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Abstract

Nanowires are emerging as promising candidates to form the basis of field-effect

transistors, among other devices. Nanowire-based field-effect transistors are fore-

seen to be industrially standardized in the near future. Simulations are important

in order to assess their performance. The multi-configurational self-consistent

Green’s function simulation method is able to correctly describe non-equilibrium

electronic transport while at the same time accounts for few-electron Coulomb

charging effects in such devices. Based on the non-equilibrium Green’s function

formalism, this method is augmented and implemented in a software package

named NWFET-Lab. This package forms the basis of the calculations performed

in this dissertation.

An adaptive numerical method to determine the non-equilibrium many-body

statistical operator for quasi-isolated electronic states within the channel of a

realistic nanowire field-effect transistor is presented. The statistical operator

must satisfy a set of constraints related to the single-particle density matrix.

Since the problem is under-determined in general, a form for its eigenvalues or

weights that maximizes the entropy is required. Two eigenbases for the statistical

operator are considered: (A) the set of all relevant Slater determinants of natural

orbitals and (B) the eigenstates of the many-body Hamiltonian projected to the

relevant Fock subspace. As an application, the onset of formation of Wigner

molecules is addressed with the help of the density–density covariance.

A new numerical determination of the correlation of the system of electrons

within the nanowire channel of the device, for pure as well as for mixed states,

is presented. In contrast to the single-particle-reduced entropy, this so-called

“modified correlation entropy” accounts for the correlation independently of the

mixture degree, as measured by the von Neumann entropy, of the many-body

state. For its determination a genetic algorithm optimization method is employed.

An analysis of these three concepts of entropy is performed.
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Resumen

De acuerdo con la ley empírica de Moore, el número de transistores en un circuito

integrado se ve duplicado aproximadamente cada dos años. Una vez traspasada

la frontera hacia la escala nanométrica, estos dispositivos comienzan a padecer

efectos adversos al funcionamiento deseable de un transistor, como la pérdida

de integridad eléctrica, efectos debidos a la corta longitud del canal o la falta

de reproducibilidad. Las nanoestructuras cristalinas semiconductoras conocidas

como nanohilos están emergiendo como candidatos prometedores para formar una

nueva base alternativa de los transistores de efecto campo y continuar la minia-

turización tecnológica en la escala nanométrica. Esto es debido al gran control

electrostático de la puerta sobre el canal, constituido en estos dispositivos por un

nanohilo, que los transistores de efecto campo basados en nanohilos demuestran

a esta escala. Como beneficios adicionales del empleo de nanohilos para la con-

strucción de estos dispositivos cabe mencionar la posibilidad de ser producidos en

grandes cantidades en un solo proceso usando técnicas de crecimiento asequibles.

Estas nanoestructuras presentan propiedades electrónicas reproducibles debido al

control preciso del proceso de crecimiento, así como una alta movilidad de los

portadores de carga consecuencia de su estructura monocristalina y su reducción

de la dispersión. Junto a significativos avances experimentales, su estudio teórico

está resultando de importancia para evaluar sus características y rendimiento.

Los dispositivos nanométricos están gobernados por las leyes de la mecánica

cuántica, por lo que un método de simulación apropiado para su estudio debería

ser capaz de describir efectos cuánticos como el confinamiento, las resonancias,

la dispersión o el efecto tunel de los electrones en su interior. El número de

electrones involucrados en el funcionamiento de transistores con canales de una

longitud tan grande como 100 nm es del orden de 1 − 10. Por tanto, efectos

debidos a la presencia individual de electrones son relevantes en estos dispositivos,

de modo que una descripción de muchos cuerpos (basada en el espacio de Fock)

de la interacción de Coulomb es necesaria para una simulación realista. Por un
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lado, un enfoque que considere el espacio de Fock completo del sistema es capaz

de describir correctamente estos efectos, pero ve limitada su aplicación efectiva a

dispositivos pequeños, debido a que la dimensión del espacio de Fock aumenta ex-

ponencialmente con el número de estados de una partícula (por ejemplo orbitales

localizados). Por otro lado, una descripción de campo medio para modelizar la

interacción de Coulomb es viable computacionalmente pero incapaz de describir

efectos debidos a la presencia individual de electrones, a causa de la aproximación

que esta descripción realiza de tal interacción como efecto promediado que tiene

sobre un electron el resto de electrones.

La base teórica del trabajo presentado en esta tesis doctoral está fundamen-

tada en el método multiconfiguracional autoconsistente basado en funciones de

Green, originalmente presentado por Indlekofer et al. Este método está basado

en el formalismo de funciones de Green fuera del equilibrio y como es habitual en

este formalismo, se hace uso de una descripción de campo medio para modelizar

la interacción de Coulomb. Sin embargo, el método limita este tipo de descrip-

ción para aquellos estados que no son relevantes para el transporte electrónico,

haciendo uso de una descripción de muchos cuerpos (basada en un subespacio

de Fock relevante) para los que sí son relevantes. Estados de una partícula rel-

evantes son identificados como aquellos orbitales naturales (autoestados de la

matriz densidad de una partícula ρ1) que presentan fluctuación en su número de

ocupación (autovalores de ρ1) y que no se encuentran fuertemente acoplados a

los contactos del transistor, centrándose en estados atrapados resonantemente

en el interior del nanohilo. El número de estados relevantes Nrel es habitualmente

muy inferior al número total de estados del sistema, la dimensión del subespacio

de Fock generado por los estados relevantes no es muy alta y una descripción de

muchos cuerpos dentro de este subespacio resulta ser asequible.

Uno de los objetivos de la presente tesis doctoral es el desarrollo de una her-

ramienta informática de simulación para el estudio de las propiedades de trans-

porte electrónico en transistores de efecto campo basados en nanohilos. El pa-

quete de programas se conoce como NWFET-Lab e incluye tres módulos inter-

relacionados. El primero de ellos tiene la función de preparar los parámetros del

sistema. El segundo consiste en el módulo de cálculo, fundamentado en el método

multiconfiguracional autoconsistente basado en las funciones de Green, sucinta-

mente descrito en el párrafo anterior. Este algoritmo original ha sido extendido
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para incluir una mayor variedad de observables físicos y magnitudes relevantes

para entender el comportamiento y características de un transistor basado en un

nanohilo, así como los cálculos que a continuación se describen. El tercero y úl-

timo de los módulos permite la visualización de los resultados obtenidos mediante

el módulo de cálculo.

También se ha desarrollado un método numérico para la determinación del op-

erador estadístico de muchos cuerpos fuera del equilibrio ρ̂rel para el sistema de

electrones atrapados resonantemente en el interior del nanohilo del transistor.

La importancia de conocer el operador estadístico radica en que permite obtener

valores esperados de observables de muchos cuerpos del sistema, así como la en-

tropía de von Neumann. Este operador debe satisfacer ciertas restricciones dadas

por la matriz densidad de una partícula ρ1. Estas condiciones no son suficientes en

general para su determinación unívoca, por lo que se ha escogido una forma fun-

cional de los autovalores de ρ̂rel que maximice la entropía, conocida como forma

gran-canónica o de Boltzmann. En esta forma funcional aparecen los potenciales

electroquímicos asociados a los orbitales naturales relevantes, que se convierten

en cantidades independientes si el sistema se encuentra fuera del equilibrio y se

consideran como variables de optimizacion libres que ajustar para que los auto-

valores cumplan las restricciones impuestas por ρ1. Como autoestados de ρ̂rel se

consideran dos bases alternativas: (A) determinantes de Slater de orbitales nat-

urales relevantes y (B) la base del Hamiltoniano de muchos cuerpos proyectado

al subespacio de Fock relevante. A modo de aplicación, se ilustra la transición

desde un régimen del sistema de electrones en el canal del transistor denominado

“atómico” en el que la energía de Coulomb es relativamente pequeña, hasta un

régimen denominado “Wigner” en el que esta energía es mayor, favoreciendo la

separacion entre electrones y la consiguiente formación de moléculas de Wigner.

Finalmente se presenta una medida numérica de la correlación del sistema de

electrones, que cuantifica únicamente su correlación tanto si la preparación del

sistema es pura como si es una mezcla, en contraste con la entropía reducida de

una partícula S1 que también depende del grado de mezcla y por tanto sólo puede

cuantificar la correlación de estados puros. Esta medida numérica, denominada

entropía de correlación modificada ∆S ≡ S̃ − S se basa en la entropía de von

Neumann S, cuyo cálculo depende del operador estadístico de muchos cuerpos

fuera del equilibrio ρ̂rel del sistema. Asimismo, S̃ es la entropía de von Neumann
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obtenida mediante de un operador estadístico ρ̃rel que se asemeja óptimamente

a ρ̂rel pero cuya base de estados de muchos cuerpos consiste únicamente en de-

terminantes de Slater construidos a partir de una base ortonormal optimizada de

estados de una partícula, obtenida de tal manera que S̃ sea minimizada. Esta

base se encuentra relacionada con la base de orbitales naturales mediante una

transformación unitaria U con Nrel ×Nrel elementos. El proceso de minimizacion

se lleva a cabo mediante un algoritmo genético cuyas variables de optimización

son los Nrel × Nrel ángulos mediante los cuales es posible parametrizar U. Como

resultado, se presenta un análisis de estos tres tipos de entropía (S1, S y ∆S) y

se muestra que efectivamente ∆S cuantifica la correlación electrónica independi-

entemente del grado de mezcla.
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1. Introduction

1.1. The nanowire field-effect transistor

In this introductory chapter, we briefly address the problem of the downscaling

of field-effect transistors (FETs), point out a candidate solution for this problem,

see why this solution is promising and outline an overview of the devices this

solution has enabled so far.

Since the invention of the integrated circuit (IC) in 1958 and the creation

of the metal-oxide-semiconductor field-effect transistor (MOSFET) [1] in 1959,

technology has followed a miniaturization trend expressed by Moore’s law: the

number of transistors on ICs doubles approximately every two years [2, 3]. This

law, initially considered as a forecast, was later adopted as a target that has

driven the industry up until the present.

The answer to the question of whether nanotechnology will be able to con-

tinue fulfilling Moore’s law, despite the several difficulties [4, 5] that emerge as

the channel length of MOSFETs gets smaller, depends on whether electrical in-

tegrity, no short-channel effects, low power consumption, low leakage currents

and reproducibility can be maintained in ever downscaled devices. In this sense,

replacement of old materials with new nanostructures may give an affirmative

answer to that question.

The International Technology Roadmap for Semiconductors (ITRS) is a ref-

erence for the near and far future of semiconductor technology. As stated in

the 2013 edition report [6], one of the main goals of the ITRS is identifying key

technical requirements critical to sustain the historical scaling of semiconductor

technology (Moore’s law). In the same report one finds reference to major tech-

nological innovations, including new structures such as gate-all-around nanowires

as next natural evolution for digital logic applications for the near term (2013-

2020) and nanowire MOSFETs to below 10 nm gate length for the long term

1
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(2021-2028). The report emphasizes the importance of understanding, modeling

and implementation into manufacturing of these innovations.

Therefore, promising candidates for new electronics building blocks are semi-

conductor nanowires [7, 8, 9, 10]. Employing either a top-down or a bottom-up

approach [11], these nanostructures are nowadays synthesized in a rational and

controllable way, enabling the possibility to create axial and radial heterostruc-

tures and select the doping by addition of impurities. Due to their unique physical,

chemical and electronic properties, nanowires find application in electronics [12,

13, 14, 15], optoelectronics [16], photovoltaics [17, 18], sensing [19] and biology

[20, 21, 22].

Key to this dissertation is the nanowire field-effect transistor (NWFET) [23].

Similarly to a planar MOSFET, a NWFET is an active unipolar electronic device

consisting of a channel, an insulator and gate, source and drain contacts. A

basic difference between these types of devices, though, is that the channel of a

NWFET is made of a single semiconductor nanowire, through which the electric

carriers flow. On the other hand, the principles of operation do not differ between

NWFETs and planar MOSFETs. Current is due to a bias voltage VDS between

the drain contact and the source contact, both contacts located at the extremes

of the nanowire. The gate is a metallic electrode that modulates the electrostatic

potential inside the channel and therefore influences the current via a gate–source

voltage VGS. There are two main gate geometries: planar and coaxial. A planar

gate consists of a two-dimensional (2D) electrode positioned at the back, top

or one side of the nanowire, while a coaxial or wrap gate is built all around the

nanowire. It is isolated from the channel by an oxide insulator so that electrons

are unable to flow out of the channel towards the gate.

The source and drain contacts can be ohmic or Schottky. Ohmic contacts

consist of the two extremes of the intrinsic nanowire being heavily doped. Schot-

tky contacts on the other hand, are made by metal deposited on the extremes

of the nanowire, forming Schottky-barriers [24, 25] that the electrons in the

source have to surpass or tunnel in order to contribute to the current. The de-

vice is then termed Schottky-barrier NWFET (SB-NWFET). See Fig. 1.1 for a

schematic view of a SB-NWFET geometry.

It can be shown by the electrostatic analysis [26] of the NWFET, employing the

one-dimensional (1D) Poisson equation for the potential at the channel–dielectric
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Figure 1.1.: Schematic view of a SB-NWFET.

interface Φ(x), that the relevant length scale for potential variations is given by

the screening length λ, which appears both in the 1D Poisson equation and in its

solution for point charge density Φ(x) ∝ exp(−|x |/λ).

For a coaxial gate geometry as shown in Fig. 1.1 the screening length λ is given

by [27]

λ2 =
εch

εox

d2
ch

8
ln

(
1 + 2

dox

dch

)
(1.1)

where dch is the nanowire diameter, dox is the oxide thickness, εch and εox are the

channel and oxide relative dielectric constants respectively.

In order to avoid the appearance of short-channel effects [5] when scaling

down the channel length, λ has to be scaled accordingly in order to maintain

the relation L � λ, which implies that the nanowire diameter dch and the oxide

thickness dox must be scaled down. In this respect, nanowires are ideally suited

for ultimately scaled FET devices, because of their one dimensional shape with a

scalable diameter into the few nanometer range.

As additional benefits of employing nanowires for FET construction it is worth

mentioning the possibility to be produced in large quantities in a single process,

using bottom-up growth techniques that are cost-effective. They present repro-

ducible electronic properties due to the precise control of the growth process.

They also display high carrier mobility due to reduction of scattering because

of their monocrystalline structure. Moreover, vertical integration of NWFETs

in densely packed ICs is now possible, which is a necessity for their large-scale

manufacturability.
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Figure 1.2.: Number of publications per year which include the keywords “nanowire
transistor” or “nanowire field effect transistor” or “NWFET” in their contents, as obtained
from Elsevier’s database Scopus (http://www.scopus.com/). Note that the latest years
do not include all the publications, only those available to the database at the moment.

Starting from the year 2000, the number of publications related to NWFET

fabrication is growing, a fact that shows the interest and impact this subject is

having since then. One can see this tendency in Fig. 1.2. In the year 2000,

vanadium pentoxide V2O5 nanofiber-based FETs were reported [28]. The fol-

lowing year, NWFETs were demonstrated based on single-crystal InP nanowires,

up to tens of micrometers long [29]. Radial nanowire heterostructures have also

been employed as NWFETs, such as Ge/Si core/shell nanowires with a top-gate

geometry, which showed improved p-type FET behavior [30]. Motivated by the

consideration that current flowing in the on-state of NWFETs may be low due

to the small diameter of the nanowire channel, a recent work proposes a massive

parallel dense vertical nanowire array architecture for high performance FET [14].

Vertical integration [31, 32] is able to achieve a much higher density of nanowires

than horizontal integration [33] and allows three-dimensional (3D) integration

for complex structures. It is worth mentioning that programmable nanowire cir-

cuit modules have also been designed that use arrays of non-volatile multi-gate

http://www.scopus.com/
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NWFETs to operate as scalable nanoprocessors that perform simple logic func-

tions [13]. As a step forward, a nanowire-based 2-bit 4-state finite-state machine

has been implemented which is able to maintain its internal state, modify this

state in response to external signals and output commands on that basis [15].

To summarize, as MOSFETs size enters into the nanometer scale, these de-

vices begin to be prone to several effects that impede their proper functioning

and a classical description of their physics begins to be inadequate. Promising

candidates to become new building blocks for electronic devices are nanowires,

which find application beyond the field of electronics. The NWFET in particular

is expected to play an important role in the future, due to its superior electro-

static control of the channel by the gate in the nanoscale. Many advances in the

experimental realization of nanowire-based devices have been reported, as well as

important progresses in their simulation, where quantum and Coulomb effects in

the nanoscale play a relevant role.

1.2. Ultimately scaled device simulation

Some of the challenges semiconductor technology will face in the near future

in relation to nanowire-based devices, according to the ITRS 2013 [6], are the

stochastic variation of dopants and thickness from device to device, the effects of

the channel surface roughness on carrier transport and reliability, and controlling

the source/drain series resistance within tolerable limits, since due to the increase

of current density, lower resistance with smaller device dimensions is a challenging

necessity. Simulation of NWFETs is therefore necessary to accurately predict the

device performance and to understand its physics.

Nanoscale devices are governed by the laws of quantum mechanics, due to their

small size in the nanometer scale. Therefore, a successful simulation method

should be able to describe quantum effects, such as carrier confinement, reso-

nances, scattering or tunneling. Furthermore, few-electron charging effects are of

relevance in such devices, so a many-body description of the Coulomb interaction

between electrons is necessary for a realistic simulation of NWFETs.

Present work on the simulation of these challenges usually focuses on a par-

ticular aspect of the problem and excludes the rest, whenever this restriction is

justified by the features of the considered problem. So one can find in the lit-
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erature simulations of the electronic transport characteristics for non-interacting

electrons, in the presence of electron–electron or electron–phonon interaction.

Quantum mechanical formalisms employed for the modeling of electronic trans-

port in nanodevices, based on Schrödinger equation [34, 35], Wigner function [36],

Liouville [37] and Pauli [38] master equations or Green’s functions [39] have been

reported.

Key to this dissertation is the non-equilibrium Green’s function (NEGF) formal-

ism [40, 41, 42, 43, 44], which allows for a quantum mechanical description of

non-equilibrium electronic transport in ultimately scaled devices. This formalism

may include the effects of the device contacts (reservoirs) and the relevant inter-

actions (electron–electron and electron–phonon). Coulomb interaction, whenever

it is considered, is usually modeled in a mean-field way, which has the advantage

of being computationally light-weight and the disadvantage of being unable to

describe few-electron charging effects. On the other hand, a full many-body de-

scription of this interaction is able to account for these effects at the expense of

considering only small devices, as described by a suitable basis of single-particle

states (localized spin/site orbitals, for example), since the corresponding Fock

space dimension grows exponentially with the number of single-particle states,

making simulation of realistic devices unfeasible.

As an hybrid approach that shares both the benefits of the mean-field and

many-body descriptions, the multi-configurational self-consistent Green’s func-

tion (MCSCG) method [45, 46] can correctly describe few-electron charging ef-

fects in a non-equilibrium NWFET. This method is the theoretical basis for the

calculations and results obtained in this dissertation.

1.3. Structure of the dissertation

The basic formalism employed in this dissertation for the description of non-

equilibrium NWFETs is the NEGF method. A theoretical introduction to NEGF is

given in Chapter 2, where recent work concerning the simulation and understand-

ing of the important challenges NWFETs face today is also described. Chapter 3

presents a description of the NEGF-based MCSCG method, which is the algo-

rithm employed in the following calculations. The implementation of the MCSCG

method in a software package is highlighted and several results (in the Coulomb
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blockade regime) obtained by means of this implementation are presented. In

Chapter 4 a numerical method to determine the non-equilibrium many-body sta-

tistical operator that describes the statistical preparation of the electrons within

the NWFET channel is presented. The statistical operator is required to satisfy

a set of constraints and its expression is furthermore determined by assuming

its probability distribution maximizes the entropy. Once obtained, expectation

values of many-body observables can be calculated. As an application, the onset

of formation of Wigner molecules by the electrons within the nanowire channel

is addressed. In Chapter 5 we study the correlation entropy of the electronic

system. Three different definitions of entropy are analyzed and their significance

(whether they account for mixture, correlation or both) is investigated. To con-

clude, a summary about the presented work and possible future ways to extend

it is outlined in Chapter 6.

The appendices provide additional information. Appendix A, in particular, con-

tains a description of NWFET-Lab, the open-source software package devel-

oped as a tool to simulate non-equilibrium electronic transport in NWFETs. It

implements and extends the MCSCG algorithm, and provides all the calculations

included in this dissertation.





2. Introduction to the
non-equilibrium Green’s function
formalism

2.1. Quantum field operators

The many-body quantum description of a system of Fermions known as second

quantization, relies on some mathematical objects known as the creation and

annihilation operators [47, 44], expressed as c†k and ck , corresponding to a state

k of a discrete orthonormal single-particle basis. Operators in the Fock space can

be represented in terms of them, in their so-called second quantized form. c†k and

ck act on a many-body state by creating or annihilating, respectively, a particle on

a given single-particle state k . In the occupation number representation, where

the state of the system is described by a vector |b0b1 . . . bk . . .〉 with bk ∈ {0, 1},
this can be expressed as [48]

ck |. . . bk . . .〉 = (−1)Sk δbk ,1 |. . . bk − 1 . . .〉 (2.1a)

c†k |. . . bk . . .〉 = (−1)Sk δbk ,0 |. . . bk + 1 . . .〉 (2.1b)

where Sk = b0 + b1 + · · · bk−1 counts how many occupied states are on the left

of single-particle state k .

As a consequence of the indistinguishability of Fermions, their many-body quan-

tum state is antisymmetric under the interchange of two particles. This implies

that these operators satisfy the following anti-commutation relations [42, 43, 44]

{ck , c†k ′} = δkk ′ (2.2a)

{ck , ck ′} = {c†k , c
†
k ′} = 0 (2.2b)

9
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where we denote {A,B} = AB + BA. The Fermionic quantum statistics is

respected by working with these operators satisfying these anti-commutation re-

lations. In particular, the Pauli exclusion principle is seen to hold by noting that

c†kc
†
k = 0, by virtue of Eqs. (2.2b), so no two particles can be in the same state.

Analogous operators and commutation relations exist for Bosonic systems.

In the position basis, the creation and annihilation operators are known as

quantum field operators, ψ†(x, σ) and ψ(x, σ), which create and annihilate, re-

spectively, a particle at position x with spin σ. They can be expressed in terms

of the creation and annihilation operators, c†k and ck , associated to a discrete

single-particle orthonormal basis {φk(x, σ)} as follows [42, 44]

ψ†(x, σ) =
∑
k

φ∗k(x, σ)c†k (2.3a)

ψ(x, σ) =
∑
k

φk(x, σ)ck . (2.3b)

As an example, the basis states φk(x, σ) can be localized atomic sites of a tight-

binding model, where c†k and ck create and remove an electron at site k . It can be

shown [42, 43] that given Eqs. (2.2) and Eqs. (2.3), the quantum field operators

satisfy the following anti-commutation relations

{ψ(x, σ), ψ†(x′, σ′)} = δ(x− x′)δσσ′ (2.4a)

{ψ(x, σ), ψ(x′, σ′)} = {ψ†(x, σ), ψ†(x′, σ′)} = 0 . (2.4b)

2.2. Hamiltonian in second quantization

We consider the Hamiltonian Ĥ = Ĥ0 + Ĥee of a system of electrons which has

a single-particle term Ĥ0 that includes the influence of external fields and a two-

particle term Ĥee that accounts for the electron–electron interaction. In terms

of quantum field operators it may be written as follows [47, 42, 43]

Ĥ =
∑
σ

∫
dx ψ†(x, σ)

(
p̂2

2m
+ V0(x)

)
ψ(x, σ) +

+
1

2

∑
σ,σ′

∫
dx

∫
dx′ ψ†(x, σ)ψ†(x′, σ′)VCoul(x, x

′)ψ(x′, σ′)ψ(x, σ) (2.5)
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where the momentum operator reads as p̂ = −i ~∇, V0(x) is an external potential

and VCoul(x, x
′) accounts for the Coulomb interaction. Here and in the rest of

the Chapter we make h̄ = 1.

Employing a discrete orthonormal single-particle basis, the single-particle term

of the Hamiltonian can be written as

Ĥ0 =
∑
jk

hjkc
†
j ck (2.6a)

hjk =
∑
σ

∫
dx φ†j (x, σ)φk(x, σ)V0(x) (2.6b)

and the two-particle term Ĥee as

Ĥee =
1

2

∑
mjkl

Vmjklc
†
mc
†
j ckcl (2.7a)

Vmjkl =
∑
σσ′

∫
dx

∫
dx′ VCoul(x, x

′)φ∗m(x, σ)φ∗j (x′, σ′)φk(x′, σ′)φl(x, σ) (2.7b)

where use of Eqs. (2.3) has been made.

The Hamiltonian governs the dynamics of the system. In particular, the equa-

tion of motion for the quantum field operator ψ(x, σ, t) reads as [42, 49](
i
∂

∂t
− ĥ0(x)

)
ψ(x, σ, t) =

∑
σ′

∫
dx′ VCoul(x, x

′)n̂(x′, σ′, t)ψ(x, σ, t) (2.8)

which is used in Sec. 2.5. We have defined ĥ0(x) ≡ p̂2/2m+V0(x) and the density

operator n̂(x′, σ′, t) ≡ ψ†(x′, σ′, t)ψ(x′, σ′, t). Here, ψ†(x, σ, t) and ψ(x, σ, t)

are the time-dependent quantum field operators in the Heisenberg picture with

respect to Ĥ [42]. Note that the equal-time anti-commutation relations given

by Eqs. 2.4 do not apply in general to these operators for unequal times. A

corresponding equation of motion exists for ψ†(x, σ, t).

2.3. Green’s functions

Green’s functions [40, 41, 42, 43, 44] are mathematical objects which are useful

for evaluating physical properties of a many-body system, either in thermal equi-

librium or under non-equilibrium conditions. They are quantum field correlation
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functions expressed in terms of the expectation value of products of quantum

field operators. One may define one-particle (two-point) Green’s functions or in

general, n-particle (2n-point) Green’s functions.

To describe a non-equilibrium system, we focus on four different (but inter-

related) one-particle Green’s functions, which we term G<, G>, GR and GA.

We consider also GT , which is useful in equilibrium. Out of these Green’s func-

tions, which are defined in the following, only two are required in a stationary

non-equilibrium situation and only one for equilibrium. Only Fermionic Green’s

functions are considered, since we are interested in describing electronic transport.

Equivalent definitions exist for Bosonic systems. We abbreviate the spatial x, spin

σ and time t coordinates of the quantum field operators ψ(x, σ, t) and ψ†(x, σ, t),

expressed in the Heisenberg picture [42], as 1 ≡ (x1, σ1, t1) and 2 ≡ (x2, σ2, t2).

The “lesser” Green’s function is defined as

G<(1, 2) ≡ i
〈
ψ†(2)ψ(1)

〉
(2.9)

and provides information about the electron kinetics. The expectation value of

any string Ŝ of operators is given by means of the statistical operator of the

system ρ̂ as
〈
Ŝ
〉

= Tr(ρ̂Ŝ). If the system’s preparation is pure (ρ̂ = |Φ〉 〈Φ|)
as given by a single state |Φ〉, we see that G<(1, 2) is the probability amplitude

for the many-body system to remain in the state |Φ〉 after removing at time t1
a particle with spin σ1 at position x1 and restoring at time t2 a particle with

spin σ2 at position x2. Equivalently, it may be interpreted as the amplitude for

the process of removing a particle with coordinates 2 from state |Φ〉 given a

particle is removed at coordinates 1 from state |Φ〉. For the case of a mixture, an

additional statistical averaging over the distribution of initial states takes place.

The “greater” Green’s function is defined as

G>(1, 2) ≡ −i
〈
ψ(1)ψ†(2)

〉
(2.10)

which provides information about the hole kinetics.

Other two combinations of field correlations are of importance, namely, the
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retarded Green’s function

GR(1, 2) ≡ −iθ(t1 − t2)
〈
{ψ(1), ψ†(2)}

〉
= θ(t1 − t2)

(
G>(1, 2)− G<(1, 2)

)
(2.11)

and the advanced Green’s function

GA(1, 2) ≡ iθ(t2 − t1)
〈
{ψ(1), ψ†(2)}

〉
= −θ(t2 − t1)

(
G>(1, 2)− G<(1, 2)

)
(2.12)

which contain information about the dynamics and spectral properties of the

system. Here θ(t) is the Heaviside step function, which takes the following two

values, θ(t < 0) = 0 and θ(t ≥ 0) = 1.

As a Green’s function that allows the construction of a systematic perturbation

theory in equilibrium, the time-ordered or causal Green’s function is defined as

GT (1, 2) ≡ −i
〈
T
(
ψ(1)ψ†(2)

)〉
= θ(t1 − t2)G>(1, 2) + θ(t2 − t1)G<(1, 2)

(2.13)

where T is the time-ordering operator, which orders the operators in its argument

according to the criterion that the operator with the earlier time is placed on the

right

T (A(t1)B(t2)) = θ(t1 − t2)A(t1)B(t2)− θ(t2 − t1)B(t2)A(t1) . (2.14)

The anti-time-ordering operator T̃ can also be defined, which orders oppositely

to T .

These Green’s functions satisfy the following relation

GR(1, 2)− GA(1, 2) = G>(1, 2)− G<(1, 2) (2.15)

which is a combination that results in the spectral weight function

A(1, 2) ≡ i(GR(1, 2)− GA(1, 2)) =
〈
{ψ(1), ψ†(2)}

〉
= i(G>(1, 2)− G<(1, 2)).

(2.16)

A(1, 2) is essentially the imaginary part of the retarded Green’s function, it deter-

mines the decay of the correlations in time domain and hence also the dissipation.

It is important for obtaining the local density of states (LDOS) ρ(x, E) by Fourier

transforming it from the time domain to the energy domain (t1 − t2 → E) as
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follows

ρ(x, E) =
1

2π
A(x, x, E) . (2.17)

Furthermore, the following relations are satisfied

GA(1, 2) =
(
GR(2, 1)

)∗
(2.18)

G<(1, 2) = −
(
G<(2, 1)

)∗
(2.19)

G>(1, 2) = −
(
G>(2, 1)

)∗
(2.20)

A(1, 2) = (A(2, 1))∗ . (2.21)

Expressing the field operators in terms of a discrete single-particle orthonormal

basis, as shown in Eqs. (2.3), the Green’s functions become matrices

G<jk(t1, t2) = i
〈
c†k(t2)cj(t1)

〉
(2.22a)

G>jk(t1, t2) = −i
〈
cj(t1)c†k(t2)

〉
(2.22b)

GRjk(t1, t2) = −iθ(t1 − t2)
〈
{cj(t1), c†k(t2)}

〉
(2.22c)

GAjk(t1, t2) = iθ(t2 − t1)
〈
{cj(t1), c†k(t2)}

〉
. (2.22d)

It can be shown [43] that for thermal equilibrium, the lesser Green’s function

G<, which carries information about fluctuations, is proportional to the dissipative

part as given by the spectral weight function A. This constitutes the fluctuation-

dissipation theorem which, expressing these quantities in the energy domain, reads

as

G<(E) = i f (E)A(E) (2.23)

where the proportionality factor is the probability of finding a particle (an occupied

state) as given by the Fermi-Dirac distribution function

f (E) =

(
exp

(
E − µ
kBT

)
+ 1

)−1

. (2.24)

Here µ is the electrochemical potential of the system, kB is Boltzmann’s constant

and T is the temperature. Similarly, for thermal equilibrium the following relation

holds

G>(E) = −i(1− f (E))A(E) (2.25)
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where the proportionality factor is the probability of finding a hole (an empty

state).

A device with an applied bias voltage between the drain and source contacts is

not in equilibrium, since the electrochemical potentials of the contacts, µS and

µD, may be different. But the equilibrium expression for G< can be employed to

describe the contacts themselves, which may be assumed to be in local equilibrium.

2.4. Contour-ordered Green’s function

We may express the total Hamiltonian of the system as Ĥ(t) = Ĥ0 + Ĥ1(t),

where Ĥ0 is a time-independent term that describes the isolated and/or non-

interacting system and Ĥ1(t) is a perturbation, that we consider time-dependent

in general but which need not necessarily be so, as in the case of the electron–

electron interaction. For an arbitrary observable Ô, the connection between the

Heisenberg picture with respect to Ĥ(t) and the Heisenberg picture with respect

to Ĥ0 is given by [40, 42, 43]

ÔH(t) = Û†I (t, t0)ÔH0 (t)ÛI(t, t0) (2.26)

where the evolution operator ÛI(t, t0) for t > t0 reads as

ÛI(t, t0) = T

(
exp

(
−i
∫ t

t0

dt ′ Ĥ1H0 (t ′)

))
(2.27)

and for t < t0 reads as

ÛI(t, t0) = T̃

(
exp

(
−i
∫ t

t0

dt ′ Ĥ1H0 (t ′)

))
. (2.28)

The time-ordering operator T and the anti-time-ordering operator T̃ were intro-

duced in Sec. 2.3. The interaction Hamiltonian term in the Heisenberg picture

with respect to Ĥ0 reads as

Ĥ1H0 (t) = Û†H0
(t, t0)Ĥ1(t)ÛH0 (t, t0) (2.29)

where

ÛH0 (t, t0) = exp
(
−i Ĥ0(t − t0)

)
. (2.30)
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For a system in its ground state (ρ̂ = |Φ〉 〈Φ|), one can obtain an expression

for the time-ordered Green’s function GT (1, 2) ready for perturbation expansion.

This is done by expressing the quantum field operators ψ†(x, σ, t) and ψ(x, σ, t)

that appear in GT (1, 2) by means of Eq. (2.26). By allowing the interaction

to be switched on and off adiabatically and using the Gell-Mann and Low the-

orem, which relates the asymptotic state in the far future |Φ(∞)〉 with that in

the far past |Φ(−∞)〉, GT (1, 2) may be written in a form amenable to Wick’s

decomposition [50, 42].

But Gell-Mann and Low theorem does not hold in non-equilibrium situations,

since then the states |Φ(∞)〉 and |Φ(−∞)〉 are not simply related and the time

evolution as given by the general Hamiltonian Ĥ(t) is not adiabatic. Equilibrium

theory cannot account for systems out of equilibrium [50].

Nevertheless, for ÔH(t) as given by Eq. (2.26)

ÔH(t) = T̃

(
exp

(
i

∫ t

t0

dt ′ Ĥ1H0 (t ′)

))
ÔH0 (t)T

(
exp

(
−i
∫ t

t0

dt ′ Ĥ1H0 (t ′)

))
(2.31)

one can also perform a perturbative evaluation, by joining the exponential func-

tions from the left and right of ÔH0 (t) and introducing a time-ordering operator

that recognizes whether the field operators belong to the time-ordered or anti-

time-ordered parts of the product. This can be done by introducing a contour c

running along the time axis, as shown in Fig. 2.1, and a contour ordering operator

Tc . The time arguments t(s) of the field operators are assigned to the contour,

via a contour parameter s. We term the parts of the contour that run forward

and backward in time as the −→c -branch and the ←−c -branch, respectively, so that

c = −→c +←−c . The Tc operator orders products of operators according to the po-

sition of their contour time argument on the closed contour, earlier contour time

places an operator to the right. Reduced to the −→c -branch or the ←−c -branch, Tc
becomes the time-ordering T or the anti-time-ordering T̃ operator respectively.

It can be shown [40, 42] that the two Heisenberg pictures, with respect to the

total Hamiltonian Ĥ(t) and with respect to the Hamiltonian Ĥ0 of the isolated

system, are connected in the following way

ÔH(t) = Tc

(
exp

(
−i
∫
c

ds Ĥ1H0 (t(s))

)
ÔH0 (t)

)
(2.32)
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Figure 2.1.: The closed time path contour c = −→c +←−c . The branches are displaced
from the time axis only for graphical purposes.

which follows from the fact that T−→c = T and T←−c = T̃ , so

T−→c

(
exp

(
−i
∫
−→c
ds Ĥ1H0 (t(s))

))
= ÛI(t, t0) (2.33a)

T←−c

(
exp

(
−i
∫
←−c
ds Ĥ1H0 (t(s))

))
= Û†I (t, t0) . (2.33b)

The right hand side of Eq. (2.32) is in a form ready for a perturbative analysis,

by a series expansion of the exponential.

The contour-ordered one-particle Green’s function is defined as

G(x1, σ1, s1, x2, σ2, s2) ≡ −i
〈
Tc
(
ψ(x1, σ1, t(s1))ψ†(x2, σ2, t(s2))

)〉
(2.34)

where the field operators are expressed in the Heisenberg picture with respect

to the total Hamiltonian Ĥ(t) of the system. Making the abbreviations 1 ≡
(x1, σ1, t(s1)) and 2 ≡ (x2, σ2, t(s2)) and by virtue of Eq. (2.32) it reads as

G(1, 2) = −i
〈
Tc

(
exp

(
−i
∫
c

ds Ĥ1H0 (t(s))

)
ψH0 (1)ψ†H0

(2)

)〉
(2.35)

where the field operators are now expressed in the Heisenberg picture with respect

to the Hamiltonian Ĥ0 of the isolated system. The contour runs up to the time

tmax > t1, t2 above the largest time argument of the Green’s function.

One of the advantages of contour ordering compared to time ordering is that

depending on the position of the times t1 and t2 on the contour, four possible

combinations of Green’s functions can be distinguished. Denoting a time t+ as

belonging to the −→c -branch and a time t− as belonging to the ←−c -branch of the

contour, we have [51]

G++(1, 2) = G(x1, σ1, t
+
1 , x2, σ2, t

+
2 ) = −i

〈
T
(
ψ(1)ψ†(2)

)〉
(2.36a)
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G−−(1, 2) = G(x1, σ1, t
−
1 , x2, σ2, t

−
2 ) = −i

〈
T̃
(
ψ(1)ψ†(2)

)〉
(2.36b)

G+−(1, 2) = G(x1, σ1, t
+
1 , x2, σ2, t

−
2 ) = i

〈
ψ†(2)ψ(1)

〉
(2.36c)

G−+(1, 2) = G(x1, σ1, t
−
1 , x2, σ2, t

+
2 ) = −i

〈
ψ(1)ψ†(2)

〉
(2.36d)

It can be shown [51] that these Green’s functions are related to those introduced

in Sec. 2.3, which are the ones employed for numerical implementations, as follows

G<(1, 2) = G+−(1, 2) (2.37a)

G>(1, 2) = G−+(1, 2) (2.37b)

GR(1, 2) = G++(1, 2)− G+−(1, 2) (2.37c)

GA(1, 2) = G++(1, 2)− G−+(1, 2) . (2.37d)

2.5. Equations of motion for the Green’s functions

In general, the contour-ordered n-particle Green’s function is defined as

Gn(1, . . . , n, 1′, . . . , n′) ≡
1

in
〈
Tc
(
ψ(1) · · ·ψ(n)ψ†(n′) · · ·ψ†(1′)

)〉
. (2.38)

It can be shown [49] that these Green’s functions satisfy the following equations

of motion(
i
d

dsk
− ĥ0(k)

)
Gn(1, . . . , n, 1′, . . . , n′) =

= −i
∫
d 1̄ VCoul(k ; 1̄)Gn+1(1, . . . , n, 1̄, 1′, . . . , n′, 1̄+)+

+

n∑
j=1

(−1)k+jδ(k ; j ′)Gn−1(1, . . . , k̊ , . . . , n, 1′, . . . , j̊ ′, . . . , n′) (2.39)

where, among other considerations, use of the equation of motion for the field

operator, Eq. (2.8), has been made. An analogous equation exists for the primed

variables. Here, the arguments with a ring on top are absent from the argument

list. Also, 1̄+ ≡ (x̄1, σ̄1, t̄(s̄
+
1 )) indicates a contour argument infinitesimally larger

than t̄(s̄1). As an example, only Coulomb interaction is considered. One could

also take into account scattering or contact coupling.
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This infinite set of coupled equations is known as the Martin-Schwinger hier-

archy and shows that due to the interactions as given by the Coulomb term, the

time dependence of a general n-particle Green’s function is described in terms of

lower-order and higher-order correlation functions. This makes the determination

of the Green’s functions problematic.

In the particular case of the contour-ordered one-particle Green’s function, the

equation of motion reads as(
i
d

ds1
− ĥ0(1)

)
G(1, 1′) = δ(1, 1′)− i

∫
d2 VCoul(1, 2)G2(1, 2, 1′, 2+) (2.40)

where the zero-particle Green’s function is defined as the identity. Furthermore,

this equation can be rewritten in a convenient form by implicitly defining the

self-energy Σ as [49]∫
d2 Σ(1, 2)G(2, 1′) = −i

∫
d2 VCoul(1, 2)G2(1, 2, 1′, 2+) . (2.41)

Note that the right hand side of this definition is the second term on the right of

Eq. (2.40). With this definition at hand, the equation of motion can be recast

into a more useful form, known as Dyson equation [40, 42, 49]

G(1, 1′) = G0(1, 1′) +

∫
d2

∫
d3 G0(1, 2)Σ(2, 3)G(3, 1′) (2.42)

where G0(1, 1′) is the free (without VCoul) contour-ordered Green’s function.

Dyson equation provides a way to obtain G once Σ is known. Therefore the

focus of the problem is shifted towards obtaining the self-energy, which can be a

functional of the Green’s function and contains everything that is not contained in

G0 (the “perturbation”, like Coulomb interaction, scattering or contact coupling).

2.6. Non-equilibrium perturbation theory

The exponential appearing in Eq. (2.35) can be decomposed in a series expansion.

This produces a sum of terms with an ever increasing number of products of

interaction Hamiltonians under contour ordering. Under certain conditions on Ĥ0

and ρ̂, Wick’s theorem [42] provides the way for decomposing such averages over

strings of field operators into products involving the free or equilibrium contour-
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ordered Green’s function

G0(1, 2) = −i
〈
Tc

(
ψH0 (1)ψ†H0

(2)
)〉

. (2.43)

The results of employing Wick’s theorem to decompose the contributions from

the expansion of the exponential containing the interaction are expressions with

ever increasing complexity. However, by means of the diagrams invented by Feyn-

man, it is possible to graphically depict and interpret the perturbative expressions,

as well as to construct approximations and exact equations that may hold true

beyond perturbation theory. One can argue in terms of Feynman diagrams to

define the concept of self-energy and as a result, to arrive at Dyson equation [42,

44], alternatively to what was done in the previous Sec. 2.5.

2.7. Dyson equation

Defining the operator product C = A ∗ B as [51]

C(1, 1′) =

∫
dx2

∫
c

dt2 A(1, 2)B(2, 1′) (2.44)

that is, integration over space and contour, Dyson equation can be rewritten as

G = G0 + G0 ∗Σ ∗ G . (2.45)

The following identities are obtained from the “∗”-product definition [51]

C++ = A++ · B++ − A+− · B−+ (2.46a)

C−− = A−+ · B+− − A−− · B−− (2.46b)

C+− = A++ · B+− − A+− · B−− (2.46c)

C−+ = A−+ · B++ − A−− · B−+ (2.46d)

where, for example, C+− = C(x1, σ1, t
+
1 , x2, σ2, t

−
2 ) is a function with the first

time argument in the forward branch and the second one in the backward branch

of the contour. Here, we define the operator product C = A · B as

C(1, 1′) =

∫
dx2

∫ ∞
−∞

dt2 A(1, 2)B(2, 1′) (2.47)



2.8. Hartree-Fock approximation of the self-energy 21

that is, integration over space and time. These identities are useful in order to
write the Dyson equations for all the Green’s functions, as made explicitly in the
following [51]

G++ = G++
0 + G++

0 Σ++G++ − G++
0 Σ+−G−+ − G+−

0 Σ−+G++ + G+−
0 Σ−−G−+ (2.48a)

G−− = G−−0 + G−+
0 Σ++G+− − G−+

0 Σ+−G−− − G−−0 Σ−+G+− + G−−0 Σ−−G−− (2.48b)

G+− = G+−
0 + G++

0 Σ++G+− − G++
0 Σ+−G−− − G+−

0 Σ−+G+− + G+−
0 Σ−−G−− (2.48c)

G−+ = G−+
0 + G−+

0 Σ++G++ − G−+
0 Σ+−G−+ − G−−0 Σ−+G++ + G−−0 Σ−−G−+ (2.48d)

where we have suppressed the “ ·”-product symbol between operators for brevity.

For a time-invariant system for which G depends only on the time difference

∆t = t1−t2, it is possible to perform a Fourier transformation from time variables

to the energy variable (∆t → E). By means of it, the “ ·”-product between time-

dependent functions becomes a simple multiplication between energy-dependent

functions, or matrices if the field operators are expressed using a discrete or-

thonormal single-particle basis, as Eqs. (2.22) show. We assume this in the

following and explicitly write the Dyson equations for the retarded and lesser

Green’s functions, according to the expressions given by Eqs. (2.48)

GR = GR0 + GR0 ΣRGR (2.49a)

G< = GRΣ<GA +
(

1 + GRΣR
)
G<0
(

1 + ΣAGA
)

(2.49b)

with GA = GR†. These energy-dependent matrix equations are the foundation of

the non-equilibrium Green’s function formalism (NEGF) for the non-equilibrium

quantum kinetic simulation of nanoelectronic devices.

2.8. Hartree-Fock approximation of the self-energy

As Eq. (2.40) indicates, the determination of the contour-ordered one-particle

Green’s function G(1, 1′) depends explicitly on the contour-ordered two-particle

Green’s function G2(1, 2, 1′, 2′). It can be shown [49] that the approximation

G2(1, 2, 1′, 2′) = G(1, 1′)G(2, 2′)− G(1, 2′)G(2, 1′) (2.50)

satisfies the equations of motion for G2(1, 2, 1′, 2′) for the non-interacting case

(with VCoul(1, 2) = 0, so that the explicit dependence of G2 on G3 is absent).
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This is the so-called Hartree-Fock approximation [49] to G2, which indicates that,

whenever the interaction between particles is weak, G2 can be approximately ex-

pressed as the product of functions that describe how a single particle propagates

when added to the system. Due to their indistinguishability, the anti-symmetrized

version of the products appears in this approximation.

Substituting the Hartree-Fock approximation to G2 in the implicit definition of

the self-energy, Eq. (2.41), it follows that

Σ(1, 2) = δ(1, 2)VH(1) + iVCoul(1, 2)G(1, 2+) . (2.51)

Here, the Hartree potential VH is identified with

VH(1) = −i
∫
d3 VCoul(1, 3)G(3, 3+) =

∫
dx3VCoul(x1, x3)n(x3, t(s1)) (2.52)

where n(x3, t(s1)) = −iG(x3, σ3, t(s1), x3, σ3, t(s
+
1 )) is the particle density. The

Hartree potential can be understood as the classical potential that a particle

experiences from a density distribution of all the particles of the system. The

second term in Σ(1, 2) is called the Fock or exchange potential, which is local in

time but non-local in space and cannot be interpreted as a classical potential.

The Hartree-Fock approximation neglects the direct interaction between two

particles, a single particle moves like a free particle under the influence of an

effective potential dependent on the position of the rest of the particles. This is

the idea of a mean-field approximation.

Written in terms of the single-particle density matrix (in the position basis)

ρ1(x1, σ1, x2, σ2, t(s)) ≡
〈
ψ†(x2, σ2, t(s))ψ(x1, σ1, t(s))

〉
=

= −iG(x1, σ1, t(s), x2, σ2, t(s
+)) (2.53)

the self-energy reads as

Σ(1, 2) = δ(1, 2)

∫
d3 VCoul(1, 3)ρ1(3, 3)− VCoul(1, 2)ρ1(1, 2) . (2.54)

Changing the representation from the continuous position basis to a discrete

single-particle basis {φk(x)} (of localized spin/site orbitals, for example), the

quantum field operators change according to Eqs. (2.3). Therefore, the quantities
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that depend directly on these operators change according to

Σ(1, 2) =
∑
kl

φk(x1)φ∗l (x2)Σkl (2.55)

ρ1(1, 2) =
∑
kl

φk(x1)φ∗l (x2)ρ1kl (2.56)

which appear in the expression for the self-energy. Substituting these quanti-

ties into Eq. (2.54), multiplying both sides of this expression with φ∗i (x1)φj(x2),

integrating with respect to x1 and x2 and taking into account the form of the

tensor elements for the interaction Hamiltonian as expressed by Eq. (2.7b), it is

straightforward to prove that the self-energy can be written in the discrete basis

as [45]

Σi j =
∑
kl

(Vi lkj − Vl ikj)ρ1kl . (2.57)

Here, the first term represents the Hartree potential, whereas the second term

represents the Fock or exchange potential.

2.9. NEGF schemes

Several NEGF schemes can be distinguished depending on the treatment given to

the Hamiltonian and to the Green’s function. Usually, in the following approaches

a suitable coordinate system adapted to the symmetry of the device is employed.

One of the coordinate axis coincides with the longitudinal propagation direction,

while the rest of the axes are perpendicular to it, defining adjacent “slices”. The

Hamiltonian is discretized in space and together with the considered self-energy

matrices can be used to obtain the Green’s functions, from which the charge den-

sity can be obtained. This charge density determines the electrostatic potential

in the device by means of solving Poisson’s equation. The potential is input to

the Hamiltonian and a self-consistent algorithm is thus defined. This algorithm

is known as Schrödinger-Poisson solver and employs a Hartree mean-field ap-

proximation to electronic interaction, thus being unable to describe few-electron

charging effects.

In the real space NEGF simulation scheme [52], the Hamiltonian, usually in the

effective mass approximation, is discretized in real space. Its matrix representation

in a suitable chosen basis is given by a block diagonal matrix, composed in turn
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of block diagonal submatrices. One can distinguish two kinds of submatrices,

namely, those which couple space points within each slice and depend both on

site coupling energies and on the potential within the slice, and those which

couple adjacent slices and depend only on site coupling energies. To obtain the

retarded Green’s function, the effective Hamiltonian matrix for each energy has

to be inverted. Since there is no restriction on the solution domain, this approach

is computationally expensive.

Within the real space representation, several methods exist which reduce the

computational cost of the NEGF calculations. The recursive Green’s function

method [53, 54, 55] performs well for two-terminal devices that can be discretized

into cross-sectional slices with nearest neighbor interaction. On the other hand,

it finds difficulties dealing with additional contacts that imply more neighbors to

be considered. The contact block reduction method [56, 57, 58] decomposes the

retarded Green’s functions into four blocks. One of the blocks concerns the con-

tacts, a second one concerns the decoupled device and the last two the coupling

between contacts and device. Focus lies on solving only for the contact and the

contact-device submatrices, those blocks necessary to obtain various electronic

observables such as the transmission coefficient. Only the contact self-energies

are considered. The corresponding reduced Dyson equation’s size is given by the

size of the contact regions only, implying calculations are reduced in number.

This method produces good results in the ballistic regime for multiterminal de-

vices with an arbitrary geometry, potential profile and number of contacts. On

the other hand, it does not describe incoherent scattering.

The mode space NEGF simulation scheme [59, 60] separates the confine-

ment in the transversal directions form the longitudinal propagation direction.

Schrödinger’s equation is solved within each transversal slice for all points along

the longitudinal direction. The resulting wave functions, together with those cor-

responding to the longitudinal direction, form a basis with which to represent the

Hamiltonian. The resulting transversal energies form subbands that depend on

the position along the transport direction and enter into the Hamiltonian matrix,

which is in this case a 1D quantity. Knowing the Hamiltonian for each subband,

the retarded Green’s function can be readily obtained. Note that in mode space

representation, the transport is reduced to 1D, in contrast to the real space

representation. In the case of a thin channel FET, strong electron quantum con-
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finement produces a large energy separation between modes, so only the lowest

modes are populated. This, together with the reduced size of the mode space

Hamiltonian, implies that calculations in this scheme are lighter without loss in

accuracy as compared to a real space scheme, which implicitly treats all modes.

Two approaches can be employed within the mode space NEGF simulation

scheme. The uncoupled mode space representation [52, 59, 61, 62] neglects

subband coupling, which produces good results as long as the transverse poten-

tial profile along the longitudinal axis remains uniform. The mode coupling occurs

where the transversal energy does not change gradually along the transport direc-

tion. One then has to consider subband coupling and employ the coupled mode

space representation [59, 60, 63, 64].

These NEGF simulation schemes have been successfully applied to simulate

electronic transport in NWFETs. Recently there has been a great interest in

studying the variability of these devices due to discrete dopants and surface

roughness. With channel lengths and diameter below the micrometer scale, the

characteristics of a nanoscale FET become sensitive to minute variations in the

distribution of individual doping atoms [65, 66, 67, 68, 69, 70, 71] or deviation

from perfectly smooth surfaces [72, 73, 74, 75]. Therefore, simulation of these

effects has been useful to understand the impact they have on the performance

and variability of these devices. Usually a 3D real space NEGF scheme is needed

to account for these inhomogeneities. Furthermore, few-electron charging is not

considered within the mean-field Hartree-Fock approximation described above. A

many-body treatment is needed which will be addressed in the next chapter.





3. Multi-configurational
self-consistent Green’s function
method

3.1. Introduction

The number of electrons involved in the operation of NWFETs with channel

lengths as large as ∼ 100 nm is on the order of 1–10. Therefore single-electron

charging effects are important and an electronic transport model at these scales

must be able to describe them. This implies that such a model must take into

account the Coulomb interaction between electrons in a many-body description.

On the one hand, a NEGF approach to electronic transport in a NWFET

describes non-equilibrium states very well but the Coulomb interaction is typically

modeled in terms of a self-consistent mean-field Hartree potential, which does

not account for single-electron charging effects. On the other hand, a full many-

body formulation of the Coulomb interaction correctly predicts these effects at

the expense of considering only a small number of single-particle states, since the

dimension of the many-body Fock space increases exponentially with this number.

The multi-configurational self-consistent Green’s function (MCSCG) method

[45, 46] is an hybrid approach to the simulation of ultimately scaled NWFETs

that benefits both from the NEGF formalism to describe non-equilibrium elec-

tronic transport and from the many-body Coulomb interaction formulation for a

special small set of adaptively chosen relevant states. For the rest of the states the

interaction is treated in a conventional mean-field way. The Fock space descrip-

tion allows for the calculation of few-electron Coulomb charging effects beyond

mean-field. With the MCSCG method, Coulomb blockade effects are correctly

described for low enough temperatures, while under strong non-equilibrium and

27
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Figure 3.1.: Schematic view of a 1D NWFET geometry.

high temperatures the method retains a mean-field Hartree-Fock approximation

which produces an adequate description of Coulomb interaction.

3.2. The system

A NWFET features a nanowire channel that can be considered almost 1D, since

for diameters ∼ 10 nm only a few or even a single radial mode participate in the

current. Therefore, the model describes the channel as a 1D nanowire of length

L, diameter dch and relative dielectric constant εch. In the following we consider

a coaxially gated NWFET, as illustrated in Fig. 3.1. Channel (orange color) and

gate electrode (purple color) are isolated by the presence of an oxide (gray color)

with thickness dox and relative dielectric constant εox. The two extremes of the

channel are contacted by source and drain, which can be considered to be either

Ohmic contacts or deposited metallic electrodes forming two Schottky barriers.

The system is at a temperature T .

3.3. Theoretical elements of the method

What distinguishes the MCSCG approach is its ability to describe few-electron

charging effects for realistic NWFETs out of equilibrium, based on an hybrid ap-

proach that combines both many-body Fock space and mean-field descriptions of

electron–electron Coulomb interaction. Details of its fundamental characteristic

features are given in Sec. 3.4 but first we present in the following sections the

theoretical elements the MCSCG method makes use of, which may be common

to other non-equilibrium electronic transport simulation approaches.
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3.3.1. Coulomb Green’s function

The electrostatic potential V (x) inside the 1D nanowire channel obeys a modified

Poisson equation [27, 76]

∂2V (x)

∂x2
−

1

λ2
V (x) = −

ρ(x)

ε0εchS
−

1

λ2
VG (3.1)

where ρ(x) is the 1D charge density, VG is the gate potential and S = πd2
ch/4

is the effective cross-sectional area. The screening length λ, which should be

λ � L to avoid short-channel effects [26], is given by Eq. (1.1) for a coaxial

transistor geometry.

Given ρ(x), Eq. (3.1) can be solved by means of a Green’s function which we

term Coulomb Green’s function and constitutes an important ingredient in the

formalism. It describes the charge interaction within the channel and enables

the formulation of classical electrostatics and the many-body interaction between

electrons on equal footing. It can be obtained as [45]

v(x, x ′) =
λ

2

(
e−

|x−x ′ |
λ − e−

x+x ′
λ

)
+
λ

2
e−

L
λ

cosh
(
x−x ′
λ

)
sinh

(
L
λ

) −
cosh

(
x+x ′

λ

)
sinh

(
L
λ

)
 (3.2)

with 0 ≤ x, x ′ ≤ L and vanishing potential at the boundaries V (0) = V (L) = 0.

The potential for a given charge density ρ(x) inside the channel thus reads as [77]

V (x) =
1

ε0εchS

∫
dx ′ v(x, x ′)ρ(x ′) + Vext(x) (3.3)

with the external potential contribution

Vext(x) =
sinh

(
L−x
λ

)
sinh

(
L
λ

) VS +
sinh

(
x
λ

)
sinh

(
L
λ

)VD +
1

λ2

∫
dx ′ v(x, x ′)(VG(x ′) + Vdop(x ′))

(3.4)

which stems from external charges due to the applied drain–source voltage, the

gate and doping influences. Here VS and VD denote the source and drain contact

potentials respectively, VG(x) is a position dependent gate potential and Vdop(x)

denotes the potential resulting from fixed charges due to ionized doping atoms.
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3.3.2. Localized single-particle basis

According to Ref. [78], InP has a molecular density ρm = 1.979× 1022 cm−3 or

expressed in nanometers, an atomic density ρa = 39.58 nm−3. Considering an InP

cylindrical nanowire channel with diameter dch = 20 nm and length L = 100 nm

it is easy to verify, just by multiplying its volume by ρa, that the number of

atoms that make this nanowire is around Na ' 1.24 × 106. To feasibly address

the mathematical description of such a large number of elements one needs a

simplification.

In this model, this simplification consists of considering a one-band tight-binding

description of the NWFET channel in the effective mass approximation. It is

represented by a localized 1D single-particle basis {φi(x, σ)} with Nmax = 2×Nsites

spin orbitals, where the factor 2 stems from considering spin and Nsites is the

number of spatial sites.

Taking again the previous InP example, whose lattice constant is a0 = 5.87 Å,

this model would need a number of localized orbitals or sites Nsites = L/a0 ' 170.

This number is much smaller than the number of atoms Na in a realistic InP

nanowire. Nevertheless, the model produces results that agree with experimental

observations.

3.3.3. Hamiltonian

The total system Hamitonian Ĥ = Ĥ0 + Ĥee + ĤS + ĤD in the localized orbital

basis can be split into four parts. Ĥ0 contains all single-particle terms of the

transistor channel, with matrix elements hi j which read as

Ĥ0 =

Nmax−1∑
i ,j=0

hi j ĉ
†
i ĉj (3.5a)

hi j = −e
∑
σ

∫
dx φ∗i (x, σ)φj(x, σ)Vext(x) + δi jdi + ti j (3.5b)

where ĉ†i and ĉj are Fermionic creation and annihilation operators respectively,

expressed in the single-particle localized spin/site basis, di and ti j are the diagonal

and the hopping matrix elements respectively, arising from tight-binding [41].

The many-body Coulomb interaction between electrons within the channel re-

gion is described by a two-particle term Ĥee with Coulomb tensor elements Vi jkl
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as follows

Ĥee =
1

2

Nmax−1∑
i ,j,k,l=0

Vi jkl ĉ
†
i ĉ
†
j ĉk ĉl (3.6a)

Vi jkl =
e2

ε0εchS

∑
σ,σ′

∫
dx

∫
dx ′ v(x, x ′)φ∗i (x, σ)φ∗j (x ′, σ′)φk(x ′, σ′)φl(x, σ).

(3.6b)

That the Coulomb tensor elements can be expressed by means of the Coulomb

Green’s function given by Eq. (3.2) can be seen by considering the classical ex-

pression for the Coulomb interaction energy of a charge distribution ρ(x) and its

potential V (x)

Eee =
1

2

∫
dx ρ(x)V (x) (3.7)

where the potential is given through the Coulomb Green’s function as follows

V (x) =
1

ε0εchS

∫
dx ′ v(x, x ′)ρ(x ′) (3.8)

resulting in an equation

Eee =
1

2ε0εchS

∫
dx

∫
dx ′ ρ(x)v(x, x ′)ρ(x ′) (3.9)

which has Eqs. (3.6a) and (3.6b) associated as quantum operator and tensor

elements, respectively, in the multi-particle space.

3.3.4. Single-particle density matrix and natural orbital basis

The single-particle density matrix [79] ρ1 of the system in the localized orbital

basis can be obtained from the lesser Green’s function as follows

ρ1jk =
1

2πi

∫
dE G<kj(E) . (3.10)

Its dimensions are Nmax × Nmax. The eigenvectors of ρ1 are known as natural

orbitals and its eigenvalues ξi can be interpreted as average occupation numbers

of the natural orbitals [79, 80]. They satisfy 0 ≤ ξi ≤ 1. Υ is the unitary

transformation matrix that diagonalizes ρ1, such that ρ
diag
1 = Υ†ρ1Υ is the single-

particle density matrix in diagonal form, and gives the transformation between
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natural orbital basis and spin/site basis. The natural orbitals are represented by

the columns of Υ.

Note that the index ordering criterion in Eq. (3.10) influences the expression of

the Coulomb self-energy as given by Eq. (3.16), to be compared to Eq. (2.57).

3.3.5. NEGF description

A quantum dynamical description of the many-body non-equilibrium state of the

NWFET is obtained by means of the real-time NEGF formalism, as introduced

in Chapter 2. The two-point retarded and lesser Green’s functions in the time

domain are given by

GRjk(t) = −iθ(t)
〈{
cj(t), c

†
k(0)

}〉
G<jk(t) = i

〈
c†k(0)cj(t)

〉 (3.11)

for steady-state conditions, where the Green’s functions depend only on the time

difference ∆t = t − t ′ and we have chosen t ′ = 0. We consider the Fourier

transformed functions defined as

G(E) =
1

h̄

∫
dt e

i
h̄
EtG(t) (3.12)

and work in the energy domain. The Green’s functions satisfy the following Dyson

equations for the channel

GR = GR0 + GR0 ΣRGR

G< = GRΣ<GA + (1 + GRΣR)G<0 (ΣAGA + 1)
(3.13)

where the Green’s functions G and self-energies Σ are matrices in the localized

spin/site representation, GR0 ≡ (E − h + iε)−1 with ε → 0+ is the equilibrium

retarded Green’s function and GA = GR† is the advanced Green’s function. We

assume G<0 ≡ 0, which means that the channel remains empty without contacts.

For temperatures T well above the Kondo temperature of the system, the

Coulomb interaction can be treated independently of the contact coupling. Within

this approximation, the total self-energy Σ = Σee + ΣS + ΣD can be written as a

sum of a Coulomb interaction term Σee and two contact terms ΣS and ΣD of a

non-interacting form, due to the coupling of the channel to the source and drain
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regions (c = S,D), which in matrix form read as [45]

ΣR
cjk

(E) =
∑
p,q∈c

tcjpG
R
0cpq (E)tcqk (3.14)

with the isolated contact Green’s function GR0c and contact-channel hopping terms

tc . The corresponding lesser self-energy is given by [45]

Σ<
c = i fcΓc (3.15)

where Γc ≡ i(ΣR
c −ΣA

c ). The local source and drain Fermi distribution functions

are represented by fS and fD respectively, assuming local equilibrium within the

reservoirs.

The Coulomb self-energy is obtained as a first-order expansion, represented

by the Hartree-Fock diagrams, where the four-point Green’s functions are fac-

torized into linear combinations of products of two-point functions. Using this

approximation, it reads as [45]

ΣR
eeml

=

Nmax−1∑
j,k=0

(Vmjkl − Vjmkl) ρ1jk . (3.16)

3.4. The MCSCG method: fundamental features

So far we have described a NEGF approach to electronic transport with a mean-

field approximation to Coulomb interaction. On the one hand, for integer-number

electron filling conditions such an approximation can be employed to obtain a

good description of the system for application relevant temperatures. On the

other hand, under non-equilibrium conditions, implying non-integer average filling

situations, a first-order mean-field self-energy does not produce a good description

in general. In this section we describe the fundamental characteristic features that

define the MCSCG approach [45, 46], which is able to cope with such particle

number fluctuations.

3.4.1. Relevant states and relevant Fock subspace

In the following, the natural orbital basis is used as single-particle basis and we

express all the relevant quantities using this basis.
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Given that the natural orbital basis has Nmax states, the resulting many-body

Fock space F has dimension dim(F) = 2Nmax . The set of all Slater determinants

of natural orbitals constitute a basis of the whole Fock space, corresponding

to states with well defined occupation (0 or 1) of single-particle basis states

for the chosen basis of natural orbitals. Thus, a Slater determinant |DK〉 ∈ F
can be uniquely identified in the occupation number representation by a vector

of Nmax bits bi ∈ {0, 1} of the form |DK〉 = |b0b1 · · · bNmax−1〉 and an index

K = 0, . . . , 2Nmax − 1, which is the corresponding integer representation of the

binary sequence.

To make calculations of realistic nanowire devices numerically feasible, instead

of considering the full Fock space, we restrict ourselves to a relevant subspace

Frel as spanned by a relevant many-body basis Brel. The Slater determinants

(also known as configurations) |DK〉 ∈ Brel are constructed as follows. There

are as many Slater determinants as possible bit combinations of zeros and ones

(empty and occupied single-particle states) of the Nrel relevant natural orbitals.

Here “relevant” means fluctuating (0 < ξi < 1, with given thresholds) and weakly

coupled to the contacts, that is, resonantly trapped, quasibound electrons (the

magnitude of the imaginary part of the contact coupling self-energy is below

a given threshold), thus being responsible for few electron Coulomb charging

effects. Thus the dimension of the relevant Fock subspace is dim(Frel) = 2Nrel .

The main idea of the method is to treat the electron–electron Coulomb interac-

tion of the Nrel relevant states and their contribution to the Coulomb self-energy

ΣR
ee in a many body multi-configurational manner within the relevant Fock sub-

space Frel. The Nrest rest of the natural orbitals (those occupied with ξi ' 1,

those empty with ξi ' 0 or those fluctuating but strongly coupled) are kept empty

in every |DK〉 and treated in a mean-field way.

As an example, for Nmax = 100 the dimension of the full Fock space is

dim(F) ' 1.27 × 1030, making a full many-body approach to electron–electron

interaction unfeasible for typical lengths of the NWFET. On the other hand if

only Nrel = 6 natural orbitals are relevant then the dimension of the relevant Fock

subspace is dim(Frel) = 64 and the many-body approach is rendered feasible.
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3.4.2. Statistical operator

Once the relevant single-particle states have been identified and the relevant

Fock subspace accordingly constructed, the state of the system is described by a

projected many-body statistical operator

ρ̂rel =

2Nrel−1∑
K=0

wK |DK〉 〈DK | (3.17)

whose eigenbasis is given by the set of relevant Slater determinants of natural

orbitals. The eigenvalue or weight wK ∈ [0, 1] can be interpreted as the proba-

bility associated with the Slater determinant or configuration |DK〉 ∈ Brel. The

statistical operator is Hermitian and satisfies Tr(ρ̂rel) =
∑
K

wK = 1.

For each configuration |DK〉 = |b0b1 · · · bNrel−1〉 with bn ∈ {0, 1}, a correspond-
ing single-particle density matrix ρ1K can be derived from ρ1 as follows

ρ1K =
∑
n∈Rel

bn |φn〉 〈φn|+
∑
n/∈Rel

ξn |φn〉 〈φn| (3.18)

where |φn〉 and ξn are respectively the single-particle eigenstates and eigenvalues

of ρ1. The matrix expression of ρ1K in the localized orbital basis has elements

ρ1Ki j =
∑
n∈Rel

bnΥ∗jnΥin +
∑
n/∈Rel

ξnΥ∗jnΥin (3.19)

with Υ the unitary transformation matrix that diagonalizes ρ1.

These individual single-particle density matrices define, through Eq. (3.16), a

set of Coulomb self-energies Σr
ee [ρ1K ] that we assume become adequate for each

configuration. Since the Green’s functions are calculated as expectation values

and these are given by the statistical operator, one can write the Green’s function

as a configuration average

G =

2Nrel−1∑
K=0

wKG[ρ1K ] (3.20)

where G[ρ1K ] is the corresponding Green’s function (retarded and lesser) that is

obtained by using Eq. (3.13) with an individual Σr
ee [ρ1K ].

In Chapter 4 we describe a method to numerically determine the relevant sta-
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tistical operator of the NWFET system employing both the eigenbasis of Slater

determinants of natural orbitals and an alternative eigenbasis. These results

are used to extend the MCSCG algorithm, as a new implementation known as

NWFET-Lab (see Appendix A).

3.4.3. Mean-field interaction

We can include in the total system Hamiltonian Ĥ a single-particle term which

describes the mean-field interaction of relevant single-particle states with the

non-relevant. In the localized orbital basis it reads as

Ĥext
ee =

Nmax−1∑
i ,j=0

ΣR
eei j

[ρ̂1vac]ĉ†i ĉj (3.21)

where the Coulomb self-energy ΣR
ee [ρ̂1vac] is given Eq. (3.16) with a particular

ρ̂1vac, which is the single-particle density matrix for the vacuum state within Frel.

This state is the Slater determinant with all relevant single-particle states empty

(bits set to 0). ρ̂1vac can be obtained from its diagonal form ρdiag
1vaci j = δi jξ

vac
i by

assuming all relevant single-particle states have an average occupation number

ξvaci = 0 (vacuum state within Frel) and the non-relevant have their actual values

ξvaci = ξi . Performing an inverse transformation we obtain a non-diagonal single-

particle density matrix for the vacuum state ρ̂1vac = Υρdiag
1vacΥ†.

3.4.4. Determination of the weigths

We consider a vector w of weights that describes a probability distribution that

maximizes the entropy under the subsidiary condition that ρ1 =
∑
K

wKρ1K . With

this approximation we obtain

wK =
1

Z
exp

(
−

1

kBT

(
EK −

Nrel−1∑
i=0

µiNi(|DK〉)

))
(3.22)

where Z is a normalization constant, kB is Boltzmann’s constant and T is the

temperature. Ni(|DK〉) denotes the occupation number (0 or 1) of the relevant

single-particle state i for the configuration |DK〉 and µi represents an individual

electrochemical potential, that is a Lagrange parameter for the subsidiary condi-

tion above and can be obtained with the help of a Newton iteration scheme.
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0. Start with a given ρ1

1. Diagonalize ρ1 and select relevant single-particle states

2. Obtain matrices ρ1K from ρ1 for all configurations K of relevant states

3. Obtain GR[ρ1K ] from Dyson equation with Hartree-Fock ΣR
ee [ρ1K ], ∀K

4. Obtain G<[ρ1K ] from Dyson equation with GR[ρ1K ], ∀K
5. Determine configuration weight vector w

6. Calculate averages GR =
∑
K

wKG
R[ρ1K ] and G< =

∑
K

wKG
<[ρ1K ]

7. Obtain new ρ1 via numerical integration of G<(E) over E

8. Loop back to step 1 until convergence

9. Calculate observables

Table 3.1.: The MCSCG algorithm

The energy EK of the relevant Slater determinant |DK〉 is given by the diagonal
matrix elements of the projected many-body Hamiltonian Ĥrel within the relevant

Fock subspace Frel, which is obtained from Ĥ via projection to the relevant Fock

subspace Frel and whose components read as HrelIJ = 〈DI | Ĥ0 + Ĥee + Ĥext
ee |DJ〉

so that EK = HrelKK . Note that the configurations, as Slater determinants, might

not be exact eigenstates of Ĥrel. Later on (Chapter 4) we generalize the concept

of configuration as general many-body state.

3.4.5. Self-consistency algorithm

A self-consistency algorithm, the so-called MCSCG algorithm, can be defined

by taking the average G
<

from Eq. (3.20) for the obtained set of weights w

as new G<, for a whole new iteration step of the calculation scheme defined in

the previous sections. Convergence is achieved when the mean change in the

occupation numbers ξi of the natural orbitals (eigenvalues of ρ1) between two

consecutive iterations is below a chosen threshold. We provide a view of the

implementation of the MCSCG algorithm in Table 3.1.

3.5. Software implementation

The MCSCG algorithm has been implemented in two consecutive software ver-

sions. The earliest version, named whiskersim [81], implements the algorithm

described in the previous sections and summarized in Table 3.1. As a main ob-
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jective of this dissertation, a second version, named NWFET-Lab [82], has been

implemented, which includes and extends the previous version. In contrast to the

earliest version, which is console-based, the second version has a graphical user

interface. It can additionally perform calculations in a parallel, multi-threading

way, computes a larger variety of observables and includes the possibility of us-

ing an alternative eigenbasis for the relevant statistical operator ρ̂rel as described

in Chapter 4. Also with this second implementation, the natural orbitals with

occupation numbers, associated currents and spin are calculated. Additionally,

the density–density covariance, single-particle-reduced entropy, von Neumann en-

tropy, correlation entropy, energy or spin can be obtained. For more information

about NWFET-Lab, its structure, features and technical details, see Appendix A.

3.6. Limit of the 1D approximation

Even if their aspect ratio (length-to-width ratio) is very high, semiconductor

nanowires are 3D crystals, with more than one type of atom in its unit cell in

general. Their cross-sectional geometry can be cylindrical, hexagonal, square or

triangular. And their constituent material can be a direct or indirect band gap

semiconductor. Nevertheless, the MCSCG method models the nanowire chan-

nel as a 1D nanostructure and considers only direct band gap semiconductors.

Also, instead of considering realistically the crystal lattice of the semiconduc-

tor, it makes use of a 1D single-band tight-binding description, represented by a

spatially localized 1D single-particle basis. Despite this drastic simplification, the

model yields results consistent with experimental observations. We provide in this

Section an analysis of the limit of this 1D approximation.

The single-particle Hamiltonian Ĥ0 = Ĥcrystal(x) − eVdop(x) − eVext(x) term

can be divided into one “crystal” contribution Hcrystal(x), a potential arising from

possible doping of the nanowire Vdop(x) and an external potential due to gate

and contacts Vext(x). The crystal Hamiltonian contains the dynamics of a single

electron under the influence of a potential Vcrystal(x) periodic with the same period

of the lattice and arising from the fixed localized ions. This term reads as

Ĥcrystal(x) = −
h̄2

2m∗
d2

dx2
+ Vcrystal(x) . (3.23)

Written in terms of creation and annihilation operators, the single-particle Hamil-
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tonian has the form

Ĥ0 =
∑
jk

hjk ĉ
†
j ĉk (3.24a)

hjk = −e
∫
dx φ∗j (x)(Vdop(x) + Vext(x))φk(x) +

∫
dx φ∗j (x)Hcrystal(x)φk(x).

(3.24b)

The MCSCG limits the 1D tight-binding model to nearest-neighbors and so [83]∫
dx φ∗j (x)Hcrystal(x)φk(x) = δjkd − δjk−1t − δjk+1t (3.25)

where t = h̄2

2m∗a2
0
are the nearest neighbors hopping terms for a single energy band

and d = 2t is the diagonal term. Here, a0 is the lattice constant of the nanowire

semiconductor. The corresponding energy band is of cosine nature and has the

expression [83]

E(k) = d − 2t cos(ka0) =
h̄2

m∗a2
0

(1− cos(ka0)) (3.26)

which can be approximated by a parabola at the vicinity of the minimum k = 0

E(k) =
h̄2k2

2m∗
(3.27)

with an effective mass m∗, determined from the curvature of the band at k = 0.

Figure 3.2 shows both energy bands. For energies E(k) > t the effective mass

approximation begins to fail.

On the other hand, it can be shown [84] that a nanowire of radius R = dch/2

with the following radial potential

V (r) =

0 if 0 < r < R

∞ if r ≥ R
(3.28)

is characterized by radial energies

Emnr =
h̄2

2m∗

(xmn
R

)2

(3.29)

with m = 0,±1,±2, . . . and n = 1, 2, 3, . . . being the angular and radial quantum
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Figure 3.2.: Cosine and parabolic energy bands.

numbers respectively and xmn the nth root of the mth Bessel function of the first

kind Jm. We see that the radial energies depend on the nanowire diameter dch

and the electron effective mass m∗.

As long as the typical energy of the electrons within the channel does not

surpass the difference between the first and the second radial energies ∆Er =

E02
r − E01

r , only the first radial mode is populated and the electronic transport

can be considered as 1D. Electrons may have energies below t = h̄2

2m∗a2
0
before the

effective mass approximation begins to fail, so we compare ∆Er with the whole

range of energies Etyp(z) = zt for 0.1 ≤ z ≤ 1, to find an expression for the

maximum nanowire channel diameter d∗ch which limits the 1D approximation, as

a function of the parameter z . By equating these two energies we arrive at

d∗ch = 2a0

√
x2

02 − x2
01

z
. (3.30)

For a nanowire with diameter above the estimated limit, the first and following

excited radial modes begin to be populated and electronic transport begins to

deviate from being purely 1D. Note that ∆Er and t must also be larger than any

relevant scale in transport direction (for example, the maximum |eVDS| or the
barrier height).

Figure 3.3 shows d∗ch as a function of the typical energy Etyp(z) = zt for two

different nanowire materials: InP and ZnO. At the highest energy (z = 1), if the
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Figure 3.3.:Maximum diameter for the 1D approximation to be valid as a function of the
electron energy Etyp(z) = zt for 0.1 ≤ z ≤ 1, for two different nanowire semiconductors.

chosen material is InP (a0 = 5.9 Å, m∗/me = 0.079) [78] or ZnO (a0 = 3.25 Å,

m∗/me = 0.29) [85], limit diameters d∗ch = 5.86 nm and d∗ch = 3.23 nm result,

respectively.

3.7. Results: Coulomb blockade regime

In this section, we show some results obtained by means of the MCSCG method,

for a NWFET in the Coulomb blockade regime. At low enough temperature and

drain–source voltage VDS (compared to the channel’s Coulomb charging energy

and single-particle energy level spacing), the energy which is necessary to add

an extra electron to the channel can exceed the thermal energy, and the current

through the NWFET is blocked. Within this Coulomb blockade regime, the

NWFET behaves as a single-electron transistor (SET) [86, 87, 88, 89].

We have chosen the following parameters for the system. The channel consists

of an InP nanowire, which has a lattice constant a0 = 5.9 Å, an electron effective

mass m∗/me = 0.079 and a relative dielectric constant εch = 12.5, as found in

Ref. [78]. We considered a basis with a number of sites Nsites = 30 giving a

length L = 17.7 nm. Its diameter is dch = 5 nm. The channel and the gate are

separated by a SiO2 oxide layer of thickness dox = 10 nm and relative dielectric

constant εox = 3.9. The device has a temperature of T = 77 K.
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The source and drain are contacted with a metal to form Schottky barriers of

height ΦSB = 0.2 eV with respect to the electrochemical potential of the contacts

(µS and µD), which act as double tunnel barriers to confine the electrons in the

nanowire. Figure 3.4 shows four potential profiles Vext(x) (see Eq. (3.4)) along

the channel for different applied VGS and VDS for the considered system. No

doping is present (Vdop(x) = 0) and the gate influence spans the whole nanowire

(VG(0 ≤ x ≤ L) = VG). The Schottky barrier height ΦSB is highlighted in

the graphs with a two-way arrow and the electrochemical potential in the metal

contacts is located 0.5 eV above their (artificial) band minima EMBS(min) and

EMBD(min).

In the simulations, Coulomb diamonds emerge in the current–voltage character-

istics, as shown in the black areas of Fig. 3.5. In these regions, the drain current

ID reduces to almost zero by Coulomb blockade and the channel is occupied by an

integer number of electrons Ne . Along the VDS ' 0 axis, drain current can flow

where the electron number within the channel fluctuates between Ne and Ne + 1,

that is, in the regions between the vertices of consecutive diamonds. By varying

the gate–source voltage VGS along this axis, Coulomb oscillations in the drain

current or in the conductance such as those in Fig. 3.7 can be observed. The

simulations correctly resemble the features that are observed in experiments [90,

91, 92, 93], which shows that the MCSCG method is able to capture few-electron

charging effects in those situations where they play an important role.

A comparison between the current–voltage characteristics and the electron

number, as shown in Figs. 3.5 and 3.6, reveals that ID is not a smoothly changing

function of the voltages, but presents plateaus with the shape of diamonds, whose

low-left to up-right diagonals are aligned and approximately coincide with the

contour lines where Ne takes an integer number (depicted in Fig. 3.6 by numbered

black lines). These boundaries define diagonal “strips” where the current increases

in steps for a fixed non-integer Ne between integer values. In comparison, a

pure mean-field approach to the Coulomb interaction produces no plateaus, but

smooth variations in the current with the voltage [46]. Figure 3.6 reveals that

for fixed VDS, the effect of increasing VGS is to increase the electron number in

the nanowire channel. As VGS gets larger, a lower VDS is required to maintain the

same ID in the device. This is clearly shown in Fig. 3.5, where the regions with

equal drain current tend to approach the VDS = 0 axis as VGS is increased. This
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Figure 3.5.: Absolute value of the drain current |ID| (nA).

Figure 3.6.: Electron number Ne .
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Figure 3.7.: Conductance oscillations GDS/G0 for VDS = 5 mV, where G0 = 2e2/h is the
conductance quantum, and electron number Ne . Note that current flows for non-integer
Ne , corresponding to the regions between Coulomb diamonds.

is to be expected, since for fixed VDS the drain current increases with the number

of electric carriers Ne involved in the transport, a quantity that gets larger with

higher VGS. Indeed, the effect of the gate is to vary the number of electrons that

pass through the channel and therefore to change ID.

Figure 3.8 shows the local density of states (LDOS) for an empty channel

(Ne = 0), corresponding to the case VDS = 0 and VGS = 0. Sharp energy

resonances can be seen, which correspond to resonantly trapped states.

Additionally, we have selected two non-equilibrium voltage points to analyze

their natural orbital decomposition. Table 3.2 contains the relevant information

describing these two situations, which we term as point X and point Y. Both

Point X Point Y

VGS (V) 0.48 0.79

VDS (V) 0.38 0.31

ID (nA) 42.09 57.85

Ne 0.33 3.13

Nocc 0 2

Nrel 8 6

Table 3.2.: Characteristics of two selected voltage points.
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Figure 3.8.: LDOS (1/eV) in logarithmic scale for an empty channel.

points are characterized by having an appreciable drain current, whereas their

electron numbers are quite different. As was shown in Sec. 3.3.4, the natural

orbitals correspond to the columns of the unitary transformation matrix Υ that

diagonalizes the density matrix ρ1. We present plots of the highest occupied

natural orbitals, together with their occupation numbers ξi and associated drain

currents ID, for point X in Fig. 3.9 and for point Y in Fig. 3.10. In these figures,

the modulus squared of the even-numbered natural orbital wave functions cor-

responding to spin up (dashed red lines), spin down (dotted blue lines) and the

total sum of these (solid black lines) are displayed. The odd-numbered natural

orbitals are identical to the even-numbered, except for the fact that the wave

functions for both spins are swapped, leaving the total unchanged, so they are

not displayed.

Point X features 8 relevant natural orbitals which correspond to the four first

panels in Fig. 3.9 with highest occupation number. The two lower panels corre-

spond to the 4 following non-relevant natural orbitals, which describe electrons

strongly coupled to the contacts, as is clear by the probability density distribution
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being only appreciable in the extremes of the channel. These states are associ-

ated with a negative current but since their occupation number is very low, they

do not affect the total current in a sensible way. Figure 3.11 shows the electron

density for point X.

Point Y features 2 fully occupied natural orbitals (ξ0 ∼ ξ1 ∼ 1) which do not

contribute to the current, contrarily to the next 6 relevant natural orbitals, as

can be seen in Fig. 3.10. The probability densities are very similar to those of

point X, only they are indexed in a different order. The natural orbitals with the

highest contribution to the current are the same in both cases (0 and 1 for point

X, 4 and 5 for point Y). Figure 3.12 shows the electron density for point Y.

We extend the analysis of the occupation number and current of each natural

orbital to the whole VGS–VDS voltage plane. The natural orbitals are ordered

by decreasing occupation number, not by identifying their wave functions, which

may swap between voltage points. We can see by comparing Fig. 3.13a with

Fig. 3.6 that the first two natural orbitals (0 and 1) have nonzero occupation

number in the voltage regions where the electron number is Ne < 1 and present a

significant increase in occupation number in the diagonal strip with 1 < Ne < 2.

They become fully occupied roughly for those voltages where the electron number

Ne > 2. This is reasonable, since each natural orbital can be occupied by an

electron or a fraction of an electron and the first two natural orbitals are the

first to be populated. This can be better understood by analyzing the occupation

number of the natural orbitals in the Coulomb diamonds. The “zeroth” diamond

corresponds to Ne = 0 and we see that here the natural orbitals 0 and 1 are

completely empty. The electronic state is characterized by the state |00〉. The

first diamond corresponds to Ne = 1 and the electronic state is given by a mixture

of the equally probable two configurations |10〉 and |01〉. The natural orbitals 0

and 1 are relevant and their occupation number takes a value around 0.5 in this

diamond. From the second diamond on, they are fully occupied.

The same observation applies to Fig. 3.14a, where the occupation number of

the two following natural orbitals (2 and 3) gradually increases with increasing

electron number. In the voltage regions with 3 < Ne < 4 the change is larger

and for Ne > 4 they become fully occupied. The electronic state in the third

Coulomb diamond is a mixture of |1110〉 and |1101〉. The occupation number of

these natural orbitals takes a value of 0.5 in this diamond, in analogy with the
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Figure 3.9.: Plots of the highest occupied natural orbitals with their occupation numbers
ξ and associated drain currents ID (nA) for point X. Spin up: dashed red lines. Spin
down: dotted blue lines. Total: solid black lines.
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Figure 3.10.: Plots of the highest occupied natural orbitals with their occupation num-
bers ξ and associated drain currents ID (nA) for point Y. Spin up: dashed red lines. Spin
down: dotted blue lines. Total: solid black lines.
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Figure 3.11.: Electron density for point X.

Figure 3.12.: Electron density for point Y.
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first two natural orbitals and the first diamond. From the fourth diamond on,

they are fully occupied. An analogous analysis applies to the natural orbitals 4

and 5 as shown in Fig. 3.15a.

Figure 3.13b shows the contribution of the first two natural orbitals (0 and 1)

to the drain current, to be compared to their occupation number as shown in

Fig. 3.13a. It is clear that the current takes nonzero values only in those voltage

regions with Ne < 1, while it drops to zero outside these areas, where Ne > 1

and these natural orbitals begin to be largely populated. Fully occupied natural

orbitals do not contribute to the total current. The same observations can be

made of Figs. 3.14 and 3.15.
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(a) Occupation number for natural orbitals 0 and 1

(b) Drain current ID (nA) for natural orbitals 0 and 1

Figure 3.13.: Occupation number and drain current of natural orbitals 0 and 1 on the
VGS–VDS plane.
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(a) Occupation number for natural orbitals 2 and 3

(b) Drain current ID (nA) for natural orbitals 2 and 3

Figure 3.14.: Occupation number and drain current of natural orbitals 2 and 3 on the
VGS–VDS plane.
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(a) Occupation number for natural orbitals 4 and 5

(b) Drain current ID (nA) for natural orbitals 4 and 5

Figure 3.15.: Occupation number and drain current of natural orbitals 4 and 5 on the
VGS–VDS plane.



4. Numerical determination of the
non-equilibrium many-body
statistical operator

4.1. Introduction

Various authors [94, 95, 96, 97] have considered the general mathematical con-

struction of a non-equilibrium many-body statistical operator of interacting elec-

trons for given external constraints or bias conditions. In this Chapter, we present

an adaptive numerical approach to determine a reduced non-equilibrium many-

body statistical operator ρ̂rel for quasi-isolated electronic states within the channel

of a realistic NWFET system [98, 99, 100].

The underlying physical model assumes the knowledge of the (self-consistent)

single-particle density matrix [79] ρ1 of the whole channel system for the given

gate and bias voltage condition, resulting from a non-equilibrium Green’s function

(NEGF) calculation for the NWFET for a given set of applied voltages (see

Sec. 3.3.4). In turn, the single-particle Hilbert space of the whole channel system

is divided into a small, adaptively chosen relevant subspace and an orthogonal rest,

following the idea of the MCSCG approach, from which a relevant Fock subspace

is constructed (see Sec. 3.4.1). From the given matrix ρ1, a reduced many-body

statistical operator ρ̂rel within the relevant subspace can be constructed. Here,

the given matrix elements of ρ1 impose constraints on ρ̂rel. In comparison, the

approach described in Ref. [95] is based on direct constraints on single-particle

observables (such as the electronic current), whereas the approach described in

this Chapter is based on a general ρ1 with an adaptive relevant Fock subspace.

In general, the Fock subspace operator ρ̂rel is not uniquely defined by the con-

straint of a given single-particle density matrix ρ1. Further physical assumptions

55
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are therefore required. We assume that the eigenvalues wN of ρ̂rel are of a gener-

alized grand-canonical Boltzmann form (to maximize entropy), parametrized by a

set of effective electrochemical potentials and an effective temperature. Further-

more, for the assumed many-body eigenbasis of ρ̂rel, two alternatives are consid-

ered: (A) Slater determinants of relevant natural orbitals and (B) the eigenbasis

of the projected many-body Hamiltonian within the relevant subspace. In order

to determine an optimum ρ̂rel that satisfies the given constraints on ρ1 numeri-

cally, a genetic algorithm is employed that searches for the optimum solution that

minimizes a suitably defined deviation measure.

From the determined ρ̂rel, one can calculate expectation values for any observ-

able of the system. As an example, we describe the onset of formation of Wigner

molecules by means of the electron density (a single-particle observable obtain-

able simply by means of ρ1) and the density-density covariance (a many-body

observable which can only be obtained by means of ρ̂rel).

The original implementation of the MCSCG algorithm (see Chapter 3) makes

use of a ρ̂rel expressed as a mixture of relevant Slater determinants of natural

orbitals, as in case A above (see Sec. 3.4.2). NWFET-Lab, a new augmented

version of the original implementation, has the possibility to choose between

cases A and B, so it is able to alternatively employ a ρ̂rel expressed as a mixture of

eigenstates of the projected many-body Hamiltonian within the relevant subspace.

For more details on NWFET-Lab see Appendix A.

4.2. Preliminary theoretical considerations

4.2.1. Relevant Fock space revisited

Following the lines of thought of Sec. 3.4.1, to make calculations of realistic

nanowire devices numerically feasible, instead of considering the full Fock space,

we restrict ourselves to a relevant subspace Frel. We still maintain the classi-

fication of single-particle states into relevant and non-relevant and construct a

many-body basis Brel of Frel with Slater determinants |DK〉 accordingly, so that

to each |DK〉 ∈ Brel corresponds a different combination of the bits (0 or 1) of

the Nrel relevant natural orbitals. So again we have dim(Frel) = 2Nrel .

Nevertheless, we introduce a difference here. The natural orbitals whose av-

erage occupation numbers are close to unity (ξi ' 1) can be treated in two
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Frel = { |11000000〉, |11100000〉, |11010000〉, |11110000〉,
|11001000〉, |11101000〉, |11011000〉, |11111000〉 }

Table 4.1.: An example of many-body relevant basis Brel.

alternative ways: (i) they may be treated as being fully occupied (bit set to 1 for

Nocc bits) in every |DK〉 and thus being incorporated statically within the many-

body Fock subspace, or (ii) they may be set as empty (bit set to 0) in every

|DK〉 and being incorporated in a mean-field way (in the single-particle part of

the Hamiltonian), which is the approach followed in Sec. 3.4.1. The rest of the

natural orbitals (i.e., those which are empty with ξi ' 0 or which are fluctu-

ating but being strongly coupled to the contacts) are kept empty (bit set to 0

for Nrest bits) in every |DK〉 and being incorporated in a mean-field way (in the

single-particle part of the Hamiltonian).

Thus, when fixing the occupied states in all Slater determinants, |DK〉 is com-

posed of Nocc to Nocc + Nrel electrons, whereas if using a mean-field description

for these single-particle states |DK〉 is composed of 0 to Nrel electrons. This can

be found in a modified version of coul.c [101].

As an example, we show the relevant many-body basis Brel of the relevant Fock

subspace Frel in Table 4.1 with Nmax = 8, Nocc = 2 and Nrel = 3, implying that

its dimension is dim(Frel) = 23 = 8.

In the special situation where Nrel = 0, all single-particle states are either

empty or occupied and the state of the system is described by a single Slater

determinant. On the other hand, whenever Nrel > 0 this is no longer the case.

The many-body state cannot then be described by just a single Slater determinant

and therefore we construct Brel which serves as a basis in order to express it.

4.2.2. Mean-field interaction revisited

As presented in the previous Sec. 4.2.1, we have the choice to treat the fully

occupied single-particle states in a many-body way, by fixing their corresponding

bits to one in every |DK〉, or set them to zero and treat them in a mean-field

way. We consider optionally also the possibility of treating the non-relevant rest

of single-particle states with a mean-field approach or not at all.

As in Sec. 3.4.3, the Coulomb self-energy given by Eq. (3.16) is used for
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the mean-field description of Coulomb interaction, with a single-particle density

matrix ρ̂1vac for the vacuum state within the relevant Fock subspace Frel. ρ̂1vac

can be obtained from its diagonal form ρdiag
1vaci j = δi jξ

vac
i by ρ1vac = Υρdiag

1vacΥ†,

where Υ is the unitary transformation that diagonalizes the single-particle density

matrix ρ1. We have now two options for the terms ξvaci corresponding to non-

relevant single-particle states, either to consider mean-field interaction and set

them to their actual values ξvaci = ξi or not to consider mean-field interaction

and set their values to zero ξvaci = 0. As before, all relevant single-particle states

have an average occupation number ξvaci = 0 (vacuum state within Frel).

4.2.3. Change to natural orbital basis

Since Frel is constructed in terms of Slater determinants of a subset of natu-

ral orbitals, the best would be to get the matrix elements and Coulomb tensor

elements in the natural orbital basis, whose transformation is given by Υ, the

unitary matrix that diagonalizes ρ̂1. Also, this is done because in case we want

to truncate the calculations using this basis, the impact on the results would be

smaller than in the case of the localized orbital basis (it would be equivalent to

cut the nanowire).

The creation and annihilation operators ĉ†i and ĉi (with hat) in the spin/site

basis are related to those in the natural orbital basis c†i and ci (without hat) as

follows [42]

ĉ†i =

Nmax−1∑
k=0

Υ∗ikc
†
k , ĉi =

Nmax−1∑
k=0

Υikck . (4.1)

From these expressions we can verify that the single-particle matrix given by

Eq. (3.5b) and the two-particle tensor given by Eq. (3.6b) of the Hamiltonian

transform as follows

h′i j + Σr ′
eei j

[ρ1vac] =

Nmax−1∑
p,q=0

Υ∗ipΥjq(hpq + Σr
eepq [ρ1vac]) (4.2a)

V ′i jkl =

Nmax−1∑
p,q,r,s=0

Υ∗ipΥ∗jqΥkrΥlsVpqrs . (4.2b)

See implementation in coul.c [101].
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4.2.4. Projected many-body Hamiltonian

The projected many-body Hamiltonian Ĥrel within the relevant Fock subspace Frel

is obtained from Ĥ (see Sec. 3.3.3) via projection to the relevant Fock subspace

Frel. It has dimensions dim(Frel)×dim(Frel). For every pair of Slater determinants

of natural orbitals |DI〉 , |DJ〉 ∈ Brel we obtain the matrix element 〈DI | Ĥrel |DJ〉
as follows

〈DI | (Ĥ0 + Ĥext
ee ) |DJ〉 =

Nmax−1∑
i ,j=0

(h′i j + Σr ′
eei j

[ρ̂1vac]) 〈DI | c†i cj |DJ〉 (4.3a)

〈DI | Ĥee |DJ〉 =

Nmax−1∑
i ,j,k,l=0

V ′i jkl 〈DI | c
†
i c
†
j ckcl |DJ〉 (4.3b)

where the elements of the matrix h′i j , the Coulomb self-energy Σr ′
eei j

[ρ̂1vac] and

the Coulomb tensor V ′i jkl in the natural orbital basis are already known.

Two kinds of operator products need to be evaluated: single-particle terms

〈DI | c†i cj |DJ〉 and two-particle terms 〈DI | c†i c
†
j ckcl |DJ〉. These terms are eval-

uated according to the Fermionic anti-commutation rules [42] obeyed by the

creation and annihilation operators for the natural orbital basis states c†i and ci ,

as given by Eqs. (2.2). The action of these operators is as described in Eqs. (2.1).

See implementation in functions twoop and fourop from coul.c [101].

4.2.5. Diagonalization of the projected many-body
Hamiltonian

Once the matrix representation of Ĥrel has been obtained it can be diagonal-

ized, yielding dim(Frel) eigenstates |ψN〉 and eigenenergies EN that satisfy the

eigenvalue equation

Ĥrel |ψN〉 = EN |ψN〉 . (4.4)

Every energy eigenstate expressed in the basis {|DK〉} of Frel has the form

|ψN〉 =

dim(Frel)−1∑
K=0

ΛKN |DK〉 (4.5)

where ΛKN = 〈DK |ψN〉, which defines a unitary transformation matrix Λ that

diagonalizes the projected many-body Hamiltonian matrix: Λ†HrelΛ = Hdiag
rel .
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In order to check the validity of the method so far, we can compare the

many-body eigenenergies EN(1) corresponding to a particle number Ne = 1

with the single-particle eigenenergies resulting from diagonalizing the Nrel × Nrel

sub-matrix of the single-particle Hamiltonian H0 expressed in the natural or-

bital basis. They should coincide. We can also compare the energy differences

EM1 (N + 1) − EM2 (N), corresponding to Ne = N + 1 and Ne = N respectively,

with the resonances in the LDOS obtained with the MCSCG method [82].

Another way of verifying the results is to treat in mean-field the non-relevant

fixed occupied and empty single-particle states but setting their respective ξvac
i

to 1 and 0, not to their actual values. Forcing this situation is equivalent to

consider no mean-field and setting these states fixed in the Slater determinants.

The eigenvector components of Ĥrel given by Λ should coincide in both situations

and the energies should just be shifted by a constant amount.

4.3. Many-body statistical operator

4.3.1. On the statistical preparation of the system

The statistical preparation of the relevant subsystem is given by the reduced

many-body statistical operator

ρ̂rel =

dim(Frel)−1∑
N=0

wN |ρN〉 〈ρN | . (4.6)

It is Hermitian and satisfies Tr(ρ̂rel) =
∑
N

wN = 1, with wN ∈ [0, 1]. The eigen-

value wN can be interpreted as the probability associated with the eigenstate

|ρN〉. The eigenvectors of ρ̂rel can be expressed in terms of the basis of Slater

determinants of natural orbitals via the unitary transformation X as follows

|ρJ〉 =

dim(Frel)−1∑
K=0

XKJ |DK〉 (4.7)

whose components read as XKJ = 〈DK | ρJ〉.
There is no beforehand prescription on how to determine ρ̂rel. It should de-

scribe in the best of the possible ways our state of knowledge about the physical

situation, without drawing any conclusions not warranted by the available data.
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In this sense the probability distribution given by ρ̂rel which is most conservative

is the one that is as smooth and spread out as possible, subject to the available

information of the system, since then no special cases or states are over or under

estimated without motivation. This measure of amount of uncertainty is given by

the entropy. In order to determine ρ̂rel, we require that its probability distribution

maximizes the entropy subject to certain constraints. This determines the func-

tional form of the eigenvalues wN of ρ̂rel, known as grand canonical or Boltzmann

form. Entropy maximization is covered in Sec. 4.4.

So far, no assumption has been made about the eigenvectors |ρN〉 that form
the orthonormal eigenbasis of ρ̂rel within the relevant Fock subspace Frel. In the

following, we consider two cases: (A) the Slater determinant basis of natural

orbitals and (B) the eigenbasis of Ĥrel within the relevant subspace. One has

to note that for a stationary relevant subsystem, where the time evolution of

ρ̂rel is assumed to be driven solely by the projected Ĥrel, both operators need

to commute, leading to the basis choice (case B) where |ρN〉 are chosen as

eigenstates of Ĥrel.

4.3.2. Single-particle density matrix constraint

The constraint that ρ̂rel must satisfy is given by the following expression

ρ1i j
!

= Tr(ρ̂relc
†
j ci) (∀i , j ∈ relevant) (4.8)

which links ρ̂rel with the given ρ1 within the Nrel dimensional subspace of rele-

vant natural orbitals. It results from the fact that the expectation value of any

single-particle observable Â =
Nmax−1∑
i ,j=0

ai jc
†
i cj can be obtained in the following two

equivalent ways

〈
Â
〉

= Tr(ρ̂relÂ) =

Nmax−1∑
i ,j=0

ai jTr(ρ̂relc
†
i cj) (4.9)

〈
Â
〉

= Tr(ρ1a) =

Nmax−1∑
i ,j=0

ai jρ1j i . (4.10)

Within the relevant single-particle subspace (Nrel dimensional), equation (4.8)

provides a set of Nrel × Nrel complex conditions. Noting that both sides of the
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equation are Hermitian, we can see that the number of unique real constraints is

reduced to Nrel × Nrel.

Since we are using the natural orbital basis in which the given ρ1 is diagonal with

eigenvalues ξi and according to the expression of ρ̂rel determined by Eq. (4.6),

the constraints imposed by Eq. (4.8) can be rewritten as

ξiδi j
!

=
∑
n

wn 〈ρn| c†j ci |ρn〉 (∀i , j ∈ relevant). (4.11)

Here, the indices i and j are restricted to the relevant subspace in the natural

orbital basis.

One has to note that the diagonal constraints (i = j) are equivalent to con-

strained average particle numbers 〈n̂i 〉 for the corresponding natural orbitals. For

the following subsections, we denote the resulting coefficients as

Ni(|ρN〉) ≡ 〈ρN | c†i ci |ρN〉 = 〈ρN | n̂i |ρN〉 (4.12)

so that this subset of ρ1-diagonal constraints read as

ξi
!

=
∑
N

wNNi(|ρN〉) (∀i ∈ relevant). (4.13)

It can be shown that Eqs. (4.8) are restricted to the subset of relevant single-

particle states, so the number of relevant constraints is Nrel × Nrel instead of

Nmax × Nmax. This follows from the analysis of the quantity 〈DK′ | c†j ci |DK〉,
which appears in Eqs. (4.11) once we express |ρN〉 in terms of the basis of Slater

determinants of natural orbitals via the unitary transformation X (see Eq. (4.7)).

If any of the indices i or j correspond to any of the Nrest unoccupied single-

particle states of |DK〉 or |DK′〉 then 〈DK′ | c†j ci |DK〉 = 0, ∀ K,K′. Therefore

〈ρN | c†j ci |ρN〉 = 0, ∀ N and Eqs. (4.11) reduce to ξiδi j = 0. These are not a set

of constraints for w. If i = j they imply ξi = 0, which is what we assumed for

the non-relevant almost empty natural orbitals. If i 6= j they are trivial equalities

0 = 0. Similarly, if any of the indices i or j correspond to any of the Nocc

occupied single-particle states of |DK〉 or |DK′〉 then 〈DK′ | c†j ci |DK〉 = δi jδKK′ .

Therefore 〈ρN | c†j ci |ρN〉 = δi j
∑
K

X∗KNXKN = δi j , ∀ N and Eqs. (4.11) reduce to

ξiδi j = δi j
∑
N

wN = δi j . These are not a set of constraints for w. If i = j they

imply ξi = 1, which is what we assumed for the non-relevant almost occupied
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natural orbitals. If i 6= j they are trivial equalities 0 = 0.

4.3.3. Average energy constraint

Assuming the average energy 〈E〉 of the system, or equivalently the tempera-

ture T , is a well-defined constant quantity, there exists a relation between the

statistical operator ρ̂rel and 〈E〉, namely

〈E〉 = Tr(ρ̂relĤrel) =
∑
N

wN 〈ρN | Ĥrel |ρN〉 =
∑
N

wNεN (4.14)

where we have defined

εN ≡ 〈ρN | Ĥrel |ρN〉 . (4.15)

This constraint is taken into account by fixing the temperature, which appears in

the grand canonical form of wN .

4.3.4. Case A: Slater determinant basis of natural orbitals

In this case, the statistical operator corresponds to a mixture of Slater determi-

nants of relevant natural orbitals, that is {|ρN〉} = {|DN〉}. This is the same

situation as described in Sec. 3.4.2. Thus, we obtain

ρ̂rel =

dim(Frel)−1∑
N=0

wN |DN〉 〈DN | . (4.16)

In this case X = I and its matrix representation is diagonal in the Slater deter-

minant basis of natural orbitals {|DN〉}. The off-diagonal constraints given by

Eqs. (4.11) vanish. The remaining equations for the diagonal terms, Eqs. (4.13),

read as

ξi
!

=

dim(Frel)−1∑
N=0

wNNi(|DN〉) (∀i ∈ relevant), (4.17)

where we defined Ni(|DN〉) ≡ 〈Dn| n̂i |Dn〉 as the occupation number of the rele-

vant natural orbital i for the Slater determinant |Dn〉. The energies in Eq. (4.15)

associated with each eigenvector |Dn〉 of ρ̂rel are given by the diagonal elements

of Hrel and read as εN = 〈DN | Ĥrel |DN〉 = HrelNN . Both quantities, Ni(|DN〉) and

εN are required in Eqs. (4.28) and (4.29) below.
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One has to note that the vector w of eigenvalues of ρ̂rel with dim(Frel) =

2Nrel components has to satisfy a set of Nrel conditions given by Eqs. (4.17),

so the number of unknowns is greater than the number of constraints and the

problem is under-determined in general, thus requiring further assumptions about

the function form of wN , such as a Boltzmann form (see Sec. 4.4).

4.3.5. Case B: eigenbasis of the projected many-body
Hamiltonian

In this case, we assume a stationary state of a relevant subsystem that is solely

driven by the projected Ĥrel. Thus, we have [ρ̂rel, Ĥrel] = 0 and, consequently,

we choose {|ρN〉} to be identical to the orthonormal eigenbasis {|ψN〉} of the

projected Ĥrel. Hence, we obtain

ρ̂rel =

dim(Frel)−1∑
N=0

wN |ψN〉 〈ψN | (4.18)

which in the Slater determinant basis of natural orbitals {|DN〉} reads as

ρrelKK′ = 〈DK | ρ̂rel |DK′〉 =

dim(Frel)−1∑
N=0

wNΛ∗K′NΛKN (4.19)

since in this case X = Λ. The ρ1 constraints have the form

ξiδi j
!

=

dim(Frel)−1∑
N=0

wN 〈ψN | c†j ci |ψN〉

=

dim(Frel)−1∑
N=0

wN

dim(Frel)−1∑
K,K′=0

Λ∗K′NΛKN 〈DK′ | c†j ci |DK〉 (4.20)

∀ i , j ∈ relevant. For the diagonal coefficients of Eq. (4.12) we have

Ni(|ψN〉) = 〈ψN | n̂i |ψN〉 =

dim(Frel)−1∑
K=0

|ΛKN |2Ni(|DK〉) . (4.21)

The energies EN associated with each eigenvector |ψN〉 of ρ̂rel are given by the

eigenvalues of Hrel, that is, εN = EN here. Both Ni(|ψN〉) and εN are required in

Eqs. (4.28) and (4.29) below.
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The vector w of eigenvalues of ρ̂rel with dim(Frel) = 2Nrel components has

to satisfy a set of Nrel × Nrel conditions given by Eqs. (4.20). If Nrel = 3, the

number of constraints is larger than the number of unknowns and the problem is

over-determined. If Nrel = 2 or 4, the number of constraints coincides with the

number of unknowns. For Nrel > 4 the relation 2Nrel > N2
rel holds, the problem is

under-determined, thus requiring further assumptions about the function form of

wn, such as a Boltzmann form (see Sec. 4.4).

A way to check the consistency of the method is to artificially set Hrel to a

diagonal form by forcing ΛIJ = δIJ , which makes case B identical with case A and

so should yield the same results.

4.4. Maximum entropy

4.4.1. Entropy maximization with Lagrange multipliers

The chosen ansatz of a grand canonical form for the eigenvalues wN of ρ̂rel results

from the assumption of maximum entropy under a number of constraints. This

means they must be such that the von Neumann entropy (within the relevant

subspace)

S = −kBTr(ρ̂rel ln ρ̂rel) = −kB
dim(Frel)−1∑

N=0

wN lnwN (4.22)

is maximized. kB is Boltzmann’s constant and S has units J/K. Alternatively

we can express S in bit units. A bit is defined as kB ln 2 and S/(kB ln 2) =

−
∑
N

wN log2 wN is the expression of the entropy in bits.

The entropy maximization subject to several constraints can be performed by

the use of Lagrange multipliers. The constraints are given by the normalization

condition, the average energy given by Eq. (4.14) and the average particle number

(in natural orbitals) given by Eqs. (4.13). The respective Lagrange multipliers are

α, β and the set of Nrel multipliers γi . We require that the Lagrangian function

L = S − (α− kB)

dim(Frel)−1∑
N=0

wN − 1

− β
dim(Frel)−1∑

N=0

εNwN − 〈E〉

−
−
Nrel−1∑
i=0

γi

dim(Frel)−1∑
N=0

Ni(|ρN〉)wN − ξi

 (4.23)
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is maximized, which in essence is equal to maximizing the entropy S, since the

Lagrange multipliers multiply null expressions if the constraints are satisfied.

By requiring ∂L
∂wN

= 0 we arrive at the following relation that gives the weights

once all the Lagrange multipliers are known

wN = exp

(
−

1

kB

(
α+ βεN +

Nrel−1∑
i=0

γiNi(|ρN〉)

))
. (4.24)

From this form for the weights and the normalization constraint we get an ex-

pression which determines the Lagrange multiplier α once β and γ are known

α = kB ln(Z (β, γ)) (4.25)

where we have defined the so called partition function

Z(β, γ) =

dim(Frel)−1∑
N=0

exp

(
−

1

kB

(
βεN +

Nrel−1∑
i=0

γiNi(|ρN〉)

))
. (4.26)

The meaning of the Lagrange multipliers β and γi is as usual in thermodynam-

ics [102], namely

β =
1

T
, γi = −βµi = −

µi
T

(4.27)

where T is the temperature and µi is the electrochemical potential associated

with the single particle state i . Note that if the electrochemical potentials are

different, the system is in non-equilibrium.

With these results at hand, the form of the statistical weights as functions of

the temperature T and the chemical potentials µi reads as

wN =
1

Z(T, µ)
exp

(
−

1

kBT

(
εN −

Nrel−1∑
i=0

µiNi(|ρN〉)

))
(4.28)

with the following expression for the partition function

Z(T, µ) =

dim(Frel)−1∑
N=0

exp

(
−

1

kBT

(
εN −

Nrel−1∑
i=0

µiNi(|ρN〉)

))
. (4.29)
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4.4.2. Infinite temperature limit

We consider here the limit in which the electrons behave like independent particles,

the maximum entropy infinite temperature limit. The consequence of making this

limit is that the form of the weights is modified. Analyzing the quantities that

appear in their exponents we have

lim
T→∞

(
εn
kBT

)
= 0 , lim

T→∞

(
µi
kBT

)
= µ′i (4.30)

resulting in an expression for the weights

wN =
1

Z(µ′)
exp

 N ′µ∑
i=1

µ′iNi(|DN〉)

 (4.31)

with the partition function

Z(µ′) =
∑
n

exp

 N ′µ∑
i=1

µ′iNi(|DN〉)

 . (4.32)

Considering this, the present calculation of the newly defined Lagrange parameters

µ′ is analogous to the one in section 4.4. Only in this case the form of the weights

is different, the quantities εn being absent.

Furthermore, in the limit of independent particles the weights have the following

analytical form,

wn =

Nmax∏
i=1

ξ
Ni (|DN〉)
i (1− ξi)1−Ni (|DN〉) (4.33)

where ξi ∈ [0, 1] is the average occupation number of fluctuating single-particle

state i (eigenvalue i of ρ1) and Ni(|DN〉) ∈ {0, 1} is the particle number in Slater

determinant |DN〉 in state i . Its implementation can be found in [81]. We expect

these solutions to reflect some of the characteristics of the Slater determinants.

It is possible to prove [103] that Eq. (4.33) implies the form of the weights

given by Eq. (4.31). For this task we first write the weights as

wN =

Nmax∏
i=1

ui(Ni(|DN〉)) , ui(mi) ≡ Ki exp(µ′imi) (4.34)
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where the expression for ui is motivated by Eq. (4.31). Then we can show that

Ki and µ′i exist which are independent of mi and only dependent on ξi . Let us

study the two possible cases

mi = 0 ⇒ ui(mi) = Ki ≡ 1− ξi (4.35a)

mi = 1 ⇒ ui(mi) = Ki exp(µ′i) ≡ ξi (4.35b)

from where we get a form for Ki and µ′i

Ki = 1− ξi , µ′i = ln

(
ξi

1− ξi

)
. (4.36)

As one can see Ki and µ′i exist and are independent of mi and only depend on ξi .

To obtain an expression for Z we compare both forms for wn given by Eq. (4.31)

and Eq. (4.34)

wN =
1

Z

Nmax∏
i=1

ui(Ni(|DN〉))

Ki
=

Nmax∏
i=1

ui(Ni(|DN〉)) ⇒ Z =
1

Nmax∏
i=1

(1− ξi)
. (4.37)

These results prove the validity of the analytical expression Eq. (4.33) for the

weights in the case of independent particles. One can check this by substituting

the formulas for Z and µ′i in Eq. (4.31) to arrive at Eq. (4.33).

As an alternative to the derivation of the form for µ′i we consider the case of

independent particles (Fermions) with the Fermi-Dirac occupation probability

ξi = f (Ei) =
1

exp
(
Ei−µi
kBT

)
+ 1

. (4.38)

In the limit kBT →∞ Eqs. (4.30) hold. We have then

ξi =
1

exp(−µ′i) + 1
⇒ µ′i = ln

(
ξi

1− ξi

)
(4.39)

and we arrive at the same form for µ′i .
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4.5. Numerical determination of the weights

In order to find a solution for the vector w of 2Nrel eigenvalues of ρ̂rel, the Nrel

electrochemical potentials µi must be adjusted in such a way that the resulting w

satisfies the ρ1 constraints. The partition function ensures normalization and the

condition that T is given is equivalent to fix the average energy of the system.

One has to note that under non-equilibrium conditions (due to an applied voltage

VDS between the source and drain contacts at the outer ends of the channel), the

effective electrochemical potentials µi become independent quantities in general.

Since the problem is under-determined in general, it is possible that more than

a single solution exists. On the other hand, there might exist no exact solution

for the constraints at all for the assumed functional form of wN and eigenbasis of

ρ̂rel. In the latter case, one has to search for an optimum set of µi that minimizes

a measure of deviation from the constraint condition.

In Sec. 4.5.1 it is shown that in case A, the Newton-Raphson method is capable

of obtaining solutions that fulfill condition (4.13) numerically. Nevertheless, the

method cannot be applied to case B, where the number of constraints Nrel×Nrel

is larger than the number Nrel of electrochemical potentials in general.

So for case B, as well as for case A if desired, a single-objective genetic al-

gorithm [104] (GA) optimization method is used in the following. Its goal is to

minimize an objective function given by the absolute value of the deviation from

exact constraint satisfaction with the µi as optimization variables. There are

several benefits in using a GA: It operates in parallel with a population of can-

didate solutions, instead of just a single one. It always yields a solution which

improves after every iteration, in contrast to other methods that simply do not

give a solution if convergence is not achieved. It can leave local optimum points

in the search space behind, even if the objective function is not smooth. We

have chosen to implement the GA using the multi-crossover formula described in

Ref. [105]. For an overview about GAs, see Appendix B.

4.5.1. Newton-Raphson method

To obtain expressions for the chemical potentials we substitute the weights in the

form given by Eq. (4.28) in each of the constraints. By virtue of the normalization
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constraint, we can write the constraints given by Eqs. (4.13) as

dim(Frel)−1∑
N=0

(Ni(|ρN〉)− ξi)wN = 0 . (4.40)

Then substituting wN we arrive at the following Nrel relations

Fk(µ) =

dim(Frel)−1∑
N=0

(Nk(|ρN〉)− ξk)E(µ) = 0 (4.41)

where we define

E(µ) ≡ exp

(
−

1

kBT

(
εN −

Nrel−1∑
i=0

µiNi(|ρN〉)

))
. (4.42)

This set of equations relate the chemical potentials µi and depend only on the

known quantities ξi , T , εN and Ni(|ρN〉). The zeros or roots of Eqs. (4.41) are

the chemical potentials we are looking for. We make use of the multidimensional

Newton-Raphson method for this task. This method starts by assigning initial

values to µi . At each iteration they are updated µi → µi + δµi by addition of a

correction δµi such that

Nrel−1∑
i=0

∂Fk(µ)

∂µi
δµi = −Fk(µ) , k = 0, 1, . . . , Nrel − 1 (4.43)

where from Eqs. (4.41) we have

∂Fk(µ)

∂µi
=

1

kBT

dim(Frel)−1∑
N=0

Ni(|ρN〉)(Nk(|ρN〉)− ξk)E(µ) . (4.44)

These equations can be written in matrix form as

Jδµ = −F → δµ = −J−1F (4.45)
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where J is a Nrel × Nrel square matrix known as Jacobian with the following

structure

J =


∂F0

∂µ0
· · · ∂F0

∂µNrel−1

...
...

∂FNrel−1

∂µ0
· · · ∂FNrel−1

∂µNrel−1

 . (4.46)

With the new vector µ+δµ we update the relations F , obtain a new Jacobian and

repeat the algorithm until convergence is achieved. Convergence criterion is given

by the magnitude of the corrections δµi being smaller than a given threshold.

4.5.2. Optimization by genetic algorithm

As we have seen, the free optimization variables to be adjusted in order to obtain

the eigenvalues w of ρ̂rel are the chemical potentials µi . Assuming VDS > 0 they

are restricted to the interval −e VDS ≤ µi ≤ 0. If VDS < 0 we have 0 ≤ µi ≤
−e VDS. We employ a GA as optimization method (see Appendix B for details),

where the chemical potentials are encoded in the genes of the chromosomes of

the GA and there are as many genes in a chromosome as chemical potentials.

The objective function η to be minimized is the averaged sum of the absolute

value of the deviation from the exact constraints satisfaction. It has the following

expression

η =
1

Nrel × Nrel

Nrel−1∑
j≤i=0

∣∣∣∣∣∣
2Nrel−1∑
N=0

wN 〈ρN | c†j ci |ρN〉 − δi jξi

∣∣∣∣∣∣ . (4.47)

4.6. Expectation values

Once the relevant statistical operator ρ̂rel has been calculated, the expectation or

average value of any observable Â can be obtained, as follows

〈
Â
〉

= Tr
(
ρ̂relÂ

)
=

dim(Frel)−1∑
N=0

wN 〈ρN | Â |ρN〉 . (4.48)

A mixture of states as given by ρ̂rel adds an additional statistical averaging. The

expectation value, like the trace of a matrix, is independent of the representation.

So the same results are expected to be obtained in any many-body orthonormal
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basis. Nevertheless,
〈
Â
〉
is dependent on the actual expression of ρ̂rel as given

by its eigenbasis and weights. So beforehand we might expect differences in the

calculated expectation values depending on the case under consideration, cases

A and B.

We analyze these two cases for a general physical observable Â. The following

equations describe how to obtain
〈
Â
〉

〈
Â
〉

=

dim(Frel)−1∑
N=0

wN 〈DN | Â |DN〉 (4.49a)

〈
Â
〉

=

dim(Frel)−1∑
N=0

wN 〈ψN | Â |ψN〉 =

dim(Frel)−1∑
N=0

wN

dim(Frel)−1∑
I,J=0

Λ∗INΛJN 〈DI | Â |DJ〉

(4.49b)

in case A and B respectively. As these two expressions show, the work-flow to

calculate the expectation value of an observable is as follows: compute the matrix

elements of the observable in the Slater determinant basis of natural orbitals,

then for case B transform to the eigenbasis of Ĥrel according to the unitary

transformation Λ. Finally sum all weighted contributions. So we only need one

many-body quantum mechanical calculation for each matrix element and the rest

are just matrix multiplications. We obtain ultimately the matrix elements in the

Slater determinant basis of natural orbitals since we assume Â to be expressed in

terms of creation and annihilation operators acting on natural orbitals. If this is

not the case they have to be transformed to the natural orbital basis.

4.7. Electron density and covariance

4.7.1. Physical meaning

The electron number at spin/site i is given by the expectation value of the number

operator 〈n̂i 〉 =
〈
ĉ†i ĉi

〉
in the localized single-particle basis. It describes the

number of electrons that are located in each site with spin up or down. Here and

in the following we omit the spin index, which is assumed to be absorbed into a

collective spin/site index. Each electron inside the NWFET channel occupies in

general more than one site, its wave function is spread along the nanowire and so

is the electron density. Note that the expectation value of the electron number
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operator may be non-integer in general.

The density–density covariance is defined as

σi j ≡ 〈(n̂i − 〈n̂i 〉) (n̂j − 〈n̂j 〉)〉 = 〈n̂i n̂j〉 − 〈n̂i 〉 〈n̂j〉 (4.50)

and describes the reciprocal linear relationship between the electron densities at

two spin/sites i and j of the nanowire channel. Whenever the probability for both

densities to have deviations from the mean value which are both positive or both

negative (they “vary together”) is relatively high, the covariance takes a positive

value. On the other hand, the covariance is negative if the probability that one

deviation is positive and the other negative (they “vary oppositely”), is relatively

high. The covariance is constrained within the following limits

− σiσj ≤ σi j ≤ σiσj (4.51)

where σi ≡
√
σi i is the square root of the variance or standard deviation. It

can attain one of these limits only in the case that n̂i and n̂j satisfy a linear

relationship.

It can be seen that the density–density covariance is symmetric (σi j = σj i) by

noting that

n̂i n̂j = ĉ†i ĉi ĉ
†
j ĉj = δi j ĉ

†
i ĉj − ĉ

†
i ĉ
†
j ĉi ĉj = δi j ĉ

†
i ĉj − ĉ

†
j ĉ
†
i ĉj ĉi =

= δi j ĉ
†
i ĉj − δi j ĉ

†
j ĉi + ĉ†j ĉj ĉ

†
i ĉi = n̂j n̂i (4.52)

and we can verify that the diagonal elements, which can be identified with the

variance, have the form

σi i = 〈n̂i 〉 − 〈n̂i 〉2 (4.53)

by realizing that the number operator is idempotent

n̂i n̂i = ĉ†i ĉi ĉ
†
i ĉi = ĉ†i ĉi − ĉ

†
i ĉ
†
i ĉi ĉi = n̂i (4.54)

where we have used the fact that ĉ†i ĉ
†
i = ĉi ĉi = 0 by the Fermionic anti-

commutation relations.

Linear independence of n̂i and n̂j implies σi j = 0. On the other hand, the

density–density covariance may be zero even if there is an interdependence of a
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nonlinear kind between these quantities. Moreover, the covariance depends on

the units of measurement. For this reason, the correlation is defined as

κi j ≡
〈(

n̂i − 〈n̂i 〉
σi

)(
n̂j − 〈n̂j〉
σj

)〉
=

σi j
σiσj

. (4.55)

This measure of interdependence does not change with a rescaling of the variables

and its limits are

− 1 ≤ κi j ≤ 1 . (4.56)

4.7.2. Case A: diagonal elements

In case A we need only the diagonal elements of the observables, as Eq. (4.49a)

shows. It is possible to transform the general expressions of the diagonal elements

into specific and simplified forms which link the quantities together.

The electron density is defined in the localized single-particle basis. Since

the Slater determinants express many-body states of natural orbitals we have to

transform n̂i to the natural orbital basis by means of Eqs. (4.1). Doing so leads

to the following expression

〈DN | n̂i |DN〉 = 〈DN | c̃†i c̃i |DN〉 =
∑
jk

Υ∗i jΥik 〈DN | c†j ck |DN〉︸ ︷︷ ︸
Nk (|DN〉)δjk

=

=
∑
k

|Υik |2 Nk(|DN〉) (4.57)

and so the electron density reads

〈n̂i 〉 =
∑
N

wN
∑
k

|Υik |2 Nk(|DN〉) . (4.58)

More cumbersome is the calculation of the density–density covariance. Accord-

ing to Eq. (4.50), the expectation value of the product of number operators at

two spin/sites 〈n̂i n̂j〉 has to be computed. Its normal-ordered form, with all cre-

ation operators at the left and annihilation operators at the right, can be obtained

by anti-commutation as follows

n̂i n̂j = ĉ†i ĉi ĉ
†
j ĉj = ĉ†i ĉ

†
j ĉj ĉi + δi j ĉ

†
i ĉi (4.59)
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from which we deduce that

〈DN | n̂i n̂j |DN〉 = δi j 〈DN | n̂i |DN〉+ 〈DN | ĉ†i ĉ
†
j ĉj ĉi |DN〉 . (4.60)

We focus on the non-diagonal term and transform it into the natural orbital basis

to obtain

〈DN | ĉ†i ĉ
†
j ĉj ĉi |DN〉 =

∑
p,q,r,s

Υ∗ipΥ∗jqΥjrΥis 〈DN | c†pc†qcrcs |DN〉 . (4.61)

Since it is evaluated with respect to the same Slater determinant, the term be-

tween brackets is nonzero only if p = s and q = r or if p = r and q = s, so the

only strings of operators that have to be considered are c†pc
†
qcqcp = −c†pc†qcpcq

and c†pc
†
qcpcq.

4.7.3. Case B: full matrix

Case B according to Eq. (4.49b), makes use of all the matrix elements of n̂i and

n̂i n̂j in the Slater determinant basis and not only the diagonal. Their form is

more general and we give it here, noting that once obtained it is straightforward

to translate from the Slater determinant basis to the basis of the projected many-

body Hamiltonian Ĥrel. Transforming the operators to the natural orbital basis,

the electron density matrix elements in the Slater determinant basis of natural

orbitals read as

〈DM | n̂i |DN〉 = 〈DM | ĉ†i ĉi |DN〉 =
∑
j,k

Υ∗i jΥik 〈DM | c†j ck |DN〉 (4.62)

and we can verify that 〈DN | n̂i |DM〉∗ = 〈DM | n̂i |DN〉. The remaining term to

obtain the covariance reads as

〈DM | n̂i n̂j |DN〉 = δi j 〈DM | n̂i |DN〉+
∑
p,q,r,s

Υ∗ipΥ∗jqΥjrΥis 〈DM | c†pc†qcrcs |DN〉 .

(4.63)
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4.8. Results: onset of formation of Wigner
molecules

As a result of the method to obtain the relevant many-body statistical operator

of the NWFET, we calculate the density–density correlation κi j for successive

steps in the transition between two different regimes of the electrons inside the

nanowire channel. These two regimes are termed “atomic” and “Wigner” regimes

and are characterized both by the ratio of Coulomb to single-particle energies per

electron (γE = ECoul/∆E) and channel length to screening length (γL = L/λ).

In the Wigner regime, the Coulomb energy is relatively greater than the single-

particle energy (γE � 1) and the screening length is small enough (γL � 1) to

favor the spatial separation of the electrons in the nanowire, forming so-called

Wigner molecules. This localization is lacking in the atomic regime, where the

Coulomb energy is not large enough. Additionally, we present graphs of the

electron density and the natural orbitals. Both cases A and B for the choice of

eigenbasis of the statistical operator are studied, case B being specially interesting

since it introduces a variation with respect to the original MCSCG method, which

employs case A.

4.8.1. Energy estimations

Obtaining the energy ratio γE implies knowledge of the Coulomb and single-

particle energies for a system of electrons in a nanowire channel, which cannot be

supplied before the simulation is performed. Therefore, we employ auxiliary energy

expressions, which have a simple analytical form and depend straightforwardly on

the parameters of the system, to estimate the actual energies.

The difference ∆E between the first two energy levels resulting from considering

the nanowire as a 1D infinite potential well is taken as an estimation of the single-

particle energy, which reads as [106]

∆E =
3

8

N2
e h

2

m∗L2
(4.64)

where Le = L/Ne and Ne is the number of electrons in the channel. The single-

electron Coulomb charging energy as given by its classical expression ECoul =

e2/Cox serves as an estimation for the Coulomb energy per electron, where Cox
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is the capacitance per electron for a coaxially gated NWFET and reads as [46]

Cox =
πε0εchd

2
chLe

4λ2
(4.65)

and the screening length λ is given by Eq. (1.1). Substituting the capacitance in

the expression of the energy we get

ECoul =
4Nee

2λ2

πε0εchd
2
chL

. (4.66)

For a given nanowire channel and insulator material composition, the γE and

γL ratios are determined by the length L and diameter dch of the channel, the

oxide thickness dox and the electron number Ne , as these estimations show. Nev-

ertheless, to study the transition from atomic to Wigner regimes, we choose Ne ,

dch and the ratios γE and γL as free variables, determining from them the pa-

rameters L, λ and dox by means of scaling equations. Forming the ratio γE with

the quantities given by Eqs. (4.64) and (4.66) it is straightforward to express the

nanowire channel length as

L =

(
3π2

32
NeaBd

2
chγEγ

2
L

) 1
3

(4.67)

where the Bohr radius is defined as

aB =
4πε0εchh̄

2

m∗e2
. (4.68)

Once the nanowire length is determined, the screening length is obtained simply

as

λ =
L

γL
(4.69)

which can be used to determine the oxide thickness from Eq. (1.1) as

dox =
dch

2

(
exp

(
8
εox

εch

(
λ

dch

)2
)
− 1

)
. (4.70)

Note that dox increases exponentially with λ2, so one must be careful with the

choice of parameters so that the produced oxide thickness is kept within realistic

limits.
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γE Nsites L(nm) dox(nm)

0.5 34 11.05 0.926

1 42 13.65 1.717

1.5 49 15.925 2.577

3 61 19.825 5.836

5 73 23.725 12.467

10 92 29.9 50.299

Table 4.2.: Parameters of the simulated systems.

4.8.2. System parameters and approach

We have chosen the following device parameters common to both regimes. The

channel consists of a ZnO nanowire of diameter dch = 3 nm and lattice constant

a0 = 3.25 Å, electron effective mass m∗/me = 0.29 and a relative dielectric con-

stant εch = 8.66, as found in Ref. [85]. The channel and the gate are separated

by a SiO2 oxide layer of relative dielectric constant εox = 3.9. The source and

drain are contacted with a metal (Pt for example) to form Schottky barriers [24]

of height ΦSB = 0.7 eV, which act as double tunnel barriers to confine the elec-

trons in the nanowire. The temperature of the system is T = 4.2 K. Table 4.2

gathers the parameters particular to each simulation.

The choice of ZnO as nanowire material is motivated by its relatively large

effective mass, which makes possible to select a relatively high γE corresponding

to a relatively short L. Even if the lattice constant a0 is not very large, the

number Nsites = L/a0 of localized orbitals (sites) can be kept low enough, so that

the calculation time and memory are within reasonable limits.

The ratio of nanowire length L to screening length λ has been selected as

γL = 10 for all the cases we have studied. In this way, λ is small enough to guar-

antee Wigner molecule formation, provided the ratio γE of estimated Coulomb

to single-particle energy is large enough. The transition from one regime to the

other has been performed by varying γE only, for six different values. This quan-

tity determines L by application of Eq. (4.67), which in turn determines λ by

Eq. (4.69) and as a result dox by Eq. (4.70). We have selected a voltage point

with VDS = 0 and VGS = 0.15 V , which corresponds to the center of the second

Coulomb diamond, an equilibrium situation with the channel occupied by Ne = 2

electrons. The Coulomb diamond’s scale and location depend on the parameters
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of the system, therefore in principle one should adjust VGS (with chosen VDS = 0)

in such a way that the voltage point belongs to the diamond in all the studied

simulations. Nevertheless, the chosen value of VGS corresponds in all cases to the

second diamond.

4.8.3. Resulting statistical operator

The statistical operator with eigenbasis of Slater determinants of natural orbitals

(case A), has the form of a pure state ρ̂rel = |D3〉 〈D3| in five of the six performed

simulations. Only the case with γE = 3 deviates from a pure state, with ρ̂rel =

w3 |D3〉 〈D3|+w12 |D12〉 〈D12| being a mixture of the states |D3〉 = |110000 · · · 〉
and |D12〉 = |001100 · · · 〉, with weights w3 = 5.276 × 10−1 and w12 = 4.724 ×
10−1.

The statistical operator whose eigenbasis is chosen to be that of the eigenvec-

tors of the projected many-body Hamiltonian (case B), has in all simulations the

form of a pure state ρ̂rel = |ψ〉 〈ψ| corresponding to a single many-body state

|ψ〉. Table 4.3 displays the components | 〈DK |ψ〉 |2 of the many-body state |ψ〉
in the basis of Slater determinants of natural orbitals for the six studied cases.

Most of the components follow a similar pattern. There is a single component

with a value very near unity, corresponding to the same Slater determinant as

in case A, while the remaining are relatively small. Therefore, the many-body

state of the system for these simulations in case B, is almost a single Slater

determinant. This indicates that employing an eigenbasis of Slater determinants

of natural orbitals (case A) in these situations is a good choice of representation.

On the other hand, the results corresponding to γE = 3 deviate from this pattern,

since the highest valued component is not so near unity. Nevertheless, for this

simulation there is a resemblance between cases B and A, in the sense that the

highest components in case B correspond to the same Slater determinants in case

A.

4.8.4. Natural orbitals

We have carefully chosen the thresholds that determine the classification of nat-

ural orbitals into occupied, fluctuating and empty, in such a way that the Fock

subspace dimension is not drastically reduced. Even if the contribution of those
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γE = 0.5 γE = 1

|DK〉 | 〈DK |ψ〉 |2 |DK〉 | 〈DK |ψ〉 |2

|1100000000〉 9.901087× 10−1 |1100000000〉 9.287014× 10−1

|0000001100〉 9.881239× 10−3 |0000001100〉 7.040752× 10−2

|0000000011〉 8.651753× 10−6 |0000000011〉 4.487365× 10−4

γE = 1.5 |0100000010〉 3.075678× 10−4

|DK〉 | 〈DK |ψ〉 |2 |1000000001〉 1.321041× 10−4

|1100000000〉 8.351109× 10−1 |1000000010〉 1.842873× 10−6

|0000001100〉 1.446486× 10−1 γE = 3

|0000000011〉 8.474243× 10−3 |DK〉 | 〈DK |ψ〉 |2

|0100000010〉 5.877250× 10−3 |1100000000〉 7.319653× 10−1

|1000000001〉 5.877197× 10−3 |0011000000〉 2.232429× 10−1

|0000000110〉 3.323030× 10−6 |0100000010〉 1.503594× 10−2

|0000001010〉 2.881298× 10−6 |1000000001〉 1.501137× 10−2

|0000001001〉 2.873206× 10−6 |0000000011〉 1.461581× 10−2

|0000000101〉 2.470142× 10−6 |0010000001〉 6.859462× 10−5

γE = 5 |0001000010〉 5.973664× 10−5

|DK〉 | 〈DK |ψ〉 |2 γE = 10

|1100000000〉 9.884781× 10−1 |DK〉 | 〈DK |ψ〉 |2

|0000001100〉 1.120697× 10−2 |1100000000〉 9.856718× 10−1

|1000000100〉 2.797392× 10−4 |0000001100〉 1.350063× 10−2

|0100001000〉 3.521542× 10−5 |0100001000〉 3.964802× 10−4

|0000000110〉 3.498175× 10−4

|0000001010〉 6.034784× 10−5

|0100000010〉 1.953227× 10−5

|1000001000〉 1.159658× 10−6

Table 4.3.: Components | 〈DK |ψ〉 |2 > 10−6 of the many-body state |ψ〉 that charac-
terizes the system for the six simulations in case B. Relevant natural orbitals are shown
in boldface.
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natural orbitals with very low occupation number is small, we preferred to include

them so that the impact of the reduction of the Fock space is minimized within

some limits.

In all the simulations the number of relevant natural orbitals is 6, so the Fock

subspace dimension is 64. Figure 4.1 gathers them for case B. The first two (in-

dices 0 and 1) have the highest occupation number (ξi ∼ 1) and are of the highest

relevance in determining the general features of the observables, as compared to

the following four, with very small occupation numbers. This can be verified by

comparing their shape (one peak or two peaks) with that of the electron density,

as shown in Fig. 4.2.

Note that there is an index gap in all six situations. The missing natural orbitals

correspond to fluctuating states but strongly coupled to the contacts, thus not

being considered as relevant. For example, for γE = 10 these missing states have

indices 2,3,4 and 5.

4.8.5. Total electron density

Figure 4.2 displays the total electron density for the system in equilibrium and

the channel occupied by Ne = 2 electrons, as γE is increased. Examining the

tendency of the density to develop two peaks from a single one, the transition

from atomic to Wigner regime can be seen. Indeed, the two electrons in the

channel separate as a consequence of the increased Coulomb interaction and a

Wigner molecule emerges.

In any simulation, the densities corresponding to spin up and down are equal to

each other, so they are not shown separately. Specifically in the Wigner regime,

the two-peaked density associated with spin up coincides with that with spin down,

spin symmetry is preserved. This is in accordance to Pauli’s exclusion principle but

may be counterintuitive, since one might expect both electrons to have definite

and opposed spins, whereas there is no spin separation.

Note that if we had chosen to plot the densities against the absolute position x

and not against the relative position x/L, the areas below the curves would have

been the same and equal to the electron number. Cases A and B produce the

same density profiles and therefore only case B is shown.
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Figure 4.1.: The six relevant natural orbitals for all case B simulations (varying γE).
Here we make the identification of Υn(x) with Υxn, the unitary matrix that diagonalizes
ρ1, where the column n corresponds to the nth natural orbital and the row to site x .
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Figure 4.2.: Transition from “atomic” to “Wigner” regimes, as displayed by the total
electron density for Ne = 2 and increasing Coulomb to single-particle energy ratio γE .
As Coulomb repulsion gets larger, the electrons separate in two different peaks.

4.8.6. Density–density correlation

The transition from atomic to Wigner regime is also revealed in the density–

density correlation κi j , as defined by Eq. (4.55). This quantity is calculated for

all possible spin values: κ↑↑, κ↑↓, κ↓↓ and κ↓↑. Since there is no physical reason for

spin symmetry to be broken (no applied magnetic field, for example), the following

identities hold: κ↓↓ = κ↑↑ and κ↓↑ = κ↑↓, as numerically verified. Therefore, only

κ↑↓ and κ↑↑ are considered here.

Figure 4.3 shows the κ↑↓ correlation of the six simulations for case A. The

first two graphs (γE = 0.5 and 1) indicate that in the atomic regime, where

there is no visible charge separation, the correlation between electron densities

for spin up and spin down is almost zero. At the onset of the Wigner regime

(γE = 1.5, 3, 5 and 10), κ↑↓ < 0 takes appreciable negative values around the

areas corresponding to the two density peaks. Two simultaneous measurements of

the density with opposite spins around the same peaks are negatively correlated,

meaning that the deviations of the measured density from its mean value for

opposite spins have opposite signs. There is a relatively high probability that one

increases while the other decreases. There is no significant κ↑↓ correlation in case
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A outside these regions.

A comparison between the κ↑↓ correlation as displayed in Fig. 4.3 for case A

and Fig. 4.4 for case B, clearly shows that case B is able to capture more features

and differences exist between the two cases. Most noticeable is the appearance

of regions with positive correlation. In the atomic regime (γE = 0.5 and 1),

these regions correspond to sites positioned in different halves of the nanowire

channel. For two simultaneous density measurements of opposite spin, positive

correlation implies a relatively high probability of either an increase or a decrease

with respect to the mean value in both observables. For sites located in the

same half of the channel the correlation is negative. As γE increases, the shape

of the correlation changes continually, from a “quadrupole-like” to a “dipole-like”

geometry, where the negative areas concentrate around two peaks and the positive

areas get smaller.

Figure 4.5 shows the κ↑↑ correlations for case A. The diagonal elements are

omitted, since their value is unity and they are not relevant. In this case, κ↑↑ is

significantly nonzero in all simulations. As the Wigner regime sets on, there is a

transition from a single area with negative correlation to two separated localized

regions. Outside these areas κ↑↑ ∼ 0 is not appreciable. Except for the simula-

tions corresponding to γE = 0.5 and 1, a comparison with Fig. 4.3 shows that

κ↑↑ ∝ κ↑↓ for case A.

Figure 4.6 shows the κ↑↑ correlations for case B. The first two graphs (γE =

0.5 and 1) corresponding to the atomic regime, coincide with those for case A.

The following two graphs (γE = 1.5 and 3) feature four rounded regions in a

square arrangement with negative correlation. Finally, the κ↑↑ correlation for

γE = 5 and 10 coincides with the κ↑↓ correlation (both for case B).



4.8. Results: onset of formation of Wigner molecules 85

Figure 4.3.: Case A: κ↑↓ correlation from “atomic” to “Wigner” regimes.
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Figure 4.4.: Case B: κ↑↓ correlation from “atomic” to “Wigner” regimes.
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Figure 4.5.: Case A: κ↑↑ correlation from “atomic” to “Wigner” regimes.
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Figure 4.6.: Case B: κ↑↑ correlation from “atomic” to “Wigner” regimes.



5. Correlation entropy

5.1. Introduction

As an application of the method for numerically determining the non-equilibrium

many-body statistical operator described in Chapter 4 and as an interesting topic

in itself, we study in the following Sections the issue of quantifying the correlation

of interacting electrons in the channel of a NWFET. A Fock space state that

cannot be written as a Slater determinant with respect to any single-particle

basis is called a “correlated” many-body state. Note that a Slater determinant

with respect to a given basis may be written in terms of a superposition of multiple

Slater determinants with respect to a different single-particle basis. Therefore,

more than one Slater determinant in an expansion does not imply that the state

is correlated.

The topic of correlation in many-electron systems for the case where the prepa-

ration of the system is given by a pure state has been studied by several authors.

It has been shown [107, 108, 109, 110] that the single-particle-reduced entropy

S1 as given by the single-particle density matrix [79] ρ1 can be interpreted as a

measure of correlation for such pure states. If the preparation of the system is

given by a mixture of states, S1 also depends on the degree of mixture [111, 112]

and so this quantity is no longer suitable as a measure of correlation alone.

Several relative measures of correlation have been reported [113, 114], that

quantify correlation of a many-electron state by comparing it to that of an un-

correlated state. In this Chapter, for a system whose preparation is described by

a given many-body statistical operator (see Chapter 4), we consider a modified

correlation entropy ∆S ≡ S̃ − S [111, 100] as a measure of correlation, which

is the difference between two entropies. Here, S is the von Neumann entropy as

calculated from the statistical operator ρ̂rel of the system, providing a measure

of mixture. S̃ is the von Neumann entropy as calculated from a statistical op-

89
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erator ρ̃rel that resembles ρ̂rel optimally, but whose eigenbasis consists of Slater

determinants built from an optimized single-particle orthonormal basis, obtained

in such a way that S̃ is minimized.

In Sec. 5.2, an overview on the single-particle-reduced entropy is given and in

Sec. 5.3 the von Neumann entropy is described, before the modified correlation

entropy is introduced in Sec. 5.4. In the following sections the determination

of the modified correlation entropy is addressed, to end up with some results

illustrating its features in Sec. 5.9.

5.2. Single-particle-reduced entropy

The single-particle-reduced entropy (in bit) is defined as [108, 111]

S1 ≡ −Tr(ρ1 log2 ρ1) (5.1)

where ρ1 is the single-particle density matrix [79] of the system. In quantum

chemistry, S1 is referred to as the correlation entropy [108, 110] for pure many-

body states. Expanded in terms of the natural orbital basis, S1 can be written

as S1 = −
∑
i

ξi log2 ξi , where ξi denote the eigenvalues of ρ1. In general, S1

indicates the deviation from a single Slater determinant of the preparation of

the system, due to correlation, mixture or both. For the case of a single Slater

determinant, ρ1 would have only eigenvalues 0 and 1, therefore S1 = 0 in this

case. Note that we interpret 0 log2 0 = 0. As considered in previous chapters as

case A, the NWFET channel is described by a mixture of a few relevant Slater

determinants of natural orbitals with detailed Coulomb interaction and a non-

relevant rest which is treated on a mean-field level. Then, S1 measures the

degree of mixture of the system’s preparation. This feature provides additional

information about the many-body state of the channel beyond its current–voltage

characteristics.

We have simulated electronic transport in the Coulomb blockade regime by

means of the MCSCG approach [112] for case A (chosen eigenbasis of relevant

Slater determinants of natural orbitals for the statistical operator, see Sec. 4.3.4)

and the same system as in Sec. 3.7, with Schottky barriers of height ΦSB =

0.2 eV with respect to the Fermi energy of the contacts. Figure 5.1 shows

the simulated characteristics which clearly exhibit a correspodence between the
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Point Ne Shell (VGS, VDS) S1 Slater dets. wN

A: Empty channel 0 Empty (0.034, 0) 0.074 |000000〉 1

B: 1st Diamond 1 Open (0.15, 0) 1.07
|100000〉 0.502

|010000〉 0.498

C: Non-equilibrium state (0.23, 0.026) 0.908
|100000〉 0.363

|010000〉 0.361

|110000〉 0.276

D: 2nd Diamond 2 Closed (0.285, 0) 0.079 |110000〉 1

E: 3rd Diamond 3 Open (0.405, 0) 1.102
|110000〉 0.024

|111000〉 0.489

|110100〉 0.487

Table 5.1.: Data from selected points in the diagrams. The table shows the electron
number Ne , shell filling, voltage coordinates (VGS, VDS), single-particle-reduced entropy
S1, the dominant Slater determinants and their associated weights {wN}.

Coulomb diamonds in the current–voltage characteristics and certain diamond-like

shaped structures in the entropy diagram.

Table 5.1 gathers information obtained by means of the MCSCG formalism,

corresponding to different voltage points in Fig. 5.1. Point A is associated with

an empty channel (Ne = 0), whose state is given by the vacuum state with

unity weight. S1 ' 0 in this case, indicating that the degree of mixture of the

preparation is minimum.

Point B corresponds to the first diamond (Ne = 1). Here, the single electron

in the channel has the chance to occupy one of the two states in the first single-

particle energy level: with spin up or with spin down (open shell configuration).

This is reflected in the two Slater determinants with almost equal weights w1 '
w2 ' 0.5 that describe the state of the system. S1 ' 1 and therefore the degree

of mixture is higher than in the empty channel case.

A non-equilibrium state is described in point C by three Slater determinants

with similar weights w1 ' w2 ' w3 ' 0.3. This situation shows that it is equally

probable in this state to find an electron in the first single-particle energy level

with spin up or down, or two electrons with both spin directions.

Point D corresponds to the second diamond (Ne = 2). Each electron occupies

the first single-particle energy level with spin up and down respectively. Therefore,

there is only one Slater determinant to describe this situation and so its weight is

unity. S1 ' 0 as in the case of an empty channel. Again, the degree of mixture
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(a) Absolute value of the drain current |ID| (nA).

(b) Single-particle-reduced entropy S1 (bit).

Figure 5.1.: Simulated current–voltage characteristics (a) and single-particle-reduced
entropy (b).
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Figure 5.2.: Electron number Ne and single-particle-reduced entropy S1 (bit) as a func-
tion of VGS for fixed VDS = 0.

is minimum.

Finally, point E shows the case of the third diamond (Ne = 3), very similar

to that of the first diamond. Here, two electrons occupy the first single-particle

energy level, and a third one has both possibilities of spin occupation in the second

single-particle energy level. Although there is a small contribution from a doubly

occupied Slater determinant, the last two determinants are the main contributors

(w1 ' 0, w2 ' w3 ' 0.5). The fact that S1 is slightly higher than one reflects

that the first determinant also plays a minor role.

All of the near-equilibrium cases corresponding to Coulomb diamonds that we

have analyzed can be summarized in Fig. 5.2, in which Ne and S1 are plotted

against VGS for fixed VDS = 0. The Ne curve exhibits integer charging steps. On

the other hand, S1 oscillates approximately between zero and one. It can be seen

here that S1 ' 0 for Ne ' 0 and 2, corresponding to an empty channel and the

second Coulomb diamond (closed shell configuration) respectively, described by

only one Slater determinant, as shown in Table 5.1. Whereas S1 ' 1 for Ne '
1 and 3, corresponding to the first and third diamonds (open shell configurations)

with more than one Slater determinant. One has to note that the rest of the

system (outside the relevant Fock subspace) also contributes to S1, leading to

slightly increased values.
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5.3. von Neumann entropy

The many-body statistical operator in its general form reads as

ρ̂rel =

dim(Frel)−1∑
J=0

wJ |ρJ〉 〈ρJ | (5.2)

and its eigenstates |ρJ〉 can be expressed in the many-body basis of Slater de-

terminants of relevant natural orbitals Brel = {|DI〉} of the relevant many-body

Fock subspace Frel through the unitary transformation Λ as

|ρJ〉 =

dim(Frel)−1∑
K=0

ΛKJ |DK〉 . (5.3)

Once ρ̂rel of the system is known, by means of the numerical method described in

Chapter 4 for example, the von Neumann entropy [115] (in bit) can be obtained

as follows

S = −Tr(ρ̂rel log2 ρ̂rel) = −
dim(Frel)−1∑

J=0

wJ log2(wJ) (5.4)

which is a measure of the mixture degree of the system’s preparation. If a state

is pure (only one weight is unity wJ = 1 and the rest are zero wK 6=J = 0) the von

Neumann entropy vanishes, otherwise S > 0.

5.4. Modified correlation entropy

For pure states (S = 0) a measure of correlation is obtained by the single-particle-

reduced entropy S1 [107, 108, 109, 110], which has the disadvantage of depending

also on the mixture degree [111, 112]. In order to avoid this contribution due

to mixture, we consider the so called “modified correlation entropy” [111, 100]

which is defined as

∆S ≡ S̃ − S (5.5)

where S is the von Neumann entropy as a function of ρ̂rel and

S̃ ≡ −Tr(ρ̃rel log2 ρ̃rel) = −
dim(Frel)−1∑

I=0

w̃I log2(w̃I) (5.6)
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is the entropy for a modified many-body statistical operator

ρ̃rel =

dim(Frel)−1∑
I=0

w̃I

∣∣∣D̃I〉〈D̃I∣∣∣ (5.7)

which is diagonal in the many-body orthonormal basis B̃rel =
{∣∣∣D̃I〉} of the

relevant many-body Fock subspace Frel. Here,
∣∣∣D̃I〉 are Slater determinants built

from an optimized single-particle orthonormal basis, chosen in such a way that S̃

is minimized.

The connection between the many-body basis B̃rel and the many-body basis

Brel = {|DI〉} of relevant Slater determinants of natural orbitals, is given by the

Fock-space unitary transformation Λ̃, with dim(Frel) × dim(Frel) = 2Nrel × 2Nrel

components Λ̃JI =
〈
DJ

∣∣∣ D̃I〉 that depend directly on the unitary transformation

U between the optimized single-particle basis and the natural orbital basis. This

implies that ∣∣∣D̃I〉 =

dim(Frel)−1∑
J=0

Λ̃JI |DJ〉 . (5.8)

The projection weights w̃I are defined as

w̃I ≡
〈
P̂I
〉

= Tr
(
ρ̂rel

∣∣∣D̃I〉〈D̃I∣∣∣) =
〈
D̃I

∣∣∣ ρ̂rel

∣∣∣D̃I〉 (5.9)

where the projectors read as P̂I ≡
∣∣∣D̃I〉〈D̃I∣∣∣. The last equation shows that the

projection weights are the diagonal elements of ρ̂rel in the basis B̃rel. Inserting

Parseval’s identity (within the relevant Fock subspace) in the appropriate places,

they can be expressed as

w̃I =
∑
N

wN |ΞIN |2 (5.10)

where ΞIN =
dim(Frel)−1∑

K=0

Λ̃KIΛ
∗
KN and ΛKN = 〈DK | ρN〉. We see that in order

to determine the projection weights we need to obtain the amplitudes Λ̃KI =〈
DK

∣∣∣ D̃I〉 between Slater determinants in both bases Brel and B̃rel, assuming the

unitary transformation Λ is known.
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5.5. Single-particle basis unitary transformation

If we denote c†i and ci (without tilde) as the creation and annihilation operators

in the natural orbital basis and c̃†i and c̃i (with tilde) as those in the optimized

single-particle basis, their relation is given by [42]

c̃†i =

Nmax−1∑
j=0

Uj ic†j (5.11a)

c̃i =

Nmax−1∑
j=0

U∗j icj . (5.11b)

In the case that the relevant natural orbitals are contiguous in index range, without

loss of generality, the unitary transformation U between the optimized single-

particle basis and the natural orbital basis has the following structure

U =


INocc×Nocc 0 0

0 UNrel×Nrel
0

0 0 INrest×Nrest

 (5.12)

and differs from the identity matrix I just for a square block U of dimensions

Nrel × Nrel which operates within the relevant single-particle space.

5.6. Determination of the many-body basis unitary
transformation

Λ̃ is obtained by individually calculating its components Λ̃JI =
〈
DJ

∣∣∣ D̃I〉. It can
be seen that they are nonzero only if the number of occupied states in the left

and right Slater determinants is the same. The number Ωc(Nrel) of nonzero

components Λ̃JI as a function of the relevant states can be obtained with the

following formula

Ωc(Nrel) =

Nrel∑
Ne=0

(
Nrel

Ne

)2

(5.13)

where
(
N
M

)
≡ N!/(M!(N−M)!) and

(
Nrel

Ne

)
counts the number of many-body states

with Ne occupied relevant single-particle states.
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Two equivalent methods to obtain Λ̃ and therefore the projection weights w̃I
are described in the following, together with their respective performances.

5.6.1. Method 1

In the first approach, the Slater determinant
∣∣∣D̃I〉 ∈ B̃rel is expressed in terms

of creation operators in the single-particle optimized basis acting on the vacuum

state. Then these operators are expressed as linear combinations of those in the

natural orbital basis, according to Eq. (5.11a). 〈DJ | is written also in terms of

annihilation operators in the natural orbital basis acting on the vacuum state. As

a result Λ̃JI is obtained as a linear combination of expectation values of strings

of annihilation and creation operators in the natural orbital basis with respect to

the vacuum state. By considering that an annihilation operator acting on the

vacuum state yields zero and by employing the anti-commutation relations valid

for Fermions given by Eqs. (2.2) to move the annihilation operators to the right,

the strings of operators is decomposed, finally producing a sum of products of

Kronecker deltas which select specific combinations of elements of U that can be

expressed as determinants.

As an example, we consider the case of Nrel = 2 relevant single-particle states

and no fixed fully occupied states (Nocc = 0). A many-body basis Brel =

{|00〉 , |10〉 , |01〉 , |11〉} of the relevant Fock-subspace of dimension dim(Frel) = 4

results. This implies that the total number of components Λ̃JI is 16, out of which

Ωc(2) = 6 are nonzero. We obtain them by direct calculation.〈
00
∣∣∣ 0̃0̃
〉

= 〈vac | vac〉 = 1 (5.14a)〈
10
∣∣∣ 1̃0̃
〉

=

1∑
i=0

Ui0 〈vac| c0c
†
i︸︷︷︸

δ0i−c†i c0

|vac〉 = U00 (5.14b)

〈
01
∣∣∣ 1̃0̃
〉

=

1∑
i=0

Ui0 〈vac| c1c
†
i︸︷︷︸

δ1i−c†i c1

|vac〉 = U10 (5.14c)

〈
10
∣∣∣ 0̃1̃
〉

=

1∑
j=0

Uj1 〈vac| c0c
†
j︸︷︷︸

δ0j−c†j c0

|vac〉 = U01 (5.14d)
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〈
01
∣∣∣ 0̃1̃
〉

=

1∑
j=0

Uj1 〈vac| c1c
†
j︸︷︷︸

δ1j−c†j c1

|vac〉 = U11 (5.14e)

〈
11
∣∣∣ 1̃1̃
〉

=

1∑
i ,j=0

Ui0Uj1 〈vac| c0c1c
†
j c
†
i︸ ︷︷ ︸

δ0iδ1j−δ0jδ1i

|vac〉 = U00U11 − U01U10 =

∣∣∣∣∣∣U00 U01

U10 U11

∣∣∣∣∣∣
(5.14f)

The vacuum state is assumed to be the same in both representations. Also note

that the amplitude Λ̃33 (see Eq. (5.14f)) can be expressed as a 2×2 determinant.

The resulting matrix Λ̃ reads as

Λ̃ =


1 0 0 0

0 U00 U01 0

0 U10 U11 0

0 0 0 U00U11 − U01U10

 . (5.15)

The amplitudes corresponding to the cases with Nocc = 0 and Nocc > 0 are

equal, for the same number Nrel of relevant states. This can be seen by realizing

that the creation operator for a fixed fully occupied state i is invariant c̃†i =

c†i , since U is the identity outside the Nrel × Nrel subspace. The corresponding

annihilation operator ci appearing in the expression for the amplitude can be

moved by anti-commutation an even number of times to the right up to the

position of c†i , without generating extra terms. This is because the creation

operators on the right of ci , resulting from the transformation U, have indices

outside the [0, Nocc − 1] interval. Since {ci , c†i } = 1, moving ci one more time

generates a term which does not involve the state i and a term which is zero, since

ci anti-commutes with the rest of the creation operators and can be moved to

the last position, where ci |vac〉 = 0. When this is done for all Nocc annihilation

operators, we see that the amplitude for the case of having Nocc > 0 fix fully

occupied states reduces to that for Nocc = 0.

5.6.2. Method 2

In the second approach the Slater determinant
∣∣∣D̃I〉 ∈ B̃rel is written in terms

of creation operators in the optimized single-particle basis, similarly to the first
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approach. But this time the many-body matrix representations of operators in

the relevant Fock-subspace Frel, as spanned by the basis Brel, are employed. First

the matrix representation of the creation operators c†i in this basis is constructed.

Then using U they are transformed and the matrices associated with the operators

c̃†i are obtained. Finally, these matrices are applied to the vacuum state as ordered

products to produce the components of all Slater determinants
∣∣∣D̃I〉 of single-

particle states belonging to the optimized basis. Each of their components is

directly an amplitude
〈
DJ

∣∣∣ D̃I〉 and therefore an element of the matrix Λ̃.

To illustrate the method, and to compare with the previous results, we consider

again the case of Nrel = 2 relevant states and no fixed fully occupied states

(Nocc = 0). As a result dim(Frel) = 4 and Brel = {|00〉 , |10〉 , |01〉 , |11〉}. Each

Slater determinant is characterized by a different pattern of two bits, which is

the binary representation of its corresponding unique integer index I = 0, 1, 2, 3.

Using this index convention, the matrix elements of the two creation operators

in the natural orbital basis are given by(
c†i

)
IJ

= 〈DI | c†i |DJ〉 (5.16)

where i = 0, 1 and I, J = 0, 1, 2, 3. By direct calculation involving the anti-

commutation relations for Fermions, it can be seen that these are the following

integer 4× 4 matrices

c†0 =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 −1 0

 , c†1 =


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

 . (5.17)

Applying Eq. (5.11a), the operators are related as follows

c̃†0 = U00c
†
0 + U10c

†
1 (5.18a)

c̃†1 = U01c
†
0 + U11c

†
1 (5.18b)
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which in matrix representation read as

c̃†0 =


0 0 0 0

U00 0 0 0

U10 0 0 0

0 U10 −U00 0

 , c̃†1 =


0 0 0 0

U01 0 0 0

U11 0 0 0

0 U11 −U01 0

 .

(5.19)

Finally, in order to obtain the Slater determinants
∣∣∣D̃I〉 in terms of the |DJ〉, the

matrices corresponding to c̃†0 and c̃†1 are applied to the vacuum state |vac〉 =

(1, 0, 0, 0), which is assumed to be the same in both representations. The result-

ing transformed relevant many-body states read as

∣∣∣0̃0̃
〉

= |vac〉 =


1

0

0

0

 = |00〉 (5.20a)

∣∣∣1̃0̃
〉

= c̃†0 |vac〉 =


0

U00

U10

0

 = U00 |10〉+ U10 |01〉 (5.20b)

∣∣∣0̃1̃
〉

= c̃†1 |vac〉 =


0

U01

U11

0

 = U01 |10〉+ U11 |01〉 (5.20c)

∣∣∣1̃1̃
〉

= c̃†1 c̃
†
0 |vac〉 =


0

0

0

U00U11 − U01U10

 = (U00U11 − U01U10) |11〉 (5.20d)

which form an orthonormal basis of the Fock-subspace Frel, as can be seen by
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considering that
〈

0̃0̃
∣∣∣ 0̃0̃
〉

= 〈vac | vac〉 = 1,

〈1̃0̃
∣∣∣ 1̃0̃
〉 〈

1̃0̃
∣∣∣ 0̃1̃
〉

〈
0̃1̃
∣∣∣ 1̃0̃
〉 〈

0̃1̃
∣∣∣ 0̃1̃
〉
 =

 |U00|2 + |U10|2 U∗00U01 + U∗10U11

U∗01U00 + U∗11U10 |U01|2 + |U11|2

 =

= U†U = I

(5.21)

and 〈
1̃1̃
∣∣∣ 1̃1̃
〉

= det(U†U) = det(I) = 1 (5.22)

which follows from the unitary character of the transformation U. Since the

rest of amplitudes involve Slater determinants with different number of occupied

states, they are zero. In agreement with the first method, the matrix Λ̃ reads as

Λ̃ =


1 0 0 0

0 U00 U01 0

0 U10 U11 0

0 0 0 U00U11 − U01U10

 . (5.23)

We can verify again that the amplitudes corresponding to the cases Nocc = 0

and Nocc > 0 are equal, for the same number Nrel of relevant states. We only have

to replace the role of the vacuum state |vac〉 as a reference state by that of the

Slater determinant with all the relevant states empty
∣∣∣∣ Nocc

1 · · · 1
Nrel

0 · · · 0
〉
. Assuming

this Slater determinant is normalized, we have

∣∣∣∣∣ Nocc

1̃ · · · 1̃
Nrel

0̃ · · · 0̃

〉
=


1

0

...

0

 =

∣∣∣∣ Nocc

1 · · · 1
Nrel

0 · · · 0
〉

. (5.24)

5.6.3. Numerical performance of both methods

The performance of both methods is estimated by considering the most com-

plex case where ρ̂ is composed of the maximum number of relevant many-body

states, that is wJ > 0, ∀J = 0, . . . , 2Nrel−1. The number of elemental operations



102 Chapter 5. Correlation entropy

Ωop(Nrel) needed to obtain all the amplitudes for each method is evaluated. Ele-

mental operations are defined as the real products that arise in the lowest level of

computation as a consequence of multiplying the complex elements of U. Note

that the product of two complex numbers involves four products of real numbers.

For the first method the following formula is obtained

Ωop1(Nrel) = 4

Nrel∑
Ne=2

(Ne − 1)Ne!

(
Nrel

Ne

)2

(5.25)

which can be understood by counting as follows

• Number of Slater determinants with Ne occupied relevant single-particle

states:
(
Nrel

Ne

)
• Number of determinants from these Slater determinants:

(
Nrel

Ne

)2

• Number of sums in a Ne × Ne determinant: Ne!

• Number of real products in a single complex term of the sums: 4×(Ne−1)

The formula for the second method has two main contributions and reads as

Ωop2(Nrel) = N2
rel2

2Nrel+1 + 22(Nrel+1)

Nrel∑
Ne=2

Ne

(
Nrel

Ne

)
(5.26)

The first contribution takes into account the number of elemental products in-

volved in the matrix representation calculations as given by Eq. (5.11a). Specifi-

cally we have:

• Number of creation operators c†i in natural orbital basis: Nrel

• Number of products of a complex Ui j and the integer matrix elements of

c†i : 2× 2Nrel × 2Nrel

• Number of creation operators c̃†i in optimized basis: Nrel

The second contribution counts the number of elemental products involved in the

construction of the Slater determinants
∣∣∣D̃I〉 ∈ B̃ once all matrix representations

have been performed. The counting is as follows:

• Number of combinations of Ne matrices of a total of Nrel:
(
Nrel

Ne

)
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Nrel Ωop1 Ωop2 Ωop2/Ωop1

2 8 256 32.00

3 120 3 456 28.80

4 1 344 36 864 27.43

5 14 720 358 400 24.35

6 169 320 3 342 336 19.74

7 2 088 408 30 507 008 14.61

8 27 749 120 274 726 912 9.90

9 396 831 744 2 448 949 248 6.17

10 6 090 196 680 21 642 608 640 3.55

Table 5.2.: Number of elemental operations involved in both methods to obtain Λ̃.

• Number of vector-matrix multiplications: Ne

• Number of real products in one complex vector-matrix multiplication: 4 ×
2Nrel × 2Nrel

The number of elemental operations for both methods are listed in Table 5.2.

Both methods have been compared numerically for verification and provide the

same results.

5.7. Determination of the unitary transformation of
the single-particle basis

The objective of the calculations is to obtain a single-particle basis unitary trans-

formation U such that the projection weights w̃ associated to the Slater deter-

minants of single-particle states belonging to the basis determined by U, yield a

minimum entropy S̃. This is a numerical optimization task, which can be carried

on by a genetic algorithm (GA), an overview of which is given in Appendix B.

Any unitary transformation matrix with N × N elements can be univocally

parametrized by a set of N × N angles, by virtue of the parametrization method

introduced by Murnaghan [116], an overview of which is given in Appendix C.

So in the GA, the optimization variables are chosen as the set of angles that

parametrize univocally U. The objective function to be minimized is chosen to be

S̃, as given by Eq. (5.6) with the projection weights w̃ determined by Eq. (5.10).
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5.8. Identification of a truly correlated state

At first sight, a particular many-body state |ρK〉 of ρ̂rel may appear to deviate

from being a Slater determinant, if it displays several components in the basis

Brel above a threshold of relevance, and not just one with a value close to unity.

Nonetheless, that may not be the case in the basis B̃rel, where this state may have

the character of a Slater determinant, and therefore is actually not a correlated

state.

In order to identify such a situation, we propose to calculate the expectation

value of the number operator ñi = c̃†i c̃i in the optimized single-particle basis, with

respect to each many-body state |ρK〉 of ρ̂rel. We find two alternative ways to

perform this calculation, which produce the same results. First, we can transform

the operators into the natural orbital basis and the state into the basis Brel, to

produce

〈ρK | ñi |ρK〉 =

dim(Frel)−1∑
J,L=0

Λ∗LKΛJK

Nmax−1∑
j,l=0

U∗l i Uj i 〈DL| c
†
j cl |DJ〉 . (5.27)

As a second approach, we choose to express the state in the basis B̃rel, resulting

in the following expression

〈ρK | ñi |ρK〉 =

dim(Frel)−1∑
J,L=0

Λ∗LKΛJK 〈DL| ñi |DJ〉 =

=

dim(Frel)−1∑
J,L=0

Λ∗LKΛJK

dim(Frel)−1∑
P,Q=0

Λ̃∗JP Λ̃LQ

〈
D̃P

∣∣∣ ñi ∣∣∣D̃Q〉 =

=

dim(Frel)−1∑
J,L=0

Λ∗LKΛJK

dim(Frel)−1∑
P=0

Λ̃∗JP Λ̃LP Ñi

(∣∣∣D̃P〉) (5.28)

where Ñi
(∣∣∣D̃P〉) denotes the occupation number (0 or 1) of the single-particle

state i of the optimized basis with respect to the Slater determinant
∣∣∣D̃P〉 ∈ B̃rel.

Furthermore, we propose a suitable measure to check if all the expectation

values 〈ρK | ñi |ρK〉 ≡ ñi [K], for a given K and varying i , are close to zero or

one (Slater determinant) or if the deviate from these extreme values (correlated

state). It reads as S̃1[K] = −
∑
i

ñi [K] log2 ñi [K] and has an equivalent nature as
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Equilibrium Non-equilibrium

VGS (V) 0.15 0.4

VDS (V) 0 0.1

ID (nA) 0 0.167

Ne 2 ∼ 4

Nocc 0 0

Nrel 6 6

Table 5.3.: Characteristics of the equilibrium and non-equilibrium voltage points.

the single-particle-reduced entropy S1 (which is evaluated from the natural orbital

occupation numbers ξi). If all ñi [K] ∈ {0, 1}, a value of S̃1[K] = 0 follows.

5.9. Results

In case A, the statistical operator describes the state of the system as a mixture

of Slater determinants of natural orbitals. As such, the von Neumann entropy

reflects its degree of mixture. We have verified that the modified correlation

entropy ∆S is zero in this case, as expected since a mixture of Slater determinants

presents no correlation.

More interesting is case B, where the statistical operator is expressed in the

eigenbasis of the many-body Hamiltonian projected to the relevant Fock subspace.

We have analyzed two conditions, equilibrium (VDS = 0) and non-equilibrium

(VDS > 0), intermediate between atomic and Wigner regimes, corresponding to

γE = 3 and γL = 10, as specified in Sec. 4.8.2 and Table 4.2. The same system

is chosen for both cases, only varying the voltage points, as Table 5.3 shows.

The equilibrium many-body state results in a pure state (von Neumann entropy

S = 0) due to very low T , as described by the statistical operator ρ̂rel = |ψ〉 〈ψ|,
whose components are given in Table 5.4. A first look at the components indicates

that this state |ψ〉 deviates from a Slater determinant in the basis Brel of Slater

determinants of relevant natural orbitals, since there is not a single component

with a value close to unity and the rest zero. The calculation of the single-particle-

reduced entropy produces S1 = 9.126 × 10−2, whereas the modified correlation

entropy reads as ∆S = 9.760× 10−1.

On the other hand, the non-equilibrium many-body state results in a mixture of
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|DK〉 | 〈DK |ψ〉 |2

|1100000000〉 7.319546× 10−1

|0011000000〉 2.232534× 10−1

|1000000010〉 1.503611× 10−2

|0100000001〉 1.501195× 10−2

|0000000011〉 1.461471× 10−2

|0010000001〉 6.865919× 10−5

|0001000010〉 5.997900× 10−5

Table 5.4.: Pure many-body state components | 〈DK |ψ〉 |2 > 10−6 for equilibrium point.
Relevant natural orbitals are shown in boldface.

four states, as reflected by the statistical operator ρ̂rel =
3∑

N=0

wN |ψN〉 〈ψN |. The

corresponding weights and the components of the eigenstates |ψN〉 are shown in

Table 5.5. One can verify that their components are closer to those corresponding

to a Slater determinant than in the equilibrium case. Nevertheless, this is a mixed

many-body state and this fact is reflected by the von Neumann entropy S = 1.173,

a value significantly larger than zero. Also, the single-particle-reduced entropy

S1 = 1.271, exhibits a higher value as compared to the equilibrium case. Indeed,

S1 accounts not only for correlation but also for mixture degree. In contrast, the

modified correlation entropy ∆S = 1.452× 10−2 is much smaller, resembling the

fact that the eigenstates of the many-body statistical operator are very close to

Slater determinants.

The resulting ∆S for the discussed non-equilibrium case is lower than for the

discussed equilibrium case, even though in the non-equilibrium case the mixture

degree of the system’s preparation is higher than in the equilibrium case. This

stands in agreement with the idea that ∆S is indeed a measure of correlation

alone, independently of the mixture degree, in contrast to S1.

In order to analyze the degree of deviation of the many-body states |ψN〉 of ρ̂rel

from single Slater determinants, the expectation values of the occupation numbers

ñi (corresponding to optimized single-particle states, see Sec. 5.8), are shown for

the equilibrium and non-equilibrium points, in Tables 5.6 and 5.7 respectively.

Inspection of these tables shows that for the equilibrium point, 〈ψ| ñi |ψ〉 deviates
from the extreme values 0 and 1 significantly for all six single-particle states,

indicating that the many-body state deviates from being a Slater determinant.
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w0 = 7.347524× 10−1 w1 = 1.403755× 10−1

|DK〉 | 〈DK |ψ0〉 |2 |DK〉 | 〈DK |ψ1〉 |2

|111100〉 9.836548× 10−1 |111010〉 9.807315× 10−1

|110101〉 1.231713× 10−2 |110011〉 1.253150× 10−2

|111010〉 2.672775× 10−3 |110110〉 2.502412× 10−3

|001111〉 7.726548× 10−4 |111100〉 2.274014× 10−3

|110011〉 2.818157× 10−4 |110101〉 1.678201× 10−3

|100111〉 1.144070× 10−4 |111001〉 1.608453× 10−4

|011011〉 1.064737× 10−4 |101011〉 7.775216× 10−5

|111001〉 4.882806× 10−5 |011011〉 2.301173× 10−5

|101011〉 1.045020× 10−5 |011110〉 1.424845× 10−5

|010111〉 9.505482× 10−6 |101110〉 4.803740× 10−6

|110110〉 5.660192× 10−6 |010111〉 1.086428× 10−6

|011110〉 1.916602× 10−6 w3 = 1.801348× 10−2

|101101〉 1.571994× 10−6 |DK〉 | 〈DK |ψ3〉 |2

|011101〉 1.353062× 10−6 |110011〉 9.695261× 10−1

w2 = 1.068586× 10−1 |111010〉 1.377540× 10−2

|DK〉 | 〈DK |ψ2〉 |2 |111001〉 7.337772× 10−3

|110101〉 9.807050× 10−1 |110110〉 6.102984× 10−3

|111100〉 1.265844× 10−2 |110101〉 2.525311× 10−3

|110011〉 3.235242× 10−3 |111100〉 4.151672× 10−4

|111001〉 2.203150× 10−3 |101101〉 7.754029× 10−5

|111010〉 9.769919× 10−4 |011110〉 7.197020× 10−5

|010111〉 1.178670× 10−4 |101011〉 5.581797× 10−5

|101101〉 7.633732× 10−5 |011011〉 3.832239× 10−5

|110110〉 1.657535× 10−5 |100111〉 2.104038× 10−5

|011101〉 6.856518× 10−6 |001111〉 1.931576× 10−5

|100111〉 2.307765× 10−6 |010111〉 1.462401× 10−5

|011110〉 1.038164× 10−6 |101110〉 1.066728× 10−5

Table 5.5.:Mixed many-body state components | 〈DK |ψJ〉 |2 > 10−6 for non-equilibrium
point.
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On the other hand, for the non-equilibrium point, these values are much closer

to 0 and 1. This shows that these many-body states are much closer to single

Slater determinants. These facts are reflected in the measure S̃1 of deviation

from single Slater determinant (see Sec. 5.8), which has a higher value in the

equilibrium case compared to the non-equilibrium case.
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S̃1 = 1.842036

ñ0 = 2.233573× 10−1

ñ1 = 7.469910× 10−1

ñ2 = 1.883295× 10−2

ñ3 = 7.578098× 10−1

ñ8 = 2.233578× 10−1

ñ9 = 2.965127× 10−2

Table 5.6.: 〈ψ| ñi |ψ〉 and S̃1 for the equilibrium case. Note that for this many-body
state, the quantities ñi are neither near zero nor one, but in between. Therefore the
measure S̃1 is relatively high, and so is the degree of correlation.

S̃1[0] = 3.403052× 10−2 S̃1[1] = 3.670238× 10−2

ñ0[0] = 9.995616× 10−1 ñ0[1] = 9.986425× 10−1

ñ1[0] = 9.991081× 10−1 ñ1[1] = 9.999616× 10−1

ñ2[0] = 1.849549× 10−3 ñ2[1] = 9.980165× 10−1

ñ3[0] = 9.991022× 10−1 ñ3[1] = 9.999206× 10−1

ñ4[0] = 9.990541× 10−1 ñ4[1] = 1.884835× 10−3

ñ5[0] = 1.324423× 10−3 ñ5[1] = 1.574017× 10−3

S̃1[2] = 3.789003× 10−2 S̃1[3] = 1.332848× 10−1

ñ0[2] = 1.431692× 10−3 ñ0[3] = 7.628653× 10−3

ñ1[2] = 9.998741× 10−1 ñ1[3] = 9.998478× 10−1

ñ2[2] = 2.166739× 10−3 ñ2[3] = 9.919029× 10−1

ñ3[2] = 9.999182× 10−1 ñ3[3] = 9.998045× 10−1

ñ4[2] = 9.979671× 10−1 ñ4[3] = 8.206616× 10−3

ñ5[2] = 9.986422× 10−1 ñ5[3] = 9.926095× 10−1

Table 5.7.: ñi [K] = 〈ψK | ñi |ψK〉 and S̃1[K] for the non-equilibrium case. Note that
the values of the different quantities ñi [K] are either very near one or very near zero,
therefore the measure S̃1[K] is quite low for all many-body states |ψK〉. This is indicative
of low correlation.





6. Summary

In this dissertation, the multi-configurational self-consistent Green’s function

method for the simulation of non-equilibrium electronic transport in a nanowire

field-effect transistor has been augmented with new features, resulting in a new

open-source simulation package named NWFET-Lab. This package has been

the basis of the calculations performed in this work.

An adaptive numerical approach to determine a reduced non-equilibrium many-

body statistical operator for quasi-isolated electronic states within the channel of

a realistic nanowire field-effect transistor has been presented. In this approach,

the statistical operator must satisfy a set of constraints related to the single-

particle density matrix, as obtained from a non-equilibrium Green’s function self-

consistent calculation. Furthermore, since the number of constraints is in general

smaller than the number of unknowns, a form for its eigenvalues or weights that

maximizes the entropy has been chosen. As an alternative to the Slater deter-

minants of relevant natural orbitals employed in the original multi-configurational

self-consistent Green’s function implementation, the eigenstates of the projected

many-body Hamiltonian have also been used as eigenbasis of the statistical op-

erator. As an application, the onset of formation of Wigner molecules has been

discussed by means of the calculation of the electronic density–density correlation.

A new numerical determination of the correlation of the system of electrons

within the nanowire channel of the device, for pure as well as for mixed states,

has been presented. In contrast to the single-particle-reduced entropy, this so-

called “modified correlation entropy” accounts for the correlation independently

of the mixture degree of the many-body state, as given by the statistical operator

and measured by the von Neumann entropy. An analysis of these three concepts

of entropy has been performed. We compared an equilibrium pure state with

a non-equilibrium mixed state and showed that in the considered example the

modified correlation entropy was lower in the mixed state, a fact that indicates

the capability of this new entropy determination method to capture correlation

111
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beyond mixture.

The present work can be further extended in several directions. Electron–

phonon interaction can be modeled by suitable self-energies within the non-

equilibrium Green’s function formalism. Also within this formalism, the possibility

exists to describe the Coulomb interaction with a higher order approximation. The

single-band tight-binding description of the nanowire channel can be extended to

include multiple bands and inter-valley scattering by the inclusion of additional

states in the 1D single-particle localized basis. Furthermore, a better approxima-

tion than nearest neighbor hopping can be considered, as well as an alternative

derivation of the tight-binding description which takes into account more realistic

single-particle orbitals, like localized Wannier functions, and more realistic energy

bands by means, for example, of the k · p method.

As further investigations within the framework of the method employed in this

dissertation, the impact of single dopants in the channel on the performance of the

nanowire transistor can be addressed. This is a topic being actively researched

in the present by means of methods that usually do not take into account a

detailed many-body description of Coulomb interaction beyond mean-field. New

light could be thrown to such a topic, specially in regimes where few-electron

charging effects play an important role, like the Coulomb blockade regime.
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A. NWFET-Lab: Simulation
package

A.1. Overview

NWFET-Lab [82] is a new simulation package with the aim to provide nanoelec-

tronics researchers with a tool by means of which to setup a NWFET system,

calculate and display its electronic transport properties. Set as one of the main

objectives of this dissertation, it spans over 30000 lines of code. Its elaboration

has been carried out with the help of a group of libraries and application program-

ming interfaces (APIs) [117, 118, 119, 120, 121, 122] in the C++ language [123]

and benefits from multithread parallel computation and 3D accelerated graph-

ics capabilities. It is an open-source, multiplatform software package that has

been shown to run under Linux and Windows operating systems. It can be re-

distributed and/or modified under the terms of the GNU General Public License

version 2 [124].

NWFET-Lab is structured in three different and interdependent modules, each

of which serves a specific purpose in the workflow of simulating electronic trans-

port in a NWFET. It is based on a jobfile which contains the list of parameters

that define the system. In order for the user to find easy configuration of these

parameters a setup module has been implemented. It provides both an interface

to edit the jobfile and also graphs to get a better idea of the characteristics of

the system.

Once the jobfile is saved to disk, it can be opened by the calculation module.

This is the module that implements the MCSCG method and took its machinery

from whiskersim [81], only to be adapted from the C programming language [125]

to C++ and augmented with new features. Quantities like the electron current

and density or the single-particle-reduced entropy are calculated by this mod-
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Figure A.1.: Screenshot of the task manager.

ule, either for a single or for a whole array of voltage points, optionally doing

the calculations in parallel if the computer provides several CPUs or a multicore

architecture. The results are output in data files.

The data files with the results of the simulation are displayed with the graphical

module. 2D graphs, 3D graphs and colormaps allow the user to easily analyze the

quantities obtained with the calculation module. Selectable axes can be used to

plot different variables against each other. If the computer provides a 3D graphics

acceleration card with a graphics processing unit (GPU), use is made of it thanks

to the OpenGL API [120].

A.2. Structure

A.2.1. Task manager

The three modules may be launched from a task manager. It is a simple interface

with a button associated to each module. Once a button is pressed the corre-

sponding module opens and the task manager is minimized. The use of the task

manager is optional, each module may be opened independently by running its

executable file.
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A.2.2. Setup module

Running the setup module is the first step in order for the user to be able to start

a simulation. Not only does it provide access to the parameters that define the

system, but also to those that are related to the calculation algorithm itself.

The user has the option to create a new jobfile with standard parameters

given by default or to open an existing jobfile for editing it. Reading a jobfile

is accomplished by means of a parser, a tool that allows the efficient detection

of parameter tags and their corresponding values. Once this is done, the list of

parameters opens in a new window by pressing the button labeled “Edit jobfile”.

For a description of the meaning of the parameters the reader is referred to

section A.3 in this Appendix.

Another option of the setup module is the displaying of useful graphs to give a

better image of the system being setup. This can be done by pressing the button

labeled “Show graphs”. A window opens then, with four tabs on it. With the

first tab a customizable 3D view of the NWFET is displayed, with the possibility

to enable or disable drawing its various parts. The second and third tabs are

associated to 2D graphs for setting up the doping and the background potential.

These graphs are editable, the user can modify the values of each point with the

mouse. The fourth tab shows a 2D graph with the total potential profile along

the NWFET channel and selectable gate–source and drain–source voltages.

The last option is to save the jobfile, an action performed by pressing the

button labeled “Save jobfile”. Once the jobfile is saved it can be opened with the

calculation module.

A.2.3. Calculation module

The calculation module is the physical core of NWFET-Lab since it imple-

ments the MCSCG method for non-equilibrium electronic transport simulation

in NWFETs. A C++ adapted and augmented version of whiskersim [81] is used

as main calculation algorithm that depends as an input on the parameters listed

in the jobfile edited with the setup module. The user is able to load the jobfile

by pressing a button and once this is done several options can be adjusted that

affect the calculation.

The functionality of a NWFET relies on the tunning of two voltages, VGS
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Figure A.2.: Screenshot of the setup module.

and VDS which determine its operational regime and yield different values of its

characteristics. The calculation module can run an array of different voltage

pairs. If the number of voltage points is larger than one, the user can select

the option of performing the calculations in parallel. This is possible because

this module is programmed with parallel computing capabilities, thanks to the

OpenMP API [122]. The user can choose whether to run simultaneously several

voltage points along the VGS or the VDS axis, using for this task a selectable

number of calculation threads. Optionally, the single-particle density matrix may

be reset between points, although the algorithm performs more efficiently if the

resulting single-particle density matrix of the previous calculation point is reused

for different, close enough points. These options are available by pressing the

“Threads options” button.

Once the calculation has been started after pressing the “Start” button, the

textual output of the algorithm is displayed in the tabbed text windows that the

calculation module features. Each tab with its associated output text window

corresponds to each calculation thread. At the same time, this output is saved to

as many logfiles as threads are running for later review. The user can select which

tab to display and their text windows can be made auto-scrollable by checking

the “Autoscroll” check button.
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Figure A.3.: Screenshot of the calculation module.

Optionally a window with the evolution of the calculation may be displayed by

pressing the button labeled “Progress”. In this window a progress bar indicates

the percentage of the total calculation that has already been performed, together

with the elapsed time. Also displayed is an array with the voltage points involved

in the calculation, with three different colors depending on their status: black for

not yet computed, yellow for being computed and green for already computed.

To end the calculation before it is finished the user may press the “Stop” button.

Once the running algorithms for the current voltage points reach to an end, the

program gracefully stops.

As a result of running the calculation module, output files containing the fol-

lowing quantities are obtained: local density of states (LDOS), potential, electron

density, number of electrons, drain current, spin balance, current noise, natural

orbitals with occupation numbers, density–density correlation, covariance, sta-

tistical operator: weights and eigenstates, single-particle reduced entropy, von

Neumann entropy, modified entropy, energy, spin, current of natural orbitals, in-

formation about the weights and additional data related to the calculation
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A.2.4. Graphical module

The graphical module is designed with the purpose of displaying graphical views

of the several quantities obtained by the calculation module. In terms of the

number of available options it is the most complex of the four modules. The

OpenGL API is employed as the basis for the graphics and so GPUs may be used

to process them more efficiently. No external graphical representation libraries

were used, but all the details concerning graphics were programmed from scratch

by means of OpenGL.

The first thing a user can do is to open a jobfile by pressing the “Load jobfile”

button. Not only the relevant parameters for this module are read from the

jobfile, but also the output files produced by the calculation module are read.

This may take more or less time depending on the number of voltage points for

which the calculation has been performed. Immediately after the data is loaded a

floating window is opened with as many tabs available as output files were read.

If a particular data file is missing, its associated tab is disabled.

The contents of all the tabs are similar. Starting from the top, a user can find

the following groups of elements on a tab. First the “Graphs” group provides three

choice buttons to select one out of three different types of graphs: 2D graph, 3D

graph or colormap. Of these three types, the 2D graph and the colormap allow

the user to read the coordinates of every point by clicking the mouse left button.

Additionally, whenever the drain current or the single-particle-reduced entropy are

being displayed as a function of VGS and VDS in a colormap, a new window may

be opened with the electronic configurations and their weights corresponding to

the voltage point selected by clicking the mouse right button.

Next the “Axis” group comprises up to three subgroups associated to each of

the axis of the plot: X, Y and Z. The user can select which quantity to link with

each axis, given the available quantities present in the data files of each particular

tab. Some of these subgroups may be disabled if there is not enough number

of independent variables to be represented in a given type of graph. Besides, if

a 2D graph is selected the Z axis is disabled. The type of graph is restricted

according to the same criterion. The independent variables that are not linked to

an axis may be varied with the sliders present in the “Variables” group while the

plot displayed on screen is immediately updated.

The fourth group is the “Scaling” group and is associated to the scaling of the
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Figure A.4.: Screenshot of the graphical module.

graphs. Here, minimum and maximum limit values for each of the available axis

can be entered, with the possibility to override these values and autoscale the

graph. The “Axis options” group follows which contains choice buttons to select

which transformations are performed on each of the available axis. These are:

absolute value, linear scale, logarithmic scale and arctangent scale. Whenever the

last option is chosen the user may enter the value of a factor by which to scale

the argument of the arctangent axis scaling.

Finally, the “Options” group provides several choices related to the appearance

of the graphs and its contents vary depending on the selected graph type. Com-

mon to all graph types, the user may choose between two color schemes: black

lines on a white background or white lines on a black background. For a 3D

graph the user may also choose the style of the plot: surface or mesh. For a

colormap, the color gradient used in the representation may be selected from:

thermal, rainbow, grayscale, Gaussian or positive/negative.

There is also the possibility to export the data currently being displayed to an

external data file and to export the graphs to image files, by pressing the “Export”

button. To conclude, the layout of the graphical module, consisting of the state

of all its controls, may be saved to a layout file, similar to a jobfile but concerning

only the appearance of this module. Later this file may be loaded so that the
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saved layout is restored.

A.3. Technical details

A.3.1. Libraries and APIs

The way NWFET-Lab presents itself to the user is not as a text-based command-

line interface but as a graphical user interface (GUI). The benefits of using a GUI

are several. It enables easy change of the parameters by making them accessible

to the user through controls of the interface. It enables also the interaction

between the external user and the internal mechanisms of the program without

the need of learning a complex command language. It makes faster and unifies

the workflow of setting up a system, calculating its characteristics and displaying

the results.

The choice of a GUI library for NWFET-Lab was guided by several consid-

erations. First of all it should be easy to learn and use. In this sense poorly

documented GUIs were discarded. The second important condition was its intru-

siveness, whether to use it would require the code to be adapted to its canons or

gave structural liberty to the programmer. This is connected to its programming

style, either procedural or object-oriented. Since the selected language to write

the software was C++ an object-oriented approach would be the best. Other

considerations included platform dependence, variety of controls, OpenGL inte-

gration, inclusion of an own window manager and 64-bit compatibility.

According to these considerations, the GUI library of choice was FOX-Toolkit

[117], a multiplatform, well-enough documented, open-source library released un-

der the GNU Lesser General Public License. There are both a FOX forum and

mailing list that were helpful whenever a question arose.

NWFET-Lab was designed from the beginning to be able to run calculations

in parallel. Two different approaches to parallel computation were assessed:

OpenMP [122] and MPI [126]. The benefits and drawbacks of each one are

summarized in the following. On the one hand, OpenMP is easier to program

and debug, its directives can be added incrementally which allows for gradual

parallelization, if desired the code can be still run serially, serial code statements

usually do not need modification and the code is easier to understand and main-

tain. On the other hand, it can be run only in shared memory computers and
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requires a compiler that supports it. As for MPI, although it is able to run on both

shared and distributed memory architectures and can be used on a wider range of

problems, nevertheless requires more programming changes to go from serial to

parallel version and can be harder to debug. Since shared memory computers are

more common than computing grids and our code did not need more than what

OpenMP could offer, this was the choice, which has proved to be a reliable and

efficient option.

The details concerning the graphics were implemented starting from zero, in-

stead of relying on external libraries. This allowed much control over the display

options and features. For this purpose use was made of the OpenGL API [120],

one of the most widely adopted graphics standards that produces high quality and

high performance 2D and 3D graphics regardless of operating system or window-

ing system. It is a very well documented, easy to learn API. Since by itself OpenGL

does not have the possibility to render text, the FTGL library [118] was employed

for all text-based graphics, such as labels, titles and numbers along the plot axis.

The DevIL image library [119] enabled the capturing of the plots displayed by the

graphical module and saving them into image files. Finally, the calculation and

many-body modules make use of LAPACK numerical routine libraries [121].

Links to the aforementioned libraries and APIs are presented in the following

list:

FOX-Toolkit http://www.fox-toolkit.org/

OpenMP http://openmp.org/wp/

OpenGL http://www.opengl.org/

FTGL http://sourceforge.net/apps/mediawiki/ftgl/

DevIL http://openil.sourceforge.net/

LAPACK http://www.netlib.org/lapack/

A.3.2. Parameters

To itemize and clarify the meaning of the parameters used by NWFET-Lab a list

with of all of them, together with short descriptions follows.

XXX_out Filename of the output datafile containing quantity XXX

http://www.fox-toolkit.org/
http://openmp.org/wp/
http://www.opengl.org/
http://sourceforge.net/apps/mediawiki/ftgl/
http://openil.sourceforge.net/
http://www.netlib.org/lapack/
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obs_XXX Indicates whether to calculate or not the observable XXX

epsilon_ch Relative dielectric constant of the nanowire channel

epsilon_ox Relative dielectric constant of the oxide

d_ch Diameter of the nanowire channel

d_ox Thickness of the oxide

l_const Screening length λ

evar_min Minimum energy for LDOS calculation

evar_max Maximum energy for LDOS calculation

devar Energy step

nevar_min Minimum energy for current noise calculation

nevar_max Maximum energy for current noise calculation

dnevar Energy step

nmax Number of orbitals in 1D nanowire channel

dom_nmax0 Maximum number of relevant single-particle states

density_dom_thres1 Minimum absolute threshold for an occupied state

density_dom_thres2 Maximum absolute threshold for an empty state

density_dom_thres3 Relative threshold for a fluctuating state

coul_empty_thres Minimum threshold for state to be included in calculations (case B)

dom_slater_dets 0 for case B, 1 for case A, 2 for case A+B

dom_wmin Minimum value for a weight below which it is considered zero

dom_imlim Maximum dissipation energy due to contacts

dom_indep_w Switches on/off the independent electron regime

a_const Lattice constant of the nanowire channel

eff_mass Effective electron mass

t_const Tight-binding hopping matrix element h̄2/(2m∗a2)

tc_const Contact hopping matrix element

charge_const e2/(2ε0εchA)

current_const e/h̄

temperature Temperature T

kt_const Thermal energy kBT

imin_vgate Site index of gate minimum limit

imax_vgate Site index of gate maximum limit

vgate0 Minimum gate–source voltage
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vgate1 Maximum gate–source voltage

dvgate Gate–source voltage step

vdrain0 Minimum drain–source voltage

vdrain1 Maximum drain–source voltage

dvdrain Drain–source voltage step

neq_nmin Non-equilibrium region minimum limit

neq_nmax Non-equilibrium region maximum limit

imin_npar Minimum site index for electron number count

imax_npar Maximum site index for electron number count

damp1 Self-consistency parameter

scount_min Self-consistency parameter

scount_max Self-consistency parameter

sdev_min Self-consistency parameter

dither_amp1 Self-consistency parameter

int_demin Related to the Runge-Kutta integration function.

int_demax Related to the Runge-Kutta integration function.

int_rezeps Related to the Runge-Kutta integration function.

doping Doping 1D charge density

pot0 Potential offset to band minimum

pot0_l Potential offset to band minimum within left contact

poth_l0 Potential height of left contact

pot0_r Potential offset to band minimum within right contact

poth_r0 Potential height of right contact

parallel_mode Set the voltage axis to be computed in parallel: 0 for VDS, 1 for VGS

nthreads Number of parallel threads for voltage loops

nthreads1 Number of parallel threads for case B

meanfield_rest Include mean-field interaction of the non-relevant states (case B)

meanfield_occ Include mean-field interaction of fixed occupied states (case B)

epsilon_const Optical potential

i_cur Layer of current

enable_cself Enable Coulomb self-energy

spinsplit Zeeman term

density_reset Switch on/off reset of single-particle density matrix between calculation points

hamop_diag Make many-body Hamiltonian diagonal (case B = case A)





B. Genetic algorithm

B.1. Overview

A general optimization problem consists of searching for the global optimum

solution that optimizes a specific set of objective functions in a given search

space. When considering a minimization or maximization problem, the goal is to

find the best solution that minimizes or maximizes one or more objective functions.

If the number of objective functions is greater than one, the problem is termed

multi-objective optimization. We focus here in single-objective optimization and

denote the single objective function as fitness function. These two terms are

used in the following interchangeably.

The search space is defined by the number of variables that model the sys-

tem and their limits. The fitness function has different values in each point of

the search space and in general there may exist many local minima or maxima.

These regions of the search space may constitute possible trap points of a given

numerical optimization method such as a local search technique, which for ex-

ample looks for the optimum solution using the gradient of the fitness function.

Genetic algorithms on the contrary are able to leave these local optimum points

behind, since they search in multiple directions, even if the fitness function is not

differentiable.

A genetic algorithm (GA) [104] is an optimization method inspired by Darwin’s

theory of evolution. Its ingredients are a population of chromosomes, each of

which encodes a possible solution to the problem, a set of operations performed

on the chromosomes and a fitness function. A chromosome is composed of genes

each of which encodes a variable of the problem and are defined within the limits

of the search space. Its rules are such that after every iteration the population

is expected to improve, based on the criterion defined by the fitness function for

each chromosome. Each implementation of a GA has its own peculiarities. We
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0. Init population: produce set of chromosomes and evaluate fitness.

1. Selection: population → mating pool.

2. Reproduction (crossover): mating pool → offspring.

3. Mutation: population → offspring.

4. Evaluate fitness of the offspring.

5. Select best chromosomes → new generation.

6. Check convergence: if converged then end, else go to 1.

Table B.1.: A typical GA.

describe a single-objective standard version and note that a specific version may

deviate in some details from it.

At the beginning the method constructs a population of chromosomes, ran-

domly or otherwise, taking care that each gene is within its domain of definition.

Then it enters into an iterative process, first selecting for reproduction a fraction

of the population that has the best fitness and constitute the mating pool. Note

that by choosing the fittest individuals the next generation should in principle be

better than the previous. Secondly comes the reproduction phase, a crossover

operation is applied between two or more randomly picked chromosomes from

the mating pool, generating new offspring. The characteristics of the parent

chromosomes are inherited by the offspring. And thirdly several randomly cho-

sen chromosomes are mutated by altering the values of their genes by a small

random amount. This adds variety to the population and avoids the algorithm

to get stuck in a local minimum or maximum. These three steps, selection, re-

production and mutation, produce a new generation which replaces the previous

population. Such algorithm is repeated until a termination criterion is satisfied.

Convergence is achieved if the fitness of the best chromosome in the population is

smaller or greater than a certain threshold value, in the case of a minimization or

maximization problem respectively, and/or if the fitness of the best chromosome

does not change appreciably between subsequent iterations. See Table B.1 for a

schematic view of a typical GA.
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B.2. Chang’s genetic algorithm

The GA by Chang [105] is novel because it introduces a multi-crossover formula

which makes use of three instead of the traditional two chromosomes to generate

three new ones. Let Θi represent a vector of genes or chromosome. Suppose

that three chromosomes Θ1, Θ2 and Θ3 are randomly chosen from the mating

pool to crossover and that Θ1 is the fittest of them. They define a new adjusting

direction

ΘD ≡ (Θ1 −Θ2) + (Θ1 −Θ3) = 2Θ1 −Θ2 −Θ3 (B.1)

along which all three chromosomes are changed simultaneously. If r ∈ [0, 1] is a

random number determining the crossover grade, the following multiple crossover

formulas are performed
Θ1 + rΘD → Θ′1

Θ2 + rΘD → Θ′2

Θ3 + rΘD → Θ′3

(B.2)

which mean that the offspring Θ′i will be translated copies of the parents along

the direction that points to the fittest of the three.

Similarly to other GAs, the mating pool is generated by tournament selection,

but as an alternative to Chang’s original implementation this can be done by

randomly selecting in Npop rounds, t chromosomes from the total of Npop that

constitute the population and choosing the single best fit of those t for inclusion

in the mating pool, which ends up containing Npop chromosomes. The multi-

crossover operation and mutation are performed with a probability pc and pm
respectively, so that the (3 × pc)% of the mating pool undergoes reproduction

and a pm% of the population is mutated to a certain degree.





C. Parametrization of unitary
matrices

In this section we describe how to factorize any given unitary matrix as a product

of several unimodular unitary matrices which depend on a set of angles or param-

eters. This parametrization method was introduced by Murnaghan and except

for the compact expression at the end of the section, we have followed his steps

as given in Ref. [116].

An n-dimensional unitary matrix U satisfies the equation U†U = I, which implies

U−1 = U†. Because det U† = (det U)∗ it follows that det U = e iφ is a complex

number of unit modulus. Whenever det U = 1 we term U unimodular unitary

matrix.

Before describing how to parametrize an n-dimensional unitary matrix we in-

troduce the so called plane n-dimensional unimodular unitary matrices Upq(φ, σ),

which operate in the pq-plane, where q > p. They are constructed in such a way

that the diagonal terms are 1 except for (Upq)pp = (Upq)qq = cosφ and the non-

diagonal terms are 0 except for (Upq)qp = sinφ e iσ and (Upq)pq = − sinφ e−iσ.

For example, when n=3

U13(φ, σ) =


cosφ 0 − sinφ e−iσ

0 1 0

sinφ e iσ 0 cosφ

 . (C.1)

Let us also define an n-dimensional diagonal matrix

D(δ1, δ2, . . . , δn) = Diag(e iδ1 , e iδ2 , . . . , e iδn) . (C.2)

We are now in a position to describe the parametrization method. We will give

only the final result, for a detailed explanation on how to arrive at it see Ref. [116].
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Let U be any given n-dimensional unitary matrix. It can be shown that it can

be expressed as the following product

U = U(n−1)U12(θn−2, σn−1)U13(θn−3, σn−2) · · ·U1(n−1)(θ1, σ2)U1n(φ1, σ1) (C.3)

where U(n−1) is an n-dimensional unitary matrix with the form

U(n−1) =

e iδ1 0

0 V

 (C.4)

and V is an (n − 1)-dimensional unitary matrix. The plane matrices can be

readily computed, given their angles. Hence once the matrix V is known from the

application of the same prescription to the expression of an (n − 1)-dimensional

unitary matrix, U is completely determined.

Let us consider the case n = 3. The parametric form of a general 2-dimensional

unitary matrix has the expression

V = D(δ2, φ3)U12(φ2, σ3) (C.5)

as it appears in Eq. (C.4), from which it follows that

U(2) = D(δ1, δ2, φ3)U23(φ2, σ3) (C.6)

and therefore we obtain the factorization of the 3-dimensional unitary matrix U

as

U = D(δ1, δ2, φ3)U23(φ2, σ3)U12(θ1, σ2)U13(φ1, σ1) . (C.7)

Thus any 3-dimensional unitary matrix is parametrized by a set of 9 angles.

To clearly show the iterative process, let us take the case of n = 4.

U = [D(δ1, δ2, δ3, φ4)U34(φ3, σ6)U23(θ3, σ5)U24(φ2, σ4)] ·

· U12(θ2, σ3)U13(θ1, σ2)U14(φ1, σ1) (C.8)

where the product between brackets comes from identifying with V the expression

of a 3-dimensional unitary matrix as given by Eq. (C.7), yielding U(3). We see

that any 4-dimensional unitary matrix is parametrized by a set of 16 angles.

In the general n-dimensional case the number of parameters is n2, of which the
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n angles φ are longitude angles ∈ [−π, π[ and the n− 1 angles δ, the n(n− 1)/2

angles σ and the (n − 1)(n − 2)/2 angles θ are latitude angles ∈ [−π/2, π/2] .

The number of plane matrices Upq that appear in the factorization is n(n− 1)/2.

Any given n-dimensional unitary matrix U may be expressed in compact form

as

U = D(δ1, . . . , δn−1, φn)

1∏
p=n−1

(
n−1∏
q=p+1

Upq(θx−p, σx)

)
Upn(φp, σx) (C.9)

where the index of σ obeys the rule x = 1 + np − q − p(p − 1)/2 so that the

ordering of the angles is adequate. The first sequence product runs backwards

from higher to lower values of p, the second may not be evaluated if q > n − 1.
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