundance of 10 selected genes (Additional file 1: Table S1) that were 

differentially expressed between Od and Hz were validated with quantitative reverse 

transcriptase polymerase chain reaction (qRT-PCR) analyses. Full length cDNA, primer 

design, optimum primer and cDNA concentrations, qRT-PCR reaction and 

quantification was performed as described above and in Dagar et al. [134]. Primer 

sequences and amplicon lengths are given Table S9. Each biological sample was 

examined in duplicate with two to three technical replicates. The expression levels for 

the genes were calculated relative to the Initiation Factor eIF-4-Gamma (eIF-G) gene as 

described by Ogundiwin et al. [17], and the expression level of each analyzed gene 

transcript during cold storage in the Od and Hz samples was calculated relative to this 

harvest values. 

 

M11.ROSMETER analysis 

The ROSMETER is a new bioinformatic tool (http://app.agri.gov.il/noa/ROS_desc.php), 

which can provide information on the specificity of ROS-related response for any data 
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set [19]. The ROSMETER was fabricated by using data from Arabidopsis plants exposed 

to stresses occurring in different cellular compartments [19]. A set of genes having 

Arabidopsis orthologs in Chillpeach [17] and differentially expressed at harvest and 

during cold storage in all four fruits studies was used for ROSMETER analysis. The 

obtained data set was arranged according to the instructions on the website and 

submitted for analysis. The output file represents correlation values between known 

oxidative stresses and the transcriptome of the two cultivars and the two pools of 

siblings at harvest and following cold storage of 1 and 2 weeks. Correlation values 

above 0.12 represent non-random correlations [19]. 
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Chapter 1. Analysis of transcriptome changes 
induced by cold in fruits of Pop-DG siblings with 
contrasting sensitivity 
 

 

C1.1.Results 

C1.1.1.Differential cold response to chilling temperature in the fruits of 

the Pop-DG peach population.  

Harvest maturity, a factor known to influence mealiness [3], was tested before cold 

treatments to ensure all fruits were in the same maturity stage. Table 1 shows there 

were no significant differences in firmness, SSC and TA between genotypes. This 

indicates that at harvest, both populations were at the same physiological stage and 

differences in the subsequent cold response can be mainly attributed to the cold 

sensibility without significant distortions owing to lack of adequate maturity stage.  

To asses the effect of the cold stress on peach fruits from siblings of the Pop-DG 

population, a subset of the cold stored fruits were ripened for 2-3 days at 20ºC and 

mealiness was evaluated as the proportion of measured fruits with mealiness or 

Mealiness index (MI). Figure 2A shows the average MI of pools of fruits grouped 

according to their sensitivity to develop mealiness. The pool S had higher MI as 

compared with pool LS after the same cold storage times (Fig.2A), although tend to 

converge after increasing cold storage periods, indicating a non complete (but clear 

with huge market importance) tolerance of fruits LS. The difference was more 

pronounced after one week of cold storage at 5ºC, where the mealiness symptoms 

were already visible in the pool S but not the pool LS (Fig.2A). No significant 

differences in the frequency of other CI symptoms were observed between pools S and 

LS (Table 1). Thus the characteristic feature, differentiating the cold response of the 

pools, was their sensitivity to develop mealiness. Given that the proportion of mealy 

fruits increased with the time of cold storage, our hypothesis is that despite mealiness  
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Figure 2. Mealiness index of pools of peach Pop-DG siblings and global gene expression 
analysis of Chillpeach transcripts in response to cold storage. A) Average mealiness index (MI) 
of pools S and LS from fruits shelf life ripened for 2-3 days at 20ºC after being stored for up to 3 
weeks at 5ºC; B) Principal Component Analysis (PCA) of the global expression profile showing the 
most variation of each treatment condition (averaged from three replicates). First principal 
component (PC1) is shown on x-axis while the second principal component (PC2) is shown on y-
axis. C) Unsupervised bi-dimensional hierarchical clustering. Heat map of the expression values 
corresponding to the normalized means of three biological and three technical replicates. Color 
represents fold change (red upregulated/green down-regulated) in relation respect to a 
reference pool. Clustering of samples according to the expression values is shown on top . M = 
mature fruits, R = mature with 2-4 days ripening at 20°C, CS1 = M + 1 week cold storage at 5°C, 
CS2 = M + 2 weeks cold storage at 5°C, CS3 = M + 3 weeks cold storage at 5°C 
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was not showing until fruit was allowed to ripe [8], relevant molecular changes may 

had already started to occur during cold storage. 

 

C1.1.2.A global non target analysis of the transcript profiles in the Pop-

DG in response to cold 

Bulked segregant analysis [162, 163] in combination with the Chillpeach expression 

microarray [17] was used to compare the transcriptomes of peach fruits from the S 

and LS Pop-DG siblings. In all, 3350 transcripts (Table S2) showed a significant 

difference in expression levels at least for one condition (samples M, R and CS for 

pools S and LS) using two criteria: a false discovery rate (FDR) < 5% and a p-value < 

0.05. The principal component analysis (PCA) of the complete dataset variance is seen 

in Figure 2B. PC1 (68% variance) clearly separated fruit samples which came directly 

from cold storage (CS), from fruits M and R (Fig. 2B). The proximity between fruits M 

and R, if compared to CS, indicated that the effect of cold storage on the peach 

transcriptome was much greater than that of ripening. PC2 (12% of variance) 

separated fruits M from R. Both, fruits S and LS seemed to follow parallel ripening 

programs, but fruits LS showed delayed or less intense ripening transcriptomic changes 

than fruits S. It should be noted that Pop-DG siblings in each pool were selected on the 

basis of their cold response, as revealed by the MI after shelf life ripening, so it is not 

surprising that some differences in the ripening programs may exist. In addition, PC2 

roughly separated cold stored samples according to the eventual increase in the MI of 

the fruit should they be submitted to shelf life after cold storage (Fig.2A and B). 

According to this component, fruits from the pool S stored for 1 or two weeks have 

achieved a pattern of ripening similar to fruits R (as they had similar values in PC2). 

This may indicate that during cold storage at 5ºC, some internal ripening may result in 

chilling sensitivity and in a shortened shelf life. The loading plots for PC2 (i.e., the 

contribution of each gene to the separation by a given principal component) revealed 

37 genes among with were genes previously reported in the regulation of temperature 

responses, including the transcriptional factor CBF [194], GASA5 [195] and SCR2 [94] 

(see Table S2). Thus the transcript levels contributing to component PC2 may be 
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relevant for the development of a tolerance mechanism in cold, which could affect the 

way cold storage interrupted or slowed down the ripening program and eventually 

how fruits ripen afterward. 

 

Figure 3. Clusters resulting from the unsupervised two-dimensional hierarchical clustering (Fig. 
2C). Y-axes represent the normalized expression ratio (Log2 M) of three biological replicates in 
relation to a reference pool. Red represents qualitative differences, purple depicts the genes 
regulated in a similar manner and green refers to the genes showing quantitative differences 
between the LS and S pools. D) The functional categories overrepresented in each cluster (Fig 
2C) are shown as a heatmap obtained with matrix2png. Enriched functional categories with 
Fisher test p-values < 0.05 are colored in grades of yellow. The number of genes in each cluster is 
indicated to the right of the heatmap. M = mature fruits, R = mature with 2-4 days ripening at 
20°C, CS1 = M + 1 week cold storage at 5°C, CS2 = M + 2 weeks cold storage at 5°C, CS3 = M + 3 
weeks cold storage at 5°C. 

 
The bidimensional hierarchical cluster (2D-HCA) analyses revealed a similar sample 

separation to that obtained with PCA (Fig. 2C). Furthermore, 2D_HCA segregated CS1-

LS from the rest of the cold-stored fruits (Fig. 2C), according to the fact, that if fruits 

CS1-LS ripen, they do not develop mealiness. These results indicate that from the 

molecular point of view one week of cold storage is a critical time with maximum 

differences expected to be found at this stage between fruits S and LS, including any CI 
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associated trait. This global analysis also revealed that, although the expression 

profiles were generally similar between the S and LS pools of fruits, there were 

qualitative and quantitative differences (i.e., the kinetics or levels reached, or both).  

To further describe the cold response mechanism from a global point of view and its 

possible relation to eventual CI, we conducted a functional enrichment analysis 

(Fig.3B) of the 11 resulting clusters from 2D-HCA (Fig.3A). The most overrepresented 

functional category in cluster CS-glob8, containing genes up-regulated during cold 

storage in both fruit pools, was RNA transcription regulation, which comprised 47 

genes (Fig.3B). In this category, we found several transcription factors whose orthologs 

were up-regulated during cold acclimation in Arabidopsis and some were assigned to 

specific cold acclimation regulons (Table 3). The other functional category enriched in 

CS-glob8 was with 37 genes, secondary metabolism, a functional category previously 

associated with cold tolerance [196, 197].In addition, and in agreement to the higher 

tolerance of fruits LS, structure maintenance proteins and an antioxidant system were 

among the functional categories overrepresented in differential clusters CS-glob7 and 

CS-glob 10 (Fig.3B), both highly induced in the pools of fruits LS as compared to fruits S 

(Fig.3A). Moreover, cluster CS-glob 9 was enriched in RNA translation and protein 

assembly, energy production, and trafficking machinery and membrane dynamics 

(Fig.3A and 3B), indicating that these activities can be enhanced in fruits LS. This 

suggests that some kind of cold adaptation was activated in both S and LS peach fruits 

during cold storage. 

The genes in cluster CS-glob 2 were down-regulated in both S and LS fruits (Fig.3A), 

and were enriched in glycolysis/pentose phosphate pathway, the photorespiratory 

pathway and organelle division (Fig.3B). Lowered expression levels of carbohydrate 

metabolism and glycolytic genes correlated to cold sensitivity in Arabidopsis [196]. 

However, the extensive down-regulation of primary metabolism, together with the 

down-regulation of posttranscriptional, posttranslational and protein degradation (see 

cluster CS-glob 1 in Fig.3A and 3B), was probably associated with the relative higher 

cold tolerance of fruits LS. 
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C1.1.3.Stage-specific changes in the transcript program associated 

with the differential cold response  

A direct one-to-one comparison was made between the transcriptomes of the samples 

S and LS at the same time of cold storage, given the notion that this analysis would 

outperform the general profile comparison to identify the candidates to be involved in 

tolerance/susceptibility to cold (before obvious injury symptoms appear). Figure 4A 

shows how the number of differentially expressed genes at each time decreased with 

storage time (Fig. 4A), thus confirming PCA results (Fig.2B). Functional enrichment 

analysis (Fig. 4B) showed that by 1 week of cold storage, the transcripts with higher 

levels of expression in fruits CS1-LS were preferentially related to energy production, 

RNA translation and protein assembly, the antioxidant system, structure maintenance, 

and genes with unknown functions (for more details, see Table 5 and Table S2). Those 

transcripts with lower levels in LS fruits (and therefore higher levels in S fruits) were 

enriched in signal transduction elements and transport (Fig. 4B and Table 6). As 1 week 

cold storage is critical timing i.e. when maximum differences were shown when later 

transferring fruits to shelf life ripening (Fig.4A-B), these functions may play a 

prominent role in the tolerant/sensitive character of fruits (for more details of these 

genes, see Table 5, 6 and Table S2).  

By 2 weeks of cold exposure, only the genes with unknown functions were 

overrepresented in the tolerant pool (Fig. 4B), whereas a significant enrichment was 

noted for the genes linked to amino acid metabolism, pyruvate, signal transduction 

and transport in the genes at higher levels in CS2S. Interestingly, most of the genes 

expressed at higher levels in S fruits by 2 weeks had already reached this state by 1-

week of cold storage (Table S2). As two weeks of cold exposure results in mealiness 

upon shelf life in both S and LS fruits (Fig.2A), but with large differences in MI severity, 

high levels of these genes may correlate negatively with the tolerant character of fruits. 

After 3 weeks in the cold, only the highly expressed genes in tolerant fruits showed 

signal transduction as an overrepresented class (Fig. 4B). In this case, the genes 

differed from those identified as being overrepresented at 1 and 2 weeks (Table S2). At 

this time, both S and LS developed mealy fruits with MI 1.0 and MI 0.8, respectively 
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(Fig.2A), but S was probably much more severely affected or underwent other 

downstream processes. 

 

 

Figure 4. Differential gene expression between the S and LS fruit across the cold storage CS 
series. A) A Venn diagram depicting the differentially expressed genes (FDR<0.05 and q-
value<0.05) between tolerant and sensitive fruit at each time of cold storage. B) The over-
represented functional categories (p-value 0.05) corresponding to the differentially expressed 
genes between the LS and S pools at each time of cold storage. C) The expression profiles of the 
genes correlating to protracted MI in samples M and CS. Phenotype-gene profile similarities 
were measured as Pearson correlation coefficients from the global dataset. D) The functional 
categories enriched in the genes whose expression profiles correlated with the projected MI 
fruits should have when shelf life ripened. Pearson: 1<r <0.9 and 0.9< r 0.8. M = mature fruits, R 
= mature with 2-4 days ripening at 20°C, CS1 = M + 1 week cold storage at 5°C, CS2 = M + 2 
weeks cold storage at 5°C, CS3 = M + 3 weeks cold storage at 5°C. 

 
In order to analyze if the transcript program in the cold may have a direct effect on 

eventual mealiness development during shelf life, a Pearson correlation analysis was 
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Table 3. Transcription Factors genes common Cold-Upregulated in Peach with Stress and Hormone Related Roles.  

 Chillpeach ID Gene description 
Arabidopsis 

Gene Symbol 
HCA 

pattern 

CS1 
S vs LS 
pattern 

stress/hormone 
Cold 

regulon 
References 

AP2/EREBP family PPN039F03 
Putative dehydration-responsive element 
binding protein 

RAP2.4 CS-glob8 N/A CA-DR, drought, light, ethylene  
[198],[199],[95],[
200] 

 PPN078E06 EREBP-4 like protein  CS-glob8 N/A
c
 CA-DR  [201],[95] 

AUX/IAA family PPN046H05 Auxin-responsive protein IAA13 IAA13 CS-glob8 N/A AUX negative regulation  [202, 203],[204] 
C2C2-CO-like 
Family 

PPN075B03 zinc finger (B-box type) family protein STH2 CS-glob8 N/A CA-DR, light  
[198],[201],[95],[
205] 

C2H2 Family PPN046D02 Zinc finger protein 4 ZFP4 CS-glob8 N/A CA-DR  [95] 
 PPN053C05 Zinc-finger protein 1 AZF2 CS-glob8 N/A CA-UR  [92],[95],[206] 
GRF-family PPN044H02 14-3-3 protein 3 GRF2 CS-glob8 N/A CA-DR  [95] 
HD-ZIP family PPN047H02 Homeobox-leucine zipper protein HAT22 HAT22 CS-glob8 N/A drought, light, carbon sensing  [207],[208] 
HSP-family PP1002D06 Heat shock factor HSFB1 CS-glob8 N/A high up-regulated in Arabidopsis chs mutants  [209] 
 PPN001A09 Heat shock factor HSFB1 CS-glob8 N/A high up-regulated in Arabidopsis chs mutants  [209] 
 PPN054G07 Heat shock factor HSFB1 CS-glob8 N/A

c
 high up-regulated in Arabidopsis chs mutants  [209] 

 PPN055B05 Similarity to heat shock transcription factor HSFC1 CS-glob8 N/A CA-UR ICE1 [94] 
 PPN077H06 Heat shock transcription factor AT-HSFA4A CS-glob8 N/A CA-UR, high up-regulated in hos15 mutants HOS15 [201],[59] 
MADS-box family PPN004D05 MADS box transcription factor SVP/AGL22 CS-glob8 N/A CA-UR  [198],[95] 
 PPN058B02 MADS box transcription factor AGL24 CS-glob8 N/A cold up-regulated (vernalization)  [210] 
MYB-family PP1006F11 MYB1 ATMYB6 CS-glob8 N/A CA-DR  [95] 

NAC-family PP1001F06 NAM-like protein 
ATNAC2 

/anac056 
CS-glob8 N/A CA-DR  [95] 

 PPN054B06 No apical meristem protein-like 
anac073/ 

SND2 
CS-glob8 N/A CA-DR  [95] 

 PPN073C10 NAM-like protein 
anac083/VNI

2 
CS-glob8 N/A CA-DR, ABA-mediated abiotic stress  [95],[211] 

PHD-family PPN035F03 
hydroxyproline-rich glycoprotein family 
protein 

EDM2 CS-glob8 N/A defense to pathogens  [212] 

 PPN051C10 ABI3-interacting protein 2 AIP2 CS-glob8 N/A CA-UR ICE1 [94] 
TUB-family PPN066C05 Tub family, putative AtTLP1 CS-glob8 N/A CA-UR  [95] 
WRKY-family PPN001D05 DNA binding protein WRKY2 WRKY3 CS-glob8 N/A CA-DR  [95] 
a
 contribution to PC2 (Fig 2A) negative; 

b
 negative correlation with projected MI 

Arabidopsis response during cold acclimation:.CA-UR cold acclimation up-regulated 
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conducted between the gene expression values and the projected MI will be achieved 

when subjected to shelf life ripening after cold exposure (the actual MI of cold stored 

samples were 0 as shelf ripening is required to develop mealiness). This “projected MI” 

correlation analysis resulted in 113 directly correlated genes (R>0.8) and 159 inversely 

correlated genes (R>0.8) according to their pattern of expression in the cold (Fig. 4C; 

Table S2). The functional enrichment analysis (Fig. 4D) indicated that genes directly 

correlated to projected MI were enriched in RNA transcription and RNA 

posttranscriptional regulation. A further inspection revealed genes related to RNA 

biogenesis and processing, splicing, RNA transcription machinery and the transcription 

factors (Table S2). In addition, genes correlated positively with the projected MI were 

also enriched in transport category (Fig. 4D), that includes transporters for auxin, 

anthocyanin, amino acid, peptides, sulfate, carbohydrates and metal-ions (see Table 

S2). No functional enrichment was observed for those genes which correlated 

negatively with projected MI (Fig. 4D). However, a detailed inspection indicated that 

this set of genes contained calcium-related genes, including a transcription factor of 

the CAMTA family, and genes related to antioxidant systems (Table S2) which could 

participate in the regulation of this transient tolerance mechanism. 

 

C1.1.4.Is there a preprogrammed mechanism for chilling tolerance?  

The possibility that, in addition to cold-inducible mechanisms, some sort of tolerance 

mechanism may already be partly preprogrammed in tolerant fruits was investigated. 

The direct comparison between S and LS fruits at mature stage (M) resulted in 63 

differentially expressed genes (Fig. 4A and Table S2). Out of them, 13 genes we high 

expressed in fruits T (Table S2) and some have to do with flavonoid metabolism 

(CHS/TT4 and GST12/TT19), structure protection (Tic110) and (ASN1/DIN6) that forms 

part of a cycle that generates asparagine for more energy-economical nitrogen 

remobilization under darkness and stress conditions [213, 214]. Several cell wall 

modifying activities were also differentially expressed between fruits S and LS (Table 

S2). As no differences at the maturity stage were between pools (Table 1), it is likely 

that differences in the expression levels of these genes at harvest may protect fruits 
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and/or contribute to develop the tolerance program at least in the early stages of the 

cold response. 

HCA of samples M, R and CS (Fig. 5A) showed that genes differentially expressed 

between fruits S and LS at harvest qualified in fruits LS as ripening genes (see columns 

1 and 2 column in the cluster; Fig. 5A). Notwithstanding, it is most interesting to note 

these genes were characterized by continuing the ripening program during cold 

storage (see the CS-LS samples and compare with R-LS), which did not happen so 

clearly in fruits S (compare the CS-S samples and compare with R-S). However and as 

expected this behavior of the differential M genes is the exception rather than the rule 

for ripening genes. As seen in Figure 5B, a similar analysis with a set of 862 ripening 

genes (up or down regulated in R by comparing to M) showed that although cold affect 

the expression many of ripening genes, is quite effective stopping the molecular 

Figure 5. Preformed mechanisms and effect of ripening. A) The hierarchical cluster of the 
63 genes differentially expressed between fruits LS and S at the mature stage. The 
expression values for samples M, R and CS and the M-LS vs. M-S ratio are shown. 
Hierarchical clustering of the expression values for 862 ripening genes (up or down in fruits 
R respect to M) during cold storage. M = mature fruits, R = mature with 2-4 days ripening at 
20°C, CS1 = M + 1 week cold storage at 5°C, CS2 = M + 2 weeks cold storage at 5°C, CS3 = M 
+ 3 weeks cold storage at 5°C. 
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ripening program in fruits LS. This result is in agreement with the findings from PC2 

(see Fig.5B). The main expression differences between LS and S fruits involved changes 

occurring in the same direction in R and cold stored fruits. In fruits LS, the expression 

of several ripening genes during cold storage remained at the same or higher level that 

they were in the M stage, but achieved similar expression levels to fruits R in the 

sensitive backgrounds (black bars in Fig 5B). Apart from the delayed or attenuated 

ripening program in the fruits LS during cold storage, these fruits also showed specific 

ripening processes that became activated during cold storage (green bar in Fig 5B), 

which is in agreement with the findings for genes differentially expressed at harvest 

(Fig 3A). A more detailed analysis of shelf life ripening conditions and mealiness is 

addressed in chapter 3 

 

C1.1.5.Cold regulons in peach contributing to the differential response  

In this section we wanted to see if there were similarities between the adaptation 

mechanisms operating in peach fruits stored in cold and darkness and those well-

characterized in the cold acclimation of Arabidopsis plants grown in day/night regimes. 

We wanted to see if the patterns of gene expression for the peach homologues of 

Arabidopsis genes in cold/dehydration regulons were consistent with the differential 

cold responses in S and LS peaches. 

First we analyzed the overlap between the response of cold stored peach fruits and 

those to various stimuli, including abiotic/ biotic stresses and hormones (Fig. 6). Gene-

by-gene comparisons revealed that the vast majority of the cold-regulated genes in our 

peach cold storage experiment have Arabidopsis orthologs, which have been described 

as being regulated by cold (63%, Fig. 6A), or by ABA (35%, Fig. 6B). Similarly to 

Arabidopsis [198], approximately 30% of peach cold-regulated genes were found to be 

associated with drought and/or salinity treatments (Fig. 6A). More strikingly however, 

approximately 35% of the cold-responsive genes in peach were known pathogen-

responsive genes or have been postulated to play a role in pathogen resistance (Fig. 

6A). Furthermore, the genes described as being regulated by darkness in Arabidopsis 

account for up to 3.7% of peach cold-regulated genes (Fig. 6A), indicating that, 
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although its contribution to all cold-regulated genes was less than those also involved 

in other stresses, dark stress could contribute to the differences observed in the cold 

response between peach fruits (dark) and Arabidopsis plants (light). 

Second, a list of Arabidopsis genes reported in cold regulons (CBF, ZAT12, HOS9, 

HOS15 and GI) and dehydration regulons (ESK1, AREB/ABF, MYC- DREB2, ZF-HD/NAC 

and CBF4) (see Table S3 and references within) was used to identify homologous peach 

genes that were present on Chillpeach microarray (see Table S4). In total, 163 

Chillpeach unigenes corresponded to the genes found in at least in one of the 

previously defined cold and/or dehydration Arabidopsis regulons (Table S4). The 

expression profiles of these genes in response to cold storage were compared to those 

described for Arabidopsis (related either to non treated plants or cold-sensitive Arab 

mutants, or both) and scored as matching when they behave similarly. More than 60% 

of the genes associated to the regulons CBF, HOS9, ICE and DREB2 correlated well with 

both the known Arabidopsis WT cold response pattern and the Arabidopsis mutant 

expression (Table 4). That is, the ortologs genes to those up-regulated in Arabidopsis in 

response to cold showed higher expression levels in LS peach fruits than in high 

sensitive ones, while the genes down- regulated in Arabidopsis had higher levels in 

high sensitive peach fruits than in low sensitive ones. In contrast, most of the genes in 

HOS15, ZAT12, ESK, AREB, MYB, ZF/HD-NAC presented low correlation levels (Table 4). 

Therefore, these latter are less likely to contribute to the differences in response to 

cold between the S and LS pools of fruits. 

The individual participation of each regulon to the differential response to cold 

between fruits S and LS was assessed by studying their contribution to the 

traits/trends observed in the global dataset analysis. For this purpose, we performed 

both PCA and 2D-HCA (Fig. S1 in File S1) using the gene expression values for all the 

genes in each regulon as input datasets and quantitatively evaluate the importance of 

each regulon (i) to discriminate samples S from LS and (ii) to separate the samples that 

would eventually became mealy, or not, by assessing by the number of genes well 
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Figure 6. Comparison of the chillpeach data with the available microarray public domain data. 
A) The differentially expressed peach genes in the global analysis (Fig. 2 and 3) and reported as 
cold and/or Stress Response genes. The differentially expressed peach genes in the global 
analysis (Fig. 2 and 3) and reported as hormone responsive genes. 
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 correlated with Arabidopsis in the gene expression models (the PCA and 2D-HCA in Fig. 

S1). The importance to discriminate samples S from samples LS (Table 4) was 

calculated by multiplying the number of genes that correlated well by the variance 

explained by PC2. The importance of an operon to separate the samples that would 

eventually become mealy, or not (Table 4), was quantified by dividing the number of 

genes in that operon that correlated well by the weight of the nearest node to CS1-LS. 

Both PCA and 2D-HCA revealed that regulon ICE1 was the one most contributing to 

discriminate samples LS and S, as to separate samples CS1-LS from the rest of cold-

stored fruits that developed mealiness when submitted to shelf life ripening (Table 4). 

Furthermore, this analysis also indicated that the regulon CBF1 was the next major 

regulon in discriminating between samples LS and S (Table 4), while emphasized the 

relevance of HOS9 to separate CS1-LS from the remaining samples (Table 4). The rest 

of the cold operons produced no such separation between CS1 S and LS, or did so, but 

to a lesser extent (Table 4 and. Fig. S1 in File S1). The expression pattern of the subsets 

the genes appertaining to the regulons ICE1 (46 genes), CBF (31 genes) and HOS9 (13 

genes) across the different samples (Fig. S2 in File S1) showed that although extended 

exposure to cold debilitated the response of ICE-CBF regulated genes, fruits LS were 

able to maintain a longer and greater response for many of the genes in the(se) 

regulon(s) in the cold. In the case of HOS9 regulon, many of its members were up-

regulated or without change in LS fruits as compared to M fruits (Fig. S2C in File S1). 

 

C1.1.6.Validation and extension of microarray expression profiling  

The same bulked samples used in this microarray experiment were used to validate the 

results by using medium-throughput qRT-PCR (Biomark Dynamic Array, Fluidigm) over 

a set of genes (Table S5) selected because they 1) contributed to separate samples S 

from samples LS at 1 week of cold storage (Fig.2A and 4A), 2) showed a differential 

expression in, both, the M stage and 1-week of cold storage (Fig. 4A and 5A), and 3) 

showed differences at harvest (candidates to the preprogrammed mechanism of 

tolerance; Fig. 5A). 
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Table 4. Cold Regulons in Peach Fruits contributing to the Differential Response to Cold Storage 

  
Data for genes in each regulon and 

percentage of correlation PCA Hierarchical cluster Importance of regulon in to  

DATASETS Regulon 
Genes in 

Arabidopsis 
Genes found 
in chillpeach 

% of genes 
well 

correlated 
PC1 PC2 PC3 

PC1 separate 
CS1-LS from 

CS1-S 

PC2 
separate 

CS1-LS from 
CS1-S 

Weight of 
the nearest 

node to CS1-
LS 

CS1-LS 
branched 
out of CS 
samples 

Discriminate S 
from LS 
samples 

Separate 
samples that 
will become 
mealy or not 

Cold and 
dehydration 
regulons 

all 1236 163   64.9 14.0 9.5 ● √ 
 

√     

Cold CBF 187 31 74.19 65.0 15.0 9.0 ● √√ 0.69 √ 3.45 33.33 

Cold HOS9 154 14 78.57 70.5 18.4 5.2 √ √√ 0.142 √ 2.024 77.46 

Cold HOS15 135 10 40.00 60.0 20.0 10.0 ● ● 0.85 ● 0.8 4.71 

Cold ICE1 369 46 60.87 55.0 24.0 10.0 ● √√ 0.31 √ 6.72 90.32 

Cold/Dehydration ESK1 310 42 47.62 75.0 11.0 6.0 ● ● 0.671 ● 2.2 29.81 

ABA DEPENDENT AREB 99 17 52.94 66.0 21.0 5.0 ● √√ 0.696 √ 1.89 12.93 

ABA DEPENDENT 
MYC-
MYB 35 8 37.50 66.0 22.0 7.0 

● √ 
0.942 

● 
0.66 3.18 

ABA 
INDEPENDENT DREB2 45 10 70.00 70.0 16.0 7.0 

● ● 
0.601 

√ 
1.12 11.65 

ABA 
INDEPENDENT 

ZF-
HD/NA

C 83 17 35.29 67.0 18.0 7.0 
● √ 

0.934 
● 

1.08 6.42 

Cold ZAT12 26 3 33.33                   

Cold 
GIGANT

EA 1 1 100.00                   

ABA DEPENDENT CBF4 78 1 0.00                   

√, the property analyzed is fulfilled. ●, the property isn’t fulfilled. √√ indicates that the property is fulfilled but there is a high degree of separation between samples CS1-
LS and CS1-S.  
The table shows the number of members of each regulon described for Arabidopsis, the number of genes found in Chillpeach, the number of genes whose expression 
correlated with those described for the Arabidopsis WT, PCA and 2DHCA properties. The importance of each regulón based on both the variance explained by component 
2 of the PCA and the weight of the nearest node to CS1-LS. For each dataset, it is indicated if the genes in the dataset fulfill the PCA and cluster properties or not.  
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Figure 7. The differences between the microarray and qRT-PCR results in the magnitude of the 
expression levels for a selected number of genes. The y-axes represents the normalized fold 
expression change respect to the levels in the reference pool. 

  

M stage and 1-week of cold storage (Fig. 4A and 5A), and 3) showed differences at 

harvest (candidates to the preprogrammed mechanism of tolerance; Fig. 5A). In order 

to examine at the single sibling level the reliability of the differential gene expression 

patterns obtained from the pools, the analysis was performed also on 15 individual 

genotypes of the pop-DG population (those used in the pools and others showing 

differences in mealiness phenotype). The qRT-PCR results obtained from the pools and 

from the individual lines making up this pools indicate that 72.5% (50 of 69) of the 

genes had the same expression pattern in the microarray experiment as in the qRT-

PCR experiment (Table S6). However, the magnitude of expression varied slightly in 

many of the genes and samples tested (Fig. 7). Furthermore qRT-PCR experiments 

conducted on individual pop-DG siblings revealed that 42 out of the 50 genes validated 

in the pools were consistent with the expected patterns for which they were selected 

(Fig. 8). These results support the validity of our approach and indicate that the genes 

selected from the microarray analysis approach and indicate that the genes selected 

from the microarray analysis could be either involved in chilling tolerance and/or be 
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associated with the differential response to chilling response, and for some of them 

could even prove to general enough to hold true in individual fruits/plants. 

 

 

 

Figure 8. Degree of association between the genes validated by Fluidigm in a pre-defined 
expression pattern from the pools in the microarray and in individual Pop-DG siblings. A) The 
differentially expressed genes at 1 week of cold storage; B) B) The differentially expressed genes 
in the M stage and at 1 week of cold storage; C) The differentially expressed genes in the M 
stage. The Heatmap values correspond to the Pearson correlation coefficients between pairs of 
genes. For each gene in a gene set, the expression profile from the microarray results was 
defined and the Pearson correlation coefficients were calculated for pairs of genes in the 
individual sibling lines 
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C1.2.Discussion 

 

 

C1.2.1.Considerations about the experimental approach 

Since cold induced mealiness is not observed until the cold stored fruit are allowed to 

ripen, the chilling sensitivity phenotype of each fruit in the cold was estimated from 

the protracted mealiness incidence observed for equivalent fruit samples after shelf 

life ripening (Fig 2A). Although mealiness, probably, a downstream effect of cold stress 

in peach fruits MI is the best phenotyping tool to assess the effect of cold on peach 

fruit, and has be used successfully to identify CI QTLs in peach [4, 6]. A similar case can 

be build for for the growth retardation of the electrolyte leakage used to measure the 

effect of cold in vegetative tissues such as Arabiodpsis), 

For BSGA we use Chillpeach microarray [17], interrogating part of peach genome. This 

provides only an incomplete picture of the genes behind the process; that is partially 

compensated by Chillpeach microarray being enriched in fruit-specific and cold 

responsive genes [17]. 

Our study differs from prior peach transcriptomic analyses in two ways. First, we are 

using samples from pools of genetically related siblings with contrasting sensitivity to 

chilling injury subjected or not to cold storage. Thus we expect to reveal genes whose 

expression patterns are linked to the different cold sensitivity, while leveraging 

transcript differences associated with other phenotypic traits, as it would be the case 

when comparing only two peach cultivars that have different chilling susceptibilities in 

addition to other phenotypic differences. Second, by medium-throughput qRT PCR we 

extended our microarray (Figure 8 and Table S6) results derived from the comparison 

of the contrasting pools to a relatively large number of 15 individual lines from the 

same population differing in the mealiness sensibility and the gene expression results 

of the selected genes were consistent with their individual sensitivity level. 

 



 93 

C1.2.2.Cold storage conditions induces an acclimation program in 

peach fruits only to be more effective in tolerant than in sensitive fruits 

Orthologs of several transcription factors (TF) found up-regulated similarly in S and LS 

cold-treated fruits (Table 3) have been previously reported as being up-regulated 

during cold acclimation in Arabidopsis (see Table 3 for references) and some of them 

also were described as belonging to a given cold acclimation regulon [59, 94]. This 

suggests the activation of a cold response program in peach fruits in part similar to 

those described for Arabidopsis cold acclimation. Despite observing similarities some 

genes exhibited an opposite trend compared to Arabidopsis (Table 4) which may 

partially reflect the sensitive character of peach fruit to cold (both LS and S fruits are 

sensitive, but LS fruits are relatively more tolerant than S). Several studies have 

associated cold tolerance and cold acclimation the transcriptional activation of genes 

encoding heat-shock proteins (HSPs), chaperonins, LEA proteins, 

antioxidant/scavenging systems and related to protein synthesis [20, 28, 209, 215]. 

Genes in these functional categories were generally down-regulated by cold storage in 

both LS and S fruits, what correlates well with their sensitivity to cold. Further, the 

orthologs of HSF4B and HSP21 (Table 3) were up-regulated peach fruits, whilst were 

down-regulated in Arabidopsis. This is particularly interesting as these genes are highly 

up-regulated in Arabidopsis chilling sensitive mutants upon chilling treatment 

[209],[59]. It should be noted that we are comparing the transcriptomes of different 

species and tissues at various physiological and growth stages, and it is likely that some 

differences in strategies (efficient or not) to cope with exposure to low temperatures 

operate in each case [216]. 

The basic question is: why do LS Pop-GG siblings tolerate better cold storage than S? 

Our results indicate that during cold storage fruits LS maintain higher levels of 

expression for a series of components of the antioxidant system, structure 

maintenance proteins and protein synthesis at least during the first week of storage 

(Fig. 3D, 4B and Table S2). In addition, the orthologs of some TF with a higher 

expression levels in tolerant peach fruits (Table 5) have been reported to be up- 

regulated by cold and/or other biotic or abiotic stresses in Arabidopsis (Table 5).
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Table 5. Expression Regulators and Signaling Elements with High Expression in Low Sensitive Fruits at One Week of Cold Storage with stress and 
hormone related roles.  

   Chillpeach ID Gene description 
Arabidopsis 
Gene Symbol 

HCA pattern 
CS1 

S vs LS 
pattern 

stress/hormone 
Cold 
regulo
n 

References 

RNA post-transcriptional regulation 
  RNA biogenesis and processing PPN035E09 Dehydration-induced protein ERD15 CS-glob9 LS>S negative regulator ABA  [217] 
   PPN048C02 Sm-like protein SAD1 CS-glob10 LS>S negative regulator ABA  [218] 
RNA transcription regulation 
  AP2/EREBP family PPN049D05 similar to DREB3  CS-glob8 LS>S cold, drought, salinity  [219] 

   PPN054B03 CBF1 DREB1A/CBF3 CS-glob9 LS>S
b
 CA-UR, AUX down-regulated 

ICE1/ 
CBF 

[49],[220],[19
4],[52],[221] 

  AUX/IAA family PP1009D02 IAA16 protein AXR3/IAA17 CS-glob9 LS>S 
negative regulator in AUX and ABA 
signaling 

 [222] 

   PPN057F01 AUX/IAA protein PAP2/IAA27 CS-glob4 LS>S light  [223],[224] 
  b-ZIP family PPN049B04 BZIP transcription factor bZIP68  CS-glob10 LS>S light, cold  [225],[226] 

  C2C2-CO-like Family PPN050G11 Znfinger (B-box type) family protein AT4G27310 CS-glob10 LS>S cold 
AREB/ 
ABF 

[227] 

  CAMTA family PPN075B05 
Anther-ethylene-up-regulated 
protein ER1 

SR1 CS-glob2 LS>S
d
 cold up, salinity, defense and ET  [228],[229] 

  CCAAT Family PPN006E07 Repressor protein NF-YB13 CS-glob10 LS>S darkness  [230] 
  HMG-family PPN042B12 HMG-protein HMGB1 CS-glob2 LS>S

d
 stress   [231] 

  MYB-family PPN041A07 myb family transcription factor CDC5 CS-glob9 LS>S defense responses, light, cold  
[232],[225],[2
26] 

   PPN055C11 
Sucrose responsive element 
binding protein 

ATMYBR1/ATM
YB44 

CS-glob10 LS>S cold ICE1 [94] 

  PHD-family PPN051C09 PHD finger protein At5g26210 AL4 CS-glob3 LS>S cold, salinity and ABA   [233] 
   PPN068F05 PHD finger protein At5g26210 AL4 CS-glob10 LS>S cold, salinity and ABA   [233] 
  RNA transcription machinery PPN027A09 Sigma-like factor precursor ATSIG5 CS-glob2 LS>S light  [234] 
Protein degradation 
  Proteolysis control-Signalosome PPN042D08 COP9 signalosome complex subunit  COP9 CS-glob8 LS>S light   [235] 
Signal transduction pathway 
  ABA signaling/reversible protein 

dephosphorylation 
PP1009B12 Protein phosphatase 2C ATPP2CA/AHG3 CS-glob10 LS>S negative regulator ABA  [236] 

  PPN029F02 Protein phosphatase 2C (AtP2C-HA) HAB1 CS-glob3 LS>S negative regulator ABA  [237] 
  

Aux signaling/Unknown SAUR 
protein 

PP1001B04 expressed protein (DUF298) AAR3  CS-glob4 LS>S
d
 AUX response regulation  [238] 

  PPN015D06 SAUR protein  CS-glob4 LS>S AUX   
  PPN051E05 SAUR protein)  CS-glob2 LS>S AUX   
a
 contribution to PC2 (Fig 2A) negative; 

b
 negative correlation with projected MI.  

Arabidopsis response during cold acclimation:.CA-UR cold acclimation up-regulated 
 



 95 

All this supports the idea of the existence of an acclimation program more effective in 

fruits LS. In this sense, our data indicated that the peach orthologs for genes in ICE1, 

CBF and HOS9 regulons may be implicated in the tolerance of fruits LS. The central role 

played by the ICE1-CBF cold response pathway in cold acclimation and cold tolerance is 

well-established in plants [47] and has been demonstrated to exist in a wide range of 

plants [105, 107, 117], although, there are differences in the regulation or the size of 

their CBF regulons [118, 120]. The existence of ICE-CBF pathway has been also 

confirmed in fruits [107, 117]. Further, LeCBF1 expression levels correlates positively 

with cold tolerance in tomato fruits [126]. We found that genes in the regulons 

ICE1and CBF were the most contributing to discriminate samples S from LS, and/or to 

separate samples that will become mealy, or not (Table 4 and 5). Moreover, PCA 

analysis identified CBF1 as the second gene that contribute the most to separate the S 

and LS series (Fig. 2B and Table S2) and qRT PCR analysis showed that the expression 

levels of CBF1(PPN054B03) correlate well with the tolerance/sensitivity of the 

individual pop-DG siblings (Fig. 8). Thus, confirming ICE-CBF as important actors in the 

differential response to chilling between peaches S and LS. In the case of the genes in 

regulon HOS9 our results suggest that it is more likely related with the ability to up-

regulate or to maintain similar expression levels to those observed in M fruits (Fig. S2C). 

Zhu et al. [84] concluded that HOS9 must be important for both the constitutive 

expression and cold-induced expression of the genes that may be required for full 

tolerance to freezing stress. These results are consistent with peaches having the basic 

components of a cold response pathway, but additional studies will be required to 

elucidate their size and how they are regulated. 

In normal commercial fruit operations cold storage, involves also complete darkness. 

Gene by gene comparisons has revealed that around 3% of our cold regulated genes in 

peaches could be related to darkness (Fig. 6A). Moreover, we identify some genes 

whose orthologs have been described in the regulation or in response to light (Table 3, 

5 and 6). Several, light sinaling elements among which were GI [239], DFL2 [240], PHYA 

[241] and FYPP3 [242] were repressed by cold storage in both LS and S (Table S2), 

consistently with the storage in darkness conditions. In addition, genes differentially 
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expressed between fruits S and T include a number of regulators involved in light 

response (Tables 5 and 6) that indicates we should take into account this factor as 

contributing the differential response observed in peach fruits. In Arabidopsis light is 

required for cold induction of several genes involved in cold acclimation, including 

CBFs [81, 243] and some light signaling mutants have impaired cold acclimation [244]. 

Thus the differential response to cold storage of fruits S and LS probably have to do 

fruits’ ability to deal with cold and darkness. However, further experiments are 

required to determine in more detail the nature of the interaction between the cold 

and the darkness during storage. 

 

C1.2.3.Altered and continued ripening associated dehydration/osmotic 

stress could be related with the sensitivity of peach fruits to cold. 

Despite no visible mealiness symptoms are observed during cold storage, the BSGA 

indicated dramatic changes in the peach transcriptome in response to the exposure to 

mealiness-inducing temperatures in a manner that these changes could be useful to 

predict future mealiness development (Fig. 2, 3 and 4). We propose the transcript 

differences observed while in the cold might underlie the molecular basis of a 

mealiness phenotype which is still undetectable, but will be fully developed later 

during shelf life. This is in agreement with previous reports of the cold induction of 

specific target genes that are associated with the mealiness disorder [12, 14]. 

Surprisingly, our results showed that cell wall is not found among enriched categories 

in none of the clusters/comparisons performed on cold stored samples, suggesting 

that although specific changes in cell wall remodeling transcript are detected (Table 

S2) most of the changes would probably occur during shelf life [135]. 

Our results reveal also that transport and signaling elements (Fig. 4B) presented higher 

levels in S fruits, which in some cases, correlated well with the eventual mealiness 

phenotype. We found the orthologs of genes described as positive regulators of ABA 

signaling and/or osmotic stress (Table 6) and transporters related to Na+ and K+, sugar 

and nitrate homeostasis (Table S2) among genes high expressed in fruits S This 

suggests that fruits S during cold storage undergo some sort of dehydration or osmotic 
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adjustment. It has been proposed that during cold storage, before mealiness is 

manifested, pectin depolymerisation but not de-esterification is inhibited [135, 143, 

144], what may lead to the formation of gel-forming pectins that traps free water from 

the surrounding tissue. As no significant differences in global water content are found 

between LS and S fruits (A.Dagar, personal communication) it is likely that water is 

being lost from the cell to be trapped on the pectins of the cell wall, which still would 

be sensed as loss of internal water by the cell. 

Among genes with higher expression in sensitive fruits we identified components of 

auxin and ethylene signaling cascades as well the orthologs of genes involved in the 

biosynthesis of ABA, auxin and ethylene (Table 6). We must highlight the large list of 

genes related to auxins among with were positive regulators of auxin responses and 

transporter locations (Table 6). In addition, among the genes high expressed in the 

fruits LS at one week (Table 5) there were the orthologs of genes such as HAB1 [237], 

PP2CA/AHG3 [236], SAD1 [218] and ERD15 [217], which have all been described as 

negative regulators of ABA signaling, and IAA17/AUX3, proposed to be a negative 

regulator in auxin and ABA signaling [222]. Ethylene and auxins has been described in 

the regulation of the ripening program of peach fruits [245] and their involvement in 

the cold response has been described for Arabidopsis [94, 98],tomato [127], apple 

[122] and peach [246]. Our results indicate that part of the ripening program probably 

continues during cold storage in sensitive fruits (Fig 2B and 5B). Hence, we could 

expect that interactions between cold and hormones controlling the peach ripening 

program, which are differential between fruits S and T, impact the way fruits respond 

to cold and ripen afterwards during shelf life. Because the activity of most of these 

genes is mainly determined at post-trasncriptional level reviewed in [247], it is not 

possible from expression data only to infer the role of these genes during cold storage. 

However from our data it is clear that all three hormones may play a role in regulating 

the differential response of peach fruits to cold and they seem operate in association 

with dehydration/osmotic stress. In support of that, the orthologs of many of hormone 

related genes higher expressed in CS1-S fruits have been described previously either in 

relation to drought and osmotic stress (Table 6). 
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Table 6. Expression regulators and signaling elements with high expression in high sensitive fruits at one week of cold storage with stress and 
hormone related roles. 

   Chillpeach ID Gene description 
Arabidopsis 

Gene Symbol 
HCA 

pattern 

CS1 
S vs LS 
pattern 

stress/hormone References 

Energy production 

  
vacuolar ATP production and cytoplasmic 
PH regulation 

PPN014F01 Vacuolar H+-ATPase subunit C DET3 CS-glob5 S>LS Light, AUX, ABA 
[248],[249],[250
] 

Protein degradation 

  chloroplast protease PPN022B02 ERD1 protein, chloroplast precursor ERD1 CS-glob1 S>LS 
ABA, drought, salinity, dark 
induced senescence 

[251],[252],[253
] 

  peptidase PPN007E05 aminopeptidase M, similar APM1 CS-glob1 S>LS AUX transport regulation [254] 

  Proteolysis control-Signalosome PPN008B05 COP9 signalosome complex subunit 2  
FUS12/ 
ATCSN2 

CS-glob1 S>LS light  [255] 

  SCF complex assembly and disassembly PPN068H05 Putative TIP120 protein CAND1 CS-glob1 N/A AUX signaling [256] 

  Ubiquitin ligase E3 complex/SFC-culin PPN030D09 Cullin AXR6/ CUL1 CS-glob1 S>LS AUX signaling regulation, light  
[257],[258],[259
],[260],[261] 

   PPN032E01 Cullin family CUL3 CS-glob1 N/A ET production, light [262],[263] 
RNA transcription regulation 

  ARF-family PPN051B02 Auxin response factor 2 
NPH4/ 
ARF7/TIR5  

CS-glob5 N/A AUX response regulator, cold 
[264],[265],[266
],[267],[94] 

   PPN072B07 Auxin response factor 5 MP/ARF5 CS-glob7 S>LS 
AUX signaling and transport 
regulator 

[268],[269] 

  b-HLH family PPN080F10 Prf interactor 30137 LHW CS-glob6 S>LS AUX signaling [270] 

  GRAS-family PPN078C08 GRAS1 
SCL14/GAI/SC
R 

CS-glob8 S>LS CA-UR [198],[94],[95] 

  GroTLE transcription corepressor family PPN076D05 Transcriptional corepressor LEUNIG LUG CS-glob1 S>LS AUX signaling regulator [271],[272] 

  HB-family PPN069A12 
BEL1-like homeodomain transcription 
factor 

BLH1 CS-glob5 S>LS drought, salinity  [273],[207] 

  MADS-box family PP1009H08 MADS box transcription factor AGL24 CS-glob8 S>LS 
cold up-regulated 
(vernalization) 

[210] 

  MYB-family PPN058F01 GAMYB-binding protein SKIP1 CS-glob1 S>LS ABA, drought, salinity [274] 

  NAC-family PPN023B05 NAC domain-containing protein 78 
NAC2/anac07
8 

CS-glob1 S>LS AUX, ET, salinity [275] 

   PPN062G07 NAC family protein ATAF1 CS-glob2 S>LS 
ABA, drought, salinity, 
pathogen 

[273],[276] 

  RNA transcription machinery PPN067A07 Elongator component ELO1 CS-glob1 N/A ABA, AUX [277],[278] 

   PPN070H08 
C-terminal domain phosphatase-like 
2 

CPL2  CS-glob6 S>LS
a,c

 
osmotic (salinity) stress and 
AUX responses  

[279] 

  Unknown transcription coactivator PPN063D04 COP1-Interacting Protein 7 CIP7 CS-glob2 S>LS light [280] 
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Secondary metabolism 

  Aux metabolism/ Aux biosynthesis  PPN034D04 
Flavin-containing monooxygenase, 
putative 

YUC10 CS-glob8 S>LS AUX biosynthesis 
[281],[282],[283
] 

  Aux metabolism/ Aux conjugation PPN030D12 
similar to Putative auxin-
amidohydrolase precursor  

 CS-glob5 S>LS AUX metabolism  

  Aux metabolism/Aux deconjugation PPN017F04 
Auxin and ethylene responsive GH3-
like protein 

GH3.1 CS-glob1 S>LS stress, AUX metabolism [221] 

  Carotenoid metabolism PP1005H08 
Zeaxanthin epoxidase, chloroplast 
precursor 

ABA1 CS-glob8 S>LS ABA biosynthesis [284] 

  Ethylene biosynthesis PP1009G10 
1-aminocyclopropane-1-carboxylate 
oxidase 

EFE/ACO4  CS-glob2 S>LS ET biosynthesis [285] 

 Signal transduction pathway       
  ABA signaling/ Ca signal transducer PPN027B08 Calcium-dependent protein kinase CPK32 CS-glob1 S>LS ABA, salinity [286] 

   PPN029E04 GTP-binding protein-related, .. 
MIRO2/ATCB
G 

CS-glob1 N/A ABA, salinity [287] 

   PPN031C02 Rac-GTP binding protein-like 
MIRO2/ATCB
G 

CS-glob2 S>LS ABA, salinity [287] 

   PPN069F09 PK11-C1 OST1/ /SRK2E CS-glob6 N/A ABA, osmotic stress 
[288],[289],[290
] 

  ABA signaling/Casein kinase regulation PPN057C06 casein kinase 1 protein family CKL2 CS-glob1 S>LS ABA regulation [291] 

  ABA signaling/signal transducer PPN021G09 Protein kinase SNF1/SRK2I CS-glob6 S>LS
c
 ABA, osmotic stress 

[288],[289],[290
] 

  
Aux signaling/ Aux receptor E3 ubiquitin 
ligase SFC-TIR 

PPN070C07 F-box containing protein TIR1 AFB5 CS-glob1 S>LS AUX signaling [292],[293] 

   PPN078E01 
TRANSPORT INHIBITOR RESPONSE 1 
protein 

TIR1 CS-glob6 N/A AUX signaling [294],[295] 

  Aux signaling/pin phosphorylation PPN014G07 
Serine/threonine-protein 
phosphatase 2A reg. sub. A beta 

PDF1/PP2AA2 CS-glob6 N/A AUX signaling [296] 

  
Aux signaling/Ubiquitin ligation E3 
complex/ F-box 

PPN026G02 
Auxin-responsive factor TIR1-like 
protein 

AFB2 CS-glob1 S>LS AUX signaling [297] 

  Calcium signaling/Calcium signal transducer PPN011E06 
CBL-interacting serine/threonine-
protein kinase 11 

ATSR1/CIPK1
4 

CS-glob2 S>LS cold, salinity and ABA  [298] 

   PPN013H01 Serine/threonine kinase CIPK10/ SIP1 CS-glob11 S>LS cold, salinity and ABA  [298] 

   PPN017F05 
CBL-interacting serine/threonine-
protein kinase 11 

CIPK11/ SIP4 CS-glob6 N/A cold, salinity and ABA  [298] 

   PPN080C05 Protein kinase; NAF CIPK1 CS-glob6 S>LS
a
 ABA, osmotic stress [299] 

  
Cyclic nucleotide signaling/(p)ppGpp-
mediated response 

PPN046D08 RelA/spoT-like protein RSH2 RSH2 CS-glob6 N/Ac ABA, salinity, wounding [300] 

  
Ethylene signaling/ SCF(EBF1) E3 ubiquitin 
ligase 

PP1005A04 Leucine Rich Repeat, putative EBF1 CS-glob1 N/A ET, cold  [301],[98, 302] 

   PPN023E11 EIN3-binding F-box protein 1 EBF2 CS-glob5 S>LS ET, cold  [301],[98, 302] 
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  Ethylene signaling/ethylene receptor PPN054G06 Ethylene receptor  CS-glob2 S>LS ET  
   PPN057C10 Ethylene signaling protein EIN2 CS-glob1 N/A ABA, ET, cold, abiotic stress [303],[304],[305

],[306],[307],[2
46],[98] 

   PPN079H05 Ethylene signaling protein EIN2 CS-glob1 N/A ABA, ET, cold, abiotic stress 

  G-protein coupled receptor protein 
signaling pathway/G-protein complex 

PPN005H05 Extra-large G-protein XLG1 CS-glob1 N/A osmotic stress, ABA [308] 
  PPN029C06 Extra-large G-protein XLG1 CS-glob1 S>LS osmotic stress, ABA [308] 
   PPN065B10 Extra-large G-protein XLG3 CS-glob6 S>LS osmotic stress, ABA [308] 

  
Light signaling/light receptor 
 

PPN005E08 Cryptochrome 2A apoprotein CRY2 CS-glob3 S>LS Light, low temperature [309],[310] 

  Light signaling/light transducer 
PPN023G10 
 

phototropic-responsive NPH3 family 
protein 

3 CS-glob6 S>LS light [124] 

  Phosphorylation cascades/PP2A PPN037E11 
Serine/threonine protein 
phosphatase 2A reg. sub B' gamma 

ATB' GAMMA  CS-glob1 S>LS light, defense response [311] 

  Phosphorylation cascades/PP2C PP1005B01 protein phosphatase 2C, putative PP2CG1 CS-glob6 S>LS ABA, drought, salinity [312] 
Trafficking machinery and membrane dynamics 

  ER to Golgi PP1003D05 Root hair defective 3 RHD3 CS-glob5 S>LS AUX, ET  [313] 

  
ESCRT-dependent protein sorting and 
concentration 

PPN005D10 Putative vacuolar sorting protein 35 VPS35A CS-glob5 S>LS AUX transport regulation [314] 

   PPN026H03 Putative vacuolar sorting protein 35 VPS35A CS-glob1 S>LS AUX transport regulation [314] 

  Nucleocytoplasmic transport PPN023D05 Peptidase S59, nucleoporin SAR3/ MOS3 CS-glob1 N/A 
AUX-regulated nuclear 
transport  

[315] 

  
Trans-Golgi network transport vesicle/ COPI 
vesicles 

PPN002C04 ARF-GAP SFC  CS-glob5 S>LS AUX transport regulation [316] 

Transport 
  Aux transport PP1004E09 auxin efflux carrier family protein  CS-glob8 S>T

c
 AUX  

   PPN058C04 Auxin efflux carrier protein-like  CS-glob6 S>LS AUX  
   PPN075H08 auxin efflux carrier family protein  CS-glob8 S>LS AUX  

  
Fe-S cluster maintenance and response to 
far red light 

PPN024F02 Protein NAP1, chloroplast precursor NAP/LAF6 CS-glob3 S>LS light [317] 

  Lead tolerance PPN032F06 PDR-like ABC-transporter PDR12 CS-glob1 S>LS
a
 ABA, drought [318] 

  Na/K antiporter PPN064A01 Na+/H+ antiporter SOS1 CS-glob1 S>LS salinity, ion homeostasis 
[319],[320],[321
] 

a
 contribution to PC2 (Fig 2A) negative; 

b
 negative correlation with projected MI 

Arabidopsis response during cold acclimation:.CA-UR cold acclimation up-regulated 
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For example, the orthologs of SKIP [274], BRM [165] and ERD1 [251],[322]mediate the 

responses or are induced by ABA, salinity and dehydration stress; CPL2 modulates 

auxin responses, plant growth and osmotic (salinity) stress [279] and EIN2 has been 

described to be an important cross-link node for the interaction of ethylene, ABA and 

plant response to abiotic stress [323]. 

We cannot rule out that the “sensitivity” program is the consequence or the cause of 

low levels ICE1-CBF regulons. It is possible that the up-regulation of a set of common 

genes (cluster CS-glob8, Fig. 3A) concomitantly with low CBF levels triggers this 

program. It is also feasible that among CS1 S>LS there are genes which negatively 

regulate the CBF response. To support this, EIN2 (Table 6) has been described as a 

negative regulator of plant response to freezing stress by negatively regulating the 

expression of CBF1-3 and its target genes [98]; interestingly, CBF genes have been 

found to be directly repressed by IAA [221]. Finally, it may also be possible that this 

program is activated to compensate efficient acclimation during cold storage. It has 

been described that hos9 mutants hyperactivate some cold-regulated genes through a 

compensating response to their increased cold sensitivity [84]. 

 

C1.2.4.A preprogrammed mechanism contributes to chilling tolerance 

At the mature stage specific differences at the gene expression level between the 

pools of fruits S and T already exist (Fig. 5A). Although our approach used pools of 

fruits in accordance to how they respond to cold storage, therefore minimizing 

differences in other aspects between genotypes, we can’t dismiss the possibility that 

these differences have nothing to do with adaptation to cold. Preformed mechanisms 

have been described in both biotic and abiotic stress tolerance [324-326] and we 

previously identified a subset of genes differentially expressed at harvest that correlate 

well with CI [134]. 

Cell wall metabolism has been extensively related to mealiness in peach fruits [135, 

143, 144], and it has been reported that endo-polygalacturonase plays a qualitative 

role in the mealiness expression [4]. Our results indicate that the composition of the 

cell wall at harvest could play a role in the tolerance or sensitivity of peach fruits to 
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withstand cold storage. This is in agreement with previous results [134]. In addition the 

type of functional categories for the differentially expressed genes at the stage M, and 

the fact that most of these genes continue to show these differences during cold 

storage (Fig 5A and Table S2), suggest the possibility that a pre-programmed 

tolerance/sensitivity mechanism can be partly established previously to cold. Among 

the highly expressed genes in fruits LS at the mature stage, we found orthologs of 

genes such as CHS/TT4 and GST12/TT19 (Table S3), which have been described being 

essential for anthocyanin and proanthocyanin accumulation [327, 328]. Anthocyanins 

have been related with browning in peaches [5]. However, no significant differences in 

browning, bleeding (Table 1) nor in ppLDOX expression (Table S2) were observed 

between our pools. It is suggested that AtTT19 functions as a carrier to transport 

proanthocyanin precursors to the tonoplast [329] to be later secreted and linked to 

cell wall polysaccharides [330]. Binding that depends on the composition of the 

proanthocyanin [331]. The tt19 mutation leads to the formation of aberrant PA 

derivatives [329]. Thus is possible that differences in TT19 have to do with cell wall 

composition and chilling sensitivity. Further experiments are required to test this 

hypothesis. 

In addition, flavonoids act as negative regulators of auxin transport [327]. It is 

noteworthy that at harvest only two transcription factors (PAP2/IAA27 and IAA16) 

were differentially expressed, both showing higher expressions in T fruits and in the 

case of the ortholog of PAP2/IAA27, also at 1 week of cold storage (Table 5). SlIAA27 

silencing results in greater auxin sensitivity in tomato [332]. Moreover, a gain-of-

function mutation in IAA16 confers poorer responses to auxins and ABA in Arabidopsis 

[333]. Thus, it is likely that high levels of these genes at harvest contribute to delay the 

ripening program or protect fruits LS during cold storage, at least at the beginning of 

cold storage. 

The analysis of the expression profiles during cold of the genes differentially expressed 

in M fruits resulted in important and unexpected expression characteristics. In fruits LS, 

these genes behaved like ripening genes (Fig. 5A) and were able to continue with the 

ripening program in the cold in fruits LS, while the ripening expression of other 
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ripening genes was normally halted (Fig. 5B),which is not the case of high sensitive 

fruits. The ability of cold to stop fruit ripening has been previously reported [26], even 

if no details of how this happens at the molecular level have yet been provided. 

Although we have no hypothesis about why these genes continued with the ripening 

program in the cold (thus we expect that cold stopped ripening program efficiently in 

fruits LS), we believe that this may be because these genes are part of the adaptation 

mechanism or simply reflected that LS fruits perform better in the cold than S fruits. In 

apples the ability to set up ripening during cold seems to be an adaptative mechanism 

to shorten ripening time in colder autumns [122]. On the other hand, this unexpected 

behavior of some of the genes differentially expressed at harvest indicates that they 

not only can form part of a mechanism for the interaction between endogenous and 

exogenous signals, they could also be able to contribute to mealiness in response to 

cold stress. In light of this, it is interesting to remember that environmental/ripening 

stage/cultural preharvest practices have a strong effect on CI sensitivity during the 

postharvest [2, 3, 334, 335] which, together with the genetic background, may be 

responsible for the differences noted in the M stage that condition the cold response.  
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Chapter 2. Comparative analysis of the changes in 

transcriptome occurring during cold in chilling 

sensitive and resistant peach cultivars with those 

occurring in pools of siblings from the Pop-DG 

population 

 
 
 
 
 
 
C2.1. Results 

C2.1.1.Ripeness and chilling injury parameters of 'Oded' and 'Hermoza’ 

peaches  

The fruits of Od and Hz were slightly different at harvest. Ripening parameters and 

results of t-tests are summarized in Table 2. At harvest, Od peach fruit were 30% 

smaller (by weight) than Hz peaches. Furthermore, Hz fruit were less acidic (0.33 % 

compared to 0.43%), and had higher soluble solids (14% compared to 12%). However, 

there were no significant differences in ethylene production or in firmness between 

fruit of the two cultivars. The ethylene levels in Od and Hz fruit were 0.69 µL kg
-1

 h
-1

 

and 0.78 µL kg-1 h-1, respectively (Table 2). According to Kader & Mitchell [164] both 

cultivars were harvested at similar commercial mature stage (M). However it is obvious 

that physiological differences exist between both cultivars at the mature commercial 

stage, related to their growing conditions, length of development and genetic 

background.  
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Although Hz peaches were firmer than Od peaches during storage (Figure 9A), these 

cultivars exhibited similar trends in firmness during CS at 5°C. Fruit of both cultivars 

 

Figure 9. Comparison of chilling injury symptoms of 'Oded' and 'Hermoza'. A) Firmness of 
'Oded' and 'Hermoza' peaches at harvest and after cold storage at 5°C (black colored symbols), 
and during ripening at 20°C (shelf life, open circles). Standard deviation is indicated. B) 
Expressible juice of 'Oded' and 'Hermoza' peaches at harvest and after cold storage at 5ºC (black 
colored symbols), and during ripening at 20ºC (shelf life, open symbols). C) Woolly texture (WLT), 
flesh browning (FB) and flesh bleeding (FBL) indices of 'Hermoza' peaches during shelf life after 
cold storage at 5ºC. 

 
retained their firmness for the first two weeks of storage, and upon the third week in 

the cold began to soften (Figure 9A). The firmness levels of both cultivars during shelf 

life (SL) ripening following cold storage (CS), although much lower than during CS, was 

also similar; with Od reaching 7 to 9 N, and Hz between 8 to 14 N. These values were 
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lower than the softening that occurred when the fruit were held for three days at 20°C 

without storage (Figure 9A).  

Consistent with previous findings that Od fruit were resistant to CI in CS [168], 

expressible juice did not change during SL ripening after CS (remaining approximately 

65%) while Hz decreased to 27% ( Figure 9B) and no WLT was observed visually in Od 

fruit ( Figure 9C). Further, there were no symptoms of FB or FBL in Od during ripening 

after CS for up to three weeks (Figure 9C). In contrast, Hz was sensitive to CI, and 

developed FB and FBL during SL after 2 weeks of CS and all three CI symptoms after 3 

weeks.  

 

C2.1.2.Global transcriptome analysis 

The Chillpeach microarray [17] was used to analyze the transcriptomes of peaches 

from both cultivars at harvest and after 1 and 2 weeks of storage. These stages were 

selected to investigate pre-symptomatic early events in the chilling response which 

may be associated to WLT, FBL and FB.  

In total, 3277 probes met the threshold for hybridization quality (Additional Table S7). 

As a first approach to analyze the complexity of the gene expression dataset, a 

Principal Component Analysis (PCA) was performed on raw data. The three first 

components account for 80% of variance (Figure 10A, B). The results of the PCA plot 

showed consistency across replicated samples and treatments and, therefore, the 

experiment was considered reliable for further analysis. The 1st component (PC1, 

52.32% variance) clearly separated harvest from cold-treated samples (Figure 10A). 

The 2nd component (PC2, 17.65%) separated cold stored samples of the tolerant 

cultivar Od from the sensitive Hz. The 3rd component (PC3) which contributed 10% of 

the difference in gene expression, separated the two cultivars at harvest (Figure 10B), 

which indicates that most of differences in the transcriptome induced by cold are due 

to differences in the sensitivity to develop injury rather than to differences at harvest. 

However, PC3 shows that genes differentially expressed at harvest reach similar 

expression values after being cold stored 1 and 2 weeks in Od and after 1 week in Hz, 
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but not Hz-CS2 fruit, which were projected separately from the other cold stored 

 

Figure 10. Principal Component Analysis (PCA) of harvest and cold stored ‘Oded’ and 
‘Hermoza’ samples according to their lowess normalized expression data. Three biological 
replicates per sample were analyzed. A) First principal component (PC1) is shown on x-axis while 
the second principal component (PC2) is shown on y-axis. B) PC1 is shown on x-axis while the 
third principal component (PC3) is shown on y-axis. The percentage of the variance explained by 
each component is indicated. Od: ’Oded’; Hz: ‘Hermoza’; H: harvest; CS1: 1 week at 5ºC; CS2: 2 
weeks at 5ºC. 

 
samples. This indicates that genes differentially expressed at harvest could be involved 

in the eventual injury these fruit suffered when shelf ripened after two weeks in the 

cold (i.e. FB) but not to the phenotypical differences observed by just one week (i.e 

FBL). 

 

C2.1.3.Differences in the transcriptome of ‘Oded’ and ‘Hermoza’ fruits 

at harvest and during cold storage 

A direct comparison between Od and Hz peaches at harvest and at the different cold 

storage periods (CS1 and CS2) was carried out in order to identify genes differentially 

expressed in between the two cultivars and thus, eventually, to discover genes 

involved in chilling injury resistance/sensitivity at pre-symptomatic stage. As shown in 

Figure 11A the number of differentially expressed genes between the two cultivars 
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was higher following cold storage (1 and 2 weeks) than at harvest, thus confirming PCA 

results. 

 

Figure 11. Differential gene expression between the ‘Oded’ and ‘Hermoza’ peach fruits at 
harvest and after 1 and 2 weeks of cold storage. A) A Venn diagram showing the differentially 
expressed genes (FDR<0.05 and q-value<0.05) between the tolerant Od and the sensitive Hz 
fruits at each time of cold storage. B) The over-represented functional represented functional 
categories (p-value 0.05) corresponding to the differentially expressed genes high expressed in 
Hz comparing to Od at harvest and at each time of cold storage. H: Harvest; CS1: cold storage of 
1 week at 5ºC; CS2: cold storage of 2 weeks at 5ºC; Od: 'Oded' peach; Hz: 'Hermoza' peach 
 

A total of 735 genes were differentially expressed at harvest, and out of these 344 and 

393 genes were up- and down-regulated, respectively, in Od compared with Hz at 

harvest (Figure 11A; Additional Table S8). As shown in Figure 11B, the genes with 

higher expression in Od at harvest were functionally enriched in RNA translation and 
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protein assembly, cytoskeleton organization and biogenesis, secondary metabolism, 

glycolysis and organelle division and differentiation. Genes under-represented (i.e., 

overexpressed in the sensitive cultivar Hz) were enriched in antioxidant system, signal 

transduction, post-translational protein modification and unknown function (Figure 

11C). Approximately 90% of the genes differentially expressed at harvest have altered 

expression during cold storage (Figure 11A). This suggests that they have to do with 

the differential chilling response in both cultivars (as we showed in PCA, Figure 10). 

However, some of them belonging to functional categories such as cell wall, glycolysis, 

tricarboxylic acid cycle (TCA) and other carbohydrate metabolism, and may also 

account for the physiological differences observed between Od and Hz at harvest 

(firmness, soluble solid content, acidity; see Table 2; Additional Table S8). By one week 

of CS, 1990 genes were differentially expressed (Figure 11A).  

Functional enrichment indicated that RNA translation and protein assembly was higher 

in Od than in Hz, both at harvest and during 1 and 2 weeks of cold storage (Figure 11B). 

Out of 42 genes in this functional class over-represented in Od at harvest, 21 genes 

were also higher expressed in Od at one week of cold and 12 genes by two weeks. 

Moreover, 61 genes also showed high expression levels in Od by 1 and 2 weeks of cold 

storage and twenty genes were common in all three time points (Additional Table S8). 

This suggests that enhanced protein synthesis at harvest and during cold is critical for 

tolerance development. Secondary metabolism and glycolysis enriched genes were 

highly expressed in Od both at harvest and after 2 weeks of cold storage (Figure 11B). 

This overlap indicates that differences at harvest may account for the differences 

observed at 2 weeks of CS, as suggested the PCA (Figure 10). Genes of the signal 

transduction and transport functional categories were enriched in the sensitive cultivar 

Hz at harvest and also after 1 week of CS (Figure 11C), thus suggesting that they may 

be related to the sensitivity to cold storage. The functional category antioxidant 

systems was enriched in both cultivars at different time points. Fifteen antioxidant 

related genes were more highly expressed in Hz at harvest (15 genes) and 30 were 

over-represented in CS1 of Od peaches (Figure 11B and C). Out of the 15 genes 

encoding for antioxidant activities, 11 were high expressed in Od peaches at one week. 
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This suggests that high levels of antioxidants at harvest are not directly related to the 

tolerance to cold storage, rather it appears that high levels of antioxidants during cold 

storage contribute to the tolerance. In addition, only four genes encoding for 

antioxidant activities were highly expressed in Hz at harvest and, as is the case of the 

orthologs of catalase 2 (CAT2) and thioredoxin (TRXH2), also during cold storage 

(Additional Table S8), suggesting that they are related to the sensitivity to cold. 

 

C2.1.4.Kinetics of the cold response in ‘Oded’ and ‘Hermoza’ 

To investigate chilling-induced alterations in the gene expression profiles of the two 

cultivars in this study, differentially expressed genes were assessed with a false 

discovery rate (FDR) of 1%, q-value ≤0.01 based on three replicates. We found 2964 

genes differentially regulated at least for one condition (samples H and CS samples) in 

either of genotypes. To distinguish whether transcripts are differentially affected by 

cold and analyze kinetics while avoiding the effect of harvest differences, expression 

data was normalized to harvest values. Differentially expressed transcripts were 

grouped according to shared cold expression patterns by Hierarchical Cluster Analysis 

(HCA) (Figure 12A; Additional Figure S3) and further characterized by functional 

enrichment (Figure 12B). In order to reflect the expression levels of genes at harvest, 

the average expression value of all genes in a cluster and the percentage of genes with 

higher expression levels in each cultivar (from the direct comparison; Figure 11) and 

each cluster were plotted in the graphic together with the cold expression profile. Only 

when the percentage of genes more highly expressed in a cultivar exceeded 20% of the 

genes in a cluster, was their contribution considered significant. The HCA resulted in 13 

clusters (Figure 12A). Based on their expression during cold storage, these genes can 

be classified into several groups as follows. 

The largest group (A) comprises cold responsive genes irrespective of sensitivity to cold 

storage. These included 685 genes (cluster 1, Figure 12A) up regulated by cold storage 

and enriched in RNA transcription regulation (Figure 12B) and 767 genes cold down-

regulated (in clusters 12 and 13; Figure 12A) enriched in cytoskeleton organization, 

organelle division, photorespiratory pathway (cluster 12; Figure 12B) and antioxidant  
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system, homeostasis, and sulfur metabolism (cluster 13; Figure 12B). This indicates that 

cold storage in both peach cultivars involves the activation of several transcriptional 

cascades and an extensive down-regulation of housekeeping and metabolic functions. 

Most of genes in clusters 1 and 13 do not show statistical differences in expression at 

harvest, while 41% of genes in cluster 12 were highly expressed in Od at harvest 

(Figure 12A). This suggests that, although the effect of cold on genes in cluster 12 is 

down-regulation, high levels at harvest can contribute to withstanding cold storage.  

The second group (B) includes 538 genes comprised of clusters 2, 3 and 4 that most 

likely contains genes up-regulated during cold storage in the sensitive cultivar Hz while 

down-regulated in the tolerant Od (Figure 12A), suggesting a possible relation to 

chilling sensitivity. Genes in clusters 2 and 3 were enriched in genes related to 

pyruvate metabolism, cytoskeleton organization and transport (Figure 12B). Genes in 

cluster 4, which was transiently up-regulated in Hz (Figure 12A) did not show any 

enrichment. It is noteworthy that 20% of the genes in clusters 2, 3 and 4 clusters were 

expressed at higher levels in Od cultivar at harvest (Figure 12A), especially genes in 

cluster 3, where genes with higher expression levels in Od-H account for 46.5 % of 

genes, suggesting that they may be part of a constitutive tolerance mechanism. 

However, the observation that these genes were cold-induced in the sensitive cultivar 

Hz indicated that they could be required for setting up the initial response to cold, but 

do not enable the fruit to stand long term cold periods. 

 

Figure 12. Kinetics of cold responsive genes in ‘Oded’ and ‘Hermoza fruits during cold storage 
and harvest values. A) Average gene expression pattern relative to harvest of genes in each of 
the 13 clusters generated by unsupervised two-dimensional hierarchical clustering (Additional 
Figure S1). Od and Hz harvest values (bars) represents the average fold change of all genes 
within a cluster with respect to the reference pool. The percentage of genes high expressed at 
harvest in each cultivar and cluster is indicated together with expression bars. The number of 
genes in each cluster is indicated between brackets. B) The functional categories 
overrepresented in each cluster are shown as a heatmap obtained with matrix2png. Enriched 
functional categories with Fisher test p-values < 0.05 are colored in grades of yellow. Harvest; 
CS1: cold storage of 1 week at 5ºC; CS2: cold storage of 2 weeks at 5ºC; Od: 'Oded' peach; Hz: 
'Hermoza' peach 
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The third group (C) included 797 genes included in clusters 5, 6, 9 and 11 that during 

cold storage were expressed at higher levels in Od compared to Hz (Figure 12A), and 

thus may be related with to CI resistance. Clusters 5, 6 and 9 comprised genes up-

regulated in Od during CS, but unaffected or even decreased in Hz (Figure 12A). Genes 

in clusters 5 and 6 were enriched in genes without annotation or with unknown 

function; however class 9 was enriched with genes related to antioxidant system, 

cytoskeleton organization, energy production and genes of unknown function (Figure 

12B). More than 20% of genes in these three clusters were expressed at higher levels 

in the sensitive cultivar before cold stress, but during cold storage most of them reach 

expression values higher in Od than in Hz (Figure 12A). This suggests that high levels of 

these genes may contribute to the tolerance to cold storage and that the ability to up-

regulate these genes during cold was related to low levels at harvest. The genes of 

cluster 11, enriched in other carbohydrate metabolism (Figure 12B), were down-

regulated during cold storage in both cultivars; however the expression levels in Od 

were always higher than in Hz (Figure 12A). No significant differences were observed 

at harvest. Interestingly, this cluster (Additional Table S8) contained the orthologs of 

CBF1 (C-repeat/DRE Binding Factor 1) and CAMTA2 (Calmodulin Binding Transcription 

Activator 2), two transcription factors playing important roles during cold acclimation 

[51, 80], thus confirming the possible role of the genes in group C in chilling injury 

tolerance. 

A fourth group (D) was formed by clusters 7, 8 and 10. The genes in these clusters did 

not show in general differences at harvest, but had the particularity of being 

transiently up-regulated or maintained at harvest expression level in one of the 

cultivars (Figure 12A). The genes in cluster 7, enriched in other carbohydrate 

metabolism and TCA genes (Figure 12B), were up-regulated to similar rates in both 

cultivars, but repressed in the sensitive cultivar after two weeks, when browning 

started to develop when fruit were shelf ripened. This suggests that down-regulation 

of these genes might be related to the development of injury at a pre-symptomatic 

stage. The genes in cluster 8, enriched in genes with unknown function, did not 

respond to cold in Hz but transiently up-regulated in Od, suggesting a possible 
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regulatory role of these genes. Genes in cluster 10 (Figure 12A) which was enriched in 

glycolysis, RNA posttranslational regulation, and RNA translation and protein assembly 

(Figure 11B), did not respond to cold in Hz during the first week while being down-

regulated in Od from this time (Figure 12A). This suggests that the response to cold of 

these genes was delayed in the sensitive cultivar Hz which may be counterproductive 

to withstanding the cold storage.  

 

C2.1.5.Validation of Hz and Od microarray results 

In order to validate the microarray results, we performed qRT-PCR on ten peach genes 

selected from the list of genes differentially expressed between Od and Hz fruits using 

gene specific primers (Additional Table S9). The tested genes were chosen from 

different processes including cell wall, RNA transcription regulation, secondary 

metabolism, signal transduction pathway and trafficking machinery and membrane 

dynamics (Additional Table S10). A total of 60 comparisons were made, as the 

expression of each gene was monitored at three time points (H, CS1 and CS2) in Od 

and Hz, using the same samples used for microarray analyses. The overall correlation 

observed between microarray and qRT-PCR analysis was R=0.88 (Figure 13A). In 

addition, we also evaluated the agreement between each gene's expression profiles 

determined by qRT-PCR and microarrays using Pearson correlation coefficient 

(Additional Table S10). The qRT-PCR data correlate well (range R =0.8-1, six genes) or 

are consistent (range R= 0.5-0.8, four genes) with the patterns of expression revealed 

by microarray analysis, and four examples (Figure 13B) include those for Thaumatin-

like protein 1 (PPN003H07), aminocyclopropane-1-carboxylic acid (ACC) synthase 

(ACS1; PPN004H06), ACC oxydase (ACO; PP1005G06) and the ortholog of the 

transcription factor indoleacetic acid-induced protein 27 (IAA27/PAP2 ; PPN057F01), 

reported as being associated to woolliness tolerance at a pre-symptomatic stage 

(chapter 1 and [136, 137, 168]). These results confirm the general validity and 

robustness of the microarray data we present here.  

Another source of validation comes from the microarray-based genome-wide analysis 

of pools from Pop-DG population with contrasting WLT sensitivity in response to cold  
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Figure 13. Quantitative RT-PCR validations of microarray data in Oded and Hermoza fruits. A) 
The comparison of the microarray and qRT-PCR assay data, based on log2 data in Od and Hz. A 
total 10 differentially expressed genes were chosen, representing 60 comparisons where one 
gene covers 3 different time points (H, CS1 and CS2). Line shown represents the orthogonal fit to 
the data and correlation (R) is shown. B) Example of gene expression profiles across H, CS1 and 
CS2 samples in Od and Hz determined by qRT-PCR and microarray on four peach genes 
previously associated to CI tolerance (IAA27, Thaumatin-1-like, ACS and ACO). In the graphs 
there are represented Od and Hz values at harvest (bars) and the average gene expression 
pattern relative to harvest values in both platforms, microarray and qRT-PCR 

 
storage (chapter 1). The similarity between the data generated in chapter 1 and those 

presented here for Od and Hz (same developmental stage, treatments as well same 

expression platform and reference pool for hybridization), allow direct comparison of 

expression profiles and values between studies. 

The pools of the Pop-DG population are less tolerant to WLT than Hz. The most 

sensitive pool (high sensitive, S) was already mealy/woolly after one week of cold 

storage at 5ºC plus shelf life ripening, while the relative tolerant (low sensitive, LS) was 

damaged after two weeks of cold storage (Figure 2). However, while Hz was more 

resistant to WLT (fruit showed WLT symptoms after 3 weeks in cold) the siblings from 

Pop-DG population were relatively tolerant to FBL and FB (Table 1), which developed in 

Hz during ripening after two weeks of storage. However if tolerance/sensitive 
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mechanisms are conserved, we expect that genes high expressed in the tolerant Od by 

compared to Hz, were high expressed in the LS pool compared to the S pool.  

We have compiled a dataset of 2207 genes (Additional Table S11) integrating 

expression values for cold responsive genes, differentially expressed at one week of 

cold storage, when the largest number of differentially expressed was found among all 

fruit. Then we determined the percentage of differentially expressed genes identified 

in each study (Od vs Hz and LS vs S pools) that shared the expression patterns. The 

comparison between both experiments resulted in more than 55% of the genes 

showing consistent patterns of expression (Additional Table S11). These 'consistent 

genes' corresponded to genes highly expressed in the LS pool that also showed higher 

expression levels in Od than in Hz, while genes with higher expression in S pool than in 

the LS pool showed higher expression levels in Hz. The rest of cold responsive genes 

were only differentially expressed in one of the experiments (20-30%) or showed an 

opposite pattern (<10%). These observed differences may indicate differences in the 

response to cold due to cultivar. Nonetheless, considering that 55% of genes had 

similar transcript profiles across samples and the low proportion of genes behaving in 

opposite direction, this comparative transcriptomic approach provides a valuable 

indication of a set of candidate genes that can be related to tolerance/sensitivity to CI 

in peach. 

 

C2.1.6.Comparison of the transcriptomes of ‘Oded’ and ‘Hermoza’ with 

Pop-DG siblings with contrasting sensitivity to WLT 

 

To identify changes in gene expression that could be causally related to the 

tolerance/sensitivity to cold storage in peach fruit, we analyzed together the 

transcriptomes of Od, Hz and the LS and S pools by k-means clustering (Figure 14A; 

Additional Table S11). We reasoned that changes in gene expression common to all 

peach fruit are more likely to be part of core cold responses while differences may 

provide genes for the specific response of each fruit genotype to cold storage, and 
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which may or may not be involved in tolerance. According to this, genes in clusters k-

means 2, 5 and 9 (Figure 14A) were classified as part of the core cold response, but  

 

Figure 6. Integrative analysis the transcriptomes of ‘Oded’, ‘Hermoza’ and two pools of siblings 
from the Pop-DG population that cover a range of cold susceptibilities. A) K-means clustering 
results of a set of 2207 genes with a 12-cluster limit. B) The functional categories 
overrepresented in each cluster are shown as a heatmap obtained with matrix2png. Enriched 
functional categories with Fisher test p-values < 0.05 are colored in grades of yellow. Tolerance-
sensitivity range: Od>Hz>LS>S. H: Harvest; CS1: cold storage of 1 week at 5ºC; CS2: cold storage 
of 2 weeks at 5ºC; Od: 'Oded' peach; Hz: 'Hermoza' peach; LS: low sensitive Pop-DG pool; S: high 
sensitive Pop-DG pool. 
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differ in their time/levels of expression and therefore are related to the degree of 

sensitivity/tolerance to cold. Given the common CI response that these fruit had was 

WLT; probably most of them were related to this disorder. Genes in cluster 2 and 9 

were up-regulated by cold in a manner similar to their propensity to develop WLT 

(S>LS>Hz>Od; Figure 14A).The main difference between these clusters was that in k-

means 9 the expression level at harvest correlated to sensitivity. Genes in cluster k-

means 2 were enriched in RNA transcription regulation, cell wall, transport, amino acid 

metabolism, secondary metabolism, structure maintenance proteins, lipid metabolism, 

protein degradation and genes without any annotation (Figure 14B). Genes in cluster k-

means 9 were enriched in signal transduction pathway, lipid metabolism, unknown 

function, transport, trafficking machinery and membrane dynamics, RNA post-

transcriptional regulation (Figure 14B). In addition to up regulated genes, core cold 

responses also included down-regulated genes (cluster k-means 5). The genes in 

cluster k-means 5, enriched in RNA translation and protein assembly, secondary 

metabolism, cytoskeleton organization and biogenesis, antioxidant system, energy 

production, trafficking machinery and membrane dynamics, aminoacid metabolism, 

homeostasis, other nucleic acid metabolic process and genes with unknown function, 

were down-regulated by cold inversely to CI sensitivity (Figure 14B). Therefore, high 

levels of these genes contribute to the tolerance to cold storage. 

The other clusters with interesting patterns included clusters k-means 1, 8 and 11. The 

genes in k-means 1, enriched in signal transduction pathway, transport, RNA post-

transcriptional regulation and genes without any annotation available (Figure 14B) 

may be related to the higher sensitivity to WLT of the fruit in S pool. The genes in k-

means 1 have expression levels at harvest that correlated to sensitivity degree and 

were up-regulated by cold in the S pool, but did not change in Od or were down 

regulated in Hz and in the LS pool (Figure 14B). The genes in the cluster k-means 11, 

enriched in pyruvate metabolism, RNA post-transcriptional regulation, post-

translational protein modification, other carbohydrate metabolism and cytoskeleton 

organization and biogenesis (Figure 14B), were highly up-regulated by cold in Hz but 

unaffected in the three other fruits (Figure 14A). These genes are candidates regarding 
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the sensitivity of Hz fruit to FB and FBL. The genes in cluster k-means 8 may be 

associated with the high tolerance of Od fruit to CI. They were up-regulated in Od by 

cold storage, but unchanged in the other fruits in comparison to Od (Figure 14A), and 

were enriched in protein degradation, secondary metabolism, energy production, 

cofactor and vitamin metabolism and genes with unknown function (Figure 14B).  

In addition, and in order give more robustness to this comparison, we searched for the 

50 genes that chapter 1 were validated in the contrasting pools and in 15 individual 

lines from the same population differing in the woolliness sensitivity by medium-

throughput qRT-PCR. Forty of these genes were found in the comparison between Hz 

and Od and the pools (Additional Table S12). Out of them 34 were also confirmed in 

the 15 individual lines from the same population and 20 corresponded to the most 

relevant clusters (k-means 1, 2, 5 and 9). Overall, there was good agreement between 

the cluster analysis (Figure 14A) and the results for the validation in the individual lines. 

Out of the genes in cluster k-means 1, 2 and 9 (up-regulated by cold in a manner 

similar to their propensity to develop WLT), 15 out of 16 genes were found correlated 

to sensitivity in the individual Pop-DG lines. Similarly, five genes found in the cluster k-

means 5 (down-regulated by cold in a manner similar to their propensity to develop 

WLT), were found associated to the high degree of tolerance of the individual lines. 

Further, genes such as ACS1 (PPN004H06), IAA27/PAP2 (PPN057F01), 

glycosyltransferase (PP1004E08) and an unknown extracellular protein (PP1001A01) 

validated in the comparison between Od and Hz (Additional Table S10) were found 

also validated in the individual lines (Additional Table S12 and in chapter 1). Thus, it 

appears likely, that the genes identified in the comparison between Od, Hz and the 

pools play a role in the sensitivity/ tolerance of peach fruit to chilling injury. 

 

C2.1.7.ROS-related transcriptomic signatures at harvest and during 

cold storage: ROSMETER analysis  

A bioinformatic tool which was developed recently for Arabidopsis microarray data 

[19] to provide an organelle/type-dependent ROS-related transcriptomic signature was 

used to further characterize the differential peach responses to cold. ROSEMETER 
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signatures were defined on the basis of transcriptome data obtained in experiments 

involving plant mutants in antioxidant enzymes or subjected to chemical applications 

that lead to increases in ROS production, thus providing information on the specificity 

of the transcriptomic response to oxidative stress. Since we had identified antioxidant 

system genes as differentially expressed at harvest and increasing in the resistant 

cultivar after one week at cold storage it was of interest to examine the ROS 

transcriptomic signature at harvest and during CS for the four fruit types (Figure 15). 

The ROSMETER analysis indicated that some signatures were capable of discriminating 

fruits according to their sensitivity to CI. The analysis revealed six distinct groups that 

clearly can be grouped according to the chilling sensitivity.  

 

Figure 7. ROSMETER analysis of the harvest and cold transcriptomes of ‘Oded’, ‘Hermoza’ and 
LS and S peaches. The ROS indices are listed on the abscissa and the Od, Hz, LS and S samples 
clustered by nearest neighbor correlation are shown on the ordinate. The color-coded results of 
correlations for each index are shown as a heat map. Correlation values are between 1 
(complete positive correlation; red) and −1 (highest negative correlation; green), where 0 
indicates no correlation (black). Correlation values above 0.12 and below -0.12 represent non-
random correlations: Harvest; CS1: cold storage of 1 week at 5ºC; CS2: cold storage of 2 weeks at 
5ºC. 
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Group A includes all the knockout of cytoplasmic ascorbate peroxidase (KO-APX1) 

experiments, which are thought to represent cytoplasmic H2O2. These H2O2 indices 

correlated positively with sensitivity to CI before and during cold storage. In agreement 

a gene encoding a cytosolic ascorbate peroxidase (APX1; PPN071A07 Additional Table 

S11) was found among genes in cluster k-means 5 (Figure 14A), which may be related 

to a preformed mechanism of cold tolerance, since it is highest at harvest and in 

inverse relation to cold sensitivity.  

Cluster B includes the indices of the conditional fluorescent (flu) mutant exposed to 

light 1h, ozone and H2O2 treatments. All fruit at harvest showed negative correlations 

with these indices, but after cold storage, the most sensitive fruit (i.e., Pop-DG pools) 

showed positive correlations, being, in general, higher in pool S. This suggests that 

scavenging systems for apoplastic ROS and chloroplastic singlet oxygen could be active 

at harvest, but decrease during cold storage in parallel with sensitivity to CI.  

Cluster C, which showed increase in Hz, LS and S fruit during storage, corresponds to 

rotenone treatments (3 and 12 h), an inhibitor of mitochondrial complex I, (i.e., NADH: 

ubiquinone oxidoreductase). Rotenone is associated with a mitochondrial stress but 

has not been shown to directly generate ROS [19]. In agreement, four of the 15 genes 

involved in energy production and enriching in k-means 5 (Figure 14) encode for 

NADH: ubiquinone oxidoreductase (Additional Table S11). Therefore low levels of 

mitochondrial complex I during cold storage could contribute to the sensitivity to cold. 

Cluster D corresponds to 6 and 12h methylviologen (MV) signatures, indicative of 

superoxide formation in the chloroplast and mitochondria [336]. 6hMV signature 

correlated positively with all fruits at harvest and cold stored, sensitive fruits (Hz, LS 

and S), while the most sensitive S and LS fruits also correlated positively with 12hMV 

signature, which may indicate secondary H2O2 stress effects [19]. 

Clusters E and F basically correlated negatively with sensitivity, included the indices of 

CAT2 (0 and 3h), alternative oxidase mutation (TDNA-AOX1), and alternative oxidase 

antisense (AS-AOX). The indices CAT2-0 and AS-AOX (cluster E) had a negative 

correlation with S and LS fruits during cold storage and a positive correlation with the 

degree of tolerance to CI, especially at harvest. The indices CAT2-3h and TDNA-AOX1 
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(cluster F) correlated negatively with LS and S, both at harvest and during cold storage, 

and with Hz fruit during cold storage, which agree with data obtained from the direct 

comparison between Hz and Od (Figure 11; Additional Table S8). The fact that fruit 

tolerance is correlated positively with indices in cluster E and F, comprising mainly 

transcriptome data from mutants not exposed to any stress conditions, suggest 

tolerant fruit might have activated a compensatory scavenging mechanism.  

These results indicate that although cultivars presented oxidative stress under cold 

storage, high levels of antioxidant activities in cytoplasm, mitochondria and chloroplast 

(chromoplast) are likely contribute to protect fruit in the tolerant fruit. 

 

C2.2.Discussion 
 
C2.2.1.Integration of data from different peach genotypes and 

validation of the results 

In this study an analysis of fruit transcript levels in response to CS in different peach 

genotypes is presented. In the first part of the of the study, the transcriptomes of Od 

and Hz at harvest and subjected to CS were analyzed using the Chillpeach microarray 

(Figures 10-12). We validated the microarray data by qRT-PCR of ten genes (Additional 

Table S10), some of them reported previously to be associated to tolerance to WLT. 

We observed a high correlation between microarray and qRT-PCR data (Figure 13). The 

expression patterns of the single genes analyzed were in concordance (Figure 13B and 

Additional Table S10), although the level of expression was not confirmed for each 

gene in each sample. It is known from similar studies that the two technologies of 

expression analysis deliver qualitatively comparable data, however, the magnitude of 

such expression changes as reflected by microarray data tends to be generally 

compressed in comparison with qRT–PCR [337]. 

In the second part of the experiment, we performed a comparison of transcript levels 

between Od, Hz and two pools from the Pop-DG population (Figure 14 and Additional 

Table S11), analyzed in chapter 1. A number of studies have reported changes in gene 

expression and protein activity in peach fruit in response to low temperature leading 
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to CI (reviewed in [338]). However, differences in experimental approaches, genotypes, 

storage and shelf conditions (time and temperature) and also in the symptom 

assessment often result in lack of consistency of results [12, 339, 340]. In the case of 

microarray studies, the differences in technologies and cutoffs used for the 

identification of differentially expressed genes, the different genes represented on 

each array and technical differences in RNA and hybridization, analysis protocols and 

references used often hinder the identification of common regulated genes [95]. The 

expression changes identified in the two large experiments compared here, Od-Hz and 

S-LS pools, used the same sampling time, technical platform, RNA reference, analysis, 

protocols and p-values to identify differentially expressed genes, therefore overcoming 

this issue.  

The peach lines in the Pop-DG populations used to produce LS and S pools were less 

tolerant to cold storage than Od and Hz. However, if the mechanism / program for 

tolerance was similar, our hypothesis was that genes highly expressed in the LS pool 

would show high expression levels in the tolerant Od compared to the sensitive 

counterpart, but the magnitude of the changes could be different. For the comparison 

we selected differentially expressed genes at one week of storage, the time where 

greatest differences in CI are observed. This removed considerable biological variation 

and added to the strength of the comparison. A criticism to our approach could be that 

we are setting a bias for the common cold regulated genes towards one of the CI 

symptoms, i.e., WLT.  

We found close agreement between the significant changes detected by the two 

experiments (see Additional Table S11) and also with the sensitivity degree of 

individual lines of the Pop-DG population (see Additional Table S12). The low 

proportion of genes with opposite changes also supports this contention, and we feel 

that data from both experiments can be interpreted with confidence. Further, since 

the fruits of Od, Hz, LS and S pools cover a wide range in CI sensitivity, this comparison 

has allowed the identification of a set of genes with shared expression patterns (core 

cold response) that are candidates to be related to CI tolerance/sensitivity (Figure 14A, 

clusters k-means 2, 5 and 9) but also genotype specific responses (Figure 14A, clusters 
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k-means 1, 8 and 11). Genes differentially expressed in one experiment but changing in 

opposite direction or not changing in the other could indicate a difference in the 

response due to the genotype or for other reasons [95]. 

However, although RNA expression data alone is insufficient for establishing a clear 

link between a gene/protein and the trait of interest, transcriptomics is an important 

first step to explore potential novel candidate genes for a particular process, which is 

the goal of this work. The data presented here, reinforce and extend previous reports, 

and provide insights into processes that are related to CI tolerance/sensitivity rather 

than simply being responses to cold. 

 

C2.2.2.Quantitative differences in the subset of core cold responsive 

genes correlated with sensitivity to CI 

Transcripts in the common cold regulated group showed expression values that 

correlated with sensitivity (Figure 14A). Furthermore, our results indicated that 

although reprogramming of the transcriptome underlies the core cold responses and 

the chilling sensitivity in peach fruit, many of these changes depend on the expression 

levels at harvest (Figure 14A). For the set of core cold responsive up-regulated genes, 

tolerant cultivars showed low expression levels both at harvest and during cold storage 

conditions, whereas sensitive cultivars showed increased expression in the cold (Figure 

14A, cluster k-means 2 and 9). Interestingly, we could not identify a common core of 

cold response genes up-regulated in parallel with increased tolerance. This could be 

due to limitations of the Chillpeach microarray that was constructed with fruit from 

the Pop-DG mapping population [337], and which is less tolerant than Od. Alternatively, 

this may indicate that tolerant fruit were relatively less stressed at the cellular level 

compared to sensitive fruit and thus have a more limited response of the 

transcriptome, as has been described for salt and drought stressed rice [341]. 
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C2.2.3.Expression of cell wall genes related to WLT at a pre-

symptomatic stage  

Alterations in cell wall related transcriptome, cell wall remodeling enzyme activities 

and in cell wall polymers metabolism in relation to WLT are normally detected during 

shelf life in cold sensitive cultivars but some have been reported to occur during 

extended cold storage [12, 342]. Using Pop-DG siblings, a set of genes related to cell 

wall remodeling were found differentially expressed between S and LS pools, but no 

enrichment was found for this functional category (chapter 1). In the current paper, we 

observed gene expression differences in cell wall genes during cold that could be 

associated to the eventual WLT phenotype that would develop in shelf life. It has been 

found that low levels of endo-PG activity combined with continuous activity of pectin 

methylesterase may lead to altered pectins during CS in fruit and this contributes to 

WLT when fruit are removed to SL [151, 342]. Furthermore, endopolygalacturonase 

(endo-PG) was found in a quantitative trait loci (QTL) on linkage group LG4 for both 

FBL and WLT [18]. In agreement with this, we found a polygalacturonase inhibiting 

protein (PGIP), a pectin methyl esterase and pectin acetyl esterase among genes with 

low expression levels across all cultivars at harvest but which were up-regulated in 

parallel with increasing fruit sensitivity (k-means 2, Figure 14A; Table 7; Table S5).  

During WLT development in shelf life pectin accumulation was observed in the 

intercellular spaces and inside parenchyma cells near to vascular bundles [10] and 

these modifications may begin during CS [342]. Moreover early histological studies 

indicate that during the last stages of peach fruit ripening a secretory system 

producing mucilage occurs within the mesocarp vascular bundles [343]. Our previous 

results have correlated BXL1 (β-xylosidase) and SBT1.7/ARA12 (serine protease) with 

WLT sensitivity in the Pop-DG population (Additional Table S12 and chapter 1). Current 

evidence suggests that these genes are required for the proper configuration of 

pectins in mucilage in seed and roots (see Table 7), and that there are analogies 

between fruit ripening and seed mucilage modification [344]. Here, we found these 

two genes also among the genes up-regulated by cold in a manner similar to fruit 

propensity to develop WLT (k-means 2; Figure 14A).  
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Table 7. Genes discussed in the text correlated with sensitivity degree during cold storage (cluster k-means 2). 

Function 
Specific process 

Chillpeach ID Unigene annotation Arab AGI 
Arab 
Gene 

Symbol 
Hormone signaling 

Sugar 
signaling/ 
partioning 

Hormone and 
secondary 
metabolite 

biosynthesis 
regulation 

Cell wall and 
cytoesqueleton 

related 
Cell polarity Ref 

Aminoacid metabolism 

 
Alanine and 
Aspartate 
metabolism 

PPN065C10 
Putative aspartate 
aminotransferase 

AT1G80360 VAS1   
Negative regulation 
of Trp-IAA and ET 
biosynthesis 

  [345] 

  PPN080E12 
Putative aspartate 
aminotransferase 

AT1G80360 VAS1   
Negative regulation 
of Trp-IAA and ET 
biosynthesis 

  [345] 

Cell wall related           

 cellulose biosynthesis PPN046D09 
Cellulose synthase-like 
protein CslG 

AT1G55850 CSLE1    
SCW biosynthesis; 
hemicellulose 
biosynthesis 

 [346] 

 
Hemicellulose 
biosynthesis 

PPN036E12 Glycosyltransferase AT4G36890 IRX14    

SCW 
biosynthesis;hemice
llulose 
glucuronoxylan 
biosyntheis 

 [347] 

 
Hemicellulose 
degradation 

PP1002E04 
Alpha-L-
arabinofuranosidase / 
beta-D-xylosidase 

AT5G49360 BXL1    

Pectin 
metabolism;trim b-
xylan and a-
arabinan side 
groups from the RG 
I. 

 [348] 

 Pectin degradation PPN041B11 
Polygalacturonase-
inhibiting protein 

AT5G06860 PGIP1    
inhibition of 
degradation of the 
polygalacturonan 

  

  PPN047G10 
Polygalacturonase-like 
protein 

AT4G23500        

 
pectin methyl-
esterification 

PP1004E01 
Putative 
pectinesterase 

AT2G26440        

  PPN001F02 
pectinacetylesterase 
family protein 

AT5G23870        

  PPN066B05 
Ripening-related 
protein-like 

AT5G51520        
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UDP-L-arabinose, 
UDP-galacturonate 
and UDP-xylose 
Biosynthesis 

PPN062D06 
UDP-arabinose 4-
epimerase 1 

AT1G30620 
UXE1/ 
MUR4 

 
Sugar 
signaling 

 
arabionoglactan 
biosynthesis 

 
[349-
351] 

Protein degradation 

 protease PP1004E07 
Putative serine 
protease 

AT5G67360 
SBT1.7/ 
ARA12 

   

indirectly affects the 
pectin methylation 
status of mucilage 
and/ or the primary 
CW 

 [352] 

  PPN009E02 Cysteine protease 14 AT4G35350 XCP1    

SCW biosynthesis; 
postive regulation 
of thacheray 
element 
differentialion 

 [353] 

RNA transcription regulation 

 LUG-family PP1003C09 STY-L protein AT2G32700 
MUM1/ 
LUH 

   
control mucilage 
production and 
extrusion 

 
[354-
356] 

  PPN076D05 
Transcriptional 
corepressor LEUNIG 

AT4G32551 LUG AUX signaling regulator   
control mucilage 
production and 
extrusion 

 

[271, 
272, 
354-
356]. 

 NAC-family PPN054B06 
No apical meristem 
protein-like 

AT4G28500 
anac073/ 
SND2 

   

SCW biosynthesis; 
postive regulator of 
lignin, cellulose and 
hemicellulose 
biosyntehsis 

 
[357, 
358]. 

 WRKY-family PPN059A06 WRKY 13 AT2G37260 
TTG2/ 
WRKY44 

  
Anthocyanin / PA 
polimerization 
regulation 

mucilage production 
regulation 

 [359] 

Secondary metabolism 

 
Anthocyanin 
metabolism 

PPN007E12 
Anthocyanidin 3-O-
glucosyltransferase 

AT3G50740 UGT72E1    
SCW biosynthesis; 
lignin biosynthesis 

 [360] 

 
Carotenoid 
metabolism 

PP1005H08 
Zeaxanthin epoxidase, 
chloroplast precursor 

AT5G67030 
ABA1/ 
LOS6/ 
ZEP 

ABA biosynthesis   
mucilage production 
regulation 

 
[284, 
361] 

 ET biosynthesis PPN004H06 
1-aminocyclopropane-
1-carboxylate 
synthase 1 

AT3G61510 ACS1   ET biosynthesis   [362] 
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Phenylpropanoid 
metabolism 

PPN025B05 
Cinnamoyl CoA 
reductase 

AT1G15950 
CCR1/ 
IRX4 

   
SCW biosynthesis; 
lignin biosythesis 

 [363] 

  PPN053B11 
Cinnamyl alcohol 
dehydrogenase 

AT4G37980 
ELI3-1/ 
CAD7 

   
SCW biosynthesis; 
lignin biosythesis 

 [364] 

 Sterol metabolism PPN012F12 
delta(14)-sterol 
reductase 

AT3G52940 FK/ HYD2 

AUX and ET crosstalk; 
regulate AUX 
transporters localization 
in PM lipid microdomain 
formation and in the 
secretion machinery. 

  
cellulose, callose 
and lignin, VN 
development 

polar targeting 
of proteins to 
the PM;Lipid 
microdomains 

[365-
368] 

  PPN063B12 Helix-turn-helix AT4G37760 SQE3       

 Terpene metabolism PPN068G10 Beta-amyrin synthase AT1G78950 BAS       

Signal transduction pathway 

 
ABA signaling/ Ca 
signal transducer 

PPN069F09 
Putative serine/ 
threonine protein 
kinase PK11-C1 

AT4G33950 
OST1/ / 
SRK2E/ 
SNRK2-6 

ABA 
Sucrose 
metabolism 
regulation 

   
[288-
290, 
369] 

 
ABA signaling/ ABF 
phosphorylation 

PPN010B11 
Serine-threonine 
protein kinase 

AT1G78290 
SNRK2.8/ 
SRK2C 

ABA 
sucrose 
signaling 

   
[370, 
371] 

 
Phosphorylation 
cascades/ metabolic 
switch 

PPN054E02 AKIN beta3 AT2G28060 KINβ3 ABA 
sucrose 
signaling 

   
[370-
373] 

Trafficking machinery and membrane dynamics 

 ER to Golgi PP1003D05 Root hair defective 3 AT3G13870 
RHD3/ 
GOM8 

AUX, ET   
required for CW 
biosynthesis and 
actin organization 

Cell polarity 
regulation 

[313, 
374] 

 
sphingolipid 
metabolism 

PPN021D05 
similar to alkaline 
ceramidase 

AT1G07380    
Ceramide 
biosynthesis/ 
degradation 

 

polar targeting 
of proteins to 
the PM;Lipid 
microdomains 

[36, 
367, 
368, 
375] 

  PPN031D01 
similar to alkaline 
ceramidase 

AT1G07380    
Ceramide 
biosynthesis/ 
degradation 

 

polar targeting 
of proteins to 
the PM;Lipid 
microdomains 

[36, 
367, 
368, 
375] 

Transport 

 
AUX efflux to the 
apoplast 

PPN070B12 
Multidrug resistance 
protein 11 

AT3G28860 
PGP19/ 
MDR11/ 
ABCB19 

AUX transport     
[376-
379] 

 
AUX transport into 
ER 

PP1004E09 
Auxin Efflux Carrier 
family protein. 

AT2G17500 PILS5 AUX transport     
[380, 
381] 
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  PPN075H08 
Auxin Efflux Carrier 
family protein. 

AT5G01990 PILS6 AUX transport     
[380, 
381] 

 
carbohydrate 
transport 

PPN046B03 Sorbitol transporter AT3G18830 
PMT5/ 
PLT5 

 

sugar 
partioning 
and 
homeostasi
s 

    

 Cooper transport PPN040A04 
Copper transport 
protein-like 

AT5G59040 COPT3       

 
ion transporter 
activity 

PPN016B02 
Senescence-
associated 

AT2G17840 ERD7       

 metal-ion transport PP1005G08 
Metal tolerance 
protein C2 

AT3G12100 MTP5       

  PPN007G12 
Metal transporter 
Nramp3 

AT2G23150 
ATNRAM
P3 

      

 
oligopepetide 
transport 

PPN029A02 
Putative peptide 
transporter 

AT3G01350        

Abreviatures: AUX:auxin; ET; ethylene; ABA: Abcisic acid; PM:plasma membrane;CW: cell wall; SCW: secondary cell wall; ER: endoplasmic reticulum; MVB/ 
LE:microvesicular body/ late endosome; TGN/ EE:trans-golgy network/ early endosome; VSR:vacuolar sorting receptors VN:vascular networks; PA: proanthocyanines; PIN; 
PIN formed auxin efflux carrier; RG:rhamnogalacturonan; XyG:xyloglucan 
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Furthermore, among genes in cluster k-means 2 were also orthologs of other genes 

related to pectin configuration such as MUR4 (UDP-arabinose 4-epimerase) but also 

orthologs of genes required to control mucilage production and extrusion such as 

LEUNING (LUG), LUH/MUM1 (Leuning homolog), TTG2 (transparent testa glabra 2) and 

LOS6/ABA1, encoding a zeaxanthin epoxidase (Table 7). TTG2 and LOS6/ABA1 regulate 

mucilage production [359, 361] while, LUH/MUM1and LUG, function redundantly in 

promoting mucilage extrusion [355]. Thus it is likely that the changes in the expression 

of these genes are setting the stage for the WLT disorder in these pre-symptomatic 

fruit.  

Cluster k-means 2 also includes genes related to non-cellulosic cell wall polysaccharide 

biosynthesis and lignification (Table 7) such as CSLE1 (cellulose synthase like 1), which 

was previously confirmed to be related to the sensitivity to WLT in individual lines of 

the Pop-DG population (Additional Table S12 and chapter 1) as well IRX14 (irregular 

xylem 14) CSLE1 (cellulose synthase like 1), IRX4/CCR4 (cinnamoyl Co-A reductase 4), 

UGT72E1 (UDP-glucosyltransferase 72E1), CAD7/ELI3-1 (cinnamyl alcohol 

dehydrogenase 7), XCP1 (XYLEM CYSTEINE PEPTIDASE 1) and SND2, a NAC domain 

protein that regulates the expression of lignin, cellulose and hemicellulose biosynthetic 

genes involved in secondary cell wall development in Arabidopsis fibers [358]. Thus, in 

addition to changes in pectin composition and biosynthesis, cold storage activates a 

secondary cell wall gene expression program in a WLT sensitivity dependence manner. 

In support of that, genes of cluster k-means 8 and cluster k-means 5 (increasing during 

CS in Od or associated to tolerance; Figure 14A and Table 8) include orthologs of 

negative regulators of lignin biosynthesis such as the myb-transcription factor MYB4 

[382], WUSCHEL-related homeobox 13 (WOX13) [383], and two the MADS box genes, 

FRUTIFULL (FUL) and tomato AGAMOUS like TAGL1 (Table 8).  

 

C2.2.4.The maintenance of antioxidant systems and metabolites with 

antioxidant activity correlate with tolerance 

Differences in expression of genes in the group of 'down-regulated by cold' could drive 

many of the responses to cold observed in peaches. These genes were constitutively  
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Table 8. Genes discussed in the text correlated with tolerance. 

Function 
Specific process 

Chillpeach ID Unigene annotation Arab AGI 
Arab Gene 

Symbol 
Hormone signaling 

Sugar 
signaling/ 
partioning 

Hormone and 
secondary 
metabolite 

biosynthesis 
regulation 

Cell wall and 
cytoesqueleton 

related 

Cell 
polarity 

Ref 

k-means5. Correlated with tolerance at harvest and during cold storage 

Aminoacid metabolism 

 cyanide detoxification PPN075E10 
Beta-cyanoalanine 
synthase 1 

AT3G61440 CYSC1      [384] 

 methionine metabolism PPN034A06 
1,2-dihydroxy-3-keto-5-
methylthiopentene 
dioxygenase 4 

AT5G43850 ARD4   Yang Cycle 
associated to VN 
tissue 

 
[385, 
386] 

  PPN034C12 
1,2-dihydroxy-3-keto-5-
methylthiopentene 
dioxygenase 3 

AT4G14710 ARD2   Yang Cycle 
associated to VN 
tissue 

 
[385, 
386] 

  PPN072E05 
Cystathionine gamma 
synthase 

AT3G01120 
MTO1/ 
CGS1 

     [387] 

Antioxidant system 

 

GLUTHATHIONE-
GLUTAREDOXIN AND 
THIOREDOXIN REDOX 
HOMEOSTASIS 

PPN039H11 
Glutathione S-
transferase 

AT5G17220 
TT19/ 
GSTF12 

  
PA monomer 
transporter 

  
[328, 
329] 

Cytoskeleton organization and biogenesis 

 
actin microfilament-
actin depolimerization 

PPN047E05 
Actin depolymerizing 
factor 2 

AT5G59880 ADF3      
[388, 
389] 

 
Microtubule-
Microtubule binding and 
stabilization 

PPN073D05 
Microtubule-associated 
proteins 

AT5G55230 MAP65-1      
[390, 
391] 

 

Microtubule-
microtubule 
organization and 
formation 

PPN075E12 
Tubulin folding cofactor 
B 

AT3G10220 
EMB2804/ 
TFC 

     [392] 

RNA transcription regulation 

 AP2/ EREBP family PPN054F05 
AP2-related 
transcription factor 

AT5G47220 ERF2 ET signaling   VN cell division  
[393, 
394] 

 AUX/ IAA family PPN014H03 
Auxin-induced protein 
AUX28 

AT1G04250 
AXR3/ 
IAA17 

AUX and ABA nuclear 
signaling; negative 
regulator 

    [222] 

  PPN057F01 AUX/ IAA protein AT4G29080 
PAP2/ 
IAA27 

AUX nuclear signaling; 
negative regulator 

    
[223, 
224] 
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 LIM-family PPN009B01 
Pollen-specific protein 
SF3, putative 

AT1G10200 WLIM1      [395] 

  PPN069C01 Transcription factor lim1 AT1G10200 WLIM1    
Actin stabilizing 
protein 

 [395] 

 MADS-box family PP1006G03 
MADS-box transcription 
factor 

AT5G60910 FUL/ AGL8   

positive 
regulatior of 
caroterne and 
anthocyanin 
biosynthesis, 

negative 
regulation of 
lignin 

 
[396-
399] 

  PPN042H02 MADS4 AT4G18960 AG ET up-regulation  

postisitive 
carotene 
biosynthesis 
regulation; 

negative 
regulation of 
lignin 
biosynthesis 

 
[400-
402] 

RNA translation and protein assembly 

 
regulation of protein 
biosynthesis 

PPN006H04 
Translationally-
controlled tumor 
protein homolog 

AT3G16640 TCTP 
AUX cytoplasmic 
signaling 

Sugar 
signaling 

 
CW biosynthesis 
regulation 

 
[403, 
404] 

Secondary metabolism 

 
Anthocyanin 
metabolism 

PpLDOX 
(PpLDOX) 

leucoanthocyanidin 
dioxygenase 

 PpLDOX   
flavonoid/ PA 
biosynthesis 

  [405] 

  PPN055C03 
Anthocyanidin 
reductase 

AT1G61720 BAN   PA biosynthess   [405] 

 Aspartate biosyntheis PPN046D06 
1-aminocyclopropane-1-
carboxylate synthase 

AT1G62960 ACS10      [406] 

 Carotenoid metabolism PPN006A10 Phytoene synthase AT5G17230 PSY       

  PPN067A01 
Capsanthin/ capsorubin 
synthase 

AT3G10230 LYC       

 cyanide detoxification PP1000E01 Cyanate hydratase AT3G23490 CYN      [407] 

  PPN066B01 

Nitrilase/ cyanide 
hydratase and 
apolipoprotein N-
acyltransferase family 
protein 

AT5G12040       
[384, 
408] 

 Flavonoid metabolism PPN050G05 
Dihydroflavonol 4-
reductase-like 

AT5G58490    
flavonoid/ PA 
biosynthesis 

  [409] 

  PPN052H09 Chalcone synthase 2 AT5G13930 
CHS/ 
 TT4 

negative regulation of 
AUX transport 
 

    
[327, 
410] 
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Signal transduction pathway 

 
Cytoplasmic TOR 
signaling 

PPN076G10 
protein lethal with sec 
thirteen 8-2 

AT3G18140 LST8-1 
AUX cytoplasmic 
signaling 

Sugar 
signaling 

 
CW biosynthesis 
regulation 

 
[404, 
411] 

 
ET signaling/ ET signal 
transduction 

PPN011G11 GTP-binding protein AT3G46060 
ARA3/ 
RAB8A 

ET signaling     [412] 

Trafficking machinery and membrane dynamics 

 

CME;EE ;internalization 
and intracellular 
trafficking of PM 
proteins 

PPN011F03 Clathrin_L-chain AT2G40060 CLC2 

regulates cellular AUX 
levels by controlling the 
abundance and 
distribution of PIN 
proteins at the PM 

   
Cell polarity 
regulation 

[413] 

 
CME;internalization and 
intracellular trafficking 
of PM proteins 

PPN017G03 
Calcium-binding EF-
hand 

AT3G01780 TPLATE 

regulates cellular AUX 
levels by controlling the 
abundance and 
distribution of PIN 
proteins at the PM 

  

regulation of 
cellulose 
synthesis by 
controlling the 
abundance of 
active CESA 
complexes at the 
PM 

Cell polarity 
regulation 

[414, 
415] 

 
Endosomal sorting 
complex 

PPN060A04 
Putative endosomal Vps 
protein complex subunit 

AT5G22950 VPS24.1 

required for internalize 
PIN1, PIN2, and AUX1 to 
the MVB/ LE for vacuolar 
degradation 

    [416] 

 
Golgy to ER/ COPI 
vesicles 

PPN044E10 ARF-like small GTPase 1 AT2G47170 
ARF1A1C/ 
BEX1 

Essential for recycling of 
PIN transporters to the 
PM and for vacuolar 
targeting 

   cell polarity [417] 

 
Retromer complex;LE to 
vacuole 

PPN007G03 
Sorting nexin-like 
protein 

AT5G06140 SNX1 

Regulates both the 
recycling (VSR from the 
TGN/ EE to the ER and 
the balance between 
vacuolar degradation 
and recycling of PIN 
proteins 

    
[418, 
419] 

  PPN023B01 
Ras-related protein 
Rab7 

AT3G18820 
RABG3F/ 
RAB7B 

     [420] 

k-means8. Associated with high tolerance to chilling injury 
Aminoacid metabolism 

 AUX biosynthesis PPN058D11 
Anthranilate synthase 
beta subunit 

AT1G25220 ASB1 AUX biosynthesis     [421] 
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RNA transcription regulation 

 AUX/ IAA family PP1009D02 IAA16 protein AT1G04250 
AXR3/ 
IAA17 

AUX and ABA nuclear 
signaling; negative 
regulator 

    [222] 

  PPN060G07 AUX/ IAA protein AT1G04240 IAA3/ SHY2 
AUX nuclear signaling; 
negative regulator 

    [422] 

 HD-ZIP family PPN074H05 
HB2 homeodomain 
protein 

AT4G35550 
HB-4/ 
WOX13 

AUX regulated   

SCW biosynthesis; 
negative 
regulator lignin 
biosynthesis 

 
[383, 
423] 

 MYB-family PPN067A04 
MYB-like DNA-binding 
domain protein 

AT4G38620 MYB4    

SCW biosynthesis; 
negative 
regulator lignin 
biosynthesis 

 [382] 

Signal transduction pathway 

 ET signaling/ ET receptor PPN054G06 Ethylene receptor AT3G04580 EIN4 ET signaling     
[98, 
424, 
425] 

Transport 

 Cooper transport PPN035H02 
Copper-transporting 
ATPase RAN1 

AT5G44790 RAN1 

ET signaling; delivers 
cooper ion into the ET 
receptors; is required for 
both ET binding and the 
receptor functionality 

    [426] 

Abreviatures: AUX:auxin; ET; ethylene; ABA: Abcisic acid; PM:plasma membrane;CW: cell wall; SCW: secondary cell wall; ER: endoplasmic reticulum; MVB/ 
LE:microvesicular body/ late endosome; TGN/ EE:trans-golgy network/ early endosome; VSR:vacuolar sorting receptors VN:vascular networks; PA: proanthocyanines; PIN; 
PIN formed auxin efflux carrier; RG:rhamnogalacturonan; XyG:xyloglucan 
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expressed at high levels in the tolerant group of fruit and down regulated during cold 

storage in sensitive fruit, while in tolerant fruit they were less affected or even not 

changed (k-means 5 and 10; Figure 14). Previous studies have suggested that high 

constitutive gene expression prior to cold stress treatment might be part of a 

preformed tolerance mechanism in peach fruit (chapter 1 and [Dagar, 2013 #2457), 

which may contribute to inhibition of some aspects of ripening and protect fruit during 

cold storage (chapter 1). In particular, our results indicate that fruit with elevated 

levels at harvest and during cold storage of genes related to protein biosynthesis, 

especially ribosomal proteins, energy production, antioxidant systems and genes 

encoding for activities involved in the biosynthesis of secondary metabolites with 

antioxidant capacity such as carotenoids, flavonoids and proanthocyanins (k-means 5; 

Table 8; Additional Tables S8 and S11) were significantly less likely to develop CI. In 

agreement with these results, among genes correlated to WLT tolerance (cluster k-

means 5 in Figure 14A; Table 8) there were the MADS box transcription factors 

AGAMOUS and FUL1, which have been described in other plants as positive regulators 

of carotenoid biosynthesis [396, 400], flavonoids [400] and anthocyanins [397]. 

We previously reported that genes of the flavonoid and early proanthocyanin 

biosynthetic pathways such as chalcone synthase (CHS/TT4), leucoanthocyanidin 

dioxygenase (PpLDOX) and glutathione S-transferase 12 (GST12/TT19) were part of a 

preformed mechanism associated with cold tolerance (chapter 1 and [5, 134]). The 

results here confirm these results (Table 8) and expand the list of genes related to 

these biosynthetic pathways to dihydroflavonol 4-reductase (DFR) and the ortholog of 

BANYUS (BAN), an anthocyanidin reductase (cluster k-means 5 in Figure 14A and Table 

8). However, among genes in cluster k-means 2 (induced by cold in a sensitivity related 

manner) and k-means 1 (specific for high sensitivity to WLT) was the WRKY family 

transcription factor TTG2 (transparent testa glabra 2), which not only modulates 

mucilage production but also polymerization of proanthocyanidins [359] and AHA10, a 

putative P-type H+-ATPase involved in proanthocyanidin transport and polymerization 

(Table 7 and 9). Interestingly, mutations in both, TTG2 and AHA10, increase the levels 

of proanthocyanidin monomers (i.e., catechin and epicatechin) [359, 427]. Epicatechin  
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Table 9 Genes discussed in the text associated to high sensitivity to WLT and FB. 

Function 
Specific process 

Chillpeach 
ID 

Unigene annotation Arab AGI 
Arab Gene 
Symbol 

Hormone 
signaling 

Sugar 
signaling/ 
partioning 

Hormone and 
secondary 
metabolite 
biosynthesis 
regulation 

Cell wall and 
cytoesqueleton 
related 

Cell 
polarity 

Ref 

k-means 1. Associated with high sensitivity to WLT 

Energy production 

 
plasma 
membrane ATP 
production 

PPN027C11 
Plasma membrane 
proton ATPase 

AT1G17260 AHA10   
PA transport 
and 
polymerization 

  
[427, 
428] 

RNA transcription regulation 

 b-HLH family PPN080F10 Prf interactor 30137 AT2G27230 LHW AUX signaling   

VN 
establisment, 
maintenance, 
cell number 
and pattern 

 [270] 

 HB-family PPN069A12 
BEL1-like homeodomain 
transcription factor 

AT2G35940 BLH1      
[207, 
273] 

Signal transduction pathway 

 

AUX signaling/ 
AUX receptor E3 
ubiquitin ligase 
SFC-TIR 

PPN078E01 
Transport inhibitor 
response 1 protein 

AT3G62980 TIR1 
AUX nuclear 
signaling 

    
[294, 
295] 

 

AUX signaling/ 
Nuclear 
signaling 
pathway 

PPN078G01 
Putative auxin-resistance 
protein 

AT1G05180 AXR1 
AUX nuclear 
signaling 

    
[294, 
295, 
429] 

 

Calcium 
signaling/ 
Calcium sensor-
transducer 

PPN027B08 
Calcium-dependent 
protein kinase 

AT3G57530 CPK32 ABA     [286] 

 

Calcium 
signaling/ 
Calcium signal 
transducer 

PPN013H01 Serine/ threonine kinase AT5G58380 
CIPK10/ SIP1/ 
SNRK3.8 

ABA     [298] 

  PPN020F10 
CBL-interacting protein 
kinase 

AT4G30960 
SNRK3.14/ 
CIPK6/ SIP3 

ABA 
sucrose 
signaling 

   
[370, 
371] 
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 ET signaling PPN057C10 
Ethylene signaling 
protein 

AT5G03280 EIN2 
ABA; positive 
regulator of 
ET signaling 

 

Ethylene 
biosynthesis; 
positive 
regulator of 
ACS type I and 
negative 
regulator of 
ACS type II 

VN cel division 
regulation 

 

[98, 
246, 
303-
307, 
394, 
430, 
431] 

 
ET signaling/ 
Culin E3 
ubiquitin ligase 

PPN020G10 
Ethylene-overproduction 
protein 1 

AT3G51770 ETO1   

repressor of 
ET 
biosynthesis 
(inhibits type II 
ACS) 

VN cell division  
[394, 
432, 
433] 

 
Phosphorylation 
cascades/ MAPK 

PPN020H02 
Mitogen-activated 
protein kinase 4 

AT4G01370 MPK4    

Negative 
regulator of 
microtubule 
structure and 
stability; 
negative 
regulate 
MAP65-1 

 [434] 

 

Phosphorylation 
cascades/ 
metabolic 
switch 

PPN008G11 AKIN gamma AT3G48530 KING1 ABA 
sucrose 
signaling 

   
[370-
373] 

 
Phosphorylation 
cascades/ PP2A 

PPN037E11 

Ser/ thr protein 
phosphatase 2A 
regulatory subunit B' 
gamma isoform 

AT4G15415 ATB'GAMMA   
Yang Cycle 
regulation 

  [311] 

Transport 

 
carbohydrate 
transport 

PPN025D11 SLT1 protein AT3G12570 FYD  

sugar 
partioning 
and 
homeostasis 

    

  PPN078G04 
Putative membrane 
transporter 

AT2G43330 INT1  

sugar 
partioning 
and 
homeostasis 

    

 
Cooper 
transport 

PPN025H09 
Putative copper-
transporting ATPase 3 

AT1G63440 HMA5       
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 ion channel PPN023C11 
mechanosensitive ion 
channel 

AT5G10490 MSL2       

 Mg transport PPN001H12 MRS2-5 AT2G03620 MGT3       

 
oligopepetide 
transport 

PPN015D04 
Metal-nicotianamine 
transporter YSL6 

AT3G27020 YSL6       

  PPN028F10 
Oligopeptide transporter 
OPT superfamily 

AT5G55930 OPT1       

  PPN035B10 
Oligopeptide transporter 
7 

AT4G10770 OPT7       

  PPN057F10 
Oligopeptide 
transporter-like protein 

AT3G54450        

k-means 11. Associated with high sensitivity to FB 

Aminoacid metabolism 

 
GABA 
biosynthesis 

PPN044B12 
Glutamate 
decarboxylase, putative 

AT3G17760 GAD5      [435] 

Pyruvate and Reactive carbonyl species 

 
conversion of 
oxalacetate to 
PEP 

PP1002C02 
Phosphoenolpyruvate 
carboxykinase [ATP] 

AT4G37870 PEPCK;PCK1       

 
Pyruvate 
conversion to 
acetyl-CoA 

PPN054C12 Pyruvate dehydrogenase AT1G59900 PDHE1-A       

  PPN059C05 
Pyruvate dehydrogenase 
E1 beta subunit isoform 
3 

AT5G50850 
MAB1/ 
PDHE1- 

      

 
pyruvate-lactate 
interconversions 

PP1006E06 
Aldehyde 
dehydrogenase putative 

AT1G44170 
ALDH4/ 
ALDH3H1 

ABA     [436] 

  PPN035E06 
Aldehyde 
dehydrogenase 

AT1G44170 
ALDH4/ 
ALDH3H1 

ABA     [436] 

  PPN038B05 
Aldehyde 
dehydrogenase, putative 

AT1G44170 
ALDH4/ 
ALDH3H1 

ABA     [436] 

Abreviatures: AUX:auxin; ET; ethylene; ABA: Abcisic acid; PM:plasma membrane;CW: cell wall; SCW: secondary cell wall; ER: endoplasmic reticulum; MVB/ 
LE:microvesicular body/ late endosome; TGN/ EE:trans-golgy network/ early endosome; VSR:vacuolar sorting receptors VN:vascular networks; PA: proanthocyanines; PIN; 
PIN formed auxin efflux carrier; RG:rhamnogalacturonan; XyG:xyloglucan 
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showed negative correlation with chilling injury in peach fruit [437]. Taken together 

with this work, our results indicate that proanthocyanidin monomers may accumulate 

in tolerant fruit, while polymerized forms could be dominant in sensitive fruit.  

In addition, the ROSMETER results (Figure 15) suggest a genetic program for high levels 

of antioxidant activities in cytoplasm, mitochondria and chloroplast (chromoplast) in CI 

tolerant peach fruit, which correlated well with the expression of several genes of the 

antioxidant system or mitochondrial electron chain (particularly the ROS production 

site in mitochondria). Consistent with this, cold tolerance and cold acclimation have 

been associated with higher expression levels of antioxidant/scavenging systems, 

effective mitochondrial transport and protein synthesis in peach (chapter 1 and [134, 

438]) and other plants [28, 38, 209]. In addition, ROSMETER results suggest tolerant 

fruit might have activated a compensatory scavenging mechanism [19]. Both direct 

comparison between Od and Hz and ROSMETER analysis highlight CAT2 as associated 

to the sensitivity to chilling (Additional Table S8; Figure 15). The reductive thiol 

pathways appear to compensate quite rapidly for catalase deficiency, leading to a new, 

more oxidized cellular redox state, notably reflected in adjustments of thiol-disulphide 

status [439]. In agreement, Od fruit had higher number and higher expression levels of 

genes related to gluthathione-glutaredoxin and thioredoxin redox homeostasis than 

the sensitive fruit (Additional Table S8) and the expression of these genes is correlated 

positively with tolerance (cluster k-means 5 and 8; Additional Table S11). 

 

C2.2.5.A link between WLT at a pre-symptomatic stage and auxin 

responses and distribution 

The analysis performed in chapter 1 suggested that auxins play a role in the sensitivity 

/tolerance program induced by cold storage in peach fruit. We found that the 

expression of the of auxin transporters and positive regulators of nuclear auxin 

signaling correlated positively with the future WLT, while the expression of negative 

regulators of auxin signaling was associated with tolerance. In support of this, clusters 

k-means 1, 2, and 9 (with higher levels in sensitive fruit; Figure 14A) include orthologs 

of plasma membrane and endoplasmic reticulum auxin efflux carriers (ABCB19/PGP19, 
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PILS5 and PILS6; Table 7) as well nuclear signaling elements such as cullin CUL1/AXR6 

and the auxin receptor TIR1/AXR1 (Tables 4 and 5). Also in agreement with our 

previous work, IAA/AUX proteins such as AXR3/IAA17 and IAA27 and SHY2/IAA3 (Table 

8), encoding a negative regulators of auxin responses [440] were found in clusters k-

means 5 and 8 (preformed tolerance and high-tolerance, respectively, Figure 14A). The 

expression of the ortholog of IAA27 is further supported by the qRT-PCR results (Figure 

13B and Additional Table S10) and by the positive correlation of the ortholog of IAA27 

with the degree of tolerance in individual lines from the Pop-DG population (Additional 

Table S12 and chapter 1).  

The results here also highlight new auxin related genes as candidates to be involved in 

the tolerance/sensitivity to CS. The ortholog of anthranilate synthase (ASB1/WEI7), 

which is required for IAA synthesis (Table 8), was highly expressed in tolerant fruit in 

CS (k-means 8; Figure 14). Further, in cluster k-means 5 (high expression at harvest 

associated to tolerance, decreasing in storage; Table 8) are the translationally 

controlled tumour protein (TCTP) and LST8 (lethal with SEC13 protein 8), components 

of the TOR (target of rapamycin) signaling pathway, an integral part of the cytosolic 

auxin signaling pathway [441] that connects hormonal and nutrient pathways [442].  

Taken together, the differential expression of several genes for auxin homeostasis, 

transport and signalling supports a strong connection between auxin metabolism and 

the CI tolerant/sensitive character of peach fruit. But how does auxin link with the 

expression changes observed for genes related to cell wall, antioxidants and other 

possible molecular signatures associated to WLT development at the pre-symptomatic 

stage? Evidence suggests that auxin can affect cell wall structure through both 

transcriptional, and non-transcriptional mechanisms, such the acidification-linked 

loosening of the wall (reviewed in [443]) and the TOR pathway [404]. We found that 

low levels of expression of TOR components were associated to sensitivity (cluster k-

means 5, Figure 14A). Inhibition of TOR signaling caused specific changes to pectins 

and arabinogalactan protein components of cell walls [404]. However, via the 

cytoplasmic TOR pathway [442] auxin increases the overall cytoplasmic protein  
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Table 10. Genes discussed in the text correlated with sensitivity at harvest and during cold storage (cluster k-means 9). 
Function 

Specific process 
Chillpeach ID Unigene annotation Arab AIG Arab Gene 

Symbol 
Hormone signaling Sugar 

signaling/ 
partioning 

Hormone and 
secondary 
metabolite 

biosynthesis 
regulation 

Cell wall and 
cytoesqueleton related 

Cell polarity Ref 

Cytoskeleton organization and biogenesis 

 Microtubule stability 
and organization 

PPN077E06 Microtubule-associated 
protein 

AT3G04630 WDL1    Negative regulator of 
microtubule structure 
and stability 

 [444] 

Protein degradation 

 Ubiquitin ligase E3 
complex/ SFC-culin 

PPN032H05 Cullin AT4G02570 AXR6/ CUL1 AUX nuclear 
signaling 

    [294, 
295, 
429] 

RNA transcription regulation          

 MYB-family PPN055C11 Sucrose responsive 
element binding protein 

AT5G67300 MYBR1/ 
MYB44 

ABA, AUX, ET Sucrose 
responsive 
element 
binding 
protein 

   [31, 
445-
447] 

Signal transduction pathway 

 G-protein coupled 
receptor protein 
signaling pathway/ 
G-protein complex 

PPN065B10 Guanine nucleotide 
binding protein (G-
protein), alpha subunit 
family protein 

AT1G31930 XLG3 ABA, AUX, ET sugar 
sensitivity 

   [308, 
448] 

 Phosphorylation 
cascades/ MAPK 

PP1009F07 Trichoderma-induced 
protein kinase 

AT3G45640 MPK3 positive regulation 
of ACS type I 

 Ethylene 
biosynthesis; 
positive regulation 
of ACS type I 

pectin induced  [449-
452] 

 Phosphorylation 
cascades/ MAPKKK 

PPN071C11 protein kinase family 
protein / ankyrin repeat 
family protein 

AT1G14000 VIK AUX and BR 
singaling 

sugar 
partioning and 
homeostasis 

 VN formation  [453, 
454] 

 Phosphorylation 
cascades/ PP2A 

PPN014G07 Serine/ threonine-protein 
phosphatase 2A regulatory 
subunit A beta isoform 

AT3G25800 PDF1/ 
PP2AA2 

Regulates PIN 
subcellular 
distribution 

   Cell polarity 
regulation 

[296, 
455] 
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Trafficking machinery and membrane dynamics 

 CME;Vesicle coat/ 
clathrin coated 
vesicles 

PP1003H08 Putative Clathrin coat 
assembly protein AP50 

AT5G46630 AP2M regulates cellular 
AUX levels by 
controlling the 
abundance and 
distribution of PIN 
proteins at the PM 

  regulates cellulose 
synthesis controlling the 
abundance and 
distribution of active 
CESA complexes at the 
PM 

Cell polarity 
regulation 

[456, 
457] 

 Fatty acid 
biosyntheis 

PPN026B01 Carboxyl transferase alpha 
subunit 

AT2G38040 CAC3   fatty acid 
biosynthesis 

  [458] 

 Glycerolipid 
biosynthesis 

PPN008G03 Digalactosyldiacylglycerol 
synthase 1 

AT3G11670 DGD1   digalactosyl 
diacylglycerol 
biosynthesis 

 polar targeting of 
proteins to the 
PM;Lipid 
microdomains 

[459-
462] 

 Glycerolipid 
metabolism 

PPN065F12 phosphatidic acid 
phosphatase-related / 
PAP2-related 

AT3G50920 LPPEPSILON
1 

  diacylglycerol 
biosynthesis 

  [463] 

 Phospholipid 
biosynthesis 

PPN008H07 Putative phospholipid 
cytidylyltransferase 

AT2G38670 PECT1   phosphoethanola
mine biosynthesis 

 polar targeting of 
proteins to the 
PM;Lipid 
microdomains 

[460-
462, 
464] 

 trans-Golgi network 
transport vesicle/ 
COPI vesicles 

PPN002C04 ARF GTPase-activating 
domain-containing protein 

AT5G13300 VAN3/ SFC required for either 
normal PIN1 
cycling or for PID-
directed efflux 
machinery 
relocation 

  regulates formation of 
plant VN 

Cell polarity 
regulation 

[316, 
465] 

Transport 

 carbohydrate 
transport 

PP1003F09 Integral membrane 
protein, 

AT1G75220 ERDL6  sugar 
partioning and 
homeostasis 

   [466] 

 Cl-channel PPN078A03 Cl-channel, voltage gated; 
IMP dehydrogenase 
related 1 

AT5G33280 CLCG       

 Na/ K antiporter PPN064A01 Na+/ H+ antiporter AT2G01980 SOS1      [319-
321] 

 nitrate transport PPN024D02 Nitrate transporter NRT1-2 AT1G18880 NRT1.9       

 oligopepetide 
transport 

PPN005F03 Oligopeptide transporter 7 AT4G10770 OPT7       

  PPN064F08 POT family, putative AT1G59740 NRT1/ 
NPF4.3 
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 Unknown 
transporter 

PPN066F09 Putative integral 
membrane protein 

AT5G19980 GONST4  sugar 
partioning and 
homeostasis 

 is probably involved in 
the provision of GDP- 
sugars into the Golgi for 
CW polysaccharide 
synthesis such as RG-II 
and XyG 

 [467-
469] 

Unknown function 

 Unknown interferon 
protein 

PPN065A05 interferon-related 
developmental regulator 
family protein 

AT1G27760 SAT32 ABA     [470] 

 Unkown Zinc finger 
RING-like 

PP1003D02 ubiquitin ligase AT3G23280 XBAT35 ET regualtion ABA, 
AUX 

glucose    [471, 
472] 

Abreviatures: AUX:auxin; ET; ethylene; ABA: Abcisic acid; PM:plasma membrane;CW: cell wall; SCW: secondary cell wall; ER: endoplasmic reticulum; MVB/ 
LE:microvesicular body/ late endosome; TGN/ EE:trans-golgy network/ early endosome; VSR:vacuolar sorting receptors VN:vascular networks; PA: proanthocyanines; PIN; 
PIN formed auxin efflux carrier; RG:rhamnogalacturonan; XyG:xyloglucan 
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synthetic capacity of the cell [473]. This agrees with the higher levels of cell wall 

related genes in sensitive fruit and with the higher levels of genes related to protein 

biosynthesis in tolerant fruit. In addition, an important function of the TOR pathway is 

the regulation of mitochondrial activity and, hence, the production of ROS in animals 

[474] and in plants [404]. Thus, we suggest that while auxin changes are probably 

mainly related to cell wall in sensitive fruit, cytoplasmic auxin in tolerant fruit may be 

related to the maintenance of the translation machinery and the control of ROS.  

 

C2.2.6.Ethylene is related to tolerance to cold storage 

Ethylene reduction has been correlated with WLT sensitivity [136, 137] and with the 

down regulation of some key cell wall activities associated to WLT development [342]. 

Zhou et al. [136] found that during prolonged cold storage, maintaining the ability of 

nectarine fruit to produce ethylene or adding exogenous ethylene to the storage 

atmosphere, prevented CI. Furthermore, correlating with ethylene production, the 

gene and protein expression of the ACO and ACS1were depleted during cold storage in 

fruit developing WLT during shelf life [136, 137]. In agreement, we found that the most 

tolerant Od fruit have higher levels of both ACO and ACS (Additional Table S8). This is 

further supported by the qRT-PCR results (Figure 13B and Additional Table S10) and 

the positive correlation of the ACS1 with the tolerance degree in individual lines from 

the Pop-DG population (Additional Table S12 and chapter 1). Moreover, genes related 

to metabolism of the ethylene precursor methionine (salvage pathways and Yang 

cycle) and cyanide detoxification were in cluster k-means 5 (Table 8; Additional Table 

S11). It has been proposed that high rates of ethylene biosynthesis in climacteric fruit 

are supported by recycling of the ethylene precursor methionine via the Yang cycle 

[475] and by having an active system for handling cyanide, a byproduct of ethylene 

biosynthesis [476]. 

In addition several ethylene biosynthesis regulators and signaling elements were also 

differentially expressed between sensitive and tolerant fruit and their expression 

correlated with tolerance/sensitivity (Tables 7-10). EIN2 (ETHYLENE INSENSITIVE2) has 

been previously reported during cold storage in peach fruit [246] and it has been 
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associated with cold sensitivity in Arabidopsis [98] and peach (chapter 1). Both EIN2 

and Ethylene-overproduction protein 1 (ETO1) (in cluster k-means 1; Figure 14A) are 

implicated in the negative regulation of type II ACS. EIN2 participates in the negative 

feedback regulation of ethylene biosynthesis by affecting the expression of ACS type II 

at transcriptional level [431], while ETO1 inhibits the enzymatic activity of type II ACS 

and targets it for 26S proteasome-mediated degradation [433]. In addition, in cluster 

k-means 2 (induced in CS and higher in sensitive fruit, Figure 14A) was VAS1 (reversal 

of sav3 phenotype; Table 7), recently identified as a cross-regulatory point controlling 

the flow through the auxin and ethylene biosynthetic pathways in response to shade 

[345]. VAS1 prevents over-accumulation of ethylene and auxin, thus preventing an 

exaggerated response to this environmental signal and vas1 mutants accumulate ACC 

and auxins.  

Furthermore, associated with high tolerance to cold (cluster k-means 8, Figure 14A) 

were the orthologs of the ethylene receptor EIN4 (ethylene insensitive 4) and RAN1, a 

P-type ATPase copper transporter that delivers the copper ion to the receptors and is 

required for both ethylene binding and the receptor functionality (Table 8). In 

Arabidopsis, EIN4 plays a positive role during cold acclimation in Arabidopsis [98], 

which coincides with their high expression in tolerant Od fruit (Additional Table S11). 

However, although EIN2 and EIN4 seem to play a similar role in cold acclimation in 

peach fruit and Arabidopsis, high levels of ethylene enhance tolerance to CI in peach 

while having a negative effect on Arabidopsis [98]. This difference may be explained by 

the different organs considered (fruits and leaves) and developmental processes. A 

lack of ethylene production during cold storage affects normal fruit ripening and leads 

to WLT [136]. 

 

C2.2.7.Sugar homeostasis and hormone crosstalk: auxin, ethylene, ABA 

All three clusters (k-means 1, 2 and 9) associated to CI sensitivity were enriched in 

transport elements (Figure 14B). Besides the auxin transporters described above, these 

genes are rich in carbohydrate transporters and in oligopeptide/metal ion transporters 

(Tables 7, 9, 10; Additional Table S11). This suggests that nutrient reallocation could 
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play a role in the cell wall remodeling and metabolic changes happening in sensitive 

fruit. This may be the case of golgi nucleotide sugar transporter GONST4 (cluster k-

means 9, Figure 13A), which is involved in the provision of GDP-fucose and GDP-l- 

galactose sugars into the Golgi for cell wall polysaccharide synthesis such as 

rhamnogalacturonan II and xyloglucan (Table 10), and ERDL6 (Early Responsive to 

Dehydration-Like 6) which functions as a vacuole glucose exporter (Table 10). Likewise, 

these transporters can also contribute to the sensitive character of peach fruit. Plants 

overexpressing ERDL6 or the sugar beet (Beta vulgaris) homolog BvIMP (Integral 

Membrane Protein) accumulated lower glucose and fructose in the vacuole than wild 

type and had reduced tolerance to cold [466].  

In addition, the effect of cold on transporters can also reflect the stresses imposed to 

the fruit (cold, darkness and detachment), that may limit nutrient availability. It is 

described that in chilling sensitive peaches, glucose and fructose content increases 

during cold storage, while sucrose diminishes [477]. Emerging data indicate that sugar-

derived signaling systems, including trehalose-6 phosphate (T6P), sucrose non-

fermenting related kinase-1 (SnRK), and the TOR kinase complex also play important 

roles in regulating plant development through modulating nutrient and energy 

signaling and metabolic processes, especially under abiotic stresses where sugar 

availability is low (reviewed in [478]). Among signaling elements highly expressed in 

sensitive fruit were genes encoding for orthologs of several SnRKs of the three 

described groups SnRK1 (AKIN beta and aKING1, in clusters k-means 1 and 2), SnRK2 

(SnRK2 OTS1/ SNRK2-6 and SNRK2.8, in cluster k-means 2) and SnRK3 (CIPK 10 and 

CIPK6; cluster k-means 1; Tables 2 and 4). Most of these genes have been associated to 

the chilling sensitive phenotype in peach (chapter 1). Limited sucrose availability, 

osmotic stress and abscisic acid (ABA) activate the activity and the expression of SnRKs 

[371], which act as inhibitors of gene expression involved in different biosynthetic 

pathways [373]. The SnRK1 complex plays a central role in nutrient, darkness and 

stress [479]. Thus, it is likely that sucrose depletion by cold together with fruit 

detachment [477] enhances the expression of these genes. Furthermore, and in 

agreement with our results, the SnRK1 complex may play a role opposite to the one 
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played by the TOR pathway in sensing energy [480] that promotes energy-consuming 

related cellular processes, such as mRNA translation when sucrose levels are high [480]. 

 

C2.2.8.Vesicle trafficking, membrane dynamics and cytoskeleton 

organization related to WLT at a pre-symptomatic stage 

Our results indicate that differences in the expression levels of genes related to 

intracellular trafficking, cytoskeleton and lipid metabolism before and during cold 

storage (Tables 7-10 and Additional Table S11) could be related to the sensitivity or 

tolerance to CI in both a preformed (k-means 5; Figure 14A) and induced mechanism 

(k-means 2 and 9; Figure 14A). Similarly to other plants, this indicates that differences 

in membrane composition [481, 482], cytoskeleton stability [483] and polar transport 

of proteins [484, 485] participate in the response of peach fruit during cold. 

Differences in the expression of these genes could have a key role in the molecular 

phenotypes associated to the tolerance and sensitivity by regulating processes such as 

cell wall biosynthesis modifications and auxin distribution. Gonzalez Agüero et al. [11] 

suggested that alterations in the abundance of the endomembrane system 

components could have an important role in the development of WLT during cold and 

during shelf life by modifying the flow of polysaccharides and proteins to the cell wall. 

Furthermore, cytoskeleton [486, 487] and lipid composition of membranes [368, 488] 

are essential for, among other functions, polar distribution of membrane proteins, 

such as cell wall biosynthesis enzymes and auxin transporters.  

 

C2.2.9.Gene expression related to sensitivity to FB and FBL at a pre-

symptomatic stage 

Hz was the only fruit that developed FBL and FB during the storage period. Although 

the analysis using the four fruit types is biased for WLT, the comparison of pools and 

Hz-Od experiments has identified a group of genes (k-means 11; Figure 14A) that only 

respond to cold in Hz fruit, and thus are good candidates to be related with Hz 

phenotype. This cluster is enriched in genes involved in the production of acetaldehyde 
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and pyruvate metabolism (Figure 14B; Table 9). Further the same genes were 

identified as highly expressed in Hz compared to Od (Additional Table S8). Thus, 

acetaldehyde production could be related to the FBL and FB. FB is generally thought to 

be due to the action of polyphenol oxidase [129]. However, discoloration can also 

occur by non-enzymatic reactions through metal-polyphenol complexes [489]. This 

browning mechanism could be induced by chilling in Hz fruit. Hz fruit contained 

relatively high levels of expression of metal transport genes in comparison to Od and 

pools (Additional Tables S9 and S11), which indicates a mobilization of metal ions 

associated to FB. Furthermore, high levels of PpLDOX correlated to BR sensitivity [5, 

18] and the results presented here indicate that Hz fruit have relatively high levels of 

expression of genes related to proanthocyanin monomer biosynthesis (Table 8). The 

combination of these two factors (i.e., high expression of both proanthocyanin and 

metal mobilization genes) with high expression of acetaldehyde production genes may 

increase the propensity of the fruit to FB when moved to shelf life. Lastly, among genes 

associated to the FB at a pre-symptomatic stage was an ortholog of glutamate 

decarboxylase (GAD5; Table 9). Glutamatade decarboxylase catalyze the first and 

irreversible step of gamma aminobutyric acid (GABA;[435]). GABA has been shown to 

be a metabolic marker for core breakdown in pear [490]. These possible genes FB and 

FBL should be validated with additional cultivars.  
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Chapter 3. Analysis of the transcriptomic changes 

associated to cold-induced mealiness development 

during shelf life ripening, in peach fruits of Pop-DG 

population  

 

 

 

C3.1.Results  

C3.1.1.Phenotypic differences in pools of LS and S cold stored fruit as 

revealed by subsequent shelf life ripening 

Two pools of peach fruits, from the Pop-DG population [18], with known contrasting 

chilling (mealiness) tolerance were chosen for this study. The genotypes contributing 

to the LS pool were identified in chapter 1 as a low- sensitive to chilling, while the 

genotypes making up the S pool  are highly sensitive to chilling. To investigate 

differences in mealiness development between the S and LS pools, fruits were cold 

stored at 5ºC for 1- 3 weeks and then submitted to ripening for 2-3 days at 20ºC (SLR 

conditions) to allow the development of mealiness. A mealiness index [8] was assigned 

to each pool during SLR after each 1, 2 or 3 weeks CS (Figure 16B). All pools LS 

exhibited greater chilling tolerance and ripening recovery ability at SLR conditions after 

cold storage than  S pools. This was especially true after one week of CS, when no MI is 

observed in LS fruit (Figure 16B). Based on previous reports and current observations, 

we confirmed that LS and S differ significantly in their response to CS and that the 

onset of visual mealiness symptoms in pools of LS fruits was delayed by approximately 

1 week beyond that of the S pools (Figure 16B and Figure 2 in chapter 1).  
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C3.1.2. Overview of Transcriptomic Changes: From harvest to cold 

storage and shelf life ripening  

We surveyed global gene expression by bulk segregant gene expression analysis 

(BSGEA; chapter 1) using Chillpeach microarray [17], i. e. by comparing the 

transcriptomes of fruit pools LS and S during cold storage (CS) and after subsequent 

shelf life ripening (CSR). To determine the effect of cold on the ripening program, room 

temperature control samples were included: Mature harvest fruits (M) and fruits 

ripened for 2-3 days without previous cold storage (R).  

 

Figure 16. Global gene expression analysis of ChillPeach transcripts in response to CS and 
subsequent SLR. A) Mealy and healthy fruits. B) The mealiness index (MI) of sensitive (S) and 
low sensitive (LS) pools of fruits given two days SLR after storage for up to three weeks at 5ºC. 
C and D) PCA of the global expression profile showing the variation in each treatment, 
averaged from three replicates. In C, the first principal component (PC1) is shown on the x-axis 
while the second principal component (PC2) is shown on the y-axis; in D, the first principal 
component (PC1) is shown on the x-axis while the third principal component (PC3) is shown on 
the y-axis. M: mature fruits; R: mature with two to three days ripening at 20°C; CS1: M + one 
week cold storage at 5°C; CS2: M + two weeks cold storage at 5°C; CS3: M + three weeks cold 
storage at 5°C; CSR1: M + CS1 + R; CSR2: M + CS2 + R; CSR3: M + CS3 + R; S: sensitive and LS: 
low sensitive 
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Over this time course 3394 genes were differentially expressed at one or more times 

(differentially expressed genes, DEG) using two criteria: a false discovery rate (FDR) < 

5% and p-value < 0. 05 (Table S13). Principal component analysis (PCA) (Figure 16 C-D) 

xxxxxxxx xxxx xxxx-xxxxxxx XXX xx xxxxxxxxxx xxxx xxxxxxxxxxx xxxxxxx xx xxxx 

xxxxxxxxxx. Xxx xxxxx xxxxxxxxx xxxxxxxxx (XX1: 61% xxxxxxxx) xxxxxxxxx xxxx xxx 

xxxxxxxx xx xxxx-xxxxxxx xxxxxxxxxxxxx xxxxxxxxxxx xxxx xxx xxxxxxxxxx xxxx xxxxxx 

xxxx xxxxxxxxxxx xx XXX (Xxxxxx 16X-X). Xxxxxxx PC2 (16% of variance) and PC3 (8% of 

variance) xxxxxxxxx xxxx xxxxxxx xxx xxxxxxxxxxxxxx xxxxxxx xxxxxx xx xxxx xxx xxxxxxxx 

xxxxxx XXX xxx, xxxxxx XXX-X xxx XXX-XX xxxxxx xx xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 

(Xxxxxx 16X-X); XXX xxxxxx xxxxxx xxxxxxxxxxxxxxxxx xxxxxxxxx xxxxx xxxx xxxxxx (X) xxx 

xxxx (X) xxxxxx. Xxxxx xxxxxxxxxxx xxxxxxxxx xxxx xxxx xxxxxxx xxxx (Xxxxxx 16X-X). XX3 

xxxxxxxx x xxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxxxxxx [491] xx xxxxxx XXX-XX xxxxx 

xxxxxxxxx xxxxxxxx xx xxxxxxx X xxxxxxxxxx xxxxxx xxx xxx xxxx xxxxxxx xxxxx (Figure 

16D). Xx xxxxxxxx, xxxxx xxxx XXX-X xxxxx xxxxxxxx xxxx xxxxxxx xxxx xxxxxxx X 

xxxxxxxxxx xxxxxx xxxxx xxxx xxxxxxxx. Xxxx xxx xxxxxxxxx xxxxx xx xxxx, xxxx xxxxxxxxx 

xxxx xxxxxx xxxxx xxxx, XXX-XX xxxxxx xxxxxxx xxx xxxxxxxx xxxxxxx xxxx xxx xxxxxx xx 

xxxx xxxxxxx. XXX-X xxxxxx, xx xxxxxxxx, xxxxxxx xxxxxxxxx xxx xxxxxxxxxxxxxxx xxxxxxxx 

xxxxxxxxx xxxxxx xxxx xxxxxxx xxx xxxxxxxxxxx x xxxxxxxx xxxxxxxx xxxxxxx xxxxxx XXX 

xxxxxxxxxx. Xxxxxxx, xx xxxx xx XX3 (Xxxxxx 16X), XXX3-X xxx xxxxxx xx X xxxxxx xxxx 

xxxxxxxx XX xxxxxxx xxx x xxxx xxxxxxxx xxxxxx xx X xxxxxx, xxxxx, xx xxxx, xxxxxxxx 

xxxxxxxxxxxxxxxxxx xxxxxx xx X xxxxxx, xxxx xxxx xxxx-xxxxxxx xxxxxxxxxxx xxx 

xxxxxxxxxxx xx xxxxxxxxxx xxxxxxxx.  

XXX xxxx xxxxxxxxx xxxx xxx xxxxxxxx xxxxxxx xx XX xxxxxx xxx xxxxxx xx XX, xxx xx x 

xxxxxx xxxxxx xx xxxxxx X. Xxxxxxxxx xx XX3 (Xxxxxx 16X), xxxxxx xxxx xxx X xxxx xxxxxx 

xxx xxx xx xxx xxxxx xx xxx xxxx (XX1-X xxx XX2-X xxxxxxx) xxxxxxxx x xxxxxxxx xxxxxxx 

xxxxxxx xx X-X xxxxxx (xx xxxx xxx xxxxxxx xxxxxx xx XX3), xxxxx xxxxxx XX-XX xxxxxx x 

xxxxxxx xxxxxxxx xxxxxxx xx X-XX xxxxxx, xxxxxxxxxx xx xxx xxxx. Xxxxxxxxx, xx xx 

xxxxxxxx xx xxxxxxx 1, xxx xxx xxxxxxxxxxxx xxxx xxx xxxxx xxxxxxxxx xx xxxxxxxx xxx 

xxxxxxxx xxxxxxx xx XX xxxxxx, xxx xxxx xx xx X xxxxx. Xx xxxxxxxx, XX3 xxxxxxxx xxxx-

xxxxxx xxxxxxx xxxxxxxxx xx xxx xxxxxxxx xxxxxx xxxxxx xxxxx xxxxx xxxxx xxxxxx xxxxxx 
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they shelf ripen after CS (Figure 16B and 16D). This suggests that cold-induced 

transcriptional changes affect the way fruits ripen afterward. 

 

C3.1.3.Alterations of the post-harvest ripening program during SLR 

after CS  

To analyze to what extent CS primes the fruit and modifies ripening program during 

subsequent shelf life, and to identify when these alterations start to occur,we analyzed 

the transcriptome of fruits ripened at SLR after being CS for different times (CSR fruits) 

and compared them to the transcriptomes of their corresponding fruits R (Figure 17A 

and table S13). Xxxx xxxxxxxxxx xxxxxx xxxx xxxxxxx xxxxxxxx xxxxxx XXX xxxxx XX 

xxxxxxxx xxxxxx xxxx xx xxxxxxx xxxxxx xx-xxxxxxxxxx xx xxxx xxxxxxxxxx, xxxxx xxxx-

xxxxxxxxxx xxxxxxxx xxxxx. Xxxxxxx, xx xxx xxxx xxxxxx xxxxxxxxx, xxx xxxxxx xx xxxxx 

xxxx-xxxxxxxxx xxxxx xxxxxxxxx, xxxxxxxx xxxx xxxxxx xxxx xxx xxxxxx xx xx-xxxxxxxxx 

xxxxx. Xxxx xxxxxxxxxxx xxx xxxx xxxxxxx xx X xxxxxx xxxx xx XX xxxxxx: xxxxxxxxxx xx 

396 xxxxx xxx xxxxxxxx xxx xx XXX1-X xxxxx xx xxx xxxx xx XX, xx xxxxxxxx xx xxxx 20 

xxxxx xx XXX1-XX xxxxxx. Xx xxxxxxxxx xxxx XXX xxxxxxxxx (Xxxxxx 16X), xxxx 

xxxxxxxxxxx xxxxxxxxx xx xxx XXX-X xxxxxx xx xxx xxxx xx XX xxxxxx xxx xxx xxxxx xx XX 

xxxxxx xx xxx, xx xxxxxxxx xxxx xxxxx xxx xx xxxxx xxxxx XX (Xxxxxx X4), xxxxxxxx xxxx 

xxxxxx xxxxxxxx xx XXX.  

Functional enrichment indicated xxxx XXX xxxxxxxxxxx xxx xxxxxxx xxxxxxxx xxxxxxxx 

xxxxx xxxxxxxxxxx xx xxx XXX-X xxxxxx xxxxxxxx xx xxx xxxxxxxxxxxxx xxxxxxxxx xxxx 

xxxxxx (Xxxxxx 17X), xxxxx xxxx xxxxxxxxxx xxxxxxxx xxx xxxxxxxx xx XXX-XX xxxxxx xxxx 

xxxx xxxxxxxxxx xxxxxxx xx xxxx xxx xx xxxxx xxx xx xxxxx  (Xxxxxx 17X). Xx xxxx X xxx XX 

xxxxx xx xxxxxx, xxx xxxxxx xx xxxxx xxxxxxxxx XXX xxxxxxxxxxx xxx xxxxxxx xxxxxxxx 

xxxxxxxx xxxxxxxxx xx xxxxxxxx xxxx XXX xxxxxxxxxxx (Xxxxxxx 16X xxx 17X). Xx xxxxxxxx, 

xxxxxxxxxxx xxxxxx xxxxxxx xxxxx xxxx xxxxxxxx xxx xxx xx xxxxx xxxx xxxxxxxx 

xxxxxxxxxx xx XXX1-X xxxxxxx. Xxxx xxxx xxxxxxx xxxxx xxxxxxxx xxxxx xxxx xxxx xxxxxx 

xxxxxxxxx xx xxxx XXX-XX xxx XXX-X xxxxx xxxxx xxx xxxxx XX, xxxxxxxx xxx xxxxxx xx 

xxxxx xxxx xxxxxxx xxxxxxxxxx xxx xxxx xxxxxxx xx XXX2-X xxxxxx xxxx xx XXX2-XX xxxxxx 
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(Xxxxxx 17X). Xx xxxxxxxx, Xxxxxx xxxxxxxxxx xxxxxxxx xx xx xxxxxxxxx those genes 

upregulated in CSR3-S fruits with respect to R-S fruits, but not in CSR3-LS fruits.  

 

Figure 17 Differences in the transcriptomic response of S and LS pools to SLR after CS. A) 
Number of genes with altered expression in SLR fruits stored up to three weeks at 5º (CSR) 
compared to untreated ripe fruits (R). B) Functional categories overrepresented in genes up- 
or down-regulated in CSR fruits compared to R fruits. C) Venn diagram showing the number of 
genes differentially expressed between tolerant and sensitive fruit after three lengths of CS 
followed by SLR. D) Over-represented functional categories (p-value > 0.05) corresponding to 
genes differentially expressed between LS and S pools at each length of CS + SLR. Differentially 
expressed genes were obtained at FDR < 0.05 and q-value < 0.05. Enriched functional 
categories were considered when Fisher test p-values < 0.05 and the number of genes was 
greater than three. R: mature fruits after two to three days ripening at 20°C; CSR1: one week 
CS plus SLF; CSR2: two weeks CS plus SLR; CSR3: three weeks CS plus SLR; S: sensitive pool and 
LS: low-sensitive pool. 

 

Among genes down-regulated in CSR-S fruits with respect to R fruits, xxx xxxxxxxxxxxx 

xxxxxxxxxx xxxxxxxx xxxxxxxx xxxxx xxxxx xxxxx xxx XX xxxxxxx, xxxx xxx xxxxxx xx xxxxx 

xxxxxxxxxx xxxx xxx xxxx xx XX xxxxxxxxxxxxx xxxx xxx xxxxxxxx xx XXX xxxxxxxx (Xxxxxx 

17X). Xxxxxxxxxxxxxx xx xxxxxxxxxxxx xxxxxxxxxx xxxxxxxx xxxxx xxx xx x xxxxxx xxxxxx 

xx XXX-XX xxxxxx. Xx xxxxxxxx, xxxxx xxxx xxxxxxxxxx xxx xxxxxxxxx enriched those 
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genes down-regulated in CSR-S fruits after two or three weeks of CS (Figure 17B). 

Further, the categories xxxx-xxxxxxxxxxxxx xxxxxxx xxxxxxxxxxxxx xxx xxxxxxxx xxx 

xxxxxxx xxxxxxxxxx xxxxxxxx xxxxx xxxx-xxxxxxxxx xx XXX3-X xxxxxx. Xx XXX-XX xxxxxx, 

xx xxxxxxxx xx xxx xxxxxxxxxxxx xxxxxxxxxx xxxxxxxx, xxxx xxxxx xx xxxxxxx xxxxxxxx 

xxxxxxxx xxx xxx xx xxxxx xxxx xxxx xxxxxxxxx xx xxxxx xxxxxx xx XXX-XX xxxxxx xxxx xx 

the corresponding untreated ripe fruits (Figure 17B).  

 

C3.1.4. Stage-specific differences in the transcriptomic response to 

shelf-life ripening after cold storage between the pools of contrasting 

genotypes.  

We next performed one-to-one direct comparisons of the transcriptome of S and LS 

fruits ripened after each length of CS (Figure 17C-D and Table S2 Since the main 

difference between these pools of fruits was the time of onset of WLT, xx xxxxxxxx xxxx 

xxxx XXX-xxxxxxxxx xxxxxxxxxxxxxx xxxxxxxxxxx xxxxxx xx xxxxx xxxxxxx xxx xxx xxxxx xx 

xxxxxx. Xxx xxxxxxxxxxxxxx xx X xxx XX xxxxxx xxxxx-xxxxxxx xxxxx xxxx XX xxxxxx xxx xx 

xxxxxxxxxx xxxxxxxx xx xxxxxxxx xxxx xxx xx xxx xxxxx, xxxxxxxxxx xxxx xxxx xxxxx 

xxxxxxxxxx XX xxxxxx xxx xxxx xxx xxxxxxxxx xxxxxx xx xxxxx xxxx xxxxxxx xxxxxxxxxx xx 

XXX2-XX xxxxxxxx xx X-XX (Xxxxxx 17X). Xxx xxx xx xxxxx xxxxxxxxx xx xxxxxx xxxxxx xx 

XXX-X xxxxxx xxxxx xxx xxxx XX, xxx xxxxx xx xxxxxxx xxxxxxxxxxx xx xxxxxxxxx (XXX1-X 

XX =0. 8 xx XXX1-XX XX =0, Xxxxxx 16X), xxxx xxxxxxxx xx xxxxx xxxxxxx xx xxxxxxxxx, 

xxxx xxxx xxx xxxxxxxxx xxxxxxxxxx (Xxxxxx 17X). Xxxxx xxxxxxxxxxxxxx xxxxxxxxx xx 

XXX2-X xxxxxxx xxxx xxxx xxxxxxxx xx xxxx xxxx-xxxxxxx xxxxx. Xxxxxxxxxxxxx, xxxxxxx 

xxx xxx xxxxx xxxxx xx XX, xxx xxxxxx xx xxxxx xxxxxxxxxxxxxx xxxxxxxxx xxxxxxx X xxx XX 

xxxxxxxxx, xxxxxxxx xxxx X xxx XX xxxxxx xxxx xxxxxxxx xxxxx xxx xxxxxxxxxxx xx XX xxxx 

xxxxxxx. Xxxx xxx xxxxxxxx xxxxxxx X xxxxxx xxxx xxxx-xxxxx xxx xxxxxxxxxx xxxx xxxxx 

xxx xxxxxxxxxx xxxxxxxxx. Xxx xxxxxxxxxx xx XXX xxxxxx xxxxx xxxxx xxxxx xxxx xxxxxxx 

xxxxxxxxx xxxx xxx xxx xx xxxxx xxxxxx xxxxxxxxx xx XXX3-X xxxxxx xxxx xxxxxxxx xx XXX 

xxxxxxxxxxx xxx xxxxxxx xxxxxxxx xxx xxxxxx xxxxxxxxxx, xxxxx xxxxx xxxx xxxxxxxxxx, 

xxxxxxx xxxx xxxxxxxxxx, xxxxxx production and signal transduction functions, despite 
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xxxxx xxxx-xxxxxxxxx xxxx xxxxxxx xx X xxxxxxx (Xxx 17X), xxxx xxxx xxxxxxxxx xx XX 

xxxxxx xxxx xxx xxxx xxxxxxxxxxx xxxxxx (Xxx17X).  

 

C3.1.5.The impact of cold storage on the subsequent post-harvest 

ripening program at room temperature 

To study how CS affects ripening and how cold-induced modifications in the 

transcriptome affect subsequent ripening under SLR conditions, we analyzed the 

molecular ripening of the S and LS pools. Xxx xxxx xxxxxxx, xxx xxxxxxx xx XXX xxx xxxxx 

xxxx xxx xxxxxxx. Xxx xxxxx xxxxxxxxxxxx xx xxx 859 xxxxx xxxxxxxxxxxx xxxxxxx 1 xx xx 

xx xxxx xxxxxxxxx xx xxxxxxxxx xxxx xxxxxx xxxxx 2-3x xx 20xX (X) xx xxxxxxxx xx X xxxxxx 

(Xxxxxx X2 xxx X13) xxx xxxxx xxxxxxxxx xxxxxxxxx xx xxxxxxxx-xxxxxxxxx xxxxx. Xxxxx 

xxxxxx xxxxxxx xxx xxxxx xxxx xxxxx XXX xxxxxxxxxx xxxx xxxxxxxxx xxxx [492], xx xxxx 

xxxxxxx xxx xxxxxx xx xxxxx xxxx-xxxxxxx xxxxxxxx xxxxx (xXX). Xxx xxxxxx xxxxxxx, 

xxxxxx xxx-xxxxx xxxx-xxxxxxx xxxxxxxx xxxxx (XxXX), xxxxxxxxx xx xxx xxxxxxxxx 2532 

xxxxx xxxx xx xxxxxxxxxxx xxxxxxxxxx xxxxxxx xxxxxx xxx xx xxxxx xxxx XXX xx X xxxxxx 

xxxxxxxx xx X xxxxxx. Xx x xxxxx xxxxxxxx, xxxx xXX xxx XxXX xxxxxxxx xxxxxx xxx 

xxxxxxxxx xxxxxxx xxxx xxxxxxxxx xx bidimensional hierarchical cluster analysis (2D-

HCA).  

In agreement with the classification criteria, xxx 2X- XXX xxxxxxxxx xx xXX xxxxx (Xxxxxx 

18X) xxxxxxxxx xxxxxxx xxxxxxxxx xx xxxxxxxxxxxxx xxxxx (xxxxxxxx xx xxx xxxxxxxx), xxx 

xxxx xxxxxxxxxx xxxx xxx xxxxxx xx xxxxxxxx xx xxxx xxxxxx xxxxxxxx xx XX. Xxxx, X xxx XX 

xxxxxx xxxxxxxxx xxxxx xxxx xxxxxxx xxxxxx; XXX1-X xxxxxx xxxx X xxx XXX1-XX, xxx xx x 

xxxxxxx xxx-xxxxxxx; xxx XXX2 xxx XXX3 xxxxxxxxx xxxx X xxxxxxxxx xx 

xxxxxxxxx/xxxxxxxxxxx (XX xxxxxx). Xxxx, xxx xxxx xxxx xxxxxxx xxx xxx xxxxxxxxxxxx 

xxxxxx xxxxxxxxxx xx xXX xx X xx XX XXX xxxxxx, xxxxx xxxxxxxxx xxxxxxxx xxxxxxx xxxxx 

xxxx xxxxxxxxx XX. 

Xxx 2X-XXX xxxxxxxx xxxx xxx XxXX xxxxxxxxxx xxxxxxxx (Xxxxxx 18X) xxxxxxxxx xxxx 

xxxx xxxxxx xxx xxxxxx xx xxxxxx (xxxxxx) xxxxxx xxxx xx xxxx-xxxxxx xxxxxx (xxxx xx 

xxxxxxx XXX) xxx xxxx xxxxx xxxxxxxxxxx xxxx xxxxxxxx xxxx xxxxx xxxxxxxxxxxxx xxx 

xxxxxxxx xx xxxx xx xxxxxx xxxx xxxx xxxxxxxxxxx xxxx (XX xxx XXX xxxxxx). Xxxx 
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xxxxxxxxx, XxXXx xxxxxxxxxx xxxxx xxxxxx xxxx xxxxxx xxxx xxx xxx xxxx xxxxxxxxx 

(Xxxxxx 18X), xxxx xxxxxxxxxx xxx xxxxxxx xx xxx XXX xxxxxxxx. Xxxx xxxxxxxxx xxxx 

XxXXx xxx xxxx xx xxxxxxxxx xxxx xx xxxxxxxxxxx xx xxxxxx XXX xxxxxxxx. 

 

Figure 18. Hierarchical cluster of early ripening genes (eRG) and non-early ripening genes 
(NeRG). A) Unsupervised two-dimensional hierarchical cluster of the 859 eRG based on the 
mean of the expression of the three biological and technical replicates. B) Unsupervised two-
dimensional hierarchical cluster of the 2535 NeRG genes based on the mean of the expression 
of three biological and technical replicates. The length of the dendrogram branches connecting 
pair nodes depicts the Pearson correlation coefficient. Under each sample is shown the MI. M: 
mature fruits; R: mature with two to four days ripening at 20°C; CS1: one week CS at 5°C; CS2: 
two weeks CS at 5°C; CS3: three weeks CS at 5°C; CSR1: one week CS + SLR; CSR2: two weeks 
CS + SLR; CSR3: three weeks CS + SLR; S: sensitive pool and LS: low-sensitive pool. 

 

As one of the purposes of CS is to stop or slow ripening until fruit is returned to room 

temperature, xxx xXX xxxx xxxxxxxxxx xxxxxxxxx xx xxxxxxx XX xxxxxxx xxxxx xxxxxx 

xxxxxxxxxx xxxxxxx xxxxxx xxxxxxxx xx XX xx xxxx xx xxxxxxx xxxxx. Xx XX xxxxxx, xxx 

xxxxxxxx xxxxxxxx xx 700 xxxxx xxx xxxxxxx xx xxxxxxx xxxxxx XX (81.49%) (xXX1, xXX2, 

xXX5, xXX6; Xxxxxx 19X xxx Xxxxx 11), xxxxx xx X xxxxxx, xxxx 517 xxxxx xxxx xxxxxxxx 

xxxxxx XX (60.19%) (xXX1, xXX5, xXX6, Xxxxxx 19X xxx Xxxxx 11). 

Xxx xxxxxxxx xx xXX xxxxxx xxxx XX xxx xxxxxxxxxx XXX (Xxxxx 11), xxxxxxxxx xxxx xxx xx 

xxx 700 xxxxx xx XX xxxxxx xxxxx xxxxxxxxxxxxxx xxxxxxxx xxxxx xxx xxxxxxx xx xxxxxxx 

xx xxx, xxx xx xxxxx xxxxx XX, 99.29%, 91.71% xxx 78.86% xxxxxxx xxx xxxxxx xxxxxxxx 

xxxxxxx, xxxxxxxxxxxx, xxxxxx xxxxx XXX. Xx X xxxxxx, xxxx 79.50%, 61.12% xx 35.01% xx 

xxx 517 xxxxx xxxxx xxxxxxxx-xxxxxxx xxxxxxx xxxx xxxxxxx xx 
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Figure 19. Expression analysis of early (eRG) and non-early ripening (NeRG) ChillPeach 
transcripts in response to CS and SLR. Clusters resulting from unsupervised two-dimensional 
hierarchical clustering of eRG and NeRG are shown. A and B) Clusters of eRG and functional 
categories over-represented in each cluster. C and D) Clusters of NeRG and functional 
categories over-represented in each cluster. Y-axes (A and C) represent the normalized 
expression ratio (Log2 M) of three biological replicates in relation to a reference pool. The 
functional categories overrepresented in each cluster (B and D) are shown as a heatmap 
obtained with matrix2png. Enriched functional categories with Fisher test p-values < 0.05 are 
colored in grades of yellow. The number of genes in each cluster is indicated to the right of the 
heatmap. 
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 xxxxxxx xx xxx, xxx xx xxxxx xxxxx XX, xxxxxxxxxxxx, xxxxxxx xxxxx xxxxxxxx xxxxx. Xxx 

xXX xxxx xxxxxxxxx xxxxxxxx xxxxxx XX xx 5xX xx xx xx XX xxxxxxxxx xxx 159 xx 342 xxxxx 

xx XX xx X xxxxxx, xxxxxxxxxxxx (Xxxxx 11). Xx XX xxxxxx, xxxx 85% xx xxxxx xxxxx 

xxxxxxx xxxxxx xxxxxxxx-xxxxxxx xxxxxxxxxx xxxxxx XXX xxxxx xxx XX xxxxxxx, xxxxx xxxx 

62.87, 43.86 xx 24.27% xxxxxx xxxxxx xxxxxxxx xxxxxxxxxx xx X xxxxxx xxxxx xxx, xxx xx 

xxxxx xxxx XX. Xxxx, xxxxxx XX xxxx, xxxxxxxxxx xx xxxxxxxxxxxxxx xxxxxxxx xxxxxxx xxx 

xxxxxx xxxxxxxxxxxxxx, xxxx xxxx xxxxx xxxxxxxxxx xxxxxx XX xxxxx xxxxxx xxxx xxxxxxxx. 

Xxx xxxxxx xx xxxxxxxxxxxxxxxxx xx X- xx XX-xxxxxxxxx xxx will impact later SLR. 

 
Table 11. Genes resuming properly the ripening program during 2-3 days at 20ºC.  

 
Xxxxx xxxxxxxx xxxxx 

(859 xxxxx) 
Xxx xxxxx xxxxxxxx xxxxx 

(2532 xxxxx) 

 Xxxxxxxx xxxx xx XX xx 5xX Xxxxxxxx xxxxxxxx xx XX xx 5xX     

 Xxxxxx XX Xxxxxx X Xxxxxx XX Xxxxxx X Xxxxxx XX Xxxxxx X 

 
Xx xx 
xxxxx 

% 
Xx xx 
xxxxx 

% 
Xx xx 
xxxxx 

% 
Xx xx 
xxxxx 

% 
Xx xx 
xxxxx 

% 
Xx xx 
xxxxx 

% 

Xxxx 
xxxxxxxx 

700 81. 49 517 60. 19 159 18. 51 342 39. 81     

Xxxxx xxxxxxxxxx xxx xxxxxxxxxx xxxxxx xxxxxxxx xx X xxxxxx 

1x 695 99. 29 411 79. 50 154 96. 86 215 62. 87 2525 99. 6 2372 93. 8 

2x 642 91. 71 316 61. 12 137 86. 16 150 43. 86 2419 95. 4 2055 81. 1 

3x 552 78. 86 181 35. 01 136 85. 53 83 24. 27 2298 90. 7 1422 56. 1 

There is indicated the number for early and non early genes and in the case of eRG if the ripening program 

is stopped or not by cold. 

 

Classifying xxx XxXX xx xxx xxxxx xx xxxxxxx xx xxx xxxx xxxxx xxx xxxxxxxxxx xxxxxx xxxx 

xxxxx xxxx xxxxxxx xxxx xxxxxxx (x.x., xxxxxxx xxxxxxxxxx xxxxxx xx X xx X xxxxxx, xx 

xxxxx xxx xxxx xxxxxxx, xx xxxxx xxxxxx xxx xxxxx xxxx,, Xxxxx X13) xxxxxxxxx xxxx xxxx 

90% xx XxXX xx XXX-XX xxxxxx xxxxxxxx xxxxxxx xxxxxxxxxx xxxxxx xx X/X xxxxxx xxxxx 

xxx XX xxxxxxx (Xxxxx 11). Xx X xxxxx 93.57 (2372), 81.07 (2055) xx 56.09% xx XxXX xxxx 

xxxxxxxxx xx xx xxx xxxxx xx X/X xxxxxx xxxxx xxx, xxx xx xxxxx xxxxx XX.  

Xx xxxxxx xxxxxxxxxxxxx xx xxxx xxxxxxxxxxxx xxxxxxxx, xx xxxxxxxx xxx xxxxxxx xx xxx 

xxxxxxx xxxxxxxx (Xxxxxxx 19X xxx 19X) xxxx xxx xxxxx xxxxxxxxxx xx xxxxxx xxxxxxx 

xxxxxxxxxx (Xxxxxx 17X). Xx xxxxxxxxxx xxxxxxxx xxxx xxxxx xx xxxxxxxx xXX2 xxx XxXX8 
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(Xxxxxx 19X xxx 19X). Xxxx xxxxx xxxx xxxxxxxx xxxxxxxxxx xx XXX xxxxxx xxxx xx 

xxxxxxxx xXX2 (~50% xx xXX xxxx xxxxxxxx xxxxxxxxxx) xxx XxXX8 (~35% xx XxXX xxxx 

xxxxxxxx xxxxxxxxxx) (Xxxxxx 12-13). Xxx xxxxx xx xxxxx xxxxxxxx xxxx xxxxxxxx xx 

xxxxxxxxx xxxxxx xxx xxxxxxxxxx, xxxxxx xxxxxxxxxx, XXX xxxx-xxxxxxxxxxxxxxx 

xxxxxxxxxx, XXX xxxxxxxxxxx xxx xxxxxxx xxxxxxxx (Xxxxxx 19X xxx 3X). X xxxxxxxxxx 

xxxxxxxxxxxxxx xx xxxxx xxxxxxxx xx xxxx XX xxxxxx xxxxxxxx xxx xxxxxxxxxx xxxxxx 

xxxxxxxx xx xx xxxxxxx/xxxxxx xxxxx (X) xxxxxx XX, xxxxx xxx xxxx xxxxx xxxx xxxxxxxx 

xxxx- 

 

Xxxxx 12 Xxxxxx xx xxx xxxx xx xxx 859 xXX xxxx xxxxxx xxxxxxx xxxxxxxxxx xxxxxx 2-3 xxxx xx 20xX 

xxxxx xxxx xxxxxx xx xxxxxxx 

Xxxxxx xx 
xxx XX xx 

xxx 
xxxxxxxx 
xxxxxxx 

  Xxxxxxxx Xxxxxxxx  

  XXX1 XXX2 XXX3 XXX1 XXX2 XXX3 
Xxxxx xx 
xxxxxxx xxxxxxx xxxx xxxxxx X XX X XX X XX X XX X XX X XX 

XX-XX-XX-X 
 

xXX3 XX-XX-XX-X   2  6  3 3 14 16 30 16 75 

xXX4 XX-XX-XX-X 8 2 6 6 6 6 2  21  41 1 84 

XX-XX-XX-X xXX2 XX-XX-XX-X 114  149 28 176 87    1   183 

XX-XX-XX-X 
 
 

xXX1 XX-XX-XX-X 2 1 11 6 22 6 8  48 3 93 10 206 

xXX5 XX-XX-XX-X 27  34  49  3 2 11 8 30 10 149 

xXX6 XX-XX-XX-X 66 2 97 12 142 35       162 

 Xxxxx xxxxxxx 217 5 299 52 401 134 16 5 94 28 194 37 859 

XX: xxxx xxxxxxxx; XX: xxxx xxxx; XX: xxxx xxxx; XX: xxxx xx; XX xx xxxxxx. X: xxxxxxxxx xxxx; XX : xxx xxxxxxxxx 
xxxx 

 

xxxxxxxxx xx X xxxxxx (Xxxxxx 19X xxx 19X). Xxxxxxxxxx xx xxxxx xx xxxxxxxx xXX2 xxx 

XxXX8 xxx xxxxxxxx xxxxxxxxxx xxxxxx xxxxx-xxxx xxxxx xxxxx xxxxx xxxxxxxxx xxxxxx 

xxxx xxxxxxx. Xxxxxx XXX, xxxxx xxxxx xxxx xxxx xxxx xxxxxxxx xxxxxxxxx xxxx xx X xxx X 

xxxxxx xxx xxx xxxxxx xx xxxxx xxxx xxxxxxx xxxxxxxxxx xxxxxxxxx xxxxxx XXX 

xxxxxxxxxxx xxxx xxxxxxxxxx XX xxx xxxx. Xxxxx xxxxxxxx, xxxxx xx xxxx xxxxx xxxxxxxxx 

xxx xxxxxxxxx xxxxxxxx xx xxxx xxx XXX xxx xxx xxxxxxx xxxxxxxxxx xxxx xxxxxxxxxxx XXX 

xxxxxxxxxxx. 

Xxxxxxxxxx xxxxxxxx xxxx xxxxxxxxx xxxx xx xxxxx xXX xxx XxXX xxxxx xxxx 

xxxxxxxxxxxxxxx xxxxxxxxx xxxxxxxx xxxxxx XXX, xxxxxxxxxxx xx xxxxxxxxxx xxxxxxx X xxx 

XX xxxxxx xxxx xxxxxx xxxxxxxxxxxx, xxxx xxx xxxxxxxxx xx xxxxxxxx XxXX1 xxx XxXX5 
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Xxxxx 13. Xxxxxx xx xxx xxxx xxxxxxx xx xxx 2532 XxXX xxxx xxxxxx xxxxxxx xxxxxxxxxx xxxxxx 
2-3 xxxx xx 20xX xxxxx xxxx xxxxxx xx xxxx xxxxxxx. 

  Xx-xxxxxxxxx Xxxx-xxxxxxxxx 

  XXX1 XXX2 XXX3 XXX1 XXX2 XXX3 
Xxxxx xx 

xxxxxxx Xxxx xxxxxx xxxxxxx X 
X

X 
X 

X

X 
X XX X 

X

X 
X 

X

X 
X 

X

X 

XX-XX-XX-X 
XxXX4 77  116 18 180 49  5 8 2 36  531 

XxXX3 7 1 10  18 1 1  43 18 134 17 429 

XX-XX-XX-X 

XxXX5 9  36 14 74 42  3 6 1 55 2 431 

XxXX6      1 10  95 11 223 19 338 

XxXX7   2  16    4 2 12 1 134 

XX-XX-XX-X XxXX1 3  8  10 2   14 1 92 4 223 

XX-XX-XX-X XxXX8 50  105 34 184 80  1     273 

XX-XX-XX-X XxXX2     1  6  33 15 78 19 176 

Xxxxx xxxxxxx 146 1 277 66 483 175 17 9 203 50 630 62 2535 

XX: xxxx xxxx; XX: xxxx xx; XX xx xxxxxx. X: xxxxxxxxx xxxx; XX: xxx xxxxxxxxx xxxx 

 

 (Xxxxxx 19X xxx 19X) (xxx xxxxx). Xxxx xxxxx xxxx xxxxxxxxxxxx xxxxxxxxxxx xx 

xxxxxxxxxx xxxxxx XXX xxxx xx xxxxxxxx xXX1, xXX5, xXX6, XxXX2, XxXX3, XxXX4, XxXX6 

xxx XxXX7 (Xxxxxx 19X xxx 19X xxx xxxxxx 12 xxx 13). Xxx xxxxx xx xxxxxxxx xXX5, xXX6, 

XxXX3 xxx XxXX4 were up-regulated during cold storage, while eRG1, NeRG6 and 

NeRG7 were down-regulated. A functional enrichment analysis (Figure 19B and 19D) 

indicated that genes in cold up-regulated clusters xxxx xxxxxxxx xx xxxxxxxxxxx xxxxxx, 

XXX xxxxxxxxxxxxx xxxxxxxxxx, xxxxxxxxxxx xxxxxxxxx, xxxxxxxxx, xxxxxx xxxxxxxxxxxx, 

xxxxxxxxx xxxxxxxxxxx xxxxxxxx xxx xxxxxxx xxxxxxxx. Xxxxx xx xxxx-xxxx-xxxxxxxxx 

xxxxxxxx xxxx xxxxxxxx xx xxxxxxxxx xxxxxxxxxx, xxxxxxxxxxxx xxxxxxxxxx, xxxx xxx, 

xxxxx xxxxxxxxxx, xxxxx xxxxxxx xxxx xxxxxxxxx xxxxxxxxx, xxxxxxxxx xxxxxxxxxx xxx 

xxxxxxxxx. 

Xxxx xxxxxxxx xxx xxxxxxx xxx xxx xxxx xxxxxxxxxxx xxxxxxxx xxxxxxx xxx-xxxxxxxxxxx X 

xxx XX xxxxxx. Xxx xxxxx, xXX3, xXX4 xxx XxXX2, xxx xxxxxxxx xxxxxxxxx xxxxxx XX xx xxx 

xxxxxxxx xxxxxx XXX xxx xxxxxxxxxx xxxxxxxxxxx xxxxxx XX xxx XXX xxx xxxxxx 

xxxxxxxxxxxx (Xxxxxxx 19X xxx 19X). Xxx xxxxx xx xxxxxxxx xXX3 xxx xXX4, xxxx- xxx xx-

xxxxxxxxx xxxxxx XX xx xxxx X xxx XX xxxxxx, xxx xxxxxxxx xx xxxxx xxxxxxx xxxx 

xxxxxxxxx xxxxxxx, xxxxxxxxx xxxxxxxxxx xxx xxxxxxxxx (Xxxxxxx 19X xxx 19X). Xxxxx 

xxxxxxxxx xxxxxxxx-xxxxxxx xxxxxxx xxxxxx XX, xxx xxxx xxxxxx XXX. Xxxxxxx, the effect 
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xx xxxx xx xxxxxxxx-xxxxxxx xxxxxxx xxx xxxxx xxxxx xx xxxxxxx xx X xxxxxx xxxx xx XX 

xxxxxx, xxxxxxxxxx xxxxx xxxxxxxxx XX. Xxxxx xx xxxxxxx xXX4 (Xxxxxx 19X), xxxxxxxxx 

xxxxxx xx xxxx xxxxxx xx xxxxxx X, xxxx xxxxxxxxxxxxx xxxx-xxxxxxxxx xx XXX-X xxxxxx 

xxxxxxx xx xxxxxx xxxxxxxxx xx xxxx xxxxxx xx X xxxxxx, xxxx xxxxxxxxxxxxx xxxx-

xxxxxxxxx xx XXX-X xxxxxx xxxx xxxxxxx xx X-X xxxxxx xx xxx xxxx xx XX xxxxxxxxx. XxXX2 

xxxxx xxxx xxxxxxxxx xxxxxx XX xx x xxxxxx xxxxxxxxxxx xxxx XX xxxxxxxxxxx, xxxx 

xxxxxxxxx xxxx xx xxx xxxxxxxxxx xxxx xx XX xxxxxx xxxxxx XXX, xxx xxx xxxxxxxxxx 

xxxxxx XX xxx xxxxxxx xxxx xxxxxxxxx xxxxxxxx xx xxxx xxxxxxx (Xxxxxx 19X). Xxxxxxxx 

XxXX1 xxx XxXX5 xxxxxx xxxxxxxxxxxx xxxxxxxxxxx, xxx xxxxxxx xxxxxxxx (Xxxxxx 19X). 

Xxxxxxxx xxx xxxxxxxxxxxxxxx xxxxxxxx xxxxxxxxx xxxxxx XX xx xxxxxxxxx xxxxxxxx xxxxxx 

XXX, xxx xxxxx xx xxxxxxx XxXX1 (xxx xxxxxxxx xx xxx xxxxxxxxxx xxxxxxxx; Xxxxxx 19X), 

xxxxxx xxxxxxxx xxxxxxxx xxxxxx XX: xxxx xxxx xxxxxx xx-xxxxxxxxx xxxxxx XX xx X xxxxxx, 

xxx xxxx-xxxxxxxxx xx xxx XX xxxxxx. Xx xxxxx xx xxxxxxx XxXX5, XX xxxxxx xxxx-

xxxxxxxxxx xx xxxxxxxxxx, xxxxxxxxxxxx xx X xxxxxx, xxx xxxxx XXX, xxxxx xxxxx xxxx xxxx 

xxxxxxxxx xx X xxxxxx xxxx xx XX xxxxxx (Xxxxxx 19X). Xx XXX xxxxxxxx xxx xxxx xx XX 

xxxxxxxxx, xxx xxxxxx xx xxxxx xxxx xxxxxxxx xxxxxxxxxx xxxx xxxxxxxxx. 

 

C3.1.6.Validation and extension of microarray expression profiling to 

individual lines of the Pop-DG population 

To validate the microarray results, we performed medium-throughput qRT-PCR 

(Biomark Dynamic Array, Fluidigm) xxxx x xxx xx 93 xxxxx xxxx xxxx xxxxxxxx xxxxxxxx 

(xxxx xxx xxxxxxxxx xx x xxx xxxxx xx xxxxxxxx) xxx xxxxx xxxxxxxxxxxxxx xxxxxxxxx xxxxx 

xxx xxxx xx XX xxx/xx XXX (Xxxxx X14) xxxxx xxx xxxx xxxxxx xxxxx xxxxxxx xx xx xxx 

xxxxxxxxxx xxxxxxxxxxx. Xxx xXX-XXX xxxxxxx xxxxxxxx xxxx xxx xxxxx xxxxxxxx xxxx 

73.12% (68/93) xxx 75.26 % (70/93) xx xxx xxxxx xx XX xxx XXX xxxxxxx xxx xxx xxxx 

xxxxxxxxxx xxxxxxx xx xxx xxxxxxxxxx xxxxxxxxxx xx xx xxx xXX-XXX xxxxxxxxxx, 

xxxxxxxxxxxx. Xxxxxxxx xxx xxxxxxxxxx xxxxx xxx xxx xxxxxxxxx xxx xxxx xxxx xx xxxx 

xxxxxxx (Xxxxx X14), xxxxx xxxxxxx xxxxxxxxx xxx xxxxxxx xxxxxxxx xxx xxxxxxxxxx xx xxx 

xxxxxxxxxx xxxx.  
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Xxxxxxxxxx xxxxx xxxxx xxx xxxx xxxxxxxx xx xXX-XXX xx xxxxxx xx 13 xxxxxxxxxx 

xxxxxxxx xxxx xxx Xxx-XX xxxxxxxxxx. Xxxxx xxxxxxxxx, xxxxxx xxx xxxxxxx xxxxx 

xxxxxxxxx xxxxxxxxxx xx xxxx xxx xxxxxxxxxx xxxxxxxx, xxxxxxx xxx xxxxx xxxx xx xxx 

xxxxx xxx xxxxxx xxxxxxx x xxxxx xx XX (Xxxxxx 1). Xxxxxxxxxxxx xxxxxxx xxxxxxxx 

xxxxxxxxxx xx xxxxxxxxx xxxxx xx xxxx xxxxxxx xxx xxxxx XX xxxxxx XXX xxxxx xxx xxxx XX 

xxxx xxxxxxxxxx (Xxxxxx 20 xxx Xxxxx X15). Xxxxxxxxxxxx xxxx xxxxxxxxxx xxxx xxx xxxx 

xx xxxxxxxxx xxxxx xxxxxxxxxxxxxx xxxxxxxxx xxxxxx XXX, XX xxx XX + XXX. Xxx XX 

xxxxxxx, xxx XX xxx 0, xx xxxxx xxxxxxx xxxx xxxxxxxx xxxx xxx xxxx xxx XXX xx xxxxxxxx 

xx xxxxxxx XXX. Xx xxxxxxxxx xx XX xxxxxxx xxx xxxxxxxxxx XX xx xxx xxxxxxxxxxxxx XXX 

xxxxxxx, xx xxx xxxxxxxx xxxx xxxxxxxxxxxxx xxxxxxxx xx xxx xxxx xxxx x xxxxxx xxxxxx xx 

XXX xxx xxxxxxxxx, xxxx xxx xxxxxxxxxx xxxxxxxxx xxxxxxxxx xxx xx xxxx xx xxxx xxxxx 

xxxxxxxxxxx xxxx xxx xxxxxx. Xxxxxxx, xxxxxxxxxxx xxxxxxx x xxxx xxx XX xxxxxx xxxx xxx 

xxxx xxxxxxxxx xx xxx xxxxxxx xxx xxxxx xxx xxxxxxxxx xxxx xxx xxxxxxxx. Xxxxxxxxxxx 

xxxxxxxx xxxxxxxxxxxx xx xxxxxxxxxx xxxxxx xxxx XX xxxxxxxx xxxx xxxxxxxxxx xx 

xxxxxxxxx xxxxx, xxxxx xxxxxxxx xxxxxxxxxxxx xxxxxxxx xxxx xxxxxxxxxx xx xxx-xxxxxxxxx 

xxxxx. Xx xxxxxxx, xxxxx xxxxxx xxxxxxxxx xx X xxxxx xxxxxx xxxxxxxx xxxxxxxxxxxx 

xxxxxxx XX xxx xxxx xxxxxxxxxx xx xxxxxxxxxx xxxxx xx XX, XXX xxx XX + XXX xxxxxxxxxxx 

(Xxxxxx 20X-X), xxxxx xxx-xxxxxxxxx xxxxx xxxxxx xxxxxxxx xxxxxxxxxxxx. X xxxxxxxxxxx 

xxxxxxxxxxx xxxx XX xxxxxxxxxxx/xxxxxxxxx (xxxxxxxxxxxx xxxx x-xxxxx < 0.05) xxx 

xxxxxxxxx xxx 63% xxx 51% xx xxx xxxxxxxx-xxxxxxxx xxxxx xx XX xxx XXX xxxxxx (Xxxxxx 

20X, X). Xxxxxxx, xx xxx xxxxxxxxxxx xxxxx xxx x xxxxx xx xxxxx xxxx xxxx xxxxxx 

xxxxxxxxx xx XX xxxxx xxx xxxxxxxxxx xxxxxxxxxx xxxx xxx XX xx xxxxxxxxxx xxxxx. Xxxx 

xxxxxxxxx xxxx xxxx xxxxxxxxxx xx xxxxx xxxxx xx xxx xxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxx 

xxxx xxxxxxxxx xxxxxx, xxx xxx xxxxxx xxxxxx xxxxxxxxx xxxxxxxxxxx xx xxx xxxx xxxxxxxx 

xx xxxx xxxx. Xxx xxxxx xxxxxxx xx xxxxxxxx xxxxxxx xxxxxx XX xxx XXX (Xxxxxx 20X) 

xxxxxxxx xxxxxxxxxxxx xxxx XX xxxxxxxx xxxxxxx xxxx xxx xxxxxx xx xxxx xxxx xxxxx xxxxx 

xx xxxx xxxxxxxxx xxx XXX xxxxxxxxxxx xxxx xxxxxxxx, xx xxxx xxxxx. 

Xxxxxxx xxxx xx xxx xxxxxxxx xxxxx xxxxxx xxx xxxxxxxx xxxxxxx  xx xxxxxxxxxx xxxxx xx 

xxxxxxxxx xxxx xxx xxxxxxx xx  xxx xxxxx xx xxx Xxx-XX xxxxxxxxxx xxx xxxxxxxx xxxxx xx 

xx xxxxx xx  xxxxxxxx xxxxx xxxx xxxxx xx xxxxxxxx xxxxxx xx xxxxxxxx xxxxxxxxx xxx/xx 
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xxxx xxx xxxxxxxxxxx xx XXX xxx xxxxxxxxxx xx x xxxxx xxxxxxxxxx response to cold 

stress 

 

Figure 20. Correlations between relative expression levels of candidate genes analyzed by 
medium throughput Fludigm RT PCR in each sibling with the MI exhibited after one week CS 
plus SLR. Pearson correlations were calculated over the sets of genes validated in the pools 
and differentially expressed during A) CS, B) SLR and C) CS + SLR.  
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C3.2.Discussion 

C3.2.1. Considerations to the experimental approach 

Transferring fruits to CS induced a large transcriptome and proteome rearrangement 

in peach fruits consistent with eventual CI development (chapter 1, 2 and [11, 12, 14-

17, 134]). Xxxxxxx, xxxxxxxx xxxxxxxx xxx xxxxxxx xxx xxx xxxxxxxxxxxxx xxx 

xxxxxxxxxxxx xx XX, xxxxxxxxxxx xx xxxxxx xxxxxxxx xx xxxxxxxxx xxxx xxxxxx xxxxxxxxx, 

xxxx xxxxxx xxx xxxxxxxxxxx xx xxxx xxxxxxxxxxx (XXX) xxx xxxxxx xxxxxx xxxxxxxx [8].  

Xx xxxxxxxx xx xxxxx xxxxxxxxxxxxx xxxxxxx xx xxxxxxxx xx XX xxx XXX xx xxxxxxxxx xxx 

xxx xxxxx xx xxxxxxxx xxxx xxx Xxx-XX xxxxxxxxxx xxxx xxxxxxxxxxx xxxxxxxxxxx xx xxxx-

xxxxxxx xxxxxxxxx. Xxx xxxxxxxxxxxxxx xx X xxx XX xxxxx xx xxxxxxx xxx xxxxx xxxxx 

xxxxxxx xx XX xxxx xx xxxxxxx xxxxxxxxxx XXX xxxx xxxxxxxx xxxxx xxx XxxxxXxxxx 

xxxxxxxxxx (Xxxxxxx 16-19). Xxx xxxxxxxxxx xxxxxxxx xxxx xxxxxxxxx xxx 73 xx 75% xx 

xxx xxxxx xxxxxx (Xxxxx X14). Xxx xxxxxxxxxx xxxxxxxx xx xxxxxx xxxxx xxxxxxxx xx xXX-

XXX xxxx xxxxxxxxxx xxxx xxxxxxxxxx xxxx (Xxxxx X14), xxxxxxxx xxx xxxxxxxxx xxx xxxx 

xxxx xx xxxx xxxxxx, xx xx xxxxxxx xxxxxxx [17]. Xxxxxxx, xxx xxxxxxxxxx xxxxxxx xx xxxx 

xxxxx xxxxxxxxx xx xxx xxxxx xxx xxxxxxxxx xx xxxxxxxxxx xxxxx/xxxxxxxxx xxxxxx xxx 

Xxx-XX xxxxxxxxxx (Xxxxxx 20). Xxxxxxxx xxxxxxxxxx xxxxxxxx xxx xxxxxxxxxxx (xxxxxxxxx 

xx xxxxxxxx 1 xxx 2), xxx xxxxxxxxxxx xx xxxxx xx xxx Xxx-XX xxxxxxxxxx xxxx xxxxxxxxxx 

xxxxxxxxxx xxx xxxx xxxxxx xxxxxx, xxxxxxxxxxxx ([17, 134], xxxxxxx 1 xxx xxxxx X14) xxx 

xxxxxxxxxx xx xxxxxxxxxxx xxxxxx xxx xxxx xxx Xxx-XX xxxxxxxxxx (Xxxxxx 20 xxx xxxxxxx 

1) xxx xxxxxxxxx xxxx xxxxxxxxx xxxxxxxxxxx xxxxxxx XX (xxxxxxx 2 xxx [134]). Xxxx xxxx 

xxxxxxxxx xxxx xxx xxxxxxxx xx xx xxxxxxxxxxx xxxx xxxxxxxxxx.  

Xxx xxxxx xxxxxxx xxxx xxxxx xxxx xxxxxxxxx xxxxxxxxxxx xx xxxxxxxx XXX 

xxxxxxxxxxx xx xxx xxxx. Xxxxxxxx xxxx xxxxxxxxx xxxxxxxxxxx xxxxxxxx x xxxxxxx xx xxx 

xxxxxxx xxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxx xxx xxxxx xxxxxx [11, 12, 14, 16]. 

Xxxxxxx, xxxxx xxxxxxx xxx xxx xxxxxxxxx xxxxxxxxxxxxxx xxxx xxxxxx xx xxxxxxx XXX 

xxxxxxxxxxxxxx xxxxx xxx xxxxxxxxxxx xxxx xxxxx xx x xxxxxx xxxxxxxx [11, 12, 16] xx xx 

xxx xxxxxxxxx xxxx xxxxxxxxx xxxx xxxxxxxx xxxx xxxx differed in other phenotypic traits 

[14]. Here, we defined transcripts that may be causally related to WLT by examining 
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xxxx xxxxxxxxxx xxxxxxx xx xxx xxxxx xx xxxxxxxx xxxx xxx Xxx-XX xxxxxxxxxx (X xxx XX).  

Xxxxx xxxxxxxx xxxx xxxxxxx xxxxxxxxxxxxx xxxxxxxxxxxxxxx xxx xxxxxxxxxxxxx xxxxxxx, 

xxx xxxxxxxxxxx xxxxxxxxxxx xx xxxxxxxxx, xxxxxxxxxxxx xxxxx xxxxxxxxxx xxxxxxxxxxx 

xxx xxxxxxxxxx xxx xxxxxxxx xxx xxxxxxxxxxx xxxxxxxx.  

Xxxxxxxx xxxxxxx xxxxxxxx x xxxxxxx xxxxxx xx XX xxxxxxx [11, 12, 14, 16]. Xx xxxxxxxx 

xxxx xxxxxxxxxxx, xx xxxxxxxx xxxxxxxxxx xxxxxxx xxxxxxxxx xx xxxxxxxxx xxxxxx /xxxxx 

xxxxxx XXX xxxxxxxxxxx. Xxx xxxxx xx xxxxxxxx xxxx xxxxxxxxx xx xxxxx xxxxxxxxx xxxxxxx 

xx XX xx xxxxx XXX xxx xxxx XXX xxx xxx xx xxxxx xxxx xx 20xX xx xxxxxx xxxx xxxxxxxxxxx 

xxx xxxxxxxxx xxxxxxx. XXX-xxxxxxx xxxxxxxxxxxxxx xxxxxxx xxx x xxxxxxxx xx xxx 

xxxxxxxx xx XX xxx xxx xxxxxxxx (Xxxxxxx 16-19), xxx xxxx xx xxx xxxxxxxxxx xx xxxxxxxx 

xxxxxxxxxx xxxxxx XXX xxxxx XX, xxxxx xxx xxxxxxx xxx xxxxxxxxxx xx xxxxxxxx. Xx X 

xxxxxx, XX xxxxxx xxxxxxxxx xxxxxxx xxxx xxx xxxxxxxxx xxxxxx XXX xx xxxxxxx xxxxxxxx, 

xxxx xxxx xxxxx xx xxxxxxxx xxxxxxxxxxx xxx xxxxxx xxxxxxx. Xxx xxxxxxx xxxxxxxx xxxxxx 

XXX xxxxx XX xxxxxxxx xxxxxx xxxx xxxxx xxxxxx xx-xxxxxxxxxx xx xxxx xxxxxxxxxx, 

xxxxxxxx xx xxxxxxx xxxx-xxxxxxxxxx. Xx xxx xxxx xxxxxx xxxxxxxxx, xxx xxxxxx xx xxxx-

xxxxxxxxx xxxxx xxxxxxxxx, xxxxxxxx xxxx xxxxxx xxxx xxx xxxxxx xx xxxxxxx xxxxx. Xxxxx 

xxxxxxx xxxxxxxx xx xxxxxxxxx xxxx x xxxxxxxx xxxxxx xx xxxx xxxxxxxxxx xxxxxxxxxx xxxx 

XXX, xxxxxx xxxx xx-xxxxxxxxxx [11]. Xxxxxxx, xxxxx xxxxxxxxxxx xxx xxxxxxx xxx xxxxxx 

xx xxxxxxxx, xx xxxxx xxxxxxx xxx xxxxxx xxxxx xxxxx xxxx xxxxx xxxx. Xxxxxxxxxxx xxxxx 

xxxxxxx xxxxxxxx xxxxx xxxxxxxx xx xxxxxxxxxxx xxxxxxx xx xxxxx xxxxxxxx xxxx [12, 14, 

16].  

 

C3.2.2.Transcriptome resilience during shelf life promotes the 

resumption of ripening and delays mealiness development.  

One of the purposes of XX xx xx xxxx xx xxxx xxxxxxxx xx xxxx xxxxxxx, xxxx xxxxxx xxx 

xxxxxxxx xx xxxx xxxxxxxxxxx, xxxx xxx xxxxxx xxxxxxxx xxx xxxxxxxxxx xxxxxxx x xxxxx, 

xxxx xxxxx. Xxxxxxx, xxx xxxxxxxxxxx xxxx xxxxxx xxxxxxx xxxxxxxxxx xxxxxxxx. Xx-

xxxxxxxxxxx xx xxxxxx xxxx xxxx xxxxxx xx xxxx xxxxxxxxxxxx [493, 494], xxxxxx xxxxxxxx 

x xxxxxxxx xx xxxx xxxxxxxx xxxxxx xxxx xxxxxxxxxxx [495]. Xxxxxxxxx, xxx xxxxxxx 

xxxxxxxx xxxx xxxx xxxxxxxxxxx xxxx XX xx XXX, XXX-XX xxxxxx xxxxxx xxxxxxxxxxxx 
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xxxxxxxxxxxxxx xxxxxxxxxx [491] xxx xxxx xxxxx xxxxxxxx xx xxxxxxx X xxxxxxxxxx xxxxxx 

xxxxx XX (Xxxxxxx 16X-X, 19X xxx 19X). Xxxx, xxx xxxxxxxxxxxxxxx xxxxxxx xxxxxxxx xxx 

xxxxxx xxxxx xxxxxxxxxx xxx xxxxxxxx xxxxxxxx xxx xxxxxxxx (xx xxxxxxxxx xx xxxxxxxxxx 

xxxxxxxxxx (Xxxxxx 19X xxx 19X). Xx xxxxxxxx, X xxxxxx xxxx xxxxxx xx xxxxxxxx 

xxxxxxxxx xxxxx xxxxxxxxxxxxxxx xxxxxxxx xx xxxx xxx xxxxxx xxxxxx xxxxxxxx (Xxxxxx 16-

19). ). XX xxxxxx xxx xxxxx xxxxxxx xxxx xxxxx-xxxx XX, xx xxx xxxxxxxxxxxxx xx XXX1-XX 

xxxxxx (xxxxxxx xxxxxxx xxxxxx xxxxxxxx, Xxxxxx 16X) xxx xxx xxxx xxx xxxx xxx xxx 

xxxxxx xxxxxxxxxxxx xxxx X xxxxxx xxx xxxxxxx xxxxxxxx xxxxx xxxx xxxxxxx (Xxxxxxx 16-

19 xxx X4). Xxxxxxx, xx xxx xxxxxxxx xx XX xxxxxxxxx, xxx xxxxxxxxxxxxxx xx XXX xxxxxx 

xxxxxxxx xxxx xxxxxxx xxxx xxxxxxx X xxxxxxxxxx, xxx xxx xxxxxxxxxx xx xxxxxxxx 

xxxxxxxxx xxx xx xxxxxxxxx xxxxxxxx xxxxxxx. 

Xx xxx xxxxxxx 2 xx xxxxxxxx xxxx xxxxxxxxxxxx xxxxxxxxxxx xx xxx xxxxxx xx xxxxxx xxxx-

xxxxxxxxxx xxxxx xxxxxxxxxx xxxx xxxxxxxxxxx/xxxxxxxxx xx XX xx xxx-xxxxxxxxxxx xxxxxx. 

Xxxx, xXX (xxxxx xxxxxxxx xxxxx: xxxxxxxx xxx xxxxxxxx xxxxxx XXX xxxxxxx XX) xxx XxXX 

(xxxxx xxx xxxxxxxx xxxxxx XXX xxxxxxx XX) xxxxxxxxx xx xxxx xx xxx xxxx xxx, xxx xxxx 

xxxxxxxxxxxx xxxxxxxxxxx xxxxxxx X xxx XX. Xxx xxxxxxxx xxxxxx XXX xxxxxx xxxx: x) 

xxxxxxxxx xx xxx xxxxxxxxxx xxxxxx xxxx xxxxx xxxx xxxxxxx XX, xxxxxxxx xxxx 

xxxxxxxxxxx xx X xxxxxx xx xx) xxxxxxxxxx xxxx xxx XX-xxxxxxx xxxxxxx, xxxxxxxx xxx 

xxxxxxxxxx xxxxxx xx xxx xxxx xxxxxxxxxx xxxx xxxxx xx XXX. Xx xxxx xxxxx xxxx, xxxxx 

xxxx xxxxxxxxxxxx xxxxxxxxxxx xxxxxx XX xxx xxxxxxxxxx XXX xxx xxxxxxx xxxxxxxxxx xx 

xxxxx xxxxxxxx xxx xxxx xxxxxxxxxx xx xx xxxxxxxxxxx xxx xxxxxxxxx 

xxxxxxxxx/xxxxxxxxxxx (xx xx xxxxxxxx xx xxxxxxx 2) xxx xxxx xxx xxxxx xxxxxxxx xxx 

xxxxxxxxxxxx xx xxxxxxxx xxxxxx XXX [16] 

Xxxxx xxxxxx xxxxxxxxx xx xxx XX xxxxx xxxxxx XX xxx XXX xxx xxxxxxxx xxxxxxxxxx xxxx 

xxxx xxxxxxxxx xxx xx xxxxxx xxxxxxxx xx xxxxxx, xxxx xx xxxxx xxx xx xxxxxx xx 

xxxxxxxxxx xxxxx xxxx xxx Xxx-XX xxxxxxxxxx (Xxxxxx 20), Xxxx xxxxx xxxx-xxxxxxxxx 

xxxxxx XX xxx xxxxxxx xx xxxx xxxx xxx xxxxx xxxx, xxxxxxxxxxxx, xxxxx xxx xxxxxxxxx 

xxxxxxxxxx xxxxxx xxxxxxxx xx xxxxxx xxxxxxxxxx, xxxxxxxxxx xxxxx xxxxxxx XX xxxxxxx, 

xxx/xx xxxx xxxxxxxxx xx xxxxxx xxxxxx xx XX xxxxxx (xxxxxxxx xXX1, xXX3, XxXX2, XxXX6 

xxx XxXX7; Xxxxxx 19 xxx xxxxx X13). ). Xxxx xxxxxxxxx xxxx xxxxxx xxxxxxxxxx is partly 
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xxxxxxxx xx XX xxxxxx xxxxx XX. Xx xxxxx xxxxxxxx xxxx xxxxxxx xxxxx (xxxxx 12) xx 

xxxxxxxx xxxxxxxx xx xxxxxxxxxx xxxx xxxx xxxxxxxxx xx xxxxx xxxxxx xx xxxxxxx 1 (xxxxx 

5) xxxx xx xxx xxxxxxxxx xx XXX1 (XxXX7), XXXXX2 (XxXX6 xxx XxXX2), XXX1 (XxXX6), 

XXXX1 (XxXX6), XXXX (XxXX6), XXXX1 (XxXX6), XX (xXX1), XXX1 (XxXX2 Xxxxxxxx xxxxx 

xxxxx xxx xxxxxxxxxx xxxx xxxxxx xxxxxxxxx xx Xxxxxxxxxxx [51, 80, 231, 496-499] xxx xx 

xxxxxx xxxxxxxxxx xxxxx xxxxxxxxxxx xxxxxxxxxxxxx xxxxxxxxxx xx xxxxxxxxxx xxxxxxx 

[119, 206, 231, 500, 501], xxxx xxx xxxx xxxxxxxxxx xxxx xxx xxxxxxx xx xxxxxxx xxxx xxxx 

xxxxxx [25]. Xxxxxxxxxxxxxx xx XXX1, XXX1 xx XXXXX xx xxxxxx xxxxxxxxx xxx xxxxxxxx 

xxxx xxxxx xxxx xxx xxxxxxx xxxxxx xx xxxxxxx xxxxxxx [102, 119, 502-505]. Xx xxxxxxxx, 

XXXXX xxxxx xxxxxxxx xxxxxxx xxxxxxxx [505] xxx XXX xxxxx xxxxxxxx xxx xxxxxxxxxx xx-

xxxxxxxxxxx xxxxx xx xxxxxx xxx xxxxxxx xxxx [104, 506]  

Xxxxxxxxxx, xxxxxxxx xxxxxxxxxxxxx xx xxxxx xx-xxxxxxxxx xxxxxx XX xxxx xxxxxx xx 

xxxxxx xxxxxx xx X xxxxxx xxxx xx xxxxx xxx xxxxxxxxxx xxxxx (xXX4, xXX5, xXX6 xxx 

XxXX4; Xxxxxx 19 xxx Xxxxx 13) xxx xxxxxxxx xxxxxxx xx xxx xxxxxxxxxxx xx xxxxxxx XXX. 

Xxxx, xxxx xxxxxx xxxxxxx xxxxx xxxxx xxxxxxxx xxxxx xxxxxx xx xxxxxxxxxxx xxx xxx 

xxxxxxxx xxxxxxx. Xxxxxxxxxxxxxx xx XXX2, xx xxxxxxx XxXX4 (Xxxxx 13) xxxxxx xxxxxx 

xxxxxx xx xxxxx xxxxxx xxx xxxxxxxxx [206]. Xxx xxxxxxxxx xx XXXX1/XXX4 (XxXX4, Xxxxx 

13) xxx XXXX1 (xXX5, Xxxxx 13) xxx xxxxxx xx-xxxxxxxxx xx Xxxxxxxxxxx xxxxxxxx 

xxxxxxxxx xxxxxxx xxxx xxxxxxxx [59, 209]. Xxxxx xxxx xxxxxxxx xxxxxxx xxxxxxx xxxxx 

xxxxxxxx xxxxxxx xx xxx XxXX xxxxxx (xxxxx 13), xxxxxxxxxx xxxxxx xx xxxxxxxxxxx xx x 

xxx-xxxxxxxxxxx (xxxxxxx 1 xxx 2). Xxxxxxxxxx xxxxxx xxxx xxxxxxxxx xxxxxxxxx 6-

xxxxxxxx xxx xxxxxxxxxxxxxx XxXX1 xxx xxxxxxxx xx xxxxxxxxx xxxxxx xxxxxxxx xxxx 

xxxxxxxxxxx xxxx xxxx xx xxxx xxxxxxxxxx [507]. Xxxxxxxxx xx XXX xxx XXX24 xxx 

xxxxxxxxx xx XxXX4 (xxxxx 13). XxXXX5 (xxxxxxxx-xxxxxxxxxx XXXX-xxx xxxxx) xxx 

XxXXX6, xxx xxxxxxxxxx xx Xxxxxxxxxxx XXXXX XXXXXXXXXX XXXXX/XXXXXXX-XXXX 24 

xxxxx, xxx xxxxxxxxxxx xxx xxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxx xxx xxxxxxx xx xxxx xxxx 

xx xxxxx xxxxxx[508], xxx xxx xxxxxxxxxx xx xxxxx xxxxx xxxxxxxxxx xxxx xxx xxxxxxx xx 

xxxx xx xxxxxx xxxxxx xxxxx xxxxxxxxx xxxxxxxxxx [508].  
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Table 12. Genes related to RNA translation, hormone metabolism and signal transduction high expressed in low tolerant fruits during CS and SLR 
Xxxxxxxx 
 

xxxxxxxxxx 
XX 

Xxxxxxx xxxxxxxxxx XXX XX Xxxxxxxxxxx xxxx xxxx Xxxxxxxxxxx 
xxxx xxxxxx 

2 xxxx 
XXX 
xxxxxx
x 

xxxxxx xx 
xxxx xx 
xxxxxxxx 
xxxxxxx 

XXX 
xxxxxx
x  

XXX xxxxxxxxxxxxx xxxxxxxxxx        

 XX2/XXXXX xxxxxx XXX054X03 XXX1 XX4X25480 Xxxxxxxxxxx xxxxxxxx xxxxxxx x1x XXXX1X/XXX3   XxXX7 
 XXX-xxxxxx XXX044X12 xxxxxxx xx Xxxxx xxxxxxxx xxxxxx 1      XxXX7 
  XXX055X04 Xxxxx xxxxxxxx xxxxxx XX1X59750 Xxxxx xxxxxxxx xxxxxx 1 XXX1   XxXX2 
 XXX-X Xxxxxx XXX021X07 Xxxxxxxx xxxxxxxx xxxxxxxxx 10 XX2X01760 Xxxxxxxx xxxxxxxxx 14 XXX14   XxXX6 
 XXX/XXX xxxxxx XX1000X07 Xxxxx-xxxxxxxxxx xxxxxxx XXX1 XX3X04730 Xxxxxxxxxxxx xxxx-xxxxxxx xxxxxxx 16 XXX16 xXX-X XX-XX-XX-X xXX3 
  XXX014X03 Xxxxx-xxxxxxx xxxxxxx XXX28 XX1X04250 Xxxxxx-3-xxxxxx xxxx xxxxxxxxx 17 XXX17/XXX3 xXX-X XX-XX-XX-X xXX3 
  XXX057X01 XXX/XXX xxxxxxx XX4X29080 Xxxxxx-3-xxxxxx xxxx xxxxxxxxx 27 XXX27/XXX2 xXX-X XX-XX-XX-X xXX3 
 XXX/XXX Xxxxxx XXX072X10 XXXX-xxxxxxx xxxxxxxxxxxxxxx xxxxxxxxx XX5X42520 Xxxxx xxxxxxxxxxxxx 6 XXX/XXX6   XxXX6 
 XXX xxxxxx XXX065X08 Xxxxxxxxxxx XX1X06230 Xxxxxx xxxxxxxxxxxxx xxxxxx xxxxx x4 XXX4 xXX-X XX-XX-XX-X xXX1 
 x-XXX xxxxxx XX1001X05 Xxxxxxxx xXXX xxxxxxxxxxxxx xxxxxx XX3X23690 Xxx1 xxxx xxxxxxx 2 XXX2   XxXX2 
  XXX002X10 Xxxxxxxx xXXX xxxxxxxxxxxxx xxxxxx XX4X02590 Xxxxxxxxxxxx xxxxxx xxx 12 XXX12   XxXX6 
  XXX059X05 Xxxxxxxxxxxxx xxxxxx XXX1 XX3X26744  Xxxxxxx xx XXX xxxxxxxxxx 1/xxxxxx XXX1/XXXX   XxXX2 
 x-XXX xxxxxx XX1000X11 xXXX xxxxxxxxxxxxx xxxxxx xxxxxx  XX4X34590 X-xxx xxxxxxx xxxxxx 6 XXX2/XXX6/ 

xXXX11 
  XxXX7 

  XX1009X02 xXXX xxxxxxxxxxxxx xxxxxx xxxxxx  XX4X34590 X-xxx xxxxxxx xxxxxx 6   XxXX6 
  XXX065X01 Xxxxxxxx xxxxx-xxxxxxx xxxxxxx XX1X60710     XxXX6 
  XXX068X10 Xxxxxxxx xxxxx-xxxxxxx xxxxxxx XX1X60710     XxXX6 
 X2X2 Xxxxxx XXX064X01 xxxx xxxxxx (X2X2 xxxx) xxxxxx xxxxxxx XX1X34370 Xxxxxxxxx xx xxxxxx xxxxxxxxxxxxx 1 XXXX1   XxXX2 
  XXX078X05 xxxx xxxxxx (X2X2 xxxx) xxxxxx xxxxxxx XX3X50700 Xxxxxxxxxxxxx(XX)-xxxxxx 2 XXX2 xXX-X XX-XX-XX-X xXX1 
 XXXXX xxxxxx XXX075X05 Xxxxxxxxxx-xxxxxxx xxxxxxxxxxxxx xxxxxxxxx 

2 
XX5X64220 Xxxxxxxxxx-xxxxxxx xxxxxxxxxxxxx 

xxxxxxxxx 2 
XXXXX2   XxXX2 

  XXX079X07 Xxxxxxxxxx-xxxxxxx xxxxxxxxxxxxx xxxxxxxxx 
2 

XX5X64220 Xxxxxxxxxx-xxxxxxx xxxxxxxxxxxxx 
xxxxxxxxx 2 

XXXXX2   XxXX6 

 XXXXX Xxxxxx XXX045X02 xxxxxxx xxxxxx X, xxxxxxx X3      XxXX7 
 XXXX xxxxxx XXX035X06 Xxx-3-Xxx xxxx xxxxxx xxxxxxx XX3X55980 Xxxx-xxxxxxxxx xxxx xxxxxx 1 XXX1   XxXX6 
 XxxXXX xxxxxxxxxxxxx xxxxxxxxxxx 
xxxxxx 

XXX076X05 Xxxxxxxxxxxxxxx xxxxxxxxxxx XXXXXX XX4X32551 Xxxxxx XXX xXX-X XX-XX-XX-X xXX1 

 XX-xxxxxx XX1004X05 Xxxxxxxx xxxxxxx xxxxxxx-1-xxxx 4 XX5X11060 Xxxxxxx1-xxxx xxxxxxxx xxxx 4 XXXX4   XxXX2 
  XXX010X01 xxxxxxx xx XXXX10      XxXX7 
 XX-XXX xxxxxx XXX079X08 xxxxxxxx-xxxxxxx xxxxxx xxxxxxx xxxxxxxxxxx 

xxxxxx 2 
XX4X04890 Xxxxxxxxxxx xxxxxx 2 XXX2   XxXX2 

 XXX-xxxxxx XXX042X12 xxxx xxxxxxxx xxxxx xxxxxxx xxxxx  XX3X51880 Xxxx xxxxxxxx xxxxx X1 XXXX1/XXX   XxXX6 
 Xxxxxxx-xxxxxx XXX055X03 xxxxxxxxxxxxx xxxxxx xxxxxxx xxxxxx xxxxxxx XX1X08620  XXXX7X xXX-X XX-XX-XX-X xXX3 
 XXX-xxxxxx XXX069X01 Xxxxxxxxxxxxx xxxxxx xxx1 XX1X10200 Xxxx1 XXXX1 xXX-X XX-XX-XX-X xXX3 
 XXXX-xxx xxxxxx XX1006X03 XXXX-xxx xxxxxxxxxxxxx xxxxxx XX5X60910 Xxxxxxxxx/xxxxxxx-xxxx 8 XXX xXX-X XX-XX-XX-X xXX3 
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 XXX-xxxxxx XXX026X03 XXX5 xxxxxxx XX1X09770 Xxx xxxxxx xxxx xxxxxxxx xxxxx 5 XXX5 xXX-X XX-XX-XX-X xXX1 

  XXX041X07 XXX5 xxxxxxx XX1X09770 Xxx xxxxxx xxxx xxxxxxxx xxxxx 5 XXX5   XxXX2 
  XXX048X05 Xxxxxxxx XXXXX-xxxxxx X xxxxxxx XX1X77180  XXXX   XxXX6 
  XXX072X07 xxx-xxxxxxx xxxxxxxxxxxxx xxxxxx  XX2X46830 Xxxxxxxxxxxxxxxxxxxxxxxx 1 XXX1   XxXX2 
  XXX075X04 XXX91 XX2X37630 Xxxxxxxxxxx-xxxx 1/xxxxxxxxxx xxxxxx 1 XXXX/XX1   XxXX6 
 XXX-xxxxxx XXX036X05 Xxx-xxxx xxxxxxx 7 XX1X34190 Xxx xxxxxx xxxxxxxxxx xxxxxxx 17 XXX017   XxXX2 
  XXX062X07 XXX xxxxxx xxxxxxx XX1X01720  Xxx xxxxxx xxxxxxxxxx xxxxxxx 2 XXXX002/ 

XXXX1 
  XxXX6 

 XXX xxxxxx XXX062X06 XXX-xxxx xxxxxxx 2 XX3X59580 Xxx-xxxx xxxxxxx 9 XXX9 xXX-X XX-XX-XX-X xXX1 
 XXX xxxxxx XXX053X07 XXX-xxxxxx xxxxxxx XX1X14740 Xxxxxxx 1/xxxxxx3 XXX1/XXX1 xXX-X XX-XX-XX-X xXX3 
  XXX080X07 XXX-xxxxxx xxxxxxx XX3X07780 Xxxxxx1 XXX1   XxXX6 
 XXX-xxxxxx XXX027X12 Xxxxx-1 XX1X14510 Xxxxx-xxxx 7 XX7   XxXX7 
  XXX077X09 Xxxxxxxx XXX-xxxx xxxx xxxxxx xxxxxxx XX2X36720   xXX-X XX-XX-XX-X xXX1 
 XXX xxxxxxxxxxxxx xxxxxxxxx XXX025X02 XXX xxxxxx-xxxxxxxxxx xxxxxxx, xxxxxxxx XX3X48050 'Xxxxxxx' xx xxxxxxx XXX xXX-X XX-XX-XX-X xXX3 
 XXX027X09 Xxxxx-xxxx xxxxxx xxxxxxxxx XX5X24120 Xxxxx xxxxxx 5 XXXXX5   XxXX7 
 XXX031X10 XXX2/XXX3/XXX5 XX5X59710 XXXX2 xxxxxxxxxxx xxxxxxx 2 XXX2 xXX-X XX-XX-XX-X xXX1 
 XXX031X06 Xxxxxxxx xxxxxxxxxxxxxxx xxxxxxxxx XX5X66420     XxXX6 

 XXX043X03 XXX xxxxxxxxxx Xxx7  XX1X06790     XxXX2 
 XXX061X09 Xxxxxxxxxxxx xxxxxxxxxxxxx xxxxxxxxxxx 

xxxxxx xxxxxxx 
XX4X02990 Xxxxxx xxxxx/xxxxxx2 XXX/XXX2   XxXX6 

 XXX067X07 Xxxxxxxxx xxxxxxxxx XX3X11220 Xxxxxxxx 1 XXX1   XxXX6 
 XXX-xxxxxx XXX030X06 XXX XX2X47070 Xxxxxxxx xxxxxxxx xxxxxxx xxxxxxx-xxxx 

1 
XXX1   XxXX6 

  XXX044X07 XXX XX2X47070 Xxxxxxxx xxxxxxxx xxxxxxx xxxxxxx-xxxx 
1 

XXX1 xXX-X XX-XX-XX-X xXX1 

 Xxxxxxxxxxxxx xxxxxxxxxxx XXX011X07 XXX xxx xxxxxx xxxxxx-xxxxxxx xxxxxxx XX5X37720 Xxxxxxxxxxx xxxx xxx-xxxxxxx xxxxxx xx 
Xx-xxxxxx XXXX1 

XXX2/XXX4   XxXX2 

  XXX072X02 Xxxxxxxxxx-xxxx xxxxxxx XX5X14520 Xxxxxxxxxx XXX   XxXX2 
 Xxxxxxx xxxxxx XXX011X09 Xxxxxxxx xxxxxxx XX1X22770 Xxxxxxxx XX xXX-X XX-XX-XX-X xXX1 
 XXX xxxxxx XXX072X07 xxxxxxxxx-xxx-xxxxxx xxxxxxx XX5X20900 Xxxxxxxxx-xxx-xxxxxx xxxxxxx 12 XXX12   XxXX2 
 Xxx-XXX xxxxxx XXX024X11 Xxxxxxxxxxxxx xxxxxx      XxXX7 
Xxxxxxxxx xxxxxxxxxx       
 Xxxxx xxxxxxxxxx/ Xxxxx xxxxxxxxxxx XX1006X09 xxxxxxxx XXX-xxxxx xxxxxxxxxx XX2X14960 xxxxxxx xx XXX-xxxxx xxxxxxxxx XX3.1    
 XXX012X02 X-xxxxxxxx-X-xxxxxxxxxx xxxxxxxx 

xxxxxxxxxxxxxxxxx-xxxx xxxxxxx 
XX5X55250 XXX xxxxxxxxxxxxxxxxxxxxxxxxx 1 XXXX1   XxXX6 

 XXX xxxxxxxxxxxx XXX071X01 Xxxxxxxxxx xxxxxxxx xxxxxxxxxxx 1 XX4X19170 9-xxx-xxxxxxxxxxxxxxx xxxxxxxxxxx XXXX4   XxXX7 
 Xxxxxxxxx/xxxxxxxxxxx XXX001X12 Xxxxxxxxxxxxxxxxxxx XXXX5x XX1X22400 xxxxxxxxx-X-xxxxxxxxxxxxxxxxxxx XXX85X1 xXX-X XX-XX-XX-X xXX1 
 XXX007X06 Xxxxxxxxxxxxxxxxxxx XXXX5x XX1X22360 xxxxxxxxx-X-xxxxxxxxxxxxxxxxxxx XXX85X2   XxXX6 
 Xxxxxxxx xxxxxxxxxxxx XX1005X06 1-xxxxxxxxxxxxxxxxx-1-xxxxxxxxxxx xxxxxxx XX1X05010 1-xxxxxxxxxxxxxxxxx-1-xxxxxxxxxxx 

xxxxxxx  
XXX;/XXX4   XxXX6 

  XX1009X10 1-xxxxxxxxxxxxxxxxx-1-xxxxxxxxxxx xxxxxxx XX1X05010 1-xxxxxxxxxxxxxxxxx-1-xxxxxxxxxxx XXX;/XXX5 xXX-X XX-XX-XX-X xXX1 
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xxxxxxx  

 xxxxxxxxxxx xxxxxxxxxx XX1002X11 xxxxxxxxxx X450 xxxxxxxxxxxxx XX5X24910 XXX-XXXX xxxxxxxxxx X450 X1 XXX1/ 
XXX714X1 

xXX-X XX-XX-XX-X xXX1 

  XX1004X06 Xxxxxxxxxxx 2-xxxxxxx XX1X02400 xxxxxxxxxxx 2-xxxxxxx XX2XX6   XxXX6 
 Xxxxxxxxx/xxxxxxxxxxx XXX031X11 Xxxxxxxx xxxxx-xxxxxxxxx xxxxxxx XX2X46370 xxxxxxxxx xxxxxxxxx 1 XXX1/XX3.11 xXX-X XX-XX-XX-X xXX1 
  XXX041X07 Xxxxxxxx xxxxx-xxxxxxxxx xxxxxxx XX2X46370 xxxxxxxxx xxxxxxxxx 1 XXX1/XX3.11 xXX-X XX-XX-XX-X xXX1 
  XXX079X10 Xxxxxxxx xxxxx-xxxxxxxxx xxxxxxx XX2X46370 xxxxxxxxx xxxxxxxxx 1 XXX1/XX3.11 xXX-X XX-XX-XX-X xXX1 
 Xxxxxxxxx xxxxxxxxxx/xxxxxxxxx xxxxx XXX029X11 Xxxxxxxxxxxxxxxxx xxxxx XX5X10920 xxxxxxxxxxxxxxxxx xxxxx  xXX-X XX-XX-XX-X xXX1 
 Xxxxxxxxx xxxxxxxxxx/ Xxxxxxxxx 
xxxxxxxxxxx 

XXX049X06 XXX-xxxxxxxxxxxx/XXX-xxxxxxxx xxxxxxxxxxx 
xxxxxx xxxxxxx 

XX2X43840 XXX-xxxxxxxxxxxxxxxxxxx 74 X XXX74X1   XxXX6 

Xxxxxx xxxxxxxxxxxx xxxxxxx       

 XXX xxxxxxxxx/ Xx xxxxxx xxxxxxxxxx XXX029X04 XXX-xxxxxxx xxxxxxx-xxxxxxx XX3X63150 Xxxxxxx xxxxxxx XXX-xxx XXXX2 xXX-X XX-XX-XX-X xXX1 
 XXX xxxxxxxxx/ Xx(2+)-xxxxxx xxxxxxx 
XXXxxx 

XXX031X02 Xxx-XXX xxxxxxx xxxxxxx-xxxx XX3X63150 Xxxxxxx xxxxxxx XXX-xxx XXXX2 xXX-X XX-XX-XX-X xXX1 

 XXX xxxxxxxxx/xxxxxxxxxx xxxxxxx 
xxxxxxxxxxxxxxxxx 

XXX029X02 Xxxxxxx xxxxxxxxxxx 2X  XX1X72770 Xxxxxxxxxxxxxx xx XXX1 XXX1   XxXX2 
 XXX035X08 Xxxxxxx xxxxxxxxxxx 2X  XX1X72770 Xxxxxxxxxxxxxx xx XXX1 XXX1   XxXX6 
 Xxxxx xxxxxxxxx/ xxxxx xxxxxxxx 
xxxxxxxxx xxxxxxx 

XXX078X01 Xxxxxxxx xxxxx-xxxxxxxxxx xxxxxxx XX1X05180 Xxxxx xxxxxxxxx 1 XXX1   XxXX6 
 XXX023X05 Xxxxxxxxx X59, xxxxxxxxxxx XX1X80680 xxxxxxxxxx xx XXXXX xxxxxxxxxx 3  XXX3/XXX96   XxXX6 
 XXX040X03 Xxxxxx 1 XX4X02570 Xxxxx xxxxxxxxx 6/Xxxxxx1 XXX6/XXX1   XxXX2 
 Xxxxx xxxxxxxxx/ XXXXXX-Xxxxxxxx 
Xxxxxxxxx 

XXX054X07 Xxxxxxx-xxxxxxx XX-xxxx XX4X27280 Xxx1x/xxx1    XxXX2 

 Xxxxx xxxxxxxxx/ Xxxxxxx XXXX xxxxxxx XX1001X04 Xxxxxx xx xxxxxxx xxxxxxxx (XXX298) XX3X28970 Xxxxxxxxx-xxxxxxxxx 3 XXX3   XxXX2 
 Xxxxxxxxxxxxxxx xxxxxxxxx XX1004X08 xxxxxx-xxxxxxx xxxxxxx xxxxxx xxxxx XX2X30980 Xxxxxx-xxxxxxx xxxxxxx xxxxxx xxxxx XXXxXxxx   XxXX6 
  XX1005X02 Xxxxxx-xxxxxxx xxxxxxx xxxxxx xxxxx XX3X05840  XX12   XxXX6 
  XXX070X11 Xxxxxx-xxxxxxx xxxxxxx xxxxxx xxxxxxx XX5X14640 Xxxxxx-xxxx xxxxxx 13 XX13   XxXX6 
 Xxxxxx xxxxxxxxx/ Xxxxxxx xxxxxxxxxx XXX050X05 xxxxxxxxxx, xxxxxxxx, XX1X12310   xXX-X XX-XX-XX-X xXX3 
 Xxxxxxx xxxxxxxxx/ Xxxxxxx xxxxxx XXX005X02 xxxxxxxxxxx-xxxx xxxxxxxxxxxxxxx xxxxxx  XX2X46880 Xxxxxx xxxx xxxxxxxxxxx 14 XXX14   XxXX2 
 XXX006X03 Xxxxxxxx xxxxxxxxxx XX2X03150 Xxxxxx xxxxxxxxx 1579 xxx1579 xXX-X XX-XX-XX-X xXX3 
 XXX035X12 Xxxxxxxx xxxxxx xxxx xxxxxxxxxxx XX1X13750 Xxxxxx xxxx xxxxxxxxxxx 1 XXX1   XxXX2 
 XXX046X08 Xxxxxxxx xxxxxx xxxx xxxxxxxxxxx XX3X20500 Xxxxxx xxxx xxxxxxxxxxx 18 XXX18   XxXX2 
 XXX073X05 Xxxxxx xxxx xxxxxxxxxxx-xxxx xxxxxxx XX3X20500 Xxxxxx xxxx xxxxxxxxxxx 18 XXX18   XxXX6 
 XXX078X07 Xxxxxxx-xxxxxxx xxxxxxx XX2X43290 Xxxxxxxxx xxxxxxxxxxx xx XXX4 

xxxxxxxxxx xx xxxxx 3 
XXX3 xXX-X XX-XX-XX-X xXX1 

 Xxxxxxx xxxxxxxxx/ Xxxxxxx xxxxxx-
xxxxxxxxxx 

XXX027X08 Xxxxxxx-xxxxxxxxx xxxxxxx xxxxxx XX3X57530 Xxxxxxx-xxxxxxxxx xxxxxxx xxxxxx 32  XXX32   XxXX6 

 Xxxxxxx xxxxxxxxx/ xxxxxxx xxxxxxx XXX002X10 XX521-X-xxxx xxxxxxx XX3X13060 Xxxxxxxxxxxxxx xxxxxxxxx X-xxxxxxxx 
xxxxxx 5 

XXX5   XxXX6 

 Xxxxxxx xxxxxxxxx/ Xxxxxxx xxxxxx 
xxxxxxxxxx 

XXX009X01 XX xxxxxxxxxx-xxxxxxx xxxxxx XX3X22190 XX-xxxxxx 5 XXX5   XxXX6 
 XXX011X06 XXX-xxxxxxxxxxx xxxxxx/xxxxxxxxx-xxxxxxx 

xxxxxx 11 
XX5X01820 Xxx1-xxxxxxx xxxxxxx xxxxxx 315 XxXX3.15 xXX-X XX-XX-XX-X xXX3 
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 XXX013X01 Xxxxxx/xxxxxxxxx xxxxxx XX5X58380 Xxx1-xxxxxxx xxxxxxx xxxxxx 38 XXXX3.8 xXX-X XX-XX-XX-X xXX3 

 XXX019X03 Xxxxxxxx XX16 xxxxxxx XX2X33990 XX-xxxxxx 9 XXx9 xXX-X XX-XX-XX-X xXX1 
 XXX021X12 XXX1 xxxx xxxxxxx xxxxxx XX4X14580 Xxx1-xxxxxxx xxxxxxx xxxxxx 33 XxXX3.3   XxXX6 
 XXX048X08 Xxxxxxxxxx xx XX16 xxxxxxx    xXX-X XX-XX-XX-X xXX3 
 Xxxxxx xxxxxx xxxxxxxxxx XXX057X06 Xxxxxxx xxxxxx XX1X72710 Xxxxxx xxxxxx 1-xxxx xxxxxxx 2 XXX2   XxXX6 
  XXX077X04 Xxxxxxx xxxxxx XX1X72710 Xxxxxx xxxxxx 1-xxxx xxxxxxx 2 XXX2   XxXX6 
 Xxxxxx xxxxxxxxxx xxxxxxxxx/ (x)xxXxx-
xxxxxxxx xxxxxxxx 

XXX075X01 XxxX/XxxX xxxxxx-xxxxxxxxxx xxxxxxx  XX3X17470 Xx2+-xxxxxxxxx xxxx/xxxx xxxxxxx XXXX   XxXX2 

 Xxxxxx xxxxxxxxxx xxxxxxxxx/ xXXX 
xxxxxxxxx 

XXX075X11 Xxxxxxxx xxxxxxx xxxxxxxxxx xxxxxxx XX4X34490 Xxxxxxx xxxxxxxxxx xxxxxxx 1 XXX1   XxXX6 

 Xxxxxx xxxxxxxxxx xxxxxxxxx/ xxxxxx 
xxxxxxxxxx xxxxxxx 

XXX044X05 Xxxxxx xxxxxxxxxx-xxxxx xxxxxxx X XX5X53130 Xxxxxx xxxxxxxxxx-xxxxx xxxxxxx 1 XXXX1 xXX-X XX-XX-XX-X xXX1 

 Xxxxxxx xxxxxxxx xxxxxxxxx xxxxxxx/ X-
xxxxxxxxxxxxxxxx xxxxxxxxx xxxxxxxxxxx 

XXX005X11 X-xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx XX5X64440 Xxxxx xxxx xxxxx xxxxxxxxx XXXX   XxXX6 
 XXX066X06 X-xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx XX5X64440 Xxxxx xxxx xxxxx xxxxxxxxx XXXX   XxXX6 

 Xxxxxxxx xxxxxxxxx/ XXX(XXX1) X3 
xxxxxxxxx xxxxxx 

XX1005X04 X-xxx xxxxxx xxxxxxx XX2X25490 Xxx3-xxxxxxx x xxx xxxxxxx 1 XXX1 xXX-X XX-XX-XX-X xXX1 

 Xxxxxxxx xxxxxxxxx/ xxxxxxxx xxxxxxxx XXX054X06 Xxxxxxxx xxxxxxxx XX3X04580 Xxxxxxxx xxxxxxxxxxx 4 XXX4 xXX-X XX-XX-XX-X xXX1 

 Xxxxxxxx xxxxxxxxx/ xxxxxxxx xxxxxx 
xxxxxxxxxxxx 

XXX011X11 XXX-xxxxxxx xxxxxxx XX3X46060 Xxx XXXxxx xxxxxxx 8x XXX3   XxXX2 

 X-xxxxxxx xxxxxxx xxxxxxxx xxxxxxx 
xxxxxxxxx xxxxxxx/ X-xxxxxxx xxxxxxx 

XXX005X05 Xxxxx-xxxxx X-xxxxxxx XX2X23460 Xxxxx-xxxxx X-xxxxxxx 1 XXX1/XXX8X   XxXX6 
 XXX052X10 Xxxxxxxx XX-xxxxxx xxxxxxx XX4X02730 Xx40 xxxxxx xxxxxxx x XXX5x   XxXX2 
 XXX070X02 Xxxxxxxx XX-xxxxxx xxxxxxx XX1X71840 XX-xxxxxx xxxxxxx    XxXX7 
 Xxxxx xxxxxxxxx  XXX005X08 Xxxxxxxxxxxx 2X xxxxxxxxxx XX1X04400 Xxxxxxxxxxxx 2 XXX2   XxXX6 
 XXX029X11 Xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxx, xxxxx 1 XX1X04400 Xxxxxxxxxxxx 2 XXX2   XxXX6 
 XXX031X05 Xxxxxxxxxxx X XX1X09570 Xxxxxxxxxxx X XXXX   XxXX6 
 XXX008X02 xxxxxx/xxxxxxxxx xxxxxxx xxxxxxxxxxx XX4X08320 Xxxxxxxxxxxxxxxxx xxxxxx 8 XXX8   XxXX2 
 Xxxxxxxxxx xxxxxxxxx/xxxxxx xxxxx XXX080X09 XXX xxxxxx-xxxxxxxxxx xxxxxxx XX1X65320 XXX xxxxxx xxxxxxxxxx xxxxxxx 6 XXXX6   XxXX6 
 Xxxxxxxxxx xxxxxxxxx/ xxxxxxxxx xxxxxx XXX078X08 Xxx-xxxx XXX-xxxxxxx xxxxxxx XXXX5 XX1X75840 Xxx-xxxx XXX xxxxxxx xxxxxxx 5/Xxx-

xxxx XXX xxxxxxx xxxxxxx 4 
XXX5/XXX4   XxXX2 

 Xxxxxxxxxx xxxxxxxxx/ xxxxxxxxxxxxx 
xxxxxxxx 

XXX005X12 Xxxxxxxx XX-XXX-XXX xxxxxxxxxx xxxxxxx XX3X14470     XxXX6 
 XXX051X02 XXX; Xxxxxxx xxxxxxxxxx xxxxxxx; XXX XXXxxx XX3X44400     XxXX6 
 xxxxxxxxxxxxxxxx xxxxxxxxx XX1000X12 xxxxxxxxxx xxxxxxxx (XX) xxxxxx-xxxxxxxxxx 

xxxxxxx 
XX2X30880  XXXX70   XxXX2 

 Xxxxxxxxxxxxxxx xxxxxxxx/ xxxxxxx 
xxxxxxxxxxx xxxx 2X xxxxxxxxx xxxxxxxx 

XXX024X05 Xxxxxx/xxxxxxxxx xxxxxxx xxxxxxxxxxx 2X 57 
xXx xxxxxxxxx 

     XxXX6 

 Xxxxxxxxxxxxxxx xxxxxxxx/ Xxxxxxx-
xxxxxx xxxxxxxxx 

XXX006X06 Xxxxxxx xxxxxx-xxxx XX4X32250     XxXX2 
 XXX064X12 Xxxxxxx xxxxxx XX2X28930 Xxxxxxx xxxxxx 1X XXX1X   XxXX2 
 Xxxxxxxxxxxxxxx xxxxxxxx/ 
XXXX/XXXXX/XXXXXX 

XXX008X06 Xxxxxxx-xxxxxxxxx xxxxxxx xxxxxx 8 XX1X18150  XXX8   XxXX6 
 XXX020X02 Xxxxxxx-xxxxxxxxx xxxxxxx xxxxxx 4 XX4X01370 Xxx xxxxxx 4 XXX4   XxXX2 
 XXX032X07 Xxxxxxx-xxxxxxxxx xxxxxxx xxxxxx XX1X18150 Xxx xxxxxx 8 XXX8   XxXX6 
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 XXX049X12 XXX xxxxxx XX3X14720 Xxx xxxxxx 19 XXX19   XxXX6 
 XXX026X02 Xxxxxx/xxxxxxxxx xxxxxx    xXX-X XX-XX-XX-X xXX3 
 XXX003X05 Xxxxxxx-xxxxxxxxx xxxxxx xxxxxx xxxxxx xxxxx XX1X53570 Xxx xxxxxx xxxxxx xxxxxx 3 XXX3XX   XxXX6 
 XXX031X06 Xxxxxxx xxxxxx XX5X58950   xXX-X XX-XX-XX-X xXX3 
 XXX066X11 Xxxxxx-xxxx xxxxxxx XX3X22750     XxXX6 
 Xxxxxxxxxxxxxxx xxxxxxxx/ XX2X XX1009X12 xxxxxxx xxxxxxxxxxx 2X-xxxxxxx XX1X47380     XxXX2 
 XXX002X05 xxxxxxx xxxxxxxxxxx 2X-xxxxxxx XX1X09160     XxXX6 
 Xxxxxxxxxxxxxxx xxxxxxxx/ xxxxxxxx 
xxxxxx  

XXX054X05 Xxxxxxx xxxxxx XX3X14350 Xxxxxxxxxx-xxxxxxxx xxxxxx 7 XXX7   XxXX2 

 Xxxxxxxx/ xxxxxxx xxxxxxx xxxxxxxx XXX064X05 Xxxxxxx xxxxxxx xxxxxxxx, xxxxxx-xxxxxxx XX3X27390   xXX-X XX-XX-XX-X xXX1 

 Xxxxxxxx/ Xxxx xxxxxxx xxxxxxxx XX1006X09 Xxxxxxx xxxxxx XX1X77280   xXX-X XX-XX-XX-X xXX1 
 XXX006X11 Xxxxxxxx X-xxxxxx xxxxxxxx-xxxx xxxxxxx 

xxxxxx 
XX2X19130     XxXX6 

 XXX039X08 Xxx-xxx xxxxxxx xxxxxx XX2X40270   xXX-X XX-XX-XX-X xXX1 
 XXX058X12 xxxxxxx-xxxx xxxxxx xxxxxx xxxxxxx / xxxxxxx 

xxxxxx xxxxxx xxxxxxx 
XX1X56145     XxXX6 

 XXX080X12 Xxxxxxx xxxxxx XX1X77280   xXX-X XX-XX-XX-X xXX1 
 Xxxxxxxx/XXX xxxxxxxx XXX015X03 Xxxxxxx xxxxxx XX2X01820   xXX-X XX-XX-XX-X xXX1 
  XXX060X03 Xxxxxxx xxxxxxxxxxx xxxxxxxxxx xxxxxxx-xxxx  XX4X03260     XxXX6 
 Xxxxxxxx/xxxxxxxx xxxxxxx xxxxxx XXX047X07 Xxxxxxxx-xxxx xxxxxxx xxxxxx XX2X31880 Xxxxxxxx/xxxxxxxxxx xx XXX1 1 XXX/XXXXX1 xXX-X XX-XX-XX-X xXX3 
 XXX071X01 Xxxxxxxx-xxxx xxxxxxx xxxxxx XX2X31880 Xxxxxxxx/xxxxxxxxxx xx XXX1 1 XXX/XXXXX1   XxXX6 
 Xxxxxxxx/ Xxxxxxxxxxxxx xxxxxxxx XXX005X07 xxxxxxx xxxxxxxxxx xxxxxxx (XX-XXX-XXX 

xxxxx) 
XX1X50180   xXX-X XX-XX-XX-X xXX1 

 XXX020X03 Xxxx xxxxx xxxxxxxxxxxxx xxxxxxxx xxxxxx-
xxxxxxxxxx xxxxxxx 

XX1X61670     XxXX6 

 XXX039X11 XXX-XXX-XXX xxxx X xxxxxxx 7      XxXX6 
 XXX063X12 Xxxxxxxx xxxx xxxxx xxxxxxxxxxxxx xxxxxxxx 1 XX5X18520 Xxxxxxxxx X-xxxxxxx xxxxxxx xxxxxxxx 7 XXXX7   XxXX6 
 XXX067X01 xxxxxxx xxxxxxxxxx xxxxxxx (XX-XXX-XXX 

xxxxx), xxxxxxxx 
XX1X59218     XxXX6 

 Xxxxxxx xxxxxxx xxxxxxxxx XXX051X03 Xxxxxxxx xxxxxxx xxxxxxxxx 1-xxxx  XX4X27750 Xxxxxxxx xxxxxxx xxxxxxxxx 1 XXX1   XxXX7 

eRG: early ripening gene; NeRG:non early ripening gene, D:down; U:up; RS: ripe stop, RP: ripe progress; NC : no change; S:  sensitive ; LS :low sensitive 
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Genes in those clusters associated with cold/stress xxxxxxxxx xxxxx xx xxxxxx xx 

xxxxxxxxxxxx xxxxxxxx xxxxxxx xxxxxx. XXX, XXXX1 xxx xXXX11 xxxxxxxxx (xxxx xx 

xxxxxxxx XxXX6 xxx XxXX7, xxxx xxx xxxxxx xx X, Xxxxx 12) xxx xxxx xxxx x xxxx xx xxx 

xxxxx xxxxxxxx xx xxxxxxx xxxxxx, xxx xxxx xxxx xxxxxxxxxxx xx xxxxxx xxxxxxxx xx xxxxxx 

xxxxxx xx xxxxxxxxxx xxxxxxxxx xxxx xx xxxx xxxx xxxxxxxxxxxx, xxxxxxxxx, xxxxxxxx 

xxxxxxxxxx, xxxxxxxxxxxx xxxxxxxxxx xxx xxxxxxxxx xxxxxxxxxx [122, 127, 509-511]. 

Xxxxxxx xxxxxxx xxxx xxx xxxxx xx xxxxx xxxxxxxx xxx xxxxxxxx xx xxxxxxxxxxxx xxxxxxxx 

xxxxx xxxx xxx xxxxxxxxxxxxxx xxxxx xxxx xx xxxxxxxxx xx xxx xxxxx xxxxxxxx xxxxx. 

Xxxxxxxx xxxxxxx XXXXXXXX (XXX, xx xXX3, xxxx-xxxxxxxxx xx x xxxxxxxxx xxxxxx, Xxxxx 

12), xxxxxxxxxxx xx xxxxx xxxxxxxx xxxxxx xxxxxx xxxxxxxx xx xxxxx xxxxx xxxxxxxxxxx 

[512], xxx XXXXXXXX XXXXXXXX XXXXXXX XXXXXXX-XXXX 1 (XXX1, xx xxxxxxxx xXX1 xxx 

XxXX6, xxxx xxxx xxx xxxxxx xx xxxxx X, Xxxxx 12). Xx xxxxx, x xxxx xxxxxxxx x xxxxxxxx 

XX xxxxxxxxxx xxx Xxxxxxxx-Xxxxxxxx Xxxxxxx Xxxxxxx (XXX) xxxxxx xx xxxxxxx xx xxx 

xxxxxx xx xxxxx xxx xxxxx XXX xxxxxxxxxxx xxxxx xxxxxxxxxx xxxx xxx xxxxxx [513]. 

Xxxxxxxx, xxxxxxxxx xx xxx xxxxxx xxxxxxxx xxx xxx xxxxxxxx xxxxxxxxx XxxxXXX-XXX 

(xxxxx xxx-xxxxxxxx) [514] xxxxxxx xx x xxxxx/ xxxxxx xxxxxxx xxx xxxxxxxx xxxxxxxxx xx 

xxxxxxxx xxxxxxxxxxxx [515]. Xxxxxx XXX xxxxxxxx xxxx xxx xx xxx xxxxxxxxxx xx xxxx 

xxxxxxxx xxxxxxxxx, xxxxxxxxx xxxx xxxx xxxxxxxxxxxx, xxxxxxxx xxx xxxxxxxxx 

xxxxxxxxxxxx, xxxxxxx xxxxxxxxxxx xxx xxxxxxxx-xxxxxxxxxx xxxxxxxx xxxxxxxxxx [396, 

516, 517]. Xxxxxxxx, xxxxxxxxx xxxxxxxxxx xx XxXXX4, xxx xxxxxx xxxxxxxx xx XXXX1 (xx 

xxxxxxx XxXX6, Xxxxx 12), xxxxxxxxx xxxxx xxxxxxxx xxx XxXXX4-xxxxxxxxx xxxxxx xxx 

xxxxxxx xxxxxxxx xxxxxxxxxx xxx xxxxxxx xxxxxxxxxx xx xxxxxxxx-xxxxxxxxxx xxxxx, xxxxx 

xxxxx xxxx XX xxx xxxxxxxxxx xxxxxxxxxxxx xxxxxxx[511]. 

 

C3.2.3.Hormonal de-synchronization of the ripening program after cold 

storage may contribute to mealiness  

Xxx XXX xxxxxxxx xx xxxxx xxxxx xxxxx XX xx xxxx xxxxxxx xxxx x xxxxxx xxxxxxxx xxxxxxx 

xx xxxxxxxx. Xxxxxx xxx xxxxx xxxx XX, xxxx xxxxxxxxxx xx xxxxxxxx xxx xxxxxxxxxxxxxx. 

Xxxx xxxxx xxxxxxxxxx, xxxxx xxxxxx xxxx xxxxxxxxxx xxxxxxxx. Xxxx xxxxx xxxxxxx xx 

xxxxxxx xxxxxxxxxxxx, xxxxxxxxxxx xxxxxxxxxxxx, xxxxxxx xxx xxxxxxxxx were in the gene 
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classes xxxx xxxx xxxxxxxx xxxxxxxx xx X xxxxxx xxxxxx XX xxx XXX xxxxxxxx xx X xxxxxx 

(xxxxx 12 xxx 13). Xxx xxxx xxxxxx xxxxxxxx xxxxxxx xxxxxxxx xxxx xxxxx xxxxxxx xx 

xxxxxxxx xxx xxxxx. Xxx xxxxxxxxxxx xx xxxxx xxxxxxxx xxxxxx xxxxxx xxxxx xxxxxxxx xx 

xxxxx [245, 518-521]. Xxxxxxx, xx xxxxxxx Xxxxxx xxxxxx, xxxx xxxxx xxxxxx xxx xxxxxxxxx 

xx xxxxxxxx xxxxxxxx xx xxxxxxxx xxxxxx 2 xxxxxxxx xxxxxxxxxx. Xxxx xxxxxxxx xxx 

xxxxxxxxxx xxxx xxx xxx-xxxxxxxxxx X3 xxxxx xx xxx xxxxxxxxxxx X4X xxxxx, xx xxxxxxxxxx 

xxxxxxxx. Xxxxxx xxxx xxxx xxxxxxxxxxxxx xxx xxxxxxxxxxxxxxx xxxx xxxxxxxx xx 

xxxxxxxxxx xxxxxxxx (X4XX xx xxxxxxx xxxxx). 

Xxxxxx XXX xxxxxxxxx XX, xxxxxx xxxxxx xx xxx xx xxxxxxx xxxxx X4XX, xx xxxxxxx [135], 

xxx xxxxxx xxxxx xx xxxxxxxxx xxxxxxxxxxxxx xx x xxxxx xxxx xx xxxxx xxxxxxxx [133] xxxx 

xxxxxxxx xxxxxxxxx xxxx xxx xxxxxxxxxxx xxxxxxxxxxx xxxx, xxxxxxxx xxxxx xxx xxxxxxxxx 

xxxxxxxxxxx [136]. Xxxx xxx xxxx xxxxxxxxxx xx xxxxxxx xxxxxxxx xxxxxxxxxx [136, 137]. 

Xxxxxxx xxxxxx xx xxx xxxxxxxx xx xxxxxxxxxxxx, xxxxxxxxx xxx xxxxxxxxxx xxxxxxxxx xxxx 

XXX xxxxxxxxxxx xxxxxx xxxx XX xxx XXX ([12, 15, 136, 137] xxx xxxxxxx 1 xxx 2). Xxxxxx 

xxxxx xxxxxx xxxxx XX xxx XXX xxxx xxxx XXX xxxxxxxxxx xxx xxxxxxxx xxx xxxx XXX [136, 

137]. Xx xxxxxxxxx, xxxx xxx xxxxxxxxxx xx xxx xxxxxxxx xx XXX/XXX4 xxxx xxx xxxxxx xx 

XX xxxxxx xxxxxx XXX (xxxxxxx xXX1; Xxxxxx 19X, xxxxx 12), xxxxx xxxx xxxxxx xxx xxxxx 

xxxxxx xxxx xxxxx xxx xxxxxxxxx xx XXX (XxXX4 xxx xXX4, xxxxxxxxxxxx; Xxxxxx 19, Xxxxx 

13). Xxx xxxxx xxxxxxxxxx xx xxx xxxx xxxxxxxx XXX xxx xxxxxx xx XXX xxxx xxxxxxx XxXX4 

xxxx xx XXX xxxxxxx xxx xxxxxxx xxxxxxxxx xx XX-XXX xx xxx xxxxxx xxxxxxx xxx xx 

xxxxxxxxx xxxxxxxxxx xxxxx xxxx xxx Xxx-XX xxxxxxxxxx (Xxxxx X14 xxx xxxxx X15). 

Xxxxxxxxxxx, xxx xxxxxxxxxx xxxxxxxxx xx XXX xx XxXX4 xxxxxxxxxx xxxxxxxxxx xxxx XX 

xxxxxx xx xxxxxxxxxx xxxxx (Xxxxx X15Xxxx xxx xxx XXX xxxxxxxx xxxx xxxxxxxxxxxxxx 

xxxxxxxxx xxxxxxxxx xxxx xxxx xxxxx xxxxxxxx xx xxxxxx xxx xxxxx xx xxxxxxxxxxxxx 

xxxxxxxx xxxxxxxxxx. Xxxxxxxxx XXX xxxxxxxx xxx xxxxxxxx xx xxx xxxxxxxxxx xx xxxxx 

xxxxxxxx xxxxxx (xxxxxx X) xxx xxxxxxxxxxxxx xxxxxxxx xxxxxxxxxx (xxxxxx XX) xx 

xxxxxxxxx xxxxxx xxxx xx xxxx, xxxxxxx xxx xxxxxx [518, 522, 523]. Xxxxxxxxxx xxxx 

xxxxxxxx xxxxxx X xx xxxxxx XX xxxxxxx xx xxxx-xxxxxxxxxx xx xxxxxx X XXX [522]. Xxxx, 

xxx XXX xxxxxxx xx XxXX4, xxxxxx xxxxxxxxx xx xxxxx X xxxxxx xxxxxx XXX xxxx xxx 

xxxxxxxx xxxxxx [136, 137] xxx xx xxxxxxxxxxx xxx xxxxxxxx xxxxxx 1, , xxxxx xxx xxxxxx 
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xxxxxxxxx XXX xx xXX4 xxx xxxxxxxxx xxxxxxxxxxxxx xxxxxxxx xxxxxxxxxx xxx xxx 

xxxxxxxx xx xxx xxxxx xx xxxxx.  

XXX1 xx xxxxxxx XxXX4 (Xxxxx 13) xx xxxxxxxx xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxx X 

xxxxxxxxxx [432]. Xx xxxxxxx 1 xxxx xxxx XXX1 xxxxxxxxxx xx xxxxxxxxxx xxxx xxxxx 

xxxxxxxxxxx xx xxx xxx-xxxxxxxxxxx xxxxx. Xx xxx xxxx xxxxxx xxxxxxxxx xx X xxxxxx 

xxxxxx XXX (Xxxxx 13). Xxx Xxxxxx xxxxxxxx XXX1-xxxx xxxxxxx (Xx-XXX1) xxxxxxxxxxx xx 

xxxxxxxxx xxx xxxxxxxxxx-xxxxxxxxxxx xxxxxxx xx xxxx xxxx xxxxxxxxx [518, 524], xxxxx 

xxxx-xxxxxxxxxx xx Xx-XXX1 xx xxxxxxxx xxx xxxxxxxxxx xxxx xxxxxx X xx xxxxxx XX. Xxxx 

xxxxxxxx xxxx xxx xxxxxxxx xx XXX1 xxxxx xx xxxx xx xxx xxxxxxxxx xxxxxxxxx xx X xxxxxx 

xxxxxx XX xxx XXX xx xxxxxx xxxxxxxxxxxxx xxxxxxxx xxxxxxxxxx xxxxxxxx xxx xxxxxx 

xxxxxxxx.  

Xxxxxxx xxxxxxxx xxxxxxxxxxxx xxxxxxxxxx xxx xxxxxxxxx xxxxxxxx xxxx xxxx 

xxxxxxxxxxxxxx xxxxxxxxx xxxxxxx xxxxxxxxx xxx xxxxxxxx xxxxxx xxxxxx XX xxx XXX 

(Xxxxxx 12 xxx 13) xxx xxxxx xxxxxxxxxx xxx xxxxxxxxxx xxxx xxxxxxxxx/xxxxxxxxxxx xx 

xxx xxx-xxxxxxxxxx xxxxx (xxxxxxx 1 xxx 2). Xxxxxxxxx xx XXX (xXX3, xxxx xxxxxxxxxxx 

xxxxxxxx xxxxxx XX xxx XXX xx x xxxxxxxxx xxxxxx) xxx XXXX1/XxXXX4 (XxXX6, xxxx-

xxxxxxxxx xxxxxx XX xxx xxxxxxx xx xxxxx X-X xxxxxx xx XXX) xxxxxx xxxxx xxxxxxxxxx xx 

X xxxxxx xxxx xx XX xx X-X xxxxxx. Xxxxxxxxxx xxxxxxxx xxxx xxxxxxxxxx XXX xxx XxXXX4 

(XxXX6) xxxxx xxx xxx xxxxxxxx xxxxxxxxxx xxx xxxxxx xxx xxxxxxxx xxxxx [511, 516]. Xx 

xxxxxxxx, xxxxx XXX xxxxxx xxxxx xxxxxxx xxx xxx xxxxxxxxxx xx XXX xxx XXX xxxxx xxxxxx 

xxxxxxxx, xxxxx xxxxxxx xxxx xxxxxxxxxx xx XXX [525].  

Xx xxxxxxxx 1 xxx 2 xx xxxxxxxx xxxx xxxxxxxxxxxx xxxxx xxxxxxxxxxxx xxx xxxxxxxxx 

xxxxx xxx xxxxxxxx xx xxx xxxxxxxxx/xxxxxxxxx xxxxxxxx xx xxx-xxxxxxxxxx xxxxxx xxx 

xxxxxx xxxxxxxxxx xx xxxxx xxxxxxx xx xxxxxx xx xxxxxx xx xxx XXX xxxxxxxxx [16]. Xxxx, 

xxxxx xxxxxxx xx xxxxx xxxxxxxxxxx (Xxxxx 12) xxxx xx xxx xxxxxx xxxxxx xxxxxx XXX 

xxxxxxxx, xxxx xx XXX-xxxxx xxxxxxxx XX3.1 (XxXX6) xxx XXX xxxxxxxx xxxxxxxxxxxxxxxxx 

XXXX (XxXX7), xxxx xxxx xxxxxxxxx xx XXX-X xxxxxx xxxx xx X-X xxxxxx, xxxxx XX xxxxxx 

xxxxxxxxx xx xxxxxx xxxxxxxxxx. Xx xxxxxxxx, xxxxx xxxxxxx xx xxxxx xx-xxxxxxxxxxx xxx 

xxxxxxxxxxxx (Xxxxx 13) xxxx xx XXX3 xxx XXXXX-XXX XXXXXXXXX 2 (XXX2) (xxxx xx 

XxXX4, Xxxxxx 19), xxxxx xx xxx xxxxxx xxxxxx xxxxxxxx, xxxx xxxx xxxxxx xxxxxxxxx
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Table 13. . Genes related to RNA translation, hormone metabolism and signal transduction high expressed in sensitive fruits during CS and SLR 

Xxxxxxxx Xxxxxxxxxx 
xx 

Xxxxxxx xxxxxxxxxx XXX xxxx Xxxxxxxxxxx xxxx xxxx Xxxx xxxx 
xxxxxx 

2 xxxx 
XXX 

xxxxxxx 

xxxxxx xx 
xxxx xx 

xxxxxxxx 
xxxxxxx 

XXX 
xxxxxxx 

XXX xxxxxxxxxxxxx xxxxxxxxxx         

 5X XXX, xXXX xxx xXXX 
xxxxxxxxxxxxx 

XXX007X02 XXX xxxxxxxxxx XXX xxxxxxx-xxxx xxxxxxx XX3X49000 XXX xxxxxxxxxx XXX xxxxxxx XXX82 
xxxxxx xxxxxxx 

 xXX-X XX-XX-XX-X xXX5 

 XXX3/ XX1 -xxxxxx XXX005X10 Xxxxxxxxxxxxx xxxxxx X3-XXX xxxxx xxxxxx XX4X32010 xxxxxxxxxxxxxxx xxxxxx X3 xxxxxx 
xxxxxxx 

XXX1/ XXX2 xXX-X XX-XX-XX-X xXX4 

 XX2/ XXXXX xxxxxx XXX011X10 Xxxxxxxx xxxxxxxx xxxxxxxx xxxxxx 5    xXX-X XX-XX-XX-X xXX5 
  XXX039X03 Xxxxxxxx xxxxxxxxxxx-xxxxxxxxxx xxxxxxx 

xxxxxxx xxxxxxx 
XX1X78080 Xxxxx xxxxxxx xxxxxxxxxxxxxxxxx 1 XXXX1/ 

XXX2.4 
  XxXX4 

  XXX049X05 Xxxxxxxxxxx xxxxxxxxxx xxxxxxx-xxxxxxx 
xxxxxxx 3 

     XxXX4 

  XXX078X06 XXXXX-4 xxxx xxxxxxx XX4X17486 XXXXX xxxxxxxx xxxxx xxxxxxxxx xxxxxx 
xxxxxxx 

   XxXX4 

 XXX-xxxxxx XXX051X02 Xxxxx xxxxxxxx xxxxxx 2 XX5X20730 xxxxx xxxxxxxx xxxxxx 7 XXX7/ XXX5 xXX-X XX-XX-XX-X xXX4 
  XXX072X07 Xxxxx xxxxxxxx xxxxxx 5 XX1X19850 xxxxxxxxxxxxx xxxxxx XXXXXXXXXX XX/ XXX5 xXX-X XX-XX-XX-X xXX4 

 XXX/ XXX xxxxxx XXX046X05 Xxxxx-xxxxxxxxxx xxxxxxx XXX13 XX2X33310 xxxxxxxxxxxx xxxx-xxxxxxx xxxxxxx 13 XXX13   XxXX4 
  XXX060X07 Xxx/ XXX xxxxxxx XX1X04240 xxxxxxxxxxxx xxxx-xxxxxxx xxxxxxx 3  XXX3/ XXX2   XxXX4 
 x-XXX xxxxxx XXX054X03 Xxxxxxxx xXXX xxxxxxxxxxxxx xxxxxx XX2X24260 xxxxx xxxxx-xxxx-xxxxx xxxxxx xxxxxxx XXX1   XxXX4 
 x-XXX xxxxxx XX1001X07 Xxxxxxxxxx xxxxxxxxxxxxx xxxxxx XX1X58110 xXXX xxxxxx xxxxxxxxxxxxx xxxxxx  xXX-X XX-XX-XX-X xXX4 
  XXX019X11 XXXX-xxxx xxxxxxx    xXX-X XX-XX-XX-X xXX5 
  XXX031X01 XXXX xxxxxxxxxxxxx xxxxxx xXXX62 XX5X24800 Xxxxx xxxxxxx xxxxxx X2 xxxxxxx 2 XXX2X2/ 

XXXX9 
xXX-X XX-XX-XX-X xXX5 

  XXX049X04 XXXX xxxxxxxxxxxxx xxxxxx xXXX68    xXX-X XX-XX-XX-X xXX6 
  XXX070X03 XXXX xxxxxxxxxxxxx xxxxxx xXXX41 XX3X62420 Xxxxx xxxxxx/ xxxxxxx xxxxxx xxxxx 53 XXXX53 xXX-X XX-XX-XX-X xXX6 
  XXX073X03 Xxxx xxxxxx xxxxxxx XXX1 XX4X20380 Xxxxxx xxxxxxxxxx xxxxxxx XXX1   XxXX4 
 X2X2-XX-xxxx Xxxxxx XXX050X11 X-XXX XXXXXX XXXXXXX XX4X27310 xxxx xxxxxx (X-xxx xxxx) xxxxxx xxxxxxx XXX28 xXX-X XX-XX-XX-X xXX5 
  XXX075X03 xxx1-1X xxxxxxxxxx XX1X75540 Xxxx xxxxxxxxx xxxxxxx2 XXX2/ XXX21   XxXX4 
 X2X2 Xxxxxx XXX013X11 Xxxx xxxxxx-xxxx xxxxxxx XX5X10970 Xxxx xxxxxx (X2X2 xxxx) xxxxxx xxxxxxx    XxXX4 
  XXX046X02 Xxxx xxxxxx xxxxxxx 4 XX1X66140 Xxxx xxxxxx xxxxxxx 4 XXX4   XxXX4 
  XXX053X05 Xxxx-xxxxxx xxxxxxx 1 XX3X19580 Xxxx-xxxxxx xxxxxxx 2 XX2   XxXX4 
 XXXXX xxxxxx XXX005X05 Xxxxxx xxxxxxxx-xxxxxxxxxxx xxxxxxx XX1 XX5X64220 Xxxxxxxxxx-xxxxxxx xxxxxxxxxxxxx 

xxxxxxxxx 3 
XXXXX3 xXX-X XX-XX-XX-X xXX4 

 XXXXX Xxxxxx XXX006X07 Xxxxxxxxx xxxxxxx XX5X23090 Xxxxxxx xxxxxx X, xxxxxxx X13 XX-XX13   XxXX4 
 X2X-XX Xxxxxx XXX070X05 Xxxxxxxxxxxxx xxxxxx XX1 XX5X03415 XXX-1 xxxxxxxxxxxxx xxxxxx XXX   XxXX4 

 XxXX Xxxxxx XXX013X11 Xxxxxxxxxxx xxxxxxx XX1X61730 XXX-xxxxxxx xxxxxxxxxxx xxxxxxx-    XxXX4 
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xxxxxxx 
 XXX-xxxxxx XX1009X10 14-3-3-xxxx xxxxxxx X XX2X42590 14-3-3 xxxxxxx XX14 xxxx  XXX9   XxXX4 
  XXX044X02 14-3-3 xxxxxxx 3 XX1X78300 14-3-3 xxxxxxx XX14 xxxxx XXX2   XxXX4 
  XXX057X06 14-3-3-xxxx xxxxxxx XX14 xxxxx XX5X65430 14-3-3 xxxxxxx XX14 xxxxx XXX8   XxXX4 
  XXX058X04 Xx14-3-3x xxxxxxx XX5X65430 14-3-3 xxxxxxx XX14 xxxxx) XXX8   XxXX4 
 XX-XXX xxxxxx XX1002X12 Xxxxxxxxxxx-xxxxxxx XX3X61890 xxxxxxxx-xxxxxxx xxxxxx xxxxxxx 12 XX-12; xXX-X XX-XX-XX-X xXX5 
  XX1004X11 XXXxx X xxxxxxx       XxXX4 
  XXX047X02 Xxxxxxxx-xxxxxxx xxxxxx xxxxxxx XXX22 XX4X37790 Xxxxxxxx-xxxxxxx xxxxxx xxxxxxx 22 XXX22   XxXX4 
 XXX-xxxxxx XXX079X09 XXX-X xxx XXX-X, XXX-xxxxxxx XX3X57930 Xxxxxxxxx xxxxxxx  xXX-X XX-XX-XX-X xXX5 
 XXX-xxxxxx XX1002X06 Xxxx xxxxx xxxxxx XX4X36990 Xxxx xxxxx xxxxxx xxxxxxx 4 XXXX1/ 

XXX4 
  XxXX4 

  XXX001X09 Xxxx xxxxx xxxxxx XX4X36990 Xxxx xxxxx xxxxxx xxxxxxx 4 XXXX1/ 
XXX4 

  XxXX4 

  XXX054X07 Xxxx xxxxx xxxxxx XX4X36990 Xxxx xxxxx xxxxxx xxxxxxx 4 XXXX1/ 
XXX4 

  XxXX4 

  XXX045X12 Xxxx xxxxx xxxxxxxxxxxxx xxxxxx 34      XxXX4 
  XXX055X05 Xxxxxxxxxx xx xxxx xxxxx xxxxxxxxxxxxx 

xxxxxx 
XX3X24520 xxxx xxxxx xxxxxxxxxxxxx xxxxxx X1 XXXX1 xXX-X XX-XX-XX-X xXX5 

  XXX077X06 Xxxx xxxxx xxxxxxxxxxxxx xxxxxx XX4X18880 xxxx xxxxx xxxxxxxxxxxxx xxxxxx 21 XXXX4X xXX-X XX-XX-XX-X xXX4 
 XXXX-xxx xxxxxx XX1009X08 XXXX xxx xxxxxxxxxxxxx xxxxxx XX4X24540 Xxxxxxx-xxxx 24  XXX24   XxXX4 
  XXX058X02 XXXX xxx xxxxxxxxxxxxx xxxxxx XX4X24540 Xxxxxxx-xxxx 24  XXX24   XxXX4 
  XXX004X05 XXXX xxx xxxxxxxxxxxxx xxxxxx XX2X22540 Xxxxx xxxxxxxxxx xxxxx xxxxxxx XXX22/ XXX   XxXX4 
 XXX-xxxxxx XXX003X06 XXX xxxxxxxxxxxxx xxxxxx XXX93 XX5X47390 XXX xxxxxxxxx xxxxxxxxxx-xxxxxxx XXX1/ XXXX   XxXX4 

  XXX023X04 XXX-xxxx XXX-xxxxxxx xxxxxxx      XxXX4 
  XXX045X07 XXXXXX XXXXXXXXXXXX1 XX5X58340 xxx-xxxx XXX xxxxxxxxxxxxxxx 

xxxxxxxxx  
   XxXX4 

  XXX055X11 Xxxxxxx xxxxxxxxxx xxxxxxx xxxxxxx xxxxxxx XX5X67300 Xxx xxxxxx xxxxxxx X1 XXXX1/ 
XXX44 

xXX-X XX-XX-XX-X xXX6 

 XXX-xxxxxx XX1001X06 XXX-xxxx xxxxxxx XX3X15510 Xxx xxxxxx xxxxxxxxxx xxxxxxx 2 XXX2/ 
XXXX056 

  XxXX4 

  XXX049X12 XXX xxxxxx xxxxxxx XXX1      XxXX4 
  XXX054X06 Xx xxxxxx xxxxxxxx (XXX) xxxxxxx-xxxx XX4X28500 Xxxxxxxxx xxxx-xxxxxxxxxx xxx xxxxxx 

xxxxxxx 2 
XXX073/ 
XXX2 

  XxXX4 

  XXX073X10 XXX-xxxx xxxxxxx XX5X13180 XXX-Xxxxxxxxxxx 2  XXX083/ 
XXX2 

  XxXX4 

 XXX xxxxxx XXX072X01 XXX1-xxxx xxxxxxx XX5X45110 XXX1-xxxx xxxxxxx 3  XXX3   XxXX4 
 XXX-xxxxxx XXX040X12 XXX xxxxxx xxxxxxxxxxxxx xxxxxx XX3X14980 xxxxxxxxx xx xxxxxxxxx 4 / xxxxxxxxx 

XXX xxxxxxxxxxx 1 
XXX4/ XXX1 xXX-X XX-XX-XX-X xXX6 

  XXX050X08 Xxxxxxx xxxx xxxxxxx xxxxxxx (Xxxxx-1) XX1X14510 Xxxxx-xxxx 7  XX7 xXX-X XX-XX-XX-X xXX5 
  XXX068X05 XXX xxxxxx xxxxxxx Xx5x26210 XX5X26210 Xxxxx-xxxx 4  XX4   XxXX4 
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  XXX051X10 XXX3-xxxxxxxxxxx xxxxxxx 2, XXX2 XX5X20910 XXX3-xxxxxxxxxxx xxxxxxx 2 XXX2 xXX-X XX-XX-XX-X xXX5 

 XXXXX xxxxxx XX1001X01 Xxxx xxxxxx, X-xxx XX4X17900 XXXXX xxxxxxxxxxxxx xxxxxx xxxxxx 
xxxxxxx; 

   XxXX4 

 Xxxxxxxx xxxxxx XXX044X02 Xxxxxxxx Xxxxxxxx xxxxx xxxxxxx XXX1 XX4X02020 xxxxxxxx xx xxxxx-xxxx xxxxxxx 1 XXX1/ 
XXX10 

xXX-X XX-XX-XX-X xXX4 

 XXX xxxxxxxxxxxxx xxxxxxxxx XXX002X11 Xxxxxxxxxxxxx xxxxxxxxxx xxxxxx XXX xxxxx 
xxxxx 

     XxXX4 

  XXX003X10 xxxxxxxxxxxxx xxxxxxxxxxxxx xxxxxxxxxxx 
xxxxxx-xxxxxxx 

XX5X07900 xxxxxxxxxxxxx xxxxxxxxxxxxx 
xxxxxxxxxxx xxxxxx xxxxxx xxxxxxx 

   XxXX4 

  XXX018X02 XXX-xxxxxxxx XXX xxxxxxxxxxx XX5X23710 XXX-xxxxxxxx XXX xxxxxxxxxxx    XxXX4 
  XXX041X08 Xxxxxxxxxxxxx xxxxxxxxxx xxxxxx XXX xxxxx 

xxxxx 
XX4X24440 xxxxxxxxxxxxx xxxxxxxxxx xxxxxx XXX 

xxxxx xxxxx  
XXXXX-X xXX-X XX-XX-XX-X xXX6 

  XXX043X09 Xxxxxxxx XX1X59453 X-xxxxx xxxxxxx xxxxxxx xx XXXXXX  xXX-X XX-XX-XX-X xXX6 
  XXX065X02 XXX1 xxxxxxx XX1X32130 XXX1 X-xxxxxxxx xxxxxx xxxxxxx  XXX1/ XXX9   XxXX4 
  XXX070X08 X-xxxxxxxx xxxxxx xxxxxxxxxxx-xxxx 2 XX5X01270 Xxxxxxxx-xxxxxxxx xxxxxx xxxxxxxxxxx-

xxxx 2 
XXX2   XxXX4 

  XXX079X10 XXX xxxxxxxxxx XX, Xxx4, xxxx xxxxxxx      XxXX4 
 X1Xx-xxxx Xxxxxx XXX023X09 XXX xxxxxxx xxxxxxx X1XX    xXX-X XX-XX-XX-X xXX6 
 XXX xxxxxx XXX040X07 Xxxx xxxxxx, XXX-xxxx; XXX/ XXX XX5X63160 XXX xxxX XXX xxxxxx xxxxxxx 1 xx1 xXX-X XX-XX-XX-X xXX5 
 XXX-xxxxxx XXX060X08 XXX xxxxxx xxxxxxxxxxxxx xxxxxx XX3X27010 Xxxxxxxx xxxxxxxx 1 XXX20 xXX-X XX-XX-XX-X xXX5 
  XXX074X10 XXX xxxxxx xxxxxxxxxxxxx xxxxxx XX3X27010 Xxxxxxxx xxxxxxxx 1 XXX20   XxXX4 
 Xxxxxxxxxxxxx xxxxxxxxxxx XX1000X05 Xxxxxxxxxx-xxxx xxxxxxx    xXX-X XX-XX-XX-X xXX5 
 XXX-xxxxxx XXX066X05 Xxx xxxxxx, xxxxxxxx XX1X76900 Xxxxx xxxx xxxxxxx 1 XXX1 xXX-X XX-XX-XX-X xXX4 
 XXXX-xxxxxx XXX059X06 XXXX 13 XX2X37260 Xxxxxxxxxxx xxxxx xxxxxx 2 XXX2/ 

XXXX44 
  XxXX4 

 Xx-XXX1 xxxxxx XXX044X03 Xxx1 xxxx xxxxxxx XX4X21610 XXX xxx xxxx 2  XXX2   XxXX4 
 XXX xxxxxx XX1000X08 Xxxxxxxx xxxxxxxxxxxxx xxxxx XX1X68730 Xxx17-xxxx xxxx xxxxxx xxxxxxx  xXX-X XX-XX-XX-X xXX6 

Xxxxxxxxx xxxxxxxxxx        

 XXX xxxxxxxxxxxx XXX048X10 Xxxxxxxxx xxxxxxxxxxxx xxxxxxx XX1X67080 Xxxxxxxx xxxx xxxxxxxxx 4 XXX4 xXX-X XX-XX-XX-X xXX5 
  XX1005X08 Xxxxxxxxxx xxxxxxxxx, xxxxxxxxxxx xxxxxxxxx XX5X67030 xxxxxxxxxx xxxxxxxxx XXX1/ / XXX xXX-X XX-XX-XX-X xXX4 

 Xxxxx xxxxxxxxxx/ Xxx xxxxxxxxxxxx 
xx XXXXX 

XXX034X04 Xxxxxx-xxxxxxxxxx xxxxxxxxxxxxx XX1X48910 XXXXX 10  XXX10 xXX-X XX-XX-XX-X xXX4 

 Xxxxx xxxxxxxxxx/ XXX xxxxxxxxxx 
xx XXX 

XXX011X04 xxxx-xxxxx xxxxxxxxxxxxx/ xxxxxxxxx X XX4X05530 Xxxxx-xxxxx xxxxxxxxxxxxx/ xxxxxxxxx 
x 

XXX1/ XXXX xXX-X XX-XX-XX-X xXX6 

 XXX053X08 xxxxxxxxxxxxxx xxxxx-XxX xxxxxxxxx 2 XX1X76150 Xxxxx-Xxx xxxxxxxxx 2 XXX2   XxXX4 
 Xxxxx xxxxxxxxxx/ Xxxxx 
xxxxxxxxxxxxx 

XXX060X02 Xxxxxxxx/ xxxxxx/ xxxxxxxxxxxx xxxxxx 
xxxxxxxxxx xxxxxxx 

XX3X10870 Xxxxxx xxxxxxxx 17 XXX17 xXX-X XX-XX-XX-X xXX6 

 XXX074X09 Xxxxxxxx xxxxx-xxxxxxxxxxxxxx xxxxxxxxx XX5X54140 XXX-xxxxxxx-xxxxxxxxx (xxx1)-xxxx 3  XXX3 xXX-X XX-XX-XX-X xXX6 
 XXX078X06 Xxxxxxxx xxxxx-xxxxxxxxxxxxxx xxxxxxxxx XX1X51760 XXX-xxxxx xxxx xxxxxxxxx 3 XXX3   XxXX4 
 XXX058X03 XXX xxxxxxxx 1 XX3X61510 XXX xxxxxxxx XXX1   XxXX4 
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 Xxxxxxxx xxxxxxxxxxxx XXX004X06 XXX xxxxxxxx 1 XX3X61510 XXX xxxxxxxx XXX1 xXX-X XX-XX-XX-X xXX4 

  XXX046X06 XXX xxxxxxxx XX1X62960 XXX xxxxxxxx x XXX10 xXX-X XX-XX-XX-X xXX5 

 Xxxxxxxxx xxxxxxxxxx XXX006X10 xxxxxxxxx xxxxxxx  XX1X65840 xxxxxxxxx xxxxxxx  XXX4   XxXX4 
 XXX014X08 Xxx/ Xxx/ Xxx xxxxxxxxxxxxx, xxxxx xxxxxx    xXX-X XX-XX-XX-X xXX5 
 Xxxxxxxxx xxxxxxxxxx/ Xxxxxxxxx 
xxxxxxxxxxx 

XX1002X05 XXX-xxxxxxx:xxxxxxxxx xxxx 
xxxxxxxxxxxxxxxxxxx 

XX2X43820 Xxxxxxxxx xxxx xxxxxxxxxxxxxxxxxxx 1  XXX1 xXX-X XX-XX-XX-X xXX4 

Xxxxxx xxxxxxxxxxxx xxxxxxx         

 XXX xxxxxxxxx/ Xx xxxxxx 
xxxxxxxxxx 

XXX069X09 XX11-X1 XX4X33950 Xxxxxxx xxxxxxxxxxxxx 1-xxxxxxx 
xxxxxxx xxxxxx 2-6 

XXX1/ 
XXXX2-6 

xXX-X XX-XX-XX-X xXX4 

 XXX xxxxxxxxx/ XXX 
xxxxxxxxxxxxxxx 

XXX010X11 Xxxxxx-xxxxxxxxx xxxxxxx xxxxxx, xxxxxxxx XX1X78290 Xxx1-xxxxxxx xxxxxxx xxxxxx 2.8 XXXX2.8   XxXX4 

 XXX xxxxxxxxx/ xxxxxxxx xxxxxxxxx XXX065X08 Xxx-XXX xxxxxxx xxxxxxxx XX5X20270 Xxxxxxxxxxxx xxxxxxxxxxxxx xxxxxxx1 XXX1   XxXX4 
 XXX xxxxxxxxx/ xxxxxxxxxx xxxxxxx 
xxxxxxxxxxxxxxxxx 

XX1009X12 Xxxxxxx xxxxxxxxxxx 2X XX3X11410 Xxxxxxx xxxxxxxxxxx 2XX XX2XX/ 
XXX3 

  XxXX4 

 XXX xxxxxxxxx/ xxxxxx xxxxxxxxxx XXX021X09 Xxxxxxx xxxxxx XX5X66880 Xxxxxxx xxxxxxxxxxxxx 1 XXXX2-3   XxXX4 
 Xxxxx xxxxxxxxx/ XXXX xxxxxxx XXX058X12 xxxxx-xxxxxxxxxx xxxxxxx-xxxxxxx XX2X45210 xxxxx-xxxxxxxxxx xxxxxxx-xxxxxxx XXXX36   XxXX4 
 Xxxxxx xxxxxxxxx/ Xxxxxxx 
xxxxxxxxxx 

XXX037X10 Xxxxxxxx xxxxxx/ xxxxxxxxx xxxxxx XX1X12310 xxxxxxxxxx  xXX-X XX-XX-XX-X xXX5 

 Xxxxxxx xxxxxxxxx/ Xxxxxxx xxxxxx XX1000X04 Xxxxxxxxxx-6 XX3X43810 xxxxxxxxxx-7  XXX7 xXX-X XX-XX-XX-X xXX5 
 XXX040X08 Xxxxxxxxxx-6 XX3X43810 xxxxxxxxxx-7  XXX7   XxXX4 
 Xxxxxxx xxxxxxxxx/ Xxxxxxx xxxxxx-
xxxxxxxxxx 

XXX072X01 Xxxxxxx-xxxxxxxxx xxxxxxx xxxxxx, xxxxxxx 2 XX1X76040 Xxxxxxx-xxxxxxxxx xxxxxxx xxxxxx 29 XXX29   XxXX4 

 Xxxxxxx xxxxxxxxx/ Xxxxxxx xxxxxx 
xxxxxxxxxx 

XXX014X08 XXX-xxxxxxxxxxx xxxxxxx xxxxxx XX4X30960 XXX3-xxxxxxxxxxx xxxxxxx 3  XXXX6/ 
XXX3/ 
XXXX3.14 

xXX-X XX-XX-XX-X xXX5 

 XXX020X10 XXX-xxxxxxxxxxx xxxxxxx xxxxxx XX4X30960 XXX3 xxxxxxxxxxx xxxxxxx 3  XXXX6/ 
XXX3/ 
XXXX3.14 

xXX-X XX-XX-XX-X xXX5 

 XXX017X05 XXX-xxxxxxxxxxx xxxxxx/ xxxxxxxxx-xxxxxxx 
xxxxxx 11 

XX2X30360 XXX3-xxxxxxxxxxx xxxxxxx 4 XXXX11/ 
XXX4/ 
XXXX3.22 

  XxXX4 

 XXX080X05 Xxxxxxx xxxxxx; XXX XX3X17510 XXX-xxxxxxxxxxx xxxxxxx xxxxxx 1 XxXX3.16/ 
XXXX1 

  XxXX4 

 Xxxxxx xxxxxx xxxxxxxxxx XXX016X09 XX4x28880/ X16X16_10 XX4X28860 xxxxxx xxxxxx X xxx4   XxXX4 
  XXX040X03 Xxxxxx xxxxxx X XX4X14340 xxxxxx xxxxxx X XXX1 xXX-X XX-XX-XX-X xXX5 
  XXX052X07 Xxxxxx xxxxxx XX xxxxx xxxxxxx xxxxxxxxx XX2X23070 xxxxxx xxxxxx XX xxxxx xxxxx    XxXX4 
 Xxxxxx xxxxxxxxxx xxxxxxxxx/ 
xxxxxx xxxxxxxxxx xxxxxxxx 

XXX025X02 Xxxxxx xxxxxxxxxx-xxxxx xxx xxxxxxx     xXX-X XX-XX-XX-X xXX4 

 Xxxxxxx xxxxxxxx xxxxxxxxx 
xxxxxxx/ Xxxxxx xxxxxxxx xxxxxxxx 

XXX026X10 XxxX xxxxxx-xxxxxxxxxx xxxxxxxx-xxxx xxxxxx 
7 

XX3X21630 Xxxxxx xxxxxxxx xxxxxxxx xxxxxx 1  XXXX1/ 
XXX1 

  XxXX4 
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 Xxxxxxx xxxxxxxx xxxxxxxxx 
xxxxxxx/ xxxxx xxxxxx xxxxxxxx 

XXX060X08 Xxxxxxx XXX2 XX1X33520 Xxxxxxxx xx xxx1, 2 XXX2   XxXX4 

 Xxxxxxx xxxxxxxx xxxxxxxxx 
xxxxxxx/ xxxxxxxx xx xxxxx 
xxxxxxxxx 

XXX003X07 Xxxxxxxxx-xxxx xxxxxxx 1 xxxxxxxxx XX1X20030 xxxxxxxxxxxx-xxxxxxx xxxxxxxxx xxxxxx 
xxxxxxx 

 xXX-X XX-XX-XX-X xXX6 

 Xxxxxxx xxxxxxxxx XXX078X03 Xxxxxxxxxxxxxx-xxxxxxx xxxxxxxx xxxxxxx XX5X62740 Xxxxxxxxxxxxxx-xxxxxxx xxxxxxxx 
xxxxxxx 1 

XXX1 xXX-X XX-XX-XX-X xXX6 

 XX xx xxxxxxx xxxxxxxxx XXX057X06 xxxxxxxxx xxxxxxx XX5X64510 Xxxxxxxxxxx xxxxxxx 1 XXX1   XxXX4 
 Xxxxxxxx xxxxxxxxx/ Xxxxx X3 
xxxxxxxxx xxxxxx 

XXX020X10 Xxxxxxxx-xxxxxxxxxxxxxx xxxxxxx 1 XX3X51770 Xxxxxxxx xxxxxxxxxxxx 1  XXX1   XxXX4 

 Xxxxxxxx xxxxxxxxx/ xxxxxxxx 
xxxxxxxx 

XXX057X10 Xxxxxxxx xxxxxxxxx xxxxxxx XX5X03280 xxxxxxxx-xxxxxxxxxxx 2 XXX2 xXX-X XX-XX-XX-X xXX4 

  XXX079X05 Xxxxxxxx xxxxxxxxx xxxxxxx XX5X03280 xxxxxxxx-xxxxxxxxxxx 2 XXX2 xXX-X XX-XX-XX-X xXX4 
 Xxxxxxxx xxxxxxxxx/ xxxxxxxx 
xxxxxx xxxxxxxxxxxx 

XX1006X05 XXX-xxxxxxx xxxxxxx XX3X46060 Xxx XXXxxx xxxxxxx 8x XXX3/ 
XXX8X 

  XxXX4 

 X-xxxxxxx xxxxxxx xxxxxxxx xxxxxxx 
xxxxxxxxx xxxxxxx/ X-xxxxxxx 
xxxxxxx 

XXX004X12 Xxxxxxxxxxxxx xxxxxxxxxxxx 3-xxxx xxxxxxx XX4X29830 Xxxxxxxxxxxxx xxxxxxxxxxxx 3 XXX3   XxXX4 
 XXX060X09 xxxxxxxxxxxxx xxxxxxx, XX3X05010 Xxxxxxxxx X-xxxxxxx xxxxxxx xxxxxxxx 

2 
XXXX2   XxXX4 

 XXX065X10 X-xxxxxxx xxxxx xxxxxxx XX1X31930 Xxxxx-xxxxx XXX-xxxxxxx xxxxxxx 3  XXX3   XxXX4 
 X-xxxxxxx xxxxxxx xxxxxxxx xxxxxxx 
xxxxxxxxx xxxxxxx/ X-xxxxxxx 
xxxxxxx xxxxxxxx xxxxxxx 

XXX008X11 Xxxxxxxx X xxxxxxx xxxxxxx xxxxxxxx XX1X48270 X-xxxxxxx-xxxxxxx xxxxxxxx 1 XXX1   XxXX4 

 Xxxxx xxxxxxxxx XXX023X10 XXX/ XXX-xxxx XX1X50280 xxxxxxxxxxx-xxxxxxxxxx XXX3 xxxxxx     XxXX4 
 XXX077X01 Xxxxxxxxxxxxxx xxxxxxxxxxx XX3X19980 Xxxxxxxxxxx-xxxxxxxxxx xxxxxxx 

xxxxxxxxxxx 3  
XXXX3   XxXX4 

 XXX004X05 XXXXXXXXXXXXXX XX XXX XXX XXXX    xXX-X XX-XX-XX-X xXX6 
 Xxxxxxxxxx xxxxxxxxx/ xxxx XXXxxx 
xxxxxx xxxxxxxxxxxx 

XXX025X12 Xxx-xxxxxxx xxxxx XXX-xxxxxxx xxxxxxx      XxXX4 
 XXX038X03 XXX-XXXXXXXXXXXX XXXXXX-xxxx xxxxxxx XX5X67560 XXX-Xxxxxxxxxxxx xxxxxx-xxxx X1X XXXX1X   XxXX4 
 XXX068X12 Xxxxxxxx XXX-xxxxxxx xxxxxxx      XxXX4 
 Xxxxxxxxxx xxxxxxxxx/ 
xxxxxxxxxxxxx xxxxxxxx 

XXX073X10 Xxxxxxxx xxxxxxx xxxxxxxxxx xxxxxxx XX4X12010 xxxxxxx xxxxxxxxxx xxxxxxx (XXX-XXX-
XXX xxxxx) 

   XxXX4 

 Xxxxxxxxxxxxxxxx xxxxxx 
xxxxxxxxxxxx 

XX1000X09 Xxxx X xxxxxxxx-1,4,5-xxxxxxxxxxxxx 5-
xxxxxxxxxxx 11 

XX1X47510 Xxxxxxxx xxxxxxxxxxxxx 5-xxxxxxxxxxx 
11 

5XXXXX11 xXX-X XX-XX-XX-X xXX6 

 Xxxxxxxxxxxxxxx xxxxxxxx/ XXXX XX1009X07 Xxxxxxxxxxx-xxxxxxx xxxxxxx xxxxxx XX3X45640 Xxxxxxx-xxxxxxxxx xxxxxxx xxxxxx 3 XXX3 xXX-X XX-XX-XX-X xXX6 

  XXX074X08 Xxxxxxx-xxxxxxxxx xxxxxxx xxxxxx XX5X58350 Xxxx xx xxxxxx (x) xxxxxx 4 (xxx4) XXX2/ XXX4 xXX-X XX-XX-XX-X xXX5 

  XXX076X05 Xxxxxxx xxxxxx XX5 XX3X53570 Xxx3-xxxxxxxxxxxxx xxxx 1 XX1   XxXX4 
 Xxxxxxxxxxxxxxx xxxxxxxx/ XXXXXX XXX007X06 Xxxxxxx-xxxxxxxxx xxxxxxx xxxxxx xxxxxx 

xxxxxx  
XX5X66850 Xxxxxxx-xxxxxxxxx xxxxxxx xxxxxx 

xxxxxx xxxxxx 5 
XXXXXX5 xXX-X XX-XX-XX-X xXX6 

  XXX013X04 Xxxxxxxxxx xx XXX1-xxxxxxx xxxxxxx xxxxxx XX5X55090 Xxxxxxx-xxxxxxxxx xxxxxxx xxxxxx 
xxxxxx xxxxxx 15 

XXXXXX15   XxXX4 

  XXX033X05 xxxxxxx xxxxxx XX5X11850 xxxxxxx xxxxxx xxxxxx xxxxxxx Xxx3   XxXX4 
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  XXX037X08 Xxxxxxx xxxxxxxxx xxxxxxx xxxxxx xxxxxx    xXX-X XX-XX-XX-X xXX5 
  XXX039X01 xxxxxxxx Xxx/ Xxx xxxxxxx xxxxxx  XX1X16270 xxxxxxx xxxxxx xxxxxx xxxxxxx Xxx18   XxXX4 

  XXX061X01 xxxxxxx xxxxxx, xxxxxxxx XX1X63700 Xxx xxxxxx xxxxxx xxxxxx 4  XXXXXX4   XxXX4 
 Xxxxxxxxxxxxxxx xxxxxxxx/ 
xxxxxxxxx xxxxxx 

XXX036X08 Xxxxxx/ xxxxxxxxx-xxxxxxx xxxxxx-xxxx XX3X45240 Xxxxxxxxxxx xxx xxxxxxxxxxx xxxxxx 1  XXXX1/ 
XXXX2 

  XxXX4 

 XXX054X02 XXXX xxxx3 XX2X28060 5'-XXX-xxxxxxxxx xxxxxxx xxxxxx xxxx-2 
xxxxxxx xxxxxxx 

XXXx30 xXX-X XX-XX-XX-X xXX5 

 Xxxxxxxxxxxxxxx xxxxxxxx/ XX2X XX1001X03 Xxxxxxx xxxxxxxxxxx 2X-xxxx XX4X03415 2X-xxxx xxxxxxx xxxxxxxxxxx 52,  XX2X52   XxXX4 
  XX1005X01 Xx10x0541200 xxxxxxx XX2X33700 Xxxxxxx xxxxxxxxxxx 2X X xxxxx 1  XX2XX1   XxXX4 
  XXX042X02 Xxxxxxx xxxxxxxxxxx 2X-xxxxxxx    xXX-X XX-XX-XX-X xXX5 
  XXX051X04 Xxxxxxxx xxxxxxx xxxxxxxxxxx 2X 25 xxxxxxx 

1 
XX2X30020 xxxxxxx xxxxxxxxxxx 2X XX2X1   XxXX4 

  XXX073X12 Xxxxxxx xxxxxxxxxxx 2X-xxxx XX5X27930 xxxxxxx xxxxxxxxxxx 2X    XxXX4 
  XXX080X09 Xxxxxxx xxxxxxxxxxx 2X XX3X62260 xxxxxxx xxxxxxxxxxx 2X    XxXX4 
 Xxxxxxxx / Xxxxxxxx xxxxxxxxx 
xxxxxxx 

XXX032X07 Xxxxxxxxxx xxxxxxxx xxxxxxx-xxxx XX2X33470 Xxxxxxxxxx xxxxxxxx xxxxxxx 1  XXXX1 xXX-X XX-XX-XX-X xXX6 

 Xxxxxxxx/ Xxxx xxxxxxx xxxxxxxx XXX035X02 Xxxxxxx xxxxxx XX2X20300 Xxxxxxxx xxxx xxxxx 2 XXX2   XxXX4 
  XXX071X01 Xxxxxxxx xxxxxxx xxxxxx, xxxxxxxx XX1X70740 xxxxxxx xxxxxx xxxxxx xxxxxxx    XxXX4 
 Xxxxxxxx/ XXX xxxxxxxx XXX014X08 Xxxxxxxxxx xx xxxxxxxx-xxxxxxxxx xxxxxxxx-

xxxx xxxxxxx 
XX5X66330 xxxxxxx-xxxx xxxxxx xxxxxx xxxxxxx    XxXX4 

  XXX015X08 Xxxxxxx-xxxx xxxxxx xxxxxxxxxx xxxxxxx-xxxx 
xxxxxxx 

XX5X61240 xxxxxxx-xxxx xxxxxx xxxxxx xxxxxxx    XxXX4 

  XXX018X01 XXX-xxxx xxxxxxx XX3X49750 Xxxxxxxx xxxx xxxxxxx 44  XXX44   XxXX4 
 Xxxxxxxx/ Xxxxxxxx xxxxxxxxxxxx xx 
xxxxxxxxx 

XXX068X09 Xxxxxxxx xxxxxxxxxx-xxxxxxxxxx xxxxxxx 5 XX2X19580 Xxxxxxxxxxx2 XXX2   XxXX4 

 Xxx xxxxxx xxxxxxxxxx XXX041X08 Xxxxxxxx-xxxxxxx xx91-xxxx XX5X51060 xxxxxxxxxxx xxxxx xxxxxxx xxxxxxx X XXXXX   XxXX4 

Xxxxxxxxx         

 Xxxxx xxxxxxxxx XX1004X09 Xxxxx xxxxxx xxxxxxx XX2X17500 XXX-xxxxx 5 XXXX5   XxXX4 
  XXX044X01 XXX1-xxxx xxxxx xxxxxxxxx xxxxxxx XX1X70940 XXX-xxxxxx 3  XXX3 xXX-X XX-XX-XX-X xXX4 
  XXX070X12 Xxxxxxxxx xxxxxxxxxx xxxxxxx 11 XX3X28860 X-xxxxxxxxxxxx 19 XXX11/ 

XXX19 
xXX-X XX-XX-XX-X xXX4 

  XXX075X08 Xxxxx xxxxxx xxxxxxx XX5X01990 XXX-xxxxx 6 XXXX6   XxXX4 
 Xxxxxxxxx xxxxxxxxx XXX036X06 Xxxxx xxxx/ xxxxxxxxx xxxxxxxxxxx X XX3X13620 Xxxxxxxxx xxxxxx xxxxxxxxxxx 4 XXX4 xXX-X XX-XX-XX-X xXX6 

eRG: early ripening gene; NeRG:non early ripening gene, D:down; U:up; RS: ripe stop, RP: ripe progress; NC : no change; S: sensitive ; LS :low sensitive 
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in S fruits. Xxx xxxxx XXX1, XXX17 xxx XXX3 (xXX6, Xxx 19X, Xxxxx 13), xxxxx xxx 

xxxxxxxxx xxxxxx xxxxxx xxxxxxxx, xxxxxx xxxxxxxxx xxxxxxxxxx xx XXX-X xxxxxx xxxxx 

xxxxx xx-xxxxxxxxx xx XX. Xxxxxxxxxx xx xxxxxxxxx xxxx xxxxxxxx xxxx xx XXX13, 

XXX3/XXX2, XXXX36 xxx xxx xxxxxxxxxxx xxxxxxxxx xxxxx xxxxxx xxxxxxxx (XXXX5 xxx 

XXXX6), xxxxx xx xxx xxxxxx xxxxxx XXX, xxxx xxxxxxxxx xxxxxxxxxx xx XXX-X xxxxxx xxxxx 

xxxxx xx-xxxxxxxxx xx XX (XxXX4; Xxxxx 13). Xxx xxxxxxxxxx xxxxxxx xx xxx XXXX 6 xx 

xxxxxxx xxxxxxxxx xx xXX-XXX xx xxxx xxxxx xxx xxxxxxxxxx xxxxx (Xxxxxx X14 xxx X15). 

Xxxxxxx xxxxx-xxxxxxx xxxxx xxxxxx xxx xxxxxx xxxxxxxxxx xx xxxxxx xxxxxx XXX xxxxxx 

xxx xxxxxx xxxx xxxxxxx xxxxxx xxxxxxxx. Xxxx xxxxx xxx xxxxx xxxxxxx xxx xxxxxxxxxxx 

xxxxxxxxx xxxxxxxx (Xxxxx 12) xxxx xx xxx xxxxxxxxx xx XXX6/XXX, XXX3 (xxxx xx xxxxxxx 

XxXX2) xxx XXX1 xxx XXX/XXX96 (xxx xx XxXX6), xx xxx xxxxxxxxx xx xxx XXX xxxxxxxxx 

[440] XXX1 (XxXX2 xxx XxXX7) xxx XX1(xxxxxxx XxXX6), xxxxxxx xx xxxxxx xxxxx 

xxxxxxxxxxxx [526]. Xxx xxxxxxxxxx xx xxxxx xxxxx, xxxxxxx, xxxx xxx xxxxxxx xxxxx xxxxx 

xxxxxxxxxx xxxxxx XX (XxXX2) xx xxxxx xx xxxxx xxx xxxxxxxxxx xxxx xxxxx xxxx xxxxxxx 

XX (XxXX6 xxx XxXX7). Xx xxxxxxxx, xxx xxxxxxxx xxxxxxxxxx xxxxxxx (xxxx-xxxxxxxxxx 

xxxxxx XXX) xx xxxxxxxxx xx xxx XXX xxxxxxxxxxxxxxx xxxxxxxxx[440] XXX16, XXX27/XXX, 

XXX17/XXX3 xxxxxxxxxx xx xxxx X xxx XX xxxxxx xxxxxx XX xxx XXX, xxx xxxxxxxxxx xxx 

xxxxxxx xx X xxxxxx (xXX3 xx Xxxxxx 19 xxx Xxxxx 12). Xxx xxxxxx xxxxxxxxxx xx 

XXX27/XXX xx XX xxxxxx (Xxxxx 12), xxx xxx xxxxxxxx xxxxxxxxxxx xxxx XX xxxxxx xxxx XX 

xxx XXX xxx xxxxxxx xxxxxxxxx xx xxxxxxxxxx xxxxx xxxx xxx Xxx-XX xxxxxxxxxx (Xxxxx 

X14 xxx xx xxxxxxxx 1 xxx 2). Xxxxxxxxx, xxxxx xxxx-xxxxxxxxxx xxxxxx XX xxx XXX xxx xx 

xx xxxx xxxxxxxxxxx xxx xxxx xxxxx xx xxx xxxxxxxx xxxxxxx xxxxxx XX xxx xxxxxxxxxx XXX. 

As we reported in chapter 2, xxx xxxxxxxx xxxxxxxxxx xxx xxxx xxxx xxxxx xxxxxx xx xxxx 

xxxx xxx xxxxxxxxxxx xxxxxxxxx, xxx xxx xx xxxxxxxxx, xxx xx xxxxxxx xx xxx xxxxxxxxx 

xxxxxxxxx xx xxx-xxxxxxxxxxx xxxxxx. Xx xxxxxxx Xxxxxx xxxxxx, xxxx xxxxx xxxxxx xxx 

xxxxxxxxx xx xxxxxx xxxxxx 2 xxxxxxxx xxxxxxxxxx [245, 518, 520, 521]. Xxxxxxx, 

xxxxxxxxx xxxxxxxxxxx xx xxxxx xx xxxxx-xxxx xxxxxxx xxxx xxxxxxxxx xxx xxxxxxxxxxxxx 

xx xxx xxxxxxxxxx xxxxxx xx xxxxx xxx xxxxxxxx [519], xxxxxxx xxxxxxxx xxxxxxxxxx xxx 

xxxxxxxxxxx xxxxxxxx/xxxxxxxxx [527]. Xxxx, xx xxxxx xxxx xxxxxxx xx xxxxxxxx xxxx 

xxxxxxxxx xxx xxxxxxxxxxxxxx xxxxxx XXX xxxxx XX. That ripening alteration is probably 
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xxxxxxx xx xxxxxxx xxxxx xxxxxxxxxxx xxxxxxxxxxx xxxx xxxxxxxx xxxxxxxx xxxxxxxxxxxx. 

Xx xxxxxx xxx xxxxxxxx xxxxxxxxxx, xxxx xxxxxxxxxx xxxxxx xxxxxxx xx X xxxxxx xx 

xxxxxxxx xxx xxxxxx xx xxxxx xxxxxxxx. Xxxxxxxxxxxxxx xx XXX1 xxxxxxxxxx xxxxx-xxxxxxx 

xxxxxxxx xxxxxxxxxxxx xx xxxxxx xxxxxxxxx [528]. Xxxxx xxxxxxxx, xxx xxxxxxx xxxxxxx 

xxxx xxxxxxxx-xxx xxxxx-xxxxxxxxx xxxxxxxx xxxxxx xxx xx xxxx xxxxxxxx xx xxxxxx 

xxxxxxxxxx XXX, xxxxx xxxxx xxxx xxx xxxxx-xxxxxxxxx xxx xxxxxxxx-xxxxxxxxxxx xxxxxxxx. 

Xx xxxxxxx xxxxxxxx xxx xxx xxxxx xxxxxxx xx xxxxx xxx xxxxxxxx xx xxxxxxx xXX4 (Xxxxx 

13) xxxxx xxxxxxx XXX2, xxx xxxxx xxxxxxxxxxxx xxxx XXX10, xxx XXX xxxxxxxxxx [529] 

XXX7 xxx XXX5/XX, xxx xxxxx xxxxxxxx XXX2X [530] xxx xxx xxxxxx xxxxxxxx xxxxx xxxxxx 

xxxxxxxx (XXX3 xxx XXX19). Xxxxxxxxxx xx xxxxx xxxxx xxxxxxxxxx xxxx xxxx xxxxxxxxxxx 

xx xxx-xxxxxxxxxxx xxxxxxx (xxxx xxx xxxxxxx 2) xxx xxxxxx xxxx xxx xxxxxxxxxx xx xxxxx-

xxxxxxxx xxxxxxxxx xxxxxxxx.  

 XXX2 xx x xxxxxxxx xxxxxxxxx xx xxxx xxxxxxxx xxxxxxxxx xxx xxxxxxxxxxxxx (xxxxxx 2) 

xxxxxxxx xxxxxxxxxx [303], xxx xx xxxx xxxxxxxx xx xxx xxxxxxxx xxxxxxxx xxxxxxxxxx xx 

xxxxxxxx xxxxxx X [431]. Xxxxxxxxxx xxxx xxx xxxxxxxx xx xxxxxxxx xxxxxx 2, xxXXX2 xx 

xxxxxxx xx xxxxxxx-xxxxx xxxxxxx xxxxxx X3/X4 xxxxxxxxxx xxx xxx xxxxxxxxxx xxxxxxx 

xxxx xxxxxx xxx X4X xxxxx [161]. XXX2 xxxx xxxxxxxxxxxx xx xxxxx xxxxxxxx xx xxxxxxxx 

xxxxxx xx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xx XXX1-3 xxx xxx xxxxxx xxxxx [23]. 

Xxxxxxxxxx xxxx xxxx, xxxxxxxxxx xx xxXXX2 xxxxxxxxxxx xxxxxxxxx xx XX xxxxxx 

(xxxxxxxx 1, 2 xxx [246]) Xxxxxxx, xxXXX2 xxxxxxxxxx xx XX xxxxxx xxxxxxx xxxx 

xxxxxxxxxxxxx xxxxxxxx xxxxxxxxxx xxx xxxxxxxxx [246], xxxxx xxxxxx xxxxxx xx xxXXX2 

xxxxxxxxxx xxxxxxxxxx xxxx xxxxx  xxxxxxxx xxxxxxxxxx. Xxxx xxxxxxxxx xxxx xxxx 

xxxxxxxxxx xx XXX2 xxxxxx XX xx xxxxxxx xx xxxxxx X xxxxxxxx xxxxxxxxxx xxx agrees 

with our results (cluster eRG4, Figure 19, Table 13 and chapters 1 and 2).  

Xxxxxxxx xxxxx xx xXX4 xxx xxxx xxxxxx xxxxxxxxx xx X xxxxxx xxxx xx XX xxxxxx xxxxxx 

XXX, xxxxxxxxxx xxx xxxxxx xxxx X xxxxxx xxxxxx xxxx xxxxxxxx (Xxxxxx 19X), xxxxxxxxxx 

xx XXX-X xxxxxx xxxxxxxxxxxxx xxxxxxxxx xxxxxxxx xx X-X xxxxxx xx xxx xxxx xx XX 

xxxxxxxxx (Xxxxxx 19X). Xxxx xxxx xxxx xxxx xxxxxxxx XX xxxx XXX xxxxxx X xxxxxx xx 

xxxxx xx xxxxxxx xxxxxxxx? Xx xxxx xxxxxxx xx xxxxxxx xx xxxxx xxxxxxxxxxxx, xxxxxxxxx 

xxx xxxxxxxxxxxx xxxxxxx xx xxxxxxx xXX4? Xx xxxxxxxxx xxxx xxx xx-xxxxxxxxxx xx 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090706#pone.0090706-Shi1
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XxXXX2 xxxx xxxxx-xxxxxxx xxxxx, xxxxxxxxx XxXXX2 xx xxxxxx xxxxxxx xxxxx xxxxxx xxx 

xxxxxxxxxx xx xxxx xxxxx xxxxxxxxx xxxxx [531], xxx xxxxxxx xxxxxxx XxXXX2 xxx xxxxxxxx 

xx xxxxx xxxxxxxxxxxx xxx Xxx-xxxxxxx [532] xxx xxxxx xxxxxxxxx [533]. Xxxx, xxxx xxxxx 

xx xxxxxxxx xxxxxxx xxxxxxxxx xxxxxx XX xxx xxxxxxxxxx XXX, xxxxxxxxxx xxxx xxxxxx 

xxxxxxxx xxxx XX xxxx xxxxxxxxx xxxx xx xxxxxxxxx xxxxx. Xxxx xxx xxxxxxx xxxxxxxx xx 

xxxxx, xxxxxx xxxxxxxxxxxxx xx xxxxxxxx xx xx xxxxxx xxx xxxxx xxxx xxxxxxxxx xx 

xxxxxxxx [122]. Xx xx xxxxxxxx xxxx xx xxx xxxx xx xxxx xxxxxxxxx, xxxx xxxxxxxx-

xxxxxxxxx xxxxxxxx xxxxxx xxxx xxxx xxxxxxx xxxxx xx xxxxxxxx. Xx xxxxx xxxxxxx, xxxx 

xxxxxxxx xx xxxxxx xx xxxxxxx xxxxxxxx [534]. Xxx xxx xxxxxxxxxx xxxxxxx xxxxxxxx 

xxxxxx XX xxx XXX xxxxxxxxxx xx xxxxxxx xxxx xxxxxxx xx xxxxxxxx xx xx xxxxx [535]? 

Xxxxxxx xxxx xx xxxxxx xx xxxxxxxxx xxxxxxx xxxxxxxx xx xxxxx xxxxxxs regulate this 

response in peach.  

In chapters 1 and 2 we reported that probably XXX, x xxxx xx xxx xxxxxxxx xxxxxxxx 

xxxxxxx xx xxxxx [536] xxx xx xxxxxxxx xx xxx XXX xxxxxxxxx xxx xxxx xx x xxxxxxxxx 

xxxxxxxxx xxxxxxxxx [134, 246]. Xxxx xx xxxxx xxxxxxx xxxxx xxxxxxx xx XXX xxxxxxxxx, 

xxxxxxxxx xxx xxxxxxxxxxxx xxxxx xxxxxxxxxxxxxx xxxxxxxxx xxxxx (Xxxxxx 12 xxx 13). 

Xxxxxx xxxxxx xxxxx xxxxxxxx, XXX xxxxxx xxxx xxxxxx xxx xxxxxxxxxxx xxxxx xxx 

xxxxxxxxxx xxxxxx xxx xxxxxxxxxx xxx X4 xxxxx [536]. Xxxx, xxx xxxx xxxxxxxx xxx xxxxx 

xxxxxxxx xx XXXX, xxx xxx xxxxxx xx XXX xxxxxxxxxxxx xx xxxxx [536] xx xxxx-xxxxxxxxx 

xxxxxx XXX (xXX3, Xxxxxx 19X, Xxxxx 12). Xxxx xxxxxxxx xxx XXX xxxxxx, xxxxxxxxxx xx X 

xxxxxx, xxxxxx XX xxx XXX. Xxxxxxxxxxxx, xxx xxxxx xxxxxxx xx XXX xxxx xxx xx-xxxxxxxxx 

xxxxxx XX xxx XXX xxx xxx xx xxxxxxx xx xxxx xxxxxxx xxx XXX-xxxxxxxxxxx xxxxxxxx xxx 

xxxxxxxx xxxxxxxxx. Xxx xxxxxxxx xxxxxxxxxx xxxxxx XX xxxxx xx xxxx xxxxxxx xxxx xxxx 

xxx xxxxx xxxxxxxx xxxx xx xxxxxxxxxxxx, xxxxxxxxxxxxxxxx xxx xxxxxxxx xxx xxxx 

xxxxxxxxxx xxxxx xx XXX xxxxxxxxxxx xxx xxxxxxxxxxx, xx suggested by the differential 

expression of some genes related to their biosynthesis and signaling (Tables 12 and 13)  

C3.2.4.The molecular phenotype of wolliness: alterations in cell wall 

during development of visual symptoms  

Modifications in cell wall structure during development of WLT syndrome have 

traditionally been proposed as key determinants of the loss of fruit juiciness, xxxxx xx 
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xxx xxxxxxx xx xxxx xxxx xxxx xxxxxxxxxx xx xxxx xxx xxxxxxx xxxxx [537]. Xxxxxxxxxx 

xxxx xxxxxxxx xxxxxxxx [11, 12, 135], xxx xxxxxxx xxxxxxxx xxxx xxxxxxxx xxxx xxxx 

xxxxxxxxxx xx xxxxxxxxxx xxxx XXX xxxxxxxxxxx Xxxxxx 17 X xxx X) xxx xxxxx xx xxxx 

xxxxxxxxx xx xxxxx xxxxxxx xx xxx xxxx xxxx (Xxxxxx 19X, xxxxxxx xXX1). Xxxx xxxx xxxx 

xxxxxxxxxxx xxxxxx xxxxxx xxxxxxx xxxxxxxxxxx xxxx xxxxxxxxx xxxxxx XX xxx xxxxxxxxxx 

xxxxxx XXX. XX xxxxxx xxxx xxxxxxx xxxxxxx xxxxxxxx xx xxxxxx xx xxxx xxxxxx xxxxx; 

xxxxxx XXX, xxxxx xxxxxxxxxxxxx xx x xxxxxx xxxxxxx xx xxxxxx xxxx xxxxx xxxx xxxxxx xxx 

xxx xxxxxxx xxxxxxxxx, xxx xxx xxxx xxxx xxx [135]. (Xxxxxxxx xx xx. 2004x). Xxxxx 

xxxxxxxx xx xxxxxx xxx xxxxxxxx xxxxxxxxxxxx xxx xxxxxxxxxxxxx xxxxxxxxxxxx, 

xxxxxxxxxx xxxxxxxxxx xxxx xxxxxxxxxxx xx xxx xxx-xxxxxxxxxxx xxxxx ([17] xxx xxxxxxxx 

1 xxx 2) xxxx xx XXX1 (xXX4, xxxxxx xx xx-xxxxxxxxx xxxxxx xxxxxxxx), XXXX1 xxx XXXX1 

(xxxx xx xXX6, xxxxxx xx xxxx-xxxxxxxxx xxxxxx xxxxxxxx), xxxx xx-xxxxxxxxx xx XX xx xxxx 

X xxx XX xxxxxx (Xxxxx 14) xxx xxxxxx xx xxxxx xxxxxx X xxxxxx xx x XX-xxxxxxxxx xxxxxx, 

xxxx xxxx xxxxxxxxxx xx X xxxxxx xxxxxx xxxx XX xxx XXX. Xxx xxxxxxxxxx xx XXX1 xxx 

XXX1 xx xxxxxxx xxxxxxxxx xx xXX-XXX xx xxxxx (Xxxxx X14) xxx xxxxxxxxxx xxxxx (Xxxxx 

X15), xxx xxx xxxxxxxxxx xx xxxxxxxxxx xxxxxxxxxx xxxx XX (Xxxxxx 20).  

Xx xxxxxxxx, xxxxx xxxxx XXX xxxxxxxxxx xx xxxxxxx 2 xxxx xxxxxxxxxxx xxxxxx xxxx xxx 

xxxxxxx xx xxxxxxx xx xxxxxxxx xxxxxxxxx xxx xxxxxxxxxx, xxx xxxxxxx  xxxxx xxxxxxx xx 

xxxxxxxxxxxxx xxxxx xx xxxxxxx 2, xxxxxxxx xx xxxxxx xx xxxx xxxxx xxxxxxxxxx xx X 

xxxxxx xxxxxx XXX (Xxxxx 14).  

Xx xxxx xxxxxxxx xxx xxxx xx xxxxx xxxx xxxxxxxxx XXX xxxxxxxxxx xxxxxxxxxx xxxx xxx 

xxxxxxxxxxxxxx xxxxxxxxx xx X xxx XX xxxxxx xx xxxxxxxx xx XX xxx XXX (Xxxxx 14). Xxx 

xxxx xx xxxxxxxxxx xxxx xxxx xxx xxxxxxxx xxxxxxxxxx xx xxxxxxxxxxxx XX xxx XXX 

xxxxxxxxx xxx xxx XXX xxxxxxxxx. Xxxxxxxxxxx XXX xxxxx xxxxxxxxx xx xxxxx xxxxxxxx 

xxxx xx xxx xxxx xxxx (Xxxxxx 21) xxxxxxxxxx xxxx xxx xxxx xxxxxxxxxxx xxxxxxx X xxx XX 

xxxxxx xxxxxx



 192 

Table 14. Cell wall related genes differentially expressed between LS and S pools. 

Xxxxxxxx 
Xxxxxxxxxx 

xx Xxxxxxx  xxxxxxxxxx XXX xxxx Xxxx xxxx xxxx 
Xxxx xxxx 

xxxxxx 
xxxxxxxx 
xxxxxxx 

xxxxxx xx 
xxxx xx 

xxxxxxxx 
xxxxxxx 

XXX 
xxxxxxx 

Xxxx xxxxxxxxx xx xxxxxx X        
 Xxxx xxxx xxxxxxxxxx xxxxxxxxxx XXX020X07 Xxxx xxxxxxx xxxx xxxxxxxx xxxxxx XX4X24220 Xxxx xxxxxxxxxx 1 XXX31/ 

XXX1 
  XxXX4 

 xxxx xxxx xxxxx xxxxxxxxxxx XXX002X11 xxxx xxxxxx (X3XX4-xxxx XXXX xxxxxx) 
xxxxxx xxxxxxx 

XX2X40830 Xxxx-X2 xxxxxx X1X  XXX1X   XxXX4 

 xxxxxxxxx xxxxxxxxxxxx XXX017X08 xxxxxxxxx xxxxxx xxxxxxx XX3X26140 Xxxxxxxxx xxxxxx xxxxxxx  xXX-X XX-XX-XX-X xXX4 
  XXX046X09 Xxxxxxxxx xxxxxxxx-xxxx xxxxxxx XxxX XX1X55850 Xxxxxxxxx xxxxxxxx xxxx X1 XXXX1 xXX-X XX-XX-XX-X xXX6 
  XXX054X01 Xxxxxxxxx xxxxxxxx-xxxx xxxxxxx XxxX XX4X23990 Xxxxxxxxx xxxxxxxx xxxx X3 XXXX3 xXX-X XX-XX-XX-X xXX6 
 Xxxxxxxxxxxxx xxxxxx xxxxxxxx XXX073X10 Xxxxxxxxxxxxxxxxxxx xxx4    xXX-X XX-XX-XX-X xXX4 
 Xxxxxxxxxxxxx xxxxxx 
xxxxxxxxxxxxx xxxxxxxxxxx 

XXX045X12 Xxxxxxxxxxxxx-xxxxxxx XxxX xxxxxx 
xxxxxxxxxx xxxxxxx 

XX2X33580 XXXX-xxxxxxxxxx xxxxxxxx-xxxx xxxxxx 5  XXX5 xXX-X XX-XX-XX-X xXX5 

 XXX068X03 Xxxxxxxxx Xx XX3X12500 Xxxxx xxxxxxxxxxxxx XXX-X   XxXX4 
 xxxxxxxxxxxxx xxxxxx xxxxxxx 
xxxxxxxxxxxx 

XX1003X07 xxxxxxx xx xxxxxx 4-xxxxxxxxxxx XX3X28480 Xxxxxxx xx xxxxxx 4-xxxxxxxxxxx  xXX-X XX-XX-XX-X xXX5 

 Xxxxxx xxxxxxxxxxxx XXX001X11 xxxxxxxx-xxxxxxxxx xxxx-
xxxxxxxxxxxxxxxxxxx 

XX2X39630 Xxxxxxxx-xxxxxxxxx xxxx-xxxxxxxxxxxxxxxxxxx    XxXX4 

  XXX038X07 xxxxxxx xx xxxxxxxx-xxxxxxxxx-xxxxxxx 
xxxxxxxx 

XX1X20575 Xxxxxxxx xxxxxxxxx xxxxxxx xxxxxxxx 1 XXXX1 xXX-X XX-XX-XX-X xXX6 

 Xxxxxx xxxxxxxxxxx XX1003X06 Xxxxxxxxx xxxxxxxxx, xxxxxx 1 XX5X44640 Xxxx xxxxxxxxxxx 13  XXXX13 xXX-X XX-XX-XX-X xXX5 

  XXX005X09 Xxxxxxxxxx xx xxxx-1 XX3X23600 Xxxx-1,3;1,4-xxxx-X-xxxxxxxxx xxxxxxxxx    XxXX4 
  XXX055X08 Xxxxxx xxxxxxxx XXX38 XX3X57270 Xxxx-1,3-xxxxxxxxx 1 XX1 xXX-X XX-XX-XX-X xXX5 
  XXX063X10 Xxxx-1,3-xxxxxxxxx XX4X16260 Xxxxxx xxxx-1,3-xxxx-xxxxxxxxxxx    XxXX4 
  XXX070X08 Xxxx-xxxxxxxxxxxxx  XX3X13750 Xxxx-xxxxxxxxxxxxx 1  XXXX1 xXX-X XX-XX-XX-X xXX4 
 xxxxxxxxxxxxxx xxxxxxxxxxxxxx 
xxxxxxxxxxxx 

XX1005X08 Xxxxxxxxx-xxxx XX2X20370 Xxxxx 3  XXX3/ XXX1   XxXX4 
 XXX003X12 XXXX-X3 XX1X32170 Xxxxxxxxxx xxxxxxxxxxxxxxxxxxxx/ xxxxxxxxx 

30 
XXX30/ 
XXX4 

xXX-X XX-XX-XX-X xXX5 

 xxxxxxxxxxxxxx xxxxxxxxxxxxxx 
xxxxxxxxxxx 

XX1002X04 Xxxxx-X-xxxxxxxxxxxxxxxxxxx / xxxx-X-
xxxxxxxxxx 

XX5X49360 Xxxx-xxxxxxxxxx 1  XXX1 xXX-X XX-XX-XX-X xXX4 

 xxxxxx xxxxxxxxxxx XXX044X02 XXXXXXX-XXXX XXXXXXXXXXX XXXXXXX XX2X38080 Xxxxxxxxx xxxxx 12 XXX12/ 
XXX4 

xXX-X XX-XX-XX-X xXX5 

 xxxxxx xxx xxxxxxxxxxxxxxx 
xxxxxxxxxxxxxx 

XXX035X09 Xxxxxxx xxxxxxxx xxxxxxxxxxxxx-xxxx 39 XX2X42570 Xxxxxxxx xxxxxxxxxxxxx-xxxx 39  XXX39 xXX-X XX-XX-XX-X xXX6 

 XXX070X03 Xxxx xxxxxxxxxx xxxxxxx xxxxxxx-xxxx XX2X14530 Xxxxxxxx xxxxxxxxxxxxx-xxxx 13  XXX13   XxXX4 
 Xxxxxx xxxxxxxxxxxx XXX055X12 Xxxxxxxx 3-xxxxx-xxxxx-xxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxx 
XX1X53000 XXX-XXX xxxxxxxxxx XXXX/ XXX xXX-X XX-XX-XX-X xXX5 
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 Xxxxxx xxxxxxxxxxx XX1000X09 Xxxxxxxx xxxxxxxx-xxxxxxx xxxxxxx XX5X62350 Xxxxxxxxx/xxxxxx xxxxxxxxxxxxxx xxxxxxxxx 
xxxxxx xxxxxxx 

   XxXX4 

  XX1000X04 Xxxxxxxxx xxxxxxxxx xxxxxxxxx XX1X47960 Xxxx xxxx / xxxxxxxx xxxxxxxxx xx 
xxxxxxxxxxxx 1 

X/XXX1 xXX-X XX-XX-XX-X xXX6 

  XX1004X01 Xxxxxxxx xxxxxxxxxxxxxx XX2X26440 Xxxxxx xxxxxxxxxxxxxx 12 XXX12   XxXX4 
  XX1005X11 Xxxxxxxxxxxxxxxxx xxxxxxxxx XX3X59850 Xxxxxxxxxxxxxxxxx (xxxxxxxxx) xxxxxx  xXX-X XX-XX-XX-X xXX4 
  XXX001X10 Xxxxxxxxxxxxxxxxx-xxxx xxxxxxx XX1X23460 Xxxxxxxxxxxxxxxxx (xxxxxxxxx) xxxxxx    XxXX4 
  XXX001X09 Xxxxxxxxxxxxxxxxx-xxxx xxxxxxx XX3X57790 Xxxxxxxxxxxxxxxxx (xxxxxxxxx) xxxxxx    XxXX4 
  XXX041X11 Xxxxxxxxxxxxxxxxx-xxxxxxxxxx xxxxxxx XX5X06860 Xxxxxxxxxxxxxxxxx xxxxxxxxxx xxxxxxx 1 XXXX1 xXX-X XX-XX-XX-X xXX6 
  XXX043X06 XX1.2-xxxx XX1X62770 Xxxxxxxxx/xxxxxx xxxxxxxxxxxxxx xxxxxxxxx 

xxxxxx xxxxxxx 
 xXX-X XX-XX-XX-X xXX5 

  XXX047X10 Xxxxxxxxxxxxxxxxx-xxxx xxxxxxx XX4X23500 Xxxxxxxxxxxxxxxxx (xxxxxxxxx) xxxxxx  xXX-X XX-XX-XX-X xXX6 
  XXX057X09 Xxxxxxxxxxxxxxxxx-xxxx xxxxxxx XX1X19170 Xxxxxxxxxxxxxxxxx (xxxxxxxxx) xxxxxx  xXX-X XX-XX-XX-X xXX5 
  XXX066X05 Xxxxxxxx-xxxxxxx xxxxxxx-xxxx XX5X51520 Xxxxxxxxx/xxxxxx xxxxxxxxxxxxxx xxxxxxxxx 

xxxxxx xxxxxxx 
 xXX-X XX-XX-XX-X xXX4 

  XXX073X09 Xxxxxxxxxxxxxx-3 xxxxxxxxx XX1X53840 Xxxxxx xxxxxxxxxxxxxx 1 XXX1   XxXX4 
 xX xxxxxxxxx xxxxxxxx 
xxxxxxxxxxxxx xxxxxxxxxx 

XX1009X09 Xxxxxxxx-xxxx xxxxxxx XX3X45970 Xxxxxxxx-xxxx X1 XXXX1   XxXX4 
 XXX006X06 xxxxxxx xx Xxxxxxxx xxxxxxxx      XxXX4 
 XXX-xxxxxxx, XXX-xxxxxxxxx xxx 
XXX-xxxxxxxxxxx Xxxxxxxxxxxx 

XXX064X12 XXX-xxxxxxx 4-xxxxxxxxx XX4X10960 XXX-x-xxxxxxx/XXX-x-xxxxxxxxx 4-xxxxxxxxx 5 XXX5 xXX-X XX-XX-XX-X xXX4 

 XXX-X-xxxxxxxxx, XXX-
xxxxxxxxxxxxx xxx XXX-xxxxxx 
Xxxxxxxxxxxx 

XXX062X06 XXX-xxxxxxxxx 4-xxxxxxxxx 1 XX1X30620 XXX-x-xxxxxx 4-xxxxxxxxx 1  XXX1/XXX4 xXX-X XX-XX-XX-X xXX4 

 xxxxxxx xxxxxxxxxxxxx xxxxxxx XXX041X12 Xxxxxxxx xxxxxxxxxx xxxxxxxx XX2X26590 Xxxxxxxxxx xxxxxxxx xxx-XXXxxx 13  XXX13 xXX-X XX-XX-XX-X xXX6 

Xxxx xxxxxxxxx xx xxxxxx XX        

 xxxxxxx xxxxxxxxxxxx XXX041X06 Xxxxxxxx xxxxxxx xxxxxxxx 1 xxxxxxxxx 
xxxxxxx 

XX4X04970 Xxxxxx xxxxxxxx xxxx-1  XXX1 xXX-X XX-XX-XX-X xXX1 

  XXX057X07 XXX xxxxxxxxxxxxx/XXX xxxxxxxxx XX1X05570 Xxxxxxx xxxxxxxx 1  XXXX1/ 
XXX6 

xXX-X XX-XX-XX-X xXX1 

 xxxxxxxxx xxxxxxxxxxxx XXX022X07 Xxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxx XX3X08900 Xxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxx 3  XXX3 xXX-X XX-XX-XX-X xXX1 
  XXX025X11 Xxxxxxxxx xxxxxxxx-xxxx xxxxxxx XxxX XX1X55850 Xxxxxxxxx xxxxxxxx xxxx X1  XXXX1 xXX-X XX-XX-XX-X xXX1 
  XXX027X10 Xxxxxxxxx xxxxxxxx-xxxx xxxxxxx XxxX XX1X55850 Xxxxxxxxx xxxxx xxx xxxx X1  XXXX1 xXX-X XX-XX-XX-X xXX1 
  XXX066X06 Xxxxxxxxx xxxxxxxx XX5X64740 Xxxxxxxxx xxxxxxxx 6  XXXX6 xXX-X XX-XX-XX-X xXX1 
 Xxxxxxxxxxxxx xxxxxx 
xxxxxxxxxxxxx xxxxxxxxxxx 

XXX027X09 Xxxxxxxxx-xxxx xxxxxxx XX1X05850 ;Xxxxxxx xxxxxxxxxx xx xxxxxx xx xxxx  XXX1/ XXX1   XxXX6 

 Xxxxxx xxxxxxxxxxxx XX1004X08 xxxx-2/X-xxxxxxxxx xxxxxx xxxxxx  XX3X15350 Xxxx-2/X-xxxxxxxxx xxxxxx xxxxxx xxxxxxx  xXX-X XX-XX-XX-X xXX1 
  XX1004X11 XXX-xxxxxxx xxxxxxxxxxxxxxxxx XX2X39770 XXX-xxxxxxx xxxxxxxxxxxxxxxxx 1 XXX/ XXX1   XxXX6 
  XXX027X10 X-xxxxxxxxxxxxxxxxxxxxxxxxxxxxx X XX4X38240 X-xxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxx 

xxxxxx xxxx 
XXX/ XX1   XxXX6 

 Xxxxxx xxxxxxxxxxx XXX003X04 Xxxxxxxxxx xx xxxx-1 XX3X23600 Xxxx-1,3;1,4-xxxx-X-xxxxxxxxx xxxxxxxxx    XxXX6 
  XXX015X01 Xxxxxxxxxxxx_xxxxxxxxx XX3X23600 Xxxx-1,3;1,4-xxxx-X-xxxxxxxxx xxxxxxxxx    XxXX7 
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  XXX030X08 Xxxx-xxxxxxxxxxx XX2X25630 Xxxx xxxxxxxxxxx 14  XXXX14   XxXX6 
  XXX045X01 Xxxx-xxxxxxxxxxxxx    xXX-X XX-XX-XX-X xXX1 

  XXX048X04 Xxxxx xxxxxxxxxx xxxx xxxxxxxxxxx XX5X36890 Xxxx xxxxxxxxxxx 42  XXXX42   XxXX6 
  XXX070X01 Xxxxx-xxxxxxxxxxx X XX1X67490 Xxxxx-xxxxxxxxxxx 1 XXX1   XxXX6 
 xxxxxxxxxxxxxx xxxxxxxxxxxxxx 
xxxxxxxxxxxx 

XX1004X12 Xxxxxxxxxx xxxxxxxxxxxxxxxxxxxxx 
XXXXXXXX1 xxxxxxx 

XX4X13990 Xxxxxxxxx xxxxxx xxxxxxx  xXX-X XX-XX-XX-X xXX1 

 XXX002X04 Xxxxxxxx xxxxxxxxxxxxxxxxxxx 5 XX1X74380 Xxxxxxxxxx xxxxxxxxxxxxxxxxxx 5 XXX5   XxXX6 
 XXX055X10 Xxxxx-1,6-xxxxxxxxxxxxxxxxxx XX4X02500 XXX-xxxxxxxxxxxxxxxxxx 2  XXX2   XxXX2 
 xxxxxxxxxxxxxx xxxxxxxxxxxxxx 
xxxxxxxxxxx 

XX1003X05 Xxxxxx xxxx-1,4-xxxx-xxxxxxxxxxx XX5X66460 (1-4)-xxxx-xxxxxx xxxxxxxxxxxxx XXX7 xXX-X XX-XX-XX-X xXX3 

 Xxxxxx xxxxxxxxxxxx XX1006X10 Xxxxxxxx xxxxxx xxxxxxxxxxxxxxxxx XX1X78240 Xxxxxxxxx2 XXX2   XxXX6 
  XXX015X02 Xxx9/Xx-9 xxxxxxx xxxxxxxx xxxxxxx 231 XX1X19300 Xxxxxxxxxxxxxxxxxxxxxxxxx-xxxx 1 XXXX1   XxXX7 
  XXX022X06 Xxxxxxxx xxxxxxxxx XX5X04500 Xxxxxxxxxxx xxxxxxx xxxxx xxxx 1 XXX-X2   XxXX6 
  XXX032X06 xxxxxxxxxxxxxxxxxxxxxxxxx 13 xxxx XX3X58790 Xxxxxxxxxxxxxxxxxxxxxxxxx 15  XXXX15 xXX-X XX-XX-XX-X xXX1 
  XXX046X05 xxxxxxxxxxxxxxxxxxxxxxxxx xxxx XX3X02350 Xxxxxxxxxxxxxxxxxxxxxxxxx 9  XXXX9   XxXX6 
 Xxxxxx xxxxxxxxxxx XX1004X07 xxxxx-xxxxxx xxxxxxx xxxx X xxxxxx 

xxxxxxx 
XX1X76160 Xxx5 xxxxxxx 5  XXX5 xXX-X XX-XX-XX-X xXX1 

  XXX011X10 Xxxxxxx xxxxx-xxxx xxxxxxx XX3X55140 Xxxxxxx xxxxx xxxxxx xxxxxxx    XxXX2 
  XXX053X02 Xxxxxxx xxxxx-xxxx xxxxxxx XX3X55140 Xxxxxxx xxxxx xxxxxx xxxxxxx  xXX-X XX-XX-XX-X xXX1 
  XXX063X02 Xxxxxxxxxxxxxx XXX8X xxxxxxxxx XX3X43270 Xxxxxx xxxxxxxxxxxxxx 32 XXX32 xXX-X XX-XX-XX-X xXX1 
 xX xxxxxxxxx xxxxxxxx 
xxxxxxxxxxxxx xxxxxxxxxx 

XX1002X08 Xxxxxxxx XX2X40610 Xxxxxxxx X8  XXX8   XxXX6 

 xxxxxxxxxx xxx xxxxxx 
xxxxxxxxxxxxxx xxxxxxxxx 

XXX062X02 Xxxxxxxxx xxxxx xxxxxxxx xxxxxxxx xxxxxx XX2X28370 XXXX -xxxx xxxxxxx 5X2 XXXXX5X2   XxXX2 

 XXX-xxxxxxx, XXX-xxxxxxxxx xxx 
XXX-xxxxxxxxxxx Xxxxxxxxxxxx 

XXX047X06 XXX-xxxxxxx 4-xxxxxxxxx XX1X64440 XXX-xxxxxxx 4-xxxxxxxxx XXX1/XXX4   XxXX2 

 XXX-X-xxxxxxxxx, XXX-
xxxxxxxxxxxxx xxx XXX-xxxxxx 
Xxxxxxxxxxxx 

XX1006X04 XXX-xxxxxxxxxx xxxx xxxxxxxxxxxxx 3 XX2X28760 XXX xxxxxxxx 6  XXX6 xXX-X XX-XX-XX-X xXX1 

 XXX071X02 XXX-X-xxxxxxxxxxx xxxxxxx-xxxxx XX2X28760 XXX xxxxxxxx 6  XXX6   XxXX6 

 Xxxxxxx XXX xxxxxxx XXX055X09 Xxx-1 xxxxxxx XX4X08950 Xxxxxxxx  XXX   XxXX7 

 Xxxxxxx xxxxxxxxxxxxx xxxxxx 
xxxxxxx 

XX1001X01 xxxxxxx xxxx xxx xxxxxxx xxxx XXX642 XX3X08030 Xxxxxxx xxxx xxx xxxxxxx xxxx XXX642  xXX-X XX-XX-XX-X xXX3 
 XXX076X01 xxxxxxx xxxx xxx xxxxxxx xxxx XXX643 XX3X08030 Xxxxxxx xxxx xxx xxxxxxx xxxx XXX643  xXX-X XX-XX-XX-X xXX1 
 XXX076X06 xxxxxxx xxxx xxx xxxxxxx xxxx XXX644 XX3X08030 Xxxxxxx xxxx xxx xxxxxxx xxxx XXX644  xXX-X XX-XX-XX-X xXX1 
 XXX017X02 xxxx xxxx xxxxx-xxxxxxxxxx xxxxxxx XX5X47530 Xxxx xxxx xxxxx-xxxxxxxxxx xxxxxxx  xXX-X XX-XX-XX-X xXX1 
 xxxxxx-xxxxxxxx xxxxxxxxxxxxx XXX044X06 Xxxxxx xxxxxxxxx XX5X57655 Xxxxxx xxxxxxxxx xxxxxx xxxxxxx  xXX-X XX-XX-XX-X xXX1 
  XXX071X10 Xxxxxx xxxxxxxxx XX5X57655 Xxxxxx xxxxxxxxx xxxxxx xxxxxxx  xXX-X XX-XX-XX-X xXX1 

eRG: early ripening gene; NeRG:non early ripening gene, D:down; U:up; RS: ripe stop, RP: ripe progress; NC : no change; S:  sensitive ; LS :low sensitive 
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SLR are due xx xxxxxx xxxxxxxxxx xxxxx, xxxx X xxxxx xxxxxxxx xxx xxxxxx xxxxxxxxx 

xxxxx xxxxxxx xx xxxxxx xxxxxxxxxxx, xxxxx XX xxxxxx xxx xxxxxxxx xx xxxxx xxxxxxx xx 

xxxxxx xxxxxxxxxxxx. Xx xxxxxxxx, X xxxxxx xxxx xxxx xxxxx xxxxxxx xx xxxxxxxxxxxxx 

xxxxxx, xxxxx XX xxxxxx xxxx xxxx xxxxx xxxxxxx xx xxxxxxxxxxxx xx xxxx xxxx 

xxxxxxxxxxxxxxx xxx xxx xxxxxxxxxx. 

 

 

Figure 21. Classification of genes related to the cell wall according to their putative function. 

 

 Among xxxxxx xxxxxxxxxxx-xxxxxxx xxxxx xxxxxx xxxxxxxxx xx X xxxxxx xxxxxx XXX 

(Xxxxx 6) xxxx xxxxx xxxx xx XXX39 (xXX6), XXX13 (XxXX4), XXX/XXX1 (xXX6), XXX1 xxx 

XXX12 (xxxx xx XxXX4), xxxxxxx xxxxxxxxxx xxx xxxxxxx xxxxxx (xXX4, xXX5, xXX6 xxx 

XxXX4) xxx xxx xxxxxxxx xx XXXX1 (xXX6). XXX xxxxxxxx xxx xxxxxxxx xx X-xxxxxxxxxxx xx 

xxxxxxxxxxxxxxx xxxx xx xxxxxxx xxx xxxxxxxxxxx [538]. X-xxxxxxxxxxx xxx xxxxxxx xxx 

xxxxxxxxxxx xxxxxxxxxx xx xxxxxxx xxx xxxxxxx xxxxxx xxxxxxxxx xxxxxxxxx xx xxx 

xxxxxxxxxxxxxx xx XX [539]. Xx xxxxxxx xxxxxxxxx xxxxxxxxxx xx XX xxxxxxxxxx, XXXX 

xxxxxxxx xxxxxxxx xxxxxxx xxxxxxxxxxxx xx x xxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxx xx 

xxxx x-xxxxxxxxxxx xxx xxx xxxxxxxxxxx xxxxxx [540]. Xxxxxx xxxxxxxxxx xxxxxxx xxxx 

xxxxxxxx xxxx xxxx-xx-xxxx xxxx xxxxx [541] xxxxx X-xxxxxxxxxxx correlated negatively 
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with xxxx xxxxxxxx [542] Xx xxxxxxxx xx XX xxxxxxxxxx, xxx xxxxxxxxxxx xxxxxxx XXx xxx 

XXXXx xxxxxxxx xxx xxxxxxxxx xx xxxxxxxxxxxxxxxxxxx (XXx), xxx xxxxxxx xxxxxxxx 

xxxxxxxxx xxx xxx xxxx x xxxx xxxxxx xxxxx xxxxxxxxxxx [543].  

Xxxxxx xxxxxxxxx xxxxxx xxxxxxxxxxxx-xxxxxxx xxxxx xx XX xxxxxx (Xxxxx 14) xxxxxxx 

xxxxx xx xxx XXXX xxxxxx (XXXX9, XXXX15 xxx XXXX1, xxxxxxxxx xx xxxxxxxx xXX1, XxXX6 

xxx XxXX7) xxx XXX2 (xx xxxxxxx XxXX6). Xx xxxxxxxx xx XXX1 (xx xxx XXXX xxxxxx, [544]) 

xx xxxxx xxx xxxxx xxxxx xxxxxxxxxx xx xxxxxxxxxx xxxxxxxxxx xxxx XX xx xxx xXX-XXX 

xxxxxxxx xx xxxxxxxxxx xxxxx (Xxxxxx 20). Xxxxxxxxxx xxxxxxxx xxxxxxxxx xxxx XXXX xxx 

XXXX-xxxx (XXXX) xxx xxxxxxxx xx xxxx xxxx xxxxxx xxx xxxxxxxxxxxxx xxxxxxxxxxxx [545]. 

Xxxxxxx xx xxxxxxx xxxxxxxxxx xxxxxxx xxxxxx xxxxxxxxxxx xx xxxxx xxxxxx [135] xxxx 

xxxxxx xxxxxx xxxx XXXX4-xxxxxxxx xxxxx xxxxxxxxx xxxxxxxxxxxxx xxxxx xxxxxx xxxxxx, 

xxxx xxxxxxx Xxx, Xxx xxx Xxx [546]. XXXX Xxxxxxxxxxx xxxxxxx xxx xxxx xxxxx xxxx 

xxxxxxx xxxxxxxxxxxx xxxx xxx xxxx xxxxxxx xxxx xxxxxxxx [544, 547]. XXX2 xxxxxxx x 

xxxxxx xxxxxxxxxxxxxxxxx (XXX) xxxx xx xx-xxxxxxxxx xxxx XXXX xxxxx [548]. Xxxxxxx xxx 

xxxxxxxxx xxxxxxxxxxx xxxx x xxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxx [549] xxx xxxxxx 

xxxxxx xxxxxxxxxxxx, XXXX xxx XXX xxxxx xx xxxxxxxx xx xxxxxxxxxxxx x xxxxx 

xxxxxxxxxxxxxxxx XX, xxxxxxxx xxxxxx xx xxxxxx xxxxxxx [550]. Xxxxxxxxx xx xxxxx xxx xx 

xxx xxx xxxxxx xxxxxx xxxxxxxxxx xxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxx [551, 552], xxx 

xxxxx xx xxxxxxxxxxx xxxxx xxx xxxxxxxxxxx xx XXX xx xxxxxx xxxxxxxxxxxxxxxxxxxx 

xxxxxx XXX xx xxxxx [9]. Xxx xxxxxxx xxxxxxx xxxx xxxxxxx xxxxxxxxx xx xxxxxx xxxxxxxxxx 

xxxxxx xx x xxxxxxxxxxx xx xxx xxxxxxxxxx xxxxxx XX xxxxxxxxxxx xx XXX xxxxxxxxxxx. 

Xxxxxxxx XXX xxxxxxxxxxx xx xxx XXX xxxxxxxxx, xxxx xxx xxx xxxxxxx xxxxxxxxxxxxxxx 

xxxxxxxxxxxx xx xxx xxxxxxxxxxxxxxxxxxxx xxxxxx xx xxxxxxx xxxxxx XXX, xxxxx 

xxxxxxxxxxx xxxxxxxx XXX xxxxxxx xxxx xxxxxx xxxxxxxxx xx xxxx xxxxx xxx xxxxx xxxxxx 

xxxxx XX [12] . 

Xxx xxxx XXX xxxxxxxxx xx xxxxxxx xxx xxxxxxx xxxx xxxxxx (Xxxxx 14), xxxxxxxxx xxxx 

xxxxxxxxxxxx xxx xxxxxxxxxxx xx xxxxxx, xxxxxxxxx, xxxxxxxxxxxxxx, xxxx xxxx xxxxxxxxxx 

xxx xxxxxxxxxxxxx xxxxxx xxxxxxxxxxxx. Xxxxx xxxx xx XXX-X [525, 553], XXX1 [348], 

XXXX1 [554] (Xxxxx 14) xxx xxxxxxxx xxx xxxx xxxx xxxxxxxxxx xxx xxxxxxxxxx. Xxxxxxxx, 

xxxxx xxxxxxx xxxxxxx xxxxx xxxxx xxxxxx xxx xxxx xxxx xxx xxx xxxxxx xx xxxxx XXX 



 197 

enzymes, which in turn affect cell adhesion and biosynthesis of non-pectic 

polysaccharides and generate a signal to coordinate cell wall WLT phenotype.  

 

C3.2.5.The expanded molecular phenotype of wolliness: Progressive 

down-regulation of genes related to carbohydrate, aminoacids, 

cofactor metabolism and organic acid are related to WLT development 

Soluble sugars, organic acids and aminoacids xxxxxxxxxx xx xxx xxxxxxx xxxxxxxxxxxx 

xxxxxxx xx xxxxx xxxxx. Xxx xxxxxxxxx xxxxxxx xx xxxxxxxxxxxxx, xxxxxxx xxxxx xxx 

xxxxxxxxxx xxxxxx xxxxxx xxxx-xxxxxxx xxxxxxxx xx xxxxxx xxxx xx 20 ° [492, 555] xxx 

xxxxxx xxxx xxxxxxx xx 0xX xxxx xxxxxxxxxx xxxxxxxx [556] xxx xxxx xxxxxxxxx. Xxxxxx 

xxxxxx xxxxxxxxxxx xxxxxxxx, xxxxxxxxxxxx xxxxxxxxxx xx xxxxxxx: xxxxxxxxxx 

xxxxxxxxxxx xx xxxxxxx xx xxxxxxx xxxxxxxx xx xxxx-xxxxxxxxx xxxxx xxxxxxxx, xxxxxxx 

xxxxxxxxxx xx xxxxxxxxxx xxx xxxxx xxxxx xxx xx xxxx xx xxxxxx xxxx. Xxxxxxx xxxxx xx 

xxxxxxxxxx xxx xxxx-xxxxxxxxx xxx xxxxxxx xxx xxxxxxxx xxxxxxxxxx xxxxx xxx xxxxxxxxxx 

xxxxx xxxxxxxxxxxx, xxxx xxxxxxx xxx xxxxxxxx xxxxxxxxxxxxxx xxxxxxxx (XXXX) xxx 

xxxxxxxxxxx xxxxxxxx xxxxxxxxxxx [XXXX]–XXX–XX xxxxxxxxxx xxxxxxxx xxxxxxxx xx xxxx, 

xxxxxxxxxxx xxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxx xxx xxx xxxxxxxxxxxx xxxxxxx, 

xxxxx xx xxxxxxxx xxx xxxxxxxx xxxxxxxx xxxxxxxxxxx [557, 558]. 

Xxxxxxxxxx xx xxx xxxxxxxxxxx xxx xxxxx/xxxxxxxxxx xxxxxxxx xx xxxxx xxxxxxx xxx xxx 

xxxxxxxxxx xxxxxxx xxxxxxxx xxxx xxxxxx xxxxxx xxxxxxxxxxx xxxxxxxx xxxxxxxxx xxxx, 

xxxxxxx xx xxxxxxxxx xxxxxxxxxxx, xxxxx xx xxxx xxxxxxxxx xxxxxxx xxx xxxxxxxxxxx xxx 

xxxxx/xxxxxxxxxx. Xxxxxx, xxxxxxxxx, xxxxxxxxxx xxx xxx xxxxxxxxxxxx xxxxxx XxxX xxx 

xxx xxxxxx xxxxxx xxxxxx xxxxxxxx [492, 555, 556]. Xx xxxxx xxxx xxxxx xxxxxxxx xx 

xxxxxx, xxxxxxxxxx xxx xxxxxxxxxx xxxxxxxxxx xxxx xx XXXX, XXX, xxx XxxX2 xx xxx xxxxxx 

xx xxxxxxxxx xxxxx xxxxxx xxx xx xxxxx xxxx XXX (Xxxxx 15). Xx xxxxxxxxx xxx xxxxxxxx 

xx-xxxxxxxxxx [492, 555, 556] xx xxxxxxxxxxx xxx XX, xxxxxxxxxxxx X, xxx XXX xxx 

xxxxxxxx xxxxxxxxxx xx xxxxxxxxxxx xxx XXX2 xxx XXX-XX. (Xxxxx 15). Xxxx, xxx 

xxxxxxxxxxxxxx xxxxxxxx xxxxxxxxx xxxx xxx xxxxxxx xxxxxxx xx xxxxxxxx xxxxxx 

xxxxxxxxxxx xxxxxxxx. 
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Tabla 15. Genes associated to the metabolism of amino acid, carbohydrates, organic acids, co-factor and energy production down-regulated in a 
mealiness/woolliness manner 
 Xxxxxxxx xx Xxxxxxx xxxxxxxxxx XXX xxxx Xxxx xxxx 

xxxxxx 
xxxxxx
x xxxx 
+XXX 

Xxxxxx 
XXX 

xxxxxxx 

XXX1-
X_xx_X

-X 

XXX1-
X_xx_X

-X 

XXX2-
X_xx_X

-X 

XXX2-
X_xx_X

-X 

XXX3-
X_xx_X

-X 

XXX3-
X_xx_X

-X 

Xxxxxxxxx xxxxxxxxxx             

 Xxxxxxx xxx Xxxxxxxxx xxxxxxxxxx XXX067X04 xxxxxxxxxxxx xxxxxxxxx xxxxxx/xxxxxxxxxx 
xxxxxxxxxxxxx 

XX4X19710 XX-XXXX xXX1 xXX-X    XXXX  XXXX 

 Xxxxxxxxxx xxxx xxxxxxxxxx XXX075X10 Xxxx-xxxxxxxxxxxx xxxxxxxx 1 XX3X61440 XXXX1 XxXX6       XXXX 
 Xxxxxxxxxxxxxx xxxxxxxxxx XXX066X01 Xxxxxxxx xxxxxxxxxxxxxx xxxxx   XxXX6       XXXX 
 Xxxxxxxx xxxxxxxxxx XX1005X09 xxxxxxxx xxxxxxxx / X-xxxxxxxxxxxx (xxxxx)-xxxxx / 

X-xxxxxxxxxxxx xxxxxxxxxxxxx 
XX4X14880 XXXX1 XxXX6     XXXX  XXXX 

  XXX052X05 Xxxxxxxx 1-xxxxxxxxxxxxxxxxx-1-xxxxxxxxxxx 
xxxxxxxxx 

XX1X48420 XXX1 xXX1 xXX-X    XXXX  XXXX 

  XXX074X01 Xxxxxxxx xxxxxxxxx xxxxxxxx xxxxxxxx 1 XX3X59760 XXXX XxXX6       XXXX 
 Xxxxxxxxx xxxxxxxxxx XX1003X04 Xxxxxxxx xxxxxxxxxxxxxxxx XX1X77670  xXX1 xXX-X       
  XXX048X12 xxxxxxxxx xxxxxxxxxx, xxxxxxxxx xxxxxxx XX3X17820 XXX1.3 XxXX6     XXXX  XXXX 

  XXX078X06 Xxxxxxxxxxx xxxxxxxxxx, xxxxxxxxxxx xxxxxxxxx XX5X27380 XXX2 XxXX6     XXXX  XXXX 

 Xxxxxxx, xxxxxx xxx xxxxxxxxx 
xxxxxxxxxx 

XXX001X12 Xxxxxxxxx xxxxxxxx, xxxxxxxxxxx xxxxxxxxx XX4X29840 XXX2 XxXX6     XXXX  XXXX 

 XXX055X09 X-3-xxxxxxxxxxxxxxxx xxxxxxxxxxxxx XX4X34200 XXX9 xXX1 xXX-X       
 Xxxxxx xxxxxxxxxx XX1005X01 Xxxxxx xxxxxxxxxxxxx xxxxxxxxx   XxXX7        
 xxxxxxxxxx xxxxxxxxxx XXX034X12 1,2-xxxxxxxxx-3-xxxx-5-xxxxxxxxxxxxxxxxx 

xxxxxxxxxxx 3 
XX4X14710 XXX2 XxXX2        

 XXX065X08 xxxxxxxxxxxxx xxxx-xxxxx, xxxxxxxxxxx / xxxx-
xxxxxxxxxxxxx / xxxxxxxx xxxxx 

XX3X57050 XXX XxXX6        

 xxxxxxxxxxxxx, xxxxxxxx xxx 
xxxxxxxxxx xxxxxxxxxx 

XXX017X03 Xxxxxxxxxxxxxxxxxxx XX1X12050  XxXX6        
 XXX031X01 X2 xxxxxx-xxxxxxxxxx xxxxxxx XX5X12970  xXX1 xXX-X  XXXX  XXXX  XXXX 
 XXX058X11 Xxxxxxxxxxxx xxxxxxxx xxxx xxxxxxx XX1X25220 XXX1 xXX1 xXX-X       
 Xxxxxxx xxxxxxxxx xxxxxxx xxxxxxx XXX019X11 XXX xxxxxx-xxxxxxxxxx xxxxxxx XX2X39570 XXX9 xXX3 xXX-X      XXXX 
 XXX078X06 XXX xxxxxx-xxxxxxxxxx xxxxxxx XX5X04740 XXX12 XxXX6     XXXX  XXXX 
 Xxxxxxx xxxxxxxxxxxxxxxx xxxxxxx XX1009X12 Xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxxxxx 

xxxxxxxxxxx xxxxxxx 
XX5X26600  XxXX2     XXXX   

 Xxxxxx, xxxxxxx xxx xxxxxxxxxx 
xxxxxxxxxx 

XXX008X08 Xxxxx-xxxx xxxxxxxxxxxxxxxx, xxxxxxxxxxx xxxxxxxxx XX3X58610  XxXX6      XX  
 XXX019X08 xxxxxxxxxxxx xxxxxxxx xxxxx xxxxxxx XX2X31810  XxXX6        
 XXX045X05 Xxxxxxxx-xxxxx-xxxxx-xxxx xxxxxxxxxxxxxxxx 3, 

xxxxxxxxxxx xxxxxxxxx 
XX3X49680 XXXX3 xXX1 xXX-X    XXXX  XXXX 

 XXX069X12 xxxxxxxx-xxxxx xxxxx xxxx xxxxxxxxxxxxxxxx 5 XX5X65780 XXXX5 xXX1 xXX-X    XXXX  XXXX 

Xxxxxxxxxxxx xxxxxxxxxx             

 xxxxxx xxxxx XX1004X12 Xxxxxxxxxxxxx XX5X13420  XxXX6     XXXX  XXXX 
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  XXX030X05 Xxxxxxx xxxxxxx xxxxxxx-xxxxxxx xxxx xxxxxxx-xxxx XX1X79270 XXX8 XxXX6        
  XXX036X07 Xxxxxxxx 6-xxxxxxxxxxxxxxxxxxxxxxx XX5X24400 XXX3 xXX1 xXX-X       
  XXX060X08 Xxxxxxxx-xxxxxxxxx 3-xxxxxxxxx, xxxxxxxxxxx 

xxxxxxxxx 
XX5X61410 XXX XxXX6     XXXX   

  XXX061X11 Xxxxxxxxxxxxx XX1X12230  XxXX6    XXXX XXXX  XXXX 
 X-xxxxxx xxxxxxxxxx XXX079X08 Xxxxxxxxxxxx 3 XX1X66430  XxXX6       XXXX 
 X-xxxxxx xxxxxxxxxx XXX051X01 Xxxxxxxxxxxx xxxxxx, XxxX XX1X49350  XxXX7        
 xxxxxxxxx xxxxxxxxxx XXX029X03 xxxxxx 1-xxxxxxxxx xxxxxx xxxxxxx XX5X57330  XxXX6       XXXX 
  XXX065X06 xxxxxx 1-xxxxxxxxx xxxxxx xxxxxxx XX5X66530  XxXX2       XXXX 
  XXX064X04 xxxxxxxxxxxxx XX3X06580 XXXX XxXX6       XXXX 
 XXXXXXXXXX/ XXXXXXX XXXXXXXXX 
XXXXXXX XX-XXXX 

XXX008X10 Xxxxxxxx xxxxxxxxxxxx xxxxxxxxxxx/xxxxxxxxx 
xxxxxxxx, xxxxxxxxxxx xxxxxxxxx 

XX2X39730 XXX XxXX6        

 Xxxxxx xxxxxxxxx xxxx 
xxxxxxxxxxxxxxx 

XXX039X08 Xxxxxxxxxxxxxxxxxx, xxxxxxxxxxx XX1X23190 XXX3 xXX1 xXX-X       

 Xxx xxxxxxxxxx xxxxxxxxx xxxxxxxxxx 
xxxxxx 

XXX022X07 Xxxxxxxxxxxxx--xxxxxxxx 6-xxxxxxxxx 1-
xxxxxxxxxxxxxxxxxx xxxxxxx xxxx 

XX1X12000  XxXX6        

 xxxxxxxxxx xxxxx xxxxxxxxxx XXX043X08 XXX--xxxxxxx-1-xxxxxxxxx xxxxxxxxxxxxxxxxxxx XX5X17310 XXX2 XxXX6     XXXX  XXXX 
 XXX-XXX XXXXXXXXXX XXXXX XXX009X12 Xxxxxxxx xxxxxxx XX1X74030 XXX1 XxXX6        
  XXX017X09 Xxxxxxxx xxxxxx xxxxxxx X, xxxxxxxxxxx xxxxxxxxx XX3X22960 XXX1 XxXX2       XXXX 
  XXX031X11 XXXX-xxxxxxxxx xxxxxxxxxxxxxx-3-xxxxxxxxx 

xxxxxxxxxxxxx 
XX2X24270 XXXX11X3 XxXX6        

  XXX075X04 Xxxxxxxx xxxxxx, xxxxxxxxx xxxxxxx XX5X08570  xXX1 xXX-X      XXXX 
  XXX078X05 Xxxxxxxxxxxxxx-3-xxxxxxxxx xxxxxxxxxxxxx, 

xxxxxxxxx 
XX1X79530 XXXXX-1 XxXX6     XXXX XXXX XXXX 

 XXXXXXXXXXX XXXXX XX XXXXXXXXXX XXX005X10 Xxxxxxxxxxxxxxx xxxxxxxxx, xxxxxxxxxxx xxxxxxxxx XX2X21170 XXX XxXX6       XXXX 
 XXX038X03 xxxxxxxx-xxxxxxxxxxxx xxxxxxxx XX5X03690 XXX4 xXX1 xXX-X      XX 
 Xxxxxxxxx xxxxxx xxxxx xxxxxxxxxxxx XX1004X10 Xxxxxxxx xxxxxxxxxx xxxxxxxx XX1X56600 XxxX2 XxXX2   XXXX XXXX XXXX XXXX XXXX 
 xxxxxxx xxx xxxxxx xxxxxxxxxx XX1001X10 Xxxx-xxxxxxx XX5X18670 XXX9 XxXX2       XXXX 
 XXX042X09 Xxxx-xxxxxxx XX5X18670 XXX9 XxXX2     XXXX  XXXX 
 XXX035X04 xxxx-xxxxxxx XX4X00490 XXX2 xXX3 xXX-X   XXXX    
 XX1003X01 Xxxxxxx xxxxxx xxxxxxxx XX4X18240 XX4 xXX1 xXX-X       
 XXX017X12 Xxxxxxx-xxxxx xxxxxx xxxxxxxx 1, xxxxxxxxxxx 

xxxxxxxxx 
XX1X32900 XXXX1 XxXX6   XXXX XXXX XXXX XXXX XXXX 

 XXX070X09 Xxxxxxx xxxxxxxx xxxxxxxxxxx XX3X52180 XXX4 XxXX2       XXXX 
 XXX063X04 xxxxxxxxx xxxxxxxxxxxxxxx XX1X01050 XXx1 XxXX7        
 XXX014X06 Xxxxxxx xxxxxxxxx xxxxxxxxxxxxxxx XX1X01050 XXx1 XxXX6        
  XXX002X08 XXX-xxxxxxx xxxxxxxxxxxxxxxxx xxxxx xxxxxxx XX5X48300 XXX1 xXX1 xXX-X       
  XXX031X05 xxxxxxxxx xxxxx-xxxxxx xxxxxxxxxxxxx XX3X46970 XXX2 XxXX6     XXXX  XXXX 
  XXX019X12 xxxx-xxxxxxxxxxxxxxxxxx XX5X22510 XXX-X XxXX6       XXXX 
  XXX034X06 xxxx-xxxxxxxxxxxxxxxxxx XX5X22510 XXX-X xXX1 xXX-X      XXXX 
  XXX021X05 Xxxxxxx xxxxxxxx 1 XX4X02280 XXX3 XxXX2   XXXX XXXX XXXX XXXX XXXX 
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  XXX040X09 Xxxxxxx xxxxxxxxx xxxxxxxx XX5X20280 XXX1X xXX1 xXX-X       
 Xxxxxxxxx xxxxxxxxxxxx XX1001X07 Xxxxxxxxx 6-xxxxxxxxx xxxxxxxx XX1X23870 XXX9 xXX1 xXX-X      XXXX 
  XXX022X03 Xxxxxxxx xxxxxxxxx xxxxxxxx XX1X06410 XXX7 XxXX6       XXXX 
  XXX037X04 Xxxxxxxx xxxxxxxxx-6-xxxxxxxxx xxxxxxxx XX1X68020 XXX6 XxXX6     XXXX  XXXX 
  XXX063X04 Xxxxxxxx xxxxxxxxx-6-xxxxxxxxx xxxxxxxx XX1X68020 XXX6 XxXX6   XXXX XXXX XXXX  XXXX 
  XXX067X09 Xxxxxxxxx-6-xxxxxxxxx xxxxxxxx xxxx xxxxxxx XX4X17770 XXX5 xXX1 xXX-X      XXXX 
 xxxxxxx xxxxxxxxxxxx xxxxxxxxx XXX019X09 Xxxxxxxx xxxxxx xxxxxxxxx-xxxxxxx xxxxxxx XX2X36360  XxXX6       XXXX 
 xxxxxxx xxxxxxxxx XXX024X04  XXX-xxxxxxxxx xxxxxxxxx/xxxxxxxxxxx xxxxxx 

xxxxxxx-xxxx 
  xXX1 xXX-X       

 Xxxxxxx xxxxxxxx xxxxxxxxxxx XXX025X04 xxxxxxxx xxxxxxxxxxx xxxxxx 1 XX1X75420  xXX1 xXX-X      XXXX 

Xxxxxxxx xxx xxxxxxx xxxxxxxxxx            

 Xxxxxxxxx xxxxxxxxxxxx XXX058X10 X-xxxxxxxxx-1-xxxxxxxxx xxxxxxxxxxx XX3X02870 XXX4 XxXX6        
 Xxxxxx xxxxxxxxxx XX1002X07 Xxxxxxxxxxxxxxx xxxxxxxxxx 1 XX2X25710 XXX1 xXX1 xXX-X      XXXX 
  XXX079X12 Xxxxxx xxxxxxxxx xxxxxxx xxxX XX1X22800  XxXX2       XXXX 
 Xxxxxxxxxx xxxxxxxxxxx XX1006X04 Xxxxxx (2Xx-2X) xxxxxx-xxxxxxxxxx xxxxxxx XX3X44880 XXX1/XXX XxXX6       XXXX 
  XXX049X07 Xxxxxx (2Xx-2X) xxxxxx-xxxxxxxxxx xxxxxxx XX3X44880 XXX1/XXX XxXX6     XXXX  XXXX 
 Xxxxxx xxxxxxxxxx XXX014X12 Xxxxxxxxxxxxx xxxxxxxxxx /xxxxxxxxxxxxxxxxxx 

xxxxxxxxxx 
XX5X05980 XXXX1 XxXX6        

  XXX032X10 Xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxx 2 XX2X44160 XXXXX2 XxXX6       XXXX 
  XXX078X10 Xxxxxxxxxxxx xxxxxxxxxxxxx xxxxxxxxx-xxxxxxxxxxx 

xxxxxxxx 
XX2X16370 XXX-1 xXX1 xXX-X      XXXX 

 Xxxxxx xxxxxxxxxx xxx xxxxxxxxx XXX017X11 Xxxxx-xxxxxxxx xxxxxxxxx xxxxxxxxx XX1X78680 XXX2 xXX1 xXX-X  XXXX  XXXX  XXXX 
 xxxx xxxxxx xxxxxxx xxxxxxxxxxxx XXX037X06 Xxxxxxxx xxxxxxxxxxx 1, xxxxxxxxxxxxx xxxxxxxxx XX5X65720 XXXX1 XxXX7        
 XXX052X02 XXX xxxxxxxxxxx-xxxx xxxxxxx XX5X58270 XXX3 XxXX7        
 XXX068X11 XxxX-xxxx xxxxxxx, xxxxxxxxxxx xxxxxxxxx XX4X26500 XXXX1 XxXX6       XXXX 
 Xxxxxxx xxxxxxxxxx XX1003X11 Xxxxxxx xxxxxxx xxxxxx-xxxx xxxxxxx XX3X29010  xXX1 xXX-X       
 xxxxxxxxxx xxxxxxxx xxxxxxxxxxxx XXX058X01 Xx-xxxxxx xxx xxxxxxx xxxxxxxxx xxx xxxxxxx 

xxxxxxxxxxxxx 
XX5X55130 XXX5 xXX1 xXX-X      XXXX 

 XXX073X08 xxxxxxxxxx xxxxxxxx xxxxxxxxx xxxxxx xxxxxxx XX1X30910  XxXX6       XXXX 
 Xxxxxxxxxxxx xxxxxxxxxx XXX022X05 X-xxxxxxxxx xxxxxxx xxxxxx xxxxxxx XX5X14760 XX xXX3 xXX-X      XXXX 
 xxxxxxxxxxxx xxx XxX xxxxxxxxxxxx XXX073X07 Xxxxxxxxxxxx xxxxxx 2 XX4X32180 XXXX2 XxXX6     XXXX  XXXX 
 xxxxxx xxxxxx xxxxxxx XXX025X12 Xxxxxxxx xxxxxx xxxxxx 3, xxxxxxxxxxx xxxxxxxxx XX5X58560 XXXX XxXX6        
 Xxxxxx xxxxxxxxxxxx xx Xx-X xxxxxxxx XXX009X03 XXX xxxxxxx 1, xxxxxxxxxxx xxxxxxxxx XX1X64810 XXX1 XxXX6        
 Xxxxxxxxxx xxxxxxxxxxxx XXX075X02 xxxx-xxxxxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxx XX4X23660 XXX1 XxXX7       XX 

Xxxxxx xxxxxxxxxx             

 xxxxxxxxxxxxx xxxxxxxx xxxxx XXX004X09 XXXX-xxxxxxxxxx xxxxxxxxxxxxxx X16.6 xxxxxxx XX2X31670 XX-15xXx-2 XxXX7       XX 
  XXX008X02 XXXX xxxxxxxxxxxxx [xxxxxxxxxx] xxxx-xxxxxx 

xxxxxxx 6 
XX3X18410 XX-XXXX1 XxXX7       XX 

  XXX070X05 XXXX-xxxxxxxxxx xxxxxxxxxxxxxx 24 xXx xxxxxxx, 
xxxxxxxxxxxxx xxxxxxxxx 

XX4X02580 XX-24xXx XxXX6        
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  XXX044X06 XXXX-xxxxxxxxxx xxxxxxxxxxxxxx 75 xXx xxxxxxx, 
xxxxxxxxxxxxx xxxxxxxxx 

XX5X37510 XX76 XxXX6        

  XXX048X09 Xxxxxxxxxxx xxxxxxx XX4X22260 XXXX XxXX2     XXXX  XXXX 
  XXX054X11 Xxxxxxxxxxx xxxxxxx XX4X22260 XXXX XxXX2    XXXX XXXX  XXXX 
  XXX066X02 Xxxxxxxxxxx xxxxxxx, xxxxxxxxxxxxx xxxxxxxxx XX5X64210 XXX2 XxXX6        
  XXX060X01 xxxxxxxxxx xxxxxxx X XX1X28140  XxXX6       XXXX 
 Xxxxxxxxxxxxxx xxxxxxxxx  XX1001X04 xxxxxxx/xxx xxxxxxxxxxxxxx XX1X23740 XXX XxXX6        
 xxxxxxxxxxx xxxxxxxx XXX019X12 XXX xxxxxxx xxxx xxxxxxxx xx Xxx37 XX1X22700  XxXX6        
 Xxxxxxx XXXxxx XXX058X09 XXX-xxxx XXXxxx xxxxxx xxxxxxx XX4X02480  XxXX6       XXXX 
 xxxxxxxx xxx xxxxxx xxxxxxxx XXX 
xxxxxxxxxx/ xxxxxxxxxxx XX xxxxxxxxxx 

XXX028X06 Xxxxxxxx X+-xxxxxxxxxxxxxxx XX1X15690 XXX1 XxXX6      XXXX XXXX 
 XXX059X12 Xxxxxxxxxxxxx-xxxxxxxxx xxxxxxxx xxxxxxxx X+ xxxx XX1X15690 XXX1 xXX1 xXX-X    XXXX  XXXX 

 XXX049X11 Xxxxxxxx XXX xxxxxxxx 16 xXx xxxxxxxxxxx xxxxxxx 4 XX1X19910 XXX-X2 XxXX7        

 XXX060X06 xxxxxxxx-xxxx X+-xxxxxxxxxxxxx xxxxxxxxx 
xxxxxxxxxxxxxxx 

XX1X78920 XXX2 XxXX6       XXXX 

 XXX061X08 XXX-xxxx XXXxxx xxxxxx xxxxxxx XX1X64110 XXX1 xXX1 xXX-X      XXXX 
 XXX078X04 Xxxxxx xxxxxxxx XXXxxx 1 XX3X47950 XXX4 xXX1 xXX-X    XXXX  XXXX 

Xxxxxxx xxxx xxxxxxxxxx            

 Xxxxxxx xxxxxxxxxx xx xxxxxx-XxX XXX028X08 Xxxxxx-XxX xxxxxxxxxx XX5X36880 XXX XxXX6        
 XXX029X03 Xxxxxx-XxX xxxxxxxxxx XX1X55320 XXX18 XxXX2        
 XXX038X10 Xxxxxx-XxX xxxxxxxxxx XX1X55320 XXX18 XxXX2        
 Xxxxxx-XxX xxxxxxxxxxxx XXX023X09 xxxxxxxxxxxxxxxx X-xxxxxxxxxxxxxxxxx XX1X34430 XXX3003 XxXX7        
 xxxxxxxxxx xx XXX xx xxxxxxxxxxx XX1001X05 Xxxxxxxx xxxxxxxxxxxxx 1 XX4X33070 XXX1 xXX1 xXX-X       
 Xxxxxxx xxxxxxx XXX073X09 Xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxx xxxxxxxxxxx-xxxx XX3X10850 XXX2-2 XxXX2        
  XXX075X11 xxxxxxxxxxxxxxxxxx xxxxx, xxxxxxxx / xxxxxxxxxx X XX1X67280  XxXX6       XXXX 

 xxxxxxxxxxxxxxxx xxxxxxx XXX035X04 2-xxx xxxx xxxxxxxxxxxxx, xxxxxx-xxxxxxx xxxx XX2X35120  xXX1 xXX-X      XX 

 XXXX xxxxxxxxxx xx xxxxxxxxxx 
xxxxxxxxxxxxxx 

XXX055X10 xxxxxxxx xxxxxxxxxxxxxx xxxxxxxx xxxxxxxxxx 
xxxxxxx 

XX4X21210 XX1 XxXX2       XXXX 

 xxxxxxxx xxxxxxxxxxxx xx xxxxxxx XXX063X07 Xxxxxxx xxxxxxxxxxxxx XX1X77120 XXX1 xXX3 xXX-X  XXXX XXXX XXXX XXXX XXXX 
 xxxxxxxx-xxxxxxx xxxxxxxxxxxxxxxx XXX008X03 Xxxxxxxx xxxxxxxxxxxxx xxxxxx 7 xxxxxx X1 XX1X54100 XXXX7X4 XxXX2       XXXX 
 XXX077X06 Xxxxxxxx xxxxxxxxxxxxx xxxxxx 7 xxxxxx X1 XX1X54100 XXXX7X4 XxXX2       XXXX 
 Xxxxxxxxxxxxx xxxx xxxxx XXX005X04 xxxxxxxxx xxxxxxxxxxxxx XX1X08480 XXX6 XxXX7        
  XXX066X10 Xxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxx xxxxxxx XX2X43180  XxXX7        
  XXX073X08 Xxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxx xxxxxxx XX2X43180  XxXX6        

eRG: early ripening gene; NeRG:non early ripening gene, D:down; U:up 
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Our results indicate that in general, XX xxxxxxxxx xxx/xx xxxxx xxxxxxxx xxx xxxx xxxxx 

xxxxxxxx xx xxxxxx xxxxxxxxxx, xxxxx xxxx xxxxxxxxxx xxx xxxxxxx xxxx xxxxxxxxxx. Xxxxx 

xxxx xxxxxx xxxxxxxx xxxxxxxx xx XX xxxxxx (xxxxxxxx xXX1 xxx XxXX6), xxxxx xx x 

xxxxxxx xxxxxxxx xxxx XX xxxx xx xxxx xxx xxxxxx xxx xxxxxxxxxx xx xxxxx xxxxxxxx xxx 

xxxxx xxxx xxx xxxxxx xxxxxxxxxx xxxxxx XXX xx X xxxxxx X (Xxxxxx 17). Xxx xxxxxxxx xx X 

xxxxxx xxxxxx XX xxx XXX xx 5xX xxxx xx xxxxxxxx xxxxxxxxx xxxx xxxx xxxxxxxx xxx 

xxxxxx xxxxxx xx 0xX  [556]; xxx xxxxxx xx xxxxxxxxxx x xxxxxxxx xxxxxx xxxxxxxx 

xxxxxxxxxxx [9]. Xxxxx xxxxxxxxxxx xxx xx xxxxxxxxxx xx xxxxxxxxxxx xx xxx xxxxx, 

xxxxxxxx xxx xxxxxxxxxxx xxxxxx xxxx xxxxxxx xxxxxxx xxxxxxxxxxxx [477, 482, 559], xxx 

xxxx xx xxx xxxx xx XX, xx xxxxx xxxxxx xxxx xxxxxx xxxx xxx xxx xx xxxx xxxx [556]. Xxx, 

xxxxx xxx xxxx xxxxxxxxx xxxxxxx xxx xxxxx xxxxxxxx xxxxxxxx xx 0xX [556]xxx xxx xxxx 

xxxxxxxx xxxxxxx during CS and SLR.  

Altered xxxxxxxxxxxx xxx xxxxxxxx xxxxxxxxxx xxxxxx XXX xxxxx XX xxx xxxx xxxxxxxxxx 

xxxxxxxxxx xxxx XXX xxxxxxxxx [16]. Xxxxxxx xxxxxxxx, XXXX-XX xxx xxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxx (XXXXX) xxxx xxxx-xxxxxxxxx xx XXX xxxxxx xxxxxxxx xx xxxxxxxxx xxxxx 

Xxx xxxxxxx xxxxxxxxx xxxx xxxxxxx xxxxx xxxxxxx  xxx xxxxxx xxx xxxx xx xxxxx xx xxxxx 

xxxxxxxxxx xxxxxxxxxx xxx xxx xxxxxx xx xxxxx xxxxxxxxxxx, xxxxxxxxx x xxxx 

xxxxxxxxxxxxx xxxx xx xxxxxxxxxx xxxxxx XXX xxxxxxxxxxx (Xxxxx 15). 

Xxxxxxxxx xx xxx xxxx xxxxxxxxxx xxxx, xxxxxx XXX xxxxxxxxxxx xx XXX, xxxxx xx x 

xxxxxxxxx xx xxxxxxx xxx xxxxxxx xxxxxxxxxx xxxxxxxxx xxxx xxxxxxxxxx xxx xxx xxxxxxxxx 

xx xxxxxxx xxxxxxxxxxx xxxxxxxxx xxx xxxxxxxxxx (xxxxx 15). Xxxxx xxxxxxx xx xxxxx 

xxxxxxxxxxxxx xxxx xxxxxxxxx xxxxxxxx xx xxxxxxxxxx xxxxxx XXX xxxxxxxxxxx. Xxxx xxxx 

xxx xxxxxxxxxxx xxxx xxxxxx xxx xxxxxxxx xxx xxxxxxx levels decline gradually during 

cold storage, xxxxxxxxxx xx XX-xxxxxxxx xxxxxxxxxxxx [477]. Xxxx, xxxxxx xxxxxxxx xxxx 

XX xxxx xxxx xxxxxxx xxxx xxxxxxxxx xxxxxx xxxxxxx xxx xxx xxxx xxxx [556]. Xxxx 

xxxxxxxxxx xxxx xxx xx xxxxxxxxx xxxx xx xxxxxxxxxx xxxxxxxxxxxx xx xxxxxxxxx. 

Xxxxxxxxxxxxxxx, xxxxx xxx xxxx x xxxxxxxxxxx xxxxxxxxx xx xxxxx xxxxxxx xx xxx 

xxxxxxxxxx xxx xxxxxxxx xxxxxxxxx xxxxxxxx xx x XXX xxxxxxxxx-xxxxxxxxx xxxxxx (xxxxx 

15).  
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Genes encoding functions involved in several xxxxxxxxx xxxxxxxx xxxxxxxxx xxxx xxx 

xxxxxxx xxxxxxxxxxxx xxxxxxxxxx, xxxx xx xxx xxxxxx xxxxxxx, xxxx xxxxxxxxxxxxx, 

xxxxxxxx xxxxxxxxxxxx xxxxxxxxx xxxxxxxx xxxxx xxxx xxxxxxxxx (Xxxxxx 17). X xxxxxxx 

xxxx xxxxxxx xxxxxxxxxx xx xxxxxxxx xx xxxxxxx xxxxx xxxxxxx xx xxxxxxxx, xx xxxx xx x 

xxxxx xxxxxx xx xxxxxxxxxxxx xxxxxxxx xxxx xx xxxxx xxxxxxxxx: xxxxxxx, xxxxxx-XxX, 

xxxxxxxxxxxx xxxxxxxx (xxxxxxx xxx xxxxxxxxxxxx), xxxxxxxx xxxxx xxxxx xxxxx, XXX-

xxxxxxx xxxxxxxxxx xxxx xx xxxxxxxxx xxx xxxxxxxxx xx xxxx xxxxxxxxxxx, xxxxxxxxxxx xxx 

xxxxx xxxxxxxx, xxx xxxxx xxxxx. Xxxxxxxxx x xxxxxxxxx xx xxx xxxxxxxxxx xx xxxxx 

xxxxxxx xx xxxxx xxxxxxxx xx xxxxxxxx. Xx xxxxx xxxxxxx xxxxxxxxxx xx xxxxx xxxxxxxx 

xxxxxxx xxxx xxxxxxxx xxxx xxxxx xx xxxxxxxxxxxx/xxxxxxxxxx xx xxxxxxxxx xxx 

xxxxxxxxx-xxxxxxx xxxxx xxxxx (xxxxxxxxxx, xxxxxxxxxx, xxxxxxxxx xxx xxxxxxxxxx), 

xxxxxxxx xxxxx xxxxx (xxxxxx, xxxxxxx xxx xxxxxxxxxx) xxx xxxxxxxxx xxx xxxxxxx xxxxx 

xxxxx xxxx xx xxxxxxxxx (Xxxxx 15 Xx xxxxxxxx, xxxxx xxxxx xxxxx xx XX X xxxxxx xxxxxx 

xxxxxxx xxxxxxxxxx xx xxxx xxxxx xxxxxxx xx xxxxxxxx xxx xxxxxxx xxxxxxxxxx xxx xxxxx 

xxxxx xxxxxxx xx xxxxxx xxxxxxxxxxxx xxx xxxxxxxxxxxxxxxx, xxxxxx-XxX xxxxxxxxxxxx 

xxxx xxxxxxxxxxx, xxxxxxxxxxx xxxxxxxxxxx, xxxxxx xxxxxxxxxxxx, xxxx-xxxxxx xxxxxxx xxx 

xxxxxxxxxx xxxxxxxxxxxx, xxxxxxxxxxxx, xxxxxxxx X-xxxxxxxxxxxx xxx xxxxxxxxx 

xxxxxxxxxxxx. 

Xxxx xxxxxxxxxx xx xxxxxxxxxxxx xxxxxxxx xx x XXX-xxxxxxxxx xxxxxx: X xxxxxx xxxxxx 

xxxxxxx XXX, XXX, XXXX, XXX1/XXX7 (xxxxxxxx xXX1, xXX3, XxXX2, xxx XxXX6) xxxxxx XXX 

(xxxxx 15 xxx Xxxxxx 19), xxxxxxxxxx xxxx xxxxxxxx xxxxxxx [560]. Xxxxxx xxxxxxxxxx xx 

xxxxx xx xxxxxxxxxxxx xxxxxxxx xxx xx xxxxxxxxxxxx xxxxxxxx xxxx xxxxx xx xxxxx xxxxx xx 

0°X (XXX xxxxxxxx xxxxxxxxxxx) xxxx xx 5°X [560]  Xxxx xxxxxxxx xxxx XX xxxxxxx 

xxxxxxxxx xxxx-xxxxxxxxxx xx xxxxxxx xxxxxxxxxx xxx xxx xxxxxxxxxxx xx X xxxxxx, the 

severity of which increased with the time of WLT 

 

C3.2.5.Cold storage plus shelf life: Senescence or injury? 

Clusters xXX2 xxx XxXX8 xxxx xx xxxxxxx xxxxxxxx xx xxxxxxxx xxxxxxx xxxxxxxx xxxxxx 

XXX, xxxxx xxxxx xxxxxx xxxxxxxxxxx xx XXX. Xxxxx xx xxxxx xxxxxxxx xx xxx xxxxxx xx XX 

xxxxxx xxxxxx XX xxx xxxxxxxxx xxxx xxx XXX xxxxxxxxx xxxxxx XXX xx both S and LS fruit, 
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suggesting that they xxx x xxxxxxxxxxx xx xxx XXX xxxxxxxxx xxxxxx xxxx x xxxxx. Xx xx 

xxxxxxx xxxxxxx xxxx xxxx xxxxxxxxxx xxxxxxxxxxx xx xxx xx xxx xxxxxxxx xxxxxxxxxxx 

xxxxxx, xxx xxxx xx xxxxxxxx, xx xxxxxxxx xxxxxxxx xx xxxxxxxxxxxx xx xxxxxxxx xx xxxx 

xxxxxxxxxxx xx xxxxx. Xxxxxxxxxxxx, xxxxx xxxxx xxxxxxxxxx xxxxxxxxxx xx xxxxxxxxx xx 

xxx xxxxxxx XXX xxxxxxxxx. 

Xxx xxxxx xxxxxxxx xXX2 xxx XxXX8 xxxx xxxxxxxx xx xxxxxx xxxxxxxxxx, XXX xxxxxxxxxxx 

xxx xxxxxxx xxxxxxxx, xxxxxxxxx xxxxxx xxxxxxxxxx xxx XXX xxxx-xxxxxxxxxxx xxxxxxxxxx 

xxxxx (Xxxxxx 19 X xxx X, Xxxxx X13). Xxx xxxxxxxx xxxxxxxxxx xx xxxxx xx xxxxxxxx 

xxxxxxxx xxxxxxxx xxxx X xxxxxx xxxx xxxx-xxxxx xxx xxxxxxxxxx xxxx xxxxx xxx 

xxxxxxxxxx xxxxxxxxx. Xxxxxx xxxxxxxx xxxxx xxxxx xx xxxxxx XX, xxxxxx xxxx xxx xxx 

xxxxxxx XXX (xxxxxxxx xx xxxxxx xx 0xX) xxx xxxxxx xxxxxxxxxxx xxxxx, xxx xxxxxxxxx 

xxxxxxxxxxx xxx xxxxxxxxxx xxxx xxxxxx xxxxx xxx xxxx-xxxxx xxxxxx xxxxxx xx 2 xx 4xX 

[166, 561]. Xxxxxxx, xxxxxxxxxx xxx xxxxxxxx xxx xxxxxx xxxxxxxxx xx xxxxxxxxxx xxx 

xxxx-xxxxxxxxxxxxxxx xxxxxxxxxx [562-564]. Xxxx xxxxxxxxx xxxx xxxxxxxxx xxxxxxxxxxx, 

xxxxxxxxx xxx xxxx-xxxxxxxxxxxxxxx xxxxx xxxxxxxx xx X xxxxxx xxxxx xxxxxxxxxx xx 

xxxxxx xxxx xxx xxxxxxxx, xxxx-xxxxx xxx xxxxxxxxx. Xxxx xxxxxxxx xxxxxxx xx xxxxx-

xxxxxxxxx xxxxxx xxxxx xxxxx xxxxxx xx 5xX xxxx xx xxxxx-xxxxxxxx xxxxxx. 

Xxxxx xxx x xxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxx xx xxxxxxxxxxx xxxxxxxx xx xxxxxxx 

xxxxxxxxx xxx xxx xxxxxx xx xxxxxxxxx xxxxxx XXX (Xxxxxx 16 xxx xxxxxxxx xXX2 xxx 

XxXX8 xx Xxxxxx 19 xxx Xxxxx X13). Xxxxx xxx x xxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxx 

xx xxxxxxxxxxx xxxxxxxx xx xxxxxxx xxxxxxxxx xxx xxx xxxxxx xx xxxxxxxxx xxxxxx XXX 

(Xxxxxx 1, xxxxxxxx xXX2 xxx XxXX8, Xxxxxx 3 xxx Xxxxx X2). Xxxxx xxxxxxxx xx xxxxxxx 

xxxxxxxxx xxxxxxxx xxxx xxxxxxxxx xxxxxx XXX xxxxx XX xx xxxxxxxx xx xxxxxxxx xxxxxxxx 

xxxxxxx.  Xx xx xxxxxxxxx xxxxxxx xxxx xxxxxx xxxxxxxx xxxx xxxxxx, xxx xxxxxxxxxxx 

xxxxxxxxx xx xxxxxxxxxxx xxxxxxxx xx xxxxxxxx xxxxxx, xxx xxxx xxxxxxxxxxx in sensitive 

ones. However, xxxxx xxx xxxxxx xxxxxxxxxx xx xxxxxxx xxxxxxxxx xxxxxxxxxxx xxxxxxx 

xx xxxx xx x xxxxxxxxx-xxxxxxxxx xxxxxx (Xxxxxx 19, [12] xxx xxxxxxxx 1 xxx 2), 

xxxxxxxxxx xx xxxxx xxxxx xxxxxx XXX xxxxxxx xx xxxxxx (xxx XX xxxxxx) xx xxxx xxxxxxx 

xxxxxxxxxx (xxxx xx X xxxxxx, Xxxxxx 19 xxx [12]).  
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Xxxxxx xxxxxxxxxx xxx xx xxxxxxxx xx x xxxx xx xxxxxxxxxx xx xxxxx xxxxxxxx xxxxxxxxx 

xxxxxxxxxx [565]. Xxxxx xxxx xxxxxxxxx xxxxxxx xxxx xxxx xxxxxx xxx xxxxxxxx xx xx 

xxxxxx xxxxxxxxx xxxxxxx xxxx xx xxx xxxxxxx xxx xxxx xxxxxxxx xx xxxxxxxxxxx xxx xxx 

xxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxxxx xxxx xxxxxxxxx? Xxxxx xxxx xxxxxxxxx xxxxxxx 

xxxx xxxx xxxxxx xxx xxxxxxxx xxxxxx xxxxxxxxxx, xxx xxxx xxxxxxxxx xxxxxxxxxxxxx xx 

xxx xxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxx xxxxxxxxx? Xxx xxxxxxxxx xxxxxxxxxxx xx 

xxxx xxxxxxxxxxxx xx xxxxxxxxx xxxxxxx xxxxxxxxxxx xx xxxxx xxxxx xx xxx xx xxxxxxx xx 

xxxxxxxx xxxxxxxx. Xxxxxxx xxxxxxx xxxx xxxxxxx xx xxxxxxxxx xxxxxxxx xxx/xx 

xxxxxxxxxxx xxxxxxx xxx xxxx-xxxxxxxxx[566] xxx/xx xxxxxx xxxxxxxxxxxxx xxx 

xxxxxxxxxxxxx xxxxxxxxxxxxx [567, 568], xxxxx xxxxxxxxxxxxx xxxxxxxxxx xx xxxxx 

xxxxxxxxx is controlled xx xxx xxxxxxxx [569]. Xxxxxxxxxxxxx, xxx xxx xxxxxxxxxxx, 

xxxxxxxx xxxxxxxxxx xx xxxxxxx xxxxxxxxxxxx xxxxx xxx xxxxxx xxxx xxxxxxxx 

xxxxxxxxxxxxx xxxxxx xxx xxxxxxxxxxxxx xxxxxxxxxxxxxx xxx xxxxxxxx xxxxxxxxxxx. 

Xxxxxxxxxxxx xxx xxxxxxxxxxxx xxxxxxxxxxxx xx xxxxxxxxxxx xxxxxxxx x-xxxxxxx xxx 

xxxxxxxxxxx xxxxxx xxxxxx xxxxxxxxxxx xxx xxxxxx [570-572] xx xxxxxxxx xxxxxxxxxx xxxx 

xxxxxxxxx xxxxxxxxxxx xx xxxxxxxx XXXx [573]. Xxxx, XX xxxx XXX xxxxx xxxxxx 

xxxxxxxxxx xx xxxxxxxxxxxx xxxxxxx xxxxxxxxx xxxx xxxxxxxxxx xxx xxxxxxxxxxx xx 

xxxxxxxx xxxxxxx xx xXXXx xx X xxxxxx, xxxxx xxx xxxxxxxx xxxxxxxxxx xxxx xxxx xxxx xxx 

xxxxx xxxxxxxxxxx xxxxxxxxxx xxxx xxx XXX xxxxxxxxx. Xxxxxxxxxxxxx xxxxxxxxxxxxxx xx 

xxxxxxxxxxx xxx xxxx-xxxx-xxxxxxx xxxxx xxxxxxxxxx xxxx xxxx xxxxx xxxxxx xxxx xxxx 

xxxx xxxxxxxx xxx xxxx xxxxxxxxx [574]. Xxxxxxxxxx xxxxxxxx xxxxx xxx xxxxxxxx xxxxxxx 

xxxxxxxxx [575] xxx xxxxxxxxx xxxxx xxx xxxxxxxx xx xxxxx xxxxx xxxxx xxxxxx xx 

xxxxxxxxxxx [576]. Xxxxxxx xxxxxxxx xxxxxxxxxx xxxxxxxxxxx xx xxx xxxxxxxxxxx 

xxxxxxxxx xx XXX xxxxxx xxxxx xxxx xxxxxxxxxxxxxx xxxxxxxxxxx  xx xxxxxxxxxxx 

xxxxxxxxxx xxxxxx 5X (XXX-5X) [577, 578] xx xxxxxxxxxxx xxxxxxxxxx xxxxxx 5X (XXX-5X), 

xxxx xxxxxxxx xxx xxxxxxx xxxxxxxxxx xx X xxxxxx (xxxxxxx xXX2, xxxxx X13) xxx xx xxx 

Xxx xxxxxx [525]. XXX-5X xxxxxxxxxxxxxx xxxxxxx xx xxxxxxxxx xxxxxxx xxx xxxxxxxxx 

xxxxx xxxxxxxxx [578], xxxxxxxxxx cell death and development of injury sym [577].  
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C3.2.6.Long term cold storage: The termination of the cold response  

A striking result of our microarray analysis xxx xxx xxxx-xxxx XX xxxxxxxxxxxxxx xxxxxxxx 

xxxxxxxx xx X xxxxxx. XXX xxxxxxxx xxxxxxxxx xxxx xxxxxxxx XX xxxxxxxx X xxxxxx xxxx 

xxxxxxxxxxxx: xxxxx xxxxxx xxxxxxxx xx xxx X xxxxx xx xxxx xxxxxxxx, xxxx xxxx 

xxxxxxxxxxxx xxxx-xxxxxxx xxxxxxxxxxx xxxx xxxxxxxxxxxxx xxxxxxxx (Xxxxxx 16X-X). 

Xxxxx xxxxx xxxxx XX, xxxx X xxx XX xxxxxx xxxx xxxxxxxx xxxxx, xxxx xxxxxxx xxxxxxxxxxx 

xx XX (Xxxxxx 16X), xxx xxxxx xxx xxxxx x xxxxxxxxxx xxxxxxxx xx xxx xxxxxx xx xxxxx 

xxxxxxx xxxxxxxxxxx xx xxxxxxxxxx xxxxxxx X xxx XX xxxxxx (Xxxxxx 17X). Xxxxxxx 

xxxxxxxx xxxxxx xxxx xxxx xx xxxxxxxx xxx xx xxx xxxxxxx xxxxxxxx xxxxxxxx xx 3 xxxxx xx 

XX. Xxxxx xx xxxxxxx XxXX7, xXX2 xxx XxXX8, xxxx xxxx xxxx-xxxxxxxxx xxxxxx xxx xxx 

xxxxx xxxxx xx XX, xxxx xx-xxxxxxxxx xx 3x xxx xxxx xxxxxxxxxx xxxx xxx xxxxxxxxxxx xx 

xxxxx xxxxx xx XXX-3 xxxxxxx. Xxxxxxxxx, xxxxx xx xxxxxxx XxXX1, xxxx xx-xxxxxxxxx 

xxxxxx 1-2 xxxxx, xxxx xxxxxx xxxxx xxxxx XX xxx xxxx xxxxxxxxxx xxxx XXX3-X xxxxxxxxxx 

(Xxxxxx 19).  

Xxxx xxxxxxx xx xxxxx xxxxxx? Xx xxx xxxx xxxxxxxx xxxxxxxxxx xxxxxx xxxx-xxxx XX? Xxx 

xxxx xx xxxxxx xxxxxxxx? Xxx xxxxx xxxx xxxxxxx xx xxxxx xxxxxxxx xxxx xxxxxxxxx xxxx 

xxxxxxxx? Xxx xxxxx xxxxxxx xxxxxxx xx xxxxxxx xxxxxx xx xx xxxx xxx xxxxxxx xxxx xxxxxx 

xxx xxxx-xxxxx? 

Xxx xxxxxxxx xx xxxxx xx xxxxxxxx XxXX7 xxx XxXX1 xxx xx part answer the first question. 

We associated genes in cluster NeRG7 (Xxxxxx 19) xxxx xxxx xxxxxxxxx xxx xxxxxxxxx 

xxxx xxxxxxxxxxx (xx XXX1 xx xxxxx XxXX7 xxxxx, xxxxx 12). Xxxxxxx, xxxxx xxxxx xxxxx 

XX, xxxxx xxxxx xxxx xx-xxxxxxxxx. Xxxx xxxxxxxx xxxx xxxxx xxxxxx xxxxxxxxxx xxxxxxxx 

xxxx xxxx xx xxxx xxxxxxxxx. Xxxxxxx, xxxxxxx xxxxx xxxxxx xxxxxxxxx xxxxxx xxx xxxxx 

xxxx xxxxxxxx xx xxxxxxxx xxxxxx XX xx xxxx x xxxxxxx xxxxxx xx xxxxxxxx, xx xx xxxx 

xxxxxxxxx xxxx xxxxx xxxxxx xxxxxxx x xx-xxxxxxxxxxx xxxxx xxxxxx XX. Xxxxxxxx xxxxx 

xxxxxxxxxxxx xxxxxx xxxxxxxxxxxxx xxx xxxxxxx xx-xxxxxxxxxxx, xxxx xxxxx xxx 

xxxxxxxxxxxx [493]. Xxxxxxxxxxxx xx xxxxxx xxxxxxxxxx xxxx xxxx xxxxxxxxxxx xxx xxxx 

xxxxxxx xxxxxx xxxxxxxxxxx xxx xxxxx xxxxxxx, xxx xxxx xxxxxxx xxxxxxxxxxxxx xx 

xxxxxxxxxxx, xxxxx xxx xxxxxxx xxxxxx xxxxxxxxxxxx xxxxxxxx xxx xxxx xxxxxxxxxx 

xxxxxxxx xx xxxx xxxxxxxxxxx [493]. Xxxxx xxxxxxxx xx xxxx xxxxxxxxxxx is a function of 
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the degree and xxxxxxxx xx xxxxxxxxxx xx xxxx xxxxxxxxx xxxxx xxx xxxxxxxxxxxxx xxxxx 

xxx xxx xxx xxxxxxx xxxxxxxxxxx xxx xxx xxxxxxxx xx xxxxxxxxxx xx XX xxxxxxxxx xxxxx 

[579]. Xxxxxxxxxxxxx, xxx xxxxxxxx xx XXX1 xxx xx xxxxxxx xXX1 (xxxxxx xx-xxxxxxxxx 

xxxxxx xxx xxx xxxxx xxxxx xx XX, xxx xxxx-xxxxxxxxx xx xxxxx xxxxx, Xxxxx 12). XXX1 xx x 

xxxxxxxx xxxxxxxxx xx XXX xxxxx [580], xxxx xx xxxxxxxxx xxxxxx xxxx xxxxxxxxxxx xx 

Xxxxxxxxxxx. Xxxx, xxxxx xx xxxx xxxxxxx xxx xx xx xxxx xxxxxxxxxxx xx xxxx xxxxxxxxxxx 

xxxxxxxxx xxxxxxxx xx xxxxx xxxxx.  

 XXX xxxxx xxxx xxxxxxxxxxx xx xxxxxxxx [122, 127]. XXX1 xx xxxxxxxx xx xxx xxxxxxxxxx 

xxxx xxxxxxxxxx xx xxxxxxxxxxxx xxxxx xx xxxxxxx [581], xxx xxx xxxx xxxx x xxxx xx 

xxxxxx [581, 582] Xxxxxxx XxXX1 xxxxxxxx xxxxx xxxxxxxxxx xxxxxxxx xx xxxxxx 

xxxxxxxxxx xxxx xx XXX052[583] xxx XXX [584] (Xxxxx X13), xxx xxxxxx xxxxx xx 

xxxxxxxxx xxxx xx xxxxxxxxx xxx xxxxxxxxx xxxxxx xxxxxx xx Xxxxxxxxxxx xxxx xx xxxxxxx 

xxxx xxxxxxxxxx xx xxxxxx [585] Xx xx xxxxxx xxxx xxxxxx xxxx xxxxxxx, xxxx xxxxx xx xxx 

xxxx xxxxxxxx xxx xxxxxxxx xxxx xxxxx xxxx xxxxxxxxxx xxxxxx, xxxxxxxx xxxx xxxxxxx xx 

xxxxxxxx xxxx xxxx xxxxxxx xx xxxx xxxxx xx xxxxxxxx xx xxxxxxxxxxxxxx xxxxxxx xxxx 

xxxxxxxx x xxxxx xxxx xx xxxx xxxxxxxxx xxxx. Xxxx xxxxx xxxx xxxxxx xxxxxxxxxxxx in a 

CI-injured fruit.  
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Conclusions 

 

 

1. A genetical genomics approach consisting in the combination of pools of siblings of 

the Pop-DG population, with contrasting sensibility to develop mealiness, and a 

microarray gene expression strategy have enable us to identify a large number of 

genes associated to the sensitivity /tolerance to develop mealiness both at pres-

symptomatic (mature and cold storage) and symptomatic (shelf life ripening) stages. 

 

2. Medium throughput qRT PCR analysis confirmed the validity of these gene 

expression markers in pools of siblings of the Pop-DG population, but most important 

there were proved to be reliable in individual siblings of the Pop population and other 

peach genotypes with different tolerance degree to chilling injury. 

 

3. Functional annotation of genes differentially expressed between pools S and LS has 

enabled us to propose some hypotheses of the molecular processes occurring in the 

peach fruit while stored at 5ºC and later when let to ripen at room temperature that 

extends our working hypothesis about mealiness disorder beyond the cell wall changes. 
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Apendix 

Supplementary figure and table legends 

Figure S1 2D-HCA and PCAs for the genes in regulons ICE1, CBF1, HOS9, HOS15, ESK1, 

MYB-MYC, DREB2, AREB and ZF-NAC 

Figure S2. The peach cold operons involved in the differential response between fruits 

S and LS 

Figure S3. Unsupervised two-dimensional hierarchical clustering of genes differentially 

expressed between ‘Oded’ and ‘Hermoza’ at harvest and during cold storage. Data 

represent averaged lowess M log ratio for three replicates. Color represents fold 

change (red: up-regulated and green: down-regulated). : Harvest; CS1: cold storage of 

1 week at 5ºC; CS2: cold storage of 2 weeks at 5ºC; Od: 'Oded' peach; Hz: 'Hermoza' 

peach; Figure S4. Comparison of the time at which up or down-regulation s occur in LS 

and S pools 

Table S1. 3350 differentially expressed genes in the global analysis. A statistical test 

was performed by a SAM multiclass analysis. A gene was considered significant at a 

FDR < 0.05 and for a p-value < 0.05. The table provides ID, the Lowess M Log Ratio and 

functional annotations 

Table S2. Summary of the results of the cold response in peach. The table indicates a) 

the contribution of each gene to the separation by a given principal component, b) the 

cluster resulting for global 2D-HCA, c) the expression pattern at harvest and during 

cold storage; d) the results of the correlation analysis between an average MI and the 

expression profiles in samples M-CS, e) functional annotations 

Table S3. Arabidopsis genes reported as members of the cold and dehydration 

regulons. 1236 genes distributed in the regulons of CBF, ZAT12, HOS9, HOS15, GI for 

cold; ESK1 for cold-dehydration and AREB/ABF, MYC-MYB, DREB2, ZF-HD/NAC and 

CBF4 for dehydration 

Table S4. Peach genes with an Arabidopsis ‘ortholog’ reported as members of the 

cold and dehydration regulons 163 peach genes were found in one of the cold and 

dehydration regulons, or more, and were considered to be: CBF, ZAT12, HOS9, HOS15, 
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GI for cold; ESK1 for cold-dehydration and AREB/ABF, MYC-MYB, DREB2, ZF-HD/NAC 

and CBF4 for dehydration. The table indicates the expression pattern in Arabidopsis 

WT, as well as the mutants and the expression pattern in the M and CS1 peach 

samples. 

Table S5. The genes selected for the Fluidigm experiment. The conditions for the gene 

selection, gene annotations and expression values from microarray (reason for 

selection) are shown along with the sequence, length and Tm for the primers used in 

the qRT-PCR experiments.  

Table S6. Chillpeach validation and extension results. The gene ID, the Fluidigm genes 

selection, the M-S/M-LS chillpeach pattern, the M-S/M-LS Fluidigm pattern, the CS LS 

vs. the S chillpeach pattern, the CS LS vs. the S Fluidigm pattern, validation in pools and 

lines and the expression values of the centered, scaled and normalized obtained in 

Fluidigm for the pools and lines are shown 

Table S7. Od/Hz Raw data. 3277 Chillpeach probes that met the threshold for 

hybridization quality. Expression data correspond to lowess M Log Ratio 

Table S8 Genes differentially expressed between ‘Oded’ and ‘Hermoza’ at harvest 

and during cold storage. In the Table there are the results for direct comparisons from 

the global analysis. The Table provides ID, the averaged lowess M Log Ratio and 

functional annotations. 

Table S9.Gene-specific primers for qRT-PCR 

Table S10. RT-PCR gene expression values for representative genes and correlation 

with microarray data. Ten candidate genes were assayed by quantitative RT–PCR in 

fruits from Od and Hz at harvest and after 1 and 2 weeks of cold storage. For each 

gene this is shown Od and Hz values at harvest and the average gene expression 

pattern relative to harvest values in both expression platforms, microarray and qRT-

PCR. The agreement between qRT-PCR and microarrays in expression profiles across 

samples is expressed as Pearson correlation coefficient.  

Table S11 - Comparison of genes differentially expressed at one week of cold storage 

between ‘Oded’ and Hermoza and between pools of siblings form the Pop-DG 
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population. Data from fruits from the Pop-DG population cold stored were obtained 

from chapter 1 

Table S12 - Comparison with genes previously validated in pools and in individual 

lines from the Pop-DG population. Data from fruits from the Pop-DG population cold 

stored were obtained from chapter 1. The cluster derived from Figure 6A is shown and 

the expression pattern at harvest and after one week of cold storage in pools LS and S. 

Also indicated are the genes validated in individual lines and pools. 

Table S13. Summary of the results of the cold and shelf life response in peach. The 

table indicates the genes altered in CSR samples vs R samples, the genes differentially 

expressed between LS and S during CS and also during SLR, the genes dubbed as eRG 

or NeRG, their expression pattern and the cold effect, and functional annotaions. 

Table S14. Chillpeach validation in pools. The gene ID, the Fluidigm genes selection, 

the CS LS vs. the S chillpeach pattern, the CS LS vs. the S Fluidigm pattern, the CSR LS vs. 

the S chillpeach pattern, the CRS LS vs. the S Fluidigm pattern, validation in pools and 

the expression values of the centered, scaled and normalized obtained in Fluidigm for 

the pools and lines are shown 

Table S15. Correlations and correlation significance between relative expression 

levels of the candidate genes analyzed by medium throughput Fludigm RT PCR in 

each of the siblings with the MI exhibited during SLR after 1 week of CS.  
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