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Resumen

Esta tesis trata sobre espacios múltiples de aplicaciones holomorfas fini-
tas entre variedades complejas. Nuestro enfoque es el de la teoría de
singularidades, y las aplicaciones serán consideradas bajo la relación de
A-equivalencia, es decir, salvo cambios de coordenadas en partida y lle-
gada. Nos centramos en relacionar propiedades de los espacios de puntos
múltiples con propiedades como la A-estabilidad y la A-determinación
finita. El trabajo está organizado de la siguiente manera:

El Capítulo 1 contiene los fundamentos básicos necesarios para el resto
del trabajo. El único resultado original es el Lema 1.2.6.

En el Capítulo 2 definimos los espacios de puntos múltiples de una apli-
cación. En la Sección 2.1 demostramos que solo hay una manera de definir
estos espacios de forma que satisfagan ciertas propiedades. Si denotamos
Dk(f) el espacio de puntos k-múltiples en cuestión, estas condiciones son:

• M1) Si f es estable, entonces Dk(f) es la clausura de los puntos
k-multiples estrictos

{(x(1), . . . , x(k)) | x(i) 6= x(j), f(x(i)) = f(x(j))}.

• M2) La construcción de Dk(f) se comporta bien por deformaciones.

En [Gaf83] Gaffney introduce un método para calcular estos espacios de
puntos múltiples. Este método, aunque teóricamente realizable, es ha-
bitualmente impracticable. En la Sección 2.2 introducimos los ideales
de Mond, que nos permiten obtener fácilmente los puntos múltiples de
gérmenes de corrango 1. La idea es que estos gérmenes cualquier germen
f : (Cn, 0)→ (Cp, 0) se puede llevar a la forma

(x, y) 7→ (x, fn(x, y), . . . , fp(x, y)),

con x ∈ Cn−1, y ∈ C. Una vez en esta forma, la diferencia entre los puntos
que forman un punto k-múltiple de f debe residir en las coordenadas y,
así que podemos eliminar las copias innecesarias del resto de coordenadas
y trabajar con puntos de la forma

(x, y(1), y(2), . . . , y(k)) ∈ Cn−1 × Ck.
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iv RESUMEN

El ideal de puntos dobles de Mond está generado por las diferencias divi-
didas

fj(x, y
(2))− fj(x, y(1))

y(2) − y(1)
.

Para obtener el ideal de puntos triples de Mond, añadimos a las diferencias
divididas las diferencias divididas iteradas

fj(x,y
(3))−fj(x,y(1))
y(3)−y(1) − fj(x,y

(2))−fj(x,y(1))
y(2)−y(1)

y(3) − y(2)
.

En general, el ideal de puntos k-múltiples de Mond se obtiene añadiendo
a los generadores del ideal de puntos (k − 1)-múltiples nuevas diferencias
divididas iteradas. En las secciones subsiguientes introducimos otros tipos
de espacios de puntos múltiples, definidos en espacios ambientes diferentes
de Xk. Sin entrar en detalles, para una aplicacion estable f : X → Y estos
espacios son:

• El espacio Dk
1 (f) ⊆ X de puntos k-multiples en la partida (Sec-

ción 2.3), definido como la clausura de los puntos x ∈ X tales que
|f−1(f(x))| ≥ k.

• El espacio Mk(f) ⊆ Y de puntos k-múltiples en la llegada (Sección
2.5), que es la clausura de los puntos y ∈ Y tales que |f−1(y)| ≥ k.

• El espacio Dk(f)/Sk de puntos k-múltiples cociente (Sección 2.4),
que se obtiene al identificar todas las permutaciones de los puntos
k-múltiples (x(1), . . . , x(k)) ∈ Dk(f).

Por último, en la Sección 2.6 obtendremos un diagrama que relaciona los
espacios recién expuestos.

El capítulo 3 está dedicado enteramente a los puntos dobles. Primero
introducimos I 2(f), el haz de ideales de Mond de una aplicación f : X →
Y con puntos de cualquier corrango (Sección 3.1). La construcción corres-
pondiente para un germen f : (Cn, 0)→ (Cp, 0) es la siguiente: Como las
funciones fj(x)− fj(x′) se anulan si x = x′, entonces podemos encontrar
una matriz α, con entradas en O2n, tal que

f(x)− f(x′) = α(x, x′)(x− x′).

Dada una tal matriz, el ideal de puntos dobles de Mond es

I2(f) = 〈fj(x)− fj(x′) | 1 ≤ j ≤ p〉+ 〈minors n× n of α〉.

Como veremos, esta estructura también define los puntos múltiples intro-
ducidos en el capítulo 2. La clave es el Teorema 3.1.11: Si los puntos
dobles tienen la dimensión adecuada, entonces son espacios de Cohen-
Macaulay. En la sección 3.2 demostramos algunas propiedades algebraicas
de los puntos dobles, ligadas a la estabilidad y la determinación finita. Por
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ejemplo, del Corolario 3.2.5 se deduce que, si f es finitamente determi-
nada y dim(D2(f)) > 0, entonces D2(f) es reducido. También probamos
que el conjunto singular del espacio de puntos dobles de una aplicación
estable es

SingD2(f) = {(x, x) ∈ X ×X | corank fx ≥ 2}.

En la última sección probamos que una estructura alternativa para los
puntos múltiples, dada por unos haces de ideales H k(f), no satisface las
condiciones M1 y M2 del capítulo anterior.

En el Capítulo 4 introducimos otro espacio de puntos dobles, esta vez
definido en el blowing-up de X×X a lo largo de su diagonal. Este espacio,
que ya habían sido estudiado por Ronga [Ron72], Kleiman y otros, resulta
muy interesante en el caso de corrango ≥ 2. Como el blowing-up es una
construcción local, basta que describamos el caso Cn×Cn, consistente en
los puntos (x, x′, u) ∈ Cn×Cn×Pn−1 tales que para algún λ ∈ C se tiene

(x− x′) = λu.

Dada una matriz α como en el Capítulo 3, el espacio B2(f) de puntos
dobles de f en el blowing-up, es el subespacio dado por los puntos (x, x′, u)
del blowing-up que satisfacen

α(x, x′)u = 0.

Existe una proyección propia

π : B2(f)→ D2(f),

la cual estudiamos en la Sección 4.4. Como veremos, los espacios B2(f)
y D2(f) son biracionalmente equivalentes bajo condiciones genéricas y, si
f es estable, entonces π : B2(f)→ D2(f) es una resolución.

En el Capítulo 5 estudiamos gérmenes de aplicaciones (C2, 0)→ (C3, 0).
En las Secciones 5.1 y 5.2 extendemos a corrango 2 algunos resultados ya
conocidos en corrango 1. En la primera caracterizamos la determinación
finita de un germen (C2, 0)→ (C3, 0) en términos de la finitud del número
de Milnor de su espacio de puntos doble en la partida, µ(D(f)). En la
segunda demostramos las fórmulas de Marar-Mond, que relacionan los
números de Milnor de diversos espacios de puntos dobles con el número
de puntos triples y cross-caps que se hallan acumulados en el origen. Estas
fórmulas son

• µ
(
D(f)

)
= µ

(
D2(f)

)
+ 6T,

• µ
(
D2(f)

)
= 2µ

(
D2(f)/S2

)
+ C − 1,

• µ(D(f)) = 2µ
(
f(D(f))

)
+ C − 2T − 1.
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En la Sección 5.3 estudiamos los ‘double folds’, una familia de gérmenes
que contiene multitud de ejemplos interesantes. Los double folds no son
más que los gérmenes f : (C2, 0)→ (C3, 0) de la forma

(x, y) 7→ (x2, y2, f3(x, y)).

Lo interesante de esta familia es que podemos comprender su geometría
en relación con la acción del grupo generado por las reflexiones (x, y) 7→
(−x, y) y (x, y) 7→ (x,−y). En la sección 5.4 relacionamos laA-equivalencia
de double folds con la clase de la función f3, respecto a una relación de
equivalencia de contacto definida ad hoc.

El Capítulo 6 contiene las conclusiones del trabajo e incluye una lista
de problemas abiertos. Por último, los Apéndices A y B contienen re-
sultados sobre espacios complejos y álgebra. Solo una pequeña parte del
material en ellos expuesto es original.
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Introduction

This thesis is about multiple point spaces of finite holomorphic maps be-
tween complex manifolds. Our approach comes from singularity theory
and we study our maps under A-equivalence, that is, up to changes of
coordinates in source and target. We focus on the relation between these
spaces and properties such as A-stability and A-finite determinacy. Mul-
tiple point spaces are well known for maps without corank ≥ 2 points,
hence our contribution belongs mainly to the corank ≥ 2 case.

Given a map f : X → Y between manifolds, we have an intuitive
idea of what a k-multiple point of f should be: a tuple (x(1), . . . , x(k)) of
different points x(i) ∈ X, such that f(x(1)) = f(x(i)), for all i. If we are
to define a k-multiple point space, we would like it to satisfy the following
natural properties:

a) To be a closed complex subspace of Xk,

b) To behave well under deformations: for any unfolding F of f , the
k-multiple point space of F is a deformation of the k-multiple point
space of f .

It is clear that the set of multiple points (as defined above) does not
satisfy condition a):

Example A. Let f : C2 → C3 be the Cross-Cap, given by

(x, y) 7→ (x, y2, xy).

The pairs of points (0, t) and (0,−t), t 6= 0 form a curve of double points
that collapse to the diagonal point ((0, 0), (0, 0)), which is not a double
point.

One might try to solve the failure of a) taking the analytic closure of
the double points, but then condition b) does not hold:

Example B. Take the family of curves ft : C→ C2, t ∈ C, given by

x 7→ (x2, x3 + tx).

ix



x INTRODUCTION

Figure 1: Image of a cross-cap.

Figure 2: Images of f0 and ft, t 6= 0, respectively.

The curve f0 is a parameterized cusp x 7→ (x2, x3), which is injective
and, thus, has no double points. For t 6= 0, ft has a double point in
(x, x′) = (

√
−t,−

√
−t). Therefore, the unfolding F : C × C → C × C2,

given by
(t, x) 7→ (t, ft(x)),

contains the double points ((t, x), (t′, x′)) = ((t,
√
−t), (t,−

√
−t)). The

closure of these points contains the point t = t′ = 0, x = x′ = 0, but we
just said that f0 has no double points.

As we will see, to avoid the problems in Examples A and B, the mul-
tiple point spaces have to include extra points and, sometimes, they have
to be to be non-reduced.

Several authors have studied multiple point spaces (Altintas, Gaffney,
Houston, Jorge Pérez, Kleiman, Laksov, Lipman, Marar, Mond, Nuño
Ballesteros, Pellikaan, Ronga, Ulrich and Wik Atique, just to mention
the ones who appear throughout the text). They work in different set-
tings, and thus imposse different conditions on the map they study. Some
authors assume Σ-genericity, some assume that the map f is generically
one-to-one and some assume that there are no points of corank ≥ 2. Some
work locally, studying germs and multigerms. Even more, the authors
from the context of algebraic geometry assume that f : X → Y is a finite
morphism between algebraic projective schemes over a field of arbitrary
characteristic. As a consequence, the relations between all these author’s
multiple point spaces are sometimes unclear. In this thesis we will show
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that, in the case of holomorphic maps, there is only one possible definition
of multiple point spaces satisfying some natural conditions. The main def-
initions of multiple point spaces that we consider, namely Gaffney’s and
Mond’s, satisfy them, thus they agree.

The idea behind Gaffney’s construction is simple: If we want the multi-
ple point space of f to behave well under deformations, we have to include
the multiple points coming from all possible unfoldings of f . The remark-
able property that makes this possible is that we do not need to consider
all unfoldings of f , but just a stable one. The result will not depend on
the chosen stable unfolding, and no new points will come from non stable
unfoldings. The truth is that we can only do this locally but, if we ignore
the problem for a moment, the procedure to compute the k-multiple point
space of f : X → Y looks like this:

1. Take a stable unfolding F : S ×X → S × Y of f .

2. Let Dk
S(F ) ⊆ (S ×X)k be the closure of the k-multiple points of F

(in the sense above).

3. The k-multiple point space of f is the slice

Dk(f) = Dk
S(F ) ∩ ({0} ×X)k.

The construction above has two problems. The first is the difficulty of
the computations. To put it simply, some maps only admit very compli-
cated stable unfoldings. The second is that it yields little insight on the
algebraic structure of the multiple point spaces. These are two problems
that Mond’s approach does not have. Mond’s multiple point spaces, when
defined, are given by closed formulas, which can be always computed eas-
ily, and they provide good information about the algebraic properties of
the multiple points. Hence, the fact that these constructions agree is key
to understand multiple point spaces.

Until now, we have only mentioned multiple points consisting on tuples
(x(1), . . . , x(k)) ∈ Xk, but there are further multiple point spaces, defined
in ambient spaces other than Xk. Roughly speaking, and for a stable map
f : X → Y , their definitions are the following:

• The source k-multiple point space Dk
1 (f) ⊆ X is the closure of the

points x ∈ X, such that |f−1(f(x))| ≥ k.

• The target k-multiple point space Mk(f) ⊆ Y is the closure of the
points y ∈ Y , satisfying |f−1(y)| ≥ k.

• The quotient k-multiple point space Dk(f)/Sk is obtained by identi-
fying all permutations of k-multiple points (x(1), . . . , x(k)) ∈ Dk(f).

For double points we have one more space:

• The blowing-up double point space B2(f) is what we obtain if, in
addition to the points x, x′ ∈ X, with x 6= x′ and f(x) = f(x′), we
keep track of the direction from x to x′ as well.
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Outline of the thesis

Chapter 1 is an expository chapter containing conventions and the back-
ground needed for the rest of the work. Except from Lemma 1.2.6, all
results are well known and we do not claim originality on them.

In Chapter 2 we give the definitions and show some properties of mul-
tiple point spaces. In Section 2.1 we show that there is only one way
to define multiple point spaces satisfying some (slightly more demand-
ing than a) and b) above) natural conditions. Roughly speaking, these
conditions for multiple point spaces Dk(f) are:

M1) If f is stable, then Dk(f) is the closure of its strict k-multiple
points.

M2) The construction of Dk(f) behaves well under deformations.

As we will see, the satisfactory construction of multiple point spaces cor-
responds to Gaffney [Gaf83]. In Section 2.2 we introduce Mond’s multiple
point ideals for corank 1 maps, which Marar and Mond show that agree
with Gaffney’s construction (Proposition 2.2.2). These ideals give us a
nice way to compute the multiple point spaces of corank 1 map germs.
They are constructed as follows: First of all, corank 1 map germs can be
assumed to be of the form

(x, y) 7→ (x, fn(x, y), . . . , fp(x, y)),

with x ∈ Cn−1 and y ∈ C. For such a germ, the difference between the
different points which form a k-multiple point in Xk must relay entirely
on their y coordinates, so we can throw away the unnecessary copies of
the x coordinates. Thus, we consider points of the form

(x, y(1), y(2), . . . , y(k)) ∈ Cn−1 × Ck.

Mond’s double point ideal is generated by the divided differences

fj(x, y
(2))− fj(x, y(1))

y(2) − y(1)
.

Mond’s triple point ideal is obtained by adding to the previous one the
iterated divided differences

fj(x,y
(3))−fj(x,y(1))
y(3)−y(1) − fj(x,y

(2))−fj(x,y(1))
y(2)−y(1)

y(3) − y(2)
.

In general, Mond’s k-multiple point ideal is obtained by adding to the
(k − 1)-multiple point space some further iterated divided differences.
In the following sections we introduce the source multiple point space
(Section 2.3), the quotient multiple point space (Section 2.4) and the
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target multiple point space (Section 2.5). Finally, in Section 2.6 we show
a diagram relating these complex spaces.

Chapter 3 is devoted to double points. In Section 3.1 we introduce
Mond’s double point ideal sheaf I 2(f) for maps with points of arbitrary
corank. The corresponding local construction for germs f : (Cn, 0) →
(Cp, 0) is as follows: Since the functions fj(x)−fj(x′) vanish when x = x′,
we can find a matrix with entries in O2n satisying

f(x)− f(x′) = α(x, x′)(x− x′).

Mond’s double point ideal is

I2(f) = 〈fj(x)− fj(x′) | 1 ≤ j ≤ p〉+ 〈minors n× n of α〉.

We will show that the space it defines is precisely the double point space
in Chapter 2. The key to the proof is Theorem 3.1.11: if the space defined
by I 2(f) has the right dimension, then it is Cohen Macaulay. In Section
3.2 we show algebraic properties of the double point space D2(f). For in-
stance, from Corollary 3.2.5 it follows that if f is finitely determined and
dimD2(f) > 0, then D2(f) is reduced. As another example, in Proposi-
tion 3.2.3 we show that, for any stable map f : X → Y , the singular locus
of its double point space is

SingD2(f) = {(x, x) ∈ X ×X | corank fx ≥ 2}.

Finally, in Section 3.3 we introduce an alternative multiple point ideal
sheaf H k(f) and show that it fails to satisfy the conditions M1 and M2.
However, we will also show that under mild conditions the structure yields
the right double point space.

In Chapter 4, we introduce the blowing-up double point space B2(f),
which is an interesting tool in the corank ≥ 2 case. This space was defined
first by Ronga [Ron72] and it had been studied by Kleiman and others
in the context of algebraic geometry. However, our approach is different
and we give new proofs of several properties. Locally, B2(f) is a subspace
of the blowing-up of Cn ×Cn along its diagonal. This blowing-up can be
seen as the space of points (x, x′, u) ∈ Cn × Cn × Pn−1 satisfying

(x− x′) = λu, for some λ ∈ C.

For any matrix α as above, B2(f) is the subspace of the blowing-up defined
by the equations

α(x, x′)u = 0.

As we will see in Section 4.4, the space B2(f) is equiped with a proper
projection

π : B2(f)→ D2(f).

The morphism π, which briefly speaking forgets the direction u ∈ Pn−1,
is an isomorphism off the set of diagonal points (x, x) with corank f ≥ 2.
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Under generic conditions, the spaces B2(f) and D2(f) are birrationally
equivalent and, if f is stable, then π : B2(f)→ D2(f) is a resolution.

In Chapter 5 we study map germs (C2, 0) → (C3, 0). In Sections 5.1
and 5.2 we extend to corank 2 some properties already known in corank
1. In the first one, we show that a map germ (C2, 0)→ (C3, 0) is finitely
determined if and only if the Milnor number µ(D(f)) of its source double
point space is finite. In the second one, we prove the so called Marar-
Mond formulas, relating the Milnor numbers of the different multiple point
spaces and the number of cross-caps and triple points collapsed at the
origin:

• µ
(
D(f)

)
= µ

(
D2(f)

)
+ 6T,

• µ
(
D2(f)

)
= 2µ

(
D2(f)/S2

)
+ C − 1,

• µ(D(f)) = 2µ
(
f(D(f))

)
+ C − 2T − 1.

In Section 5.3 we introduce a family of corank 2 map germs, the double
folds, of the form

(x, y) 7→ (x2, y2, f3(x, y)).

This family contains several interesting examples, such as finitely deter-
mined homogeneous maps of corank 2. We study these germs in relation
to the reflection group generated by the reflections (x, y) 7→ (−x, y) and
(x, y) 7→ (x,−y). In Section 5.4, we study the A-equivalence of double
folds in terms of the equivalence class of f3 under a specially adapted
contact equivalence relation.

Chapter 6 contains contains a summary of the goals of the thesis and
related open problems. Finally, Appendices A and B are about complex
spaces and algebra, respectively. Some results are new, but mostly they
contain concepts for which our terminology is substantially different from
that in the original source, or where there is no standard convention, and
some results which are not so well known, or whose proof we have not
been able to find in the literature.



Methodology

The research procedure for this thesis has been the usual in the field of
mathematics. We started looking for adequate bibliographical resources,
both general and specific of the subject of our studies, and have extended
these materials as needed for our goals. For the computations we have
made use of the software Singular [WGPS15], implementing some algo-
rithms specially adapted to our purposes.

xv
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Chapter 1

Preliminaries

This is an expository chapter containing the background needed for the
rest of the work. Except from Lemma 1.2.6, all results are well known
and we do not claim originality on them. We assume familiarity with the
basics of differential topology, complex analytic geometry and commuta-
tive algebra. Altough all the spaces considered are constructed over the
complex numbers, we will always draw real pictures.

1.1 Previous conventions

Throughout the text, we assume:

1. f : X → Y is a holomorphic map between complex manifolds.

2. The complex manifolds X and Y are assumed equidimensional, and
its dimensions are n and p, respectively.

The previous assumptions do not apply to maps and germs denoted by
letters other than f . Be aware that some further conventions apply from
Section 1.6 onwards.

1.2 Holomorphic maps between complex ma-
nifolds

Notation on products

In order to work with products of copies of X, we fix some notation: We
write elements inXk as tuples w = (x(1), . . . , x(k)) of points x(l) ∈ X, each
one with local coordinates x(l)

1 , . . . , x
(l)
n . For k = 2, 3, we use x = x(1), x′ =

x(2), x′′ = x(3) and denote the coordinates by xi = x
(1)
i , x′i = x

(2)
i and

1



2 CHAPTER 1. PRELIMINARIES

x′′i = x
(3)
i . The small diagonal of Xk is the subset

∆(X, k) = {(x(1), . . . , x(k)) ∈ Xk | x(1) = · · · = x(k)}.

The big diagonal of Xk is the subset

D(X, k) = {(x(1), . . . , x(k)) ∈ Xk | x(i) = x(j) for some i 6= j}.

Finally, we write
X(k) = Xk \D(X, k).

Rank and corank
Definition 1.2.1. A map f : X → Y has rank r at a point x ∈ X
(denoted by rank fx = r) if the differential dfx of f at x has rank r.
We also say that f has corank k (denoted by corank fx = k), where
k = n − rank fx. We say that x is a regular point of f (or that f is
regular at x) if corank fx = 0. Otherwise, we say that x is a singular
point of f (or that f is singular at x).

Definition 1.2.2. We say that f : X → Y is a finite map if it is closed
and finite-to-one (i.e. all the sets f−1(y), y ∈ Y are finite).

Definition 1.2.3. Given f : X → Y , we define

Σk(f) = {x ∈ X | corank fx = k}

and
Σ̂k(f) =

⋃
i≥k

Σi(f).

Proposition 1.2.4. For any map f : X → Y

1. The subsets Σk(f) ⊂ X are locally analytic.

2. The subsets Σ̂k(f) ⊂ X are analytic.

Proof. Let d = min(dimX,dimY ). Given some local coordinates of X
defined at an open subset U , let Zk be the set of points x ∈ U where
the minors of size d − k of the differential dfx vanish. Then we have
Σ̂k(f)∩U = Zk ∩U and Σk(f)∩U = (Zk \Zk+1)∩U . We conclude that
both spaces are locally analytic. Moreover, X is covered by the coordinate
open sets Ui coming from any atlas, and Σ̂k(f) is closed in any of those,
so it is closed in X.

Remark 1.2.5. The closure of Σk(f) is always contained in the space
Σ̂k(f). The equality does not hold in general, as the following map, which
we called the Double Cone (Figure 3.1), shows:

(x, y) 7→ (x2, y2, xy).

An easy computation yields Σ1(f) = ∅ and Σ̂1(f) = Σ2(f) = {0}.
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Lemma 1.2.6. Let f : X → Y be a finite-to-one map and let n = dimX.
Then

dim Σ̂k(f) ≤ n− k,

for all 1 ≤ k ≤ n. As a consequence, we have dim Σk(f) ≤ n− k.

Proof. We proceed by induction on k: Assume first dim Σ̂1(f) = n, then
there exists a proper analytic space Z ( X, such that f has constant rank
d < n at X \ Z. For any point x ∈ X \ Z, by the constant rank theorem,
we can perform some local changes of coordinates in source and target to
obtain a map of the form (x1, . . . , xd, 0 . . . , 0), which is not finite. This
proves the case k = 1.

Assume dim Σ̂k(f) ≥ n − k + 1. Then, since Σ̂k ⊆ Σ̂k−1(f), for all
k ≥ 1, by induction we have dim Σ̂k(f) ≤ n − k + 1, so the dimension
of Σ̂k(f) equals n − k + 1. Let x be a regular point of Σ̂k(f) where the
dimension of Σ̂k(f) is n− k+ 1. Then, there exists an open neighbohood
U ⊆ X of x, such that the restriction g = f |Σ̂k(f)∩U is a holomorphic map
defined on a manifold of dimension n − k + 1. Being a restriction of f ,
the map g is finite-to-one. Since the restriction is done precisely at Σ̂k(f),
it is obvious that g has rank ≤ n − k at all source points. This means
dim Σ̂1(g) = n− k + 1, contradicting the induction hypothesis.

Example 1.2.7. The previous bound is accurate, since it is exact for the
map Cn → Cp given by

(x1, . . . , xn) 7→ (x2
1, . . . , x

2
n, 0, . . . , 0).

1.3 Transversality and jet spaces
Definition 1.3.1. Let f : X → Y and let W be a submanifold of Y . We
say that f is transverse to W at a point x ∈ X if either

1. f(x) /∈W , or

2. Tf(x)Y = Tf(x)W + dfx(TxX).

The map f is transverse to W (denoted by f tW ) if it is transverse to
W at every point x ∈ X.

Definition 1.3.2. We say that a map f : X → Y has normal crossings
if, for any k ≥ 2, the restriction of fk to X(k) is transverse to ∆(Y, k).

Lemma 1.3.3. [GG86, Lemma 4.6] Let F : S×X → Y be a holomorphic
map and, for any s ∈ S, let fs : X → Y be the map given by fs(x) =
F (s, x). If F is transverse to some submanifold W of Y , then the subset

Z = {s ∈ S | fs tW}

is residual in S.
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Proposition 1.3.4. [GG86, Thm. 4.4] Let f : X → Y be transverse to
some submanifold W of Y . Then f−1(W ) is a submanifold of X of the
same codimension as W .

Definition 1.3.5. Two maps f, f ′ : X → Y define the same k-jet at a
point x ∈ X if f(x) = f ′(x) and their k-th Taylor expansions –for some
local coordinates– jkf(x) and jkf ′(x) agree. This defines an equivalence
relation. The equivalence class of f is called the k-jet of f at x and,
by abuse of notation, we denote it by jkf(x). The set of k-jets of maps
f : X → Y with f(x) = y is denoted by Jk(X,Y )x,y. The k-jet space is
defined as the disjoint union

Jk(X,Y ) =
⊔

(x,y)∈X×Y

Jk(X,Y )x,y.

We have a source map

α : Jk(X,Y )→ X,

which maps a jet σ ∈ Jk(X,Y )x,y to x. For each f : X → Y we have its
k-jet extension map

jkf : X → Jk(X,Y ),

given by x 7→ jkf(x).
The k-jet space Jk(X,Y ) can be given a manifold structure [GG86,

Thm. 2.7], so that α and jkf are holomorphic.

Definition 1.3.6. Given two manifolds X,Y and an integer s ≥ 2, we
call the s-fold k-jet space to the manifold

Jks (X,Y ) = (α× · · · × α)−1(X(s)).

Given a map f : X → Y , we have a holomorphic map

jks (f) : X(s) → Jks (X,Y ),

given by (x(1), . . . , x(s)) 7→ (jk(x(1)), . . . , jk(x(s))). The points of the space
Jks (X,Y ) are called multijets and jks f(x(1), . . . , x(s)) is called the mul-
tijet of f at (x(1), . . . , x(s)).

Definition 1.3.7. For any k-jet σ ∈ Jk(X,Y )x,y, with k ≥ 1 we define
corankσ = corank fx, for any representative f of σ. We write

Sk = {σ ∈ J1(X,Y ) | corankσ = k}.

Obviously, we have Σk(f) = (j1f)−1(Sk).

Proposition 1.3.8. [GG86, Thm. 5.4] If n ≤ p, then Sk is a submani-
fold of J1(X,Y ) of codimension k(p− n+ k).
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Definition 1.3.9. We say that a map is Σk-generic if j1f t Sk. A map
is called Σ-generic if it is Σk-generic for all 1 ≤ k ≤ n.

Remark 1.3.10. Let f : X → Y be a Σk-generic map and assume n ≤ p.
By Proposition 1.3.4, the set Σk(f) is empty or a submanifold of X of
dimension n− k(p− n+ k).

1.4 Germs
Definition 1.4.1. Given a subset S ⊆ X, we say that two subsets
Y1, Y2 ⊆ X define the same germ along S if there exists an open neigh-
bourhood U of S in X, such that

Y1 ∩ U = Y2 ∩ U.

This defines an equivalence relation on the set of subsets of X. An equiva-
lence class is called a germ (along S) and the germ represented by Y ⊆ X
is denoted by (Y, S). When S is a discrete set, germs along S are called
germs at S. We omit unnecessary brackets and denote germs of the form
(Y, {x}) by (Y, x).

We say that a germ (Y, S) is contained in a germ (Y ′, S) (denoted
by (Y, S) ⊆ (Y ′, S)) if there exist representatives Z and Z ′ of (Y, S) and
(Y ′, S) respectively, satisfying Z ⊆ Z ′. We define (Y, S) ∩ (Y ′, S) =
(Y ∩ Y ′, S) and (Y, S) ∪ (Y ′, S) = (Y ∪ Y ′, S). These operations do not
depend on the representatives.

Definition 1.4.2. Given a subset S ⊆ X and two maps f1 : U1 → Y and
f2 : U2 → Y , with U1, U2 open neighbourhoods of S, we say that f1 and
f2 define the same germ along S if there exists some open neighbourhood
U ⊆ U1 ∩ U2 of S, such that

f1|U = f2|U .

Again, this defines an equivalence relation on the set of maps U → Y
defined around S. An equivalence class is called a map germ (along
S) and the map germ represented by f is denoted by (f, S). A germ
of homeomorphism (or germ of biholomorphism, submersion, etc) is a
germ which admits a homeomorphism (biholomorphism, submersion, etc.)
as a representative. Observe that any map germ (f, S), represented by
f : X → Y yields a well defined subset f(S) ⊆ Y .

A morphism of germs

f : (X,S)→ (Y, T )

is a map germ f along S such that f(S) ⊆ T . Germs and morphisms of
germs form a category. The isomorphisms are the germs of biholomor-
phism f : (X,S)→ (Y, T ) with f(S) = T .
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A map germ at a finite set S, satisfying f(S) = {y} for some y ∈ Y ,
is called a multigerm. A monogerm at x is a map germ of the form
(f, {x}), which we denote by (f, x).

1.5 A-equivalence and stability
Definition 1.5.1. Two multigerms f : (X,S)→ (Y, y) and f ′ : (X ′, S′)→
(Y ′, y′) are A-equivalent if there exist multigerms of biholomorphisms
ϕ : (X,S) → (X ′, S′) and ψ : (Y, y) → (Y ′, y′), such that the following
diagram commutes:

(X,S)
f //

ϕ

��

(Y, y)

ψ

��
(X ′, S′)

f ′ // (Y ′, y′)

Observe that a multigerm f : (X,S)→ (Y, y), with S = {x(1), . . . , x(s)}
determines (after ordering the elements of S) a unique multijet

jks (f) ∈
s⊕
i=1

Jk(X,Y )x(i),y.

Since any multigerm f : (X,S′)→ (Y, y) is A-equivalent to one of the
form f : (Cn, S)→ (Cp, 0), we shall give our definitions for multigerms of
this form.

Definition 1.5.2. A multigerm f : (Cn, S) → (Cp, 0) is k-determined
if any germ satisying jks f = jks g is A-equivalent to f . A multigerm is
finitely determined if it is k-determined for some k.

Definition 1.5.3. An unfolding of a multigerm f : (Cn, S)→ (Cp, 0) is
a multigerm

F : (Cr × Cn, {0} × S)→ (Cr × Cp, 0),

of the form F (s, x) = (s, fs(x)), with f0(x) = f(x).
Two unfoldings F and F ′ as above are A-equivalent if there exist

unfoldings of the multigerms of the identity on Cn and Cp

Φ: (Cr × Cn, {0} × S)→ (Cr × Cn, {0} × S)

and
Ψ: (Cr × Cp, 0)→ (Cr × Cp, 0),

such that the following diagram commutes:

(Cr × Cn, {0} × S)
F //

Φ

��

(Cr × Cp, 0)

Ψ

��
(Cr × Cn, {0} × S)

F // (Cr × Cp, 0)
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An unfolding F of f is called trivial if it is A-equivalent to the constant
unfolding id×f .

A multigerm f : (Cn, S) → (Cp, 0) is stable if every unfolding of f is
trivial.

Example 1.5.4. FromWhitney’s classification of stable monogerms Cn →
C2n−1 [Whi44] and Mather criterion for stability of multigerms [Mat69,
Prop. 1.6], it follows that the only stable multigerms of maps from com-
plex surfaces to complex 3-manifolds are:

1. Regular points: (x, y) 7→ (x, y, 0)

2. Transverse double points: Given by the branches

(x, y) 7→ (x, y, 0)

(x, y) 7→ (x, 0, y)

3. Transverse triple points: Given by the branches

(x, y) 7→ (x, y, 0)

(x, y) 7→ (x, 0, y)

(x, y) 7→ (0, x, y)

4. Cross-caps: (x, y) 7→ (x, y2, xy)

Figure 1.1: Regular point and transverse double point.

Figure 1.2: Transverse triple point and cross-cap.

Proposition 1.5.5. Every finite multigerm admits a stable unfolding.
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Proof. If f is finite, then f is K-finite and hence, has finite singularity
type in the sense of Mather (see [GWdPL76]). The result follows since
any multigerm of finite singularity type admits a stable unfolding.

Now we define A-stability of maps. In the literature, our definition is
sometimes called local stability, to avoid confusion with a different notion,
called global stability. Since we do not use the global notion, there is no
risk of confusion.

Definition 1.5.6. We say that a finite map f : X → Y is stable (or
A-stable) if, for any y ∈ f(X), the multigerm of f at f−1(y) is stable.

Definition 1.5.7. A one-parameter unfolding F : (C × Cn, 0) → (C ×
Cp, 0) of the form (t, x) 7→ (t, ft(x)) is called an stabilization of f = f0

if there exist open neighbourhoods D ⊆ C and U ⊆ Cn of the origin and
a representative of F defined on D×U such that ft : U → Cp is stable for
all t ∈ D \ {0}.

Lemma 1.5.8. If (n, p) are nice dimensions in the sense of Mather
(see [GWdPL76]), then every finitely determined map germ f : (Cn, 0)→
(Cp, 0) admits an stabilization.

Proof. It is well known that every finitely determined map germ admits a
versal unfolding. Fixed such unfolding, the bifurcation set (that is, the set
of values of the parameters which produce non-stable germs) is analytic.
In the nice dimensions the bifurcation set must be proper, and the result
follows immediately.

Proposition 1.5.9. Any stable map has normal crossings.

Proof. Fix some k and take any point y = f(x
(1)
0 ) = · · · = f(x

(k)
0 ), for

some different points x(l) ∈ Xk. Let U1, . . . , Uk be pairwise disjoint open
coordinate neighbouhoods of x(1)

0 , . . . , x
(k)
0 . Let A1, . . . , Ak be the n × p

matrices containing the coordinates of CN = Cnp × . . .k × Cnp and let
A = (A1, . . . , Ak). Now define the map φ : U1 × · · · × Uk × CN → Ckp
given by

(x,A) 7→ (f(x(1)) +A1x
(1), . . . , f(x(k)) +Akx

(k)).

This map is clearly a submersion. Therefore, there exists a curve γ : D →
CN , defined on an open neighbouhood D ⊆ C of the origin, such that, for
all t ∈ D \ {0}, the map φt : U1 × . . . Uk → Ckp given by

φt(x) = φ(x, γ(t))

is transverse to ∆(Y, k).
Let F : D × U → D × Cp be the unfolding of f of the form F (t, x) =

(t, ft(x)), where ft is given at any Ui by

ft|Ui(x) = f(x) +Aix.
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It is obvious that ft × · · · × ft = φt on U1 × · · · × Uk. Therefore, the
above mentioned transversality of φt means that (ft)

k = φt is transverse
to ∆(Y, k) on U1 × · · · × Uk. The stability of f implies that the family
ft is locally trivial. Then, since the transversality of fk to ∆(Y, k) is
preserved under A-equivalence, we have that fk is transverse to ∆(Y, k)

at (x
(1)
0 , . . . , x

(k)
0 ).

Proposition 1.5.10. [GG86, Prop. 3.12] For p = 2n, a finite map
X → Y is stable if and only if it is an immersion with normal crossings.

A similar argument to that of Proposition 1.5.9 shows the following
well known result:

Proposition 1.5.11. Any finite stable map f : X → Y is Σ-generic. In
particular Σk(f) is empty or a manifold of dimension n−k(p−n+k+1).

Theorem 1.5.12 (Mather-Gaffney criterion of finite determinacy [Wal81]).
A finite germ f : (Cn, 0) → (Cp, 0) is finitely determined if and only if it
admits a representative f : U → V , such that f is stable on U \ {0}.

Definition 1.5.13. We say that two maps f : X → Y and f ′ : X ′ → Y ′

are A-equivalent if there exist two biholomorphisms ϕ : X → X ′ and
ψ : Y → Y ′, making the following diagram commutative:

X
f //

ϕ

��

Y

ψ

��
X ′

f ′ // Y ′

Definition 1.5.14. Given a map f : X → Y , we call an unfolding of
f over a pointed manifold (S, s0) to any map F : X → Y, endowed with
two embeddings i : X → X , j : Y → Y and two submersions α : X →
S, β : Y → S, satisfying:

1. The following diagram commutes:

X
f //

i

��

Y

j

��
X F //

α
��

Y

β��
S

2. Let Xs = α−1(s) and Ys = β−1(s), for any s ∈ S. Then i and j
map X and Y isomorphically to Xs0 and Ys0 .
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For any s ∈ S, we write fs = F |Xs : Xs → Ys. We will call a local
unfolding (at a subset A ⊆ X) to any unfolding F of the restriction of
f to some open neighbourhood U ⊆ X of A.

Remark 1.5.15. Some comment are due:

1. If F is an unfolding of f , then f and fs0 are A-equivalent. Indeed,
every A-equivalence can be seen as an unfolding where S consists
just on one point.

2. If F is an unfolding of f over (S, s0) and F is an unfolding of F
over (T, t0), then F is also an unfolding of f over (S × T, (s0, t0)).

3. Every unfolding admits the following local form: take local co-
ordinates so that the maps i, j, α, β are given by i(x) = (x, 0),
j(y) = (y, 0), α(s, x) = s and β(s, y) = s. The map F is writ-
ten in such coordinates as F (s, x) = (s, fs(x)), with f0 = f . Hence,
the definition of unfolding can be seen as a global coordinate-free
version of the local Definition 1.5.3.

Definition 1.5.16. With the notations above, we say that F : X → Y is
a A-trivial unfolding if there exists an open neighbourhood S′ ⊆ S of s0,
an open neighbourhood U ⊂ Cn of 0 and two biholomorphisms Φ: X ′ →
X × U and Ψ: Y ′ → Y × U , where X ′ = α−1(S) and Y ′ = β−1(S),
satisfying:

1. The diagram

X ′ F ′ //

Φ

��

Y ′

Ψ

��
X × U

f×id // Y × U

commutes, where F ′ is the corresponding restriction of F .

2. The biholomorphisms Φ and Ψ map respectively Xs0 and Ys0 to
X × {0} and Y × {0}.

1.6 Further conventions
In what follows, in addition to the conventions in Section 1.1, the maps
f : X → Y and the multigerms f : (Cn, S) → (Cp, 0) are assumed to be
finite. In particular, this implies n ≤ p.



Chapter 2

Multiple points

The aim of this chapter is to stablish the definitions and some proper-
ties of multiple points of finite holomorphic mappings between manifolds,
without any extra assumptions.

In the first section we show that there is only one way to define multiple
point spaces satisfying some natural conditions (the conditions M1 and
M2 in Definition 2.1.4, slightly more demanding than a) and b) in the
introduction). As we will see, the satisfactory construction of multiple
point spaces corresponds to Gaffney [Gaf83]. Section 2.2 is devoted to
Mond’s multiple point ideals, which give us an easier way to compute the
multiple point spaces of corank 1 map germs. (Proposition 2.2.2). In
Section 2.3 we introduce the source multiple point space and show how
to compute it in some cases. In Section 2.4 we study the quotient of
the multiple point space by the action of permutation groups. We give an
effective way to compute the quotient and we explain the difficulties which
arise in corank 2. In Section 2.5 we introduce the target multiple point
space. We show an improvement of a method by Mond to compute some
presentation matrices, which is more efficient for computational purposes.
Finally, in Section 2.6 we show a diagram relating the above complex
spaces.

2.1 The multiple point space
Definition 2.1.1. Given a map f : X → Y , we say that (x(1), . . . , x(k)) ∈
Xk is a strict k-multiple point of f if f(x(i)) = f(x(j)) and x(i) 6= x(j),
for all i 6= j. We denote by Dk

S(f) the analytic closure of the set of strict
k-multiple points of f , that is,

Dk
S(f) = (fk)−1(∆(Y, k)) \D(X, k).

We regard Dk
S(f) as a complex space with the reduced structure. If we

denote by I∆(X,k) and ID(X,k) the ideal sheaves in Xk of the small and

11
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big diagonal respectively, then the ideal sheaf of Dk(f) is√
P(f, k) : ID(X,k)

∞,

where P(f, k) = (fk)∗I∆(Y,k) and A : B∞ stands for the saturation of A
with respect to B.

We have local versions of the above definitions as well: For any finite
multigerm f : (X,A)→ (Y, y), we take a representative f̂ of f , defined at a
small enough neighbourhood U of A. Then, we define Dk

S(f) as the multi-
germ in Ak ofDk

S(f̂) (see Section A.2 for the definition of germs of complex
spaces). We fix some particular notation for the case of monogerms: we
denote by ∆(n, k) and D(n, k) the germs of ∆(Cn, k) and D(Cn, k) at 0.
The ideals in Okn defining these two space germs are

I∆(n,k) =

k∑
l=2

〈x(1)
i − x

(l)
i | i = 1, . . . , n〉,

ID(n,k) =
⋂

1≤l<m≤k

〈x(l)
i − x

(m)
i | i = 1, . . . , n〉.

As in the global case, we have Dk
S(f) = (fk)−1(∆(p, k)) \D(n, k) and its

defining ideal in Okn is
√
P (f, k) : ID(n,k)

∞, with P (f, k) = (fk)∗I∆(p,k).

Example 2.1.2. Take, as in Example B, the family of curves ft : C→ C2

given by
x 7→ (x2, x3 + tx).

The map f0 is just a usual cusp and, since it is a injective map, the space
Dk
S(f0) is empty. For t 6= 0, a straightforward computation shows that

Dk
S(ft) is the zero set of 〈x2 + t, x+ x′〉.
Take the ideal I = 〈x2 + t, x+ x′〉 in O3 (variables x, x′ and t) and let

It0 be the ideal in O2 (variables x and x′) obtained by the substitution
t = t0 in I. We observe

1. the ideal I0 does not define Dk
S(f0), and

2. the ring O2/I0 is not reduced.

The previous example shows that the closure of the set of strict multi-
ple points does not define a satisfactory multiple point space. As we will
show soon, a satisfactory definition of multiple point spaces has to include
more points (not just the ones in the closure of the strict points) and has
to sometimes yield non-reduced spaces. Before getting into the details,
we need the following lemma:

Lemma 2.1.3. For any multigerm f : (Cn, A)→ (Cp, 0).
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1. If F = (s, fs) and F ′ = (s, f ′s) are A-equivalent unfoldings of f ,
then

Dk
S(F ) ∩ {s = 0} = Dk

S(F ′) ∩ {s = 0}.

2. If f is stable, then for any unfolding F = (s, fs) of f ,

Dk
S(F ) ∩ {s = 0} = Dk

S(f).

3. If F = (s, fs) and F ′ = (t, f ′t) are stable unfoldings of f , then

Dk
S(F ) ∩ {s = 0} = Dk

S(F ′) ∩ {t = 0}.

4. Let F = (s, fs) and F ′(t, f ′t) be stable unfoldings of two germs f, f ′,
respectively. If f ′ = ψ ◦ f ◦ φ−1, where φ, ψ are biholomorphisms,
then

φk(Dk
S(F ) ∩ {s = 0}) = Dk

S(F ′) ∩ {t = 0}.

Proof. 1) By hypothesis, we have F ′ = Ψ ◦ F ◦ Φ−1, where Φ,Ψ are un-
foldings of the identity in Cn,Cp respectively. On one hand, Φ(Dk

S(F )) =
Dk
S(F ′). On the other hand, we write Φ = (s, φs) with φ0 = id, so

Dk
S(F ) ∩ {s = 0} = Φ(Dk

S(F )) ∩ {s = 0} = Dk
S(F ′) ∩ {s = 0}.

2) Since f is a stable map and F is an unfolding of f , then F is
A-equivalent to the constant unfolding (id×f). From (1), it follows

Dk
S(F ) ∩ {s = 0} = Dk

S(id×f) ∩ {s = 0} = Dk
S(f).

3) Let F be the germ given by F(s, t, x) = (s, t, fs(x) + f ′t(x)− f(x)).
This is an unfolding of both F and F ′. Since F and F ′ are stable, (2)
implies

Dk
S(F ) ∩ {s = 0} = Dk

S(F) ∩ {s = t = 0} = Dk
S(F ′) ∩ {t = 0}.

4) Let G be the unfolding of f ′ given by G(s, x) = (s, ψ ◦ fs ◦ φ−1).
We have that Ψ ◦ F ◦ Φ−1 = G, where Φ = id×φ and Ψ = id×ψ, hence
G is also stable. From (3) we obtain

Dk
S(G) ∩ {s = 0} = Dk

S(F ′) ∩ {t = 0}.

On the other hand, Φk(Dk
S(F )) = Dk

S(G) and thus,

φk(Dk
S(F ) ∩ {s = 0}) = Φk(Dk

S(F )) ∩ {s = 0} = Dk
S(G) ∩ {s = 0}.
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To be precise about our scheme-theoretic requirements for multiple
point spaces, we need to introduce some definitions. We call a multiple
point space structure to any rule, denoted by Dk, which associates to
any finite map f : X → Y a closed complex subspace Dk(f) of Xk. The
space Dk(f) is called the k-multiple point space of f . Since we ask
Dk(f) to be a closed subspace of Xk, the structure sheaf ODk(f) is defined
by some coherent ideal sheaf I k(f) in OXk .

Definition 2.1.4. For any multiple point space structure Dk, we define
two conditions:

M1. If f is a stable map, then Dk(f) = Dk
S(f).

M2. For any local unfolding F of f at an open neighbourhood U ⊆ X
(Definition 1.5.14), the map ik sends Dk(f) ∩ Uk isomorphically to
Dk(F ) ∩ (Us0)k.

Condition M1 may be thought as Dk being a simple choice for the
multiple point structure. Condition M2 means, first, that Dk behaves
well under deformations and, second, that Dk(f) is determined by the
multilocal behaviour of f at every collection of points. Now we show that
this two conditions determine Dk uniquely.

Proposition-Definition 2.1.5. There exists a unique multiple point
structure Dk satisfying M1 and M2. For any map f : X → Y , we call
Dk(f) the k-multiple point space of f . For any point w ∈ Xk, the
space Dk(f) is given locally around w by

Dk(f) = (ik)−1(Dk
S(F ) ∩ (Xs0)k),

where F is any local stable unfolding of f at w.

Proof. First of all, we set Dk(f) ∩ (Xk \ (fk)−1(∆(Y, k))) = ∅. Now let
x(1), . . . , x(k) ∈ (fk)−1(∆(Y, k)) and take the finite multigerm f : (X,A)→
(Y, y), where A = {x(1), . . . , x(k)} and f(x(i)) = y. Taking local co-
ordinates in X and Y , we have biholomorphisms φ and ψ such that
f = ψ ◦ f ′ ◦ φ−1, for some f ′ : (Cn, A′) → (Cp, 0). We define Dk(f)
in a neighbourhood of (x(1), . . . , x(k)) as

Dk(f) = φk(Dk
S(F ′) ∩ {s = 0}),

where F ′ is any stable unfolding of f ′. By Lemma 2.1.3, Dk(f) is well
defined and does not depend on the choice of φ, ψ and F ′. Therefore, these
spaces can be glued together to get a complex space defined globally. We
will denote it by Dk(f) and its defining ideal sheaf by I k(f). It follows
from the definition that Dk(f) is given by

Dk(f) = (ik)−1(Dk
S(F ) ∩ (Xs0)k),



2.1. THE MULTIPLE POINT SPACE 15

where F is any local stable unfolding of f .
If f is stable, then we can take F = f and hence Dk(f) = Dk

S(f), so
condition M1 is satisfied. Condition M2 is obvious as well. Taking local
coordinates, it suffices to prove the claim for a multigerm f : (Cn, A) →
(Cp, 0). Given any unfolding F = (t, ft) of f , we take F(s, t, fs,t) a stable
unfolding of F . Then,

Dk(f) = Dk
S(F) ∩ {s = t = 0} = (Dk

S(F) ∩ {s = 0}) ∩ {t = 0}
= Dk(F ) ∩ {t = 0}.

Finally, we show the unicity. Let D̂k be another k-multiple point structure
satisfying M1 and M2. For any map f and for any local stable unfolding
F of f , we have locally the following equalities:

Dk(f) = (ik)−1(Dk
S(F ) ∩ (Xs0)k) = (ik)−1(D̂k(F ) ∩ (Xs0)k) = D̂k(f).

Example 2.1.6. We are going to compute the double point space of the
cusp f : (C, 0)→ (C2, 0) given by

x 7→ (x2, x3).

Take the family of curves of Example 2.1.2 as an unfolding, that is, take
the map germ F : (C2, 0)→ (C3, 0), given by

(t, x) 7→ (t, x2, x3 + tx).

Let φ and ψ be the local changes of coordinates (t, x) 7→ (t − x2, x)
and (X,Y, Z) 7→ (X − Y 2, Y, Z). The map φ ◦ F ◦ ψ is a cross-cap, and
therefore F is stable. The strict double point space D2

S(F ) is defined by
the ideal √

P (F, 2) : ID(n,2)
∞ = 〈t− t′, x+ x′, t+ x2〉.

The substitution t = 0 yields the double point space

D2(f) = V (x+ x′, x2).

Example 2.1.7. Let Aµ : (C, 0)→ (C, 0) be the germ given by x 7→ xµ+1.
To compute its multiple point spaces, we need to take a stable unfolding
F of Aµ. One can check (see [Gib79] for details) that the map germ
F : (Cµ−1 × C, 0)→ (Cµ−1 × C, 0), given by

(u1, . . . , uµ−1, x) 7→ (u1, . . . , uµ−1, x
µ+1 + uµ−1x

µ−1 + · · ·+ u1x),

is a minimal (in the sense of the number of parameters ui) stable unfolding
of Aµ.
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Figure 2.1: Image of the cross-cap, as an unfolding of the cusp.

For any k, the ideal P (f, k) is generated by the germs u(j)
i − u

(1)
i

and
∑
i u

(j)
i (x(j))i −

∑
i u

(1)
i (x(1))i, for j = 2, . . . , k,. The first generators

allow us to eliminate the unnecessary copies u(j) to produce an isomorphic
space, embeeded in Cµ−1 × Ck, given by∑

i

ui((x
(j))i − (x(1))i).

Now the ideal defining the k-multiple point space is obtained by, first,
computing the saturation of this ideal with respect to the ideal ID(1,k),
and then radical of the resulting ideal. A much easier way to obtain to
this ideal is given by Proposition 2.2.2

As the previous example shows, the previous construction of multiple
point space forces us to study maps between manifolds of arbitrarily big
dimension. For double points in any corank and for k-multiple points of
corank 1 map germs, this problem is adressed by Mond’s ideals (Section
2.2 and Theorem 3.1.12).

Proposition 2.1.8. Let f : (Cn, 0)→ (Cp, 0) be a rank r map germ.

1. If f is of the form (s, x) 7→ (s, fs(x)), s ∈ Cr, x ∈ Cn−r, then
the projection P : Cnk → Cr × Ck(n−r) which forgets the variables
s(2), . . . , s(k) induces an isomorphism

Dk
S(f) ∼= {(s, w) ∈ Cr × Ck(n−r) | w is a strict multiple point of fs}.

2. Dk(f) embeds into Cr × Ck(n−r).

Proof. 1) Let Z = {(s, w) ∈ Cr ×Ckn | w is a strict multiple point of fs}
and observe that 1) is a set theoretical question, since both Dk

S(f) and Z
are reduced. It is obvious that P restricts to a bijection

{strict k-multiple points of f} → Z.
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Therefore, P (Dk
S(f)) ⊆ Z. Let γ : D → Z be a curve defined in a neigh-

boohood of the origin of C, satisfying γ(D \ {0}) ⊆ Z. Let γi be the
coordinate functions of γ and let

σ = (γ1, . . . , γr) and ω = (γr+1, . . . , γr+k(n−r)).

Let γ′ : D → Xk be defined by

γ′(t) = (σ(t), . . . , σ(t), ω(t)),

with σ repeated k times. It is obvious that γ′(t) is a strict k-multiple
point of f , for all t ∈ D \ {0}. Therefore, we have γ′(D) ⊆ Dk

S(f). Since
P ◦ γ′ = γ, we obtain Z ⊆ P (Dk

S(f)), as desired.
To show 2) take F : (Cl×Cn, 0)→ (Cl×Cp) a stable unfolding of f of

the form F (t, s, x) = (t, s, ft,s(x)). By 1), we can eliminate the variables
t(2), . . . , t(k) and s(2), . . . ,(k) to obtain an isomorphic image of Dk

S(F ) into
Cl+r × Ck(n−r). Now, since Dk(f) = Dk

S(F ) ∩ {t(i) = 0 | 1 ≤ i ≤ k}, the
claim follows immediately.

Lemma 2.1.9. If f : X → Y is a stable map, then the set of strict k-
multiple points of f is empty or a manifold of dimension kn − (k − 1)p.
In particular, Dk(f) is empty or a reduced unmixed space of dimension
kn− (k − 1)p (see Definition A for unmixedness).

Proof. The statement follows directly from Proposition 1.5.9 and Propo-
sition 1.3.4.

Proposition 2.1.10. For any f : X → Y , any integer k ≥ 2 and any
point w ∈ Dk(f), all non embedded irreducible components of the germ
(Dk(f), w) have dimension ≥ kn− (k− 1)p. In particular, the k-multiple
point space Dk(f) is empty or has dimension greater than or equal to
kn− (k − 1)p.

Proof. Let F (s, x) = (s, fs(x)), s ∈ Cr be a local stable unfolding of f , so
that Dk(f) = Dk(F )∩ {s = 0}. By Lemma 2.1.9, Dk(F ) is empty or has
dimension k(r+n)−(k−1)(r+p) = kn−(k−1)p+r. Let w ∈ Dk(f), then
(0, w) ∈ Dk(F ). By Lemma 2.1.9, all the irreducible components ofDk(F )
have dimension exactly kn−(k−1)p+r. Obviously, {s = 0} is a manifold
of dimension r. Thus, at every point, it consists of just one component of
dimension r. Now the result follows directly from Proposition A.0.7.

We finish this section with an example of a corank 2 map germ (ex-
tracted from [MNB08]), to which we will come back several times in order
to illustrate different constructions.

Example 2.1.11. Let f : (C2, 0)→ (C3, 0) be given by

(x, y) 7→ (x2, y2, x3 + y3 + xy).
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Figure 2.2: Image of the map germ in Example 2.1.11.

Computing the double point space of f as explained in Proposition-
Definition 2.1.5 can be quite difficult. However, as we will see in Theorem
3.1.12, there is a straightforward way to calculate double point spaces (the
details for this particular map are given in Example 3.1.2). The resulting
ideal I2(f) is generated in O2n by

g1 = (x+ x′)(x− x′), g4 = (y + y′)(2x2 + 2xx′ + 2x′2 + y + y′),

g2 = (y + y′)(y − y′), g5 = (x+ x′)(x+ x′ + 2y2 + 2yy′ + 2y′2),

g3 = (x+ x′)(y + y′), g6 = (x− x′)(2x2 + 2xx′ + 2x′2 + y + y′)+

+ (y − y′)(x+ x′ + 2y2 + 2yy′ + 2y′2).

The reason why we factorize the generators this way will become clear in
Example 2.4.4.

2.2 Multiple points of corank 1 monogerms
In [Mon87] Mond introduces some ideals Ik(f) for corank 1 map germs
which define the multiple point spaces. These ideals are obtained directly
from the original map, with no need to take any unfolding. Moreover,
in [MM89] Marar and Mond show that stability and finite determinacy of
corank 1 map germs f : (Cn, 0)→ (Cp, 0), n < p, can be characterized by
the geometry of the multiple point spaces.

Let f : (Cn, 0) → (Cp, 0) be a corank 1 map germ with n ≤ p. Up to
A-equivalence, f can be written in the form

(x, y) 7→ (x, fn(x, y), . . . , fp(x, y)),

with x ∈ Cn−1 and y ∈ C. We can think of f(x, y) as a (n− 1)-parameter
family of functions of one variable fx(y) = (fn(x, y), . . . , fp(x, y)). Em-
bedding D2(f) in Cn−1 × C2 (see Proposition 2.1.8), a point (x, y, y′) is
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a double point if and only if the coefficients of the Newton interpolating
polynomial of degree 1 for the points (y, fj,x(y)), (y′, fj,x(y′)) are equal to
0, for all n ≤ j ≤ p. These coefficients, the generators of Mond’s double
point ideal I2(f), are the divided differences

fj,x[y, y′] =
fj(x, y)− fj(x, y′)

y − y′
.

Similarly, the triple points are (x, y, y′, y′′) ∈ Cn−1 × C3 such that every
coefficient of the Newton interpolating polynomial of degree 2 for the
points (y, fj,x(y)), (y′, fj,x(y′)), (y′′, fj,x(y′′)) are equal to 0 for every n ≤
j ≤ p. These coefficients are the divided differences fj,x[y, y′] and the
iterated divided differences

fj,x[y, y′, y′′] =
fj,x[y, y′]− fj,x[y, y′′]

y′ − y′′
.

Hence, Mond’s triple point ideal is

I3(f) = 〈fj,x[y, y′], fj,x[y, y′, y′′] | n ≤ j ≤ p〉.

Higher order k-tuple ideals Ik(f) are defined analogously.

Remark 2.2.1. As observed by Marar and Mond [MM89], the coefficients
of the Lagrange interpolation polynomial provide another set of generators
for the ideal defining the k-tuple points, with the advantage that they are
invariant under the action of the symmetric group Sk.

Proposition 2.2.2. [MM89, Prop. 2.16] For any corank 1 map germ
f : (Cn, 0)→ (Cp, 0), the ideal Ik(f) defines Dk(f).

Theorem 2.2.3. [MM89, Thm. 2.14] Let f : (Cn, 0) → (Cp, 0) be a
finite corank 1 map, with n < p. Then

1. f is stable if and only if Dk(f) is empty or smooth of dimension
p− k(p− n), for every k ≥ 2.

2. f is finitely determined if and only if Dk(f) is empty or an ICIS of
dimension p − k(p − n), for all k satisfying p − k(p − n) ≥ 0, and
Dk(f) ⊆ {0} for p− k(p− n) < 0.

We will show in Proposition 3.2.3 that the double point locus of a
stable map may contain singularities, provided that the map has some
corank ≥ 2 points. Thus, we can not expect a criterion so simple for the
corank ≥ 2 case.

The previous theorem motivates the following definition, due to Kevin
Houston [Hou94]:

Definition 2.2.4. For any f : X → Y the k-multiple point space Dk(f)
is dimensionally correct if it is empty or has dimension kn− (k − 1)p.

The following is still, to our knowledge, an open question: Is it true
that the multiple point spaces are Cohen Macaulay if they are dimension-
ally correct? See the Open Problem 3 for a more detailed explanation.
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2.3 Source multiple points
Definition 2.3.1. Let f : U → V and let p : Dk(f)→ U be the restriction
to Dk(f) of the projection Uk → U on the first coordinate. The source
k-multiple point space is the complex space defined by the 0-Fitting
ideal sheaf (Definition A.3.1) of the push-forward module p∗ODk(f), that
is:

Dk
1 (f) = V (F0(p∗ODk(f))).

In the case k = 2 we write D(f) = D2
1(f). From Proposition B.1.2, we

obtain the set-theoretical equality

Dk
1 (f) = p(Dk(f)).

The definition goes analogously for multigerms f : (Cn, S) → (Cp, 0),
that is, Dk

1 (f) = V (F0(p∗ODk(f))). For any map f : U → V and any
point z ∈ U , we have D(f)z = D(fz).

Remark 2.3.2. Computing the ideal F0(p∗ODk(f)) which defines the
source double points of a map germ f : (Cn, 0) → (Cp, 0) can be quite
involved. However, for double points in the case p = n + 1, if D2(f)
is dimensionally correct, then p : D2(f) → Cn is a map from a Cohen
Macaulay space of dimension n− 1 to Cn (Lemma 3.1.10). Then we can
proceed as explained in Section 2.5.

Example 2.3.3. Let f : (C2, 0)→ (C3, 0), as in Example 2.1.11, be given
by

(x, y) 7→ (x2, y2, x3 + y3 + xy).

The projection p : D2(f) → (C2, 0), is just (x, y, x′, y′) 7→ (x, y). The
ideal F0(p∗OD2(f)) is generated by the determinant of the following pre-
sentation matrix of p∗OD2(f), obtained by means of the Singular libary
mentioned in Remark 2.5.8 :

y −1 0 0 0 0
0 y 0 0 −1 0

2xy + x3 0 y − x2 x− x2y −x2 −2
0 x2 0 y + x2 1 0
0 x2y 0 x2y y 1
x2 −x3 x+ x2y −xy −x+ x2y 2y + x2


Thus, the source double point space of f is the zero set of

F0(p∗OD2(f)) = 〈(x3 + y3)(x+ y2)(y + x2)〉.

In Corollary 3.2.9 we will show that for generic maps germs f : (Cn, 0)→
(Cn+1, 0), the space D(f) is a reduced hypersurface. This will pro-
vide a useful criterion of finite determinacy for corank 2 map germs
f : (C2, 0) → (C3, 0) (Corollary 5.1.3): f is finitely determined if and
only if D(f) is a reduced curve.
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Remark 2.3.4. There is another way to define multiple point spaces
in the source, which consists in taking the preimage by f of the target
multiple point space Mk(f) (Section 2.5). This is the approach used
by Kleiman [Kle81] and others (notation caution: Kleiman denotes our
Mk(f) by Nk, and denotes by Mk the space f−1(Mk(f))). We make use
of this space in Section 5.3. The relation between both structures is, to
our knowledge, still unclear (see Open Problem 6).

2.4 Quotient multiple points
Let Sk be the permutation group of k points, acting onXk coordinatewise.

Lemma 2.4.1. For any map f : X → Y , the ideal sheaf I k(f) is Sk-
invariant.

Proof. Let F : S × X → Y be an unfolding of f of the form F (s, x) =
(s, fs(x)), then h ∈ I k(F ) if and only if h vanishes on all points

(s(1), x(1), . . . , s(k), x(k)) ∈ (S ×X)(k)

satisfying F (s(1), x(1)) = F (s(i), x(i)), for i = 2, . . . , k. It is obvious that
I k(F ) is Sk-invariant. The claim follows, since the ideal I k(f) is ob-
tained by adding to I k(F ) the ideal 〈s(1), . . . , s(k)〉, which is also Sk-
invariant.

Definition 2.4.2. For any map f : U → V , we define its quotient mul-
tiple point space as the quotient space Dk(f)/Sk of the complex space
Dk(f) by the action of the permutation group Sk (see [Fis76, 1.26]). The
definition extends to germs taking representatives.

The underlying space of Dk(f)/Sk is the quotient, as a topological
space, of Dk(f) by Sk. The structure sheaf ODk(F )/Sk is given locally at
a class [w] ∈ Dk(f)/Sk by the invariant subalgebra:

ODk(F )/Sk,[w] = (
⊕
w′∈[w]

ODk(F ),w′)
Sk ,

Observe that since OX/S2,[w] is a subalgebra of
⊕

w′∈[w]ODk(F ),w′ , then
X/S2 is reduced at [w] if X is reduced at all w′ ∈ [w].

How to compute Dk(f)/Sk

Let Dk(f) = V (Ik(f)) be the k-multiple point space of a monogerm
f : (Cn, 0)→ (Cp, 0). To embedD2(f)/Sk in some Cm, we have to express
the invariant algebra

ODk(f)/Sk,0 = OSkkn/(I
k(f)Sk).

as an analytic algebra Om/J . This can be done as follows:
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1. Find a system of invariants αi, 1 ≤ i ≤ kn, and some funtions
βj , 1 ≤ j ≤ l, such that

Onk =
⊕

βjα
∗Okn,

where α : Ckn → Ckn is the map with coordinate functions α1, . . . , αkn
(see Theorem B.2.3). Let m = kn+ l and define

ψ : Ckn → Cm

as the map with coordinate functions αi and βj . It is immediate
that ψ∗ : Om → OSkkn is an epimorphism.

2. Obtain the ideal (Ik(f))Sk = Ik(f) ∩ OSkkn. If Ik(f) is generated
by h1, . . . , hr then, from Lemma B.2.8 it follows that (Ik(f))Sk is
generated in OSkkn by the elements

(βjhi)
#, j = 1, . . . , l, i = 1, . . . , r.

3. Now ODk(f)/Sk
∼= Om/J , with J = (ψ∗)−1((Ik(f))Sk).

In the following examples we compute the embedding of D2(f)/S2 for
two given monogerms, one of corank 1 and the other of corank 2.

Example 2.4.3. Let f : (C2, 0) → (C3, 0) be the corank 1 map germ
given by

(x, y) 7→ (x, xy + y3, xy2 + cy4), c ∈ C.

As we saw in Section 2.2, D2(f) embeds in C×C2 (variables x, y, y′) and
the ideal I2(f) is generated by

g1 = x+ y2 + yy′ + y′2, and

g2 = x(y + y′) + c(y3 + y2y′ + yy′2 + y′3).

Observe that after the embedding in C × C2, the permutation group
S2 acts only in the variables y, y′. Since g1 and g2 are both S2-invariant,
from Lemma B.2.8 we get that I2(f)S2 is precisely the ideal generated by
g1, g2 in OS2

3 . Let ψ : (C3, 0)→ (C3, 0) be given by

(x, y, y′) 7→ (x, y + y′, (y − y′)2).

From Example B.3.4 it follows that ψ∗ : O3 → OS2
3 is an isomorphism.

Therefore J = ψ∗(I2(f)S2) is just the ideal generated by the expressions
of g1 and g2 in the variables x, σ1 = (y + y′) and σ2 = (y − y′)2. That is,
D2(f)/S2

∼= V (J), where

J = 〈4x+ 3σ2
1 + σ2, 2xσ1 + c(σ3

1 + σ1σ2)〉.
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Example 2.4.4. Let f : (C2, 0)→ (C3, 0), as in Example 2.1.11, be given
by

(x, y) 7→ (x2, y2, x3 + y3 + xy).

I2(f) is generated by the germs g1, . . . , g6 given in Example 2.1.11. The
germs g3, g4 and g5 are symmetric whereas g1, g2 and g6 are antisymmetric.
Thus, from Example B.3.9 it follows that I2(f)S2 is generated by g1, g2, g6

and (x− x′)gj , (y − y′)gj , j = 3, 4, 5. Let ψ : C4 → C5 be given by

(x, y, x′, y′) 7→ (x+ x′, (x− x′)2, y + y′, (y − y′)2, (x− x′)(y − y′)).

From Lemma B.3.2 and Lemma B.3.3, it follows that morphism

ψ∗ : O5 → OS2
4

is an epimorphism with

kerψ∗ = 〈r2
12 − r11r22〉,

where s1, s2, r11, r12 and r22 are the variables in O5. To compute J =
ψ∗(I2(f)S2) we have to add kerψ∗ to the ideal generated by the expres-
sions of the generators of I2(f)S2 in the variables s1 = x+x′, s2 = y+ y′,
r11 = (x − x′)2,, r12 = (x − x′)(y − y′) r22 = (y − y′)2 and . Therefore,
D2(f)/S2

∼= V (J), where J is the ideal generated by

h1 = s1r11, h6 = 2s2
1 + s1r22,

h2 = s1s2, h7 = 2s2
2 + s2r11,

h3 = s1r12, h8 = r2
11 + r22r12 + 2r11s2,

h4 = s2r22, h9 = r2
22 + r11r12 + 2s1r22,

h5 = s2r12, h10 = r2
12 − r11r22.

The explicit method to compute Dk(f)/Sk given above yields the next
result:

Proposition 2.4.5. Let f : (Cn, 0)→ (Cp, 0) be a corank 1 map germ. If
dimDk(f) = kn− (k − 1)p, then Dk(f)/Sk is a complete intersection.

Proof. By Proposition 2.1.8, Dk(f) embeds in Cn−1 ×Ck and the action
Sk induces by permutation of the coordinates in Ck. The group Sk acting
on Ck by permutation of coordinates is a reflection group (i.e. generated
by reflections). Therefore, Shephard-Todd’s Theorem B.2.5 implies that
Ck/Sk is a manifold of dimension k. From Remark 2.2.1, it follows that
the ideal defining Dk(f) in Cn−1 × Ck can be generated by exactly (k −
1)(p − n + 1) Sk-invariant germs gi in On−1+k. From Lemma B.2.8 it
follows that Dk(f)/Sk is isomorphic to the subspace of Cn−1 × Ck/Sk
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given by the vanishing of the expressions of gi in the symmetric variables.
We have (k−1)(p−n+1) generators in regular ring of dimension n−1+k,
and the claim follows.

Remark 2.4.6. In the corank ≥ 2 case the situation is more complicated.
We can not embeed Dk(f)/Sk in Cn−1 × Ck, where the group acts as a
reflection group. Therefore, the ambient space Ckn/Sk, where we embeed
Dk(f)/Sk, is not smooth anymore (it is, however, a Cohen Macaulay
space of dimension kn, by Corollary B.2.4). Moreover, we can not expect
the generators of Ik(f) to be Sk-invariant. Thus, when we apply Lemma
B.2.8, the number of generators of (Ik(f))Sk grows substantially (see Ex-
ample 2.4.4, were we obtained 9 generators of (Ik(f))Sk from a collection
of 6 generators of Ik(f)).

2.5 Target multiple points

The definition of the target multiple point space we use is due to Mond
and Pellikaan [MP89] and also Kleiman [Kle81]. This definition, unlike
the source and quotient multiple point spaces we introduced before, is
independent of the multiple point structure Dk(f). As a matter of fact,
the relations between these two approaches are not well known (see Open
Problem 6). The idea is simple: Given a map f : X → Y , a k-multiple
point in the target is a point y ∈ Y which has at least k preimages
(counting with multiplicity). As Proposition A.3.2 shows, the adequate
tool for this definition are the Fitting ideal sheaves of the pushforward
module f∗OX .

Definition 2.5.1. The k-multiple point space of f : X → Y in the
target is the complex space

Mk(f) = V (Fk−1(f∗OX)).

In the case k = 2, we write f(D(f)) = M2(f). For a multigerm f : (Cn, S)→
(Cp, 0), the k-multiple point space in the target isMk(f) = V (Fk−1(f∗OCn,S)).
Of course, this space agrees with the germ at 0 of the k-multiple point
space in the target of any representative defined in a small enough neigh-
borhood of S.

Observe that the terminology f(D(f)) is just a notation, we are not
exactly taking the scheme-theoretical image of the complex space D(f)
by the finite morphism f . However, we will see that the underlying set (or
set germ) of f(D(f)) is precisely the image of D(f) by f (Remark 2.6.1).

Proposition 2.5.2. [MP89, Thm. 3.4] If p = n + 1 and f is a generi-
cally one-to-one, then f(D(f)) is determinantal (in particular, it is Cohen
Macaulay).
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Algorithms to compute presentation matrices
Here we discuss how to compute the presentation matrix of the module
f∗OX for a finite map f : X → Cn+1, when X is a Cohen Macaulay space
of dimension n. First we explain an algorithm, due to Mond and Pel-
likaan [MP89], to compute such a presentation matrix. It turns out that
the algorithm has some issues when restricted to work with polynomial
data. We introduce a slight improvement of the algorithm, obtained in
collaboration with M. E. Hernandes and A. J. Miranda, which behaves
better for computational purposes.

Mond-Pellikaan’s algorithm consists briefly on this: Let f1, . . . , fn+1

be the coordinate functions of f . After a generic linear change of coordi-
nates in the target, we may assume that the map

f̃ = (f1, . . . fn) : X → (Cn, 0)

is finite. If g1, . . . gh are generators of f̃∗OX , then they are generators
of f∗OX as well. Therefore, we obtain an epimorphism ψ : Orn+1 → OX
mapping the canonical vector ei to the generator gi. For any 1 ≤ i ≤ h,
there exist germs aij ∈ On, 1 ≤ j ≤ h satisfying

fn+1gi =

h∑
j=1

f̃∗aijgj .

If we denote by X1, . . . , Xn+1 the variables in Cn+1 and δij is the Kro-
necker’s delta function, then the matrix M(f) with entries

aij(X1, . . . , Xn)− δijXn+1

is a presentation matrix for f∗OX .

Example 2.5.3. Let f : (C2, 0)→ (C3, 0), as in Example 2.1.11, be given
by

(x, y) 7→ (x2, y2, x3 + y3 + xy).

We have f̃(x, y) = (x2, y2) and the pushforward module f̃∗O2 is generated
by g1 = 1, g1 = x, g3 = y, g4 = xy. If we denote by X,Y, Z the target
coordinates, then the presentation matrix of f∗O2 obtained by Mond-
Pellikaan’s algorithm is

−Z X2 Y 2 XY
X −Z Y Y 2

Y X −Z X2

1 Y X −Z

 .

We obtain the following Fitting ideals:

1. F0(f∗O2) = 〈X2Y 2 − 2XY Z2 + Z4 − 2X4Y − 2XY 4 − 8X2Y 2Z −
2X3Z2 − 2Y 3Z2 + X6 − 2X3Y 3 + Y 6〉, which defines the image of
f .
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2. F1(f∗O2) = 〈Y 2 +XZ,Z+XY,−Y +X2〉∩〈X+Y −Z, Y 2−Y Z+
Z2〉∩ 〈Y +Z,X+Z〉∩ 〈−X+Y 2, Z+XY,X2 +Y Z〉, which defines
the target double point space of f .

3. F2(f∗O2) = 〈X,Y, Z〉, which defines the target triple point space.

The rest of this section is a collaboration with M. E. Hernandes, A.
J. Miranda [HMPS15]. We call a Mond-Pellikaan matrix (M-P matrix for
short) the matrix M(f) with entries aij(X1, . . . , Xn)− δijXn+1 of Mond-
Pellikaan’s algorithm. It is obvious that, if f̃ is finite, then a M-P matrix
with entries in On+1 can be obtained. However, to make an computer im-
plementation of Mond-Pellikaan’s algorithm, we have to face the fact that
most commutative algebra software (for example Singular [WGPS15])
only deal with polynomial data. The problem, as the following example
shows, is that certain maps do not admit a P-M matrix with polynomial
entries (even if they do admit very easy polynomial presentations!).

Example 2.5.4. Let be f : (C2, 0)→ (C3, 0) the map germ given by

(x, y) 7→ (xy, x+ y + x2, x).

We have f̃(x, y) = (xy, x + y + x2). A minimal system of generators of
f̃∗O2 is g1 = 1, g2 = y. If f̃∗O2 admits a polynomial M-P matrix, then
there exist polynomials a1, a2 ∈ C[X1, X2], satisfying

x = f̃∗a1 ·g1 + f̃∗a2 ·g2 = a1(xy, x+y+x2) ·1+a2(xy, x+y+x2) ·y. (2.1)

Since {1, x, y} is a basis for the C-vector space C[x, y]/f̃∗m, then x does
not belong to the submodule of f∗C[x, y] generated by g1 and g2. We con-
clude that the equation above cannot be satisfied by polynomial elements
a1 and a2, and thus there is no M-P type presentation for f∗O2.

Although the previous example does not admit a polynomial M-P ma-
trix, one can check (or just wait to Theorem 2.5.6) that the following
polynomial matrix is, with respect to the generators 1 and y, a presenta-
tion of f∗O2:

λ =

(
Y · (1 + Y )−X2 1

−X1 Y

)
.

Thus, we must consider a different, wider than M-P, class of matrices
for our presentations.

Definition 2.5.5. Let f : X → (Cn+1, 0) be map germ, with X = V (I)
a germ of n-dimensional Cohen Macaulay space and let g1, . . . , gh be a
minimal set of generators of f̃∗OX . For any h × h matrix λ with entries
in On+1, we define the following conditions:

C1.
h∑
i=1

f∗λij · gi ≡ 0 mod I, j = 1, . . . , h.
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C2. det (λ(0, Xn+1)− λ(0, 0)) = Xh
n+1 · u(Xn+1), u(0) 6= 0.

Observe that C1 and C2 hold for all M-P matrices.

Theorem 2.5.6. In the conditions above, every matrix λ satisfying C1
and C2 is a presentation matrix of f∗On+1.

Proof. We follow the steps in the proof of Mond-Pellikaan algorithm.
Consider λ : Ohn+1 → Ohn+1 the homomorphism associated to the

matrix Λ and ψ : Ohn+1 → OX such that ψ(ei) = gi where {ei; i =
1, . . . , h} is the canonical basis for Ohn+1. It is immediate that C1 implies
Im λ ⊆ Ker ψ. Since ψ is surjective, it suffices to show Cokerλ ∼= OX to
prove the desired exactness.

We embed X ⊂ X × (C, 0) and define the map germ

F : X × (C, 0) −→ (Cn+1, 0)
(x, t) 7−→ (f1, . . . , fn+1 + t).

Since g1, . . . , gh generate the module f̃∗On, it is immediate that they
generate F∗On+1 as well. For j = 1, . . . , h, we have∑h

i=1 F
∗Λij · gi =

∑h
i=1(Λij(f1, . . . , fn+1 + t)) · gi

=
∑h
i=1(Λij(f1, . . . , fn+1)) · gi+

+
∑h
i=1(

∑∞
k=1

1
k!
∂kΛij
∂Y k

(f1, . . . , fn+1)tk) · gi
= t

∑h
i=1(

∑∞
k=1

1
k!
∂kΛij
∂Y k

(f1, . . . , fn+1)tk−1) · gi.

Let R be the h× h matrix with entries

Rij :=

∞∑
k=1

1

k!
(f∗

∂kΛij
∂Y k

)tk−1.

We claim that R is invertible in OX×(C,0). This is equivalent to say that
det(R) does not vanish at the origin of X × (C, 0). By construction of R,
and since f is a finite map taking the origin of X to the origin of Cn+1,
this is equivalent to say that det(

∂Λij
∂Y (0, 0)) 6= 0. The claim follows, since

condition C2 tells us

det(
∂Λij
∂Y

(0, 0)) = det( lim
Y→0

Λij(0, Y )− Λij(0, 0)

Y
) = u(0) 6= 0.

Since OX×(C,0) is Cohen Macaulay, it is generated freely by g1, . . . , gh
via F . Therefore, we can define a map

ϕ : OX×(C,0) → OX×(C,0),

by extending gj 7→
∑h
i=1 F

∗Λij · gi linearly. By construction, we have the
matrix equality ϕ(g1)

...
ϕ(gh)

 = t

 R11 · · · R1h

...
. . .

...
Rh1 · · · Rhh

 ·
 g1

...
gh

 .
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Since R is invertible and g1, . . . , gh generate OX×(C,0) as a ring, we
obtain Im(ϕ) = 〈t〉 ⊂ OX×(C,0). Since {g1, . . . , gh} is a free On+1-basis,
we have an isomorphism η : Ohn+1 → OX×(C,0) given by

(a1, . . . , ah) 7→
h∑
i=1

F ∗aigi

The following diagram comutes:

Ohn+1

η

��

λ // Ohn+1

ψ //

η

��

Cokerλ // 0

OX×(C,0)

OO

ϕ // OX×(C,0)

OO

// Cokerϕ // 0.

Thus, we obtain Cokerλ ∼= Cokerϕ =
OX×(C,0)
im(ϕ) =

OX×(C,0)
〈t〉

∼= O(X ,0), as
desired.

The following easy proposition shows that, in a computationally rea-
sonable setting, matrices satisfying C1 and C2 exist. We assume that f
is a polynomial map taking the origin to the origin, restricted to a vari-
ety X = V (I) which contains the origin. Assume that I is generated by
polynomials, and let C[X ] be the affine coordinate ring of X and m its
maximal ideal at the origin. We denote by C[X ]m the localization of C[X ]
at m.

Proposition 2.5.7. With the previous notations, if g1, . . . , gh are rational
functions generating f̃∗(C[X ]m), then f admits a matrix with polynomial
entries satisfying C1 and C2.

Proof. The procedure is very similar to the construction of a M-P matrix:
Denote by X1, . . . , Xn+1 the variables in Cn+1. By hypothesis, there exist
aij ∈ C[X1, . . . , Xn] and bij ∈ C[X1, . . . , Xn] \m, 1 ≤ j ≤ h, satisfying

fn+1gi =

h∑
j=1

f̃∗(
aij
bij

)gj .

Now let Bi =
∏h
j=1 bij ∈ C[X1, . . . , Xn] \ m and let M(f) be the matrix

with entries
aij(X1, . . . , Xn)− δijBiXn+1.

The matrix M(f) satisfies C1 and C2 immediately.

Remark 2.5.8. At the webpage of A. J. Miranda [Mir] one can find a
Singular library to compute presentation matrices based on these re-
sults.
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2.6 A diagram of multiple points
For any f : X → Y , there is a commutative diagram

Dk(f) −−−−→ Dk(f)/Sky y
Dk

1 (f) −−−−→ Mk(f)

with arrows as follows:
The top arrow Dk(f) → Dk(f)/Sk is the quotient map. It is always

surjective and it is generically k!-to-one whenever the k-multiple points of
f are dense in Dk(f).

The left arrow p : Dk(f) → Dk
1 (f) is the restriction of the projection

on the first coordinate (see Definition 2.3.1). It is always surjective and
it is generically (k − 1)!-to-one whenever the strict k-multiple points of f
are dense in Dk(f).

The bottom arrow f : Dk
1 (f)→Mk(f) is the corresponding restriction

of f . It is generically k-to-one whenever the strict k-multiple points of f
are dense inDk(f). Observe that the fact that the target of this restriction
isMk(f) needs a proof: Assume first that f is stable. Therefore the space
Dk

1 (f) is the closure of the projection of all strict k-multiple points of f .
For every k-multiple strict point x ∈ X, we have dimCOX,x/f∗mf(x) > 0.
Since there are at least k different points in f−1(f(x)), the claim follows
by Proposition A.3.2. If f is not stable, then we take, around f−1(f(x)), a
local stable unfolding of the form F (s, x) = (s, fs(x)). The claim holds for
F and, since all these spaces behave well under deformations, the result
follows.

The right arrow Dk(f)/Sk → f(Dk
1 (f)) is the map that the Sk-

compatible map f ◦ p induces on the quotient. It is generically one-to-one
whenever the strict k-multiple points of f are dense in Dk(f).

Remark 2.6.1. If k = 2, then the bottom and right arrows are also
surjective. This follows immediately from the first item of Theorem 3.2.1
and Proposition A.3.2, just counting multiplicities: At singular points
x ∈ X, we have multiplicity dimCOCn,x/f

∗mf(x) ≥ 2. At strict double
points, there are at least two different preimages of f(x), and every one of
them has multiplicity ≥ 1. For k ≥ 2, the situation is more complicated
(see Open Problem 5).
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Chapter 3

Double points

In the previous chapter we have shown that there is a unique multiple
point structure satisfying some reasonable conditions. We have also shown
how to compute these structure by taking a stable unfolding and slicing
its strict k-multiple point space. However, since stable unfoldings may
need a big number of parameters (see Example 2.1.7), this is not a prac-
tical approach for the computation of k-multiple points, and has to be
considered just as an existence and unicity property. This chapter is de-
voted to double points, which we do know how to compute in an effective
way. In [Mon87], Mond gives an explicit, easily computable set of genera-
tors of a double point ideal for any map germ f : (Cn, 0)→ (Cp, 0). This
structure can be obtained without unfolding the map f .

In the first section of this chapter we show: a) How Mond’s local
construction glues to a global scheme for holomorphic maps. b) The dou-
ble point structure obtained satisfies conditions M1 and M2, and thus it
agrees with the double point structure of Section 2. This extends previous
results about the relation of Mond’s structure and the standard one (see
Proposition 2.2.2 and also [Alt11, Section 2.1.2]).

In the second section we use the insight provided by the explicit struc-
ture to obtain properties of the double point space of a map.

In the third section we consider an alternative multiple point structure.
We give criteria for the two structures to agree and, finally, show that the
new structure does not satisfy condition M2.

3.1 The double point ideal sheaf

The following definition is due to Mond [Mon87]:

Proposition-Definition 3.1.1. For any map germ f : (Cn, 0)→ (Cp, 0),
the germs fj(x)−fj(x′), 1 ≤ j ≤ p vanish on the diagonal ∆(n, 2). There-
fore, they are contained in the ideal generated by xi − x′i, 1 ≤ i ≤ n. In

31
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other words, for all j ≤ p, there exist some function germs αij ∈ O2n,
satisfying

fj(x)− fj(x′) =

n∑
i=1

αji(x, x
′)(xi − x′i).

This can be expressed as the matrix equality

f(x)− f(x′) = α(x− x′),

where α represents the p×n matrix (αji) and x−x′ and f(x)− f(x′) are
taken as column vectors of sizes n and p respectively. Mond’s double
point ideal I2(f) is the sum

I2(f) = P (f, 2) + 〈n× n minors of α〉.

The matrix α may not be unique, but I2(f) does not depend on the choice
of α [Mon87, Prop 3.1].

Example 3.1.2. Let f : (C2, 0)→ (C3, 0), as in Example 2.1.11, be given
by

(x, y) 7→ (x2, y2, x3 + y3 + xy).

A solution for the equation f(x)− f(x′) = α(x− x′) is x2 − x′2
y2 − y′2

x3 + y3 + xy − x′3 − y′3 − x′y′

 =

=

 x+ x′ 0
0 y + y′

x2 + xx′ + x′2 + y y2 + yy′ + y′2 + x′

( x− x′
y − y′

)
.

The ideal generated by the 2 × 2 minors of α and the germs fj(x) −
fj(x

′), i = 1, 2, 3 is precisely the ideal I2(f) in Example 2.1.11.

Remark 3.1.3. There are multiple ways to obtain a matrix α as above.
Besides the ones given here, in Section B.3 we give further expressions for
α, with the advantage of providing the expression of α in terms of some
given symmetric functions (see Definition B.3.1 for details).

a) Let wi = (x1, . . . , xn−i, x
′
n−i+1, . . . , x

′
n),i = 0, . . . , n. We can add

and subtract terms to obtain f(x) − f(x′) = f(w0) − f(w1) + f(w1) −
· · · − f(wn−1) + f(wn−1)− f(wn). Since xi − x′i divides f(wi−1)− f(wi)
we can take the holomorphic functions

αji(x, x
′) =

fj(w
i−1)− fj(wi)
xi − x′i

.
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b) From the sequence of equalities

fj(x)− fj(x′) =

∫ 1

0

d

dt
{fj(tx+ (1− t)x′)}dt

=

∫ 1

0

n∑
i=1

∂fj
∂xi

(tx+ (1− t)x′)(xi − x′i)dt

=

n∑
i=1

(∫ 1

0

∂fj
∂xi

(tx+ (1− t)x′)dt
)

(xi − x′i),

follows that we can take

αji(x, x
′) =

∫ 1

0

∂fj
∂xi

(tx+ (1− t)x′)dt.

Lemma 3.1.4. Let f : (Cn, 0)→ (Cp, 0) be a map germ and let α be any
matrix satisfying f(x)− f(x′) = α(x, x′)(x− x′), then α(x, x) = dfx.

Proof. Let ei be the i-th vector of the canonical basis of Cn. Then

αji(x, x) = lim
λ→0

αji(x, x+ λei) = lim
λ→0

fj(x)− fj(x+ λei)

−λ
=
∂fj
∂xi

.

Now we show that I2(f) behaves well under A-equivalence.

Lemma 3.1.5. Let f and g be A-equivalent map germs with f = ψ◦g◦ϕ.
Then, (ϕ× ϕ)∗(I2(f)) = I2(g).

Proof. We proceed in two steps. First we show that if f = ψ ◦ g, then
I2(f) equals I2(g). On one hand we have

P (f, 2) = (f×f)∗I∆(p,2) = (g×g)∗(ψ×ψ)∗I∆(p,2) = (g×g)∗I∆(p,2) = P (g, 2).

On the other hand, take a matrix α satisfying

g(x)− g(x′) = α(x, x′)(x− x′)

and a matrix M satisfying

ψ(y)− ψ(y′) = M(y, y′)(y − y′).

We obtain

f(x)− f(x′) = ψ ◦ g(x)− ψ ◦ g(x′) = M(g(x), g(x′))(g(x)− g(x′))

= M(g(x), g(x′))α(x, x′)(x− x′) = β(x, x′)(x− x′),

where β = (M ◦ (g × g)) · α. The matrix M ◦ (g × g) is locally invertible,
since M(0, 0) is just the differential of ψ at the origin. It follows that the
n× n minors of α and β generate the same ideal.
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Second, assume f = g ◦ϕ, then obviously (ϕ×ϕ)∗(P (f, 2)) = P (g, 2).
Let Q be a matrix satisfying

ϕ(x)− ϕ(x′) = Q(x, x′)(x− x′).

We obtain

f(x)− f(x′) = α(ϕ(x), ϕ(x′))(ϕ(x)− ϕ(x′))

= α(ϕ(x), ϕ(x′))(Q(x, x′)(x− x′)) = β(x, x′)(x− x′),

where β = (α ◦ (ϕ × ϕ)) · Q. Since Q(0, 0) is the differential of ϕ at the
origin, the matrix Q is locally invertible. Therefore, the ideal generated
by the minors of β equals the ideal generated by the minors of α◦ (ϕ×ϕ),
which is the image under (ϕ×ϕ)∗ of the ideal generated by the minors of
α, as desired.

Given a map f : X → Y and a point x ∈ X, we take local coordinates
so that the germ fx of f at x is fx = ψ◦f ′◦ϕ−1, for some biholomorphisms
ϕ,ψ and some map germ f ′ : (Cn, 0)→ (Cp, 0). We define the ideal I2(fx)
in OX×X,(x,x) as

I2(fx) = (ϕ× ϕ)∗(I2(f ′)).

Lemma 3.1.5 ensures that this definition does not depend on the choice
of ϕ and ψ. The following lemma allows us to extend the local definition
of I2(f) to a global ideal sheaf of double points.

Lemma 3.1.6. Given a map f : X → Y and a point x ∈ X, denote by
fx the germ of f at x. There exists an open neighborhood U of (x, x), and
some representatives of the generators of I2(f), defined in U , such that
the ideal sheaf I 2(f) on U defined by such representatives satisfies:

1. I 2(f)(x′,x′) = I2(fx′), for any (x′, x′) ∈ ∆(U, 2).

2. I 2(f)(x′,x′′) = P(f, 2)(x′,x′′), for any (x′, x′′) ∈ U \∆(U, 2).

Proof. By Lemma 3.1.5 we can assume X = Cn and Y = Cp, taking
local coordinates. To show (1), we just need to shrink U so that we have
representatives of the germs fj(x)−fj(x′) and of the entries of the matrix
α defined on all U . Therefore, the germs of these representatives at (x′, x′)
produce the corresponding germs and the corresponding matrix around
(x′, x′).

To show (2) we need to show that the ideal generated by the germs
at (x′, x′′) of the n× n minors of α is contained in P(f, 2)(x′,x′′). Let A
be the submatrix of α obtained by picking the rows j1, . . . , jn of α. Let
b be the vector with entries fj1(x) − fj1(x′), . . . , fjn(x) − fjn(x′). Since
(x′, x′′) is not a diagonal point, there exists i ≤ n such that x′i 6= x′′i . Let
A′ be the matrix obtained by substitution of the i-th column of A by b.
By Cramer’s Rule we obtain |A| = |A′|/(x′i − x′′i ) ∈P(f, 2)(x′,x′′)
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The second item of the previous lemma is equivalent to [Alt11, Lemma
2.1.17]

Definition 3.1.7. The sheaf of double points I 2(f) of a map f : X →
Y is defined as the glueing of the following local structures: Off the diag-
onal, I 2(f) is just the restriction of the sheaf P(f, k) to X2 \D(X, 2).
If (x, x) is a diagonal point, then at a neighbourhood of (x, x) the sheaf
is locally given by the double point ideal I2(f) of the germ of f centered
at x.

To glue these local structures, we need to check that, if we compute the
structure locally around some point, then the stalk of this local structure
at any other close enough point agrees with the structure computed at
this other point. This is precisely Lemma 3.1.6

Lemma 3.1.8. Set theoretically, V (I 2(f)) is the union of the strict dou-
ble points of f and the pairs (x, x) such that f is singular at x.

Proof. Let (x, x′), x 6= x′ a non diagonal point in X2. Locally, I 2(f)
equals P(f, 2), which vanishes if and only if (x, x′) is a strict double
point of f . Let (x, x) be a diagonal point in X×X, then P(f, 2) vanishes
trivially at (x, x). Moreover, if α is the matrix in the definition of I2(fx),
by Lemma 3.1.4 α(x, x) equals the differential matrix of f at x. Therefore,
the n× n minors of α vanish at x if and only if f is singular at x.

The following lemma can be obtained easily from results about Cohen-
Macaulay modules contained in [Mat89] (details in [BA01, Lemma 2.5.1]).

Lemma 3.1.9. Let φ : (Cm, 0) → (Cr, 0) be any map germ. Let I be
an ideal in Or and let J = φ∗(I). If Or/I is Cohen-Macaulay and
codimV (I) = codimV (J), then Om/J is Cohen-Macaulay.

With a trivial modification of the proof of [Alt11, Prop. 2.1.11], we
obtain

Lemma 3.1.10. Let f : (Cn, 0)→ (Cp, 0) with n ≤ p. Then

1. If O2n/I
2(f) 6= 0 then dimO2n/I

2(f) ≥ 2n− p.

2. If dimO2n/I
2(f) = 2n− p, then O2n/I

2(f) is Cohen Macaulay.

Proof. We identify the space of n×p matrices A = (aji) and n×1 vectors
(d1, . . . , dn)T with Cnp × Cn. Let I be the ideal in Onp+n generated by
the entries of Ad and the n×n minors of A. Write D = V (I) ⊆ Cnp×Cn.
It turns out that D is a Buchsbaum-Eisenbud variety of complexes (more
precisely D = W (n − 1, 1), with n0 = p, n1 = n and n2 = 1, in the
notation of [dCS81]). By [dCS81, Thm 2.7, Lemma 2.3] D is a Cohen
Macaulay subspace of Cnp × Cn of codimension p.
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Now given a matrix α satisfying f(x)− f(x′) = α(x−x′), we take the
map φ : Cn × Cn → Cnp × Cn given by

(x, x′) 7→ (α(x, x′), (x1 − x′1, . . . , xn − x′n)).

We obtain I2(f) = φ∗(I), and the result follows directly from Lemma
3.1.9

We can patch the local results above to obtain the following

Theorem 3.1.11. For any map f : X → Y , if V (I 2(f)) has dimension
2n− p, then it is a Cohen Macaulay complex space.

Proof. This is a local question at X ×X. Let Z = V (I 2(f)). At strict
double points (x, x′) of f , the stalk I 2(f)(x,x′) agrees with P(f, 2)(x,x′),
which is generated locally by the p function germs fj(x)−fj(x′), 1 ≤ j ≤ p
(where fj is the composition of f with the j-th coordinate function of Y
around f(x)). Thus, Z is locally a complete intersection. Let (x, x) ∈
X ×X be a diagonal point and denote by fx the germ of f at x. Then,
I 2(f)(x,x) = I2(fx) and the result follows directly from Lemma 3.1.10.

Theorem 3.1.12. I 2(f) defines the double point space D2(f).

Proof. By Proposition 2.1.5, we only need to show that I 2 satisfies con-
ditions M1 and M2. To show M1, let f be a stable map and denote by
Z the zero set of I 2(f). By Theorem 3.1.11, Z is a Cohen Macaulay
space of dimension 2n− p. Now we claim that Z is smooth out of the set
C = {(x, x) | x ∈ Σ̂2(f)}. By Lemma 3.1.8, Z consists of strict double
points of f and diagonal points (x, x), such that f is singular at x.

If (x, x) is a diagonal point with x ∈ Σ1(f), then the stalk I 2(f)(x,x)

is the double point ideal I2(fx) of the corank 1 map germ fx defined by f
at x and the claim follows by Proposition 2.2.2. If (x, x′) is a strict double
point of f , then I 2(f) agrees with P(f, 2) locally at (x, x′) by Lemma
3.1.6. The claim follows since P(f, 2) = (f × f)∗I∆(Y,2) and, for every
stable map f , the restriction of f × f to X ×X \∆(X, 2) is transverse to
∆(Y, 2) (Proposition 1.5.9).

By Proposition 1.5.11, the dimension of C is less than or equal to
n − 2(p − n + 3) < 2n − p. Hence, Z is a generically smooth Cohen
Macaulay space and, thus, reduced. This reduces M1 to show that Z is,
set theoretically, the closure of the strict double points of f . In other
words, it suffices to show that there are no irreducible components of Z
consisting of points (x, x) with f singular at x. Assume that there is
such a component. Then, since Z is Cohen Macaulay (and hence equidi-
mensional), the dimension of this component is 2n − p. Therefore, the
dimension of the set of singular points of f is at least 2n − p, which
contradicts Proposition 1.5.11.
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To show M2, first notice that, by Lemma 3.1.5, we can take local
coordinates and assume X = Cn, Y = Cp and that the unfolding is given
by F (s, x) = (s, fs(x)), s ∈ Cr, with f0 = f . Therefore it suffices to show,
for any point (x, x′), the equality

I 2(f)(x,x′) + 〈si, s′i | 1 ≤ i ≤ r〉 = I 2(F )(0,x,0,x′) + 〈si, s′i | 1 ≤ i ≤ r〉,

where both stalks are seen as ideals in OC2(r+n),(0,x,0,x′).
If x 6= x′, then

I 2(F )(0,x,0,x′) = P(F, 2)(0,x,0,x′) = 〈si − s′i〉+ 〈(fs)j(x)− (fs)j(x
′)〉,

I 2(f)(x,x′) = P(f, 2)(x,x′) = 〈fj(x)− fj(x′)〉,

so these two ideals agree modulo 〈si, s′i〉.
If x = x′, I 2(F )(0,x,0,x′) is given by the sum of P(F, 2)(0,x,0,x′) and

the ideal generated by the n+ r-minors of some matrix A, satisfying

F (s, x)− F (s′, x′) = A(s, x, s′, x′)(s− s′, x− x′).

The local form of the unfolding F forces A to be of the form

A(s, x, s′, x′) =

(
Ir 0
∗ αs,s′

)
.

Taking s, s′ = 0 we see that the submatrix αs,s′ satisfies

f(x)− f(x′) = α0,0(x, x′)(x− x′).

Therefore I 2(f)(x,x) is the sum of P(f, 2)(x,x) and the ideal generated by
the n-minors of α(0,0), which are exactly the n+ r-minors of A(0, x, 0, x′).
Again the equality modulo 〈si, s′i〉 is immediate.

The first two items of the followin theorem can also be found in [Lak77]
and [Ron72].

3.2 Properties of the double point space
Putting together Theorem 3.1.12, Theorem 3.1.11, Lemma 3.1.8 and Propo-
sition 2.1.10, we obtain the following

Theorem 3.2.1. For any f : X → Y

1. Set theoretically, D2(f) is the union of the strict double points of f
and the pairs (x, x) such that f is singular at x.

2. D2(f) has dimension ≥ 2n− p at every point. In particular, D2(f)
is empty or dim(D2(f)) ≥ 2n− p

3. If dimD2(f) = 2n− p, then D2(f) is Cohen Macaulay.
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Let (X,OX,x) be a germ of complex space and let m be the maximal
ideal of OX,x. We define the embedding dimension of X as

edimX = dimC m/m2.

It is well known that a germ X is regular if and only if dimX = edimX.

Lemma 3.2.2. Let f : (Cn, 0)→ (Cp, 0), with corank f = k ≥ 2, then

edimD2(f) = n+ k.

Proof. We may assume that f is of the form

(x, y) 7→ (x, fn−k+1(x, y), . . . , fp(x, y)),

with x = x1, . . . , xn−k, y = y1, . . . , yk and fj ∈ m2, where m stands for the
maximal ideal of O2n. Then, the ideal P (f, 2) +m2 is generated by n− k
linearly independent elements in m/m2. Now let α be a matrix satisfying
f(x) − f(x′) = α(x − x′). The rows corresponding to the coordinate
functions fj , n − k + 1 ≤ j ≤ p have all entries in m. Since there are
only n − k remaining rows, it follows that all the n × n minors of α are
contained in mk ⊆ m2. We obtain edimD2(f) = 2n− (n−k) = n+k.

Proposition 3.2.3. Let f : X → Y be stable. Set theoretically, the sin-
gular locus of D2(f) is

{(x, x) ∈ X2 | x ∈ Σ̂2(f)}.

Proof. Let C = {(x, x) ∈ X2 | x ∈ Σ̂2(f)}. In the proof of Theo-
rem 3.1.12 we have shown that V (I 2(f)) is smooth out of C. Since
D2(f) = V (I 2(f)), the singular locus of D2(f) is contained in C. Now
let (x0, x0) ∈ C and let k = corank fx0 ≥ 2. By definition, I 2(f)(x0,x0) =
I2(fx0

), where fx0
stands for the germ of f at x0. From 2.1.9 we obtain

dimD2(f) = 2n − p, and from Lemma 3.2.2, since 2n − p ≤ n < n + k,
the statement follows.

Corollary 3.2.4. If f is stable, then p : D2(f) → D(f) is a normaliza-
tion.

Proof. By Proposition 2.1.10, D2(f) is dimensionally correct. Thus, by
Theorem 3.2.1, it is a Cohen Macaulay space. By Proposition 1.5.11 and
Proposition 3.2.3, the singular locus of D2(f) is empty or has dimension
n−2(p−n+2). Hence dimD2(f)−dimZ ≥ p−n+4 ≥ 4. Thus D2(f) is
a normal complex space by Serre’s criterion [Mat80, Thm. 39]. Since f is
stable, the strict double points are dense in D2(f) and p is genenerically
one-to-one (see Section 2.6).

Corollary 3.2.5. Let f : (Cn, 0)→ (Cp, 0) be finitely determined, then
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1. If 2n− p ≥ 2, then D2(f) is a normalization of D(f).

2. If 2n− p ≥ 1, then D2(f) is reduced.

Proof. By Mather-Gaffney Criterion 1.5.12, there exists a representative
of f defined on a open neighbourhood of the origin U (denoted also by
f), such that f−1(0) = {0} and such that the restriction f |U\{0} is stable.
Then, we have D2(f) = D2(f |U\{0})∪{(0, 0)} and D2(f |U\{0}) is normal
by Corollary 3.2.4. Moreover, D2(f) has dimension 2n− p and is Cohen-
Macaulay by Theorem 3.1.11. By Serre’s criterion [Mat80, Thm. 39], if
dimD2(f) ≥ 1 then it is reduced, and if dimD2(f) ≥ 2 then it is also
normal.

The first item of the previous corollary can be found for n = 3, p = 4
in [Alt11, Prop. 4.3.1]. The two following examples justify the conditions
in the previous corollary:

Example 3.2.6. Let f be any non-stable finitely determined map germ
(C2, 0)→ (C3, 0). We claim thatD2(f) is not normal. By Mather-Gaffney
Criterion 1.5.12, f is stable out of the origin and thus, from Example
1.5.4, it follows dimD2(f) = 1. Now it suffices to show SingD2(f) = {0}.
Assume first corank f = 1, then the claim follows from Theorem 2.2.3,
taking into account that f is not stable. If corank f ≥ 2, then the claim
follows by Lemma 3.2.2.

Example 3.2.7. Let f : (C2, 0)→ (C4, 0) be the map given by

(x, y) 7→ (x2, y2, x3 + xy, y3 + xy)

In Example 4.2.4 we will justify that f is finitely determined and dimD2(f) =
0. But edimD2(f) = 4, by Lemma 3.2.2. It follows that D2(f) is singular
and, since it has dimension equal to 0, it must be non-reduced.

The case p = n+ 1

Proposition 3.2.8. Let f : X → Y with p = n + 1. If f is generically
one-to-one, then D2(f) is empty or a Cohen-Macaulay space of dimension
n− 1.

Proof. If f is finite and generically one-to-one, then the dimension of the
set of strict double points of f is ≤ n−1. By Lemma 1.2.6, the dimension
of the space of pairs (x, x) with f singular at x is ≤ n − 1. The claim
follows immediately from Theorem 3.2.1.

Corollary 3.2.9. Let f : (Cn, 0) → (Cn+1, 0) be generically one-to-one.
Then D(f) is reduced if and only if D2(f) is reduced and the projection
p1 : D2(f)→ (Cn, 0) is generically one-to-one.
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Proof. If f is generically one-to-one, then D2(f) is Cohen-Macaulay by
the previous proposition and the statement follows by Lemma A.3.3.

Lemma 3.2.10. Let F be an r-parametric unfolding of a finitely deter-
mined map germ f : (Cn, 0)→ (Cn+1, 0). Then, the projections of D(F ),
D2(F ), D2(F )/S2 and F (D(F )) to the parameter space Cr are flat defor-
mations of D(f), D2(f), D2(f)/S2 and f(D(f)), respectively.

Proof. If π : (X, 0)→ (C, 0) is a deformation of (X0, 0), with (X, 0) Cohen-
Macaulay, dim(X, 0) = d + r and dim(X0, 0) = d, then the deformation
is flat [Mat89, Thm. 23.1]). This applies to D(F ), D2(F ) and F (D(F )),
since they are Cohen-Macaulay (see Proposition 2.5.2) of dimension n −
1+r and D(f), D2(f) and f(D(f)) have dimension n−1. For D2(F )/S2,
just observe that OD2(F )/S2

is a subalgebra of OD2(F ). If there is no
element in OD2(F ) killing t1, . . . , tr, then there is no such an element in
OD2(F )/S2

neither.

3.3 Another multiple point structure
The present section is devoted to the study of a different approach to
the computation of multiple points. This alternative structure, was in-
troduced for double points by Mond in [Mon87], where he shows that it
agrees with the usual double point structure I2(f), provided that f has
corank 1. We will give some criteria for the equality of both structures of
double points and show one example where they disagree. Therefore, we
conclude that the new structure does not satisfy the properties M1 and
M2.

Recall that the ideal sheaf P(f, k) defines the locus of points

(x(1), . . . , x(k)) ∈ Xk,

such that f(x(1)) = f(x(l)) for all l ≤ k. It is clear that the zeros of
P(f, k) may contain contain some points which are not what we defined
as k-multiple points. Indeed, for any (x(1), . . . , x(k−1)) belonging to the
zeros of P(f, k−1), the point (x(1), . . . , x(k−1), x(k−1)) belongs to P(f, k)
without imposing further conditions. For instance, the zero set of P(f, k)
contains always the small diagonal ∆(X, k). It seems a good idea to erase,
taking multiplicities into account, the trivial copies of the diagonal which
appear in the zeros of P(f, k). Locally, given two subspaces A = V (I) and
B = V (J) of (Cn, 0), to erase B from A corresponds to take the zeros of
the ideal I : J = {h ∈ On | hJ ⊆ I}. This local definition extends to the
corresponding operation between sheaves which, furthermore, preserves
coherence.

Definition 3.3.1. For any map f : X → Y , we define

H k(f) = P(f, k) : ID(X,k).
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We denote by D̃k(f) the complex space defined by H k(f). If f is a map
germ, then we define Hk(f) = P (f, k) : ID(X,k) and D̃k(f) = V (Hk(f)).

Lemma 3.3.2. [Mon87] For any map germ f of corank k:

1. I2(f) ⊆ H2(f),

2. H2(f)k ⊆ I2(f).

In particular, if corank f = 1, then I2(f) = H2(f).

Corollary 3.3.3. For any f : X → Y , the spaces D2(f) and D̃2(f) agree
set-theoretically. At the level of schemes, the ideal sheaf I 2(f) is a sub-
sheaf of H 2(f) and they both agree out of the space

{(x, x) ∈ ∆(X, 2) | x ∈ Σ̂2(f)}.

Proof. Out of the diagonal, both H 2(f) and I 2(f) agree with P(f, 2).
Let (x, x) ∈ D(X, 2) be a diagonal point and let fx be the germ of f at
x. We have the equalities I 2(f)(x,x) = I2(fx) and H 2(f)(x,x) = H2(fx).
The result follows directly from the previous lemma.

Lemma 3.3.4. Let I, J be ideals in a noetherian ring R and let be I =⋂s
i=1 qi be a minimal primary decomposition, so that the associated primes

of R/I are Ass(R/I) = {√q
1
, . . . ,

√
q
s
}. Then, the associated primes of

R/(I : J) satisfy:

Ass(R/(I : J)) ⊆ {√qi | J * qi}.

Proof. We claim that, if q is a primary ideal, then q : J = R if J ⊆ q and√
q : J =

√
q otherwise. From this we obtain the (possibly non minimal)

primary decomposition I : J =
⋂
J 6⊆qi qi : J . The result follows, since

this decomposition can be refined to obtain a minimal one, which will
determine the associated primes of I : J . Now we show the claim. If
J ⊆ q, then q : J = R obviously. On one hand,

√
q ⊆
√
q : J by monotony

of the radical and colon ideal operators. Now assume that there exists an
element a ∈ J \q. Let b ∈

√
q : J , then bna ∈ q. Since q is a primary ideal

and a /∈ q, it follows that bn ∈ √q and, thus, b ∈ √q, as desired.

Example 3.3.5. The inclusion is strict in general. Let q1 = 〈x2, y2〉 and
q2 = 〈x2, xy2, y3, z〉 be primary ideals and J = 〈x, y〉. The associated
primes of I = q1 ∩ q2 are J =

√
q1 and 〈x, y, z〉 =

√
q2, since q1 6⊂ q2 and

q2 6⊂ q1. Moreover, we have J 6⊂ q2. However, the only associated prime
of I : J is J .

Theorem 3.3.6. If f : X → Y satisfies

1. dimD2(f) = 2n− p,

2. dim Σ̂2(f) < 2n− p,
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then I 2(f) = H 2(f).

Proof. By Corollary 3.3.3, the stalks of I 2(f) and H 2(f) agree out of
the space {(x, x) ∈ U × U | x ∈ Σ̂2(f)}, which is a space of dimension
< 2n− p.

Again by Corollary 3.3.3, we have I 2(f) ⊆ H 2(f). Therefore, the
space Z where I 2(f) and H 2(f) disagree is

Z = {(x, x′) ∈ U×U | I 2(f)(x,x′) ( H 2(f)(x,x′)} = supp(H 2(f)/I 2(f)).

Since the sheaf H 2(f)/I 2(f) is coherent , we have

Z = V (A nn(H 2(f)/I 2(f))).

The stalks of this sheaf are

A nn(H 2(f)/I 2(f))(x,x′) = Ann(H 2(f)(x,x′)/I
2(f)(x,x′))

= I 2(f)(x,x′) : H 2(f)(x,x′).

Since the zero set of a sheaf depends only of its stalks, we have the equal-
ity Z = V (I 2(f) : H 2(f)). We already know that Z is contained in
the diagonal. By hypothesis, D2(f) has dimension 2n − p and thus,
by Theorem 3.1.11 and Theorem 3.1.12, D2(f) is Cohen-Macaulay, and
hence equidimensional. The germ of Z at any point (x, x) ∈ ∆(X, 2)
is V (I 2(f)(x,x) : H 2(f)(x,x)) = V (I2(fx) : H2(fx)) and, by Lemma
3.3.4, all the associated primes of I2(fx) : H2(fx) are associated primes of
I2(fx). It follows that Z is equidimensional of dimension 2n−p or empty.
Since we have shown before that Z is a subspace of a space of dimension
< 2n− p, we conclude that Z is empty.

Corollary 3.3.7. Assume dimX = dimY . Then I 2(f) = H 2(f) for
any f : X → Y .

Proof. If D2(f) is empty, then the result is trivial. Otherwise, let n =
dimX. Since f is finite, then dimD2(f) = n and, by Lemma 1.2.6, we
have dim Σ̂2(f) ≤ n− 2.

Corollary 3.3.8. Assume dimY = dimX+1. If f : X → Y is generically
one-to-one, then I2(f) = H2(f).

Proof. As in the previous corollary, if D2(f) is empty, then the result is
trivial. Otherwise, let n = dimX. If the map f is finite and generically
one-to-one, then dimD2(f) = n−1. By Lemma 1.2.6 we have dim Σ̂2(f) ≤
n− 2.

Corollary 3.3.9. Any stable map f satisfies I 2(f) = H 2(f).
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Proof. If D2(f) = ∅, then the statement follows trivially from Lemma
3.3.2. If D2(f) 6= ∅, then the stability of f implies dimD2(f) = 2n − p
(Lemma 2.1.9) and we have dim Σ̂2(f) = n − 2(p − n + 3) < 2n − p
(Proposition 1.5.11).

Corollary 3.3.10. If f : (Cn, 0) → (Cp, 0) is a finitely determined germ
and p < 2n, then I2(f) = H2(f) and both ideals are reduced.

Proof. By the Mather-Gaffney criterion 1.5.12, we can find a represen-
tative f which is stable out of {0}. Then, D2(f) is reduced and, by
the previous corollary, I 2(f) and H 2(f) agree out of {0}. Moreover,
O2n/I

2(f) is Cohen Macaulay and, thus, equidimensional of dimension
2n − p > 0. As we saw in the proof of Theorem 3.3.6, these sheaves can
only differ on some zeros of associated primes of I 2(f), which are spaces
of dimension > 0. Therefore I 2(f) = H 2(f)

Example 3.3.11. Let be f : (C2, 0) → (C3, 0) the ‘Double Cone’, given
by

(x, y) 7→ (x2, y2, xy).

Figure 3.1: Image of the Double Cone

A straightforward computation with Singular yields I2(f) = A∩B1

and H2(f) = A ∩B2, where

A = 〈x+ x′, y + y′〉,

B1 = 〈x2, xx′, xy, x′2, x′y′, y2, yy′, y′2, xy′ + x′y〉,

B2 = 〈x2, xy, y2, x′, y′〉.

The ideal A defines a reduced plane, while V (Bi) = {0}. Therefore,
dimD2(f) = 2 and Theorem 3.3.6 doesn’t apply here. Indeed, D2(f) has
an embedded component, namely V (Bi), and thus it is is not a Cohen-
Macaulay space.
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Now we show that in this situation H2(f) may not behave well under
deformations: Take the unfolding F : (C3, 0)→ (C4, 0) given by

(t, x, y) 7→ (t, ft(x, y)), ft(x, y) = (x2, y2, xy + t(y3 + x3)).

For sufficiently small t 6= 0, ft is A-equivalent to the map in Example
2.1.11. Since ft is generically one-to-one, for all t 6= 0 , we conclude
that the map F is generically one-to-one. From Corollary 3.3.8 it follows
I2(F ) = H2(F ) and, since I2(f) behaves well under deformations, we
have H2(F ) + 〈t〉 = I2(f) 6= H2(f).



Chapter 4

Blowing-up double points

The properties of the double space of maps change, depending on the
existence of points of corank ≥ 2. For instance: The double point space
D2(f) of a stable map f : X → Y is smooth if and only if f has no
corank ≥ 2 points (Proposition 3.2.3). If the double point space of a
corank 1 map is dimensionally correct (Definition 2.2.4), then it is locally
a complete intersection (just count the number of generators provided in
Section 2.2). On the other hand, it is easy to find corank 2 map germs
(for instance Example 2.1.11) whose double point space is dimensionally
correct, but not a complete intersection.

In this chapter we introduce a different double point space that sat-
isfies, for any corank, some of the nice properties of double points spaces
of corank 1 maps. This space was introduced first by Ronga [Ron72]
and Laksov [Lak77]. In the context of enumerative geometry, the corre-
sponding space has been studied by Kleiman, Lipman and Ulrich [Kle81,
KLU92,KLU96] for finite morphisms f : X → Y between projective al-
gebraic schemes over a field of any characteristic. Our goal is to give
a different, more explicit approach to the construction of the mentioned
space (only in the holomorphic case). We obtain some new results and
transparent proofs of some of the ones that the authors above had ob-
tained before.

4.1 The space B2(f)

Throughout this chapter, B(X) represents the blowing-up of X×X along
the diagonal ∆(X, 2) and π : B(Cn) → X × X its associated projection.
The notation we use and necessary background can be found in Section
A.1).

Definition 4.1.1. Let f : (Cn, 0)→ (Cp, 0). We define

Kf = {0} × {0} × P(ker df0) ⊆ B(Cn).

45
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As in Proposition-Definition 3.1.1, let α be a p× n matrix with entries in
O2n, satisfying

f(x′)− f(x) = α(x, x′)(x− x′).

We denote by K2(f) the ideal sheaf in OB(X),Kf generated by the germs
at Kf of the functions

n∑
i=1

αji(x, x
′)ui, 1 ≤ j ≤ p.

We define B2(f) as the germ of complex space defined by K2(f), and call
it the blowing-up double point space of f .

Remark 4.1.2. Some comments are due:

1. The space B2(f) does not depend on the choice of α (this will follow
from Lemma 4.1.8, simply because there is no α in the statement).

2. Since α(0, 0) = df0 (see Lemma 3.1.4), the subspace Kf is exactly
the intersection of B2(f) with the fiber π−1(0, 0).

3. In general B2(f) is a germ of complex space along a subset (see
Section A.2). More precisely, B2(f) is a germ along the subset
Kf
∼= Pk−1, where k = corank f . Therefore, B2(f) is a usual germ

of complex space at a point if and only if corank f = 1.

Remark 4.1.3. The blowing-up double points behave well under the
following operation: Let f and g be maps X → Y . Let (f, g) : X → Y ×Y
be the map given by x 7→ (f(x), g(x)). It is immediate that the blowing-up
double point spaces satisfy:

B2((f, g)) = B2(f) ∩B2(g).

In other words, we have K2(F ) = K2(f) +K2(g).

Observe that the property just mentioned does not hold for usual dou-
ble point spaces D2(f). Although the remark is trivial, it has nice conse-
quences. For instance, it makes blowing-up double points of map germs
of the form f : (Cn, 0) → (Cp, 0), with p < n, into useful mathematical
objects, as the following examples show:

Example 4.1.4. Let pnr : (Cn, 0) → (Cr, 0), r < n, be the projection
(x1, . . . , xn) 7→ (x1, . . . , xr). Then, there is an isomorphism

B2(pnr ) ∼= Cr ×B(Cn−r),

given by the identification of Cr × B(Cn−r) with the space of points
(x, x′, [u]) ∈ B(Cn), satifying x′1 = x1, . . . , x

′
r = xr and u1 = · · · = ur = 0.
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Example 4.1.5. Let f : (Cn, 0)→ (Cp, 0) be a corank 1 map germ of the
form

(x1, . . . , xn−1, y) 7→ (x1, . . . , xn−1, fn(x, y), . . . , fp(x, y)).

Then B2(f) is isomorphic to D2(f).
We have B2(f) = B2(pnn−1) ∩ B2(fn, . . . , fp). Thus K2(f) is given

by K2(fn, . . . , fp) at the subspace B2(pnn−1) of B(Cn) given by x′1 =
x1, . . . , x

′
n−1 = xn−1 and u = (0 : · · · : 0 : 1). Modulo K2(pnn−1),

the functions fj(x′1, . . . , x′n−1, y
′) − fj(x1, . . . , xn−1, y) are equivalent to

fj(x1, . . . , xn−1, y
′) − fj(x1, . . . , xn−1, y). Therefore, the function germs∑n

i=1 αji(x, x
′)ui, n ≤ j ≤ p are precisely the divided differences. The

claim follows eliminating the variables x′1, . . . , x′n−1 and u.

Remark 4.1.6. Let ϕ : (Cn, 0) → (Cn, 0) be a germ of biholomorphism.
Let P be a matrix, with entries in O2n, satisfying

ϕ(x)− ϕ(x′) = P (x, x′)(x− x′).

Then, for any vector subspace K ≤ Cn, ϕ induces a germ of biholomor-
phism ϕ̂ : B1 → B2, given by

(x, x′, [u]) 7→ (ϕ(x), ϕ(x′), [P (x, x′)u]),

where B1 is the germ of B(Cn) at {0} × {0} ×K and B2 is the germ of
B(Cn) at {0} × {0} × dϕ0(K)

Proposition 4.1.7. If f, g : (Cn, 0)→ (Cp, 0) are A-equivalent map germs
with f = ψ ◦ g ◦ ϕ, then the spaces B2(f) and B2(g) are isomorphic via
the map germ ϕ̂ above, induced by ϕ at K = ker df0.

Proof. We divide the proof in two steps. First, assume f = ψ ◦ g.
Let g(x) − g(x′) = α(x, x′)(x − x′). With the notations above, we ob-
tain f(x) − f(x′) = ψ(g(x)) − ψ(g(x′)) = P (g(x), g(x′))(g(x) − g(x′)) =
P (g(x), g(x′))(α(x, x′))(x− x′). Taking

β(x, x′) = P (g(x), g(x′))(α(x, x′))

we have f(x) − f(x′) = β(x, x′)(x − x′). The result follows in this case
since α(x, x′)u = 0 and β(x, x′)u = 0 are equivalent systems of equations.

Now, we can assume f = g ◦ ϕ. Let g(x) − g(x′) = α(x, x′)(x − x′),
for some matrix α. With the notations above, we have f(x) − f(x′) =
α(ϕ(x), ϕ(x′))P (x, x′)(x− x′). Taking the matrix

β(x, x′) = α(ϕ(x), ϕ(x′))P (x, x′)

we obtain f(x)−f(x′) = β(x, x′)(x−x′). Therefore B2(f) is generated by
the germs at K of the functions

∑n
i=1 βji(x, x

′)ui, for j = 1, . . . , p. These
germs are precisely the images under the pullback (ϕ̂)∗ of the germs of
functions

∑n
i=1 αji(x, x

′)ui, which define B2(g), and the claim follows.
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Lemma 4.1.8. With the notations in Example A.1.3, the chart φl yields
an isomorphism between B2(f)∩Ul and the zero set of the ideal in OA,φl(K),
generated by the germs

hlj(x, λ, a) =
fj(x+ λã)− fj(x)

λ
, 1 ≤ j ≤ p.

Proof. This is just

φ∗l (
fj(x+ λã)− fj(x)

λ
) = φ∗l (

∑n
i=1 αij(x, x+ λã)λãi

λ
) =

n∑
i=1

αij(x, x
′)ui.

Example 4.1.9. Let f : (C2, 0) → (C2, 0) be the Folded Handkerchief,
given by

(x, y) 7→ (x2, y2).

Figure 4.1: Image of the Folded Handkerchief.

Following the definition of B2(f), the first thing to do is to solve the
equation f(x)− f(x′) = α(x, x′)(x− x′). In this case, it is just(

x2 − x′2
y2 − y′2

)
=

(
x+ x′ 0

0 y + y

)(
x− x′
y − y′

)
.

Thus, B2(f) is the germ along {0} × {0} × P1 of the space of points
((x, y), (x′, y′), (u1 : u2)) ∈ C2 × C2 × P1, satisfying the equation

(x− x′)u2 = (y − y′)u1,
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which defines B(C2), and the equations

(x+ x′)u1 = 0, (y + y′)u2 = 0,

which determine the ideal K2(f).
Now we compute B2(f) piecewise, by means of Lemma 4.1.8:
The chart φ1 maps B2(f) ∩ U1 to the space of points (x, y, λ, a) ∈ A,

where the functions h1
1 and h1

2 vanish. Taking into account that for this
chart we have ã = (1, a), the functions h1

1, h
1
2 yield the equations

λ+ 2x = 0, a(2y + λa) = 0.

This space consists on two irreducible components {λ = −2x, a = 0}
and {λ = −2x, y = xa}. We can take these components back to U1 as
the space of points ((x, y), (x′, y′), P )) with (x′, y′) = (x, y) + λ(1, a) and
P = (1 : a). The corresponding components are the subsets

Z1 = {((x, y), (−x, y), (1 : 0)) | x, y ∈ C}

and
Z2 = {((x, y), (−x,−y), (1 : a)) | ax = y, x, y ∈ C}

of B(C2), both with reduced structure. Observe that Z2 is not a projec-
tive, but a quasi-projective variety. This is because the points

((x, y), (−x,−y), (1 : a)),

with ax = y and x 6= 0, accumulate at points

((0, y), (0,−y), (0 : 1)),

which simply do not belong to U1. This is not in contradiction with B2(f)
being a projective space. As we will see shortly, these boundary points
belong to B2(f) ∩ U2.

Now we deal with B2(f)∩U2. We are only interested in (B2(f)∩U2)\
U1, since we have computed the rest of B2(f) already by means of φ1.
Therefore, the only point ã = (a, 1) we have to consider is (0, 1). After
some computations analogous the previous ones, we obtain the component

Z3 = {((x, y), (x,−y), (0 : 1)) | x, y ∈ C},

also with reduced structure. It is obvious that Z3 contains the points
((x, 0), (−x, 0), (0 : 1)) ∈ B(Cn) in the boundary of Z2, making B2(f) =
Z1 ∪ Z2 ∪ Z3 into a projective space.

There are three different kinds of points in B2(f) (Figure 4.2), namely:

1. Non diagonal points: Their image by π is not contained in ∆(X, 2).
They consist of
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• points ((x, y), (−x, y), (1 : 0)), with x 6= 0. These belong to Z1,
and also to Z2 if y = 0,

• points (x, y), (x,−y), (0 : 1), with y 6= 0. These belong to Z3,
and also to the boundary of Z2 if x = 0,

• points (x, y), (−x,−y), (0 : 1), with x, y 6= 0. These belong to
Z2 \ (Z1 ∪ Z3).

2. Diagonal corank 1 points: Their image by π belongs to ∆(Σ1(f), 2)
They consist of

• Diagonal points ((0, y), (0, y), (1 : 0)), with y 6= 0. These points
belong to Z1,

• Diagonal points ((x, 0), (x, 0), (0 : 1)), with x 6= 0. These points
belong to Z3.

3. Diagonal corank 2 points: Their image by π belongs to ∆(Σ2(f), 2).
They are of the form ((0, 0), (0, 0), P ), with P ∈ P1. They belong
to Z2, and also to Z1 and Z3 in the respective cases of P = (1 : 0)
and P = (0 : 1). The space B2(f) is a germ along the set of these
points.

Figure 4.2: Blowing-up double points of a Folded Handkerchief.

Lemma 4.1.10. Let F (t, x) = (t, ft(x)) be an r-parametric unfolding of
f = f0, then:

1. B2(F ) ∩ Ul = ∅, for l = 1, . . . , r.
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2. For any l ≤ n, the space B2(F )∩Ul+r is isomorphic to the zero set
of the germs along {0}× φl(Kf0) of the following functions, defined
in Cr ×A:

(ft)j(x+ λã)− (ft)j(x)

λ
, 1 ≤ j ≤ p,

where (ft)j(x) is the j-th coordinate of ft(x).

Proof. To show the first item, let 1 ≤ l ≤ r. The space B2(F ) ∩ Ul is
isomorphic to its image via φl. We make use of Lemma 4.1.8 to compute it.
We have to consider points of type (t, x, λ, a), with a = a1, . . . , ar+n−1 and
ã = (a1, . . . , 1, . . . , an−1), where we have added a coordinate with value
1 at the l-th position. The equations defining the space are hlj = 0, for
j = 1, . . . , r + p. In particular, since Fl(t, x) = tl, we have hll(t, x, λ, a) =
(tl + λ− tl)/λ = 1. This forces B2(F ) ∩ Ul = ∅.

Now we show the second item. If we assume l ≥ r and proceed as
before, we will obtain functions hlj(t, x, λ, a) = tj − aj , for j = 1, . . . , r.
The claim follows eliminating the variables aj , 1 ≤ j ≤ r, and labeling the
remainig variables ar+1, . . . , ar+n−1 as new variables a1, . . . , an−1.

Lemma 4.1.11. GIven f : (Cn, 0) → (Cp, 0), let F be the ideal sheaf
defined by some representatives of the generators of K 2(f) at some open
neighbourhood U of Kf . Let f be a representative of f defined in U . Then
(possibly shrinking U) the following hold for every point w ∈ U :

1. If w = (x, x, [u]) ∈ π−1(∆(Cn, 2)), then the stalk Fw equals the
germ at w of K 2(fx), where fx is the germ of f at x.

2. If w ∈ B(X) \ π−1(∆(Cn, 2)), then Fw
∼= P(f, 2)π(w), via the

homomorphism π∗w induced by π on the stalks.

Proof. 1) follows shrinking U so that we can find representatives of the
germs

∑n
i=1 αji(x, x

′)ui defined on all U . To show 2) we use Lemma 4.1.8.
Let w = (x, x′, u) ∈ B(Cn)and take a chart φl making φl(x, x

′, u) =
(x0, ã0, λ0). The ideal Fw is generated by the germs hlj(x, λ, a). Since
w /∈ ∆(Cn, 2), we have λ0 6= 0, so the generators hlj can be changed by
fj(x+ λã)− fj(x). These germs are precisely the image by the pullback
of φ−1 ◦ π of the generators fj(x′)− fj(x) of P(f, 2)π(w).

Definition 4.1.12. Given f : X → Y , the blowing-up double point
ideal sheaf of f is the ideal sheaf K 2(f) of OB(Cn), given locally by:

1. K 2(f) = π∗(P(f, 2)) on the open subset B(X) \ π−1(∆(X, 2)).

2. For any point w = (x, x, u) ∈ π−1(∆(X, 2)), the stalk K 2(f)w is
the germ at w of K2(fx), where fx is the germ of f at x.

We define B2(f) as the zero set of K 2(f), and we call it the blowing-up
double point space of f .
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Proposition 4.1.13.

1. If f and g are A-equivalent, then the spaces B2(f) and B2(g) are
isomorphic.

2. The space B2(f) is locally isomorphic to D2(f), out of the subspace

π−1({(x, x) ∈ ∆(X, 2) | x ∈ Σ̂2(f)}).

3. B2(f) behaves well under deformations: If F (t, x) = (t, ft(x)) is an
unfolding of f , then

B2(f) = B2(F ) ∩ π−1({t = 0}).

Proof. Off the fiber π−1(∆(X, 2) of the diagonal, the spaces B2(f) and
B2(g) are isomorphic to D2(f) and D2(g), so 1), 2) and 3) hold. On
π−1(∆(X, 2) 1) follows directly from Proposition 4.1.7. To show 2), it
remains to show the isomorphism on diagonal points of corank 1. Around
this points, the map can be taken to the form

(x1, . . . , xn−1, fn(x, y), . . . , fp(x, y)),

and the result follows from Lemma 4.1.10. To be precise, the first assertion
of the lemma forces ã = (0, . . . , 0, 1) and thus the generators given on the
second item are exactly the divided differences (see Section 2.2). On
diagonal points, 3) follows directly from Lemma 4.1.10.

The following proposition can also be found in [Ron72] and [Kle81]:

Proposition 4.1.14. If f : X → Y satisfies dimB2(f) = 2n − p, then
B2(f) is locally a complete intersection.

Proof. This is a local question at points w ∈ B2(f). If w /∈ π−1(∆(X, 2)),
then K2(f)w is isomorphic to the stalk P(f, 2)π(w), which is generated by
the germs fj(x)− fj(x′) ∈ O2n, 1 ≤ j ≤ p in O2n, where fj are local co-
ordinates of the function f at f(x). If w = (x, x, u) ∈ π−1(∆(X, 2)), then
K 2(f)w is locally generated by the germs at w of

∑n
i=1 αij(x, x

′)ui, 1 ≤
j ≤ p. In both cases, K 2(f)w is generated locally by p function germs in
a smooth space of dimension 2n.

4.2 B2(f) and stability and finite determinacy
The next result follows from a result due to Ronga [Ron72, Corollary 2.3],
because any stable map is Σ-generic and has normal crossings.

Theorem 4.2.1. If f : X → Y is a stable map, then B2(f) is empty or
a complex manifold of dimension 2n− p.
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Proof. We proceed locally and in two cases. First, assume that w ∈ B2(f)
is not contained in the diagonal fibre π−1(∆(X, 2). Then, locally at w,
B2(f) is isomorphic to the zero set of P(f, 2), and then the result follows
directly from Proposition 1.3.4 and the fact that every stable map has
normal crossings (Proposition 1.5.9).

Now let w = (x, x, u) ∈ π−1(∆(X, 2)). By definition, the stalk K 2(f)w
equals the germ at w of K2(fx). Therefore, it suffices to show that K2(f)
is a germ of smooth space, for every stable map germ f : (Cn, 0)→ (Cp, 0).
Let f be such a stable germ and define, for every p×nmatrixM ∈ L(n, p),
the map germ fM : (Cn, 0)→ (Cp, 0), given by

x 7→ f(x) +Mx.

Identifying L(n, p) with Cnp we define an unfolding F : (L(n, p)×Cn, 0)→
(L(n, p)× Cp, 0), given by (M,x) 7→ (M,fM (x)). Let w = (0, 0, u) ∈ Kf .
By Proposition 4.1.7, we can perform a change of coordinates and assume
u = (1 : 0 : · · · : 0). From Lemma 4.1.10 and item (3) in Proposition
4.1.13 it follows that the space B2(fM ), at the neighbourhood U1 of w, is
isomorphic to the zeros of the functions

hj,M (x, λ, a) =
fM (x+ λã)− fM (x)

λ
= h1

j (x, λ, a) +Mã,

for some representative F and every matrix M close enough to the zero
matrix. Therefore, for any fixed matrix M close enough to 0, the space
B2(f) is regular of dimension 2n− p around w if the map

hM = (h1,M , . . . , hp,M ) : A→ Cp

is transverse to 0 at all points of the form (0, 0, a) ∈ A. Let H : L(n, p)×
A→ Cp be the map given by

H(M,x, λ, a) = hM (x, λ, a).

If we label the coordinates in L(n, p) as mji, 1 ≤ i ≤ n, 1 ≤ j ≤ p, then
it is immediate that the partial derivative ∂Hj

∂mji
|(M,x,λ,a) equals the i-th

coordinate of ã. In particular, since the first coordinate of ã is 1, we have
∂Hj
∂mj1

|(M,x,λ,a) = 1. Thus, the p × n(p + 2) matrix dH(M,x,λ,a) contains
the identity matrix of size p × p as a submatrix. It follows that H is
a submersion at all points (M,x, λ, a) ∈ L(n, p) × A. By Lemma 1.3.3,
the map (h1,M , . . . , hp,M ) : A → Cp is transverse to 0, for all M out of
a proper subspace Z ⊂ L(n, p). Thus, we can produce a family of maps
ft = fMt

, with Mt ∈ L(n, p) \Z and M0 = 0, so that B2(ft) is smooth of
dimension 2n− p, for all t 6= 0. Since f = f0 is stable, the unfolding must
be trivial. Therefore, from the first item of Proposition 4.1.13, it follows
that B2(f) is smooth of dimension 2n− p.

Corollary 4.2.2. Let f : (Cn, 0) → (Cp, 0) be a finitely determined map
germ and corank f = k ≥ 1, then:
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1. B2(f) is smooth of dimension 2n− p out of Kf .

2. If 2n− p− k − 1 ≥ 0, then the space B2(f) is normal.

3. B2(f) is locally a complete intersection of dimension 2n− p if and
only if 2n− p− k + 1 ≥ 0.

Proof.
1) Follows directly from Theorem 1.5.12 and Theorem 4.2.1.
2) Since B2(f) is not empty, we have dimB2(f) ≥ 2n− p. By 1), the

singular locus of is contained in Kf
∼= Pk−1, and the result follows from

Serre’s criterion [Mat80, Thm. 39].
3) Since K2(f) is generated by 2n− p elements, B2(f) is not a locally

complete intersection of dimension 2n − p if and only if it contains an
irreducible component of dimension > 2n−p. By 1) this component must
be Kf

∼= Pk−1.

Corollary 4.2.3. A map germ f : (Cn, 0) → (C2n, 0) is finitely deter-
mined if and only if B2(f) is contained in π−1(0, 0).

Proof. Assume f is finitely determined. By Proposition 1.5.10, a small
representative of f has to be an immersion with normal crossings. Thus,
we have B2(f) \Kf equals D2(f) \ {0} which consists on isolated points.
Shrinking our reprensentative, we obtain B2(f) = Kf ⊆ π−1(0, 0). If we
assume B2(f) ⊆ π−1(0, 0), then there exists a representative of f which an
injective immersion out of the origin. Thus, again by Proposition 1.5.10,
this representative is stable off the origin.

Example 4.2.4. Let f : (C2, 0)→ (C4, 0) be the map germ given by

(x, y) 7→ (x2, y2, x3 + xy, y3 + xy).

Due to the symmetric role played by the variables x and y at this example,
it suffices to compute B2(f)∩U1. According to Lemma 4.1.8, this space is
isomorphic to the zeros of the idealH generated by the germs h1

i (x, y, λ, a):

• h1
1 = 2x+ λ,

• h1
2 = a(2y + λa),

• h1
3 = 3x2 + 3xλ+ λ2 + xa+ y + λa,

• h1
4 = 3y2a+ 3yλa2 + λ2a3 + xa+ y + λa.

A straightforward computation shows H = 〈x3, y+x(x− a), λ+ 2x, ax2〉.
We conclude that B2(f) equals {0}×{0}×P1, set theoretically. Therefore,
f is a finitely determined map germ. Observe that dimB2(f) = 1, while
dimD2(f) = 0. This justifies the need of condition 2n− p− k + 1 in the
third item 3 of Corollary 4.2.2.
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Corollary 4.2.5. A map germ f : (Cn, 0)→ (C2n−1, 0), n ≥ 2 is finitely
determined if and only if D3(f) ⊆ {0} and B2(f) is a reduced curve out
of π−1(0, 0).

Proof. Assume f is finitely determined. By Mather-Gaffney criterion
1.5.12, the map is stable off the origin. By Proposition 1.5.11 f has
corank 1 at all these stable points, and thus B2(f) \ π−1(0, 0) is isomor-
phic to D2(f) \ {0, 0}, by Proposition 4.1.13. Therefore, by Theorem
2.2.3, B2(f) is a smooth curve out of π−1(0, 0). Off the origin, D3(f) is
empty or a manifold of dimension 2− n, by Lemma 2.1.9. Thus, we have
D3(f) ⊆ {0}.

Assume that B2(f) is a reduced curve out of π−1(0, 0). For any point
x of corank k, we have a fiber π−1(x, x) ∼= Pk−1. Hence, points x ∈ Σ̂2(f)
must be isolated. Thus, we can find a representative of f defined at a
neighbouhood U not containing corank two points and such that B2(f)
is a smooth curve at U \ π−1(0, 0). Since B2(f) is isomorphic to D2(f)
off the origin and D3(f) ⊆ {0}, from Theorem 2.2.3 it follows that f is
stable at U \ {0}. Now the result follows from Mather-Gaffney criterion
1.5.12.

An equivalent criterion, in terms of D2(f) and D3(f), can be found
in [NBJP09, Proposition 3].

Example 4.2.6. Let F = (t, ft) : (C3, 0)→ (C5, 0) be the unfolding of f
given by

(t, x, y) 7→ (t, x2, y2, x3 + xy + ty, y3 + xy + tx).

By Lemma 4.1.10, we consider B2(F ) as a deformation B2(ft) of the space
B2(f), with parameter t. As for f , the roles of the variables x and y are
symmetric for F , and thus we only need to compute B2(ft)∩U1. The ideal
H defining the family B2(ft)∩U1 is generated by the germs h1

j , 1 ≤ j ≤ 4,
given by

h1
j (t, x, y, λ, a) =

(ft)j(x+ λ, y + λa)− (ft)j(x, y)

λ
.

A primary decomposition is given by H =
⋂4
i=0Hi ∩ J , with

• J = 〈t, x2, y − xa, λ+ 2x, x2a〉,

• H0 = 〈x2 − t, y + t, λ+ 2x, a〉,

• Hi = 〈x2−τit, y−τix, λ+2x, a−τi〉, where τ1, . . . , τ4 are the different
fourth roots of the unity in C.

If we write Zi = V (Hi), it turns out that Z0 is a non-reduced curve con-
tained in π−1(0), whereas Z1, . . . , Z4 are reduced curves. After checking
that F has just one triple point, we conclude that F is a finitely deter-
mined map germ.
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4.3 Strict blowing-up double points
Now we show that B2(f) can be obtained in an analogous way to the def-
inition of D2(f) in Proposition-Definition 2.1.5. That is, we can compute
B2(f) by slicing the closure of the ‘strict double points’ of an unfolding
F of f .

Definition 4.3.1. Given f : X → Y , the strict blowing-up double
point space B2

S(f) of f is the closure of the preimage by π of the set of
strict double points

{(x, x′) ∈ X ×X | x 6= x′, f(x) = f(x′)}.

The following result is equivalent to [Ron72, Corollary 2.4]

Proposition 4.3.2. If f is a stable map, then B2
S(f) equals B2(f).

Proof. Observe that this is a set theoretical question, since B2
S(f) is re-

duced by construction and B2(f) is reduced by Theorem 4.2.1. B2
S(f) ⊆

B2(f) is obvious. Assume B2
S(f) 6= B2(f). Then B2(f) contains an irre-

ducible component Z contained in the closure of the union of the fibers
π−1(x, x), with f singular at x. On one hand, the fiber π−1(x, x) of a point
x ∈ Σk(f) is a projective space of dimension k−1. On the other hand, if f
is stable, then Σk(f) is a complex manifold of dimension n−k(p−n+k).
Thus, the dimension of Z cannot exceed the maximum of the numbers
k − 1 + n − k(p − n + k), 1 ≤ k ≤ n. However, we have the inequality
2n−p−((k−1)+n−k(p−n+k)) ≥ k−p−((k−1)−kp) = 1−p+kp ≥ 1.
It follows dimZ < dimB2(f), which is in contradiction with Theorem
4.2.1.

As a consequence of the previous property, we obtain necessary condi-
tions for finite determinacy in terms of B2

S(f). For instance, from Corol-
lary 4.2.3 and Corollary 4.2.5 we get the following

Corollary 4.3.3.

1. If a map germ f : (Cn, 0) → (C2n, 0) is finitely determined then
B2
S(f) = ∅.

2. If a map germ f : (Cn, 0) → (C2n−1, 0) is finitely determined then
B2
S(f) is (the germ along Kf of) a reduced curve.

Proof. Assume f is finitely determined, then from Proposition 4.3.2 and
Mather-Gaffney criterion 1.5.12 follows the equality

B2
S(f) \ π−1(0, 0) = B2(f) \ π−1(0, 0).

Since (0, 0) can not be a strict double point, we have

B2
S(f) = B2(f) \ π−1(∆(X, 2)).

Now 1) and 2) follow immediately from Corollary 4.2.3 and Corollary
4.2.5, respectively.
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Corollary 4.3.4. Let f : (Cn, 0) → (Cp, 0) be a finitely determined map
germ of corank k. If 2n− p− k ≥ 0, then B2

S(f) = B2(f) as schemes.

Proof. If 2n− p− k ≥ 0, then B2(f) is locally a complete intersection of
dimension 2n− p by Corollary 4.2.2. Since dimKf = k − 1 < 2n− p, we
conclude that there is no component ofB2(f) contained in π−1(0, 0). Now,
from Proposition 4.3.2 and Mather-Gaffney criterion 1.5.12, we obtain
B2
S(f) \ π−1(0, 0) = B2(f) \ π−1(0, 0) and the result follows.

4.4 The morphism π : B2(f)→ D2(f)

For any complex manifoldX, we let π∗ be the morphism OX×X → OB(Cn)

given by h 7→ h ◦ π.

Lemma 4.4.1. For any map f : X → Y , the morphism π∗ takes I 2(f)
into K 2(f)

Proof. Since π is an isomorphism out of π−1(∆(X, 2)), it suffices to show
the equivalent claim for a germ f : (Cn, 0) → (Cp, 0). Moreover, we can
check this locally using the atlas {φi : Ui → A | 1 ≤ i ≤ n}. Thus, we need
to check, for any i ≤ n, the inclusion (φ−1

i ◦ π)∗(I2(f)) ⊆ (φ−1
i )∗(K2(f)).

Recall that the ideal (φ−1)∗(K2(f)) is generated by the germs hij(x, λ, a)

given in Lemma 4.1.8, while I2(f) is generated by the germs fj(x)−fj(x′)
and the n×n minors of any matrix α satisfying f(x)−f(x′) = α(x, x′)(x−
x′). On one hand, we have (φ−1

i ◦π)∗(fj(x)−fj(x′)) = fj(x)−fj(x+λã) =
λhij , which is clearly contained in (φ−1)∗(K2(f)). On the other hand, let
A be the image by (ϕ−1

i ◦π)∗ of an n×n submatrix obtained by choosing
some rows j1, . . . , jn of α. By Cramer’s rule, it follows

|A|λ(ã)i = |A′i|,

where A′i stands for the matrix obtained by substitution of the i-th column
of A by the elements fji(x) − fji(x + λã), i = 1, . . . , n. Since the i-
th coordinate of ã equals 1, we obtain |A| = |A′i|/λ. Expanding the
determinant |A′i| by the i-th column, we obtain

|A| = 1

λ

n∑
i=1

(fji(x)− fji(x+ λã))|A′′ji | =
n∑
i=1

hij |A′′ji |,

for the corresponding submatrices A′′ji of A
′
i. Hence |A| ∈ (φ−1)∗(K2(f)).

From the previous lemma and Lemma 3.1.8, it follows that the restric-
tion of π : B(X) → X × X yields a proper and surjective morphism of
complex spaces B2(f) → D2(f), which, by abuse of notation, we denote
also by

π : B2(f)→ D2(f).
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The following property is very similar to [Lak77, Proposition 25]

Proposition 4.4.2. For any map f : X → Y , if the space

{(x, x) ∈ ∆(X, 2) | x ∈ Σ̂2(f)}

does not contain an irreducible component of D2(f), then the complex
spaces B2(f) and D2(f) are birationally equivalent.

Proof. The statement follows directly from Proposition 4.1.13.

Corollary 4.4.3. If f : X → Y satisfies:

1. dimD2(f) = 2n− p,

2. dim Σ̂2(f) < 2n− p,

then B2(f) and D2(f) are birationally equivalent.

Proof. If dimD2(f) = 2n − p then, by Theorem 3.2.1, D2(f) is Cohen
Macaulay and, hence, ummixed. Therefore Σ̂2(f) can not be an irre-
ducible component of D2(f), since its dimension is < 2n− p.

Corollary 4.4.4. If f : (Cn, 0) → (Cp, 0) is a finitely determined map
germ and p < 2n, then B2(f) and D2(f) are birationally equivalent.

Proof. If f is finitely determined then, from Mather-Gaffney criterion
1.5.12 and Proposition 1.5.11, it follows dim(Σ̂2(f) \ {0}) ≤ n− k(p−n+
k + 1), and therefore dim Σ̂2(f) < 2n − p. The claim follows since, by
Theorem 3.2.1, all the irreducible components of D2(f) have dimension
≥ 2n− p,

Corollary 4.4.5. If f is a stable map, then π : B2(f) → D2(f) is a
resolution of D2(f).

Proof. If f is stable then, by Lemma 2.1.9 and Proposition 1.5.11, it satis-
fies the hipothesis of Corollary 4.4.3. Hence, π is a birational equivalence
and the claim follows, since B2(f) is smooth by Theorem 4.2.1.



Chapter 5

Map germs (C2, 0)→ (C3, 0)

Stability and finite determinacy of corank 1 map germs (Cn, 0)→ (Cp, 0)
are characterized by some algebraic properties of its multiple point spaces
(Theorem 2.2.3). To achieve such a result, we need to have a good under-
standing of the algebraic structure of these spaces. For instance, we know
a explicit set of generators of their defining ideals (Section 2.2), and it is
immediate that the k-multiple point space of a map of corank 1 is a com-
plete intersection, if it is dimensionally correct. In the corank ≥ 2 case, we
must face the fact that in this setting we do not know much about the al-
gebraic properties of the spaces Dk(f). However, as we will see in Section
5.1, stability and finite determinacy of map germs (C2, 0) → (C3, 0) can
be determined by looking just at double points, which we do know well
even in corank two (see Chapter 3). In Section 5.2 we extend to corank
2 some nice formulas relating the Milnor number of double point spaces
to the number of crosscaps and triple points collapsed at the origin in a
finitely determined map (C2, 0) → (C3, 0). In Section 5.3 we introduce
the Double Fold family of map germs, which provides interesting exam-
ples. Finally, in Section 5.4 we relate the A-equivalence of double folds
(indeed, of a much greater class of map germs) to a new equivalence re-
lation defined ad hoc. The results contained in Sections 5.1 and 5.2 have
been published in [MNBPS12], the ones in Sections 5.3 and 5.4 have been
published in [PS14].

5.1 Mond number and finite determinacy

Theorem 5.1.1. Let f : X2 → Y 3. Then f is stable if and only if D2(f)
is a smooth curve and the projection p : D2(f)→ U is an immersion with
normal crossings.

Proof. Assume f is stable, then f has corank 1 (Example 1.5.4). By
Theorem 2.2.3, D2(f) is a smooth curve, D3(f) is smooth of dimension 0

59
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andD4(f) = ∅. From [Alt11, Proposition 2.4.6] we haveDk(f) = Dk−1(p)
as schemes, for k = 3 and k = 4. Since p has corank 1 at any point, this
implies that p : D2(f) → U is stable. From Proposition 1.5.10, we have
that p is an immersion with normal crossings.

Conversely, assume that D2(f) is a smooth curve and the projection
p : D2(f)→ U is an immersion with normal crossings. Then triple points
are isolated. First we show that f is finitely determined at any point. By
Theorem 2.2.3, it suffices to show that f has corank ≤ 1 at all points.
Since D2(f) is a regular curve, we have edimD2(f) = dimD2(f) = 1,
and thus the claim follows from Lemma 3.2.2. Now, since f is finitely
determined and has corank 1, again by [Alt11, Proposition 2.4.6], we have
Dk(f) = Dk−1(p) as schemes for k = 3 and k = 4. Since p is an immersion
with normal crossings, Example 1.5.10 implies that D3(f) = D2(p) is
smooth. Now the result follows from Theorem 2.2.3.

Theorem 5.1.2. A germ f : (C2, 0)→ (C3, 0) is finitely determined if and
only if D2(f) is a germ of reduced curve and the projection p : D2(f) →
(C2, 0) is generically one-to-one.

Proof. If f is finitely determined, by Mather-Gaffney’s criterion 1.5.12,
there is a finite representative of f : U → V , such that f−1(0) = {0}
and f̂ = f |Û : Û → V̂ is stable, with Û = U \ {0} and V̂ = V \ {0}.
By Theorem 5.1.1, D2(f̂) is a smooth curve and p̂ : D2

(
f̂
)
→ Û is an

immersion with normal crossings and hence generically one-to-one. Since
D2(f) \ {0} = D2(f̂) is a smooth curve, the germ D2(f) has dimension
1 an is generically reduced. From Proposition 3.2.8 it follows that D2(f)
is Cohen Macaulay and, therefore, unmixed. Since D2(f) is generically
reduced and unmixed, we conclude that D2(f) is reduced.

Conversely, assume that D2(f) is a germ of reduced curve and the
projection p : D2(f) → (C2, 0) is generically one-to-one. We can choose
a finite representative f : U → V , such that f−1(0) = {0}, D2(f) \ {0}
is a smooth curve and p is an embedding on D2(f) \ {0}. As above, we
write f̂ = f |Û : Û → V̂ , with Û = U \ {0} and V̂ = V \ {0}. Then,
D2(f̂) = D2(f) \ {0} and hence, f̂ is stable by Theorem 5.1.1. Finally,
from Mather-Gaffney’s criterion 1.5.12 follows that the map germ f is
finitely determined.

Corollary 5.1.3. A germ f : (C2, 0) → (C3, 0) is finitely determined if
and only if its Mond number µ(D(f)) is finite.

Proof. The statement follows immediately from Theorem 5.1.2 and Corol-
lary 3.2.9.
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5.2 Geometric invariants
Let f : (C2, 0)→ (C3, 0) be a finitely determined map germ. By Mather-
Gaffney’s criterion 1.5.12, there is a representative f : U ⊂ C2 → V ⊂ C3

such that f−1(0) = {0} and f is stable on U \ {0}. By shrinking U if
necessary, we can assume that there are no cross-caps nor triple points in
U . Then, since we are in the nice dimensions, we can take a stabilization
(see definition 1.5.7) of f , F : D×U → C4, F (s, z) = (s, fs(z)), with D a
neighbourhood of 0 in C. We define

• C = # cross-caps of fs,

• T = # triple points of fs,

for s 6= 0. These are analytic invariants of f which can be computed as
follows [Mon87,MP89]:

C = dimC
O2

Jf
, T = dimC

O3

F2(f∗O2)
,

where Jf is the ramification ideal of f , generated by the minors of df ,
and F2(f∗O2) is the defining ideal of the space of target triple point space
discussed in Section 2.5. These formulae also imply the independence of
the invariants C and T with regards to the choosen stabilization and to
the (small enough) parameter s.

Example 5.2.1. Let f : (C2, 0)→ (C3, 0), as in Example 2.1.11, be given
by

(x, y) 7→ (x2, y2, x3 + y3 + xy).

The computation of the ramification ideal Jf is straightforward and, to-
gether with the calculations in Example 2.5.3, we obtain:

C = dimC
O2

〈x2, xy, y2〉
= 3, T = dimC

O3

〈X,Y, Z〉
= 1.

We claim that these are the lowest possible values of C and T for corank
2 germs. For C, the claim is straightforward. If f has corank 2, then
all entries of the differential of f are in the maximal ideal m, and there-
fore its 2 × 2 minors are in m2. For triple points, the statement follows
from Proposition A.3.2. If f has corank 2, then f∗m ⊆ m2, and thus
dimC(O2/f

∗m) > 2. Therefore, the triple point space of f is non empty,
and T ≥ 1.

The reader can find in Figure 5.1 a real stabilization of this map germ
which exhibits the three cross-caps and the triple point.

We are going to show formulas relating C, T and the Milnor numbers
of the double point curves. Observe that the double point curves may be
non complete intersection. We use the definition of Buchweitz and Greuel
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[BG80] of Milnor number of a germ of reduced curve. Given a reduced
space curve (X0, 0) ⊂ (Cn, 0) its Milnor number is denoted by µ(X0, 0).
All we need to know for our purposes are the following properties:

1. Milnor formula: µ(X0, 0) = 2δ − r+ 1, where δ stands for the delta
invariant and r is the number of branches of X0.

2. If π : (X, 0)→ (C, 0) is a flat deformation of (X0, 0), then there is a
representative π : X ⊂ D × U → D such that, for any t ∈ D,

µ(X0, 0)− µ(Xt) = 1− χ(Xt),

where Xt is the fibre Xt = π−1(t), µ(Xt) =
∑
x∈Xt µ(Xt, x) is the

global Milnor number and χ(Xt) the Euler characteristic.

The following construction will allow us to apply properties (1) and
(2) to our double point curves: Let F (s, z) = (s, fs(z)) be a stabilization
of a finitely determined map germ f0 : (C2, 0)→ (C3, 0). Let X be any of
the double point curves D(fs), D

2(fs), D
2(fs)/S2, fs(D(fs)), with s 6= 0.

Let X1
s be the complex space obtained by removing all the points in Xs

that are related to cross-caps or triple points (that is, cross-caps in the
source, or pairs (z, z) in the lifting, with z a cross-cap, etc.). Then X1 is
a smooth complex curve and we have the following relations among the
Euler characteristics of the spaces:

χ
(
D(fs)

)
= χ

(
D(fs)

1
)

+ C + 3T,

χ
(
D2(fs)

)
= χ

(
D2(fs)

1
)

+ C + 6T,

χ(D2(fs)/S2) = χ
(
(D2(fs)/S2)1

)
+ C + 3T,

χ
(
fs(D(fs))

)
= χ

(
fs(D(fs))

1
)

+ C + T.

Take the diagram

D2(fs)
1 −−−−→ (D2(fs)/S2)1y y

D(fs)
1 −−−−→ fs(D(fs))

1,

obtained by restriction of the diagram in Section 2.6 corresponding to fs
(see also Remark 2.6.1). Obviously, the vertical arrows are homeomor-
phisms and the horizontal ones are unramified double covers, hence:

χ
(
D2(fs)

1
)

= 2χ
(
(D2(fs)/S2)1

)
, χ

(
D(fs)

1
)

= 2χ
(
fs(D(fs))

1
)
,

χ
(
D2(fs)

1
)

= χ
(
D(fs)

1
)
.

Finally, we can easily compute the global Milnor number µ(Xs) in
each case. Since the only singularities of D(fs) are Morse points (3
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for each triple point), then µ
(
D(fs)

)
= 3T. Analogously, fs(D(fs)) has

just ordinary triple points, so µ
(
fs(D(fs))

)
= 2T, and µ

(
D2(fs)

)
=

µ
(
D2(fs)/S2

)
= 0 because they are smooth.

Now we are ready to obtain formulae relating these invariants. See
[MM89] for corank 1 analogue.

Theorem 5.2.2. If f : (C2, 0)→ (C3, 0) is finitely determined, then

µ
(
D(f)

)
= µ

(
D2(f)

)
+ 6T,

µ
(
D2(f)

)
= 2µ

(
D2(f)/S2

)
+ C − 1,

µ(D(f)) = 2µ
(
f(D(f))

)
+ C − 2T − 1.

Proof. The proofs of the three equations are analogous. For the first one,
from the system 

χ
(
D2(ft)

)
= χ

(
D2(ft)

1
)

+ C + 3T

χ
(
D̃2(ft)

)
= χ

(
D̃2(ft)

1
)

+ C + 6T

χ
(
D2(ft)

1
)

= χ
(
D̃2(ft)

1
)

we obtain χ
(
D̃2(ft)

)
−2χ

(
D̃2(ft)/S2

)
= −C. Taking into account µ

(
D2(ft)

)
=

3T and µ
(
D̃2(ft)

)
= 0, from the Milnor formula µ(X0, 0) = 2δ− r+ 1 we

obtain the system
µ
(
D2(f)

)
= 3T + 1− χ

(
D2(ft)

)
µ
(
D̃2(f)

)
= 1− χ

(
D̃2(ft)

)
χ
(
D̃2(ft)

)
− 2χ

(
D̃2(ft)/S2

)
= −C

Putting everything together, we get µ
(
D2(f)

)
= µ

(
D2(f)

)
+ 6T.

For the second equation, the system is
χ
(
D̃2(ft)

)
= χ

(
D̃2(ft)

1
)

+ C + 6T

χ
(
D̃2(ft)/S2

)
= χ

((
D̃2(ft)/S2

)1)
+ C + 3T

χ
(
D̃2(ft)

1
)

= 2 · χ
((
D̃2(ft)/S2

)1)
and we obtain χ

(
D̃2(ft)

)
− 2χ

(
D̃2(ft)/S2

)
= −C. From µ

(
D̃2(ft)

)
=

µ
(
D̃2(ft)/S2

)
= 0 we get

µ
(
D̃2(f)

)
= 1− χ

(
D̃2(ft)

)
µ
(
D̃2(f)/S2

)
= 1− χ

(
D̃2(ft)/S2

)
χ
(
D̃2(ft)

)
− 2χ

(
D̃2(ft)/S2

)
= −C

which implies µ
(
D̃2(f)

)
= 2µ

(
D̃2(f)/S2

)
+ C − 1.
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For the last equation, we take the system
χ
(
D(fs)

)
= χ

(
D(fs)

1
)

+ C + 3T

χ
(
fs(D(fs))

)
= χ

(
fs(D(fs))

1
)

+ C + T

χ
(
D(fs)

1
)

= 2χ
(
fs(D(fs))

1
)

and obtain χ
(
D2(fs)

)
− 2χ

(
fs(D(fs))

)
= −C +T. From µ

(
D2(fs)

)
= 3T

and µ
(
fs(D(fs))

)
= 2T we get
µ
(
D(f)

)
= 3T + 1− χ

(
D(fs)

)
µ
(
f(D(f))

)
= 2T + 1− χ

(
fs(D(fs))

))
χ
(
D(fs)

)
− 2χ

(
fs(D(fs))

)
= −C + T

From this it follows µ
(
D(f)

)
= 2µ

(
f(D(f))

)
+ C − 2T − 1.

Example 5.2.3. Let f : (C2, 0)→ (C3, 0), as in Example 2.1.11, be given
by

(x, y) 7→ (x2, y2, x3 + y3 + xy).

In Example 2.3.3, we computed the double point curve

D(f) = V ((x+ y2)(x2 + y)(x3 + y3)),

which has Milnor number µ(D(f)) = 16.
Now we compute the Milnor number of D2(f) (its defining ideal was

computed in Example 2.1.11). To do this, we compute the δ invariant
and use the formula above to obtain the Milnor number. We use the
same notation as in [BG80]. If C1 = V (I1) and C2 = V (I2) are two
curves (non necessarily irreducible) intersecting only at x0 ∈ Cn, then we
write

C1 · C2 = dimCOCn,x0/(I1 + I2).

As a particular case of a lemma due to Hironaka [BG80, Lemma 1.2.2],
we have

δ(C1 ∪ C2) = δ(C1) + δ(C2) + C1 · C2.

The curve D2(f) has 5 smooth branches, namely 2 parabolas P1 =
V (I1), P2 = V (I2), and 3 coplanar lines L = L1 ∪L2 ∪L3 = V (I3), where

I1 = 〈x− x′, y + y′, x+ y2〉,

I2 = 〈x+ x′, y − y′, x2 + y〉,

I3 = 〈x+ x′, y + y′, x3 + y3〉.
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Its obvious that δ(P1 ∪ P2) = 1 and δ(L) = 3 and we also have

(P1 ∪ P2) · L = dimC
O4

I1 ∩ I2 + I3
= 3.

By the lemma mentioned above, we have δ(D2(f)) = 1 + 3 + 3 = 7, and
hence µ(D2(f)) = 2δ − r + 1 = 10.

Analogously, D2(f)/S2 is composed by the five lines (the ideal is com-
puted in Example 2.4.4)

L̂0 ∪ L̂1 = V (J1), L̂2 = V (J2), L̂3 = V (J3), L̂4 = V (J4),

where,

J1 = 〈s1, s2, r11 + r22 − r12, r
2
22 − r22r12 + r2

12〉,

J2 = 〈s1, s2, r11 + r12, r22 + r12〉,

J3 = 〈s1, 2s2 + r11, r22, r12〉,

J4 = 〈s2, 2s1 + r22, r11, r12〉.

We have δ(L̂0 ∪ L̂1) = 1 and by Hironaka’s lemma:

δ(L̂0 ∪ L̂1 ∪ L̂2) = δ(L̂0 ∪ L̂1) + δ(L̂2) + (L̂0 ∪ L̂1 · L̂2) = 1 + 0 + 1.

δ(L̂0 ∪ L̂1 ∪ L̂2 ∪ L̂3) = 2 + δ(L̂3) + (L̂0 ∪ L̂1 ∪ L̂2 · L̂3) = 2 + 0 + 1.

δ(D2(f)/S2) = 3 + δ(L̂4) + (L̂0 ∪ L̂1 ∪ L̂2 ∪ L̂3 · L̂4) = 3 + 0 + 1 = 4.

Then µ(D2(f)/S2) = 2δ − r + 1 = 4. Finally, we use the computation of
F1(f∗O2) in Example 2.5.3 to obtain µ(f(D(f))) = 8 in the same way.
Since C = 3 and T = 1, we can easily check that the formulas in Theorem
5.2.2 hold.

5.3 Double folds
Here we study the geometry of a particular family of singular map germs
(C2, 0) → (C3, 0) called double folds. As we will see, these family pro-
vides interesting germs, such as finitely determined homogeneous corank
2 germs. Our family is created by analogy to David Mond’s fold maps
(see [Mon85]), which we explain next:

A map germ f : (C2, 0)→ (C3, 0) is a fold map if its first two coordinate
functions form a Whitney fold T : (C2, 0)→ (C2, 0), given by

(x, y) 7→ (x, y2).

The image of a fold map f(x, y) = (x, y2, f3) looks like the graph of the
function f3 ‘folded’ along the OX axis. The third coordinate function of
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a fold map can be any but, under A-equivalence, we can assume that it is
of the form yp, where p = T ∗P for some germ P ∈ O2. Hence, the normal
form of a fold map is

f(x, y) = (x, y2, yp).

A remarkable thing about fold maps is that they are related to the action
of the group G = {1, i}, generated by the reflection i(x, y) = (x,−y). For
instance, it is immediate that all double points of a fold map are of the
form (z, i(z)), for some z = (x, y) ∈ C2.

To produce a family of corank 2 maps related to a reflection group,
we are going to ‘fold’ twice, once through OX and once through OY axis.
Let α : (C2, 0)→ (C2, 0), as in Example 4.1.9, be the Folded Hankerchief,
given by

(x, y) 7→ (x2, y2).

Take the reflections i1(x, y) = (−x, y) and i2(x, y) = (x,−y) and the
rotation i3(x, y) = (−x,−y). We write G for the group {1, i1, i2, i3}. The
orbit of any z ∈ C2 is Gz = α−1(α(z)) and z is a singular point of α if
and only if z belongs to Fix(i1) ∪ Fix(i2) = OX ∪ OY . Now, related to
the group G, we have the following family of maps:

Definition 5.3.1. A map germ f : (C2, 0) → (C3, 0) is a double fold
(DF for short) if it is of the form

(x, y) 7→ (x2, y2, f3(x, y)).

The function germ f3 ∈ O2 can be written in the form

f3(x, y) = P0(x2, y2) + xP1(x2, y2) + yP2(x2, y2) + xyP3(x2, y2),

for some Pi ∈ O2. Under A-equivalence, we can eliminate P0. Then we
obtain a double fold in normal form

f(x, y) = (x2, y2, xp1 + yp2 + xyp3),

with pi = α∗Pi, for some Pi ∈ O2. We call special double folds (SDF
for short) the double folds in normal form satisfying p3 = 0.

Remark 5.3.2. Fold and double fold families are not mutually exclusive.
The cross-cap is usually parameterized as a fold in normal form

(x, y) 7→ (x, y2, xy),

but it can also be regarded (Lemma 5.3.9) as double fold

(x, y) 7→ (x2, y2, x+ y).
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Target multiple points of double folds
Given a double fold f(x, y) = (x2, y2, xp1+yp2+xyp3), we use the method
explained in Section 2.5 to find a presentation matrixM(f) of f∗O2: Take
g1 = 1, g2 = x, g3 = y, g4 = xy as generators of α∗O2. For i = 1, we have

f3g1 = xp1 + yp2 + xyp3 = 0 · g1 + α∗P1g2 + α∗P2g3 + α∗P3g4.

Therefore, the elements of the first column of the matrix are−Z,P1, P2, P3.
After computing f3gi for i = 2, 3, 4, we get the matrix

M(f) =


−Z XP1 Y P2 XY P3

P1 −Z Y P3 Y P2

P2 XP3 −Z XP1

P3 P2 P1 −Z

 ,

where Pi represents Pi(X,Y ).
Observe that, since M(f) has size 4 × 4, f has no points with mul-

tiplicity greater than 4. For special double folds, the space of quadruple
points in the image is given by the ideal F3(f) = 〈P1(X,Y ), P2(X,Y ), Z〉
and F2(f) = (F3(f))2. Hence, triple points of special double folds appear
concentrated at quadruple points.

Source multiple points of double folds
We denote by N2(f) the germ of complex space defined by the pull back
f∗(F1(f∗O2)). For a double fold in normal form, we have

N2(f) = V
(
(p1 + yp3)(p2 + xp3)(xp1 + yp2)

)
.

Observe that, even though D(f) and N2(f) agree set-theoretically (Re-
mark 2.6.1), it is not clear that they agree as schemes (see Open Problem
6, and observe that, indeed, both structures agree for Example 2.3.3). We
factorize f∗F1(f∗O2) as the product of the ideals

I1 = 〈p1 + yp3〉,

I2 = 〈p2 + xp3〉,

I3 = 〈xp1 + yp2〉.

The analogous alternative source triple point space V (f∗(F2(f∗O2)) is
given by the two minors of the presentation matrix above. Set theoreti-
cally, it decomposes as the union of the zero sets of the ideals

I1,2 = 〈p1 + yp3, p2 + xp3〉,

I1,3 = 〈p1 + yp3, p2 − xp3〉,

I2,3 = 〈p2 + xp3, p1 − yp3〉.
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Finally, quadruple points (again with the structure induced by the target)
are defined by

I1,2,3 = 〈p1, p2, p3〉.

Observe that, in the special double fold case, all triple points appear
collapsed into quadruple points: If p3 equals zero, then the radical of
I1,2I1,3I2,3 is 〈p1, p2〉, which is the ideal defining the quadruple point locus.

Definition 5.3.3. Given a double fold f = (α, xp1 + yp2 + xyp3), we
decompose the source double points as the union of Di(f), 1 ≤ i ≤ 3,
with

Di(f) = V (Ii)

and the triple points as the union of Di,j(f), 1 ≤ i < j ≤ 3, with

Di,j(f) = V (Ii,j).

Finally, the quadruple points are

D1,2,3(f) = V (I1,2,3).

Remark 5.3.4. It is immediate that:

1. A point w belongs to Dl(f) if and only if il(w) does so. Moreover
f(w) = f(il(w)).

2. A point w belongs to Dl,k(f) if and only if il(w) and ik(w) do so.
Moreover f(w) = f(il(w)) = f(ik(w)).

3. A point w belongs to D1,2,3(f) if and only if i1(w), i2(w) and i3(w)
do so. Moreover f(w) = f(i1(w)) = f(i2(w)) = f(i3(w)).

Example 5.3.5. Take the family

(x, y) 7→ (x2, y2, λ1x+ λ2y + λ3xy), λi ∈ C.

Assume λ3 6= 0, then its double points are the following (see Figure 5.1):

• D1(f) = V (λ1 + yλ3) is the i1-invariant line y = −λ1/λ3.

• D2(f) is the i2-invariant line x = −λ2/λ3,

• D3(f) is the i3-invariant line λ2y + λ1x = 0, if λ1 6= 0 or λ2 6= 0.
Otherwise, we have D3(f) = C2 and the map is not generically
one-to-one (see the Double Cone in Example 3.3.11).

We find the triple points where these lines meet:

• D1,2(f) = {(−λ2/λ3,−λ1/λ3)},

• D1,3(f) = {(λ2/λ3,−λ1/λ3)},
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• D2,3(f) = {(−λ2/λ3, λ1/λ3)}.

In the case λ3 = 0, we have a special double fold. Thus, its triple points
should appear collapsed at quadruple points, with equations p1 = p2 = 0.
Since we have p1 = λ1 and p2 = λ2 for this example, the appearance of
quadruple point forces λ1 = λ2 = 0 and hence, the map is the Folded
Hankerchief, seen as a map germ (C2, 0)→ (C3, 0).

D1(f)

1

D2(f)

1

D3(f)

1

Figure 5.1: Image and double points of a double fold (see Example 5.3.5).

Double fold stability
In this section we study the singularity types which are characteristic of
double fold map germs. By a singularity type we mean an A-equivalence
class of multigerms f : (C2, S)→ (C3, y). We know that the stable types
C2 → C3 are transverse double points, transverse triple points and cross-
caps. Our goal is to make a version of the concept of stability adapted
specifically for double folds. The idea is that some types, despite not
being stable, are preserved by deformations within the double fold world.
We call them DF-stable types and these deformations DF-deformations.
This concept can be adapted to the special double fold case and we shall
use the notation (S)DF to refer respectively to both, the double fold and
the special double fold case.

Definition 5.3.6. A (S)DF-deformation of f0 is a germ F : (C2 ×
C, 0)→ (C3, 0) of the form F (x, t) = ft(x), such that the germ ft : (C2, 0)→
(C3, 0) is a (special) double fold for all t. A (S)DF-unfolding is a map germ
F : (C2 × C, 0) → (C3 × C, 0) of the form F (x, t) = (t, ft(x)), such that
ft(x) is a (S)DF-deformation.

Definition 5.3.7. Amultigerm f is (S)DF-stable if any (S)DF-unfolding
F of f is trivial. A (special) double fold f : U → C3 is (S)DF-stable if all
its multigerms at f−1(f(w)), w ∈ U are (S)DF-stable.

Remark 5.3.8. Every stable type is (S)DF-stable.
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A priori, it might seem difficult to identify all possible (S)DF-stable
maps, but a better understanding of the map α will help us to do so.
The map α is the invariant map associated to the Coxeter group G (see
[Hum90] for Coxeter group theory). For any Coxeter Group there is a
Coxeter complex, in this case C = {C2 \ (OX ∪ OY ), OX \ {0}, OY \
{0}, {0}}. The Coxeter complex stratifies the space in a way such that
the behavior of the group, and thus that of α, changes whenever we go
from a facet to another. Consequently, much information about a double
fold is contained in the way its multiple point spaces meet the Coxeter
complex. The following proposition is an example of this.

Lemma 5.3.9. The germ of a double fold f(x, y) = (x2, y2, xp1 + yp2 +
xyp3) centered at a point w ∈ C2 is a cross-cap if and only if one of the
three conditions is verified:

i) w ∈ OX \{0} and the restricted function (p2 +xp3)|OX has a simple
zero at w.

ii) w ∈ OY \{0} and the restricted function (p1 +yp3)|OY has a simple
zero at w.

iii) w = 0 and p1(w) 6= 0 6= p2(w).

Proof. From Theorem 5.1.1, a singular monogerm of map from C2 to C3

is a cross-cap if and only if its source double point space is smooth. Since
cross-caps are singular monogerms, they lie on OX ∪ OY . Assume first
that w ∈ OX \ {0}. Looking at the 2 × 2 minors of the differential of f
at w it follows that f is singular at w if and only if p2 + xp3 vanishes at
w. Now the source double point space of the germ of f at w is D2(f),
given by the zeros of p2 +xp3 (notice that, by Remark 5.3.4, the branches
of double points D1(f) and D3(f) at OX \ {0} produce multigerms, not
monogerms). Therefore, the double point space of the germ of f at w is
smooth if and only if the Milnor number of the germ of function p2 + yp3

at w equals 0. This happens if and only if at least one of the partial
derivatives ∂p2+xp3

∂x and ∂p2+xp3
∂y does not vanish at w. Since p2 and p3

are functions of x2 and y2, we deduce that ∂p2+xp3
∂y vanishes atOX. Hence,

f has a cross-cap at w ∈ OX \ {0} if and only p2 + xp3 vanishes at w
and ∂p2+xp3

∂x does not, that is, if and only if the restriction (p2 + xp3)|OX
has a simple zero at w. The case w ∈ OY \ {0} is analogous. Assume
now w = 0. The source double point of f is the germ of complex space
given by the zeros of (p1 + xp3)(p2 + p3)(xp1 + yp2). The non vanishing
of p1 and p2 at 0 is a necessary and sufficient condition for this germ of
complex space to be smooth.

Points where the source double point space meets the facets of the
Coxeter complex in a generic way are called (S)DF-generic. We shall
determine the different possible (S)DF-generic singularities and then show
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that they are exactly the (S)DF-stable singularities. Let us state the
(S)DF-genericity conditions rigorously:

Definition 5.3.10. Let f = (α, xp1 + yp2 + xyp3) : U → C3 be a double
fold. We say that a point w ∈ C2, that belongs to a facet C ∈ C, is a
DF-generic point if:

1) (p1 + yp3)|C , (p2 + xp3)|C and (xp1 + yp2)|C are transverse to {0}
at w, with the exception (xp1 + yp2)|{0} (notice that no double fold
in canonical form could verify this transversality condition).

2) (p1+yp3, p2+xp3)|C , (p1+yp3, p2−xp3)|C and (p2+xp3, p1−yp3)|C
are transverse to {(0, 0)} at w.

3) w is not a quadruple point of f .

A double fold f : U → C3 is DF-generic if all points w ∈ U are DF-
generic

Conditions 1) and 2) adapt to the special double fold case just taking
p3 = 0 but, since quadruple points are more likely to appear at special
double folds (they are the zeros of just two equations in C2), the SDF
genericity conditions don’t include condition 3).

Definition 5.3.11. Let f = (α, xp1 + yp2) : U → C3 be a special double
fold, we say that a point w ∈ C2, that belongs to a facet C ∈ C, is a
SDF-generic point if:

1) p1|C , p2|C and (xp1 + yp2)|C are transverse to {0} at w, with the
exception (xp1 + yp2)|{0}.

2) (p1, p2)|C is transverse to {(0, 0)} at w.

A special double fold f : U → C3 is SDF-generic if all points w ∈ U are
SDF-generic

Remark 5.3.12. It is immediate from its defining ideals that every point
belonging to D1(f)∩OX or to D2(f)∩OY must belong to D3(f) too. It is
also immediate that D3(f) always crosses the facet {0}. Apart from these
exceptions, which are inherent to the double fold family, the genericity
conditions imply the following more geometric assertion: Given a regular
stratification of D(f), the strata have their expected dimension (double
points have dimension 1 and triple (quadruple) points have dimension 0)
and are transverse to the strata of the Coxeter complex C.

Now we introduce our new candidates to be (S)DF-generic multigerms.

Definition 5.3.13. We call a standard self tangency the multigerm
formed by two smooth branches with Morse contact. We call a stan-
dard quadruple point the multigerm formed by four smooth branches
such that every three of them meet transversally. These singularities are
depicted in Figure 5.2.
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Figure 5.2: A standard self tangency and a standard quadruple point.

Proposition 5.3.14. All standard self tangencies are A-equivalent. All
standard quadruple points are A-equivalent.

Proof. In [WA00] it is shown that the A-class of a bigerm with smooth
branches is determined by the contact type of its branches. Since there is
only one contact class of Morse type, all standard self tangencies are equiv-
alent. Let f be a multigerm of standard quadruple point. Any three of its
branches form a triple point and there is only one A-class of triple points.
Therefore, there exists a change of coordinates that takes f to a multi-
germ whose branches send (x, y) respectively to (x, y, 0), (x, 0, y), (0, x, y)
and g(x, y) for some regular monogerm g with

Im g = {U1X + U2Y + U3Z = 0},

Ui ∈ O3. The plane tangent to Im g is determined by the equation

t1X + t2Y + t3Z = 0,

with ti = Ui(0, 0). If we assume t1 = 0, then the intersection of the tangent
plane with the branches {Y = 0} and {Z = 0} is the line {Y = Z = 0}.
This contradicts the transversality of these three branches. We deduce
t1 6= 0 and, analogously, t2 6= 0 6= t3. The change

(X,Y, Z) 7→ (U1X,U2Y, U3Z)

defines a germ of diffeomorphism that takes our multigerm to the one with
image {XY Z(X + Y +Z) = 0}. Now the four branches of our multigerm
are given by

• (x, y) 7→ (u1x, u2y, 0),

• (x, y) 7→ (u1x, 0, u3y),

• (x, y) 7→ (0, u2x, u3y), and
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• (x, y) 7→ (a1x+ b1y, a2x+ b2y,−(a1 + b1)x− (a2 + b2)y),

where ui = Ui ◦ f , and a1, a2, b1, b2 are some function germs in O2.
We take germs of diffeomorphisms at the source, at the four different
points where our multigerm is centered. The first three diffeomorphisms
send (x, y) respectively to (x/u1, y/u2), (x/u1, y/u3) and (x/u2, y/u3).
The fourth diffeomorphism is the inverse of the germ (x, y) 7→ (a1x +
b1y, a2x+ b2y). These four source coordinate changes take the multigerm
to one multigerm defined by four branches sending (x, y) respectively to
(x, y, 0), (x, 0, y), (0, x, y) and (x, y,−x− y). Hence, all germs of standard
quadruple point are equivalent.

Lemma 5.3.15. The (S)DF-generic points are regular points, transverse
double points, cross-caps, standard self tangencies and triple points (resp.
standard quadruple points).

Proof. Given a (special) double fold f and a point w = (x0, y0) ∈ C2

satisfying the (S)DF-genericity conditions, we shall determine the type of
singularity of the multigerm of f at f−1(f(w)). First of all, notice that
singular points lie in OX ∪ OY and the genericity condition 2) implies
that all triple points belong to the facet C2 \ (OX ∪ OY ). Hence, from
genericity condition 1), together with Lemma 5.3.9, it follows that all
points where f is singular are cross-caps.

Now assume that f is regular at w and the point w belongs to Dl(f),
1 ≤ l ≤ 3. Take the vector fields along f defined by the cross product

η =
∂f

∂x
× ∂f

∂y

and
ηl = η ◦ il, l = 1, 2, 3.

The branches of the multigerm of f at w and ilw are transverse unless
η × ηl or, equivalently,

ξl = (η − ηl)× (η + ηl)

vanish at w. We study the different cases a), b) and c), where w belongs
to D1(f), D2(f) and D3(f) respectively.

Case a) Let w belong to D1(f), then we have:

ξ1|w = 4x0y0

(
4x0

∂(xp1 + xyp3)

∂y
|w, 4y0

∂(xp1 + xyp3)

∂x
|w,

, (
∂(xp1 + xyp3)

∂y
|w
∂yp2

∂x
|w −

∂(xp1 + xyp3)

∂x
|w
∂yp2

∂y
|w)
)
.

Assume first w /∈ OX ∪OY , then ξ1|w vanishes if and only if

∂p1 + yp3

∂x
|w =

∂p1 + yp3

∂y
|w = 0,
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that is, if and only if p1 + yp3 is not transverse to {0} at w. This is
in contradiction with the first genericity condition. Now assume w ∈
OX∪OY and notice w /∈ OY , because it would be a singular point. Thus,
we have w ∈ OX \ {0}. We claim that the bigerm of f at (±x0, 0) forms
a standard self tangency at (X0, 0, 0), where X0 = x2

0. The genericity
conditions imply that P1 has a simple zero at (X0, 0) and P2 does not
vanish at (X0, 0). Let the germ of f : C2 → C3 at x0 parameterize one of
the branches and let φ : C3 → C be the germ at (X0, 0, 0) which defines the
other branch implicitly. Then, following Montaldi [Mon86], the contact
between the branches is given by the K-class of the composition φ ◦ f .
The branches are given by

(Z2 ±
√
XP1)2 − Y P 2

2 ± 2Y
√
XP2P3 −XY P 2

3 = 0.

After choosing the preimage (x0, 0) and composing, we get the function
4x(p1 + yp3)(xp1 + yp2), which is of Morse type in (x0, 0). Therefore, the
multigerm of f at (±x0, 0) is a standard self tangency.

Case b) is symmetric interchanging indices 1 and 2, and OX and OY .
Case c) If w ∈ D3(f), then we can assume w ∈ D3(f) \ (OX ∪ OY )

because otherwise w ∈ D1(f) ∪D2(f), by Remark 5.3.12. We have

ξ3|w = 4x0y0

(
4x0

∂(xp1 + yp2)

∂y
|w, −4y0

∂(xp1 + yp2)

∂x
|w,

, (
∂(xp1 + yp2)

∂y
|w
∂xyp3

∂x
|w −

∂(xp1 + yp2)

∂x
|w
∂xyp3

∂y
|w)
)
,

which vanishes if and only if

∂xp1 + yp2

∂x
|w =

∂xp1 + yp2

∂y
|w = 0,

that is, if and only if xp1 + yp2 is not transverse to {0} at w.
As we have seen before, all triple points (and therefore all quadruple

points) belong to the facet C2 \ (OX ∩ OY ), where the second gener-
icity condition implies that the branches are transverse. Therefore, all
triple points are transverse (respectively, all quadruple points are stan-
dard quadruple points).

Lemma 5.3.16. Every (special) double fold admits a (S)DF-deformation
ft defined in a neighborhood U ×V of (0, 0) ∈ C2×C such that, for every
t ∈ V , ft is (S)DF-generic.

Proof. Let f = (α, xp1 + yp2 + xyp3) be a representative defined at some
neighborhood U of the origin. we consider DF-deformations of the form
fa,b,c = (α, x(p1 + a) + y(p2 + b) + xy(p3 + c)). Let Z be the analytic
space consisting on points (a, b, c) ∈ C3 such that, for some point w in U ,
the map fa,b,c does not satisfy all genericity conditions. We claim that Z
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is a proper subspace of C3. Take the first function, p1 + yp3, of the first
condition and any facet of the Coxeter complex C ∈ C. We consider the
map ψ : C × C3 → C, given by ψ(w, a, b, c) = p1(w) + a + y(p3(w) + c).
This is clearly a submersion. Therefore, Lemma 1.3.3 tells us that, for
almost every (a, b, c) ∈ C3, the map fa,b,c is transverse to 0. We can
proceed analogously for all the maps given by the DF-genericity conditions
to finally show that, for almost every (a, b, c) ∈ C3, all the genericity
conditions hold at every point in U . Thus, Z is a proper subspace. Hence,
we can find some particular (a, b, c) ∈ C3 and some neighborhood V of
0, such that t(a, b, c) /∈ C3, for all t ∈ V . If we take the DF-deformation
ft(x, y) = (x2, y2, x(p1 + ta) + y(p2 + tb) + xy(p3 + tc) defined at U × V
then, for any t ∈ V , the map ft has only DF -generic points at U . The
special double fold case is analogous.

Theorem 5.3.17. (S)DF-stable and (S)DF-generic points are the same.
As a consequence:
The DF-stable singularities are

• Transverse double points, cross-caps and triple points.

• Standard self tangencies.

The SDF-stable singularities are

• Transverse double points and cross-caps.

• Standard self tangencies.

• Standard quadruple points.

Proof. By Lemma 5.3.16, the DF-stable singularities must be DF-generic.
Now take a DF-generic point w of a double fold f . If w is a transverse
double point, a cross-cap or a triple point, then it is stable and, hence,
DF-stable. Suppose w is a standard self tangency and Let F = (ft, t) be
a DF-unfolding of f . Assume w ∈ D1(f). Then, as we have seen in the
proof of Lemma 5.3.15, the point belongs to OX \ {0}, (p1 + yp3)|OX has
a simple zero at w and the functions p2 + xp3 and xp1 + yp2 don’t vanish
at w. Therefore, there exist a neighborhood U×V of (w, 0) and a curve of
points wt ∈ U∩OX \{0}, with t ∈ V and w0 = w, such that (p1 +yp3)|OX
has a simple zero and the functions p2 +xp3 and xp1 +yp2 don’t vanish at
wt. All this points are also standard self tangencies and, since they are all
A-equivalent by Proposition 5.3.14, they are DF-stable. The proof holds
in the special case and is analogous for standard quadruple points.

Counting (S)DF-stable points

A usual way to study germs is to count the number of stable 0-dimensional
points of each type which appear in a stabilization of the original germ.
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One can show that these numbers can be obtained as the dimension (as
C-vector space) of certain local algebras related to the different stable
0-dimensional types. We adapt these techniques specifically to (S)DF-
deformations and to (S)DF-stable points.

Definition 5.3.18. We call (S)DF-stabilization any (S)DF-deformation
F such that there exists a neighborhood U × V of (0, 0) ∈ C2 × C such
that, for every t ∈ V , ft is (S)DF-stable.

Remark 5.3.19. By Lemma 5.3.16 and Theorem 5.3.17, every (special)
double fold admits a (S)DF-stabilization.

Definition 5.3.20. For any (special) double fold f we define:

• STi(f) = 1
2 dimCO1/j

∗
i Ii(f), for i = 1, 2,

• Ci(f) = dimCO1/j
∗
kIi(f), for (i, k) = (1, 2), (2, 1),

• T (f) = dimCO2/I1,2(f) (in the special double fold case: QD(f) =
1
4 dimCO2/〈p1, p2〉),

where j1 and j2 are the inclusions of OX and OY into C2 respectively.

Remark 5.3.21. We avoid indices for triple points in different branches
because the complex spaces Di,j(f) are all isomorphic, since O2/I1,2(f) ∼=
O2/I1,3(f) ∼= O2/I2,3(f) via the isomorphisms induced by i1 and i2.

Proposition 5.3.22. Let STi(f), Ci(f) and T (f) (respectively QD(f))
be finite. Let fs be a (S)DF-stabilization of f . Then, for a small enough
s 6= 0, the following equalities hold:

• STi(f) = # standard self tangencies f(Di(fs)),

• Ci(f) = # cross-caps in Di(fs) \ {0},

• T (f) = # triple points of fs (in the special double fold case: QD(f) =
# standard quadruple points of fs).

Proof. Take the zero set of the different ideals which appear in Definition
5.3.20. If STi(f), Ci(f) and T (f) (respectively QD(f)) are finite, then
the spaces are 0-dimensional. In this case, the codimension of any of
these spaces equals the number of generators of its defining ideal. Hence,
the spaces are complete intersection and the Principle of Conservation of
Number (see [dJP00, Theorem 6.4.7]) applies to them. We only need to
check that, if the multigerm of fs at f−1

s (fs(w)) is (S)DF-generic, then
the numbers are 1 if it is the considered singularity, and 0 otherwise.

Example 5.3.23. Take the family of special double folds

(x, y) 7→ (x2, y2, x(a1x
2 + b1y

2 − c1) + y(a2x
2 + b2y

2 − c2)).
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Figure 5.3: A non SDF-stable special double fold (see Example 5.3.23).

The double points D1(f) and D2(f) are given by a1x
2 + b1y

2 = c1 and
a2x

2 + b2y
2 = c2.

For the germ

(x, y) 7→ (x2, y2, x(x2 + 2y2) + y(2x2 + y2))

(Figure 5.3), we can easily compute

ST1 = 1/2 dimC(O1/〈x2〉) = 1

and similarly ST2 = 1 and

C1 = C2 = 2.

We also have

QD = 1/4 dimC(O2/〈2x2 + y2, 2y2 + x2〉) = 1.

Now take the 2-parameter (S)DF-deformation

(x, y) 7→ (x2, y2, x(x2 + 2y2 − t1) + y(2x2 + y2 − t2)),

where t = (t1, t2) ∈ C2. We see that, for almost every fixed t with
t1 6= 0 6= t2, ft is a SDF-stable map where we can find (Figure 5.4)
a standard self tangency and two cross-caps along D1(ft) \ {0} and the
same on D2(ft) \ {0}. We also see the cross-cap at ft(0) and a standard
quadruple point. For these good values of t we can also see that, apart
from the restrictions on Di(f) ∩ D3(f) and D3(f) ∩ {0} (see Remark
5.3.12), the regular stratification of D(ft) is transverse to every facet of
the Coxeter complex.

Example 5.3.24. If we take the Double Cone (Example 5.3.5), given by

(x, y) 7→ (x2, y2, xy).
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D1(f)

1

D2(f)

1

D3(f)

1

C1

1

C2

1

NT1

1

NT2

1

QD

1

QD

1

QD

1

QD

1

NT2

1

NT1

1

C2

1

C1

1

Figure 5.4: A SDF-stable deformation of the surface shown in figure 5.3.

We see easily that
STi = 0,

Ci = dimCO1/m1 = 1, i = 1, 2

and
T = dimCO2/m2 = 1.

Indeed we can take the stabilization DF-stabilization

(x, y) 7→ (x2, y2, tx+ ty + xy),

which has, for any t 6= 0, three cross-caps (one in D1(f) \ {0}, one in
D2(f) \ {0} and the other at 0) and one triple point (as in Figure 5.1).

Remark 5.3.25. Let ST (f), C(f), T (f) (and respectively QD(f) in the
special case) be the number of standard self tangencies, cross-caps, triple
points (and standard quadruple points) respectively that appear taking
a (S)DF-stabilization of f . It is known that C(f) and T (f) are well
defined A-invariants of f . It is immediate that Q(f) is also invariant,
because any map showing a quadruple point can be deformed (outside
the special double fold world) into another that shows 4 triple points. It
is not clear whether ST is A-invariant or not, but it is easy to see that
the numbers with indices STi(f) and Ci(f) are not. Given a double fold
f , we can interchange x and y at the source and then permute the first
two coordinates at the target to obtain a new double fold, say g, such
that ST1(f) = ST2(g), ST2(f) = N1(g), C1(f) = C2(g) and C2(f) =
C1(g). Apart from the permutation of indices 1 and 2 that this change
of coordinates produces, examples suggest that changes of coordinates
don’t make the singularities jump from one space Di(f) to another one.
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Therefore, the numbers STi(f) and Ci(f) seem to be A-invariant, modulo
a simultaneous permutation of all indices 1 and 2 (which still leaves ST
invariant). However, we have only succeeded in showing it for finitely
determined quasi homogeneous double folds (Corollary 5.4.6).

5.4 A-equivalence and Kα-equivalence
The aim of this section is to mimic a result of David Mond [Mon85,
Theorem 4.1:1], which shows the coincidence between the A-equivalence
of folds f : (C2, 0) → (C3, 0), f(x, y) = (x, y2, f3) and some easier to use
equivalence of the third coordinate function, f3, defined ad hoc. This
equivalence is given by a subgroup of K called KT which behaves well
with respect to the Whitney Fold T : (C2, 0)→ (C2, 0) given by

(x, y) 7→ (x, y2).

We take, instead of the Whitney Fold, any finite mapping α : (Cn, 0) →
(Cn, 0) and consider mappings

(α, fn+1) : (Cn, 0)→ (Cn+1, 0).

We define the group Kα and the generalization of one direction of Mond’s
results comes easily: Kα-equivalence for fn+1 implies A-equivalence for
(α, fn+1).

We denote by Rn the group of germs of biholomorphism ϕ : (Cn, 0)→
(Cn, 0).

Definition 5.4.1. Let α : (Cn, 0) → (Cn, 0) be a finite germ. We define
Rα as the subgroup consisting of the germs ϕ ∈ Rn such that there exists
a germ ϕ̂ ∈ Rn such that

ϕ̂ ◦ α = α ◦ ϕ.

We say that two germs g, h ∈ On are Kα-equivalent if there exist a
function κ ∈ α∗O2, κ(0) 6= 0 and a germ of diffeomorphism ϕ ∈ Rα, such
that

g = κ · h ◦ ϕ.
Example 5.4.2. Let α : (C2, 0) → (C2, 0), as in Example 4.1.9, be the
Folded Hankerchief

(x, y) 7→ (x2, y2).

It is easy to see that any biholomorphism ϕ ∈ Rα is of the form ϕ(x, y) =
(xϕ1, yϕ2) or ϕ(x, y) = (yϕ1, xϕ2), for some functions ϕ1, ϕ2 ∈ α∗O2,
ϕi(0, 0) 6= 0. In particular, if g, h ∈ C[x, y] are homogeneousKα-equivalent
polynomials, the factors κ and h◦ϕ are homogeneous. Hence, on one hand,
κ is a constant in C∗. On the other hand, since ϕ is a diffeomorphism,
both h and h ◦ ϕ are homogeneous of the same degree. We can replace ϕ
by its linear part without changing the composition. Thus, we can assume
that ϕ is of the form (x, y) 7→ (ax, by) or (x, y) 7→ (by, ax).
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Lemma 5.4.3. A biholomorphism ϕ ∈ Rn belongs to Rα if and only if
the algebras α∗On and (α ◦ ϕ)∗On are equal.

Proof. Let ϕ ∈ Rα with ϕ̂ ◦ α ◦ ϕ = α. Any function h ◦ α ∈ α∗On is
equal to (h ◦ ϕ̂) ◦ α ◦ ϕ ∈ (α ◦ ϕ)∗On. Now take h ◦ α ◦ ϕ ∈ (α ◦ ϕ)∗On.
This function is equal to h ◦ ϕ̂−1 ◦ ϕ̂ ◦ α ◦ ϕ = (h ◦ ϕ̂−1) ◦ α ∈ α∗On.

Now suppose that the two sub-algebras above are equal, then there
exist some functions ϕ̂i such that αi = ϕ̂i ◦α ◦ϕ. Take ϕ̂ = (ϕ̂1, . . . , ϕ̂n).
Then we have α = ϕ̂ ◦ α ◦ ϕ. As α is finite and ϕ is a biholomorphism,
α and α ◦ ϕ have the same finite multiplicity. Therefore ϕ̂ must have
multiplicity 1, and hence is a biholomorphism.

Theorem 5.4.4. Let α : (Cn, 0)→ (Cn, 0) be a finite germ and fn+1, gn+1

be two Kα-equivalent functions of On, then the map germs (Cn, 0) →
(Cn+1, 0) f = (α, fn+1) and g = (α, gn+1) are A-equivalent.

Proof. f ∼Kα g implies that there exists θα : (Cn × C, 0) → (C, 0) of the
form θα(X,Z) = θ(α(X), Z) for some germ of function θ and such that
θα(0, ·) is a germ of biholomorphism, and there exists ϕ ∈ Rαn such that
g(X) = θα(X, f ◦ ϕ(X)). Since ϕ ∈ Rαn, then there exists some germ of
biholomorphism ϕ̂ such that α = ϕ̂ ◦α ◦ϕ. We define ψ1 : Cn+1 → Cn by
ψ1 = ϕ̂ ◦π1 and ψ2 = θ ◦ (ψ1, π2), where πi represents the projection over
the i-th component of Cn × C. Let ψ = (ψ1, ψ2) : (Cn+1, 0) → (Cn+1, 0)
and, for every X ∈ Cn, we have

ψ ◦ (α, f) ◦ ϕ(X) =
(
ϕ̂(α(ϕ(X))), θ(ϕ̂(α(ϕ(X))), f(ϕ(X)))

)
=
(
α(X), θα(X, f(ϕ(X)))

)
= (α, g)(X).

As a consequence of ϕ̂ and θα(X, ·) being biholomorphisms, we have that
ψ is a biholomorphism.

Examples suggest that the converse of Theorem 5.4.4 also holds: A-
equivalence of (α, fn+1) and (α, gn+1) implies Kα-equivalence of fn+1 and
gn+1. However we have not succeed in proving this in general. As we
mentioned before, Mond has proved that it holds when α is the Whit-
ney Fold. We have only succeeded in showing it for finitely determined
quasihomogeneous double folds.

It is shown in [MNB08] that any quasihomogeneous double fold must
be homogeneous. There are only two ways to obtain a homogeneous
double fold f(x, y) = (α, xp1 + yp2 + xyp3). One is p3 = 0 and the other
p1 = p2 = 0. Every finitely determined double fold must have a reduced
double point space, which is given by (p1 +yp3)(p2 +xp3)(xp1 +yp2) = 0.
We deduce immediately that every finitely determined quasihomogeneous
double fold must be, in fact, a homogeneous special double fold.
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Theorem 5.4.5. Let f = (α, f3) and g = (α, g3) be A-equivalent finitely
determined quasihomogeneous double folds , then the functions f3 and g3

are Kα-equivalent.

Proof. Assume that there exist ψ and ϕ such that g = ψ◦f ◦ϕ. Denote by
ϕi,xj the derivative of the i-th component with respect to the variable xj .
Taking into account that p1, p2 ∈ m2, the 2-jet of the first two coordinate
functions of the equality g = ψ ◦ f ◦ ϕ gives us

x2 = ψ1,X(ϕ2
1,xx

2 + ϕ1,xϕ1,yxy + ϕ2
2,yy

2)

+ ψ1,Y (ϕ2
2,xx

2 + ϕ2,xϕ2,yxy + ϕ2
2,yy

2),

and also

y2 = ψ2,X(ϕ2
1,xx

2 + ϕ1,xϕ1,yxy + ϕ2
2,yy

2)

+ ψ2,Y (ϕ2
2,xx

2 + ϕ2,xϕ2,yxy + ϕ2
2,yy

2).

Since dϕ is invertible, we have ϕ1,xϕ2,y 6= 0 or ϕ1,yϕ2,x 6= 0. In the first
case, from the equations we obtain ϕ1,y = ϕ2,x = 0 and, in the second
case, ϕ1,x = ϕ2,y = 0. Suppose we are in the first case (the second one is
analogous). Then the differential of ϕ is of the form dϕ(u, v) = (au, bv)
for some a, b ∈ C∗.

Notice that w is a source double point of g if and only if it is so for
f ◦ ϕ, if and only if ϕ(w) is a source double point of f . Since f and g
are finitely determined, their double point spaces are reduced and thus
ϕ|D(g) : D(g) → D(f) is an isomorphism between complex space germs.
We claim that ϕ|D3(g) is an isomorphism between D3(g) and D3(f). We
proceed by reduction to the absurd: suppose there is a irreducible com-
ponent R of D3(g), such that ϕ(R) 6⊂ D3(f). For example, suppose
ϕ(R) ⊂ D1(f) (the other case, ϕ(R) ⊂ D2(f), is analogous). Since f and
g are finitely determined, their non strict double points are isolated and
thus, since R ⊂ D3(g) and ϕ(R) ⊂ D1(f), we have ϕ(i3(R)) = i1(ϕ(R)).
Let (u, v) be the tangent vector to the curve germ R, we have the equal-
ity dϕ(i3(u, v)) = i1(dϕ(u, v)), that is (−au,−bv) = (−au, bv). The last
equality implies (u, v) is a horizontal vector. Since g is homogeneous, the
equation which defines R is also homogeneous and, thus, it is independent
of x. This is implies that y divides xq1 + yq2, which in turn implies that
y divides q1. Then y2 divides q1q2(xq1 + yq2). This is a contradiction,
because g is finitely determined and, thus, D(g) = V (q1q2(xq1 + yq2))
must be reduced.

Now we have the isomorphism of complex spaces ϕ|D3(g) : D3(g) →
D3(f), that is, we have the equality 〈g3〉 = ϕ∗〈f3〉. This implies the
existence of a function h, with h(0, 0) 6= 0, such that g3 = h · f3 ◦ϕ. Since
g3 y f3 are homogeneous, we can take the diffeomorphism ϕ̃ = dϕ and
the constant κ = h(0, 0) 6= 0 and get g3 = κ · f3 ◦ϕ. Moreover, as we have
seen before, ϕ̃ is a diagonal linear change and thus it belongs to Rα.
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Notice that the Kα-equivalence of f3 and g3 splits into two simultane-
ous equivalences between P1, P2 and Q1, Q2. In the diagonal case we get
an expression

xQ1(x2, y2) + yQ2(x2, y2) = κaxP1(a2x2, b2y2) + κbyP2(a2x2, b2y2),

equivalent to Q1(x, y) = κaP1(a2x, b2y) and Q2(x, y) = κbP2(a2x, b2y).
In the antidiagonal case we obtain the expression

xQ1(x2, y2) + yQ2(x2, y2) = κayP1(a2y2, b2x2) + κbxP2(a2y2, b2x2),

equivalent to Q1(x, y) = κbP2(a2y, b2x) and Q2(x, y) = κaP1(a2y, b2x).
Now the next corollary follows immediately.

Corollary 5.4.6. Let f and g be two A-equivalent quasihomogeneous
finitely determined special double folds, then:

STi(f) = STj(g),

Ci(f) = Cj(g),

QD(f) = QD(g),

µ(Di(f)) = µ(Dj(g)),

where j = i in the diagonal case, and in the antidiagonal the pairs (i, j)
are (1, 2), (2, 1), (3, 3).
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Conclusion

The following is a brief summary of our accomplished goals: We have
been able to unify the approaches of Gaffney and Mond for multiple point
spaces. We have described effective methods to compute the spaces D(f)
and Mk(f) (these two only for p = n + 1) and Dk(f)/Sk, under quite
general conditions.

We have shown relations between algebraic properties of the double
point space D2(f) and the stability and finite determinacy of f , and
we have been able to find examples to justify the assumptions in our
statements.

We have discarded the structure H k(f) as a satisfactory multiple
point structure, by giving an explicit example where it fails to satisfy
the conditions M1 and M2. However, we have shown that under generic
conditions, the mentioned structure is correct.

We have provided a different approach for the construction of the space
B2(f), which makes very easy to compute it. We have given a proper
definition of B2(f) for germs. We have shown that B2(f) is isomorphic
to D2(f) if there are no points of corank ≥ 2. We have shown that B2(f)
can be defined ‘taking unfoldings’, analogously to D2(f). We have related
the properties of B2(f) to stability and finite determinacy and we have
given different proofs to some properties of B2(f).

We have extended to corank 2 a characterization of finite determinacy
of map germs (C2, 0) → (C3, 0) in terms of the Milnor number µ(D(f)).
We have also extended to corank 2 the so called Marar-Mond formulas,
relating the Milnor numbers of several double point spaces and the number
of cross-caps and triple points collapsed at the origin.

We have introduced a family of corank 2 map germs, the ‘double folds’,
which contains interesting examples. Finally, in Appendix B we have in-
troduced some techniques to compute expressions in terms of S2-invariant
funtions, where S2 is the group of permutation of two points.

Now we list some open problems for further studies:
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Open Problem 1. Give an explicit ideal sheaf I k(f) defining Dk(f):
This has been done for corank 1 map germs (Section 2.2) and for double

points of arbitrary corank (Theorem 3.1.12). As far as we know, for k ≥ 3
it is still an open problem to find an explicit set of generators for the
k-multiple point ideal of a map germs of corank ≥ 2. As exposed in Open
Problem 5, the relation between singular monogerms and the nearby strict
multiple points becomes more complex if corank f ≥ 3. Consequently, it
would make sense to restrict the problem to the case of corank ≤ 2.

Open Problem 2. Characterize k-multiple points set-theoretically:
The problem can be reduced to points in the small diagonal. Given

f : X → Y , a pair (x, x) ∈ ∆(X, 2) is a double point if and only if f is
singular at x. What makes a point (x, x, x) ∈ ∆(X, 3) be a triple point?
As in the previous open problem, and given its relation to Open Problem
5, perhaps one should restrict this problem to the case corank f ≤ 2.

Open Problem 3. Is Dk(f) a Cohen Macaulay space whenever it is
dimensionally correct?

We know that the claim holds for multiple points of corank one (Sec-
tion 2.2) and for double points of any corank (Proposition 3.1.10). In
both situations, we use explicit sets of generators to obtain the results.
Thus, the problem is related to Open Problem 1

An interesting point is that it suffices to show that Dk
S(F ) is Cohen

Macaulay for any stable multigerm F . This is true because the k-multiple
point space of a given map f is given by the section at {s = 0} of Dk

S(F ),
for a suitable local stable unfolding F (s, x) = (s, fs(x)), s ∈ Cr of f = f0.
Since both Dk

S(F ) and Dk(f) are dimensionally correct, if we assume that
Dk
S(F ) is Cohen Macaulay, then s1, . . . , sr form a regular sequence for

the module ODkS(F ) and, hence ODkS(F )/〈s1, . . . , sr〉 ∼= Dk(f) is a Cohen
Macaulay ring, as desired.

Open Problem 4. Does the equality√
P(f, k) : I∞D(X,k) = P(f, k) : ID(X,k)

hold for stable maps?
The interest of this problem is computational. To compute multiple

point spaces of corank ≥ 2 we need to compute the strict k-multiple
point space of a stable unfolding (see Definition 2.1.1). It turns out that
the harder computation that we have to perform are the saturations and
radicals in the equality of the statement. Observe that the statement for
k = 2 follows from Corollary 3.3.9.

Open Problem 5. Understand the relation between the different mul-
tiple point spaces and the corresponding nearby strict multiple points.
For instance: When can Dk

1 (f) and Mk(f) be computed as Dk(f) in
Proposition-Definition 2.1.5? To make a more precise statement. Can we
determine the stable maps f satisfying the following statements?
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1. Dk
1 (f) is reduced and equal to {(x ∈ Xk | |f−1(f(x))| ≥ k}.

2. Mk(f) is reduced and equal to {(y ∈ Y k | |f−1(y)| ≥ k}.

It follows from the work of Damon and Galligo [DG83] that not all stable
maps satisfy the second condition. They show that there are stable map
germs of corank ≥ 3, satisfying Mk(f) 6= ∅, and such that the origin is
not in the closure of the strict k-multiple points!

Open Problem 6. Do the spaces Dk
1 (f) and Nk(f) = f−1(Mk(f))

agree? We have only been able to show the equality set-theoretically and
for double points. Some work in this direction can be found in [KLU92].
An example of the scheme-theorical equality can be found in Example
2.3.3, compared to the source double point given in Section 5.3

Open Problem 7. These are some questions regarding ‘blowing-up k-
multiple points’:

1. Define spaces Bk(f), for k ≥ 3.

2. Is Bk(f) ∼= Dk(f) in corank 1?

3. Does the smoothness of Bk(f) characterize the stability of f?

Open Problem 8. Extend the work for double folds to arbitrary ‘reflec-
tion maps’:

Let G be a reflection group and let α : Cn → Cn be its invariant map.
A G-map is any map of the form (α, fn+1) : Cn → Cn+1. Do we know
how to mimic the results for double folds for these maps? For instance, it
is not difficult to show the set-theoretical equality between D(f) and the
zero set of

(
∏

g∈G\{1}

fn+1 − gfn+1)/Jα.

Observe that for double folds the equality holds as schemes.
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Appendix A

Complex spaces

The aim of this appendix is to fix the notations and describe some needed
results about complex spaces. Our general references are [GR84] and
[dJP00]. The only notion we have not been able to find in the literature
is that of a germ of a complex space along a subset (Section A.2), a
straightforward generalization of the usual notion of a germ at a point.

A model complex space is a locally ringed space (X,OX) of the
form

X = {p ∈ U | f1(p) = . . . , fr(p) = 0},

for some holomorphic functions f1, . . . , fr defined at some open neighbou-
hood U ⊆ Cn, and

OX = (OCn/I )|X ,

where I is the ideal sheaf in OU generated by f1, . . . , fr. A complex
space is a Hausdorff locally ringed space, which is locally isomorphic
to some model complex space (the model may change with the point,
obviously). A morphism of complex spaces is just a morphism of locally
ringed spaces between two complex spaces.

A complex space X is called reduced (resp. regular, Cohen-
Macaulay, complete intersection, irreducible, normal) at a point
x ∈ X if the stalk OX,x is reduced (resp. regular, Cohen-Macaulay, com-
plete intersection, a domain, integral closed in its quotient ring). We
say that (X,OX) is reduced, (resp. regular, Cohen-Macaulay, complete
intersection, normal) if it is so at any point x ∈ X.

We say a complex space X is unmixed (resp. equidimensional)
at a point x ∈ X if all the associated primes (resp. minimal associated
primes) in OX,x have the same dimension. We say that X is unmixed if
it is unmixed at any point and the dimension of X is the same at every
point. We say that X is equidimensional if the dimension of X is the
same at every point. Observe that a space is unmixed if and only if it is
equidimensional and does not contain embeeded components. Moreover,
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a connected space is unmixed (resp. equidimensional) if and only if it is
unmixed (resp. equidimensional) at every point.

We say that (Y,OY ) is a complex subspace of (X,OX) if Y ⊆ X
and there exists a morphism of complex spaces

(i, i#) : (Y,OY )→ (X,OX),

where i : Y ↪→ X is the inclusion and i# is surjective. We say that (Y,OY )
is a closed complex subspace if i(Y ) is closed in X.

Proposition A.0.7. If all the non embedded irreducible components of
(Xi, x), 1 ≤ i ≤ k have codimension ≤ ri, then all the non-embedded
irreducible components of (

⋂k
i=1Xi, x) have codimension ≤

∑k
i=1 ri.

A.1 Projectivization of a cone over a complex
space

Definition A.1.1. LetM be a manifold, a cone over M is a closed com-
plex subspace X ⊆ M × Cm (for some m), defined by some ideal sheaf
I in OM×C such that, for all x ∈ M , there exists an open neighbour-
hood U of x, such that I |U×Cn = 〈h1, . . . , hr〉, for some homogeneous
polynomials

h1 . . . , hr ∈ OM (U)[y1, . . . , ym].

Observe that, if X ⊆ M × Cn is a cone over M , then, for any point
(x, y), x ∈M,y ∈ Cn \ {0}, the space X contains the ‘line’ (x, λy), λ ∈ C.

To fix notation, let

θ : Cm \ {0} → Pm−1

be the class map to the projective space.
Let Ui = {[y0 : · · · : ym] ∈ Pm−1 | xi 6= 0} and let ϕi : M × Ui →

M × Cm−1 be the biholomorphism given by

(x, [y0, . . . , ym]) 7→ (x,
y0

yi
, . . . ,

ŷi
yi
, . . . ,

ym
yi

).

where the hat means ommision.

Proposition-Definition A.1.2. [Fis76, P. 45] Let X ⊆ M × Cm be a
cone over M defined by a coherent ideal sheaf I . Then the subset of
M × Pm−1

X̃ = {(x, θ(y)) | (x, y) ∈ X, y 6= 0}

has structure of closed complex subspace of M × Pm−1, defined by a
coherent ideal sheaf Ĩ in OM×Pm−1 given locally as follows:
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For any open subset V ⊆ X, if I |V×Cn = 〈h1, . . . , hr〉, for some
homogeneous polynomials h1 . . . , hr ∈ OM (V )[y1, . . . , ym], then Ĩ (V ∩Ui)
is the preimage by ϕ∗ of the ideal in OV×Cm−1 generated by the functions

hj((x), (z1, . . . , zi−1, 1, zi, . . . , zm−1)),

with the value 1 at the i-th position and being z1, . . . , zm−1 the variables
in Cm−1.

The diagonal blowing-up
Let X be a complex manifold, we denote by B(X) the blowing-up of
X ×X along the diagonal ∆(X, 2) = {(x, x) ∈ X ×X}. It is well known
that B(X) and X are birationally equivalent as complex spaces. More
precisely, B(X) is endowed with a surjection

πX : B(X)→ X ×X,

which is an isomorphism when restricted to B(X) \ π−1
X (∆(X, 2)). We

denote πX by π if there is no risk of confusion. Let n = dimX. Since
∆(X, 2) is a n-dimensional smooth subspace of the 2n-dimensional smooth
space X × X, it follows that B(X) is smooth of dimension 2n and the
fiber π−1(x, x) of any diagonal point is isomorphic to the projective space
Pn−1 over C. Indeed, there is a canonical identification between the fiber
π−1(x, x) and the projectivised of the tangent space TxX of X at x. The
fiber π−1(x, x) can be seen as an element of the projectivised of the normal
bundle

T(x,x)(X ×X)

T(x,x)∆(X, 2)
.

We have an isomorphism

T(x,x)(X ×X)

T(x,x)∆(X, 2)
→ TxX,

given by
(u, v) + T(x,x)∆(X, 2) 7→ u− v.

The induced map between the corresponding projectivisations

π−1(x, x)→ P(TxX)

is the mentioned identification.
In order to know B(X) locally around the fibers π−1(x, x′) of points

(x, x′) ∈ X×X, it suffices to know B(Cn): Let (x, x′) ∈ X×X \∆(X, 2),
then B(X) at π−1(x, x′) is locally isomorphic to X ×X at (x, x′). Now
let (x, x) ∈ ∆(X, 2) and take a local chart ψ : V →W ⊆ Cn of X around
the point x. Since the blowing-up is a local construction, the preimage
π−1(V ) is isomorphic to B(Cn) ∩ π−1

Cn (W ). This isomorphism, and the
local chart ψ, yield an A-equivalence between the restriction π|π−1(V ) and
the restriction of πCn : B(Cn)→ Cn × Cn to B(Cn) ∩ π−1

Cn (W ).
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Example A.1.3. The blowing up of Cn × Cn along the diagonal can be
realized as the space

B(Cn) = {(x, x′, [u]) ∈ Cn × Cn × Pn−1 | ∃λ ∈ C, λ(x− x′) = u},

together with the projection

π : B(Cn) → Cn × Cn
(x, x′, [u]) 7→ (x, x′)

.

We label the homogeneous coordinates in Pn−1 as u1 : · · · : un. It is
immediate that B(Cn) can be regarded as the smooth complex subspace
of Cn × Cn × Pn−1 given by the following equations homogeneous in the
ui coordinates:

(xi − x′i)uj − (xj − x′j)ui = 0, 1 ≤ i < j ≤ 0.

To produce an atlas of B(Cn), we use a slight modification of the
usual affine covering of the projective space: Let Ui = {(x, x′, [u]) ∈
B(Cn) | ui 6= 0}. It is obvious that B(Cn) is covered by the open subsets
Ui, i = 1, . . . , n. Just to fix notation, we write A = Cn × C × Cn−1 and
label the coordinates of a point (x, λ, a) ∈ A as x1, . . . , xn, λ, a1, . . . , an−1.
We define the local chart φi : Ui → A as the map given by

(x, x′, [u]) 7→ (x, xi − x′i,
û

ui
),

where û is obtained deleting the i-th coordinate of u. The inverse map
φ−1 : A→ Ui is given by

(x, λ, a) 7→ (x, x+ λã, [ã]),

where ã ∈ Cn is obtained adding a new coordinate, with value 1 and at
the i-th position, to the point a ∈ Cn−1. The transition map τij : φi(Ui ∩
Uj) → φj(Ui ∩ Uj) is given by (x, λ, a) 7→ (x, λ, a/aj). It is a biholomor-
phism because φi(Ui ∩ Uj) is precisely the subset of points (x, λ, a) ∈ A,
such that aj 6= 0.

Note also that, via φi, points in π−1(∆(Cn, 2))∩Ui correspond exactly
to the points (x, λ, a) ∈ A with λ = 0.

A.2 Germs of complex spaces
Definition A.2.1. We say that the complex subspaces X1, X2 of a com-
plex space Z define the same germ of complex space along S if

1. The germs of subsets (X1, S) and (X2, S) agree.

2. The restricted structures OX1
|S and OX2

|S agree.
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This defines clearly an equivalence relation whose classes are called germs
of complex space along S. Every germ of complex space X along S de-
fines a pair, consisting of the germ of subset (X,S) and the corresponding
structure sheaf

OX,S = OX |S = lim
U⊇S
OX(U).

Observe that, if S is a finite set, then the sheaf OX,S can be identified
with the direct sum of stalks

⊕
x∈S OX,x.

For any morphism of complex spaces (f, f#) : X → Y and every S ⊆
X, we will denote by

f#
S : OY,f(S) → OX,S

the morphism of sheaves obtained by the composition

OY,f(S) → (f∗OX)|f(S) → OX,S .

The first arrow is f∗|f(S). The second arrow is the canonical morphism
between the corresponding limits, given by the inclusion {f−1(f(U)) |
S ⊆ U,U open in X} ⊆ {U | S ⊆ U}).

Definition A.2.2. Let X and Y be complex spaces and S ⊆ X. Let
U1, U2 be open neighbourhoods of S in X and denote by Xi the complex
subspace (X ∩Ui,OX |Ui). We say that two morphisms of complex spaces
(f, f#) : X1 → Y and (g, g#) : X2 → Y define the same germ along S if

1. The map germs (f, S) and (g, S) agree.

2. The induced morphisms f#
S and g#

S : OY,f(S) → OX,S agree.

This defines an equivalence relation and every class yields a pair consisting
of a map germ (f, S) and a morphism of sheaves f#

S .

Definition A.2.3. A morphism of germs of complex spaces

ϕ : (X,S)→ (Y, T )

is just the germ along S of a morphism of complex spaces (f, f#) : X ′ → Y
satisfying f(S) ⊆ T , where X ′ is a complex space of the form (X ∩
U,OX |U ), for some open neighboohood U of S in X. Observe that ϕ
induces a morphism of sheaves

ϕ# : OY,T → OX,S ,

given by the composition OY,T → OY,f(S) → OX,S . The first arrow is
given by restricion to f(S) and the second arrow is f#

S .

Of course, if S and T are finite sets, then the morphism of sheaves
f#
S and ϕ# are just morphisms of rings between the direct sum of the
corresponding stalks. If f(S) = T (in particular, if T is a single point and
S 6= ∅), then the morphisms f#

S and ϕ# agree.
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A.3 Fittings and multiple points
Definition A.3.1. Let M be a coherent OX -module. Since every coher-
ent OX is locally finitely presented, we can produce local presentations
of M and define local Fitting ideal presheaves as in Definition B.1.1, for
all k ∈ Z. From the fact that these ideals do not depend on the chosen
presentation, it follows that the sheaves associated to these presheaves can
be glued together to a sheaf on Fk(M ) defined on X. The ideal sheaf (de-
fined up to isomorphism) Fk(M ) is called the k-th Fitting ideal sheaf,
and satisfies

(Fk(M ))x = Fk(Mx),

for all x ∈ X, where Mx is regarded as an OX,x-module.

Proposition A.3.2. [MP89, Prop. 1.5] Let f : X → Y be a finite mor-
phism of analytic spaces. We have the following set-theoretical equality:

V (Fk(f∗OX)) = {y ∈ Y |
∑

x∈f−1(y)

dimC
OX,x
f∗my

> k}.

Lemma A.3.3. Let f : (X,x) → (Cn+1, 0) be a finite morphism, where
(X,x) is an n-dimensional Cohen-Macaulay complex space germ. Then
V (F0(f)) is reduced if and only if (X,x) is reduced and f is generically
one-to-one.

Proof. We take representatives X of (X,x) and V of (Cn+1, 0) such that
f : X → V is a finite morphism of complex spaces. First we show that for
any y ∈ f(X), V (F0(f)) is smooth at y if and only if f−1(y) = {x}, X is
smooth at x and f is regular at x. Indeed, suppose V (F0(f)) is smooth
at y and let f−1(y) = {x1, . . . , xr}. Then the stalk at y is he product

F0(f)y = F0(fx1
) . . . F0(fxr ),

where fxi : (X,xi) → (V, y) is the germ of f at xi. Since each F0(fxi) ⊂
mV,y, we must have r = 1 and we write f−1(y) = {x}.

Let q = dimCOX,x/f∗mV,y. By [?], a minimal presentation of OX,x
has the form

OqV,y
λ−−−−→ OqV,y

ϕ−−−−→ OX,x −−−−→ 0.

Then F0(f)y is generated by det(λ) ∈ mqV,y so that necessarily q = 1. The
exactness of the sequence implies F0(f)y = Im(λ) = Ker(ϕ) and thus,
OX,x is isomorphic to OV,y/F0(f)y, which is regular. On the other hand,
since q = 1 we have f∗mV,y = mX,x and f has rank n. The proof of the
converse is analogous.

Now we prove the lemma. If V (F0(f)) is reduced then it is generically
smooth. Thus, X is also generically smooth and f is generically one-to-
one. Since (X,x) is Cohen-Macaulay and generically smooth, we conclude
that (X,x) is reduced.
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Conversely, if (X,x) is reduced and f is generically one-to-one, then
(X,x) is generically smooth. Thus, V (F0(f)) is also generically smooth.
Again, V (F0(f)) is Cohen-Macaulay (it is a hypersurface in (Cn+1, 0))
and geerically reduced, and hence reduced.
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Appendix B

Algebra

Here we describe some necessary results about commutative algebra and
invariant functions under the action of groups. As general references for
commutative algebra we recommend the books of Matsumura [Mat89,
Mat80] and also [GP02]. The results about invariant theory can be found
in [Sta79]. The only original work in this appendix is contained in Section
B.3.

B.1 Fitting Ideals

Definition B.1.1. We say that a module M over a ring R is finitely
presented if it exists an exact sequence of the form

Rp → Rq →M → 0.

The q×pmatrix λ, with entries in R, which represents the homomorphism
Rp → Rq is called a presentation matrix ofM . For 0 ≤ k ≤ min(p, q)−
1, the k-th Fitting ideal of M is the ideal Fk(M) in R generated by
the minors of size min(p, q) − k of any presentation matrix of M . By
convention, we define Fk(M) = R, for all k ≥ min(p, q), and Fk(M) = 0,
for all k ≤ 0. These ideals do not depend on the chosen presentation and
matrix. Isomorphic modules yield the same ideal.

Proposition B.1.2. With the notations above, the following hold:

1. F0(M) ⊆ Ann(M),

2. Ann(M)q ⊆M.

In particular,
√
F0(M) =

√
Ann(M).

95
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B.2 Invariants
Through this section, G represents a finite subgroup of the general linear
group GL(Cm) of all linear bijections Cm → Cm. We denote by X the set
of irreducible characters of G and χ0 the trivial character with constant
value 1. The action of G on Cm induces a linear action on Om, given by
(gh)(x) = h(gx), for all g ∈ G, h ∈ Om, x ∈ Cm.

Definition B.2.1. For any irreducible character χ ∈ X we define a map
ρχ : Om → Om, by a 7→ aχ, where

aχ =
deg(χ)

|G|
∑
g∈G

χ(g)ga.

We write Oχm = Im ρχ and call it the χ-isotypical component of Om.
The elements a ∈ Oχm are called χ-invariant. We denote by MG = Mχ0

and call ρ] = ρχ0
the Reynold operator. The image of an element by

the Reynold operator is denoted by a] = ρ](a) = and we say that the
elements a] are G-invariant (or just invariant).

Theorem B.2.2. In the situation above:

• If χ ∈ X is a linear character (i.e. if deg(χ) = 1), then the χ-
invariant elements are exactly those h ∈ Om satisfying gh = χ(g)h,
for all g ∈ G. In particular, OGm is a ring, Om and all Oχm, χ ∈ X,
are OGm-modules and the maps ρχ are OGm-module homomorphisms.

• The ring Om admits the following OGm-module decomposition

Om =
⊕
χ∈X

Oχm.

• The homomorphisms ρχ : Om → Oχm are projections (that is, hχ = 0

for all h ∈
⊕

χ′ 6=χOχ
′

m , and hχ = h, for all h ∈ Oχm). Every h ∈ Om
is of the form h =

∑
χ∈X h

χ.

Theorem B.2.3. There existm algebraically independent invariant germs
α1, . . . , αm ∈ OGm such that, if we let α be the map germ with coordi-
nates αi, then each isotypical component is a finitely generated free α∗Om-
module of the form

Oχm =

sχ⊕
i=1

βiα
∗Om,

for some βi ∈ Oχm. Moreover, the germs αi can be chosen homogeneous.

Corollary B.2.4. OGm is a Cohen Macaulay ring of dimension m.

Theorem B.2.5 (Shephard-Todd theorem [ST54]). With the notations
above, G is a reflection group if and only if its invariant ring is OGm =
α∗Om.
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Definition B.2.6. Given an ideal I in Om, we define the following ideals
of OGm.

• IG = I ∩ OGm.

• Iχ = {aχ | a ∈ I}, for all χ ∈ X. We write I] = Iχ0 .

We say that I is G-invariant if GI = I.

In general, we have IG ⊆ I].

Proposition B.2.7. Given an ideal I in Om, consider the following con-
ditions If I is a G-invariant ideal of R, then:

1. I is G-invariant.

2. I ∩Rχ = Iχ, for all χ ∈ X. In particular IG = I].

3. I can be generated over RG by χ-invariant elements, χ ∈ X.

Then (1) implies (2), and (2) implies (3). If all the characters of G are
linear, then (1), (2) and (3) are equivalent.

Proof. Assume that I is G-invariant and let a ∈ I. All the terms of the
sum defining aχ belong to I, and therefore we have aχ ∈ I ∩ Rχ. This
shows (2).

Assume (2) and let a ∈ I. We have a =
∑
χ∈X a

χ, where by hypothesis
each of the terms aχ belongs to I. Therefore I is generated by the union
of all its χ-invariant elements, χ ∈ X.

Now assume that I is generated over RG by χ-invariant elements.
Then every element a ∈ I is of the form a =

∑
i hiai, with hi ∈ RG

and ai ∈ Iχi , χi ∈ X. If all characters χ are linear, then we have ga =∑
i hiχi(g)ai ∈ I, for any g ∈ G.

The second item of the previous shows that, for any G-invariant ideal
I, the ideal IG of OGm is just I], which we know how to compute: Let
α1, . . . , αr ∈ OGm be some invariant germs and write

α = (α1, . . . , αr) : Cm → Cs.

Let β1, . . . , βs ∈ Om satisfying

Om =

s⊕
i=1

βiα
∗Or.

Observe that, by Theorem B.2.3, we can always find such germs αi, βl.
However, we are not asking αi to be algebraically independent or β to
belong to any specific isotypical component.
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Lemma B.2.8. With the notations above, let I = 〈fj | 1 ≤ j ≤ n〉, be an
ideal of Om, then I] is generated by the elements

(βifj)
],

with 0 ≤ i ≤ s and 1 ≤ j ≤ n.

Proof. I] is generated by the elements f ], f ∈ I. Any f ∈ I is of the form

f =

n∑
j=1

ajfj =

n∑
j=1

(

s∑
i=0

βih
i
j)fj ,

for some elements hij ∈ OGm. Thus, we have

f ] =

n∑
j=1

(

s∑
i=0

(βifj)
]hij).

B.3 Invariants of the permutation group S2

The permutation group Sk acts on Ckn by

(x(1), . . . , x(k)) 7→ (x(σ(1)), . . . , x(σ(k))),

for any σ ∈ Sk. The character table of the group S2 is

S2 1 (1,2)
χ0 1 1
χ1 1 -1

.

The characters of Sk can be obtained as restrictions of characters in any
S′k, k

′ > k. Indeed, for any Sk, k ≥ 2, the characters in S2 appear as
restrictions of the trivial character χ0 and the signature character χ1,
given by σ 7→ sign(σ), where sign(σ) is the signature of σ ∈ Sk.

The Sk-invariant elements h ∈ OSknk are called symmetric germs and
the χ1-invariant elements h ∈ Oχ1

nk are called antisymmetric germs.
For the particular case of S2, a germ h ∈ O2n is symmetric if and only if

h(x, x′) = h(x′, x),

and it is antisymmetric if and only if

h(x, x′) = −h(x, x′).

It is obvious that any germ h ∈ O2n can be expressed as the sum of a
symmetric and an antisymmetric germ. More explicitly:

h = h] + hχ1 ,

where h](x, x′) = h(x,x′)+h(x′,x)
2 and hχ1(x, x′) = h(x,x′)−h(x′,x)

2 .
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Symmetric functions
Definition B.3.1. We define the symmetric functions as follows:

si(x, x
′) =

xi + x′i
2

, for all 1 ≤ i ≤ n.

rij = titj , for all 1 ≤ i ≤ j ≤ n, where tl(x, x′) =
xl − x′l

2
.

We write

• s = (s1, . . . , sn),

• t = (t1, . . . , tn),

• r = (r11, r12, r22, . . . , r1n, r2n, . . . , rnn).

Let l = n(n+ 1)/2 and let ψ : Cn × Cn → Cn+l be given by

(x, x′) 7→ (s(x, x′), r(x, x′)),

that is, the coordinate functions of ψ are the symmetric functions. Finally,
let α : C2n → C2n be given by

(x, x′) 7→ (s1(x, x′), . . . , sn(x, x′), r11(x, x′), . . . , rnn(x, x′)),

and define the functions

βi1...ik = ti1 . . . tik , 1 ≤ i1 < . . . ik ≤ n.

We will need two lemmas:

Lemma B.3.2. For every h ∈ OC2×C2,0, with the notations above:

1. If h is symmetric, then h = A(s, r), for some A ∈ On+l.

2. If h is antisymmetric, then h =
∑n
i=1Bi(s, r)ti, for some Bi ∈

On+l.

Proof. The functions 1, ti, 1 ≤ i ≤ n form a base of the C-vector space
OCn×Cn,0/ψ

∗mn+l and thus, by the Malgrange preparation theorem, OC2×C2,0

is an On+l-module (via ψ∗) generated by 1, ti, 1 ≤ i ≤ n. It is, for every h,
there exist functions A,Bi ∈ On+l, such that h = A(s, r)+

∑n
i=1Bi(s, r)ti.

If h is symmetric, then h = (h + τ · h)/2 = A(s, t), and if h is antisym-
metric, then h = (h− τ · h)/2 =

∑n
i=1Bi(s, t)ti.

Lemma B.3.3. The kernel of the morphism ψ∗ : On+l → O2n is gener-
ated by

ri1,i2ri3,i4 − riσ(1),iσ(2)riσ(3),iσ(4) ,

such that 1 ≤ i1 ≤ i2 ≤ n, 1 ≤ i3 ≤ i4 ≤ n, iσ(1) ≤ iσ(2), iσ(3) ≤ iσ(4).
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Proof. Consider the germ of linear difeomorphism φ : (C2n, 0) → (Cn ×
Cn, 0) defined by φ(s, t) = (s1 + t1, . . . , sn+ tn, s1− t1, . . . , sn− tn). Obvi-
ously Kerψ∗ = Ker(φ◦ψ)∗ and, thus, h ∈ On+l,0 belongs to Kerψ∗ if and
only if every term in the series expansion of (φ◦ψ)∗h has coefficient 0. We
consider (φ ◦ ψ)∗ as a morphism between (C{s}){r} and (C{s}){t}. For
every h =

∑
β∈Nl aβ(s)r

βi,j
i,j , the function (φ ◦ ψ)∗h is obtained using the

identities ri,j = titj , it is,
∑

1≤i≤j aβ(s)(titj)
βi,j . Take the decomposition

by exponents of both polynomial spaces and notice that (φ ◦ψ)∗ converts
terms into terms. Moreover, for any even exponent e = (e1, . . . , en) for
the t variable, there is a set of exponents, S(e) = {(β1,1, . . . , βn,n) ∈ Nl |∑n
j=1 βi,j +

∑i
l=1 βl,i = ei, 1 ≤ i ≤ n}, such that the terms with expo-

nents in S(e) are the ones which (φ ◦ ψ)∗ sends to the term of exponent
e. We can decompose any h ∈ Cn+l,0 as h =

∑
e∈Nn hS(e), where hS(e) is

a polynomial whose terms only have exponents in S(e). it is obvious that
h ∈ Kerψ∗ if and only if hS(e) ∈ Kerψ∗ for all e ∈ N. Then, it suffices
to show that the subspace (Kerψ∗)S(e) =

∑
g∈S(e)(Kerψ∗)g, given by

the polynomials of Kerψ∗ with terms of exponents in S(e), is generated
by the elements ri1,i2ri3,i4 − riσ(1),iσ(2)riσ(3),iσ(4) of the statement. Let K
be the ideal generated by the relations above, and h be a polynomial in
(Kerψ∗)S(e), we want to show h+K = 0 +K. We proceed by induction
on the number of terms, k, of h. The case k = 0 is trivial, and the case
k = 1 never happens, since any non zero term in On+l leads to a non zero
term in O2n, thus h can’t belong to (Kerψ∗) if k = 1. Assume k ≥ 2 and
take q1 6= 0 6= q2 two terms appearing in h such that h = h′+q1 +q2 where
h′ has k − 2 terms. We only have to show that exists a term q such that
q1+q2+K = q+K and the induction hypothesis will do the rest. To prove
the existence of q, we proceed again by induction, this time on the degree
d, of q1/g, being g the greatest common divisor of q1, and q2. If d = 0,
then q1, q2 are just the product of the monomial g by constants c1, c2 re-
spectively, thus we can take the term q = (c1 + c2)g = q1 + q2. Again,
the case k = 1 doesn’t has to be considered, since q1 = gri1,j1 , q2 = gri2,j2
implies i1 = i2 and j1 = j2. Now we assume d ≥ 2 and let q1 = gari1,j1 for
some i1, j1. Obviously ri1,j1 does not divide q2, but as the exponents of q1

and q2 are in D(d), then the number of times that the indices i1, j1 (count-
ing the exponents as repetitions) appear in q1 and q2 must be the same
and, thus, exists a monomial of type ri1,i2rj1,j2 , ri2,i1rj1,j2 , ri1,i2rj2,j1 or
ri2,i1rj2,j1 which divides q2/g. Assume, for simplicity, that the monomial
is ri1,i2rj1,j2 with i2 ≤ j2, then ri1,i2rj1,j2−ri1,j1ri2,j2 ∈ K and thus, if we
define q̃2 = q2ri1,jiri2,j2/(ri1,i2rj1,j2), we have q1+q2+K = q1+q̃2+K and,
since the greatest common divisor of q1 and q̃2 is strictly greater than d, by
induction, exists a term q such that, q1+q2+K = q1+ q̃2+K = q+K.

Immediately from Lemmas B.3.2 and B.3.3, we obtain the explicit
form of the statement in Theorem B.2.3 for the action of S2 in C2n.
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Example B.3.4. These are the two simpler cases of the action of S2 in
C2n

(1) If n = 1, the map ψ : (C2, 0)→ (C2, 0) is given by

(x, x′) 7→ (
x+ x′

2
,

(x− x′)2

4
).

The pullback ψ∗ : O2 → OS2
2 is an isomorphism.

(2) If n = 2, we have

• s1 =
x+ x′

2
, s2 =

y + y′

2
,

• r11 =
(x− x′)2

4
, r12 =

(x− x′)(y − y′)
4

and r22 =
(y − y′)2

4
.

Then, for every h ∈ OC2×C2,0:

1. If h is symmetric, then h = A1(s1, s2, r11, r22)+r12A2(s1, s2, r11, r22),
for some A1, A2 ∈ O4.

2. If h is antisymmetric, then h = (x − x′)B((s1, s2, r11, r22)) + (y −
y′)C((s1, s2, r11, r22)), for some B,C ∈ O4.

A simple way to find this expressions is the following: rewrite h(x, y, x′, y′)
as h(s1 + t1, s2 + t2, s1 − t1, s2 − t2) and in this expression make the
following changes t2k1 = rk11, t

2k
2 = rk22, t2t4 = r12. Now we have an

expression of the form A1(s1, s2, r11, r22) + r12A2(s1, s2, r11, r22) + (x −
x′)B((s1, s2, r11, r22)) + (y − y′)C((s1, s2, r11, r22)).

The general case looks as follows:

Example B.3.5. With the notations above:

• The coordinate functions s1, . . . , sn, r11, . . . , rnn of α are algebraically
independent.

• The algebra of invariant functions is a free α∗O2n-module of the
form:

OS2
2n = α∗O2n ⊕

⊕
k even

βi1...ikα
∗Om.

• The antisymmetric functions form a free α∗O2n-module of the form:

Oχ1

2n =
⊕
k odd

βi1...ikα
∗Om.

The previous result reflects, via Sephard-Todd’s Theorem B.2.5, that
the action of S2 on C2n is only generated by reflections in the case n = 1,
where there are no βi1...,ik with k even, and thus the invariant algebra is
precisely OS2

2 = α∗O2.

Example B.3.6. From B.2.7 we obtain that an ideal I in O2n is S2-
invariant if and only if it can be generated by symmetric and antisym-
metric germs.
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Computing quotients by S2

Example B.3.7. Now we show how C2 × C2/S2 embeds as a complex
subspace of C5: Let ψ : C4 → C5 be given by

(x, y, x′, y′) 7→ (x+ x′, y + y′, (x− x′)2, (x− x′)(y − y′), (y − y′)2).

Take its pull-back
ψ∗ : OC5 → OC2×C2 .

By Lemma B.3.2, we have that Imψ∗ = OS2

C2×C2 . Therefore C2×C2/S2 is
isomorphic to the complex space Imψ with the analytic structure defined
by the ideal sheaf Kerψ∗ = 〈r11r22 − r2

12〉. Eventually, the space C2 ×
C2/S2 is just the cone in C5 defined by the equation r11r22 = r2

12.

Let X = V (I) be a germ of symmetric complex subspace of Cn ×Cn,
then X/S2 is isomorphic to the complex space ψ(X) whose defining ideal
sheaf is (ψ∗)−1(IS2). As a consequence, we have:

Proposition B.3.8. Let X = V (I) ⊆ (Cn, 0) be a germ of symmetric
complex space, with

I = 〈Ai(s, r),
n∑
j=1

Bkj (s, r)tj | 1 ≤ i ≤ m, 1 ≤ k ≤ m′〉,

as in Lemma B.3.6. Then X/S2 is isomorphic to V (J) ⊂ (Cn+l, 0), where
the generators of J in the variables s, r of Cn+l are:

• The m function germs Ai(s, r), i = 1, . . . ,m.

• The nm′ function germs

r1,1B
k
1 (s, r) + r1,2B

k
2 (s, r) + · · ·+ r1,nB

k
n(s, r),

r1,2B
k
1 (s, r) + r2,2B

k
2 (s, r) + · · ·+ r2,nB

k
n(s, r),

...

r1,nB
k
1 (s, r) + r2,nB

k
2 (s, r) + · · ·+ rn,nB

k
n(s, r),

with i = 1, . . . ,m′.

• The generators of kerψ∗

ri1,i2ri3,i4 − riσ(1),iσ(2)riσ(3),iσ(4) ,

with 1 ≤ i1 ≤ i2 ≤ n, 1 ≤ i3 ≤ i4 ≤ n, iσ(1) ≤ iσ(2), iσ(3) ≤ iσ(4).

Proof. Follows directly from Proposition B.2.7 and Lemma B.2.8.
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Example B.3.9. For n = 2 we have: Let I be an S2-invariant ideal in O4,
generated by some symmetric functions Ai(s1, s2, r11, r12, r22) and some
antisymmetric functions B1

j (s1, s2, r11, r22)(x−x′)+B2
j (s1, s2, r11, r22)(y−

y′). Then, IS2 is generated by:

Ai(s1, s2, r11, r12, r22),

r11B
1
j (s1, s2, r11, r22) + r12B

2
j (s1, s2, r11, r22),

r12B
1
j (s1, s2, r11, r22) + r22B

2
j (s1, s2, r11, r22),

and
r11r22 − r2

12.

Expressions in the symmetric functions

Here, we show how to obtain the expressions in the symmetric functions
of Lemma B.3.2. Moreover, we want to fix a canonical choice among all
the possibilities for A and Bi.

We use the following multi-index notation: For any λ = (λ1, . . . , λm) ∈
Nm, we write wλ :=

∏m
i=1 w

λi
i , λ! =

∏m
i=1(λi!), and |λ| :=

∑m
i=1 λi. We

also say that λ is even or odd if |λ| is so. For any fixed n ∈ N, we let Λ0

be the set of even multi-indices and, for all 1 ≤ i ≤ n, Λi the set of odd
multi-indices λ ∈ Nn with λi odd and λj even for all n ≥ j > i. Obviously,
the set of multi-indices in Nn is the disjoint union of Λi, 0 ≤ i ≤ n. We
also denote by ui the multi-index (0, . . . , 0, 1, 0 . . . , 0) with 1 in the i-th
position.

We can compute the decomposition of a polynomial in symmetric and
antisymmetric polynomials, expressed in the symmetric functions as fol-
lows: Let h be a polynomial in the variables x, x′. We can use the identities
x = s + t, x′ = s − t and, for any term of h, say asλtµ, we can rewrite
the monomial tµ in the following way: Every time t2i divides tµ we change
the factor t2i for ri,i and, recursively, we get to an expression with a factor
in s and r and a remaining factor ti1 . . . tik , with i1 < · · · < ik. Now we
rewrite ti1ti2 = ri1i2 , ti3ti4 = ri3i4 and so on, until we are left with, at
most, the factor tik . If k is even, then we have µ ∈ Λ0, and we get a term
of the form A(s, r). If k is odd, then we have µ ∈ Λik , and the term is of
the form Bik(s, r)tik .

Thus, A and Bi can be assumed to be polynomials which monomials
are of type

ra11,1 · · · rann,nri1,i2 · · · rik−1,ik ,

with i1 < · · · < ik and ik < i in Bi. Such a representation of A and Bi
is unique. In particular, we can define an mapping E which sends every
even λ to the exponent E(λ), satisfying tα = rE(λ) and such that rE(λ) is
of the form we choosen above.
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The following proposition gives us a closed formula that we can use
to obtain a matrix α, satisfying f(x) − f(x′) = α(x, x′)(x − x′) (see
Proposition-Definition 3.1.1), expressed in the symmetric functions.

Proposition B.3.10. With the notations above, for all h ∈ On, we have:

h(x)− h(x′) =

n∑
i=1

( ∑
λ∈Λi

2

λ!

∂λh(s)

∂xλ
rE(λ−ui)

)
ti.

Proof. From the multivariate Taylor series

h(w) =
∑
λ∈Nn

1

λ!

∂λh(a)

∂xλ
(w − a)λ,

taking a = s, since x− s = t and x′ − s = −t, we obtain:

h(x)− h(x′) =
∑
λ∈Nn

1

λ!

∂λh(s)

∂xλ
(tλ − (−t)λ) =

∑
λ odd

1

λ!

∂λh(s)

∂xλ
2tλ =

n∑
i=1

( ∑
λ∈Λi

2

λ!

∂λh(s)

∂xλ
t(λ−ui)

)
ti.

Since λ− ui is even for any λ ∈ Λi, we rewrite t(λ−ui) as rE(λ−ui).

Example B.3.11. For n = 2 the expressions in the symmetric functions
of a matrix α, satisfying f(x)− f(x′) = α(x, x′)(x− x′), are given by

αj1 =
∑ 1

(2i+ 1)!(2j)!

∂f(s1, s3)

∂x2i+1
1 x2j

2

si2s
j
4

and
αj2 =

∑ 1

(2i)!(2j + 1)!

∂f(s1, s3)

∂x2i
1 x

2j+1
2

si2s
j
4.
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