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de València,

Prof. Omar Gustavo Miranda Romagnoli, professor d’investigació del CINVESTAV
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Que la present memòria, “Phenomenology of Non-Standard Neutrino Interaccions”,
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Prof. Omar Gustavo Miranda Romagnoli

3



4



Agräıments

M’agradaria expressar la més sincera gratitud a tots aquells que han fet possible la real-
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Romagnoli, vosaltres sabeu ben bé que aquest treball no haguera eixit mai endavant

sense vosaltres, i es “quasi” més vostre que meu. Gràcies José per haver-me donat la
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Preface

Today neutrino physics is in a privileged position within the fascinating field of particle

physics. From the discovery of neutrino oscillations by Super-Kamiokande [1] in 1998, the

door to physics beyond the Standard Model (SM in what follows) has been opened. This

fact implies that neutrinos have to be massive [2] in opposition to the Standard Model

assumption. However, this is not a surprise completely, but it was already hinted from

theoretical and experimental observations in the two decades prior to the discovery of the

oscillatory phenomenon:

• In principle, it is not necessary to introduce neutrino masses in the Standard Model.

Nevertheless, this is not a characteristic arising from a gauge symmetry (as in the

photon case) but it is chosen for simplicity, avoiding, for instance, to introduce the

right-handed neutrino.

• Most of the unification models incorporate neutrino masses.

• The experimentally observed deficit of the atmospheric and solar neutrino fluxes

could be explained by the phenomenon of neutrino oscillations, mechanism that

requires neutrino mass and mixing.

As a consequence of this new path opened by neutrinos, one may observe processes

forbidden in the Standard Model [3]:

• Neutrino oscillations imply neutrino mixing; therefore the generational lepton num-

bers are not valid as a global symmetry. Decays with lepton flavor violation (LFV)

are possible, as for example:

– µ→ e γ ,

– τ → e γ ,

– µ→ 3e .
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• If neutrinos are Majorana particles,neutrinoless double beta decay (0νββ) and other

processes with lepton number violation could occur. Until such historic observation

is made, the debate about the nature of neutrinos as Dirac or Majorana particles

will be open.

• Cosmology is sensitive to massive neutrinos, which may affect the cosmic microwave

background and other cosmological observables.

• The neutrino, as a massive particle, could decay:

– να → να′ γ ,

– να → να′ να′′να′′′ , where three neutrinos are produced in the final state. These

could be the same kind of neutrino or not.

– να → να′ J , where J is a majoron 1.

As we have already mentioned, none of the phenomena described in the above paragraphs

is foreseen in the SM. Therefore models beyond SM are required to introduce neutrino

mass and they may imply new interactions with matter: Non-Standard Interactions (NSI

in what follows). In this thesis we study some of these new interactions from a phenomeno-

logical point of view. To achieve it, we will use data from several neutrino experiments,

obtaining extra information on NSI stemming from a combined analysis of them. For this

purpose the thesis is organized as follows:

• Chapter 1: We begin with a review of the most important characteristics of neutri-

nos in the Standard Model. Along with them, we will also present other properties

of beyond the SM neutrinos, such as neutrino mass and neutrino oscillations.

• Chapter 2: In this chapter we will give an introduction to NSI, explaining their

appearance and main features. Along with this generic explanation, we will discuss

models where NSI appear spontaneously and their influence on neutrino oscillation

probabilities and experiments.

• Chapter 3: The main goal of this chapter is to show that, although playing a

secondary role, NSI still have an influence on the solution of the solar neutrino

problem. We will combine solar, reactor and accelerator data, in order to get limits

on parameters which determine the NSI strength.

1The majoron J is a Goldstone boson which appears in models with spontaneous breaking of the
lepton number [4].
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• Chapter 4: In this part of the thesis we will get limits on NSI parameters involved

in muon-neutrino interactions with quarks. For this purpose, we will use the results

from a NUTeV reanalysis performed by two collaborations, along with data coming

from accelerator and atmospheric neutrino experiments.

• Chapter 5: The non-unitarity of the light neutrino mixing matrix is the simplest

example of NSI. In this chapter we will describe a formalism which will allow us

to work easily with models where more than three neutrinos are considered (as

seesaw models), separating the new physics and the standard one. We will finish

this chapter compiling experimental results on heavy and light neutrino couplings.

• Chapter 6: At last, we will finish the thesis presenting our conclusions and future

prospects.

I hope this thesis is of interest to the reader, then all the enthusiasm and effort put

into it will be rewarded.
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Prefaci

La f́ısica de neutrins es troba avúı en dia en una posició privilegiada dins d’un camp tan

apassionant com és el de la f́ısca de part́ıcules. Des del descobriment de les oscil·lacions

de neutrins per part de Super-Kamiokande [1] a l’any 1998, la porta de la f́ısica més

enllà del Model Estàndar (SM a partir d’ara) ha sigut oberta. Aquest fet implica que els

neutrins han de ser massius [2] en contraposició al que suposa el Model Estàndard. No

obstant, açò no és una sorpresa completament, sinó que ja venia sent apuntada a partir

d’observacions teòriques i experimentals en les dues dècades prèvies al descobriment del

fenomen oscil·latori:

• En principi, no és necessari introduir la massa del neutŕı al Model Estàndard. Però

aquesta no és una caracteŕıstica que sorgeixi degut a una simetria (com és el cas del

fotó), sinó que s’elegeix per simplicitat, evitant, per exemple, introduir el neutŕı-

dret.

• La gran majoria de models d’unificació requerixen la presència de la massa del

neutŕı.

• El dèficit observat experimentalment en els fluxos de neutrins solars i atmosfèrics

podria ser explicat pel fenomen d’oscil·lacions de neutrins, mecanisme que requereix

l’existència de la massa dels neutrins i la mescla entre ells.

Com a conseqüència d’aquest nou camı́ obert pels neutrins, es podrien observar pro-

cessos que es troben prohibits al Model Estàndard [5]:

• Les oscil·lacions de neutrins impliquen la mescla dels tres estats d’aquests; per tant

els nombres leptònics generacionals no seran vàlids com a simetries globals i es

podrien observar desintegracions on es viole el nombre de sabor leptònic (LFV):

– µ→ e γ ,

– τ → e γ ,

11
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– µ→ 3e .

• Si els neutrins són part́ıcules de Majorana, la desintegració doble beta sense neutrins

(0νββ) i altres processos on es viole el nombre leptònic podrien observar-se. Fins

que tal observació històrica es prodüısca, el debat sobre la natura dels neutrins com

a part́ıcules de Dirac o Majorana, continuarà obert.

• La cosmologia és sensible a l’existència de neutrins massius, els quals poden afectar

al fons còsmic de microones i a altres observables cosmològics.

• El neutŕı, com a part́ıcula massiva, podria desintegrar-se:

– να → να′ γ ,

– να → να′ να′′να′′′ , on tres neutrins són prodüıts a l’estat final. Aquests podrien

ser del mateix tipus o no,

– να → να′ J , on J és un majoron 2.

Com ja hem mencionat, cap dels fenòmens descrits en els paràgrafs anteriors es troba

contemplat al Model Estàndard. Per tant, models més enllà del Model Estàndard són

necessaris per a introduir la massa del neutrins, podent implicar l’existència de noves

interaccions amb la matèria: les Interaccions No Estàndard (NSI a partir d’ara). En

aquesta tesi estudiarem algunes d’aquestes noves interaccions des d’un punt de vista

fenomenològic. Per aconseguir-ho, utilitzarem les dades de diferent experiments de neu-

trins, obtenint aix́ı una major informació sobre les NSI a partir d’un anàlisi combinat

d’aquestes. Per a aquest propòsit, la tesi s’organitza de la següent forma:

• Caṕıtol 1: Iniciarem el nostre treball amb una revisió de les caracteŕıstiques més

importants dels neutrins dins del Model Estàndard. Junt amb aquestes, es presen-

taran també altres propietats més enllà del SM, com són la massa i les oscil·lacions

de neutrins.

• Caṕıtol 2: En aquest caṕıtol realitzarem una introducció a les NSI, explicant la

seva aparició a la teoria i les seves principals caracteŕıstiques. Junt amb aquesta

explicació genèrica, discutirem els models on apareixen de forma espontània i la seva

influència sobre les probabilitats d’oscil·lació de neutrins i els experiments.

2El majoron J és un bosó de Goldstone que apareix en models on la ruptura del nombre leptònic és
espontània [4].
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• Caṕıtol 3: El principal objectiu d’aquest caṕıtol és mostrar que, encara que jugant

un paper secundari, les NSI encara tenen influència en la solució del problema dels

neutrins solars. Combinarem les dades d’experiments solars, reactor i accelerador,

per aix́ı obtindre ĺımits dels paràmetres que determinen la força d’aquestes NSI.

• Caṕıtol 4: En aquesta part de la tesi obtindrem cotes als paràmetres de NSI impli-

cats en interaccions del neutŕı muònic amb quarks. Per a aquest comès utilitzarem

els resultats de la reanàlisis de NuTeV realitzats per dues col·laboracions en cojunt

amb dades d’experiments d’accelerador i d’atmosfèrics.

• Caṕıtol 5: La no unitarietat de la matriu de mescla dels neutrins lleugers és

l’exemple més simple de NSI. En aquest caṕıtol descriurem un formalisme que ens

permetrà treballar de forma senzilla amb models que consideren més de tres neutrins

(com els models seesaw), separant nova f́ısica d’aquella que és estàndard. Acabarem

aquest caṕıtol fent una recopilació dels resultats experimentals de l’acoblament d’un

neutŕı pesat amb un altre lleuger.

• Caṕıtol 6: Finalment, per acabar la tesi presentarem les nostres conclusions i

perspectives a futur.

Espere que aquesta tesi siga de l’interés del lector, d’aquesta forma tot el treball,

il·lusió i esforç posats en ella seran recompensats.
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Chapter 1

Neutrinos in the Standard Model

and beyond

The Standard Model of particles is the most successful theory describing the interactions

of elementary particles. This quantum field theory describes the strong, weak and electro-

magnetic interactions of elementary particles using the following components summarized

in Table 1.1:

• Fermions, which are particles with spin 1
2
. They are classified into three families:

– First family: Up and down quarks, electron and electron-neutrino. These are

the components of the ordinary matter.

– Second family: Charm and strange quarks, muon and muon-neutrino.

– Third family: Top and bottom quarks, tau and tau-neutrino.

• Gauge bosons, correspond to particles with spin 1, responsible for carrying the

three interactions mentioned above:

– Photon: It is the gauge boson of the electromagnetic interaction. It is a

massless particle.

– W+, W− and Z0: These particles mediate the weak interaction, W+ and

W− for charged-current weak interactions and Z0 for neutral-current weak

interactions. Unlike photons and gluons, these particles have a mass.

– Gluon: This gauge boson mediates strong interactions between quarks. As

the photon, it is a massless particle.

21



22 Chapter 1. Neutrinos in the Standard Model and beyond

Table 1.1: Standard Model components.

Fermions First family Second family Third family

Quarks
u (up) c (charm) t (top)
d (down) s (strange) b (bottom)

Leptons
νe (electron-neutrino) νµ (muon-neutrino) ντ (tau-neutrino)

e (electron) µ (muon) τ (tau)

Electromagnetism Weak Strong
Boson γ (photon) W+, W− and Z0 AC (gluon)

Higgs boson

• Higgs boson: This particle is the last ingredient in the Standard Model of particles.

It is responsible for the mass of particles and interacts with them through the so-

called Higgs mechanism. It is a particle with spin 0, and a mass of mH ≈ 125GeV .

This model is supported by a large number of experimental results, as for example [6]:

• Particle predictions: W , Z, gluons, top quark, charm quark...

• Couplings constants to Z0 gauge boson in e−e+ → f̄f processes.

• Branching ratio in Z0 → f̄f , W− → ν̄ll and W− → ūidj.

• Leptonic universality.

• Z invisible decay width Z0 → να ν̄α.

• Higgs boson.

• ...

However, despite this great success, there are several open questions which have not been

answered yet:

• The mechanism which generates neutrino masses.

• Baryonic asymmetry of the Universe.
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• Dark matter nature.

• The violation of CP symmetry in the leptonic sector.

• Neutrino nature, Dirac or Majorana?.

• The neutrino mass hierarchy problem.

• Proton stability.

• ....

Finding solutions to these problems has led to the proposal of “new physics” beyond the

Standard Model. Neutrinos are an important motivation for physics beyond the Standard

Model, as we will see in this thesis.

1.1 Brief description of the Standard Model

The Standard Model is a gauge theory mathematically described by the local symmetry

group SU(3)C × SU(2)L × U(1)Y :

• SU(3)C stands for the description of strong interaction through the color quantum

number. This symmetry group has eight generators which correspond to the eight

gluons that mediate the strong force.

• SU(2)L represents the weak interaction whose local symmetry is the weak isospin.

Only left-handed particles with weak isospin I = 1
2

couple to weak bosons. As this

symmetry group has three generators, the number of gauge bosons is three too, W+,

W− and Z0 as we have seen above.

• U(1)Y is the symmetry group for the electromagnetic interaction. In this case, the

local symmetry is the hypercharge (Y ), having only one generator which is related

with the photon, the unique gauge boson related to this group.

With these ingredients, Sheldon Glashow, Abdus Salam and Steven Weinberg were

able to unify the weak and electromagnetic interaction in the so-called electroweak inter-

action. This interaction is described by the SU(2)L×U(1)Y symmetry group, having four

gauge bosons, three corresponding to the three generators of SU(2)L, W i, and one gauge

boson coming from the electromagnetic U(1)Y group, B. After spontaneous symmetry
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breaking, the usual gauge bosons, W+, W−, Z0 and γ, which mediate the electroweak

interaction, arise as a combination of the first ones.

On the other hand, strong interaction cannot be combined with other force, that is

why SU(3)C is studied separately of SU(2)L × U(1)Y .

Now, we will take a quick look of the mathematical description of each group, focusing

mainly on the description of the electroweak interaction, related, among others, with

neutrinos.

1.1.1 Electroweak theory

The electroweak model is described by the SU(2)L × U(1)Y group. SU(2)L is the group

of weak isospin (I), which is a quantum number assigned only to left-handed quarks and

leptons of each generation. This violates parity symmetry giving rise to a V-A theory.

Keeping this in mind, the leptons can be grouped into doublets of chiral left-handed fields

and singlets of right-handed fields, as we show in Table 1.2.

As we have said before, the SU(2)L has three generators denoted by

Ik =
1

2
σk , (1.1)

where k goes from 1 to 3 and σk are the isospin version of the Pauli matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.2)

These generators satisfy the angular momentum commutation relations, as spin does:

[Ik, Ij] = iεkjlIl . (1.3)

Besides SU(2)L, we find the symmetry group U(1)Y which is known as the weak

hypercharge group and its generator is the weak hypercharge Y . This operator relates

the weak isospin I3 with the charge operator Q through the Gell-Mann-Nishijima relation:

Q = I3 +
Y

2
. (1.4)

This expression illustrates the unification of weak and electromagnetic interactions.

Once we have the basic ingredients of electroweak theory, we are going to study the

lagrangian of the model. For this purpose and for simplicity, we will take into account
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Table 1.2: Quantum numbers of leptons and quarks.

I I3 Y Q

Lepton Doublet LL =

(
νeL
eL

)
1/2

1/2
−1/2

−1
0
−1

Lepton Singlet eR 0 0 −2 −1

Quark Doublet QL =

(
uL
dL

)
1/2

1/2
−1/2

1/3
2/3
−1/3

Quark Singlet
uR
dR

0 0
4/3
−2/3

2/3
−1/3

only the first generation leptons (eL, νeL and eR) considering them as massless particles 1;

we begin our discussion assuming that leptons have no couplings with electroweak gauge

bosons. With these conditions, the lagrangian for these free Dirac fields can be written

as

L = (ν̄eL, ēL)(iγµ∂µ)

(
νeL

eL

)
+ ēRiγ

µ∂µeR . (1.5)

Note that we have respected the doublet-singlet notation. This lagrangian is not invariant

under weak isospin transformations 2, but we can introduce gauge vector fields to com-

pensate it. As we said before, we find three vectors fields in SU(2)L as generators of the

symmetry group, W i
µ (with i = 1, 2, 3). Including these fields, the lagrangian becomes

L =
1

2
Tr(WµρW

µρ) + (ν̄eL, ēL)iγµ(∂µ + igWµ)

(
νeL

eL

)
+ ēRiγ

µ∂µeR . (1.6)

The gauge bosons WQ have electromagnetic charge and they are defined as a linear

1We know from neutrino oscillations that the neutrino is a massive particle in the SU(2)L × U(1)Y
description of the electroweak theory. But, in order to simplify the discussion, here the neutrino is chosen
without mass and only left-handed.

2Weak isospin transformations can be considered as space rotations of a vector.
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combination of W i
µ as:

W+
µ =

1√
2

(W 1
µ − iW 2

µ) ,

W−
µ =

1√
2

(W 1
µ + iW 2

µ) , (1.7)

W 0
µ = W 3

µ .

Introducing these fields in Eq. (1.6), we obtain the following lagrangian for the lepton-

boson coupling term,

L = −g(ν̄eL, ēL)γµWµ
σ

2

(
νeL

eL

)
(1.8)

= −g(ν̄eL, ēL)γµ
1

2

(
W 0
µ

√
2W+

µ√
2W−

µ −W 0
µ

)(
νeL

eL

)
= −g

2

[
W 0
µ(ν̄eLγ

µνeL − ēLγµeL) +
√

2W+
µ ν̄eLγ

µeL +
√

2W−
µ ēLγ

µνeL

]
,

where σ are the Pauli matrices in Eq. (1.2) and the weak isospin components are defined as

Ik = 1
2
σk. We can rewrite Eq. (1.8) in a more usual form using the left-chirality projector

γ5 3,

ψ̄Lγ
µψL =

1

2
ψ̄γµ(1− γ5)ψ , (1.9)

giving rise to

L = −g
4

[
W 0
µ(ν̄eγ

µ(1− γ5)νe − ēγµ(1− γ5)e) +
√

2W+
µ ν̄eγ

µ(1− γ5)e

+
√

2W−
µ ēγ

µ(1− γ5)νe

]
. (1.10)

As we can see from the equations above, only left-handed leptons interact with weak

gauge bosons, as expected.

Since we are talking about electroweak interaction, one extra-component must be

introduced in the lagrangian, electromagnetism. We could think that W 0
µ is associated

with the photon, but this is not possible because W 0
µ and the photon have different

couplings. Therefore, the electromagnetic interaction is inserted in the lagrangian through

the hypercharge group U(1)Y , where, as we have said in Eq. (1.4), charge and isospin are

related. In this group, the vector field is Bµ with the corresponding coupling constant g′.

3It is defined in Sec. 1.2.2.
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Both neutral vector fields combine as

Zµ =
1√

g2 + g′2

(
gW 0

µ − g′Bµ

)
, (1.11)

Aµ =
1√

g2 + g′2

(
g′W 0

µ + gBµ

)
, (1.12)

leading to gauge bosons of weak neutral-current and electromagnetism respectively. Defin-

ing the weak mixing angle θW in terms of the coupling constants g and g′,

sin θW =
g′√

g2 + g′2
, cos θW =

g√
g2 + g′2

, (1.13)

the expressions above, Eqs. (1.11) and (1.12), are simplified as

Zµ = cos θWW
0
µ − sin θWBµ , (1.14)

Aµ = sin θWW
0
µ + cos θWBµ. (1.15)

Replacing Zµ and Aµ in Eq. (1.8), it results in

L = − g√
2

(
W+
µ ν̄eLγ

µeL +W−
µ ēLγ

µνeL
)

−
√
g2 + g′2Zµ

[
1

2
ν̄eLγ

µνeL −
1

2
ēLγ

µeL + sin2 θW (ēLγ
µeL + ēRγ

µeR)

]
+

gg′√
g2 + g′2

Aµ (ēLγ
µeL + ēRγ

µeR) , (1.16)

where the vector field Aµ is only coupled to charged leptons, so it can be associated with

the photon, whereas W±
µ and Zµ represent the gauge bosons of weak charged-current and

weak neutral-current respectively.

In order to relate the electromagnetism and weak interactions, along with the Eq. (1.4),

we have
gg′√
g2 + g′2

= e , (1.17)

which leads to the relation between the weak mixing angle and the electromagnetic charge:

sin θW =
e

g
. (1.18)

Finally, we may write the complete lagrangian including electromagnetism, charged-
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current and neutral-current weak interactions, respectively:

L = −e
{
AµJ

µ
em +

1√
2 sin θW

(
W+
µ ν̄eLγ

µeL +W−
µ ēLγ

µνeL
)

+
1

sin θW cos θW
ZµJ

µ
NC

}
,

(1.19)

where

Jµem = − (ēLγ
µeL + ēRγ

µeR) = −ēγµe , (1.20)

JµNC =
1

2
ν̄eLγ

µνeL −
1

2
ēLγ

µeL − sin2 θWJ
µ
em . (1.21)

1.1.2 A touch of QCD

For the sake of completeness, we just mention QCD which is described by the symmetric

group SU(3)C , as already stated. Quantum Chromodynamics is the gauge theory that

describes the strong interaction between colored quarks and is mediated by eight gluons

carrying color. The QCD lagrangian is [7]

L =
∑
q

ψ̄q,a(iγ
µ∂µδab − gsγµtCabACµ −mqδab)ψq,b −

1

4
FA
µνF

Aµν , (1.22)

where

• γµ are the Dirac matrices,

• ψq,a stand for quark-field spinors of mass mq, with a = 1, 2, 3 which is the number

of colors,

• ACµ correspond to the gluon fields, where C goes from 1 to 8, the number of gluons

in QCD,

• tcab are the eight generators of SU(3)c,

• gs is the QCD coupling constant,

• FA
µν = ∂µAAν −∂νAAµ−gsfABCABµACν , with fABC as the structure constants of SU(3)C .

1.2 Neutrinos in the Standard Model

Neutrinos are electrically neutral particles of spin 1
2
. There are three flavors of neutrinos

in the SM, νe, νµ and ντ (Table 1.1), which are left-handed, being associated with a lepton
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of each family as we saw in Sec. 1.1.1 (Table 1.2). We also find their three antiparticles,

the antineutrinos ν̄e, ν̄µ and ν̄τ , which are right-handed particles. Right-handed neutrinos

and left-handed antineutrinos have not been experimentally found, which corresponds to

particles without mass in the Standard Model 4. In the rest of the chapter, we are going

to deepen slightly in neutrino properties in order to provide the reader a first insight into

neutrino theory.

1.2.1 Origin and number of neutrinos

Neutrinos and antineutrinos are particles produced in several processes as, for instance:

• Nuclear β± decay,

A(Z,N) → A(Z + 1, N − 1) + e− + ν̄e ,

A(Z,N) → A(Z − 1, N + 1) + e+ + νe . (1.23)

• Muon decays,

µ+ → e+ + ν̄µ + νe ,

µ− → e− + νµ + ν̄e . (1.24)

• Pion decays,

π+ → e+ + νe ,

π− → e− + ν̄e ,

π+ → µ+ + νµ ,

π− → µ− + ν̄µ . (1.25)

• Tau decays,

τ− → µ− + ν̄µ + ντ ,

τ+ → µ+ + νµ + ν̄τ . (1.26)

4Particles require both chiralities to produce mass in the Standard Model, as we will see in Sec. 1.2.3.
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Figure 1.1: Neutrino weak interactions with leptons. The left diagram stands for charged-
current weak interactions through W±, whereas the right diagram represents neutral-
current weak interactions mediated by Z0.

• Solar neutrino production,

p+ + p+ → 2H + e+ + νe ,

p+ + e− + p+ → 2H + νe ,

3He + p+ → 4He + e+ + νe ,

7Be + e− → 2Li + νe ,

8B → 8Be + e+ + νe . (1.27)

Neutrinos interact with charged leptons through charged-current weak interactions, Fig. 1.1,

coupling with bosons W± in reactions involving

W± → l±α + να(ν̄α) , (1.28)

where α indicates the flavor of the lepton and the neutrino. Similarly, they also participate

in processes mediated by the Z0 boson, the so-called neutral-current weak interactions

Fig. 1.1. These are elastic or quasi-elastic scattering processes and Z0 decays,

Z0 → να ν̄α . (1.29)

Notice that these couplings were given before in Eqs. (1.16) and (1.19).
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Following with the Z0 decay, it allowed to determine the number of light neutrinos.

Indeed, neutrinos from Z0 are not detected directly, but the presence of neutrinos is known

from the difference between the total decay width of the Z0 boson and widths of visible

particles after decaying,

Γinv = Γtot − Γvis = 499.0± 1.5 MeV . (1.30)

This invisible width should correspond to the decay into a pair νν̄ of any flavor. So, consid-

ering that the width of Z0 decaying to one pair is Γνν̄ = 167.2 MeV, we can translate this

into the number of light active neutrinos species (with their corresponding antineutrinos)

as [6, 8]

Nν =
Γinv
Γνν̄

= 2.984± 0.082 , (1.31)

almost three light neutrino flavors, as it is assumed in the Standard Model.

1.2.2 Chirality and helicity of neutrinos

In Quantum Field Theory, fermions can be described by four-component spinors ψ which

obey the Dirac equation, (
iγµ

∂

∂xµ
−m

)
ψ = 0 , (1.32)

where γµ are the Dirac matrices 5

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
(1.33)

and σi are the Pauli matrices, given already in Eq. (1.2). We want to stress the importance

of the combination of Dirac matrices in

γ5 = iγ0γ1γ2γ3 =

(
−1 0

0 1

)
, (1.34)

because, as we will see in the following lines, this matrix will give rise to the chirality

operator.

Using the Eq. (1.32) and the Dirac matrices, taking into account that γi = γ0γ5σi;

we obtain the Dirac equation in a convenient form in terms of γ5, decoupled in two

5Other conventions of these matrices are also used in the literature.
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expressions: (
i
∂

∂x0
(1 + γ5) + iσi

∂

∂xi
(1 + γ5)−mγ0(1− γ5)

)
ψ = 0 , (1.35)(

i
∂

∂x0
(1− γ5)− iσi

∂

∂xi
(1− γ5)−mγ0(1 + γ5)

)
ψ = 0 . (1.36)

From the equations above, we can define two projection operators given by

PL =
1

2
(1− γ5) , PR =

1

2
(1 + γ5) , (1.37)

getting the left-handed and right-handed component of the fermion ψ as

ψL = PLψ, ψR = PRψ and PLψR = PRψL = 0. (1.38)

As we mentioned before, γ5 plays a key role as a chirality operator

γ5ψL,R = ∓ψL,R , (1.39)

where ∓1 correspond to the chirality eigenvalues and ψL,R are the chiral projections of ψ.

Any spinor ψ can be written in terms of its projections as follows

ψ = (PL + PR)ψ = PLψ + PRψ = ψL + ψR . (1.40)

Chirality is related with helicity, in such a way that, if a fermion ψ is a massless particle,

both properties are the same. Now we will see it.

Combining Eqs. (1.35), (1.36) and (1.40), we may rewrite the Dirac equation in terms

of left and right-handed components, obtaining:(
i
∂

∂x0
− iσi

∂

∂xi

)
ψR = mγ0ψL , (1.41)(

i
∂

∂x0
+ iσi

∂

∂xi

)
ψL = mγ0ψR . (1.42)

In the case of vanishing mass, the equations can be rewritten as

i
∂

∂x0
ψR = iσi

∂

∂xi
ψR , (1.43)

i
∂

∂x0
ψL = −iσi

∂

∂xi
ψL , (1.44)
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Figure 1.2: Helicity for neutrino and antineutrino, which is coincident with chirality in
the Standard Model, where mν = 0.

which are “equal” to the Schrödinger equation, with x0 = t and ~ = 1. Using the

definitions E = i ∂
∂t

and pi = −i ∂
∂xi

, Eqs. (1.41) and (1.42) acquire a more compact form

EψL,R = ±σipiψL,R . (1.45)

This equation defines a new operator, the helicity ĥ, as

ĥ =
σ · p
|p|

, (1.46)

which is the projection of the spin over the linear momentum, as we may see in Fig. 1.2.

Notice from Eq. (1.45) that ψL represents a spinor with ĥ = +1 for particles and ĥ = −1

for antiparticles. On the other hand, ψR stands for a spinor with helicity ĥ = −1 for

particles and ĥ = +1 for antiparticles. Therefore, if we neglect the fermion mass, chirality

and helicity are the same.

So that, we may affirm that, in the Standard Model, where the neutrino is a massless

particle, the interacting neutrino is always left-handed, and therefore ĥ = +1,

1

2
(1− γ5)ν = νL , (1.47)

while the antineutrino is always right-handed, with ĥ = −1.

1.2.3 Massless neutrinos

As we will briefly discuss, in the Standard Model neutrinos are particles without mass

and this fact is related with their chirality, studied in the previous section. From the

Higgs mechanism, fermions acquire mass through their couplings to the Higgs field. The
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resulting coupling is known as the Yukawa coupling. Here, we take the lagrangian for the

first family of leptons for illustration:

L = −λe

[
(ν̄eL, ēL)φ0 eR + ēR φ

†
0

(
νeL

eL

)]

= −λe
[
ēL

1√
2
veR + ēR

1√
2
veL

]
= −λe

1√
2
v (ēLeR + ēReL)

= −λe
1√
2
v (ēe) . (1.48)

As we can appreciate, only particles with both (left and right) chiralities couple to the

Higgs boson and thus obtain their mass. In contrast, neutrinos remain massless because

they do not couple to the Higgs field (no evidence of right-handed neutrino or left-handed

antineutrino has been found). But neutrino mass is a reality, so mechanisms beyond the

Standard Model are introduced to generate the neutrino mass, as we will see in the next

section.

1.3 Massive neutrinos

In the Standard Model, neutrinos are taken as particles without mass. However, after the

discovery of neutrino oscillations [1] (Sec. 1.5), the situation has changed and introducing

neutrino masses is necessary. Nevertheless, the absolute value of the neutrino mass has

not been measured yet, because only the mass differences between neutrinos and the

mixing angles enter in neutrino oscillations.

Along with this, there are other mysteries that accompany neutrino masses, as the

mechanism responsible for them and their small size compared with the rest of fermions.

Answering these and other related questions has led people to develop many models in

order to shed light on these mysteries. In what follows, we will discuss the neutrino mass,

taking into account the particle nature (Dirac or Majorana), as well as the mechanism to

originate it.

1.3.1 Dirac vs Majorana particles

Let us start considering the Dirac lagrangian for free particles:

L = ψ̄ (iγµ∂µ −m)ψ , (1.49)
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where the four-component Dirac spinor can be written in terms of two-component left-

handed spinors χ and ξ as [3, 9],

ψ =

(
χ

iσ2ξ
∗

)
=

(
χ

ξ̄

)
, (1.50)

with σ2 as one of the Pauli matrices defined in Eq. (1.2). Therefore, we may expand

Eq. (1.49) in terms of two-component spinor (Eq. (1.50)) obtaining the following expres-

sion:

L = iξσµ∂µξ̄ + iχ̄σ̄µ∂µχ−m
(
ξχ+ χ̄ξ̄

)
= iξ̄σ̄µ∂µξ + iχ̄σ̄µ∂µχ−m

(
ξχ+ χ̄ξ̄

)
, (1.51)

where the following definitions of the Pauli matrices have been used [3],

σµ ≡ (1, ~σ) , σ̄µ ≡ (1,−~σ) . (1.52)

Notice that in Eq. (1.51) the first two terms represent the kinetic energy, while the last

one stands for the Dirac mass term given by

LmD = −m
(
ξT iσ2χ+ χ†iσ2ξ

∗) , (1.53)

where we have used the condition ψ̄ = ψ†γ0.

If we identify the two-component spinors χ and ξ with the chiral-components of some

field ψ [3, 9],

ψ =

(
ψL

ψR

)
=

(
χ

ξ̄

)
, (1.54)

we see that both chiralities (left and right) are necessary in order to produce a Dirac mass

term, as it can be observed from Eq. (1.53). But as we already mentioned in Sec. 1.2.2,

the SM only includes left-handed neutrinos νL ≡ χ, avoiding the right-handed component,

and right-handed antineutrinos νcR, avoiding the left-handed component in this case. As

a consequence, neutrinos remain massless in the SM, as we have discussed in Sec. 1.2.3.

Note that one can rewrite the two-component spinors in Eq. (1.50) as

χ =
1√
2

(ρ1 + iρ2) , ξ =
1√
2

(ρ1 − iρ2) , (1.55)
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so Eq. (1.51) becomes

L = i
2∑

a=1

ρ̄aσ̄
µ∂µρa −

1

2
m

2∑
a=1

(ρaρa + ρ̄aρ̄a) . (1.56)

Each of these ρ fields by itself represents a Majorana particle:

ρ = ρc = Cρ̄T , (1.57)

where C is defined as the charge conjugation operator, which connects a particle p(x, t)

with its antiparticle p̄(x, t) as [10–12]:

C|p(x, t)〉 = ηc|p̄(x, t)〉 , (1.58)

with |ηc| = 1. It can be defined explicitly as

C =

(
−iσ2 0

0 iσ2

)
. (1.59)

Hence, we can separate Eq. (1.56) in two pieces:

L = iρ̄ σ̄µ∂µ ρ−
1

2
m (ρρ+ ρ̄ρ̄) , (1.60)

getting the following Majorana mass term,

LmM = −1

2
m
(
ρT iσ2ρ+ h.c.

)
. (1.61)

From the whole discussion we can find that a four-component Dirac fermion is equiv-

alent to two Majorana fermions of equal mass, represented by two-component spinors.

Hence, the description with a two-component spinor is the most basic representation of a

spin-1/2 fermion and we consider it more general in order to discuss the neutrino mass.

Using a four-component spinor description, we define a Majorana fermion as [3, 9]

ψM = ψcM = C ψ̄TM . (1.62)

We can see from Eq. (1.62) that both two-component spinors are the same for a Majorana
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particle [3, 9]:

ψM =

(
χ

iσ2χ∗

)
=

(
χ

χ̄

)
. (1.63)

Notice that only neutral particles could be described as Majorana.

1.3.2 Producing the neutrino mass

Since neutrinos are massless particles in the Standard Model, extra components have to be

added in order to introduce the neutrino mass. If we want to produce massive neutrinos

without extending the lepton sector, it is necessary to introduce a SU(2)L Higgs triplet [9],

which is written in matrix form as

∆ =

(
∆+
√

2
∆++

∆0 −∆+
√

2

)
. (1.64)

This Higgs triplet will produce the following Yukawa terms in the weak lagrangian [9]:

− 1

2

∑
a,b

gabl
T
aC
−1iσ2∆lb + h.c. , (1.65)

where C is the charge conjugation operator, l represents the SM doublet (Table 1.1) and

gab is the coupling constant. After spontaneous symmetry breaking, the Higgs triplet

acquires a vacuum expected value (vev in what follows), generating a Majorana mass

term as in Eq. (1.61). The following condition has to be verified by the Higgs triplet [13],

〈∆0〉 = −µ∆
〈φ0〉2

M2
∆

, (1.66)

arising from the minimization of the scalar potential. As neutrino masses are proportional

to gab〈∆0〉, the smallness of neutrino mass will be conditioned by the Higgs triplet mass

M∆.

Another way to generate neutrino masses is introducing extra components to the

fermion sector of the SM. For instance, SU(2)L isosinglets, represented by left-handed

spinor fields ρLa, can be added producing Majorana mass terms such as [9]

−
∑
a,b

g′abρ
T
LaC

−1ρLb + h.c. (1.67)

In addition, a Dirac mass term can be induced through the coupling between the SM
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doublet l and the singlet ρL: ∑
a,b

g′′abl̄aiσ2φ
∗Cρ̄TLb + h.c. , (1.68)

with φ as the SM Higgs doublet.

In a very general model of neutrinos, we can find n neutrinos belonging to SU(2)L

doublets and described by two-component spinors ρn, along with m extra neutrinos as

SU(2)L singlets, ρm. The lagrangian of this model is a generalization of Eq. (1.60), which

becomes

L =
n+m∑
α,β

iρ̄α σ̄µ∂
µ ρα −

1

2
(Mαβραρβ + h.c.) , (1.69)

where α and β run from 1 to n + m. The mass matrix M is a symmetric 6 matrix that

can be written in general as

M =

(
ML MD

MT
D MR

)
. (1.70)

Here, the n×n ML submatrix comes from Eq. (1.65) where a Higgs triplet is present, the

m × m MR piece follows from Eq. (1.67) where extra SU(2)L isosinglets couple among

them, and the MD block stems from Eq. (1.68) as a consequence of the coupling between

SU(2)L doublets and singlets.

In the most general case, when all the submatrices described above are present, models

are called Type-I+II seesaw. But if the Higgs triplet is not present and ML = 0, they

will be named Type-I seesaw 7. Finally, if a fermion triplet (TF ) is introduced as a mass

messenger, we have the Type-III seesaw [14]. For a more detailed analysis on this topic,

the reader should consult Refs. [3–5, 9, 12, 14] among others.

1.4 Neutrino mass models

The most popular mechanism to provide the neutrino mass is the seesaw mechanism [15].

Mainly it is based on the idea of generating the effective dimension-five operator O5 =

λLΦLΦ [16], Fig. 1.3 (where L represents a lepton doublet for each family and Φ is the

SM scalar doublet), by the interchange of heavy particles, that could be fermions (Type-I

and Type-III) or scalars (Type-II). This can be achieved in different ways, with several

multiplet contents and different gauge groups. The mass of the messenger determines the

6The symmetry condition implies Mαβ = Mβα.
7Notice that we are using the standard notation, but we can find different notation as in Ref. [9].
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ΦΦ

LL

Figure 1.3: Dimension five operator which leads to the neutrino mass [16].

scale where the global lepton number symmetry is violated due to the presence of new

physics:

mν = λ0
〈Φ〉2

MX

, (1.71)

with λ0 as an unknown dimensionless constant.

The seesaw mechanism is an elegant way of, not only introducing neutrino masses, but

also explaining its smallness, since as the mass of the intermediate particles increases, the

neutrino mass decreases at fixed coupling. In this section we will review some significant

examples of these models.

1.4.1 Type I+II seesaw

In a (3 + 3) neutrino scheme 8, with three left-handed and three right-handed neutri-

nos represented by νL and N c
L respectively, the seesaw mass matrix can be built as in

Eq. (1.70) [9],

M6 =

(
ML MD

MT
D MR

)
. (1.72)

It includes a SU(2) triplet giving rise to the ML mass term, a Higgs doublet leading to the

Dirac mass term MD and a gauge singlet identified with MR. This seesaw mass matrix is

diagonalized by a unitary matrix U6×6 producing six mass eigenstates,

UT
6×6M6 U6×6 = diag [mi,Mi] , (1.73)

8Note that a minimum of two right-handed neutrinos is needed in order to reproduce the observed
light neutrino masses. Here the (3 + 3) case is shown for illustration.
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three for the light neutrinos mi and three for the heavy leptons Mi. Explicitly, the light

neutrino mass is given in a seesaw Type-I+II form by [4]

mν = ML −MDM
−1
R MT

D , (1.74)

where the smallness of neutrino masses stems from assuming MR �MD �ML.

It is easy to see that for a standard Type-I mechanism, the light neutrino mass becomes

mν = −MDM
−1
R MT

D . (1.75)

In order to explain briefly the origin of neutrino mass through seesaw schemes, we

may rewrite the neutrino mass matrix as [17]

Mν =

(
Y3v3 Yν〈Φ〉
Y T
ν 〈Φ〉 MR

)
, (1.76)

where Y3 and Yν are the Yukawa coupling submatrices (complex in general), and v3 and

v2 ≡ 〈Φ〉 are the Higgs triplet vev and the SM Higgs doublet vev respectively. In this

scenario, the effective light neutrino mass is calculated from the equation 9

mν = Y3v3 − YνM−1
R Y T

ν 〈Φ〉
2 . (1.77)

1.4.2 Inverse seesaw

One of the most interesting properties of the seesaw mechanism is its versatility. In

fact, new important features arise when the lepton sector is extended adding extra gauge

singlets, N c
L and SL [18, 19], giving rise to a (3 + 6) description. In this scheme, it

is considered three light states and six heavy states, forming three pseudo-Dirac quasi-

degenerate pairs. In the νL, N c
L and SL basis, the seesaw mass matrix is defined as

Mν =

 0 MD 0

MT
D 0 M

0 MT µ

 , (1.78)

where M and µ are SU(2) singlet complex mass matrices. Note that the νL − νL and

N c
L−N c

L terms are neglected, as suggested in several string models [20], and lepton number

9The naturalness of the Yukawa coupling (Y ∼ 1) would imply the need of a very massive neutral
lepton as the messenger of the seesaw.
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Figure 1.4: Inverse seesaw mechanism where N c
L and SL are included [18].

is broken only by the nonzero µijSiSj mass terms.

This description belongs to the so-called inverse seesaw mechanism, where the masses

of the three light neutrinos are defined, after the diagonalization [21], by

mν = MD(MT )−1 µM−1MT
D . (1.79)

Notice that, in contrast to the standard seesaw mechanism, the smallness of neutrino

mass emerges from the tiny mass value arising from µ 10. In fact, the following condition

characterizes this scheme,

µ�MD �M . (1.80)

This “inverse” behavior of µ induces the name inverse seesaw to this mechanism.

For the sake of clarity, again we can translate Eq. (1.78) in terms of Yukawa couplings

and vevs in order to illustrate the mass generation [4, 18] as it can be seen in Fig. 1.4.

We obtain

Mν =

 0 Yν〈Φ〉 0

Y T
ν 〈Φ〉 0 M

0 MT µ

 (1.81)

for the inverse seesaw mass matrix, Eq. (1.78). From this mass matrix, the light neutrino

mass is expressed as

mν = 〈Φ〉2Yν(MT )−1 µM−1Y T
ν . (1.82)

10The neutrino mass disappears when µ→ 0.
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1.4.3 Linear seesaw

An alternative description of the seesaw mechanism arises from a SO(10) unified model [22].

It is based on the same basis as inverse seesaw, νL, N c
L and SL, but the seesaw mass matrix

obtained after the rupture of the extended gauge structure is

Mν =

 0 MD ML

MT
D 0 MR

MT
L MT

R 0

 , (1.83)

giving rise to the following effective neutrino mass:

mν = MD(MLM
−1
R )T + (MLM

−1
R )MT

D . (1.84)

It is worth noting that if ML → 0, the three light neutrinos become massless, recovering

the SM.

Again, in order to shed light to the origin of neutrino mass, we rewrite Eq. (1.83) as

Mν =

 0 Yν〈Φ〉 F 〈χL〉
Y T
ν 〈Φ〉 0 F̃ 〈χR〉

F T 〈χL〉 F̃ T 〈χR〉 0

 , (1.85)

leading to the following light neutrino mass:

mν '
〈Φ〉2

Munif

[
Yν(FF̃

−1)T + (FF̃−1)Y T
ν

]
, (1.86)

where Munif indicates the unification scale and F and F̃ represent independent combina-

tions of Yukawa coupling of SL.

One can observe that Eqs. (1.84) and (1.86) are linear in the Yuakawa couplings of

Dirac neutrinos. This is the reason why this description is called linear seesaw.

1.4.4 Left-right symmetric model

Left-right symmetric models are based on the SU(3) × SU(2)L × SU(2)R × U(1)B−L

structure and are characterized by the parity conservation of weak interactions. It implies

that each left-handed fermion must have a right-handed partner, that is, νL and NR for

the neutrino sector. This scenario generates a seesaw mass matrix as in Eq. (1.72), with
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the following expression in terms of Yukawa couplings and vacuum expected values:

Mν =

(
YL〈∆L〉 Yν〈Φ〉
Y T
ν 〈Φ〉 YR〈∆R〉

)
. (1.87)

As in the previous models, the basis is defined by νL and N c
L; YL,R indicate the left-right

Yukawa couplings and 〈∆L,R〉 are the vevs producing the left-right Majorana mass terms.

The matrix Mν can be diagonalized using a perturbative method [17], getting the

following expression for light neutrino masses:

mν ≈ YL〈∆L〉 − YνY −1
R Y T

ν

〈Φ〉2

〈∆R〉
. (1.88)

It is important to reiterate that the main idea of these models is that the smallness of

neutrino mass is induced through the exchange of a heavy singlet right-handed neutrino

(Type-I) or a heavy scalar boson (Type-II).

1.4.5 Radiative models

Neutrino masses can be also produced as a consequence of radiative corrections [23]. For

instance, in the Babu model they can appear at two-loop level [24] with this expression:

Mν ∼ λ0

(
1

16π2

)2

fYlhYlf
T 〈Φ〉

2

(mk)2
〈σ〉 . (1.89)

Here, it is introduced a doubly-charged scalar k++ that is much heavier than h+, l indicates

a charged lepton, f , h and Yl represent the Yukawa couplings and 〈σ〉 is a vev of a

SU(3)× SU(2)× U(1) singlet [25].

More details can be found in Refs. [23–25].

1.4.6 Supersymmetry as origin of neutrino mass

Low-energy supersymmetry can generate neutrino masses [26] by means of the R-parity

symmetry rupture, which produces lepton number violation. This could occur sponta-

neously thanks to an SU(3)×SU(2)×U(1) singlet sneutrino, which yields a non zero vev

[27–29]. The general expression related with this kind of models is given by the following

approximation:

Mν ∼
(

1

16π2

)
〈Φ〉2 A

m0

YdYd . (1.90)
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For an extensive description of supersymmetry as origin of neutrino mass, please see

Refs. [30, 31].

1.5 Neutrino oscillations in vacuum

Neutrino oscillations are the most sensitive evidence of neutrino mass and, therefore, that

physics beyond the Standard Model is needed. The idea of neutrino oscillations is very

simple and was introduced by Pontecorvo in 1957 [32, 33].

Neutrinos are produced as flavor eigenstates as a result of charged-current weak in-

teractions. The neutrino hamiltonian in this basis is not diagonal. This fact makes a

difference between the flavor states, νe, νµ and ντ , and the mass states, ν1, ν2 and ν3.

Thus, since the flavor states are a combination of the mass states (Eq. (1.92)), the prob-

ability of finding a neutrino with the same flavor state that was created oscillates with

time, because the mass states evolve as

|νi(t)〉 = e−iEit|νi(0)〉 . (1.91)

This phenomenon is called neutrino oscillations.

For their detection, let us consider, for instance, a pion beam decaying into a muon

and a muon-neutrino (π± → µ± + νµ(ν̄µ)). Although only muon-neutrinos are produced

initially, some electrons can be registered in the detector. This result is obtained be-

cause some muon-neutrinos have oscillated to electron-neutrinos producing electrons via

charged-current weak interactions.

A similar phenomenon was detected by the Super-Kamiokande Collaboration in June

of 1998 [1] when reported the muon-neutrino disappearance (νµ → ντ ) from their atmo-

spheric neutrino data, providing the first evidence of neutrino oscillations [34]. In sub-

sequent years, several experiments have evidenced the neutrino oscillation phenomenon

as SNO [35, 36], which measured the solar neutral neutrino flux through neutral and

charged-current weak interactions, establishing the conversion of electron-neutrinos into

muon and tau-neutrinos, or KamLAND [37] that confirmed neutrino oscillations at the

solar sector. Finally, the oscillations of atmospheric neutrinos were also confirmed at the

long baseline accelerator experiments as K2K [38], T2K [39–41] and MINOS [42–44].
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1.5.1 The neutrino oscillation probability in vacuum

Let us start considering that there are n flavor eigenstates, να, which are connected with

n mass eigenstates νi, through the relations [10, 12]

|να〉 =
∑
i

U∗αi|νi〉 , |νi〉 =
∑
α

Uαi|να〉 , (1.92)

where greek indices represent flavor states and latin indices mass eigensates. U is the

neutrino mixing matrix, also known as Maki-Nakagawa-Sakata (MNS) matrix for the

three-neutrino case 11, and it satisfies the following properties:

U †U = 1 ,
∑
i

UαiU
∗
βi = δαβ ,

∑
α

UαiU
∗
αj = δij. (1.93)

For the case of n active neutrinos, U is a n × n matrix characterized by n(n − 1)/2

Euler angles and n(n + 1)/2 phases. If we are considering Dirac neutrinos, the number

of physical phases is (n − 1)(n − 2)/2, being responsible of CP violation in the lepton

sector. However, if neutrinos have Majorana nature the matrix U contains n(n−1)/2 CP

violation phases. Then, in general, the U matrix can be written as

U = V P, (1.94)

where V is a matrix containing the Dirac phases, and P is a diagonal matrix including

(n− 1) Majorana phases (β1, β2, β3, . . . , βn−1) in the form

P = diag(1, eiβ1 , eiβ2 , ...., eiβn−1) . (1.95)

For example, with n = 3 (usual number of light active neutrinos) we find one Dirac phase

and two Majorana phases, all three associated with CP violation.

Let us assume that a flavor state |να〉 has been produced in t = 0. What is the

probability of finding a neutrino in a flavor state |νβ〉 after a time t? We should follow the

evolution of the system in order to answer this question. The initial state of the produced

neutrino is

|ν(x, 0)〉 = |να〉 =
∑
i

U∗αi|νi〉 ; (1.96)

11An explicit expression of this matrix is given in Sec. 1.5.3 and Refs. [7, 9, 45].
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and after evolving a time t,

|ν(x, t)〉 =
∑
i

U∗αie
−iEit|νi〉 =

∑
i,β

U∗αiUβie
ipixe−iEit|νβ〉 , (1.97)

where pi is the momentum of the emitted neutrino and Eq. (1.92) has been used.

Therefore, the probability amplitude of finding a neutrino at a time t in the flavor

state |νβ〉 is given by

A(να → νβ; t) = 〈νβ|ν(x, t)〉 =
∑
i

U∗αiUβie
ipixe−iEit . (1.98)

Considering the emitted neutrino as a relativistic particle, pi � mi, we can do the follow-

ing approximation,

Ei =
√
m2
i + p2

i ' pi +
m2
i

2pi
' E +

m2
i

2E
, (1.99)

obtaining

A(να → νβ; t) =
∑
i

U∗αiUβi exp

(
−im

2
i

2

L

E

)
= A(να → νβ;L) . (1.100)

Here, it is considered t ' x = L since relativistic neutrinos travel at nearly the speed of

light, being L the distance to the detector 12. From Eq. (1.100), we can find the expression

for the transition probability [12]:

Pνα→νβ(L,E) = |A(α→ β; t)|2 =
∑
i,j

U∗αiUαjUβiU
∗
βje
−i(Ej−Ei)t (1.101)

=
∑
i

|U∗αi|2|Uβi|2 + 2
∑
i>j

Re
[
U∗αiUαjUβiU

∗
βj

]
exp

(
−i

∆m2
ijL

2E

)
,

with the mass difference defined as

∆m2
ij = m2

i −m2
j . (1.102)

At this point, we should do some remarks about the expression of the oscillation

probability, Eq. (1.101):

• If L� 2E/∆m2
ij, the oscillatory term is averaged giving rise to a constant conversion

probability.

12Notice that we are using natural units, } = c = 1.
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• At least one mass splitting has to be different from zero, ∆m2
ij 6= 0, which implies

that two neutrinos have to be massive in order to observe oscillations among three

neutrinos.

• The mixing among neutrinos is necessary in order to have oscillations, so the off-

diagonal elements of U must be different from zero.

• The oscillation probability is the same if we consider Dirac neutrinos or Majorana

neutrinos. In particular, this means that we can not distinguish between Dirac and

Majorana neutrinos by studying neutrino oscillations.

• From the unitarity of the matrix U , we have that∑
β=e,µ,τ

P (α→ β; t) =
∑

β=e,µ,τ

P (ᾱ→ β̄; t) = 1. (1.103)

A more useful way to write the oscillation probability in Eq (1.101) is separating the

real and imaginary parts of the product of matrices
[
U∗αiUαjUβiU

∗
βj

]
, through the unitarity

condition ∑
i

|Uαi|2|Uβi|2 = δαβ − 2
∑
i>j

Re
[
U∗αiUαjUβiU

∗
βj

]
. (1.104)

From the above equation, we can rewrite the oscillation probability as

Pνα→νβ(L,E) = δαβ − 2
∑
i>j

Re
[
U∗αiUαjUβiU

∗
βj

] [
1− cos

(
∆m2

ijL

2E

)]

+ 2
∑
i>j

Im
[
U∗αiUαjUβiU

∗
βj

]
sin

(
∆m2

ijL

2E

)
. (1.105)

And using some simple algebra we get the most usual expression [10, 12]:

Pνα→νβ(L,E) = δαβ − 4
∑
i>j

Re
[
U∗αiUαjUβiU

∗
βj

]
sin2

(
∆m2

ijL

4E

)

+ 2
∑
i>j

Im
[
U∗αiUαjUβiU

∗
βj

]
sin

(
∆m2

ijL

2E

)
. (1.106)

Antineutrino oscillations

The derivation of the oscillation probability for antineutrinos is straightforward following

the same steps as for neutrinos. In analogy with the neutrino case, we can define the
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antineutrino flavor states as

|ν̄α〉 =
∑
i

Uαi|ν̄i〉 . (1.107)

If we use Eq. (1.107), we obtain the same expressions that in Eqs. (1.101), (1.105)

or (1.106), only taking into account that Uαj → U∗αj and Uβi → U∗βi,

Pν̄α→ν̄β(L,E) = δαβ − 4
∑
i>j

Re
[
UαiU

∗
αjU

∗
βiUβj

]
sin2

(
∆m2

ijL

4E

)

+ 2
∑
i>j

Im
[
UαiU

∗
αjU

∗
βiUβj

]
sin

(
∆m2

ijL

2E

)
. (1.108)

CP, T and CPT implications

The CP transformation interchanges neutrinos with positive helicity to antineutrinos with

negative helicity, connecting the oscillation channels,

να → νβ ⇐⇒ ν̄α → ν̄β . (1.109)

After this transformation we obtain Eq. (1.108) from Eq. (1.106). In general, the mixing

matrix is complex and contains phases, which could lead to CP symmetry violation. Such

violation can be measured in neutrino oscillation experiments as

ACPαβ = Pνα→νβ − Pν̄α→ν̄β . (1.110)

On the other hand, the T symmetry interchanges the initial and final states of a given

processes and therefore relates the oscillation channels,

να → νβ ⇐⇒ νβ → να ,

ν̄α → ν̄β ⇐⇒ ν̄β → ν̄α . (1.111)

T symmetry violation can be also observed in neutrino oscillation experiments through

the observables

ATαβ = Pνα→νβ − Pνβ→να ,

ĀTαβ = Pν̄α→ν̄β − Pν̄β→ν̄α . (1.112)

Finally, if we apply both transformations at the same time, we get the CPT transfor-
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mation,

να → νβ ⇐⇒ ν̄β → ν̄α , (1.113)

which is expected to be conserved as an underlying principle of the Standard Model:

Pνα→νβ = Pν̄β→ν̄α . (1.114)

1.5.2 Oscillations with two neutrinos

The most simple illustration of neutrino oscillations considers only two flavor states:

νe and νµ for example, with their two corresponding mass states, ν1 and ν2. In this

approximation, the mixing matrix U is a 2× 2 matrix given by

U =

(
cos θ sin θ

− sin θ cos θ

)
, (1.115)

where θ is the mixing angle. From Eq. (1.106), we get the following expression for the

oscillation probability in the appearance channel,

P (νe → νµ) = P (νµ → νe) = P (ν̄e → ν̄µ) = P (ν̄µ → ν̄e)

= sin2 2θ sin2

(
∆m2L

4E

)
, (1.116)

whereas for the disappearance channel we have the following survival probability,

P (νe → νe) = 1− P (νe → νµ) , (1.117)

as we can derive from Eq. (1.103).

Sometimes, it is convenient to write the probability Eq. (1.116) in the following form:

P (να → νβ) = sin2 2θ sin2

(
1.27

∆m2L

E

)
, (1.118)

where natural units have been used (} = c = 1) and the 1.27 factor follows from the

conversion of km into eV−1, with ∆m2 and E given in eV2 and GeV respectively.

At this point, we should do a reflexion: why is the study of the two-neutrino case

useful if we know the existence of three neutrinos at least?

• The oscillation probability of two-neutrino case is much simpler than three neutrinos.
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• Many experiments are not sensitive to all mass-splittings and mixing angles, so the

data can be analyzed by considering the two-neutrino approximation, as we will see

in Sec. 1.5.3.

1.5.3 Oscillations with three neutrinos

In this section, we will introduce the oscillation mechanism for three generations of neu-

trinos, the standard number of light active neutrinos. For this purpose, we start providing

a parameterization for the lepton mixing matrix U3×3, considering it unitary 13. It is a

3× 3 matrix which can be written, using the Okubo’s notation [46], as a product of three

complex rotations: 1 0 0

0 c23 e−iφ23s23

0 −eiφ23s23 c23


 c13 0 e−iφ13s13

0 1 0

−eiφ13s13 0 c13


 c12 e−iφ12s12 0

−eiφ12s12 c12 0

0 0 1

,
(1.119)

where cij and sij represents cos θij and sin θij respectively. Eq. (1.119) leads to the sym-

metrical representation of the lepton mixing matrix 14 [9, 45] c12c13 s12c13e
−iφ12 s13e

−iφ13

−s12c23e
iφ12 − c12s23s13e

−i(φ23−φ13) c12c23 − s12s23s13e
−i(φ12+φ23−φ13) s23c13e

−iφ23

s12s23e
i(φ12+φ23) − c12c23s13e

iφ13 −c12s23e
iφ23 − s12c23s13e

−i(φ12−φ13) c23c13

.
(1.120)

This symmetric parameterization is equivalent to the PDG [7] description of U , c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

× diag(1, eiβ1 , eiβ2), (1.121)

where δ is the Dirac CP violation phase and β1 and β2 are the phases associated to

Majorana neutrinos. The connection between Eq. (1.120) and Eq. (1.121) is given by the

13This is not a general condition since in extended models, where more than 3 neutrinos are considered,
the lepton mixing matrix involving three active neutrinos is not unitary, as we will see in chapter 5.

14We want to emphasize this parameterization of the lepton mixing matrix U because it will be used
later in chapter 5, since it is more intuitive in order to work with more than three neutrinos.
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following relation of phases:

δ = φ13 − φ12 − φ23

β1 = φ12 (1.122)

β2 = φ12 + φ23

Although the mixing matrix has been written in Eq. (1.120) using all physical phases

φij, only one combination of them can be observed in neutrino oscillation experiments [45]:

I123 = φ12 + φ23 − φ13 = −δ . (1.123)

Obtaining the expression of the neutrino oscillation probability in the case of three

families is straightforward from Eq. (1.106), taking into account that latin indices go from

1 to 3, and there are only two independent mass-splittings, ∆m2
21 and ∆m2

31. With these

considerations we finally get:

P (να → νβ) = δαβ − 4
3∑

i>j=1

Re
[
U∗αiUαjUβiU

∗
βj

]
sin2

(
∆m2

ijL

4E

)

+ 2
3∑

i>j=1

Im
[
U∗αiUαjUβiU

∗
βj

]
sin

(
∆m2

ijL

2E

)
. (1.124)

This is the most general expression of the neutrino oscillation probability in vacuum

for three generations. But in particular, we can reduce this expression to a case of two-

neutrino flavors, as we commented in Sec. 1.5.2. For instance, for some atmospheric,

reactor and accelerator neutrino experiments we can assume that

∆m2
21

2E
L� 1 , (1.125)

giving rise to a two-neutrino probability [47]:

Pνα→νβ(L,E) = 4|Uα3|2|Uβ3|2 sin2

(
∆m2

31

4E
L

)
. (1.126)

For the sake of completeness, we consider another limiting case concerning solar neu-

trinos and long baseline reactor experiments (as KamLAND [37]), where it is assumed

that
∆m2

31

2E
L ' ∆m2

32

2E
L� 1 . (1.127)
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Figure 1.5: Feynman diagrams of neutrino interactions in matter.

In this case, the oscillations related to the large mass splittings, ∆m2
31 and ∆m2

32, are

very fast, so they can be averaged. Thus, the survival probability presents the following

form [47]:

Pνe→νe(L,E) ' cos4 θ13P2 + sin θ4
13 , (1.128)

where P2 is the νe survival probability in the case of two neutrinos:

P2 = 1− sin2 2θ12 sin2

(
∆m2

21

4E
L

)
. (1.129)

1.6 Neutrino oscillations in matter

Neutrinos propagating in matter are subject to interactions with particles in the medium.

They can be absorbed by the matter constituents, or suffer coherent and incoherent

scattering in their way through matter. These interactions are encoded in an effective

potential which depends on the density of fermions in the medium and modifies the

mixing of neutrinos, leading to an effective mixing angle in matter which can be large

even for small values of the vacuum mixing angle. Thus, matter can enhance the flavor

conversion of neutrinos, giving rise to a resonant effect under certain conditions of medium

density and neutrino energy. This is known as the Mikheyev-Smirnov-Wolfenstein (MSW)

effect [12, 48, 49] and it explains the so-called solar neutrino problem [47, 50–55]. We will

be back to this effect in the following lines.

1.6.1 Neutrino evolution in matter

In their trip through matter, neutrinos interact with fermions by means of neutral-current

weak interactions (NC) regardless of their flavor, but only electron-neutrinos do it with
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electrons through charged-current weak interactions (CC), as we can see in Fig. 1.5.

In the case of electron-neutrinos interacting with electrons through CC, the effective

hamiltonian has the following expression:

HCC =
GF√

2
[ēγµ(1− γ5)νe] [ν̄eγ

µ(1− γ5)e] , (1.130)

where GF is the Fermi constant 15. After a Fierz transformation [11, 12, 57, 58] we

obtain:

HCC =
GF√

2
[ēγµ(1− γ5)e] [ν̄eγ

µ(1− γ5)νe] . (1.131)

The effective potential VCC is given by

VCC = 〈νe|
∫
d~xHCC(~x)|νe〉 . (1.132)

After solving this integral [11, 12], we get

VCC =
√

2GFNe , (1.133)

with Ne being the electron number density in the medium. Similarly, we can proceed

in order to calculate the NC contributions to the potential (VNC), considering, in this

case, all neutrino flavors in Fig. 1.5. Again, we start with the neutral-current effective

hamiltonian,

HNC =
GF√

2

∑
α=e,µ,τ

[ν̄αγ
µ(1− γ5)να]

∑
f=e,n,p

[
f̄γµ(gfV − g

f
Aγ5)f

]
, (1.134)

where gfV and gfA are the vector and axial coupling constants of the Standard Model

respectively. In an electrically neutral medium, contributions coming from protons and

electrons are canceled, so they have no influence on the potential VNC :

geV = −1

2
+ 2 sin2 θW ,

gpV =
1

2
− 2 sin2 θW , (1.135)

gnV = −1

2
.

15Notice that Eq. (1.130) is related to Eqs. (1.16) and (1.19) considering GF ≡
√
2
8

(
g

MW

)2
[56] in

natural units.
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Therefore, the matter potential due to neutral-current weak interactions is given by [11, 12]

VNC = −1

2

√
2GFNn , (1.136)

where Nn is the neutron number density. Then, considering all contributions, the matter

potential for each type of neutrino will be expressed as follows:

Vνe = VCC + VNC =
√

2GF

(
Ne −

Nn

2

)
, (1.137)

Vνµ = Vντ = VNC =
√

2GF

(
−Nn

2

)
. (1.138)

Notice that, since antineutrinos have opposite isospin, we have to change Vνα → −Vν̄α .

Let us now consider the evolution of neutrinos in matter, starting with the most simple

scheme of two neutrinos. The evolution equation for neutrinos in vacuum in the flavor

basis 16 is given by

i
d

dt

(
νe

νµ

)
= U

(
E1 0

0 E2

)
U †

(
νe

νµ

)
, (1.139)

i
d

dt

(
νe

νµ

)
=

(
−∆m2

4E
cos 2θ ∆m2

4E
sin 2θ

∆m2

4E
sin 2θ ∆m2

4E
cos 2θ

)(
νe

νµ

)
. (1.140)

In order to derive the neutrino evolution in matter we have to introduce the matter

potentials affecting νe and νµ:

i
d

dt

(
νe

νµ

)
=

(
−∆m2

4E
cos 2θ + VCC

∆m2

4E
sin 2θ

∆m2

4E
sin 2θ ∆m2

4E
cos 2θ

)(
νe

νµ

)
. (1.141)

Note that the neutral-current potential VNC does not appear because it is common to

electron-neutrinos and muon-neutrinos. Therefore, it does not modify the Schrödinger

equation (Eq. (1.141)) and can be absorbed 17.

16For the case with matter, it is more convenient to use the flavor basis because the effective potentials
are diagonal in this basis.

17Having iψ̇ = Hψ, we can add a phase to each diagonal term of H, such that H ′ = H + α. In this
case, if we define ψ

′
= e−iαtψ we can find easily that iψ̇

′
= Hψ

′ ⇐⇒ iψ̇ = Hψ.
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1.6.2 Oscillations in a medium of constant density

After deriving the hamiltonian in matter, further assumptions can be made in order to

simplify the study of matter effects in neutrino oscillations. For instance, we can consider

that the matter density is constant, i.e. Ne = constant.

After the diagonalization of the effective hamiltonian in matter, we find the following

mass eigenstates:

νm1 = νe cos θm + νµ sin θm (1.142)

νm2 = −νe sin θm + νµ cos θm ,

where θm is the mixing angle in matter, related with the vacuum mixing parameters by

tan 2θm =
∆m2

2E
sin 2θ

∆m2

2E
cos 2θ −

√
2GFNe

. (1.143)

Finally, the oscillation probability in a medium of constant density has the following

expression:

Pm
νe→νµ = sin2 2θm sin2

(
∆m2

matt

4E
L

)
, (1.144)

with the energy difference given by

Em
1 − Em

2 =
∆m2

matt

2E
=

[(
∆m2

2E
cos 2θ −

√
2GFNe

)2

+

(
∆m2

2E

)2

sin2 2θ

]1/2

. (1.145)

Note that the probability in matter of constant density, Eq. (1.144), is analogous to

the probability in vacuum, Eq. (1.116), considering the mixing parameters in matter,

Eqs. (1.143) and (1.145).

Let us mention a special condition in a few lines. As it is derived from the oscillation

amplitude,

sin2 2θm =

(
∆m2

2E

)2

sin2 2θ(
∆m2

2E
cos 2θ −

√
2GFNe

)2
+
(

∆m2

2E

)2
sin2 2θ

, (1.146)

a resonance effect is produced when the condition

VR ≡
√

2GFN
R
e =

∆m2

2E
cos 2θ (1.147)

is satisfied, being NR
e the electron density at the resonance point and VR the resonance
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potential. This is known as the Mikheyev-Smirnov-Wolfenstein (MSW) effect [12, 48, 49]

and it explains the behavior of neutrino oscillations inside a material medium, as the

Earth or the Sun.

1.6.3 Oscillations in an adiabatic medium

Let us now consider a medium where the density is variable. With this condition,

Eq. (1.141) is not easy to solve and, in general, it is not possible to find an analytic

solution, so numerical techniques have to be applied. However, when the density changes

slowly (adiabatic medium), Eq. (1.141) can be worked out, obtaining an approximate

analytic solution.

For an adiabatic medium as we have described above, the mixing angle in matter θm,

defined in Eq. (1.143), depends on the medium density, Ne. Therefore, as neutrino travels

through the adiabatic medium, θm changes, acquiring a time dependence θm(t):(
νe

νµ

)
=

(
cos θm sin θm

− sin θm cos θm

)(
νm1

νm2

)
= U(θm)

(
νm1

νm2

)
, (1.148)

The evolution equation in the mass basis [11] is

i

(
ν̇m1

ν̇m2

)
= U †(θm)Mm

WU(θm)

(
νm1

νm2

)
− iU †(θm)U̇(θm)

(
νm1

νm2

)
, (1.149)

where we have used,

d

dt

(
νe

νµ

)
= U̇(θm)

(
νm1

νm2

)
+ U(θm)

(
ν̇m1

ν̇m2

)
. (1.150)

Writing Eq. (1.149) in a more suitable way, we obtain

i

(
ν̇m1

ν̇m2

)
=

(
Em

1 (t) −iθ̇m(t)

iθ̇m(t) Em
2 (t)

)(
νm1

νm2

)
, (1.151)

where Em
1,2(t) are defined in Eq. (1.145), taking into account their dependence with the

variation of Ne in the adiabatic medium and, as a consequence, their time dependence.

As it can be observed, there is a significative difference with respect to Eq. (1.139) since

the hamiltonian is not diagonal in this case. This is due to the time dependence of θm in

a medium where the density is not constant, changing the mass basis too. Nevertheless,
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in an adiabatic medium we find that

|θ̇m| � |Em
1 − Em

2 | , (1.152)

then the off-diagonal terms in the evolution equation, Eq. (1.151), are small and can be ne-

glected. This is called the adiabatic approximation, and it can be used when the adiabatic

condition [11, 47],

1

γ
≡ 2|θ̇m|
|Em

1 − Em
2 |

=
∆m2

2E
sin 2θ

|Em
1 − Em

2 |3
|V̇CC | � 1 , (1.153)

is satisfied. Here, γ is the adiabaticity parameter, with |Em
1 − Em

2 | and VCC defined by

Eqs. (1.145) and (1.133) respectively.

In order to achieve a better understanding of the adiabatic case, an illustrative example

will be very useful. As starting point, we consider the usual description of neutrino mixing

in a two flavor scheme:

νe = νm1 cos θm + νm2 sin θm , (1.154)

νµ = −νm1 sin θm + νm2 cos θm , (1.155)

or their complementary expressions:

νm1 = νe cos θm − νµ sin θm , (1.156)

νm2 = νe sin θm + νµ cos θm . (1.157)

Under this description, an electron-neutrino νe is produced as initial state in a medium

with very high density (the core of the Sun, for instance), which implies VCC � VR. We

may redefine Eq. (1.143) as

tan 2θm =
tan 2θ

1− VCC
VR

, (1.158)

deriving that the matter mixing angle in the production point θim is approximately equal

to π/2. Then, no neutrino mixing occurs due to the matter effect and therefore νe is a pure

νm2 . As neutrino travels through matter, the density decreases, diminishing the related

mixing angle in matter and giving rise to an increase in the neutrino mixing up its maximal

value θm = π/4, which is the value of the matter mixing angle at the resonance point

(VCC = VR). Continuing its journey, the neutrino reaches zones with smaller density

and, as a consequence, the mixing angle in matter keeps decreasing until a minimum

identified with the vacuum mixing angle θfm = θ, when VCC � VR. Summarizing this
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example, we can say that the electron-neutrino νe, produced initially as νm2 , evolves to

νe sin θ0 + νµ cos θ0 during its propagation.

As it can be observed, there is no transition between the mass eigenstates νm2 and

νm1 (the neutrino state remains as νm2 ). On the other hand, a variation in the flavor

composition is produced as neutrino propagates in matter because θm depends on the

matter density, leading to the following transition probability between the two flavor

eigenstates:

P (νe → νµ) = cos2 θ. (1.159)

In a more general case, where no initial conditions are defined, we find the following

expression for a newborn neutrino:

ν(ti) = νe = cos θimν
m
1 + sin θimν

m
2 . (1.160)

After propagation in matter, the final neutrino state becomes [47]

ν(tf ) = cos θime
−i

∫ tf
ti

Em1 (t′)dt′νm1 + sin θime
−i

∫ tf
ti

Em2 (t′)dt′νm2 (1.161)

at a time tf . Keeping in mind the time dependence (due to density dependence) of θm,

we find that the transition probability is expressed as

Pνe→νµ =
1

2
− 1

2
cos 2θim cos 2θfm −

1

2
sin 2θim sin 2θfm cos Φ , (1.162)

with

Φ =

∫ tf

ti

(Em
1 − Em

2 )dt′ . (1.163)

Notice that, if the high density initial condition and θfm = θ final condition are included

in Eq. (1.162), the transition probability recovers the form of Eq. (1.159).

1.6.4 Oscillations in a non-adiabatic medium

As a final case, we will analyze the most generic case, when the adiabaticity condition

is not fulfilled and the medium density does not vary softly. In this framework, where

|θ̇m| ∼ |Em
1 − Em

2 |, transitions between the eigenstates νm1 and νm2 are allowed due to

the violation of adiabaticity, giving rise to non-zero off-diagonal terms in Eq. (1.151).

Under these requirements, the conversion probability in a non-adiabatic medium is given
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Figure 1.6: Plots stemming from the χ2 analysis for the neutrino oscillation parame-
ters [59].

by [11, 47]

P (νe → νµ) ' 1

2
− 1

2
cos 2θim cos 2θfm(1− 2PLZ) , (1.164)

where PLZ is the transition probability between νm1 and νm2 , known as Landau-Zener

probability [11]. This probability is expressed as

PLZ ' exp
(
−π

2
γr

)
. (1.165)

In the above expression, γr stands for the adiabaticity parameter at the resonant point,

given by the MSW condition Eq. (1.147), and it is presented as follows [11, 47]:

γr =
sin2 2θ

cos 2θ

∆m2

2E

∣∣∣∣VCCV̇CC

∣∣∣∣
res

. (1.166)

In the adiabatic limit, γr � 1, when the Landau-Zener probability vanishes, the proba-

bility defined in Eq. (1.162) is recovered.
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Table 1.3: Neutrino oscillation parameters from a global fit performed after Neutrino-2014
conference [59].

Parameter Best fit ± 1σ 2σ range 3σ range

∆2
21 [10−5 eV2] 7.60+0.19

−0.18 7.26− 7.99 7.11− 8.18

∆2
31 [10−3 eV2] (NH) 2.48+0.05

−0.07 2.35− 2.59 2.30− 2.65

∆2
31 [10−3 eV2] (IH) 2.38+0.05

−0.06 2.26− 2.48 2.20− 2.54

sin2 θ12/10−1 3.23± 0.16 2.92− 3.57 2.78− 3.75

sin2 θ23/10−1 (NH) 5.67+0.32
−1.15 4.17− 6.22 3.95− 6.42

sin2 θ23/10−1 (IH) 5.73+0.25
−0.38 4.38− 6.20 4.05− 6.39

sin2 θ13/10−2 (NH) 2.10+0.14
−0.09 1.90− 2.35 1.79− 2.47

sin2 θ13/10−2 (IH) 2.16+0.10
−0.12 1.93− 2.38 1.82− 2.50

δ/π (NH) 1.48+0.43
−0.39 0.00− 0.31 & 0.72− 2.00 0.00− 2.00

δ/π (IH) 1.48+0.28
−0.29 0.00− 0.04 & 0.89− 2.00 0.00− 2.00

To finish this section, it is worth noting that the analysis performed above could be

completed introducing a third neutrino. We can find works with a three-neutrino scheme

in Refs. [11, 47], for example.

1.7 Oscillation data

In order to close this review of neutrino features in the Standard Model and beyond, we

will summarize neutrino oscillation data coming from neutrino experiments. In particular,

we will use [59] as reference 18, which includes an update of neutrino oscillation parameters

performed after the Neutrino-2014 conference [62]. Specifically, a global analysis was done

using the last data of Double Chooz [62, 63], Daya Bay [64–66] and RENO [66, 67] reactor

experiments, together with T2K [39–41] and MINOS [42–44] results. The latest solar data

from Super-Kamiokande (SK in what follows) [68, 69] and SNO [70, 71], as well as older

solar data coming from Homestake [50], Gallex/GNO [72], SAGE [73], Borexino [74],

SK-I [75] and SK-II [76] experiments are also included.

18We can find other compilations of neutrino oscillations data in Refs. [60] and [61], for instance.
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The value of the most relevant neutrino oscillation parameters are compiled in Fig. 5.9

and Table 1.3. Notice that NH stands for Normal Hierarchy, where ∆m2
31 > 0, and IH

indicates Inverted Hierarchy, with ∆m2
31 < 0.
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Chapter 2

Non-Standard Interactions

The Standard Model is one of the most successful theories in particle physics, being

confirmed in most of the existing experiments of high energy physics. However, the

SM introduces neutrinos as massless particles (Sec. 1.2.3), contradicting the neutrino

oscillation measurements [59]. Hence, the SM is not the end of the road and needs to

be revised in order to introduce neutrino masses and mixings, giving rise to new physics

beyond the Standard Model. Most of these models, which include mechanisms of neutrino

mass generation (such as seesaw schemes, described in Sec. 1.4), imply extra interactions

called Non-Standard Interactions (NSI). So far, there is no experimental evidence of the

existence of interactions beyond those described within the framework of the SM plus

oscillations, although their study is interesting from a phenomenological point of view,

since their presence might indicate what type of physics beyond the Standard Model is

favored.

These new interactions were used to explain the solar [50–54] and the atmospheric

anomalies [1, 77–82], since NSI could induce neutrino conversions, as a resonant effect,

even in the absence of the neutrino mass [83]. After the results of the KamLAND ex-

periment it became clear that NSI can only play a sub-leading role [2, 84–86] and that

neutrino oscillations is the main mechanism to explain neutrino data. Indeed, there exist

in the literature several theoretical and phenomenological analyses of NSI involving ac-

celerator, reactor, solar or supernova neutrino experiments. Combining data from all of

these experiments it is possible to obtain bounds on NSI parameters, as we will see later

in chapters 3 and 4.

63
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Table 2.1: Coupling constants of fermions with the neutral-current weak boson Z.

NC couplings gfL gfR

νe, νµ, ντ
1
2

0

e, µ, τ −1
2

+ sin2 θW sin2 θW

u, c, t 1
2
− 2

3
sin2 θW −2

3
sin2 θW

d, s, b −1
2

+ 2
3

sin2 θW
1
3

sin2 θW

2.1 Parameterization of NSI

At low-energy scales, the Standard Model interactions involving neutrinos are described

by a four-fermion effective lagrangian:

Leff = −2
√

2GF

(
[ν̄αγρL lα][f̄γρLf ′] + h.c.

)
− 2
√

2GF

∑
P,f,α

gfP [ν̄αγρLνα][f̄γρPf ] , (2.1)

where GF is the Fermi constant, P = L,R correspond to the chirality operator, L =

(1− γ5)/2 and R = (1− γ5)/2, l is a charged lepton, f is a fermion, with f ′ as its SU(2)

partner and gfP are the weak neutral-current couplings given in Table 2.1. The first term

of Eq. (2.1) stands for the charged-current weak interaction mediated by the W boson,

while the second one corresponds to the neutral-current weak interaction with Z as the

gauge boson (Fig. 1.5).

If NSI are taken into account, they are introduced in theory as extra terms in the

effective four-fermion lagrangian, where the strength of these extra interactions is given

by the new couplings ε [87–90]:

LNSINC = −2
√

2GF

∑
P,f

εf,Pαβ [ν̄αγρLνβ][f̄γρPf ] , (2.2)

where now, f is a first generation fermion (e, u or d). Notice that Eq. (2.2) is the

neutral-current non-standard interaction lagrangian, in which this thesis will focus. For

completeness, we describe the effective lagrangian involving charged-current non-standard

interactions, which presents a similar structure to Eq. (2.1):

LNSICC = −2
√

2GF

∑
f,f ′ ,P

εCC,f,f
′
,P

αβ [ν̄αγρL lβ][f̄γρPf
′
] . (2.3)
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2.2 NSI from extended models

NSI could appear in several extensions of SM as a consequence of the extra interactions

following from neutrino mass as, for instance, in seesaw models (Sec. 1.4). In addition,

extended models which include extra particles (additional fermions, neutral heavy leptons,

Higgs triplet, etc) imply new physics interactions which can be parameterized using the

NSI formalism described by the Eqs. (2.2) and (2.3). In order to illustrate how the NSI

formalism parameterizes these models beyond SM, we will describe several of them in this

section.

2.2.1 Models with extra neutral gauge bosons

Some extended models introduce extra gauge bosons in addition to those arising from

the SM gauge symmetry SU(2)L × U(1)Y . For instance, a neutral massive boson Z ′ is

predicted in E6 string-inspired models, coming from extra groups U(1)χ and U(1)ψ. In

fact, one may take Z ′ as a combination of bosons of both groups with a β mixing angle.

Another example is the left-right symmetric model, which is based on the gauge group

SU(2)L × SU(2)R × U(1)B−L implying an expanded fermion sector (with right-lepton

doublets) and new gauge bosons, Z ′ and W ′ for neutral-current and charged-current

interactions respectively.

The existence of extra bosons introduces new interactions added to the standard ones.

As an example, in a four-fermion description of the neutrino-quark scattering, the la-

grangian is represented by the following expression:

LNCνq = −GF√
2

∑
q=u,d

[
ν̄eγµ(1− γ5)νe

] (
f qL

[
q̄γµ(1− γ5)q

]
+ f qR

[
q̄γµ(1 + γ5)q

])
, (2.4)

where f qP are the SM coupling constants [6]

fuL = ρNCνN

(
1

2
− 2

3
κ̂νN ŝ

2
Z

)
+ λuL + εuL , (2.5)

fdL = ρNCνN

(
−1

2
+

1

3
κ̂νN ŝ

2
Z

)
+ λdL + εdL , (2.6)

fuR = ρNCνN

(
−2

3
κ̂νN ŝ

2
Z

)
+ λuR + εuR , (2.7)

fdR = ρNCνN

(
1

3
κ̂νN ŝ

2
Z

)
+ λdR + εdR . (2.8)
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In these expressions, where we consider the MS scheme [6], ŝ2
Z stands for sin2 θW (with

θW as the Weinberg mixing angle) and ρNCνN , κ̂νN , λuL, λdL, λdR = 2λuR are the radiative

corrections, whose values are given in [6]. The new interactions are included as εqP

parameters which can be identified as NSI couplings. In particular for E6 string inspired

models, these NSI parameters are expressed as [91]

εuL = −4
M2

Z

M2
Z′

sin2 θWρ
NC
νN

(
cos β√

24
− sin β

3

√
5

8

)(
3 cos β

2
√

24
+

sin β

6

√
5

8

)
,

(2.9)

εdR = −8
M2

Z

M2
Z′

sin2 θWρ
NC
νN

(
3 cos β

2
√

24
+

sin β

6

√
5

8

)2

, (2.10)

εdL = εuL = −εuR , (2.11)

with MZ as the mass of the standard neutral gauge boson Z and MZ′ denotes the mass

of the heavier extra gauge boson Z ′, stemming from the combination of U(1)χ and U(1)ψ

gauge bosons.

From the lagrangian in Eq. (2.4) we may get the differential cross section of neutrino-

nucleus scattering,

dσ

dT
=
G2
FM

2π

[
(GV +GA)2 + (GV −GA)2

(
1− T

Eν

)2

− (G2
V −G2

A)
M T

E2
ν

]
, (2.12)

where M represents the nucleus mass, T is the recoil energy of the nucleus (going from

0 to Tmax = 2E2
ν/(M + 2Eν)) and Eν is the energy of the incident neutrino. The NSI

contribution can be found in the vectorial and axial parameters GV and GA given by [91]

GV =
[
(gpV + 2εuVee + εdVee )Z + (gnV + εuVee + 2εdVee )N

]
F V
nucl(Q

2) , (2.13)

GA =
[
(gpA + 2εuAee + εdAee )(Z+ − Z−) + (gnA + εuAee + 2εdAee )(N+ −N−)

]
FA
nucl(Q

2) .

(2.14)

Here, Z and N denote the number of protons and neutrons respectively, with a± subscript

indicating spin-up and spin-down, and F V,A
nucl(Q

2) are the vector and axial nuclear form

factors. As can be seen from Eqs. (2.13) and (2.14), the NSI contribution is introduced

through εqV,Aee parameters, but using the vectorial-axial description 1.

1Vectorial-axial NSI parameters are related with those coming from a left-right description through
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For the sake of completeness, we show the influence of NSI in the neutrino-electron

scattering characterized by the following lagrangian,

LNCνe = −GF√
2

∑
α,β=e,µ,τ

[
ν̄αγµ(1− γ5)νβ

] (
f eL

[
ēγµ(1− γ5)e

]
+ f eR

[
ēγµ(1 + γ5)e

])
,

(2.15)

with f eL,R identified with the coupling constants geL,R but including the NSI corrections

εeL,R [91]:

f eL,R = geL,R ± εeL,R , (2.16)

εeL = 2
M2

Z

M2
Z′

sin2 θWρ
NC
νe

(
3 cos β

2
√

6
+

sin β

3

√
5

8

)2

, (2.17)

εeR = 2
M2

Z

M2
Z′

sin2 θWρ
NC
νe

(
cos β

2
√

6
− sin β

3

√
5

8

)(
3 cos β√

24
+

sin β

3

√
5

8

)
.

(2.18)

Again, we may define the differential cross section as

dσ

dT
=

2G2
Fme

π

[
(geL)2 + (geR)2

(
1− T

Eν

)2

− geL geR
me T

E2
ν

]
, (2.19)

with NSI parameters correcting the SM coupling constants geL,R,

geL = −1

2
+ sin2 θW + εeL , (2.20)

geR = sin2 θW + εeR . (2.21)

2.2.2 Seesaw models

As we have seen in Sec. 1.4, seesaw models [9, 15, 92, 93] introduce extra neutral heavy

leptons that it may imply a rich phenomenology to study. In these schemes, extra isos-

inglets are added to the standard SU(2)L × U(1)Y isodoublets giving rise to a possible

mixing between them [9, 94]. This mixing is described by the rectangular matrix 2

K = (KL, KH) , (2.22)

the following relations: εqLee = 1
2

(
εqVee + εqAee

)
and εqRee = 1

2

(
εqVee − εqAee

)
.

2Notice that this matrix comes from the truncation of the matrix Un×n in a model with n > 3
neutrinos, where it is only considered the active ones.
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where KL describes the mixing between the standard light neutrinos, while KH includes

the mixture with neutral heavy leptons. In this framework, we can find new physics

hints from this matrix as deviations from the standard charged-current interactions as a

consequence of extra couplings in the lagrangian, or in neutral-current processes because

KL is no longer unitary 3. Indeed, neutral-current interactions are described in the SM

by the following lagrangian:

L =
ig′

2 sin θW
Zµν̄LγµU

†UνL

=
ig′

2 sin θW
Zµν̄LγµνL , (2.23)

where we have used the unitarity condition of U . After adding extra neutral heavy leptons

the lagrangian presents a significant change:

L =
ig′

2 sin θW
Zµν̄LγµK

†KνL . (2.24)

Here, K†K 6= I leading to the spontaneous appearance of NSI [9, 94]. These new interac-

tions can be introduced in the theory using the ε parameters. For instance, considering

only one extra heavy neutrino 4, NSI parameters could be expressed as

εeLee = −gL sin2 θ14 , εeRee = −gR sin2 θ14 , (2.25)

where θ14 is the mixing between the light neutrino and the neutral heavy lepton, and gL,R

are the corresponding SM couplings.

On the other hand, certain seesaw models imply an extended Higgs sector too. In

particular, for a Type-II seesaw model a Higgs triplet is introduced in order to provide

mass to neutrinos, as we can observe in Fig. 2.1. In this case, the NSI parameters are

related with the neutrino mass matrix as follows [95]:

ερσαβ = − m2
∆

8
√

2GFv4λ2
φ

(mν)σβ(m†ν)αρ , (2.26)

where v denotes the vev of the SM Higgs, m∆ stands for the Higgs triplet mass and λφ is

related to the Higgs triplet coupling.

3We will explain this case more accurately in Chapter 5.
4One extra heavy neutrino implies a global extra factor in the effective lagrangian of electron-neutrino-

electron scattering as a consequence of the non-unitarity of KL [9, 94].
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Figure 2.1: Diagrams for the exchange of a Higgs triplet in a Type-II seesaw model at
tree-level [95].

2.2.3 SUSY with R-parity violation

In supersymmetric theories [96], the baryon number B and the lepton number L can be

violated, implying that R-parity 5 is broken [97–99]. In the low-energy regime, these

supersymmetric models may introduce NSI arising from extra violating L terms in the

superpotential [30, 31, 100–102]

λijk Li Lj E
c
k , (2.27)

λ
′

ijk LiQj D
c
k , (2.28)

where L and Q represent the super-fields containing the standard lepton and quark dou-

blets, while Ec andDc denote the super-fields including singlets, and i, j, k are generational

indices.

In this kind of models, the R-violating interactions produced by the heavy supersym-

metric particles can be described by a four-fermion effective lagrangian involving leptons

and quarks. In the case where neutrinos interact with d-quarks we have:

Leff = −2
√

2GF

∑
α,β

εdRαβ ν̄Lαγ
µνLβd̄Rγ

µdR . (2.29)

5R-parity is defined as R = (−1)3B+L+2S , where B and L indicates the baryon and lepton number
respectively, whereas that S stands for the spin.
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In the above expression the NSI parameters are present, representing the strength of extra

interactions. As an example, we can identify flavor-conserving NSI parameters [86, 103],

εdRµµ =
∑
j

|λ′2j1|2

4
√

2GFm2
q̃jL

, (2.30)

εdRττ =
∑
j

|λ′3j1|2

4
√

2GFm2
q̃jL

, (2.31)

and flavor-changing NSI couplings,

εdRµτ =
∑
j

λ
′
2j1λ

′
3j1

4
√

2GFm2
q̃jL

. (2.32)

In these equations, mq̄L indicates the masses of the squarks, identifying the subscripts

j = 1, 2, 3 as d̃L, s̃L, b̃L respectively. These neutral NSI couplings lead to extra non-

universal and flavor-changing terms relevant to solar [84, 85, 104, 105] and atmospheric

propagation [86, 106, 107], as we will show in chapter 3.

2.2.4 Models with leptoquarks

In several extensions of the SM an exotic boson appears coupling indistinctly to a lepton

and a quark: the leptoquark [108]. For example, the Pati-Salam model [109], grand unifi-

cation theories based on SU(5) [110–112] and SO(10) groups [113] or extended technicolor

models [114].

Due to the presence of these leptoquarks, NSI must be considered along with standard

interactions, producing extra contributions to the four-fermion lagrangian given by the

following NSI parameters [91, 115]:

εuV =
λ2
u

m2
lq

√
2

4GF

, (2.33)

εdV =
λ2
d

m2
lq

√
2

4GF

, (2.34)

where λu,d are coupling constants and mlq represents the leptoquark mass. We should

note that Eqs. (2.33) and (2.34) are valid for vector leptoquarks. An extra 1/2 factor has

to be added for the case of scalar leptoquarks [115].
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2.3 NSI phenomenology

Studying NSI can be very attractive from a phenomenological point of view, since its

existence would mean a new evidence of new physics. The effects of these new interac-

tions could be observed in the production (εS), propagation (εm) and detection (εD) of

neutrinos. In this section we will show how NSI influence each of these processes. Later

we will introduce these new interactions in the data analysis of several kinds of neutrino

experiments (Sec. 2.4).

2.3.1 NSI in the source and detector

Production and detection are charged-current processes, so extra contributions as in

Eqs. (2.1) and (2.3) could be introduced in the presence of NSI, giving rise to an ex-

tra flavor component in both processes [89, 116–119]:

|νSα 〉 = |να〉+
∑

ρ=e,µ,τ

εSαρ|νρ〉 = (1 + εS)U |νi〉 , (2.35)

〈νDβ | = 〈νβ|+
∑

γ=e,µ,τ

εDγβ〈νβ| = 〈νi|U †[1 + (εD)†] , (2.36)

where the superscripts S and D indicate “source” and “detector” respectively, and |νi〉 is a

mass eigenstate. Notice that the orthonormality between |νSα 〉 and 〈νDβ | is broken, because

NSI matrices, εS and εD, are arbitrary and non-unitary (in general) due to different

physical processes (related with NSI) that can take place at the source and at the detector

of the experiment. Therefore, it is possible to detect a flavor transition at zero distance [83,

94, 120], as a consequence of the broken unitarity. Using Eqs (1.101), (2.35) and (2.36)

we find that the transition probability is

PνSα→νDβ (L) =

∣∣∣∣∣∑
γ,ρ,i

(1 + εD)γβ(1 + εS)αρUρiU
∗
γie
−im

2
i L

2E

∣∣∣∣∣
2

=
∑
i,j

J i
αβJ

j∗
αβ − 4

∑
i>j

Re[J i
αβJ

j∗
αβ] sin2

(
∆m2

ijL

4E

)
(2.37)

+ 2
∑
i>j

Im[J i
αβJ

j∗
αβ] sin

(
∆m2

ijL

2E

)
,
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where J i
αβ contains the terms related with NSI,

J i
αβ = U∗αiUβi +

∑
γ

εSαγU
∗
γiUβi +

∑
γ

εDγβU
∗
αiUγi +

∑
γ,ρ

εSαγε
D
ρβU

∗
γiUρi . (2.38)

As we can observe in Eq. (2.37), the first term is independent of the distance (L), so the

flavor conversion could be produced at the source, i.e., at zero distance.

2.3.2 Neutrino propagation with NSI

On the journey of neutrinos through the Earth, NSI can contribute to coherent forward

scattering processes in matter, which are neutral-current interactions parameterized by

Eq. (2.2). Indeed, the presence of these NSI would modify the neutrino matter potential,

adding a new term to the standard oscillation hamiltonian (Eq. (1.141)):

Hmat+NSI =

U 1

2E

 m2
1 0 0

0 m2
2 0

0 0 m2
3

U † +
∑
f

Vf

 δef + εfee εfeµ εfeτ

εfeµ
∗

εfµµ εfµτ

εfeτ
∗

εfµτ
∗
εττ


 , (2.39)

where U is the lepton mixing matrix for three neutrinos (Eqs. (1.120) and (1.121)). The

elements of the NSI matrix, εαβ, are related with those in Eq. (2.2) as

εαβ =
∑
f,P

Vf
Ve
εf,Pαβ , (2.40)

representing the strength of NSI, mi is the neutrino mass value, E stands for the neutrino

energy, Vf =
√

2GFNf denotes the interaction potential with fermions (f = e, u or d),

where Nf is the fermion number density along the neutrino path throughout the mat-

ter. Note that Ve =
√

2GFNe is the standard potential of neutrinos with matter, which

produces the usual MSW effect (Eq. (1.133)).

Using this hamiltonian (Eq. (2.39)) we can write the evolution equation including NSI

as

i d
dt

 νe

νµ

ντ

 =

U 1
2E

 0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

U † +
∑

f Vf

 δef + εfee εfeµ εfeτ

εfeµ
∗

εfµµ εfµτ

εfeτ
∗

εfµτ
∗
εττ



 νe

νµ

ντ

.
(2.41)

Note that neutrinos, in their propagation, are only sensitive to vector currents 6 (εV =

6We will return to this property in Chap 3.
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εL + εR), thus Eq. (2.40) may be written in a left-right notation as:

εαβ =
∑
f

Vf
Ve

(εf,Lαβ + εf,Rαβ ) . (2.42)

Equation (2.41) provides the structure for the neutrino propagation in matter when

NSI are present. Analyzing this expression we may find some interesting details concerning

NSI couplings and their influence in neutrino propagation:

• The diagonal elements of NSI matrix, εαα, could induce extra resonance oscilla-

tion effects, additional to those following from the MSW matter potential, even if

neutrinos were massless particles [83, 121].

• The off-diagonal elements, εαβ, could produce flavor transitions in matter, even if

no neutrino mixing is present [83, 121, 122].

The observation of these phenomena would be considered an evidence for NSI and a signal

of new physics.

In a similar procedure to the vacuum case, Sec. 1.5.1, we can diagonalize the hamil-

tonian Hmat+NSI using a unitary matrix Ũ ,

H̃ = Hmat+NSI = Ũ
1

2E

 m̃2
1 0 0

0 m̃2
2 0

0 0 m̃2
3

 Ũ † , (2.43)

with m̃2
i as the effective neutrino mass-squared eigenvalues and Ũ is the effective mixing

matrix when matter and NSI are taken into account.

The transition probability is the square of the probability amplitude, hence

Pνα→νβ(L,E) =

∣∣∣∣∣
3∑
j=1

Ũ∗αjŨβje
−i

m̃jL

2E

∣∣∣∣∣
2

. (2.44)

So we get, after applying the same calculation as in Sec. 1.5.1,

Pνα→νβ(L,E) = δαβ − 4
∑
i>j

Re[Ũ∗αiŨαjŨβiŨ
∗
βj] sin2

(
∆m̃2

ijL

4E

)

+ 2
∑
i>j

Im[Ũ∗αiŨαjŨβiŨ
∗
βj] sin

(
∆m̃2

ijL

2E

)
. (2.45)
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Notice that Eq. (2.45) looks like the neutrino transition probability in vacuum, Eq. (1.124),

but replacing the vacuum masses m2
i and the leptonic mixing matrix U , for those effective

parameters which includes the interaction with matter (Ve) and NSI, m̃2
i and Ũ respec-

tively. Therefore, in order to study the new physics behind NSI in propagation, it is useful

to compare vacuum and effective parameters and relate them [123]. The effective masses

with NSI have the following expressions:

m̃2
1 ' ∆m2

31

(
Ṽ + αs2

12 + Ṽ εee

)
, (2.46)

m̃2
2 ' ∆m2

31

[
αc2

12 − Ṽ s2
23(εµµ − εττ )− Ṽ s23c23(εµτ + ε∗µτ ) + Ṽ εµµ

]
, (2.47)

m̃2
3 ' ∆m2

31

[
1 + Ṽ εττ + Ṽ s2

23(εµµ − εττ ) + Ṽ s23c23(εµτ + ε∗µτ )
]
, (2.48)

whereas the elements of the effective mixing matrix are given by

Ũe2 '
αs12c12

Ṽ
+ c23εeµ − s23εeτ , (2.49)

Ũe3 '
s13e

−iδ + Ṽ (s23εeµ + c23εeτ )

1− Ṽ
, (2.50)

Ũµ2 ' c23 + s2
23c23Ṽ (εττ − εµµ) + s23Ṽ (s23εµτ − c2

23ε
∗
µτ ) , (2.51)

Ũµ3 ' s23 + Ṽ
[
c23εµτ + s23c

2
23(εµµ − εττ )− s2

23c23(εµτ + ε∗µτ )
]
. (2.52)

Here, sij = sin θij, cij = cos θij, α ≡ ∆m2
21/∆m

2
31, Ṽ ≡ Ve/∆m

2
31 and δ stands for the CP

violation phase.

It is worth noting that neutrino data is consistent with the oscillation mechanism.

Thus, NSI will play only a sub-leading role in interpreting the results of neutrino ex-

periments. NSI couplings have been constrained using solar and atmospheric neutrino

oscillation experiments (Secs. 2.4.3 and 2.4.1 respectively), combining these data with

those coming from laboratory experiments 7 [84–87, 124]. On the other hand, reactor

neutrinos do not have relevance in constraining NSI in the propagation because the mat-

ter effect is negligible in this case. However, they can constrain NSI related with detection

processes [125].

Two-neutrino propagation with NSI

As we have seen in Sec. 2.3.2, the expressions involving three-flavor neutrino propagation

in matter including NSI, Eqs. (2.41) and (2.45), are quite complicated. Sometimes working

7We will present detailed constraint calculations in Chapter 3 and 4.
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with a two-neutrino scheme is enough to illustrate the important features of NSI physics

and simplifies tedious calculations. Hence, in order to shed light on neutrino oscillations

with NSI, we will develop the conversion equations for the two-neutrino scheme (electron

and tau-neutrino in this case, because muon-neutrino bounds are stronger) step by step 8.

The hamiltonian for a two-neutrino scheme is given as a combination of vacuum,

matter and NSI hamiltonian,

H̃ = Hvac +Hmat +HNSI , (2.53)

where

Hvac =
1

4E

(
−∆m2 cos 2θ ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ

)
, (2.54)

Hmat =

( √
2GFNe 0

0 0

)
⇐⇒

(
VCC

2
0

0 −VCC
2

)
, (2.55)

HNSI =
√

2GFNf

(
εee εeτ

εeτ εττ

)
⇐⇒

(
0 ε

ε ε
′

)
, (2.56)

with θ as the two-neutrino mixing angle, Ne and Nf represents the electron and fermion

density respectively along neutrino trajectory in matter, GF is the Fermi constant, VCC =√
2GFNe indicates the standard charged-current weak interaction of neutrinos with elec-

trons, and the strength of NSI is represented by the coupling constants, ε =
√

2GFNfεeτ

and ε
′

=
√

2GFNf (εττ − εee). With all these ingredients, we can build the complete

hamiltonian H̃,

H̃ =

(
−∆m2

4E
cos 2θ + VCC

∆m2

4E
sin 2θ + ε

∆m2

4E
sin 2θ + ε ∆m2

4E
cos 2θ + ε

′

)
(2.57)

⇔

(
−∆m2

4E
cos 2θ + VCC

2
− ε

′

2
∆m2

4E
sin 2θ + ε

∆m2

4E
sin 2θ + ε ∆m2

4E
cos 2θ − VCC

2
+ ε

′

2

)
. (2.58)

Note that, in Eqs. (2.55), (2.56) and (2.57), we take again into account that the Schrödinger

equation does not change if a common phase is introduced in the diagonal terms of the

hamiltonian. Using this property, we can write the hamiltonian of Eq. (2.58) in a sym-

8We can find an accurate discussion about the two-neutrino scheme in presence of NSI in Ref. [126].
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metrical way, leading to the following evolution equation:

i
d

dt

(
νe

ντ

)
=

(
−a b

b a

)(
νe

ντ

)
, (2.59)

with

a =
∆m2

4E
cos 2θ − VCC

2
+
ε
′

2
, (2.60)

b =
∆m2

4E
sin 2θ + ε . (2.61)

From Eqs. (2.59), (2.60) and (2.61) we may obtain the parameters and equations that

govern neutrino conversion in the presence of NSI. Specifically, the effective mixing angle

ϕ in a two-neutrino scheme, propagating in matter with NSI is given by

tan 2ϕ =
2b

a− (−a)
=

∆m2

4E
sin 2θ + ε

∆m2

4E
cos 2θ − VCC

2
+ ε′

2

, (2.62)

and the transition probabilities are

Pνe→νe(L,E) = 1− Pνe→ντ (L,E) , (2.63)

Pνe→ντ (L,E) = sin2 2ϕ sin2(ωL) , (2.64)

with the oscillation parameter ω2 = a2 + b2. This parameter characterizes the neutrino

transition, presenting the following form:

ω2 =

(
∆m2

4E
cos 2θ − VCC

2
+
ε
′

2

)2

+

(
∆m2

4E
sin 2θ + ε

)2

. (2.65)

Notice that, if we consider antineutrinos instead of neutrinos, we should introduce −Ne

and −Nf for the charged-current and neutral-current potential respectively, changing the

sign of interactions with matter and NSI.

2.4 NSI and neutrino experiments

In this section we will review the impact of NSI in atmospheric, solar or laboratory

neutrino experiments.
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2.4.1 NSI in atmospheric neutrino experiments

The analysis of atmospheric neutrinos can be performed in a two-neutrino scheme, con-

sidering the non-universal νµ+f → νµ+f and flavor changing νµ+f → ντ +f processes,

so that all the NSI parameters related with electron-neutrino, εeα, are set to zero. In this

approximation, the evolution equation is

i
d

dt

(
νµ

ντ

)
=

[
U

(
0 0

0
∆m2

31

2E

)
U † +

(
Vf ε

ε ε
′

)](
νµ

ντ

)
, (2.66)

noting that ε =
√

2GFNfεµτ and ε
′

=
√

2GFNf (εττ − εµµ). Assuming that neutrinos

only interact with d quark and ∆m2
21L/E → 0, the survival probability is given by

[86, 89, 90, 106, 127–129]

Pνµ→νµ(L,E) = 1− Pνµ→ντ (L,E) ' 1− sin2 2ϕ sin2

(
∆m2

31L

4E
R

)
, (2.67)

where the effective parameters ϕ and R for the two-neutrino approximation with NSI are

expressed as

sin2 2ϕ =
1

R2

[
sin2 2θ +R2

0 sin2 2ξ + 2R0 sin 2θ sin 2ξ
]
, (2.68)

R =
[
1 +R2

0 + 2R0(cos 2θ cos 2ξ + sin 2θ sin 2ξ)
] 1

2 . (2.69)

The NSI couplings are introduced in the following parameters:

R0 =
4E

∆m2
31

√
|ε|2 +

ε′2

4
, (2.70)

ξ =
1

2
arctan

(
2ε

ε′

)
. (2.71)

Using the Super-Kamiokande (SK in what follows) experimental data within a two-

neutrino framework, the SK Collaboration obtained the following bounds on NSI couplings

at 90 % C.L. [128]:

|εµτ | < 1.1× 10−2 and |εττ − εµµ| < 4.9× 10−2 . (2.72)

In a more recent analysis, considering IceCube-79 and DeepCore data [130], a more re-
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strictive constraints have been found at 90 % C.L.:

|εµτ | < 6.0× 10−3 and |εττ − εµµ| < 3.0× 10−2 . (2.73)

It is worth noting that NSI parameters involving electron-neutrinos cannot be con-

strained directly from atmospheric data, but they are related with atmospheric NSI pa-

rameters through the expression [131],

εττ ∼
3|εeτ |2

1 + 3εee
. (2.74)

2.4.2 NSI in accelerator neutrino experiments

In accelerator neutrino experiments the main channels are νµ → νµ and νµ̄ → νµ̄, so

the relevant NSI parameters will be εµµ, εµτ and εττ . For instance, from MINOS exper-

iment [132–136] data, the NSI parameter εµτ has been constrained, assuming again two

neutrinos and taking the survival probability as

Pνµ→νµ(L,E) ' 1− sin2

(∣∣∣∣∆m2
31

4E
− εµτ

V

2E

∣∣∣∣L) . (2.75)

The bound obtained on εµτ at 90 % C.L. from the MINOS Collaboration is [137]

− 0.20 < εµτ < 0.07 . (2.76)

2.4.3 NSI in solar neutrino experiments

There are several studies on NSI involving solar neutrinos [104, 138–145]. Collaborations

such as Super-Kamiokande, SNO or Borexino [139, 145] have used their data in order to

provide bounds on the NSI parameters. A recent updated work on solar NSI constraints

is given in Ref. [146], where the two-neutrino approximation is again made [147],

i
d

dr

(
ν ′e

ν ′µ

)
=

[
Uθ12

(
0 0

0
∆m2

21

2E

)
U †θ12 +

∑
f

(
c2

13δef − ε
f
D εfN

εfN
∗

εfD

)](
ν ′e

ν ′µ

)
(2.77)

with ν ′e and ν ′µ coming from

 ν ′e

ν ′µ

ν ′τ

 =

 c12 s12 0

−s12 c12 0

0 0 1


 ν1

ν2

ν3

 =

 c12 s12 0

−s12 c12 0

0 0 1

U †

 νe

νµ

ντ

 . (2.78)
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Table 2.2: Bounds on NSI parameters at 90 % C.L. for the interaction of neutrinos with
d-quark, following from oscillation experiments (propagation). Only one parameter is
considered at a time [90].

NSI parameter Bound Reference

εdee − εdµµ (0.02, 0.51) [146]

εdττ − εdµµ (−0.01, 0.03) [146]

εdττ − εdµµ (−0.049, 0.049) [128]

εdττ − εdµµ (−0.036, 0.031) [130]

εdeµ (−0.09, 0.04) [146]

εdµτ (−0.01, 0.01) [146]

εdµτ (−0.011, 0.011) [128]

εdµτ (−0.0061, 0.0056) [130]

εdeτ (−0.13, 0.14) [146]

εdeτ (with εd
ee = −0.5) (−0.05, 0.05) [128]

εdeτ (with εd
ee = 0.5) (−0.19, 0.13) [128]

The NSI parameters εD and εN are expressed as [146]

εD = c13s13Re
[
eiδCP (s23εeµ + s23εeτ )

]
− (1 + s2

13)c23s23Re[εµτ ]

− c2
13

2
(εee − εµµ) +

s2
23 − s2

13c
2
23

2
(εττ − εµµ) , (2.79)

εN = c13(c23εeµ − s23εeτ ) + s13e
−iδCP

[
s2

23εµτ − c2
23ε
∗
µτ + c23s23(εττ − εµµ)

]
.

(2.80)

Note that, although we are working with a two-neutrino scheme, mixing parameters in-

volving the third neutrino are present as c13 = cos θ13, s13 = sin θ13 or the CP violation

phase δCP , characteristic of the three-neutrino setup. In addition, NSI parameters involv-

ing tau-neutrinos (εττ , εeτ and ετµ) are also present in Eqs. (2.79) and (2.80) as a third

neutrino effect.

Thus, taking into account the approximation given by Eq. (2.77), the disappearance

probability is calculated as follows,

Pνe→νe ' s4
13 + c4

13P2 , (2.81)

where P2 is the survival electron-neutrino probability, Pν′e→ν′e , arising from Eq. (2.77).
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Table 2.3: Values of NSI constraints at 90 % C.L. for the neutrino-electron scattering
considering one parameter at a time [90].

NSI One parameter at a time

εeLee (−0.021, 0.052) [140]

εeRee (−0.07, 0.08) [148] (−0.08, 0.09) [90]

εeLµµ (−0.03, 0.03) [87] (−0.03, 0.03) [103]

εeRµµ (−0.03, 0.03) [87] (−0.03, 0.03) [103]

εeLττ (−0.16, 0.11) [140] (−0.46, 0.24) [103]

εeRττ (−0.25, 0.43) [103]

εeLeµ (−0.13, 0.13) [103]

εeReµ (−0.19, 0.19) [148] (−0.13, 0.13) [103]

εeLeτ (−0.40, 0.40) [87] (−0.33, 0.33) [103]

εeReτ (−0.28, −0.05) and (0.05, 0.28) [103]
(−0.19, −0.19) [148]

εeLµτ (−0.10, 0.10) [87] (−0.10, 0.10) [103]

εeRµτ (−0.10, 0.10) [87] (−0.10, 0.10) [103]

Considering NSI with d-quarks only, the bounds on NSI parameters are estimated in [146]

at 90 % C.L.

− 0.25 < εD < −0.02 and − 0.14 < εN < 0.12 . (2.82)

The bounds on the NSI propagation parameters are compiled in Table 2.2. In the next

section we discuss short baseline neutrino experiments, based at reactor and accelerators.

2.4.4 NSI in short baseline experiments

Up to now, we have considered experiments where the neutrino propagation is the most

significant part of the experiment, but short baseline experiments, where the effects of

propagation are not very important, have also been used to probe neutrino interactions

with quarks and leptons. In this case, bounds on NSI couplings arise from comparing the

experimental cross section with the SM cross section for the interaction of neutrinos with

the corresponding lepton or quark. Note that such experiments are sensitive to the axial
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Table 2.4: Values of NSI constraints at 90 % C.L. for the neutrino-electron scattering
considering two parameters at a time [90].

NSI Two parameters

εeLee (−0.02, 0.09) [149] (−0.036, 0.063) [150]

εeRee (−0.11, 0.05) [149] (−0.10, 0.09) [90]

εeLµµ (−0.033, 0.055) [103]

εeRµµ (−0.040, 0.053) [103]

εeLττ (−0.51, 0.34) [149] (−0.16, 0.11) [140]

εeRττ (−0.35, 0.50) [149] (−0.40, 0.60) [103]

εeLeµ (−0.53, 0.53) [151]

εeReµ (−0.53, 0.53) [151]

εeLeτ (−0.53, 0.53) [151]

εeReτ (−0.53, 0.53) [151]

εeLµτ (−0.53, 0.53) [151]

εeRµτ (−0.53, 0.53) [151]

coupling 9, unlike propagation experiments.

As an example, we will consider the phenomenology related with short baseline experi-

ments where electron-antineutrinos scatter off electrons. This is a neutral-current process,

so corrections following from Eq. (2.2) must be introduced in the interaction cross section

in order to study NSI. Therefore, the differential cross section including standard and new

physics terms is written as

dσ

dTe
=

2G2
Fme

π

[
(geR + εeRee ) +

∑
α 6=e

|εeRαe |2 +

[
(geL + εeLee )2 +

∑
α 6=e

|εeLαe|2
](

1− Te
Eν

)2

−

[
(geR + εeRee )(geL + εeLee )

∑
α 6=e

|εeRαe ||εeLαe|

](
me

Te
E2
ν

)]
. (2.83)

In this expression, me stands for the electron mass, Ee represents the electron energy,

Te = Ee −me is the electron recoil energy and geL and geR are the SM coupling constants,

whose values can be found in Table 2.1.

Several experiments imply incoming electron-(anti)neutrino fluxes, as reactor exper-

9Translating to NSI couplings, this means εA = εL − εR.
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iments, where we find TEXONO [152], MUNU [153], Rovno [154], Krasnoyarsk [155],

Irvine [156], or accelerator experiments as LSND [157] and LAMPF [158]. An individual

or combined analysis of their data can be performed in order to constrain NSI parameters.

The results of these analyses are summarized in Tables 2.3 and 2.4.

Likewise, we may proceed for muon-(anti)neutrino scattering from CHARM-II data

[159]. However, the tau-neutrino case presents a greater difficulty because there is no

artificial source of these particles. Even so, it is possible study their interactions if one

considers that tau-neutrinos take part in the process e+e− → νν̄γ probed at LEP [151],

or if it is a component of the solar neutrino flux [140]. Keeping these considerations in

mind, we can find some bounds for muon and tau-neutrino NSI parameters, which are

compiled in Tables 2.3 and 2.4.

In addition to the (anti)neutrino scattering off electrons, it is possible to study NSI

with quarks. For this purpose, the data of accelerator experiments such as CHARM [160],

CDHS [161] or NuTeV [162] have been analyzed, leading to bounds on NSI parameters for

processes of neutrinos with d-quarks. It is worth noting that the NuTeV Collaboration

found a discrepancy between the cross section measured by the experiment and the SM

value. After this mismatch, new reinterpretations of NuTeV results were made [163, 164],

reconciling the NuTeV results with SM predictions 10. NSI constraints following from

these experiments will be given in Chapters 3 and 4.

10We will go back to this puzzle in Chapter 4.



Chapter 3

Robustness of solar neutrino

oscillations

The neutrino oscillation mechanism is the correct scenario to explain solar neutrino data,

as we can infer from solar neutrino experiments [35, 36, 50, 70, 73, 75, 165–172], combining

them with reactor data from the KamLAND experiment [37]. Solar neutrino experiments

are affected by matter effects in a crucial way [173, 174], and the combination of both,

solar and KamLAND data, determines the so-called Large Mixing Angle (LMA) solution,

which has been considered as the correct explanation of data. It is however crucial to

investigate whether this solution is robust against possible additional effects inside the

Sun, for instance:

• Noise density fluctuations that are originated in the radiative zone by random mag-

netic fields [175–182].

• Spin-flavor precession [183, 184] that could be originated by magnetic fields in the

convective region [185, 186].

For all these examples, the KamLAND experiment plays a decisive role, implying that

any non-standard effect can only be considered as secondary [2].

Nevertheless, the possible existence of non-standard interactions still introduces an

important exception to the robustness of the solar neutrino oscillation interpretation [84,

104, 187]. In this context, it has been found that NSI may produce a degeneracy in the

solar neutrino parameter space, giving rise to the so-called LMA-Dark solution [84].

Given the precision expected in upcoming oscillation studies [188], one needs to scru-

tinize further the possible role of NSI [189]. As already mentioned in Chapter 2, NSI

appears naturally in neutrino mass theories [4] and are a powerful phenomenological tool

83
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to probe neutrino models. For example, NSI might give a guidance to distinguish between

the simplest high-scale seesaw models [9, 17, 92, 190, 191] and other scenarios based on

low scales, for instance, the inverse seesaw [18, 192] and the linear seesaw mechanisms [22],

or radiative models of neutrino mass [23, 24, 108].

In order to study the robustness of the oscillation interpretation of solar neutrino

data in the presence of non-standard interactions, we use data from Homestake [50],

SAGE [73], GALLEX [165, 166], Super-Kamiokande I [75, 167], SNO [35, 36, 70, 168, 169]

and Borexino [170, 171], in combination with the KamLAND reactor experiment [37].

We have used the solar fluxes and uncertainties from the updated Standard Solar Model

(SSM) [193]. It has been found that the LMA solution becomes degenerate with a new

“dark-side” solution in the presence of NSI [84]. So in this thesis, we have used new

data such as SNO phase III [70], and the measurements of Borexino [170, 171] in order

to further constrain and possibly lift the degeneracy. We have found however that the

LMA-D solution still remains.

Besides the study of solar data, we also analyze data from the CHARM accelerator

experiment [194]. The combination of both analyses plays a significant role in constraining

the non-standard neutrino d-quark interactions. Although CHARM is sensitive only to

electron-neutrino interactions, when combined with solar and KamLAND data, it allows

to improve the restrictions on the tau-neutrino non-standard axial and vector couplings.

In our analysis of non-standard interactions we parametrize them in terms of the

effective low-energy neutral-current operator for four fermions, as we have seen in Sec. 2.1:

LNSI = −εfPαβ 2
√

2GF (ν̄αγµLνβ)
(
f̄γµPf

)
. (3.1)

Here, f is a first-generation fermion (e, u, d) and P = L,R are the chiral projectors. The

parameters εfPαβ account for the NSI couplings of a neutrino with α and β flavor and the

left or right-handed component of a fermion f .

In this chapter, for simplicity we will consider f to be the down-type quark. It is

plausible to extend this work to include also the coupling with up-type quarks. However,

the computations are demanding. In the case of the interaction with electrons, this has

been considered before in the literature [140, 195, 196]. In this part of the thesis, we also

confine our discussion to NSI couplings of electron and tau-neutrinos, while the analysis

for the muon-neutrino case will be covered in Chapter 4. This approach is motivated

by the constraints on the νµ interactions, that are stronger than those for electron and

tau-neutrinos, as discussed before in Refs. [87, 151, 197] and will be reanalyzed in the

next chapter. Therefore, in the following analysis we will consider εdPαµ = 0.
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We will discuss in this chapter the impact of non-standard interactions in the neutrino

propagation through matter as well as in their detection. The original neutrino fluxes

are less likely to be modified by NSI, especially if we consider them as originating from

new physics in the neutral-current interactions. For the case of solar and KamLAND

neutrino experiments, we will obtain constraints for the vectorial NSI couplings 1. This

is the natural description for an analysis involving neutrino propagation since there is no

sensitivity to the axial couplings in this case 2. For the analysis of NSI in detectors (we

will discuss this analysis in the case of SNO, for example) we will also obtain constraints

for the axial coupling 3.

3.1 Solar and KamLAND restrictions on NSI

In this section, we carry out a detailed study of the robustness of the standard oscillation

solution to the solar neutrino problem. To keep the number of parameters under control,

we consider a two-neutrino picture, which is adequate to illustrate our results.

3.1.1 The solar and KamLAND data

In order to analyze the effect of non-standard interactions over the LMA solution, we

include in our analysis the results from the radiochemical experiments as Homestake [50],

SAGE [73] and GALLEX/GNO [165, 166], the zenith-spectra data set from Super-Kamiokande

I [75, 167], as well as the results from the three phases of the SNO experiment [35, 36, 70,

168, 169] 4, and the measurement of the 7Be solar neutrino ratio reported by the Borexino

Collaboration [170, 171].

The latest version of the Solar Standard Model (SSM in what follows) [193] is used

in this analysis as well, which implies an improved determination of the neutrino flux

uncertainties, mainly thanks to the better accuracy on the 3He-4He cross section mea-

surement and to the reduced systematic uncertainties in the determination of the surface

composition of the Sun. There are two different solar models introduced in Ref. [193],

that correspond to two different measurements of solar metal abundances. Our results

are similar for both models and, for definiteness we show in this thesis the higher solar

metallicity model, referred as BPS08(GS).

1Remember that εdVαβ = εdLαβ + εdRαβ .
2We should point that SNO is sensitive to the NSI axial coupling as we will see in Sec. 3.1.4.
3Remember that εdAαβ = εdLαβ − εdRαβ .
4In the third phase of the SNO experiment, 3He proportional counters were used in order to measure

the neutral-current signal of the solar neutrino flux.
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Solar neutrino data are sensitive mainly to the neutrino oscillation parameters ∆m2
12

and sin2 θ12. A reactor experiment which is sensitive to the same sector of neutrino pa-

rameters is the KamLAND experiment. Hence, one can combine the results of both solar

and KamLAND experiments, resulting in the Fig. 3.1. The KamLAND experiment mea-

sured the reactor antineutrino flux disappearance. It has an average baseline of 180 km

and matter effects are nearly negligible because the antineutrinos travel over the most su-

perficial layers of the Earth, parameterizing the terrestrial crust with a constant density

profile (∼ 2.6 g·cm−3). This implies that the restrictions on NSI from the KamLAND

experiment will be minimal, but it will be useful to restrict the standard oscillation pa-

rameters, as can be seen in Fig. 3.1. We have analyzed the results of a total exposure

of 2881 ton·yr [37], considering the energy window above 2.6 MeV in order to avoid the

geo-neutrino background.

3.1.2 Effects of NSI in neutrino propagation

The effects of non-standard interactions on neutrino propagation can be studied analyzing

the hamiltonian describing solar neutrino evolution in the presence of NSI. These new

interactions, in addition to the standard oscillation term,

Hmat =

(
−∆m2

4E
cos 2θ +

√
2GFNe

∆m2

4E
sin 2θ

∆m2

4E
sin 2θ ∆m2

4E
cos 2θ

)
, (3.2)

add an extra term HNSI , accounting for an effective potential induced by the NSI with

matter. It may be written as:

HNSI =
√

2GFNd

(
0 ε

ε ε′

)
, (3.3)

where ε and ε′ are the NSI effective vectorial parameters. For the limit εfPαµ ∼ 0, they can

be defined as 5

ε = − sin θ23 ε
dV
eτ , ε′ = sin2 θ23 ε

dV
ττ − εdVee . (3.4)

The quantity Nd in Eq. (3.3) is the number density of the down-type quark along the

neutrino path and θ23 is the atmospheric neutrino mixing angle. It is important to remark

again that the neutrino propagation inside the Sun or the Earth is sensitive only to the

vectorial component of NSI, εdVαβ = εdLαβ + εdRαβ .

5The reader can find the calculation of this approximation in Appendix A.
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Before introducing the numerical analysis of solar neutrino data, it is convenient to

discuss the analytical formulas involving neutrino survival probabilities in the constant

matter density case. In the two-neutrino picture where neutrinos evolve in an adiabatic

regime, the survival probability can be approximated by Parke’s formula 6 [198],

P (νe → νe) =
1

2
[1 + cos 2θ cos 2θm] , (3.5)

where θ is the mixing angle in the two–neutrino scheme and θm is the effective mixing

angle in the neutrino production point inside of the Sun. If we do not include the non-

standard neutrino-matter interaction, the effective mixing angle may be calculated from

the following expression:

cos 2θm =
∆m2 cos 2θ − 2

√
2EGFNe√(

∆m2 cos 2θ − 2
√

2EGF Ne

)2
+ (∆m2 sin 2θ)2

, (3.6)

where Ne is the number density of electrons along the neutrino path and E is the neutrino

energy.

To explain the deficit of the neutrino signal in detectors, the neutrino survival proba-

bility should satisfy Pee < 0.5 which implies, according to Eqs. (3.5) and (3.6), cos 2θ > 0.

Hence, only vacuum mixing angles between 0 < θ < π
4

are able to solve the solar neutrino

problem, as we can see in Fig. 3.1.

However, this scenario changes in the presence of non-standard interactions. From

Eqs. (3.2) and (3.3) one sees that the solar neutrino mixing angle in the presence of NSI

is given by the following expression:

cos 2θm =
∆m2 cos 2θ − 2

√
2EGF (Ne − ε′Nd)

[∆m2]matter
, (3.7)

where

[
∆m2

]2
matter

=
[
∆m2 cos 2θ − 2

√
2EGF (Ne − ε′Nd)

]2

(3.8)

+
[
∆m2 sin 2θ + 4

√
2 εEGFNd

]2

. (3.9)

As a result of the presence of non-standard parameters ε and ε′ into the equations, we

6Notice that this is a particular case of Eq. (1.162) discussed in Sec. 1.6.3.
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Figure 3.1: Regions at 90%, 95%, 99% and 99.73% C.L. for neutrino oscillation parame-
ters. The left panel shows separately the result from the solar (empty regions) and from
the KamLAND data (colored regions). The right panel shows the result for the combined
analysis [84].

can obtain Pee < 0.5 even for cos 2θ < 0, provided that

ε′ >
2
√

2EGFNe + ∆m2| cos 2θ|
2
√

2EGFNd

. (3.10)

This makes possible to explain the solar neutrino data with values of the vacuum mixing

angle larger than π
4

(in the so-called “dark side”), for large enough values of ε′. For

instance, for neutrino energies and matter densities in the typical range of the solar

regime one has ε′ & 0.6.

This degeneracy between the non-universal coupling ε′ and the neutrino mixing angle

θ, as a consequence of the effect of NSI on solar neutrino propagation, implies the presence

of an additional solution to the solar neutrino problem, the LMA-D solution.

After this theoretical discussion, now we turn our attention to the experimental data.

We perform a combined solar + KamLAND analysis using all the solar neutrino data

available at the time, as discussed in Sec. 3.1.1, along with the KamLAND result [37].

For the solar neutrino data, we compute the survival probabilities for a wide range of

∆m2
sol, ε, and ε′. For the neutrino mixing angle, sin2 θSOL

7, we consider the whole range

of values (from 0 to 1), which includes the dark-side region. Regarding the statistics, for

7We sholud remember that ∆m2
sol = ∆m2

21 and θSOL = θ12.
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Figure 3.2: Regions at 90%, 95%, and 99% C.L. for neutrino oscillation parameters in the
presence of NSI. The left-bottom panel shows the result from the combined analysis of
solar and KamLAND data. The top-right panel presents the same result in more detail
for the region of interest. In this case the current analysis (shaded regions) is compared
with earlier results (empty regions) [84]. We also show the χ2 in other two panels. We
have marginalized over the NSI parameters in all panels.

the KamLAND analysis we use a Poisson statistics as in [199], while for the solar data we

employ the pull method [200] in order to fit the results using the BPS08(GS) Standard So-

lar Model. The main result is shown in Fig. 3.2. There, we plot the allowed regions (90%,

95% and 99% C.L.) in the solar neutrino oscillation parameter space (sin2 θSOL, ∆m2
SOL)

obtained in the analysis of solar and solar + KamLAND neutrino data. To obtain this

result, a marginalization of the NSI 4-parameter χ2(sin2 θSOL, ∆m2
SOL, ε, ε′) analysis was

necessary. The ∆χ2 profiles, as a function of each parameter, are also shown. One can
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Figure 3.3: Predicted neutrino survival probabilities for three different reference points
(details in the text). The probabilities have been averaged over the 8B neutrino production
region. We also show, for reference, the rates for the pp neutrino flux, for the 7Be line,
and for two different values for the 8B neutrino flux, as reported from Borexino and from
SNO (third phase). The vertical lines indicate the experimental errors. The horizontal
lines show the energy range covered by the experiment.

see the presence of the dark-side region, which is a direct consequence of the NSI.

The best-fit points obtained for this χ2 analysis are given by the following parameter

values:

sin2 θSOL = 0.32, ∆m2
SOL = 7.9× 10−5 eV2, ε = −0.15, ε′ = −0.10. (3.11)

We have also considered the best fit point in the absence of NSI, allowed with a ∆χ2 =

2.7:

sin2 θSOL = 0.30 , ∆m2
SOL = 7.9× 10−5 eV2 , ε = 0.00 , ε′ = 0.00 . (3.12)

Finally, the best fit point in the “dark-side” region of the oscillation parameters, which is

allowed with a ∆χ2= 2.9, gives rise to the values:

sin2 θSOL = 0.70 , ∆m2
SOL = 7.9× 10−5 eV2 , ε = −0.15 , ε′ = 0.95 . (3.13)

In order to better understand the results obtained, we plot in Fig. 3.3 the neutrino

survival probabilities for these reference points (Eqs. (3.11), (3.12) and (3.13) labeled as

“global best fit”, “BF without NSI” and “BF dark side” respectively.

Notice from Fig. 3.3 that the different survival probability predictions are in very good
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agreement with the measurements in the low-energy neutrino region (pp and 7Be). In the

high-energy region, where the boron neutrino flux is predominant and matter effects are

more significant, the presence of NSI gives a slightly better fit to the data, in comparison to

the standard neutrino oscillation solution. This sensitivity in the high-energy region is due

to the different spectrum shape at high energy for the NSI solution. In this region, a flatter

spectrum is expected when NSI are introduced. The most important difference is found

in the intermediate-energy region, above few MeV. A precise measurement in this region

would break the degeneracy between these solutions. Therefore, a lower threshold boron

solar experiment (such as in the proposals of Hyper-Kamiokande and SNO [201, 202])

would be of great interest for this type of physics. Precise measurements of the beryllium

and pep fluxes may also help to break the degeneracy between the standard oscillation

and the dark-side solution.

3.1.3 Constraints on vectorial NSI

In the previous section, we have considered the effects of NSI in solar neutrino propagation.

We have shown how a new solution appears in the solar parameter space, in addition to

the standard light-side solution. In this subsection, we focus on the allowed region for the

vectorial NSI parameters, that we have defined for this case as ε and ε′. For this purpose,

we can first obtain a restriction for either ε or ε′ by marginalizing our four-parameter χ2

analysis with respect to the other three-neutrino parameters. The results are shown in

Fig. 3.4, allowing to obtain the following bounds at 90% C.L.:

−0.41 < ε < 0.06 , (3.14)

−0.50 < ε′ < 0.19 & 0.89 < ε′ < 0.99 . (3.15)

As these constraints show, there is no degeneracy in the flavor changing parameter

ε and we can constrain it to a single isolated region. However, we observe that for

relatively large values of ε′, the flavor conserving parameter, there is another solution in

the “dark side” of the neutrino oscillation parameters. Thus, NSI still play a sub-leading

(but significant) role for neutrino conversion in matter, making the determination of solar

neutrino parameters, especially the solar mixing angle, still ambiguous.

Taking into account the value of the best fit for the atmospheric mixing angle in

Ref. [203], we can use the bound obtained in Eq. (3.14) and the expression of ε (Eq. (3.4))
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Figure 3.4: Constraints on ε and ε′ effective NSI parameters. These constraints come
from a global analysis of solar + KamLAND data. The ε parameter is constrained to one
region, while for the ε′ parameter we obtain two possible regions. One of these regions
corresponds to the light-side solution while the other one (less favored) corresponds to
the dark-side region.

in order to get a limit on the vectorial flavor changing coupling εdVeτ at 90 % C.L.:

− 0.08 < εdVeτ < 0.58 . (3.16)

Before our analysis, the strongest constraint on this parameter was |εdVeτ | < 0.5 [87]. We

can see from our result that solar neutrino data give a certain preference for positive

values of εdVeτ , henceforth improving the lower bound.

3.1.4 NSI effects in neutrino detection

The presence of non-standard interactions can also affect the detection processes. In

particular, the axial component of the NSI could give rise to an extra contribution to

the neutral-current cross section detection at the SNO experiment, as we will see in this

subsection.

The neutral-current detection reaction at the SNO experiment is given by

ν + d→ ν + p+ n , (3.17)

being proportional to g2
A, with gA as the axial coupling of the neutrino current to the

hadronic current [204]. Therefore, if there is a non-standard axial coupling, it will produce
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an extra contribution in the NC signal of the SNO experiment. This non-standard axial

contribution is parameterized as [87]

φNC ∼ fB(1 + 2εA) , (3.18)

where we have neglected the terms of order ε2
A. In this expression, fB stands for the boron

neutrino flux and the effective axial parameter, εA, is defined as [87]:

εA =
∑

α=e,µ,τ

〈Peα〉NC (εuAαα − εdAαα) . (3.19)

If we set to zero the non-standard axial couplings with up-type quarks we have

εA = −
∑

α=e,µ,τ

〈Peα〉NC ε
dA
αα . (3.20)

Notice that

εdAαα = εdLαα − εdRαα (3.21)

denotes the couplings entering in the effective lagrangian shown in Eq. (3.1). Thus, εA is

independent of the effective couplings ε and ε′ defined in Eq. (3.4).

In the NSI analysis from previous sections, we have assumed that there is no influence

of the axial component of NSI, i.e. εA = 0. This assumption was well justified, thanks to

the good agreement between the SNO NC measurement [70]:

φSNO
NC = 5.54 +0.33

−0.31 (stat) +0.36
−0.34 (syst) × 106 cm−2s−1 , (3.22)

and the SSM boron flux prediction [193]:

fB = 5.94± 0.65 × 106 cm−2s−1 . (3.23)

We will now relax this hypothesis by considering the effect of the new NSI parameter εA

in the analysis.

For this case, we perform a new χ2 analysis which now includes five parameters,

χ2(sin2 θSOL, ∆m2
SOL, ε, ε′, εA). The results for this generalized 5-parameter analysis are

summarized in Fig. 3.5. In the left panel of this figure we show the regions at 90%, 95%

and 99% C.L. obtained from the marginalization of the full 5-parameter analysis (filled

colored regions). In the same panel we show, for comparison, the allowed areas obtained

from the 4-parameter analysis, without the εA coupling, discussed in the previous section
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Figure 3.5: Combined five-parameter analysis, including axial couplings, of solar and
KamLAND data. In the case of the solar data, we have also considered the presence of
an axial NSI contribution in the SNO neutral-current channel for the detector. The left
panel shows the neutrino oscillation parameters, marginalized over of all NSI parameters,
while the right panel presents the χ2 profile for the εA parameter, after marginalizing over
all other parameters. The empty regions in the right panel show the case where the axial
coupling has been set to zero. The data prefer εA ∼ 0.

(empty regions). Both results are consistent, although, as expected, the inclusion of a

new parameter increases slightly the allowed region. Using our analysis it is also possible

to constrain the effective axial coupling εA. We show the ∆χ2 analysis for this case,

marginalized over the other four parameters, in the right panel of Fig. 3.5. It is clear

that data prefer εA ∼ 0, as expected from the good agreement between the predicted

boron flux and the NC measurement reported by SNO. From this study, we report the

constraint for εA at 90% C.L.

− 0.14 < εA < 0.06 . (3.24)

We can attempt to translate this effective parameter into constraints for the NSI pa-

rameters that appear in the original lagrangian (Eq (3.1)), εdAαα, through Eq. (3.20). From

this equation, we can notice that neglecting muon-neutrino NSI, the effective parameter

depends on four quantities: two averaged probabilities 〈Pee〉NC and 〈Peτ 〉NC and two NSI

couplings εdAee and εdAeτ . The average values for the probabilities were reported by the SNO
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Table 3.1: Sensitivity of neutrino experiments to non-universal NSI parameters.

Data εdVee εdVττ εdAee εdAττ

Solar propagation X X

Solar NC detection X X

KamLAND propagation X X

CHARM detection X X

Collaboration [70]:

〈Pee〉NC = 0.30± 0.03 , (3.25)

〈Peτ 〉NC = 0.35± 0.02 . (3.26)

With these values for the average probabilities, we can compute restrictions for the pa-

rameters εdAee and εdAeτ . The allowed regions for this case will be presented and discussed

in the next section, where we will see that a combined analysis with CHARM laboratory

data will allow for additional constraints on the NSI couplings.

3.2 Analysis including CHARM data

Several laboratory experiments have also measured neutrino-nucleon scattering. Although

some of them are insensitive to neutrino oscillations, they will be helpful to constrain

neutrino NSI with d-quarks. In this section, we will focus on the results of the CHARM

experiment. We will obtain additional bounds from this experiment and we will combine

them with those already discussed in Sec. 3.1. Since the number of parameters involved

in the analysis increases, we have limited ourselves to the case of flavor-conserving non-

standard couplings. The relevant parameters for each experiment, in this approximation,

are shown in Table 3.1.

3.2.1 Constraints on non-universal NSI from CHARM

CHARM was an accelerator experiment carried out at CERN. This experiment measured

the neutral to charged-current cross section ratio for electron-(anti)neutrinos off quarks.

We have used the results published by the CHARM Collaboration for the νeq → νq [194],
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which is

Re =
σ(νeN → νeX) + σ(ν̄eN → ν̄X)

σ(νeN → eX) + σ(ν̄eN → ēX)
= (g̃Le)

2 + (g̃Re)
2 = 0.406± 0.140 . (3.27)

For the couplings (g̃Le)
2 and (g̃Re)

2, the most general expressions including all NSI

parameters are given by

(g̃Le)
2 = (guL + εuLee )2 +

∑
α 6=e

|εuLαe |2 + (gdL + εdLee )2 +
∑
α 6=e

|εdLαe | , (3.28)

(g̃Re)
2 = (guR + εuRee )2 +

∑
α 6=e

|εuRαe |2 + (gdR + εdRee )2 +
∑
α 6=e

|εdRαe | . (3.29)

In order to render these Eqs. (3.28) and (3.29) more useful for our purpose, we intro-

duce some simplifications:

• We neglect all flavor-changing non-standard contributions, implying that εqLαe = 0

for α 6= e.

• The NSI parameters involving quark up are also omitted, implying that εuPee = 0.

In our analysis, the vectorial-axial notation is used to describe the coupling parame-

ters, while the CHARM result is given in the left-right parametrization, so we transform

Eqs. (3.28) and (3.29) employing the following relations:

εdLee =
1

2
(εdVee + εdAee ) , (3.30)

εdRee =
1

2
(εdVee − εdAee ) . (3.31)

With these conditions, we get our simplified expression for Eqs. (3.28) and (3.29) as

(g̃Le)
2 = (guL)2 +

[
gdL +

1

2
(εdVee + εdAee )

]2

, (3.32)

(g̃Re)
2 = (guR)2 +

[
gdR +

1

2
(εdVee − εdAee )

]2

. (3.33)

Then, we can perform the χ2 for the CHARM data using the simplified form of the

couplings given above (Eqs. (3.32) and (3.33)), which depends on two NSI parameters,
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Figure 3.6: Constraints from the CHARM experiment, at 68%, 90%, 95% and 99% C.L.,
on the NSI couplings εdVee and εdAee .

εdVee and εdAee , through Rtheo(εdVee , ε
dA
ee ):

χ2 =

[
Re −Rtheo(εdVee , ε

dA
ee )
]2

(σeR)2
. (3.34)

Here, Re and σeR are defined by the result given in Eq. (3.27) and Rtheo corresponds to

the theoretical prediction for Re, which depends on the relevant NSI parameters εdVee and

εdAee by means of g̃Le and g̃Re. From this analysis, we obtain constraints in the (εdVee , εdAee )

plane. These are shown in Fig. 3.6 and in Table 3.2 at 68%, 90%, 95% and 99% C.L.

3.2.2 Constraints on NSI from a combined analysis

In the previous sections, we have analyzed the sensitivity of CHARM, solar and Kam-

LAND experiments to non-standard interactions. But, as the information obtained is

complementary, we can combine the results from CHARM with the results from the anal-

ysis of solar and KamLAND data. This allows us to improve the constraints on the NSI
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Figure 3.7: Constraints on the NSI parameters from a global analysis (colored regions),
at 90, 95 and 99% C.L. The dashed lines show the restrictions from CHARM data only
and solar + KamLAND. The left panel shows the limits for the vector NSI while the right
one shows the axial case.

couplings. We show the outcome of this combination in Fig. 3.7. In this plot, we see the

regions for the vector (left) and axial-vector (right) NSI couplings allowed by the global

analysis. They are also compared with the constraints coming only from the CHARM

data and that from the solar + KamLAND data.

The bounds obtained from the analysis of CHARM data are shown in Fig. 3.7 as

vertical bands, after being translated into two independent bounds, εdVee and εdAee , coming

from the χ2 calculation. On the other hand, the allowed regions obtained from the solar +

KamLAND combination (diagonal bands in the figure) have been derived from the limits

on the non-universal NSI discussed in Sec. 3.1.

The constraints on the vectorial NSI parameters, εdVee and εdVττ , arise from the allowed

region of the effective coupling ε′ in Eq. (3.14), after substituting the ε′ definition in

Eq. (3.4). The allowed region at 1σ for the mixing angle θ23 has also been used [203].

We should stress that there are two possible regions for the vector NSI parameters in

this plot. This is a consequence of the existence of two allowed regions for the neutrino

oscillation parameters when NSI are present (see Fig. 3.2, upper-right panel). The lower

region is related to the standard LMA solution while the upper one corresponds to the

dark-side solution.

We have also used the average probabilities in Eq. (3.26) to reanalyze the results for
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Table 3.2: Limits on the vectorial and axial NSI parameters at 90% C.L. from the analysis
of CHARM data only, and from a global analysis that combines CHARM, solar, and
KamLAND data.

vectorial couplings

Global −0.5 < εdVee < 1.2 −1.8 < εdVττ < 4.4

one parameter at a time

CHARM −0.5 < εdVee < 1.2

Global −0.2 < εdVee < 0.5 −1.1 < εdVττ < 0.4 & 1.6 < εdVττ < 2.2

axial couplings

Global −0.4 < εdAee < 1.4 −1.5 < εdAττ < 0.7

one parameter at a time

CHARM −0.4 < εdAee < 1.4

Global −0.2 < εdAee < 0.3 −0.2 < εdAττ < 0.4

the effective NSI axial coupling εA (Eq. (3.24)). Thanks to this reanalysis we can obtain

new bounds for the axial couplings εdAee and εdAττ . We can see that for both NSI parameters

(vector and axial), there is a degeneracy in the determination of the electron and tau-

neutrino NSI couplings (solar + KamLAND regions in Fig. 3.2). This degeneracy has

been restricted thanks to the addition of the CHARM data analysis.

We quote in Table 3.2 the allowed intervals at 90% C.L. that arise from the combined

analysis for εdVee , εdVττ , εdAee and εdAττ . In the same table we also give the result of an analysis of

one parameter at a time. We show both results, for CHARM data only and for the global

analysis. We can compare these constraints with those of previous works (for instance

Ref. [87]). In our case, the combination of CHARM results with solar and KamLAND data

gives more restrictive bounds on the electron-neutrino NSI parameters. Concerning the

tau-neutrino NSI, the previously existing limits were those coming from the measurement

of the Z from LEP data and they have also been improved.

3.3 Summary

In this chapter, we have studied the role played by NSI in the explanation of solar neutrino

data. For this purpose, we have performed an analysis of neutrino interactions with down-

type quarks using the most recent solar and KamLAND data. We have found that, taking
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into account NSI parameters, there is still room for large values of the NSI, allowing the

so-called dark-side region of the neutrino parameter space found in Ref. [84]. Other

secondary regions as LMA-0 and LMA-II, which were present in previous works, have

now disappeared.

At this point, we asked how to remove this degeneracy in future studies. In the case of

KamLAND, and other reactor experiments, we note that they are basically insensitive to

matter effects. Therefore, they are not important in removing the degeneracy. Hence, for

this purpose we have to consider the solar data. If we observe the shape of the neutrino

survival probabilities in Fig. 3.3, we notice that the best region to discriminate the dark

solution from the standard one is the intermediate energy. In this region, the relevant

experiments would be, for instance, Borexino [170–172], solar + KamLAND [205] or the

low-energy threshold analysis from Hyper-Kamiokande [206, 207]. Other experiments

that could remove this degeneracy may be either atmospheric or laboratory data. The

latter could rule out large NSI values. A possible future restriction from atmospheric and

laboratory data was studied in Refs. [84, 107]. Based on the results discussed above, we

conclude that the neutrino oscillation solution of solar neutrino data is still not robust

enough in the presence of non-standard interactions.

We finish this chapter by noticing that we have obtained limits on the vector and

axial non-standard neutrino interaction couplings with d-type quarks. In particular, we

have set bounds for flavor-diagonal and flavor-changing couplings, for electron and tau-

neutrinos, εdVee , εdVeτ , εdVττ , εdAee and εdAττ . The combination of the CHARM experiment with

KamLAND and solar neutrino data has been very useful to obtain these constraints,

improving previous results [84, 87].
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Probing νµ NSI with accelerator and

atmospheric data

So far, we have concentrated on electron-neutrino NSI studies. For the study involving

muon-neutrinos, collider experiments are very interesting because they produce a well-

controlled and clean muon-neutrino beam, with just a small contamination of electron-

neutrinos. Therefore, due to the precision of these experiments, it is expected that the

muon-neutrino NSI parameters (εfPµβ ) will be better constrained than for the case of other

neutrino flavors. This occurs when we consider the interaction of muon-neutrinos with

electrons [103, 140]. On the other hand, for neutrinos interacting with quarks, the situa-

tion is different. In the case of the NuTeV experiment, despite the accurate measurement

of the νµ−N interaction [162], there was a discrepancy between their results and the pre-

dicted Standard Model parameters. Besides, previous experiments, such as CDHS [161]

and CHARM [160], did not have the same level of accuracy as the NuTeV result. Al-

though these results could indicate the existence of new physics, introducing non-zero NSI

for muon-neutrinos (εfPµα ), it is important to notice that uncertainties arising from QCD

corrections may have been underestimated [208]. We will make a detailed analysis on this

point in this chapter, deriving new and reliable constraints on the NSI parameters coming

from these experiments.

Before starting the discussion of our analysis, it is worth noting that the limits on

NSI parameters, obtained from 1-loop dressing [87] of the effective four-fermion neutrino

vertex, can not be expressed rigorously without specifying a model. Indeed, they will be

highly model-dependent and a full analysis including all the diagrams needed to satisfy

gauge-invariance, leads to rather weak constraints on the flavor changing NSI parameters,

εqL,Rµτ and εqL,Rµe [197].

101
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After the NuTeV results were reported, several works introduced new corrections lead-

ing to higher systematic uncertainties. In particular, a new estimate of the electroweak

mixing angle sin2 θW was presented, using the NuTeV measurement and the newly cal-

culated uncertainties [163, 164]. Since the NuTeV data give the most stringent model-

independent constraints on the muon-neutrino NSI parameters (εµα), it is important to

reanalyze their results introducing the effect of the new systematic uncertainties on the

NuTeV results. We will explain in this chapter how we made these computations. Be-

sides, we will also review the status of the atmospheric neutrino constraints and we will

perform a combined analysis with laboratory results.

In order to obtain these bounds, we will work with the following hypothesis:

• We carry out our analysis in a two-neutrino scheme.

• Only NSI parameters involving muon-neutrino are nonzero, εfPµβ 6= 0.

With these conditions, we will get relatively stringent constraints on the NSI interac-

tions for muon-neutrinos, at the few 10−2 level, thanks mainly to the interplay between

laboratory and atmospheric data.

4.1 Neutrino-nucleon scattering and measurements

of sin2 θW

Neutrino scattering has been frequently used to probe different properties of the weak

neutral-current, as well as to perform measurements of several parameters like the elec-

troweak mixing angle sin2 θW . It is known that, for experiments with an isoscalar target,

the uncertainties due to the QCD parton model cancel out, at least to a large extent [209].

If an interaction with an isoscalar target of up and down-type quarks is considered, isospin

invariance relates the most important neutral and charged-current contributions. As a

consequence, the ratio of both currents is related to the coupling constants gPµ :

Rν =
σ(νµN → νµX)

σ(νµN → µ−X)
= (gLµ )2 + r(gRµ )2 , (4.1)

Rν̄ =
σ(ν̄µN → ν̄µX)

σ(ν̄µN → µ+X)
= (gLµ )2 +

1

r
(gRµ )2 , (4.2)
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where r corresponds to the ratio between antineutrino and neutrino charged-current cross

sections:

r =
σ(ν̄µN → µ+X)

σ(νµN → µ−X)
. (4.3)

The coupling constants have a contribution from both quarks, up and down:

(gPµ )2 = (guPµ )2 + (gdPµ )2 , (4.4)

with P = L,R.

If we consider the presence of non-standard interactions, we have to introduce the (non-

universal and flavor-changing) NSI parameters that couple muon-neutrinos with quarks,

leading to the following expressions of the coupling constants (gPµ ):

(g̃Lµ )2 = (guLµ + εuLµµ)2 + (gdLµ + εdLµµ)2 +
∑
α 6=µ

|εuLµα|2 +
∑
α6=µ

|εdLµα|2 , (4.5)

(g̃Rµ )2 = (guRµ + εuRµµ )2 + (gdRµ + εdRµµ)2 +
∑
α 6=µ

|εuRµα |2 +
∑
α 6=µ

|εdRµα|2 . (4.6)

The values of Rν and Rν̄ parameters were measured by the CDHS [161] and CHARM

experiments [160].

Another important observable in the study of deep inelastic neutrino scattering is the

Paschos-Wolfenstein (PW) ratio, which is given by [210]

RPW =
σ(νµN → νµX)− σ(ν̄µN → ν̄µX)

σ(νµN → µ−X)− σ(ν̄µN → µ+X)
=
Rν − rRν̄

1− r
= (gLµ )2 − (gRµ )2 . (4.7)

The PW ratio depends weakly on the nucleus target hadronic structure. Besides, this

definition reduces the uncertainties coming from charm production and charm and strange

sea distributions. On the negative side, it adds an extra difficulty: the simultaneous

measurement of neutrino and antineutrino neutral-current cross sections makes necessary

the use of two separate neutrino and antineutrino beams.

The “ratio” observables (Eqs. (4.1), (4.2) and (4.7)) could be used to calculate several

neutral-current weak parameters. For instance, the NuTeV Collaboration uses these ob-

servables to report a measurement of the electroweak mixing angle, measuring the ratios

Rν and Rν̄ experimentally and transforming them into the ratio RPW . Once these ratios

are computed, they can be related with sin2 θW through [161, 210]

Rν(ν̄) =
1

2
− sin2 θW +

5

4
sin4 θW (1 + r(−1)) . (4.8)
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4.2 The NuTeV data and constraints on NSI

Using intense neutrino and antineutrino beams, the NuTeV Collaboration measured the

charged and neutral cross sections for neutrinos hitting an iron target. After separating

the neutral and charged events, they reported their results for the values of Rν and Rν̄ .

With these parameters, a numerical analysis was performed by the NuTeV Collabora-

tion, obtaining a measurement of the left and right-handed neutral couplings to the light

quarks [162]:

(gLµ )2 = 0.30005± 0.00137 , (gRµ )2 = 0.03076± 0.00110 . (4.9)

From these values it was possible to see a discrepancy with the Standard Model expecta-

tions [211]:

(gLµ )2
SM = 0.30399± 0.00017 , (gRµ )2

SM = 0.03001± 0.00002 , (4.10)

being almost a 3σ discrepancy in the left-handed coupling. Similarly, the collaboration

carried out a numerical fit getting a value for the electroweak mixing angle in the on-shell

scheme [162]:

sin2 θW = 0.22773± 0.00135(stat)± 0.00093(syst) , (4.11)

which is again 3σ away from the value predicted in global precise electroweak fits [211]:

sin2 θW = 0.22292± 0.00082 . (4.12)

This discrepancy between the NuTeV calculations for the left (gLµ ) and right (gRµ )

couplings and their SM prediction could be ascribed to the existence of a non-zero NSI

operator. Hence, it should take into account the εqPµα parameters when the weak couplings

are expressed, as we have already exposed in Eqs. (4.5) and (4.6). These considerations

were borne in mind by the authors of Ref. [87], who obtained a positive hint for non-zero

values of the left flavor-conserving NSI couplings, εdLµµ and εuLµµ, as well as for the NSI

parameters which involve flavor-changing interactions, εqL;R
µτ .

However, before claiming the existence of non-standard interactions as possibly sug-

gested by the NuTeV results, other more “conventional” corrections should be considered.

For instance, corrections from nuclear effects and next-to-leading-order corrections which

were neglected in the original NuTeV Collaboration analysis. As an example of inter-
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Figure 4.1: Measurements of sin2 θW according to Refs. [162–164, 211].

pretations of the NuTeV anomaly in terms of conventional physics, the reader can see

Refs. [208, 212].

Here, we have reanalyzed the NuTeV anomaly in terms of new physics, taking into

account the new reported uncertainties from different theoretical groups [163, 164]. As

we will see, we have obtained new constraints on the neutrino NSI parameters that can

be considered as more reliable since they take into account this updated information.

One of the theoretical groups that has reanalyzed the uncertainties in the NuTeV

experiment is the NNPDF Collaboration. They have obtained better estimates of the

strange and antistrange parton distribution functions, introducing extra corrections to the

NuTeV calculated parameters. With this analysis, the NNPDF Collaboration reported a

new value for the weak mixing angle [163]:

sin2 θW = 0.2263± 0.0014(stat)± 0.0009(sys)± 0.0107(PDFs). (4.13)

In the case of Ref. [164], authors have considered corrections from nuclear effects such

as the excess of neutrons in iron, the charge symmetry violation (which arises from the

mass differences of the up and down-type quarks) and the strangeness. Including all these
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corrections, the collaboration reported a value for the electroweak mixing angle [164]:

sin2 θW = 0.2232± 0.0013(stat)± 0.0024(sys) . (4.14)

It can be seen from Eqs. (4.13) and (4.14), that the two new estimates for the elec-

troweak mixing angle are very close to the SM prediction. Therefore, the inclusion of the

new uncertainties has helped to understand this problem and agreement is found, within

the error margin, as we can see in Fig. 4.1.

Having established that extra corrections to the NuTeV calculated parameters are

needed in order to reconcile them with the SM predictions, we will use the results from

NNPDF and Bentz et al. Collaborations [163, 164] to constrain the strength of the NSI cou-

plings involving muon-neutrinos, εqPµα. For this purpose, we adopt the Paschos-Wolfenstein

ratio RPW because:

• It depends very weakly on the hadronic structure of the nucleus target.

• It is largely insensitive to the uncertainties resulting from charm production and up

and down quark mass differences.

• It is only slightly affected by the charm and strange sea distribution.

After computing the prediction for the Paschos-Wolfenstein ratio for a particular value

of the NSI parameters (obtained from Eqs. (4.5) and (4.6)), we calculate the corresponding

χ2 function and fit experimental data. We consider the two different recent results already

discussed, Eqs. (4.13) and (4.14), and obtain constraints to εqPµµ at 90% C.L. For the

NNPDF case are:

−0.017 < εdLµµ < 0.025 & 0.84 < εdLµµ < 0.88 , (4.15)

−0.24 < εdRµµ < 0.088 , (4.16)

−0.72 < εuLµµ < −0.67 & −0.031 < εuLµµ < 0.020 , (4.17)

−0.058 < εuRµµ < 0.063 & 0.24 < εuRµµ < 0.36 . (4.18)

On the other hand, when the results of Ref. [164] are used in our analysis we get:

−0.005 < εdLµµ < 0.005 & 0.86 < εdLµµ < 0.87 , (4.19)

−0.17 < εdRµµ < −0.11 & −0.042 < εdRµµ < 0.025 , (4.20)

−0.71 < εuLµµ < 0.70 & −0.006 < εuLµµ < 0.006 , (4.21)

−0.014 < εuRµµ < 0.016 & 0.28 < εuRµµ < 0.31 . (4.22)
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Figure 4.2: The left panel shows the allowed regions for vector and axial NSI of neutrinos
with down-type quark, at 90% C.L. and 3σ. The up-type quark case is shown in the
right panel. We show the results for the error analysis of the NNPDF Collaboration [163]
(colored region) while the empty lines correspond to the error analysis performed by Bentz
et al. [164].

In both results, two allowed regions have been obtained for most of the NSI couplings,

reflecting the degeneracy shown in Fig. 4.2.

In a more general case, we increase the number of degrees of freedom implying the

simultaneous presence of left and right-handed NSI neutrino couplings and obtaining a

degenerate solution with hyperbolic shape, as we see in the Fig. 4.2. This degenerate

solution in both cases, down and up quarks, is easily understood from Eq. (4.7). In

the left panel of Fig. 4.2 we show the constraints for down-type quark NSI, while in the

right one we show the corresponding restrictions on NSI for the up-type quark. We have

assumed the presence of NSI with only one type of quark at a time. We present the

constraints in terms of the vector and axial couplings, instead of using the left and right

components. The reason for this is that we will combine these results with atmospheric

data (see Sec. 4.4), that are sensitive to the vector couplings.

For the case of flavor-changing NSI, we show the allowed regions for the chiral compo-

nents in Fig. 4.3. As in the previous figure, we show here the result for the two different

updated error computations. In this case, only one plot is necessary since the constraints

for the u and d-type quarks coincide. This time, the allowed region can be interpreted as

a hyperbola centered in the origin (εqVµτ , εqAµτ ) = (0,0), that can be seen as a vestige of the
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Figure 4.3: Allowed regions for vector and axial NSI of neutrinos with up and down-type
quark, at 90% C. L. and 3σ. We show the results for the error analysis of the NNPDF
Collaboration [163] using the colored region, while the empty lines correspond to the error
analysis performed by Bentz et al. [164]. The central ellipse shows the analysis of CHARM
and CDHS data, see discussion in Secs. 4.3 and 4.5.

two-fold degeneracy already discussed for the flavor-conserving case. It can be noticed,

either from Fig. 4.3 or from Eqs. (4.5) and (4.7), that we constrain the product εqVµτ · εqAµτ .

This implies that one coupling may be of order one, as long as the other remains small.

4.3 NSI in the CHARM and CDHS experiments

CHARM [161] and CDHS [160] are two other experiments that measured semileptonic

neutrino scattering cross sections. Their data are useful in a global fit, despite their

sensitivity being lower than the one reached by the NuTeV experiment. In particular,

they will play a role in the restrictions for the flavor-changing NSI. The measurements

reported by these collaborations are summarized in Table 4.1.

Using the values of Rν and Rν̄ measured by CHARM and CDHS, we perform a χ2

analysis taking into account the correlation between the neutrino and antineutrino ratios

of neutral to charged-current given by the parameter r. With these considerations, our
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Table 4.1: Neutral to charged-current ratios reported by CHARM and CDHS. We also
show the SM prediction for comparison.

Experiment Observable Measurement SM prediction

CDHS [161] Rν 0.3072± 0.0033 0.3208

Rν̄ 0.382± 0.016 0.381

r 0.393± 0.014

CHARM [160] Rν 0.3093± 0.0031 0.3226

Rν̄ 0.390± 0.014 0.371

r 0.456± 0.011

χ2 function in this case is given by

χ2 =
∑
i

χ2
i =

∑
j,k

(Rj
i −R

j
i,NSI)(σ

2)−1
jk (Rk

i −Rk
i,NSI) , (4.23)

where i refers to CHARM or CDHS and j, k run for Rν and Rν̄ . The results of our fit

analysis are shown in Fig. 4.3.

As we can observe in Fig. 4.3, the inclusion of CDHS and CHARM data provide

strong constraints for the flavor changing NSI parameters. However, it is important to

consider that the restriction follows from a discrepancy between the experimental and the

theoretical value of Rν and Rν̄ , as can be seen from Table 4.1. Therefore, as we mentioned

previously, these constraints should be considered as less robust than those obtained for

non-universal NSI discussed in Sec 4.1. Once we have pointed out this, for the sake of

completeness, we report the 90% C.L. bounds from the CHARM/CDHS data, combined

with the new analysis of the NuTeV data from the NNPDF (Bentz et al.) Collaboration:

− 0.023(−0.023) < εqLµτ < 0.023(0.023), −0.039(−0.036) < εqRµτ < 0.039(0.036).

(4.24)

We should notice that these constraints in Eqs. (4.24) come mainly from CDHS and

CHARM data, as we see in the central region of Fig. 4.3.
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4.4 Combining with atmospheric neutrino data

After obtaining the bounds from laboratory experiments, we turn our attention to at-

mospheric neutrino data. The experimental results are in good agreement with standard

neutrino oscillations [203, 213] and therefore, neutrino NSI with matter can only play a

sub-leading role in these data. It is interesting to consider atmospheric data in our global

analysis in order to “cut” the infinite branches of the hyperbola in Fig. 4.2. We will

obtain better constraints on the NSI neutrino couplings, also including more than one

NSI parameter at a time.

For this purpose, we consider NSI in matter in the context of atmospheric neutrinos

for flavor-changing, as well as for flavor-diagonal contributions [86, 214, 215]. The main

effect of NSI is the presence of an extra term in the hamiltonian that describes the

atmospheric neutrino propagation. This will translate, for the two-neutrino approach,

into the hamiltonian

HNSI =
√

2GFNq

(
εqVµµ εqVµτ

εqVµτ εqVττ

)
, (4.25)

where εqVαβ = εqLαβ + εqRαβ and q = u, d. Notice that we omit the axial NSI parameter, since

the propagation effects are only sensitive to vectorial contributions.

Super-Kamiokande neutrino data have been analyzed under this assumption in Refs. [86,

214, 215]. But so far, no evidence of NSI has been found in the studied atmospheric data.

Therefore, one gets upper bounds on the magnitude of the NSI coupling strengths. For

our combined analysis, we include the full atmospheric SK-I and SK-II data sample [215]

resulting in the bounds:

−0.007 < εdVµτ < 0.007 , (4.26)

|εdVττ − εdVµµ | < 0.042 , (4.27)

at 90% C.L. and taking only one parameter at a time (1 d.o.f.). To obtain these limits,

we have considered the following assumptions:

• NSI are present only in the neutrino interaction with down-type quarks.

• The Earth composition is the one specified by the PREM model [216].

Similarly, we can rewrite the bounds on Eq. (4.27) in terms of the neutrino NSI

couplings with up-type quarks using the averaged ratio Nd/Nu = 1.028 [217]. In this case
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Figure 4.4: The left panel shows the allowed regions for vector and axial flavor-diagonal
NSI of neutrinos with down-type quarks, at 90% C.L. and 3σ. The up-type quark case is
shown in the right panel. Neutrino data from accelerator and atmospheric experiments
have been combined to obtain this limit. Again, we show the results for the error analysis
of the NNPDF Collaboration [163] (colored region) while the empty lines correspond to
the error analysis performed by Bentz et al. [164].

we obtain:

−0.007 < εuVµτ < 0.007 , (4.28)

|εuVττ − εuVµµ | < 0.043 . (4.29)

It is possible to go one step further and combine the results coming from atmospheric

data with those from the previous accelerator analysis, reported in Secs. 4.2 and 4.3. With

this combination we constrain the hyperbolic branches in Figs. 4.2 and 4.3, obtaining the

allowed regions shown in Figs. 4.4 and 4.5 for the case of flavor-diagonal and flavor-

changing NSI respectively. As in the previous section, the restrictions for flavor-changing

couplings consider NuTeV, CHARM, and CDHS results. For the flavor-diagonal case, only

the NuTeV data are considered. Again, for the combined result of NuTeV and accelerator

data, we only show the down-type quark restrictions, since the bounds for the up-type

case is nearly the same.

From Figs. 4.4 and 4.5 we can see the important role played by the atmospheric

neutrino data, since now the degeneracy in the vector NSI coupling has been removed.

The two parameter analysis reported here can be translated into a one parameter
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Figure 4.5: Allowed regions, at 90% C. L. and 3σ, for the flavor-changing NSI neutrino
couplings with down-type quarks. In this case the result is dominated by CHARM +
CDHS and the atmospheric data. This time, the two reanalyses of the NuTeV data give
the same constraints. The constraints for the NSI with up-type quark are nearly the same.

constraint which, taking into account the reanalysis of Ref. [163] ([164]) at 90% C.L., is

−0.042(−0.042) < εdVµµ < 0.042(0.042) , (4.30)

−0.091(−0.072) < εdAµµ < 0.091(0.057) , (4.31)

−0.044(−0.044) < εuVµµ < 0.044(0.044) , (4.32)

−0.15(−0.094) < εuAµµ < 0.18(0.140) . (4.33)

We also report the one parameter constraints for the flavor-changing couplings. In

this case, the atmospheric neutrino analysis plays the main role in the restriction of the

vectorial couplings εqVµτ , while CHARM and CDHS dominate the restrictions for the axial

couplings εqAµτ . The bounds for the down-type quark are

−0.007 < εdVµτ < 0.007 , −0.039 < εdAµτ < 0.039 , (4.34)

−0.007 < εuVµτ < 0.007 , −0.039 < εuAµτ < 0.039 . (4.35)

As a final comment in this section, we would like to point out that a detailed three-

neutrino oscillation analysis combined with non-standard interactions will introduce the
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Table 4.2: Summary of the constraints for the NSI parameters from the combined analysis
of NuTeV and atmospheric data. The first rows show the constraints for the non-universal
(NU) NSI parameters. The bottom row refers to the flavor-changing (FC) NSI were we
have also included the CDHS and CHARM data.

Global with NuTeV reanal. NSI with down NSI with up

NU NU

NNPDF [163] −0.042 < εdVµµ < 0.042 −0.044 < εuVµµ < 0.044

−0.091 < εdAµµ < 0.091 −0.15 < εuAµµ < 0.18

Bentz at al. [164] −0.042 < εdVµµ < 0.042 −0.044 < εuVµµ < 0.044

−0.072 < εdAµµ < 0.057 −0.094 < εuAµµ < 0.140

FC FC

NNPDF/Bentz et al. −0.007 < εdVµτ < 0.007 −0.007 < εuVµτ < 0.007

−0.039 < εdAµτ < 0.039 −0.039 < εuAµτ < 0.039

three extra NSI couplings: εee, εeµ, and εeτ , making the analysis more complex and the

constraints weaker.

4.5 Summary

The original results reported by the NuTeV Collaboration suggested important devia-

tions from the SM predictions. Considering that this could be a consequence of new

physics effects, we have reanalyzed the constraints on non-standard neutrino interactions

of muon-neutrinos with quarks. In particular, we have reanalyzed the results of the NuTeV

experiment introducing systematic uncertainties which were not taken into account in the

original analysis.

We have combined the restrictions obtained in this reanalysis with those coming from

atmospheric data, that were useful to remove degeneracies in the NSI parameter space.

Although we have found that muon-neutrino constraints are stronger than those for tau or

electron-neutrinos, they are weaker than previously believed. While bounds of the order

of few 10−3 are reported in the literature, when considering new uncertainties we found

constraints of the order of few 10−2. These results are summarized in Table 4.2. For the

case of a general three-generation analysis, it is expected that even weaker constraints

will be found.

It is not expected that data from the MINOS long baseline experiment [218] could
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improve these results, since it has a reduced sensitivity to matter effects, especially when

compared to the atmospheric neutrino data. Since the same would be expected for the

OPERA experiment [219], we would need to wait for NOVA results [220] or the proposed

DUNE experiment [221] for an improvement in this sector.

Another natural direction would be the NuSOnG proposal [222], a new high statistics

neutrino scattering experiment [223], with the same goals as NuTeV. The experiment

would be devoted to probe muon-neutrino couplings and the expectation would be that

NuSOng would have twice the sensitivity of NuTeV. It is expected that NSI constraints

would be improved by about the same amount.



Chapter 5

Non-unitary lepton mixing matrix

As we saw, the neutrino oscillation phenomenon cannot be explained without nonzero

neutrino masses. The observed small neutrino mass differences can arise from an effective

dimension-five operator O5 ∝ LΦLΦ [16] (see Fig. 1.3) that violates the lepton number,

which may stem from unknown physics beyond the Standard Model. In the operator,

L denotes a lepton doublet while Φ is the SM scalar doublet. This operator generates

Majorana neutrino masses after electroweak symmetry breaking. In this the case, neutrino

mass appears in second order of 〈Φ〉, and lepton number violation by two units (∆L = 2)

can occur at large scale. This mechanism explains the small neutrino mass in comparison

to the Standard Model charged fermion masses 1. However, the mechanism that generates

the operator O5 is still unknown and we cannot say much more about the interaction that

produces the operator or its associated mass scale, nor the possible details of its flavor

structure.

If there exist heavy “messenger” particles, the operator O5 could be induced through

the exchange of them. They could be neutral heavy leptons (NHL), that arise naturally

in several extensions of the Standard Model when Yν ∼ 1, playing a role as messengers of

neutrino mass generation. This is one of their strongest motivations and a key ingredient

of the Type-I seesaw mechanism [3] and variants. If this mechanism is realized at the

Fermi scale [18, 19, 22, 224–228], the “seesaw messengers” might give rise to several

interesting phenomenological implications, depending on the assumed gauge structure. If

we consider the minimal SU(3)C ×SU(2)L×U(1)Y structure, we could have several new

states and potential signatures, for instance:

• Heavy isosinglet leptons. Below the Z mass, these particles have been searched

1Notice that it has been already discussed in Sec. 1.4. Here, we return to it in order to introduce this
chapter properly.
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for at LEP I [229–231]; if their mass is in the TeV range, they might be seen in

the LHC experiments, although their rates are not expected to be large in the

SU(3)C × SU(2)L × U(1)Y gauge structure.

• Light isosinglet leptons, usually called “sterile” neutrinos. If the mass of these par-

ticles is found in the eV range they could help to explain current neutrino oscillation

anomalies [232, 233] since they will take part in the oscillations. If their mass is in

the keV range or above, they might be relevant for cosmology [234] or appear as

distortions in weak decay spectra [235].

• Universality violation. Due to the existence of NHL, weak decay rates would de-

crease if the NHL is not heavy enough to be emitted [236].

• Non-unitary lepton mixing matrix. Whenever NHL are too heavy to take part in

neutrino oscillations, the admixture with light neutrino states will affect the current

neutrino oscillation picture; in particular, the leptonic mixing matrix will be non-

unitary [21].

• Neutrinoless double beta decay. If the NHL is a Majorana particle, lepton number

violation processes would appear, including the well-known neutrinoless double beta

decay. It could be generated through long-range (mass mechanism), or induce short-

range contributions [237–239].

• Charged lepton flavor violation processes. They could be induced by NHL, although

the rates and current constraints are model dependent [21, 240].

In this chapter we will consider the phenomenological consequences of a non-unitary

lepton mixing matrix. We will consider that the non-unitarity is produced by the existence

of NHL, for instance, from isosinglet neutrinos above 100 GeV. Therefore, these heavy

particles will be too heavy to take part in oscillations or low-energy weak decay processes.

We will show that the most general form of the mixing matrix is factorable, separating the

mixing matrix in a “new physics part” and a “standard part”. With this description, the

current experiments described with a two-neutrino scheme (electron and muon-neutrinos

for instance) can be expressed in terms of just four new parameters, three real mixing

angles plus one new CP violation phase. We will show in this chapter how these new

parameters affect oscillation probabilities, and we will discuss the main restrictions to

the mixing structure that follows from oscillation data as well as from universality tests.

We also present a compilation of several model-independent constraints on NHL mixing
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parameters, translated into this new parametrization. We consider in this last case both

low-energy searches and searches of direct NHL production at high-energy accelerator

experiments.

5.1 A new way to describe extra heavy leptons

The existence of isosinglet neutral heavy leptons implies that they could mix with the

standard isodoublet neutrinos. The mixing matrix including extra heavy leptons has

been studied carefully and described in the symmetric parametrization in Refs. [9, 45].

In this thesis, we consider an equivalent presentation that manifestly factorizes out the

parameters related with the extra heavy leptons and separate them from those describing

the light neutrino mixing within the unitarity approximation. We will present here the

main features of this parametrization and the more mathematical details will be shown

in the appendix B.

If we consider three light neutrinos (the conventional number of neutrinos in the SM)

and (n − 3) extra NHL, we have an Un×n unitary mixing matrix. We can divide this

mixing matrix in four different blocks [241]

Un×n =

(
N S

V T

)
, (5.1)

where N is a 3× 3 non-unitary matrix describing the light neutrino sector. The matrix S

describes the coupling of the isosinglet states, expected to be heavy 2. We find that the

3× 3 mixing matrix N can be decomposed most conveniently as a product of a standard

matrix U3×3 and a “new physics matrix” NNP :

N = NNP U3×3 =

 α11 0 0

α21 α22 0

α31 α32 α33

 U3×3 , (5.2)

where U3×3 is the usual unitary 3× 3 leptonic mixing matrix reported in neutrino oscil-

lation searches. The submatrix U3×3 may be expressed in the symmetric parametrization

(Eq. (1.120)) or, equivalently, as prescribed by the Particle Data Group [6] 3 (Eq. (1.121)).

In this thesis we prefer to use the symmetric parametrization. The reader can find a dis-

cussion on the advantages of each parametrization in Ref [45]. On the other hand, the

2See Ref. [17] for a perturbative expansion of Un×n.
3The factorization holds irrespective of which form is taken for light neutrino mixing matrix.
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NNP matrix in Eq. (5.2) contains all the new physics information through the αij param-

eters, which are complex in general. As we can see, this NNP matrix induces the unitarity

violation. More explicitly, we can calculate the mixing matrix N obtaining: α11Ue1 α11Ue2 α11Ue3

α21Ue1 + α22Uµ1 α21Ue2 + α22Uµ2 α21Ue3 + α22Uµ3

α31Ue1 + α32Uµ1 + α33Uτ1 α31Ue2 + α32Uµ2 + α33Uτ2 α31Ue3 + α32Uµ3 + α33Uτ3

.
(5.3)

Notice the convenience of using Eq. (5.2), since it gives a general and complete description

of the current neutrino experiments when the unitarity condition is relaxed. An example

will show the use of this notation. If we consider interactions involving electron-neutrinos

and muon-neutrinos, we just need, with our description, four extra parameters which

include all additional information beyond the SM: the two real parameters α11 and α22 plus

a complex one, α21, containing a single CP phase. For a discussion on the existence [242]

and possible effects [243] of extra CP phases associated to the admixture of NHL in

the charged leptonic weak interaction, the reader is referred to the original paper in [9].

The new point here is that, despite the proliferation of phase parameters, one can always

stack them in a single physical parameter per non-diagonal entry, so only one combination

enters in the “relevant” neutrino oscillation experiments. This interesting feature holds

independently of the number of extra NHL.

We write below the explicit form of the elements of the new physics matrix, αij, for

any number of extra NHL. They can be separated in:

• Diagonal elements, αii, which are real and expressed in a simple way as

α11 = c1n c 1n−1c1n−2 . . . c14,

α22 = c2n c 2n−1c2n−2 . . . c24, (5.4)

α33 = c3n c 3n−1c3n−2 . . . c34.

Notice that these diagonal terms depend only on the cosines of the mixing param-

eters, cij = cos θij.

• Off diagonal term α31. In this case the expression is more complicated; however, if

we neglect quartic terms in sin θij, with j = 4, 5, · · · , we find:

α31 = c3n c 3n−1 . . . c3 5 η34c2 4η̄14 + c3n . . . c3 6 η35c2 5η̄15 c14 + . . .

+ η3nc2nη̄1n c1n−1 c1n−2 . . . c14 , (5.5)
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where ηij = e−iφij sin θij and its conjugate, η̄ij = −eiφij sin θij, contain all of the CP

violating phases.

• Off-diagonal terms α21 and α32, expressed as a sum of n− 3 terms as

α21 = c2n c 2n−1 . . . c2 5 η24η̄14 + c2n . . . c2 6 η25η̄15 c14 + . . .

+ η2nη̄1n c1n−1 c1n−2 . . . c14 ,

α32 = c3n c 3n−1 . . . c3 5 η34η̄24 + c3n . . . c3 6 η35η̄25 c24 + . . .

+ η3nη̄2n c2n−1 c2n−2 . . . c24 . (5.6)

In summary, by choosing a convenient ordering for the products of the complex rotation

matrices ωij, one obtains a convenient parametrization that separates all the information

relative to the additional leptons in a simple and compact form, with a matrix containing

three zeroes and reducing the number of parameters related to new physics. In what

follows, we will show the utility of this specific parametrization and we will also obtain

the corresponding constraints.

5.2 NHL and non-unitary neutrino mixing

Keeping in mind the formalism described in the previous section and the chiral nature of

the SU(3)C × SU(2)L × U(1)Y model, we describe the couplings of the n neutrino states

in the charged-current weak interaction as part of a rectangular matrix K [9],

K =
(
N S

)
, (5.7)

where the N block is the 3 × 3 matrix already discussed in Eq. (5.2), corresponding to

the three light neutrinos matrix with contributions of new physics, and the S block is a

3× (n− 3) matrix corresponding to the mixing of extra heavy leptons.

In a scenario with extra heavy fermions that mix with the active light neutrinos, the

unitary mixing matrix is the complete matrix described by Eq. (5.1), so that the mixing

matrix involving the standard neutrinos comes from a truncation of Eq. (5.1). Therefore,

the 3 × 3 light neutrino mixing matrix N is not unitary and this fact modifies the SM

observables. Note also that, in this case, the unitarity condition takes the form

KK† = NN † + SS† = I , (5.8)
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with

NN † =

 α2
11 α11α

∗
21 α11α

∗
31

α11α21 α2
22 + |α21|2 α22α

∗
32 + α21α

∗
31

α11α31 α22α32 + α31α
∗
21 α2

33 + |α31|2 + |α32|2

 . (5.9)

The parametrization shown here allows to concentrate all the information of the (n−3)

heavy states into the αij parameters, obtaining a more compact and simple notation. The

parameters are totally general, include all the relevant CP phases and the parametrization

is model independent. In the following sections, we will show the advantages of this

parametrization by analyzing direct and indirect searches of the extra heavy leptons. We

will rewrite the relevant observables and will obtain the corresponding constraints on the

αij parameters.

5.3 Constraints from universality tests

Within the picture described in this chapter, the new extra heavy leptons will not par-

ticipate in several weak processes 4, since they can not be emitted due to kinematical

restrictions. As a consequence, the universality of certain weak processes will be broken

and the effective value of the Fermi constant will change accordingly; this is the case of

muon and beta decays, for example. Although the extra heavy leptons will not be kine-

matically emitted in various of these weak processes, they remain in the process as part of

the admixture with the light particles. So we can use the formalism characterized by the

αij parameters (Secs. 5.1 and 5.2) in order to describe various weak processes, translat-

ing their parameters in this compact formalism to derive the corresponding experimental

sensitivities.

First we will discuss the universality constraints. Let us start considering the current

bounds [236, 244–251], then we introduce them within the above formalism in order to

prove its simplicity. Comparing muon and beta decays,

A(Z,N) → A(Z + 1, N − 1) + e− + ν̄e ,

A(Z,N) → A(Z − 1, N + 1) + e+ + νe , (5.10)

µ+ → e+ + ν̄µ + νe ,

µ− → e− + νµ + ν̄e , (5.11)

4Notice that neutral heavy leptons could participate virtually in weak processes.
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for a model with just one extra heavy lepton, one finds the following corrections to the

effective Fermi constant [244, 245, 249],

Gµ = GF

√
(1− |Se4|2)(1− |Sµ4|2) = GF

√
α2

11(α2
22 + |α21|2) (5.12)

and

Gβ = GF

√
(1− |Se4|2) . (5.13)

Relaxing this assumption and considering the presence of n extra heavy leptons, we can

rewrite Eqs. (5.12) and (5.13) in terms of αij obtaining similar expressions,

Gµ = GF

√
(NN †)11(NN †)22 = GF

√
α2

11(α2
22 + |α21|2) (5.14)

and

Gβ = GF

√
(NN †)11 = GF

√
α2

11 . (5.15)

Notice that this change will affect all the observables related with the Fermi constant, for

example the quark CKM matrix elements [244]. We focus on the two matrix elements

Vud and Vus. Their new expressions are obtained from the vector coupling in β, Ke3 and

hyperon decays, after scaling by the new constant Gµ. The unitarity relation for the first

row of the CKM is now expressed as [244, 245]:

3∑
i=1

|Vui|2 =

(
Gβ

Gµ

)2

=

(
GF

√
(NN †)11

GF

√
(NN †)11(NN †)22

)2

=
1

(NN †)22

, (5.16)

From this equation one gets the following constraint [6]:

3∑
i=1

|Vui|2 =
1

α2
22 + |α21|2

= 0.9999± 0.0006 , (5.17)

which implies that 1− (NN †)22 = (SS†)22 = 1− α2
22 − |α21|2 < 0.0005 at 1σ.

We can also get constraints on these αij parameters from other universality tests. In

the absence of NHL the gauge bosons couple to the leptons with a flavor independent

strength. But in the presence of heavy isosinglets this is no longer true, and the couplings

will become flavor dependent because the unitarity of the mixing matrix has been broken

and NN † 6= I. We can use the reported ratios for these couplings to obtain constraints

from universality. As in the case of the CKM matrix elements, we may express them for



122 Chapter 5. Non-unitary lepton mixing matrix

Figure 5.1: Constraints from universality test for the unitarity deviations.

one extra heavy lepton as [249](
ga
gµ

)2

=
(1− |Sa4|)
(1− |Sµ4|)

a = e, τ . (5.18)

For a more general case they can be expressed as [244](
ga
gµ

)2

=
(NN †)aa
(NN †)22

a = 1, 3 . (5.19)

We can consider the pion decay branching ratio [247]:

Rπ =
Γ(π+ → e+ν)

Γ(π+ → µ+ν)
. (5.20)

Notice that this ratio will be proportional to the previous one, shown in Eq. (5.19), for

the case a = 1 ≡ e. Then the current experimental value for the pion decay allows to

obtain the constraint [247, 252]:

rπ =
Rπ

RSM
π

=
(NN †)11

(NN †)22

=
α2

11

α2
22 + |α21|2

=
(1.2300± 0.0040)× 10−4

(1.2354± 0.0002)× 10−4
= 0.9956± 0.0040 . (5.21)
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This implies that 1− α2
11 < 0.0084 at 1σ for the particular case of α2

22 + |α21|2 = 1. This

procedure was adopted in Ref. [249]. In general, [(SS†)22] 6= 0.

We can obtain a more robust constraint if we consider the unitarity constraint on the

CKM matrix already discussed. By combining the constraints from Eqs. (5.17) and (5.21)

we get the bounds shown in Fig. 5.1. This result can be translated into the constraints

1− α2
11 < 0.0130 ,

1− α2
22 − |α21|2 < 0.0012 , (5.22)

at 90% C.L. for 2 d.o.f. We can notice that another measurement is needed to break

the degeneracy between the parameters α22 and |α21|. In the next section, we will study

possible neutrino oscillation observables that could be of help for this analysis.

In order to complete this analysis, we can also find constraints from the µ − τ uni-

versality, which give information on the τ mixing parameters. Using Eq. (5.19) and the

corresponding experimental value [253], we obtain

(NN †)33

(NN †)22

= 0.9850± 0.0057 . (5.23)

From this result it is straightforward to notice that 1 − (NN †)33 = (SS†)33 < 0.0207 at

1σ for the least conservative case of (SS†)22 = 0.

As we have seen, the existence of extra heavy leptons implies variations in all observ-

ables related to the Fermi constant. We have expressed these corrections in terms of a

few parameters that concentrate all the new physics information. In what follows we will

apply this formalism to the important phenomenon of neutrino oscillations.

5.4 Neutrino oscillations with non-unitarity

The compact notation with αij may be useful to study new physics effects in neutrino

oscillations. In this section we compute the expressions for this important case. Firstly

we will obtain new formulae for the neutrino survival and conversion probabilities and

then we will get restrictions for the new physics in terms of the α parameters. It should

be noted that the general expressions have been calculated neglecting cubic products of

α21, sin θ13 and sin ∆21, where ∆ji stands for ∆m2
jiL/4E. This approximation is in a good

agreement with the current experimental status.
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First of all, we recall the most general expression for the neutrino oscillation proba-

bilities in vacuum [12] (Sec. 1.5.1),

Pνα→νβ =
3∑
i,j

U∗αiUβiUαjU
∗
βj − 4

3∑
j>i

Re
[
U∗αjUβjUαiU

∗
βi

]
sin2

(
∆m2

jiL

4E

)

+ 2
3∑
j>i

Im
[
U∗αjUβjUαiU

∗
βi

]
sin

(
∆m2

jiL

2E

)
,

(5.24)

where, if we introduce the unitarity condition of the mixing matrix, UU † = I, we obtain

the usual expression in the literature,

Pνα→νβ = δαβ − 4
3∑
j>i

Re
[
U∗αjUβjUαiU

∗
βi

]
sin2

(
∆m2

jiL

4E

)

+ 2
3∑
j>i

Im
[
U∗αjUβjUαiU

∗
βi

]
sin

(
∆m2

jiL

2E

)
. (5.25)

For the case with extra neutral heavy leptons, unitarity is broken, NN † 6= I 5. Al-

though NHL will not participate in the oscillation because they are too heavy to be

produced, they will mix with light neutrinos, so we have a similar expression as Eq. (5.24)

but using N as the mixing matrix,

Pνα→νβ =
3∑
i,j

N∗αiNβiNαjN
∗
βj − 4

3∑
j>i

Re
[
N∗αjNβjNαiN

∗
βi

]
sin2

(
∆m2

jiL

4E

)

+ 2
3∑
j>i

Im
[
N∗αjNβjNαiN

∗
βi

]
sin

(
∆m2

jiL

2E

)
.

(5.26)

If we consider the muon-neutrino conversion into an electron-neutrino, the probability

is:

5Notice again that N is the mixing matrix following from the truncation of the general matrix U ,
Eq. (5.1).
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Pνµ→νe =
3∑
i,j

N∗µiNeiNµjN
∗
ej − 4

3∑
j>i

Re
[
N∗µjNejNµiN

∗
ei

]
sin2

(
∆m2

jiL

4E

)

+ 2
3∑
j>i

Im
[
N∗µjNejNµiN

∗
ei

]
sin

(
∆m2

jiL

2E

)
.

(5.27)

Using the condition given in Eqs. (5.8) and (5.9) for the 3 × 3 matrix N , instead of

the usual unitarity condition, we observe how the unitarity is broken. The Dirac delta

disappears and instead of it we have the new αij terms:

Pνµ→νe = α2
11|α21|2 − 4

3∑
j>i

Re
[
N∗µjNejNµiN

∗
ei

]
sin2

(
∆m2

jiL

4E

)

+ 2
3∑
j>i

Im
[
N∗µjNejNµiN

∗
ei

]
sin

(
∆m2

jiL

2E

)
. (5.28)

In order to obtain a more explicit expression of Eq. (5.28), we may use Eq. (5.3) and

substitute the values of Nαi in terms of Uαi and αij, arriving to the expression:

Pνµ→νe = α2
11|α21|2

(
1− 4

3∑
j>i

|Uej|2|Uei|2 sin2

(
∆m2

jiL

4E

))

− (α11α22)2 4
3∑
j>i

Re
[
U∗µjUejUµiU

∗
ei

]
sin2

(
∆m2

jiL

4E

)

+ (α11α22)2 2
3∑
j>i

Im
[
U∗µjUejUµiU

∗
ei

]
sin

(
∆m2

jiL

2E

)

− 4α2
11α22

3∑
j>i

Re
[
α21|Uei|2U∗µjUej + α∗21|Uej|2UµiU∗ei

]
sin2

(
∆m2

jiL

4E

)

+ 2α2
11α22

3∑
j>i

Im
[
α21|Uei|2U∗µjUej + α∗21|Uej|2UµiU∗ei

]
sin

(
∆m2

jiL

2E

)
.

(5.29)

We can now use the standard parametrization for the mixing matrix entries (Uαi) in this

equation. We remind the reader that we neglect cubic products of α21, sin θ13, and sin ∆21.
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With this approximation one obtains

Pνµ→νe = (α11α22)2P 3×3
νµ→νe + α2

11α22|α21|P I
νµ→νe + α2

11|α21|2, (5.30)

where P 3×3
νµ→νe denotes the standard neutrino conversion probability for the three active

species [189, 254, 255],

P 3×3
νµ→νe = 4

[
cos2 θ12 cos2 θ23 sin2 θ12 sin2

(
∆m2

21L

4E

)
+ cos2 θ13 sin2 θ13 sin2 θ23 sin2

(
∆m2

31L

4E

)]
+ sin(2θ12) sin θ13 sin(2θ23) sin

(
∆m2

21L

2E

)
× sin

(
∆m2

31L

4E

)
cos

(
∆m2

31L

4E
− I123

)
, (5.31)

with I123 = −δCP = φ12 − φ13 + φ23. On the other hand, P I
νµ→νe denotes a new physics

term which depends on an extra CP phase, INP = φ12 − Arg(α21), along with the usual

mixing angles and the standard CP phase through I123,

P I
νµ→νe = −2

[
sin(2θ13) sin θ23 sin

(
∆m2

31L

4E

)
sin

(
∆m2

31L

4E
+ INP − I123

)]
− cos θ13 cos θ23 sin(2θ12) sin

(
∆m2

21L

2E

)
sin(INP ) . (5.32)

We would like to remark again that the neutrino conversion probability in this channel

depends on two CP phases. Besides the standard CP phase, there is a new phase that

comes from the existence of the NHL, denoted as INP . This “new physics” phase conden-

sates (for this channel) the impact of all the additional phases from NHL and appears in

our formalism as the phase of the parameter α21. INP appears in both terms of Eq. (5.32),

in the first one as a difference with the standard phase, I123 − INP , being proportional

to sin θ13. In the second one, INP is not accompanied by the standard phase and the

term depends on the solar mass difference ∆m2
21. Both terms are expected to give small

corrections to the standard probability.

The contribution of the extra neutral heavy lepton to the neutrino oscillation data can

be shown qualitatively by giving specific values to the new parameters introduced here.

For this purpose, we consider the case where α11 = 1, α22 = 0.9939, |α21| = 0.078, and INP

is equal to π/2, 3π/2, π or 0. We have chosen the standard phase δ = −I123 = 3π/2, close
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to its best fit [59]. With these values, the conversion probability takes the form shown

in Fig. 5.2 which shows that the new CP phase could be interesting in future neutrino

experiments.
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I
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Figure 5.2: Neutrino conversion probability for Eν = 1 GeV. We show in this plot the
standard conversion probability (black) for the CP phase δ = −I123 = 3π/2. The non-
unitary cases are illustrated for the particular values α11 = 1, α22 = 0.9939, and |α21| =
0.078. In the left panel we consider the following values for the new CP phase, INP = π/2
(magenta line) and INP = 3π/2 (green line). The cases INP = 0 (magenta line) and
INP = π (green line) are shown in the right panel.

For the muon neutrino survival probability, we proceed in a similar way as we did in

the Pνµ→νe case, getting the expression

Pνµ→νµ =
3∑
i,j

N∗µiNµiNµjN
∗
µj − 4

3∑
j>i

Re
[
N∗µjNµjNµiN

∗
µi

]
sin2

(
∆m2

jiL

4E

)
. (5.33)

Substituting again the values ofNαi from Eq. (5.3), we can appreciate once more a decrease
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in the probability before neutrinos have a chance to oscillate, the zero distance effect [83]:

Pνµ→νµ = (|α21|2 + α2
22)2 − 4

3∑
j>i

|Nµj|2|Nµi|2 sin2

(
∆m2

ji

4E
L

)
, (5.34)

Pνµ→νµ = (|α21|2 + α2
22)2

− 4
3∑
j>i

|α21Uej + α22Uµj|2|α21Uei + α22Uµi|2 sin2

(
∆m2

ji

4E
L

)
.

(5.35)

As we did previously, we neglect for simplicity cubic products of α21, sin θ13, and sin ∆21,

obtaining the following expression:

Pνµ→νµ = α4
22P

3×3
νµ→νµ + α3

22|α21|P I1
νµ→νµ + 2|α21|2α2

22P
I2
νµ→νµ , (5.36)

where P 3×3
νµ→νµ corresponds to the standard oscillation formula,

P 3×3
νµ→νµ ≈ 1− 4

[
cos2 θ23 sin2 θ23 − cos(2θ23) sin2 θ23 sin2 θ13

]
sin2

(
∆m2

31L

4E

)
+ 2

[
cos2 θ12 cos2 θ23 sin2 θ23 − cos(I123) cos θ23 sin(2θ12) sin3 θ23 sin θ13

]
× sin

(
∆m2

31L

2E

)
sin

(
∆m2

21L

2E

)
− 4

[
cos2 θ12 cos2 θ23 sin2 θ23 cos

(
∆m2

31L

2E

)
+ cos2 θ12 cos4 θ23 sin2 θ12

]
sin2

(
∆m2

21L

4E

)
. (5.37)

The two extra contributions to the standard probability are given by:

P I1
νµ→νµ ≈ − 8 [sin θ13 sin θ23 cos(2θ23) cos(I123 − INP)] sin2

(
∆m2

31L

4E

)
+ 2

[
cos θ23 sin(2θ12) sin2 θ23 cos(INP)

]
sin

(
∆m2

31L

2E

)
sin

(
∆m2

21L

2E

)
,

P I2
νµ→νµ ≈ 1 − 2 sin2 θ23 sin2

(
∆m2

31L

4E

)
. (5.38)

We show graphically this probability in Fig. 5.3.

Since the contribution in this case is very small and, therefore, difficult to appreciate,

we have decided to plot the difference between the probability including new physics and
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Figure 5.3: Survival probability for a fixed neutrino energy of Eν = 1 GeV. We show the
standard survival probability, with δ = −I123 = 3π/2 in the black curve. The non-unitary
case is also given for the same parameter values of Fig. 5.2.

the standard probability (PNP
νµ→νµ − P

3×3
νµ→νµ) in Fig. 5.4.

One can see from these plots that the disappearance channel has worse sensitivity

to the extra CP phase INP than the appearance channel. The computations in these

plots were done for the same values of the appearance case: α11 = 1, α22 = 0.9939,

|α21| = 0.078, δ = −I123 = 3π/2, and INP equal to either π/2 or 3π/2.

We turn now to terrestrial experiments using reactors or radioactive sources, and

discuss oscillations of electron-neutrinos or antineutrinos. They are relevant in the de-

scription of solar neutrino experiments. The electron-(anti)neutrino survival probability

in vacuum is given by the following expression:

Pνe→νe =
3∑
i,j

N∗eiNeiNejN
∗
ej − 4

3∑
j>i

Re
[
N∗ejNejNeiN

∗
ei

]
sin2

(
∆m2

jiL

4E

)
. (5.39)

For this case, it is easy to notice that Nei = α11Uei (see for example Eq. (5.3)) and,

therefore,

Pνe→νe = α4
11

[
3∑
i

|Uei|2|Uei|2 − 4
3∑
j>i

|Uej|2|Uei|2 sin2

(
∆m2

ji

4E
L

)]
. (5.40)
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Figure 5.4: Difference between the standard muon-neutrino survival probability and the
corresponding new physics probability for some values of the additional CP phase INP .
The remaining parameters have been fixed to be the same as in Fig. 5.2.

Using Eq. (1.120), this expression can be rewritten as

Pνe→νe = α4
11

[
1− cos4 θ13 sin2(2θ12) sin2

(
∆m2

21

4E
L

)
− sin2 (2θ13) sin2

(
∆m2

31

4E
L

)]
.

(5.41)

Notice that, for this last probability, the existence of neutral heavy leptons produces

a correction given simply by an overall factor α4
11. This parameter will contain the effects

of unitarity violation. Unfortunately, due to the strong restrictions on universality, the

expected modifications to the probability will be limited.

To conclude this section, we point out that this formalism can easily be applied to

the case of extra light neutrinos. They will take part in oscillations and may play a

role [256, 257] in the well-known anomalies reported by reactor neutrino experiments [258]

and the MiniBooNE Collaboration [233].

5.5 Neutrino oscillations and universality

As a consequence of the effective non-unitarity of the 3 × 3 leptonic mixing matrix, one

may observe neutrino flavor change even though neutrinos have not traveled yet [83],

a phenomenon known in the literature as the zero distance effect. The survival and

conversion probabilities differ from one and zero respectively, as can be seen from Eqs.
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(5.29), (5.34) and (5.40). In those equations, instead of the usual Dirac delta (δαβ) we

find α terms, which are independent of the distance (L). Therefore, for zero distance we

express these probabilities in terms of αij as

Pνe→νe = [α11]4 = [(NN †)11]2 = [1− (SS†)11]2 ,

Pνµ→νµ = [|α21|2 + α2
22]2 = [(NN †)22]2 = [1− (SS†)22]2 , (5.42)

Pνµ→νe = α2
11|α21|2 = [(NN †)21]2 = [(SS†)21]2 .

From these expressions we can make an estimate of the constraints for the new param-

eters. We first notice that it is possible to express these equations in a similar way to the

case of a light sterile neutrino in the limit ∆m2
ijL/(4E)� 1 (

〈
sin2(∆m2

ijl/(4E))
〉

= 1/2).

Analogous expressions are obtained [259]:

Pνe→νe = 1− 1

2

[
sin2 (2θee)

]
eff
,

Pνµ→νµ = 1− 1

2

[
sin2 (2θµµ)

]
eff
, (5.43)

Pνµ→νe =
1

2

[
sin2 (2θµe)

]
eff
,

with

[
sin2 (2θee)

]
eff

= 2(1− α4
11),[

sin2 (2θµµ)
]

eff
= 2[1− (|α21|2 + α2

22)2], (5.44)[
sin2 (2θµe)

]
eff

= 2α2
11|α21|2.

Although the MiniBooNE experiment reports an anomaly that might be interpreted as

new physics [233], there are strong constraints on light sterile neutrinos at 3σ [257] given

by:

[
sin2 (2θee)

]
eff
≤ 0.2 ,[

sin2 (2θµµ)
]

eff
≤ 0.06 , (5.45)[

sin2 (2θµe)
]

eff
≤ 1× 10−3 .
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Even stronger constraints on the existence of a fourth neutrino are derived from νµ to νe

oscillation experiments such as NOMAD [260]:

[
sin2 (2θµe)

]
eff
≤ 1.4× 10−3 . (5.46)

Translated into the parametrization under discussion we have

α2
11|α21|2 ≤ 0.007 (90% C.L.) . (5.47)

Finally, we can obtain bounds at 90 % C.L. on the individual αij parameters, by

combining this limit with those coming from universality (Eq. (5.22)):

α2
11 ≥ 0.987, α2

22 ≥ 0.9918, |α21|2 ≤ 0.0071. (5.48)

5.6 Current constraints on NHL

The unitarity violation discussed in this chapter could point to new physics as the one

responsible for neutrino mass. For example, the possible existence of neutral heavy leptons

could give an explanation of the neutrino mass generation mechanism in seesaw schemes.

They might be the messengers in this mechanism. However, in these schemes very heavy

right-handed neutrinos are predicted, restricting their expected signatures. Nevertheless,

several low-scale seesaw realizations do not introduce these high-scale masses [18, 19, 22,

224–226]. For this reason, we consider useful to give a compilation of model-independent

NHL searches. These results are based only on a phenomenological analysis without

taking into account any particular seesaw scheme.

For many years, experiments have been searching for isosinglet neutrinos without any

positive signal up to now. The range of masses already covered is wide, between 10 MeV

and 100 GeV, looking for:

• A peak in leptonic decays of pions and kaons. It could imply a mixing of heavy

neutrinos with electron or muon-neutrinos [249, 261]. The signal of a neutral heavy

lepton would be a monochromatic line at

El =
m2
M +m2

l −m2
NHL

2mM

, (5.49)

where El and ml are the energy and mass of the lepton respectively, mM is the mass

of the meson and mNHL corresponds to the mass of the heavy neutrino.
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Figure 5.5: Bounds on the mixing between the electron-neutrino and neutral heavy
leptons, |Sej|, depending on the NHL mass, mj.

• A signature coming from a possible heavy neutrino decay in electrons, muons and

pions.

In particular, for the couplings of heavy neutrinos with electron and muon-neutrinos,

the mixing parameters |Sej|2 and |Sµj|2 can be tested (between 10 MeV and 100 GeV) in:

• Peak searches in the energy spectrum of leptons (electron or muon) in meson decays:

– π → eν and K → eν for the coupling with electron-neutrino.

– π → µν and K → µν for the muon-neutrino case.

• NHL decays in reactor and accelerator neutrino experiments. If they were heavy

enough but lighter than the Z boson, they would have been copiously produced

in the first phase of the LEP experiment (the coupling should be appreciable [229,

230]). Searches have been negative, including those performed in the second phase

of LEP with higher energies [231] or in LHC [262–264].

We show the constraints coming from direct production of NHL in Fig. 5.5 and Fig. 5.6.

In Fig. 5.5 we show the wide range of energy that has been scanned in the search

for neutral heavy leptons coupled to the electron-neutrino. The constraints on |Sej|2

are given as a function of mj and can be interpreted as bounds on the m4 − Ue4 plane.

Figure 5.5 shows the results from nine different experiments [194, 231, 262, 265–273], since
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the CHARM Collaboration up to the recent LHC results from ATLAS. A brief description

of all these experiments is given in the appendix C. Future experiments will also search

for this heavy lepton [274]. That is the case, for instance, of DUNE [221], ILC [275] and

FCC-ee [276, 277] proposals.
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We show in Fig. 5.6 the constraints for the mixing of extra neutral heavy leptons with

the muon-neutrino. The constraints also cover a wide region of energy as result of several

experimental searches [263, 264, 278–284]. Again, a short description of the experiments

that have constrained this coupling is given in the appendix C.

For the sake of completeness, we also show in Fig. 5.7 the restrictions for the neutral

heavy lepton mixing with the tau-neutrino [231, 285, 286]. By comparing with previous

figures, one can see that, as expected, the tau-neutrino sector has been less explored.

Colliders such as the LHC can set more stringent constraints thanks to the ATLAS and

CMS detectors. However, it should also be noticed that for the SU(3)C×SU(2)L×U(1)Y

gauge structure, extra heavy leptons will be isosinglets and, therefore, their production

rate will be scaled by small mixing factors. In order to avoid this limitation, one can

consider extended models, such as the left-right symmetric models (Sec. 1.4.4). In this

type of schemes extra right-handed gauge bosons could be produced at high energies,

opening the door to lepton flavour violation signatures [287, 288].

5.6.1 Neutrinoless double beta decay

It is expected, based on theoretical grounds, that neutrinos have a Majorana nature which

implies lepton number violation. In particular, neutrinoless double beta decay (0νββ) may

take place at some level [237].

We begin this section by recalling that the effective Majorana neutrino mass [289] is

given by

〈m〉 = |
∑
j

(Un×n
ej )2mj|, (5.50)

where the j index indicates the light neutrinos couplings to the electron and the W -boson.

This dependence on the mixing matrix Un×n implies that the presence of the heavy

neutrinos would change the charged-current couplings to Un×n
ej = α11Uej. This is derived

from Eqs. (5.2) and (5.3), modifying Eq. (5.50) to

〈m〉 = |
∑
j

(α11Uej)
2mj|, (5.51)

with the index j running for the three light neutrino species.

The presence of an extra heavy neutrino in the neutrinoless double beta decay will

induce an extra amplitude contribution to this process, that will depend on the mixing

with the electron component. The amplitude will involve the exchange of the heavy
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Figure 5.8: Diagram of neutrinoless double beta decay. A virtual Majorana neutrino is
exchanged.

Majorana neutrinos Fig. 5.8 and it will be proportional to

A ∝ mj

q2 −m2
j

, (5.52)

where q is the virtual momentum transfer (q ∼ 100 MeV). It is well known that there are

two different regimes for this amplitude [45]; if the virtual neutrino particle is light, we

can consider q2 � m2
j and we have

Alight ∝ mj. (5.53)

On the other hand, for the exchange of a heavier neutrino we have q2 � m2
j , leading to

Aheavy ∝
1

mj

. (5.54)

From current constraints on neutrinoless double beta decay it is possible to obtain a

restriction on the effect of an extra heavy lepton with a mass mj and a mixing Sej. Using,

for instance, the data from 76Ge searches and assuming an isosinglet neutrino of mass

mj [290], it is possible to obtain constraints as shown in Fig. 5.9. In this figure we may see

the change of slope when the mass of the NHL approaches the nuclear momentum transfer,

mj ' 100 MeV, as expected from the previous discussion. Although the restrictions
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coming from this process are tighter than those shown in Figs. 5.5, 5.6 and 5.7, it should

be reminded that neutrinoless double beta decay takes place only if the neutrinos are

Majorana particles.

5.6.2 Charged lepton flavor violation

For the sake of completeness, we comment the charged lepton flavor violation processes.

These processes could be induced by the exchange of a virtual NHL, either at low-

energies [21] or at the high-energy scale of accelerator experiments [240]. They could

be seen at hadronic colliders, such as the LHC, especially if we consider well motivated

low-scale seesaw models [287, 288, 291, 292]. However, the rates of these processes would

depend on additional flavor parameters as well as upon details on the seesaw mechanism

providing masses to neutrinos, being very model-dependent. Since we have performed a

general model-independent analysis we have not considered charged lepton flavor violation

in this thesis.
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5.7 Summary

Extensions of the Standard Model, such as models employing the seesaw mechanism,

predict the breaking of weak universality and a non-trivial leptonic mixing matrix. This

can be generated by the admixture of heavy isosinglet neutrinos in leptonic charged-

currents. These models are well motivated and most of them are successful in generating

neutrino mass and mixing, thanks to the presence of the NHL. These heavy particles acts

as messengers that generate the small neutrino masses. The scale of such heavy right-

handed neutrinos is huge, but other realizations of these models exist, like the low-scale

seesaw models. These low-scale models suggest that such NHL may be light enough to be

accessible at high-energy colliders such as the LHC, or indirectly induce sizeable unitarity

deviations in the “effective” lepton mixing matrix.

When we study extended models where extra heavy neutrinos are included, we work

with many parameters, making it difficult to describe the model and their implications.

Using our parameterization (Eq. (5.2)) simplifies the description of such models, since it

involves only a set of effective parameters (three real plus a single CP phase) that concen-

trate all the new physics information. With this parameterization we have described the

impact of non-unitary lepton mixing on weak decay processes and neutrino oscillations.

Finally, for completeness, we have shown the up-to-date status of direct searches for extra

heavy leptons, translated into this notation.
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Conclusions

Particle physics is going through an interesting epoch, with important discoveries in the

past two decades. As a confirmation of this, we find the recent recognition to this field

through the Nobel prizes awarded to the Higgs boson discovery (2013) and the detection

of neutrino oscillations (2015). Particle physics is in an era of precision, prepared to solve

new challenges raised in our understanding of the universe.

At these crossroads of knowledge is situated a little and seemingly inoffensive particle,

the neutrino. It may seem insignificant but it has great news to tell us, new physics is

here! Neutrino oscillations are a solid evidence of physics beyond Standard Model. But it

is not an isolated phenomenon since it is accompanied by another prodigy, neutrinos are

massive particles! This implies the necessity to develop mechanisms and models to induce

neutrino mass. From most of these models we have non-conventional neutrino properties

like Non-Standard Interactions (NSI) or the magnetic moment of neutrino. Also processes

such as neutrinoless double beta decay, since typically neutrinos are Majorana. This thesis

has tried to derive information on NSI and their implications, using the experimental data

from oscillation searches.

For this purpose, we have started with two introductory chapters:

• In chapter 1 we have reviewed the most interesting features of neutrinos in the

Standard Model and beyond.

• In chapter 2 we have introduced the physics of Non-Standard Interactions, reviewing

how NSI theoretically arise and their effects in neutrino experiments.

After these introductory chapters we continue with the original part of this thesis

where the NSI effect on oscillation experiments has been discussed. In particular, a global

analysis of solar data including KamLAND reactor data has been performed in order to

139
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check how robust is the LMA solution to the solar neutrino problem in presence of NSI.

After introducing NSI, an extra solution appears, the so-called LMA-D (Large Mixing

Angle-Dark). It implies that solar neutrino data can also be accounted for θ12 > π/4

if the NSI strength is large enough. Therefore, although NSI play a sub-leading role in

the explanation of the solar neutrino problem, they still have influence over the neutrino

oscillation solution. Thus a question arises immediately: how is it possible to eliminate the

degeneracy of LMA? This a challenge for solar experiments like Borexino, SNO or Super-

Kamiokande and for new proposals as DUNE [221], LENA [293] or another LBNE (Long

Baseline Neutrino Experiments) [188, 294]. Atmospheric and laboratory experiments such

as Hyper-Kamiokande [206, 207] IceCube and DeepCore [295, 296] will be help in ruling

out the “dark” region.

Following with the study of NSI effects on neutrino experiments, a new analysis of

NuTeV results has been performed in this thesis. NuTeV results present a discrepancy

with the Standard Model parameters, taken as a possible hint of NSI. Since several uncer-

tainties from QCD were omitted, we have carried out a reanalysis of NuTeV results in this

thesis. Several bounds on NSI couplings involving muon-neutrinos and quarks (εqµα) have

been derived from our discussion. Our conclusion is that, although these NSI parameters

are much smaller than those involving electron and tau-neutrinos, they need not be as

small as previously believed.

These studies have allowed us to obtain limits on vectorial and axial components of

NSI parameters in processes of neutrinos with quarks (εqV,Aαα ). In particular, NSI cou-

plings involving electron and tau-neutrinos have been studied by combining solar, reactor

(KamLAND) and accelerator (CHARM) data; whereas muon-neutrino NSI parameters

have been analyzed using the results from the NuTeV reanalysis, combining them with

accelerator (CHARM and CDHS) and atmospheric data (Super-Kamiokande) in order to

lift the degeneracy. The most relevant results are compiled in Table 6.1 at 90% of C.L.

In the last chapter of this thesis we have assumed the existence of neutral heavy leptons

and studied their implications. These heavy particles arise in most extended models as

exchange particles in the mechanism generating neutrino masses. As a consequence, NSI

could appear directly or indirectly through the non-unitarity of the light neutrino mixing

matrix, as we expressed in Eqs. (6.1). These models beyond the SM usually imply a

very large number of parameters, making it difficult to work with them. In order to

facilitate the study of these models, we have presented a model-independent formalism

which provides a very useful way to separate the light mixing matrix (N3×3) in two parts:

the standard one (USM ≡ U3×3) and another one which concentrates the new physics
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Table 6.1: Limits on NSI parameters of neutrino with quark interactions at 90 % C.L.
following from several combined analysis. The information on this table corresponds to
original results derived in this thesis.

NSI with down NSI with up Experiments

NU NU

−0.5 < εdVee < 1.2 Sol+KamL+CHARM

−0.4 < εdAee < 1.4 Sol+KamL+CHARM

−1.8 < εdVττ < 4.4 Sol+KamL+CHARM

−1.5 < εdAττ < 0.7 Sol+KamL+CHARM

−0.042 < εdVµµ < 0.042 −0.044 < εuVµµ < 0.044 NuTeV(NNPDF)+SK

−0.091 < εdAµµ < 0.091 −0.15 < εuAµµ < 0.18 NuTeV(NNPDF)+SK

−0.042 < εdVµµ < 0.042 −0.044 < εuVµµ < 0.044 NuTeV(Bentz et al.)+SK

−0.072 < εdAµµ < 0.057 −0.094 < εuAµµ < 0.140 NuTeV(Bentz et al.)+SK

FC FC

−0.08 < εdVeτ < 0.58 Sol+KamL

−0.007 < εdVµτ < 0.007 −0.007 < εuVµτ < 0.007 NuTeV+SK+CHARM+CDHS

−0.039 < εdVµτ < 0.039 −0.039 < εuAµτ < 0.039 NuTeV+SK+CHARM+CDHS

information (NNP ). This formalism has been applied to:

• obtain bounds on the relevant αij parameters from universality tests,

• describe the oscillation probabilities, observing interesting features, such as zero-

distance effects and the appearance of a new phase INP which could affect the

oscillation probability,

• describe (3 + 1) and (3 + 3) neutrino schemes 1.

These applications show explicitly the simplicity of this method. As a future project, it

would be very convenient to rewrite NSI couplings in terms of the αij parameters, for

instance:

εeLee = −gL
|α21||α31|
|α32|α22

, εeRee = −gR
|α21||α31|
|α32|α22

, (6.1)

where a scenario with an extra heavy neutrino is considered.

1See appendix B.
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Figure 6.1: Estimated LENA sensitivity to the non-unitary parameters [297].

For the sake of completeness, a compilation of the mixing parameters |Sαj|2 of heavy

neutrinos with the light ones from several laboratory experiments has been carried out.

We want to stress that studying these bounds could be very useful in order to elucidate

the neutrino mass generation mechanism and the energy scale of new physics. But it is

not possible from current experiments to get very strong bounds on these parameters,

so new experimental proposals must be considered, such as the aforementioned LENA.

As an example, an estimate of the LENA sensitivity to the non-unitarity of the mixing

matrix is shown in Fig. 6.1 in terms of α11.

Summarizing in a couple of sentences: Neutrinos have opened the door to new physics,

involving non-standard effects and new extra particles among other features. Faced with

these prospects, we should be aware that a very interesting neutrino era is waiting for us.



Conclusions

La f́ısica de part́ıcules es troba ara mateix en una època interessant, amb importants

descobriments durant les dues dècades passades. Com a prova d’açò, trobem el recent

reconeixement als premis Nobel, atorgant aquesta distinció al descobriment del bosó de

Higgs (2013) i a la detecció de les oscil·lacions de neutrins (2015). La f́ısica de part́ıcules

es troba immersa en una era de precisió, preparada per resoldre els nous reptes plantejats

en el nostre intent d’entendre l’univers.

En meitat d’aquesta crüılla de coneixements es troba una diminuta i aparentment

inofensiva part́ıcula, el neutŕı. Sembla insignificant però té not́ıcies importants per a

nosaltres, la nova f́ısica està ja aćı! Les oscil·lacions de neutrins són una sòlida evidència

de f́ısica més enllà del Model Estàndard. Però aquest no és un fenomen äıllat sinó que ve

acompanyat d’altre prodigi, els neutrins són part́ıcules amb massa! Aquest fet implica la

necessitat de desenvolupar mecanismes i models que indueixin la massa del neutŕı. De la

gran majoria d’aquests models sorgeixen propietats no convencionals dels neutrins com

les Interaccions No Estàndard (NSI) o el moment magnètic. També processos com la

desintegració doble beta sense neutrins, ja que els neutrins són t́ıpicament part́ıcules de

Majorana. Com el lector haurà comprovat, aquesta tesi ha intentat aportar informació

sobre les NSI i les seves implicacions, utilitzant les dades experimentals provinents de la

cerca d’oscil·lació de neutrins.

Per a aquest comès, hem començat la tesi amb dos caṕıtols recopilatoris:

• El caṕıtol 1 ha sigut una revisió de les propietats més importants dels neutrins dins

del Model Estàndard i més enllà d’aquest.

• El caṕıtol 2 ens ha endinsat en la f́ısica de les Interaccions No Estàndard, revisant

el seu origen a la teoria i la seva influència als experiments de neutrins.

Després d’aquests dos caṕıtols introductoris hem continuat amb la part original d’aquesta

tesi, on l’efecte de les NSI sobre experiments d’oscil·lació de neutrins ha sigut discutit.

En concret, s’ha realitzat una anàlisi global utilitzant les dades provinents d’experiments
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amb neutrins solars i incloent els resultats de l’experiment de reactor KamLAND, per

tal de dilucidar com de robusta és la solució LMA al problema dels neutrins solars en

presència de NSI. Després d’introduir les NSI apareix una solució extra no contemplada

anteriorment, la anomenada LMA-D (Large Mixing Angle-Dark). Aquesta nova solució

implica que les dades de neutrins solars poden ser explicades inclús per a angles de mescla

grans (θ > π/4), sempre que els valors dels paràmetres de NSI siguen lo suficientment

grans també. Per tant, malgrat que les NSI tenen un paper secundari en l’explicació

dels fluxos de neutrins solars, encara tenen influència a l’hora de determinar una solució.

Aix́ı doncs, una qüestió sorgeix immediatament: com és possible eliminar la degeneració

de la solució LMA? Aquest és un repte per experiments de neutrins solars com Borex-

ino, SNO o Super-Kamiokande i per a noves propostes com DUNE [221] LENA [293] o

altres LBNE (Long Baseline Neutrino Experiments) [188, 294]. Aix́ı mateix, els experi-

ments de neutrins atmosfèrics i de laboratori com Hyper-Kamiokande [206, 207], IceCube

i DeepCore [295, 296] seran de gran ajuda per tal de descartar la regió “dark”.

Seguint amb l’estudi dels efectes de les NSI sobre els experiments de neutrins, una nova

anàlisi dels resultats de NuTeV s’ha dut a terme en aquesta tesi. Com és ben conegut,

NuTeV presentà una discrepància amb els paràmetres del Model Estàndard, sent utilitzada

com a possible indici de NSI. Però, ja que certes incerteses relacionades amb QCD foren

omeses, hem realitzat una reanàlisi dels resultats de NuTeV en aquesta tesi. D’aquesta

discussió hem obtingut diversos ĺımits en els acoblaments de NSI del neutŕı muònic amb

quarks (εqµα). La nostra conclusió ha estat que, encara que aquests paràmetres de NSI

són més menuts que aquells que impliquen neutrins del electró i del tau, no ho són tant

com s’esperava.

Aquests estudis ens han permet obtindre ĺımits en les components vectorial i axial

dels paràmetres de NSI en processos d’interacció de neutrins amb quarks (εqV,Aαα ). En con-

cret, els acoblaments relacionats amb els neutrins de l’electró i el tau han sigut aconseguits

combinant dades d’experiments solars, de reactor (KamLAND) i d’accelerador (CHARM);

mentre que els paràmetres que impliquen neutrins muònics han sigut obtinguts utilitzant

els resultats de la reanàlisi de NuTeV juntament amb dades d’accelerador (CHARM i

CDHS) i d’atmosfèric (Super-Kamiokande). Els resultats més rellevants es troben recopi-

lats a la Taula 6.1 al 90% de C.L.

En l’últim caṕıtol d’aquesta tesi hem assumit l’existència de leptons pesats i neutres

(NHL) i hem estudiat les implicacions de la seva existència. Aquestes part́ıcules pesades

apareixen en la gran majoria de models estesos com a part́ıcules d’intercanvi dins del

mecanisme que genera la massa del neutŕı. Com a conseqüència, les NSI podrien aparèixer
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directament o de forma indirecta, producte de la no unitarietat de la matriu de mescla

dels neutrins lleugers, com mostrem en les Eqs. (6.1). Aquests models més enllà del SM

normalment impliquen una gran quantitat de paràmetres dificultant el treball amb ells.

Per tal de facilitar l’estudi d’aquests models, hem presentat un formalisme (independent

del model) que ens proporciona una forma molt útil de separar la matriu de mescla dels

neutrins lleugers (N3×3) en dos: l’estàndard (USM ≡ U3×3) i un altra que concentra tota

la informació de nova f́ısica (NNP ). Aquest formalisme ha sigut aplicat a:

• obtindre ĺımits als paràmetres αij a partir de tests d’universalitat,

• descriure les probabilitats d’oscil·lació, observant efectes interessants com l’oscil·lació

de neutrins a distància zero i l’aparició d’una nova fase INP la qual podria variar

les probabilitats d’oscil·lació,

• descriure esquemes amb (3 + 1) i (3 + 3) neutrins 2.

Aquestes aplicacions posen de manifest la simplicitat d’aquest mètode. Com a un projecte

futur, seria molt convenient escriure els acoblaments de NSI en funció dels paràmetres

αij, per exemple:

εeLee = −gL
|α21||α31|
|α32|α22

, εeRee = −gR
|α21||α31|
|α32|α22

,

on s’ha considerat un escenari amb només un neutŕı extra.

Buscant la completesa d’aquest treball, s’ha realitzat una compilació del valor dels

paràmetres d’acoblament |Sαj|2 dels neutrins pesats amb els lleugers a partir de diferent

experiments de laboratori. Ens agradaria assenyalar que estudiar aquests ĺımits podria

ser de gran utilitat per tal de dilucidar quin és el mecanisme generador de la massa del

neutŕı aix́ı com el valor de l’escala d’energia de nova f́ısica. Però no és possible trobar

cotes determinants en aquests paràmetres, aix́ı doncs s’han de considerar noves propostes

experimentals, com la ja mencionada de LENA. Com a exemple, una estimació de la

sensitivitat de LENA a la no unitarietat de la matriu de mescla, en funció de α11, pot

trobar-se a la Fig. 6.1.

Per resumir aquest treball en un parell de frases podŕıem dir: Els Neutrins han obert

la porta a la nova f́ısica, que implica efectes no estàndard i part́ıcules extra entre altres

caracteŕıstiques. Davant aquestes perspectives, deuŕıem d’estar ben atents al que ens

envolta perquè una etapa molt interessant en f́ısica de neutrins ens espera.

2Veure apèndix B.
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Appendix A

NSI in a two-neutrino scheme

It is obvious that working with less parameters simplifies calculations and makes easier to

understand the consequences derived from them. This is obtained when we pass from a

description with three neutrinos to a two-neutrino scheme. The benefits of this approxi-

mation were already discussed in Sec. 1.5.2 and it is usually done because reproduces quite

accurately the scenario to study. In fact, it was carried out in Sec. 3.1.2, in particular

when the NSI matrix was defined in Eq. (3.3). Thus, it is worth showing step by step

how this simple calculation is performed, in order to provide rigor to our results obtained

in chapter 3.

In a three-neutrino scheme, the NSI matrix is defined as a 3× 3 matrix containing all

the NSI couplings:  εee εeµ εeτ

εµe εµµ εµτ

ετe ετµ εττ

 . (A.1)

This matrix can be rotated in the µ− τ plane thanks to the ω23 rotation matrix 1: 1 0 0

0 cos θ23 − sin θ23

0 sin θ23 cos θ23


 εee εeµ εeτ

εµe εµµ εµτ

ετe ετµ εττ


 1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23

 , (A.2)

1Here, we are using the Okubo’s notation [46] as in the Appendix B.
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getting explicitly

 εee c23εeµ − s23εeτ s23εeµ + c23εeτ

c23εµe − s23ετe c2
23εµµ − s23c23ετµ − s23c23εµτ + s2

23εττ c23s23εµµ − s2
23ετµ + c2

23εµτ − s23c23εττ

s23εµe + c23ετe c2
23ετµ + s23c23εµµ − s2

23εµτ − s23c23εττ s2
23εµµ + s23c23ετµ + s23c23εµτ + c2

23εττ

,
(A.3)

with c23 = cos θ23 and s23 = sin θ23. In this point we make the approximation from three to

two neutrinos, neglecting NSI couplings related with muon-neutrinos (εµµ = εµe = εµτ =

0) 2 and truncating the matrix in Eq. (A.3) to a 2× 2 matrix. After these considerations,

we get the following expression for the NSI hamiltonian:

HNSI = ±
√

2GFNf

(
εee −s23εeτ

−s23εeτ s2
23εττ

)
. (A.4)

As the Schrödinger equation does not change if an extra element is introduced in the

diagonal entries of the hamiltonian, we can rewrite Eq. (A.4) as

HNSI = ±
√

2GFNf

(
0 −s23εeτ

−s23εeτ s2
23εττ − εee

)
, (A.5)

where it is possible identify

ε = − sin θ23εeτ , ε′ = sin2 θ23εττ − εee , (A.6)

as we wanted to prove.

2We neglect these parameters because we do not take into account muon-neutrinos in the scenario
considered in chapter 3. Obviously, we could cancel other NSI couplings if the situation requires it.



Appendix B

Neutrino mixing and heavy

isosinglets

Neutral heavy leptons are included in several extensions of the Standard Model, giving

rise to new interactions (NSI) or non-unitary effects of the lepton mixing matrix, as we

have already discussed in Secs. 1.4 and 2.2. In these models the neutrino mixing matrix

includes extra terms involving neutral heavy leptons [9], with effects on the light neutrino

sector since the light mixing matrix 1 is not longer unitary. In this appendix we will show

explicitly how the light mixing matrix loses its unitarity and we will develop, step by step,

the α-formalism till we arrive to the αij expressions, Eqs. (5.4), (5.6) and (5.5).

Let us start constructing the mixing matrix for n neutrinos Un×n from Okubo’s nota-

tion [46]:

Un×n = ωn−1n ωn−2n . . . ω1n ωn−2n−1 ωn−3n−1 . . . ω1n−1 . . . ω2 3 ω1 3 ω1 2 , (B.1)

where each ωij (i < j) represents the common complex rotation matrix in the ij plane [9,

45]:

ω13 =

 c13 0 e−iφ13s13

0 1 0

−eiφ13s13 0 c13

 , (B.2)

with sij = sin θij and cij = cos θij. In a more compact form, it can be written as:

(ωij)αβ = δαβ

√
1− δαiδβjs2

ij − δαjδβis2
ij + ηijδαiδβj + η̄ijδαjδβi, (B.3)

1We call light mixing matrix, to the mixing matrix corresponding to the three light neutrinos.
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where i < j and s2
ij = sin2 θij, ηij = e−iφij sin θij and η̄ij = −eiφij sin θij. For a general

treatment, Eq. (B.2) can be expressed in a n-neutrino case as:

ωij =



1 0 · · · 0 · · · 0

0 1
...

... cij · · · 0 · · · ηij
...

. . .
...

0 1 0
...

. . .
...

η̄ij · · · 0 · · · cij
...

... 1 0

0 · · · 0 · · · 0 1



. (B.4)

As we will see later, it is very useful to separate Eq. (B.1) in a product of two matrices,

Un×n = Un−N UN , (B.5)

with

UN = ωN−1N ωN−2N . . . ω1N , (B.6)

Un−N = ωn−1n ωn−2n . . . ω1n ωn−1n−1 ωn−2n−1 . . . ω1N+1 . (B.7)

In a matrix form, Eq. (B.5) can be written as:

α11 0 · · · 0
...

α21 α22
. . .

...
...

...
. . . 0

... S

αN1 · · · αNN
...

· · · · · · · · · · · · ... · · · · · · · · ·
...

V ′
... T
...





UN
11 UN

12 · · · UN
1N

...

UN
21 UN

22

...
...

...
. . .

... 0

UN
N1 · · · UN

NN

...

· · · · · · · · · · · · ... · · · · · ·
...

0
... I
...



,

(B.8)

which will be very convenient in order to separate new physics and the Standard Model.

The standard neutrino mixing matrix U3×3 (Eq. (1.120) or (1.121)) is unitary in the
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usual description of three neutrinos. But if we consider an extended lepton sector with

n neutrinos, it is a non-unitary (in general) submatrix of the total mixing matrix Un×n

given by Eq. (B.1). Using the property represented by Eq. (B.5), the extended mixing

matrix Un×n can be divided in a more appropriate way as a matrix UNP , which contains

the new physics information, and the usual lepton mixing matrix USM ≡ U3×3:

Un×n = UNP USM , (B.9)

defining each matrix as

UNP = ωn−1nωn−2n . . . ω3nω2nω1nωn−2n−1 . . . ω3n−1ω2n−1ω1n−1 . . . ω3 4ω2 4ω1 4 , (B.10)

USM = ω2 3 ω1 3 ω1 2 . (B.11)

The total mixing matrix for n neutrinos Un×n can be also expressed in a description

of four blocks as [241]

Un×n =

(
N S

V T

)
, (B.12)

where N ≡ N3×3 stands for the mixing matrix of the three light neutrinos, which includes

the standard oscillation parameters together with those related with the extra heavy

neutrinos, breaking the unitarity given in a three-neutrino scenario. The terms of this

submatrix N are those that can be observed in oscillation experiments, that is why N is

considered the most important part of Un×n. The submatrix N can be also decomposed,

as in Eqs. (B.5) and (B.9), in a more convenient form as

N = NNP U3×3 =

 α11 0 0

α21 α22 0

α31 α32 α33

 U3×3 . (B.13)

This division is characterized by the zero triangle submatrix, that depends on the arbitrary

order of the ωij matrices product.

As we have already mentioned, it is interesting to show how the αij components of

the N matrix can be obtained. In order to explain this calculation more accurately, we

should denote that ωijωkl commutes when i 6= k, l and j 6= k, l; so the new physics part



152 Appendix B. Neutrino mixing and heavy isosinglets

of the total mixing matrix, Eq. (B.10), can be split as follows:

UNP = ωn−1n ωn−2n . . . ω4n ωn−2n−1 . . . ω4n−1 . . . ω4 5 ×

ω3n ω2n ω1n ω3n−1 ω2n−1 ω1n−1 . . . ω3 4 ω2 4 ω1 4 . (B.14)

This decomposition of Eq. (B.10) is very suitable because, as it can be observed, the first

line of Eq. (B.14) has no influence in the relevant submatrix N . However, the second

line components introduce the new physics in the light mixing matrix N , being a set of

products of three matrices in the form ω3jω2jω1j. Each product will be identified with a

parameter αj with the following explicit form:

αj = ω3jω2jω1j =



c1j 0 0
... 0 η1j 0

η2j η̄1j c2j 0
... 0 η2jc1j 0

η3jc2j η̄1j η3j η̄2j c3j
... 0 η3jc2jc1j 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0
... I 0 0

c3jc2j η̄1j c3j η̄2j η̄3j
... 0 c3jc2jc1j 0

0 0 0
... 0 0 I



=



αj11 0 0
... 0 αj1j 0

αj21 αj22 0
... 0 αj2j 0

αj31 αj32 αj33

... 0 αj3j 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0
... I 0 0

αjj1 αj2j αjj3
... 0 αjjj 0

0 0 0
... 0 0 I


. (B.15)

We can see that each αj parameter contains the new physics information introduced by

the i-neutral heavy lepton, but the relevant parameters for NNP are those coming from

the 3× 3 submatrix located in the upper left side, which presents a triangle submatrix as

we expected. After solving the multiplication given by αnαn−1 · · ·α5α4, we can find the
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explicit value of the αij entries in Eq. (B.13):

α11 = αn11 α
n−1
11 αn−2

11 · · · α4
11 = c1n c 1n−1c1n−2 . . . c14 ,

α22 = αn22 α
n−1
22 αn−2

22 · · · α4
22 = c2n c 2n−1c2n−2 . . . c24 , (B.16)

α33 = αn33 α
n−1
33 αn−2

33 · · · α4
33 = c3n c 3n−1c3n−2 . . . c34

stand for the diagonal elements αii, while the off-diagonal parameters αij are expressed

as follows:

α21 = αn21 α
n−1
11 · · · α4

11 + αn22 α
n−1
21 · · · α4

11 + · · ·+ αn22 α
n−1
22 αn−2

22 · · · α4
21 ,

α32 = αn32 α
n−1
22 · · · α4

22 + αn33 α
n−1
32 · · · α4

22 + · · ·+ αn33 α
n−1
33 αn−2

33 · · · α4
32 ,

α31 = αn31 α
n−1
11 · · · α4

11 + αn33 α
n−1
31 · · · α4

11 + · · ·+ αn33 α
n−1
33 αn−2

33 · · · α4
31

+ αn32( αn−1
21 αn−2

11 · · · α4
11 + αn−1

22 αn−2
21 · · · α4

11 + · · ·+ αn−1
22 αn−2

22 · · · α4
21)

+ αn33 α
n−1
32 ( αn−2

21 αn−3
11 · · ·α4

11 + · · ·+ αn−2
22 αn−3

22 · · ·α4
21) + · · ·

+ αn33 α
n−1
33 αn−2

32 ( αn−3
21 αn−4

11 · · ·α4
11 + · · ·+ αn−3

22 αn−4
22 · · ·α4

21) + · · ·

+ αn33 α
n−1
33 αn−2

33 · · · α5
32 α

4
21 , (B.17)

or using a more explicit notation,

α21 = c2n c 2n−1 . . . c2 5 η24η̄14 + c2n . . . c2 6 η25η̄15 c14 + . . .

+ η2nη̄1n c1n−1 c1n−2 . . . c14 ,

α32 = c3n c 3n−1 . . . c3 5 η34η̄24 + c3n . . . c3 6 η35η̄25 c24 + . . .

+ η3nη̄2n c2n−1 c2n−2 . . . c24 ,

α31 = c3n c 3n−1 . . . c3 5 η34c2 4η̄14 + c3n . . . c3 6 η35c2 5η̄15 c14 + . . .

+ η3nc2n η̄1n c1n−1 c1n−2 . . . c14 + c3n c 3n−1 . . . c3 5 η35η̄25η24η̄14

+ c3n . . . c3 6 η36η̄26c2 5 η24η̄14 + . . . + η3nη̄2nη2n−1η̄1n−1c1n−2 . . . c14 .

(B.18)

To summarize this appendix, we may say that the αij parameters agglutinate all the

new physics information. These parameters along with the known entries of the standard

mixing matrix U3×3 construct the light mixing matrix N in Eq. (B.13), whose terms could

be observed experimentally. Notice that if there is no extra neutrino, αij = 0 and the

Standard Model description is recovered.

The form of NNP , with an upper right triangular submatrix, has been chosen on
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purpose. This structure gives rise to the most convenient form of the mixing matrix N

in order to study the most interesting scenarios from a phenomenological point of view.

Therefore, if another order of the ωij products is chosen, we can find the zeros located at

different entries of NNP , being interesting to analyze a particular situation.

Losing the unitarity

In the Standard Model, the neutrino sector is described with three neutrinos (and their

corresponding antineutrinos) as we have discussed in Sec. 1.5.1. The mixing matrix con-

necting flavor and mass eigenstates is a 3 × 3 unitary matrix (Eq. (1.119)) with the

following generic form:

USM ≡ U3×3 =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 . (B.19)

In a most general case, where n neutrinos are taken into account (including, of course, the

three light neutrinos among them) the unitary mixing matrix have n rows and n columns:

Un×n =

(
N3×3 S3×n−3

T n−3×3 V n−3×n−3

)
. (B.20)

Therefore, a mixing matrix including all neutrinos is unitary, Eq. (1.93). On the other

hand, in models with extended lepton sector, the light mixing matrix N3×3 follows from

the truncation of Un×n, so it has not to be unitary in general. It has the following generic

structure in our α-formalism: α11 Ue1 α11 Ue2 α11 Ue3

α21 Ue1 + α22 Uµ1 α21 Ue2 + α22 Uµ2 α21 Ue3 + α22 Uµ3

α31 Ue1 + α32 Uµ1 + α33 Uτ1 α31 Ue2 + α32 Uµ2 + α33 Uτ2 α31 Ue3 + α32 Uµ3 + α33 Uτ3

.
(B.21)

The inclusion of the αij parameters, where the new physics is encoded, breaks the uni-

tarity:

NN † 6= 1 , N †N 6= 1 ,
∑
i

NαiN
∗
βi 6= δαβ ,

∑
α

NαiN
∗
αj 6= δij . (B.22)
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For instance we have:

N∗e1Ne1 +N∗e2Ne2 +N∗e3Ne3 = α2
11 , (B.23)

N∗µ1Ne1 +N∗µ2Ne2 +N∗µ3Ne3 = α11α
∗
21 , (B.24)

instead of 1 or 0 as they should be respectively, if the unitarity condition was accomplished.

3 + 1 seesaw scheme with α parameters

In order to illustrate the convenience of the α-formalism we will apply it to a 3+1 scheme,

where an extra right-handed singlet is added to the SM description:

ΨL =

(
νL

lL

)
, N4 , (B.25)

giving rise to the following relation among flavor and mass eigenstates [5],

ναL =
3∑

k=1

Nαk νkL + Sα 4N c
4L . (B.26)

In this scenario, the complete mixing matrix U4×4 is given by

U4×4 =

(
N3×3 S3×1

T 1×3 V 1×1

)
=


Ne1 Ne2 Ne3 Se4

Nµ1 Nµ2 Nµ3 Sµ4

Nτ1 Nτ2 Nτ3 Sτ4

T41 T42 T43 V

 , (B.27)

where N3×3 is again the submatrix related with the standard neutrinos, Eq. (B.13). It is

important to remember that U4×4 is unitary because includes extra and standard neutri-

nos, while N3×3 is not since it comes from the U4×4 truncation.

The light mixing matrix has the form given in Eq. (B.21), and the αij parameters are

obtained from Eqs. (B.17) and (B.18), being expressed as follows:

α11 = c14 , α22 = c24 , α33 = c34 ,

α21 = η24 η̄14 , (B.28)

α32 = η34 η̄24 ,

α31 = η34 c24 η̄14 .
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Application to the 3 + 3 seesaw scheme

In general, the lepton sector is enlarged with more than one extra neutrino in order to

produce the neutrino mass. As we have seen in Sec. 1.4, models including three extra

singlets (as standard seesaw) or more (as inverse or linear seesaw) are common in the

literature. In particular, for a 3 + 3 description the full mixing matrix will have the

following structure,

U6×6 =

(
N3×3 S3×3

T3×3 V3×3

)
, (B.29)

with these expressions for the αij parameters:

α11 = c16 c15 c14 ,

α22 = c26 c25 c24 ,

α33 = c36 c35 c34 ,

α21 = η26 η̄16 c15 c14 + c26 η25 η̄15 c14 + c26 c25 η24 η̄14 , (B.30)

α32 = c36 c35 η34 η̄24 + c36 c35 η̄25 c24 + η36 η̄26 c25 c24 ,

α31 = c36 c35 c34 η34 c24 η̄14 + c36 η35 c24 η̄15 c14 + η36 c26 η̄16 c15 c14

+ c36 η35 η̄25 η24 η̄14 + η36 η̄26 c25 η24 η̄14 + η36 η̄26 η25 η̄15 c14 .



Appendix C

Relevant neutrino experiments

In this thesis, several neutrino experiments have been mentioned and their data have been

used to perform our calculations. Therefore, we consider that it is worth dedicating this

appendix to explain briefly their features.

C.1 Reactor experiments

Reactor neutrino experiments analyze the number of antineutrino events placing neutrino

detectors around nuclear power plants. This study is performed in order to search for

differences between the expected and the observed antineutrino signal, since this could be

a hint of neutrino oscillations.

In this kind of experiments, antineutrinos are detected through inverse β-decay process

on protons: ν̄e + p → e+ + n. In particular, when an antineutrino travels through the

detector it interacts with a proton giving rise to a positron and a neutron. The produced

positron annihilates with an electron generating photons, whereas the neutron is absorbed

by the liquid scintillator in the detector leading to more photons as a signal of the process.

In the Fig. C.1 we can find a diagram of this detection process.

Double Chooz

Double Chooz [63] is a reactor neutrino experiment with the main goal of measuring the

θ13 mixing angle. It is located at the border between France and Belgium near the Chooz

nuclear plant.

Double Chooz uses two detectors of electron-antineutrinos in order to measure the

number and energy of antineutrinos coming from a pair of nuclear reactors. The near

157
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Figure C.1: Detection process in a reactor experiment [298].

detector is located 400 m away from reactors, while the far detector is 1.1 km away from

the nuclear cores.

In these detectors, the innermost volume is filled with liquid scintillator doped with

gadolinium. A schematic description of the detectors is given in Fig. C.2.

A difference between the number of events detected in near and far detectors would

imply that some electron-antineutrinos have oscillated in their path towards the detector.

The best-fit value of θ13 measured in Ref. [63] is

sin2 2θ13 = 0.090+0.032
−0.029 . (C.1)

Daya Bay

The Daya Bay neutrino experiment [64, 65] is a neutrino oscillation experiment. It is

located in Daya Bay (China) where we find two nuclear power plants: Daya Bay NPP

and Ling Ao NPP (Fig. C.3), having 6 nuclear reactors in total.

In the Daya Bay Complex we find three experimental underground halls (EH) where

8 antineutrinos detectors (AD) are placed. Each detector is filled with a liquid scintillator

doped with gadolinium. They are protected against ambient radiation with high-purity

water. A detailed description of these detectors can be found in Refs. [64, 65, 299, 300].

As in Double Chooz, antineutrinos are detected via the inverse β-decay process (Fig. C.1),

showing oscillation events if the ratio between the number of expected and observed an-

tineutrinos is smaller than 1. In a three-neutrino framework, the following results are



C.1. Reactor experiments 159

Figure C.2: Schematic view of the Double Chooz detector [63].

Figure C.3: Schematic view of Daya Bay experiment. [301].
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derived from Daya Bay data [65]:

sin2 2θ13 = 0.090+0.008
−0.009 , |∆m2

ee| = (2.59+0.19
−0.20)× 10−3 eV2 . (C.2)

RENO

RENO (Reactor Experiment for Neutrino Oscillations) [67, 302] is a short baseline reactor

experiment placed at South Korea. It has two identical antineutrino detectors, situated at

294 m and 1383 m from the Hanbit nuclear power plant, composed by six reactors. Each

detector consists of four coaxial layers of cylindrical vessels containing different liquids

depending on the layer purposes (target, gamma-catcher, buffer and veto).

Again, comparing the number of events in the near and far detector, the RENO

Collaboration found the following value for θ13 [302]:

sin2 2θ13 = 0.100± 0.010 (stat)± 0.015 (syst) . (C.3)

KamLAND

The Kamioka Liquid Scintillator Antineutrino Detector (KamLAND) [37, 303] is an ex-

periment that was located at the Kamioka mine in Japan. The antineutrino flux comes

from 53 nuclear reactors surrounding the zone. These reactors are placed, on average, at

180 km away from the Kamioka mine, making it sensitive to the neutrino mixing related

with the Large Mixing Angle (LMA), the solar neutrino solution with ∆m2 ∼ 10−5 eV2.

The KamLAND detector consists in a 18 m sphere of stainless steel divided in several

layers. The outer layer is plenty of photomultiplier tubes, while the second inner layer

is a 13 m balloon filled with a scintillating liquid (mineral oil, benzene and fluorescent

chemicals). Finally, a cylindrical water Cherenkov detector is placed around the contain-

ment vessel with two purposes: muon veto counter and protect the detector from cosmic

rays and radioactivity.

The KamLAND Collaboration found the following best-fit values for the mixing pa-

rameters [37]:

∆m2
21 = 7.58+0.14

−0.013 (stat)+0.15
−0.15 (syst)× 10−5 eV2 ,

tan2 θ12 = 0.56+0.10
−0.07 (stat)+0.10

−0.86 (syst) . (C.4)
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Figure C.4: The detection processes in the SNO experiment [304]. From left to right, the
panels show CC, NC and neutrino-electron scattering respectively.

Combining the results in Eq. (C.4) with solar neutrino data, it was obtained

∆m2
21 = 7.59+0.21

−0.21 × 10−5 eV2 , tan2 θ12 = 0.47+0.06
−0.05 . (C.5)

C.2 Solar experiments

Solar neutrino experiments study neutrinos produced in the Sun. They measure the

number of neutrino events in a detector comparing it with the SSM prediction in order to

constrain neutrino oscillation parameters. As an example of detection processes in solar

neutrino experiments, we show those produced in SNO experiment in Fig. C.4.

SNO

The Sudbury Neutrino Observatory (SNO) [35, 36, 70, 71, 168, 169] was placed in the

Creighton mine, in Sudbury (Canada), 2070 m underground.

The experiment was built to detect the energy and direction of 8B neutrino flux pro-

duced in the Sun, distinguishing between electron-neutrinos and other flavors.

Neutrinos coming from the Sun interact with the detector via charged-current weak

interactions, neutral-current weak interactions and neutrino-electron elastic scattering,

as we can see in Fig. C.4. These interactions are registered by 9600 photomultipliers

distributed around the detector (Fig. C.5).

The SNO Collaboration reported an evidence of flavor changing in the solar neutrino

flux [35, 36]. Along with this, the SNO experiment measured a 8B neutrino flux of [71]

Φ8B = 5.046+0.159
−0.152 (stat)+0.107

−0.123 (syst) , (C.6)
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Figure C.5: Picture of SNO detector [304].

leading, in combination with all other solar data and KamLAND, to the following best-fit

values for θ12 and ∆m2
21:

θ12 (o) = 34.06+1.16
−0.84 , ∆m2

21 = 7.59+0.20
−0.21 × 10−5 eV2 . (C.7)

Super-Kamiokande

The Super-Kamiokande experiment [68, 69, 75, 167] is a collaboration between 30 in-

stitutions of several countries (Japan, United States, Korea, China Poland and Spain).

The detector is placed 1000 m underground in the Kamioka mine in Japan. This ex-

periment observes neutrinos stemming from the Sun, atmospheric neutrinos as well as

neutrinos produced artificially. Neutrino oscillations were observed for the first time in

Super-Kamiokande in 1998.

Super-Kamiokande is a large water Cherenkov detector (Fig. C.6), which consists in

a spherical stainless steel tank of 39 m of diameter, filled with 50.000 tons of ultra-pure

water. 13.000 photomultipliers are installed in the inner surface of the tank wall, in order

to register the Cherenkov radiation produced after neutrino scattering with electrons
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Figure C.6: Schematic image of the Super-Kamiokande detector [305].

(Fig. C.4).

From a global analysis including all current solar neutrino data (incorporating even

SK-IV) together with KamLAND results, the Super-Kamiokande Collaboration published

the following values for the oscillation parameters [69]:

∆m2
21 = 7.49+0.19

−0.17 × 10−5 eV2 , sin2 θ12 = 0.305± 0.013 . (C.8)

Borexino

Borexino [74, 170, 171] is an experiment which studies low-energy neutrinos coming from

the Sun, with the particular goal of measuring 7Be solar neutrino flux and compare it

with the Standard Model prediction. It is located at the Laboratori Nazionali del Gran

Sasso near of L’Aquila (Italy).

The detector is a liquid scintillator, where the neutrino interactions are registered

by 2200 photomultipliers that surround it. The liquid scintillator is inside a stainless

steel sphere, being protected by a water tank. For a schematic view of the detector, see

Fig. C.7.
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Figure C.7: Schematic view of the Borexino detector [306].

From the analysis of Borexino data, it was found that [74]

∆m2
21 = 5.2+1.5

−0.24 × 10−5 eV2 , tan2 θ12 = 0.468+0.039
−0.030 . (C.9)

After including the KamLAND results, the oscillation parameters became

∆m2
21 = 7.50+0.16

−0.9 × 10−5 eV2 , tan2 θ12 = 0.457+0.033
−0.025 . (C.10)

C.3 Accelerator experiments

Accelerator neutrino experiments are experimental devices using neutrinos produced at

accelerators as source. In particular, neutrinos come from hadron decays as, for instance,

K+ → e+ν ,

K+ → µ+ν ,

π+ → e+ν , (C.11)

π+ → µ+ν .
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Figure C.8: Schematic view of the CHARM detector [160].

CHARM

CHARM (Cern Hamburg Rome Moscow) [160, 194, 307] was a collaboration which tried

to shed some light on some aspects of electroweak theory as the Weinberg angle or the

universality of the weak couplings. The experiment measured the ratios

Re =
σ(νeN → νeX)

νeN → eX
, Rµ =

σ(νµN → νµX)

νµN → µX
, (C.12)

using accelerator neutrinos produced in SPS (CERN). In particular, electron-neutrinos

were obtained from K0 decay, whereas muon-neutrinos were produced at π decay.

The CHARM detector was a calorimeter surrounded by a muon spectrometer. This

calorimeter consisted in 72 marble plates connected through scintillating plates. An image

of this detector is given in Fig. C.8. The calorimeter recorded neutrino events produced

from neutral-current or charged-current weak interactions.

NuTeV

NuTeV [162] was a detector designed to observe the interactions of neutrinos produced

in the Tevatron accelerator at Fermilab, after the collision of 800 GeV protons on a BeO

target. The detector was built with three types of layers (Fig. C.9).

The results obtained by NuTeV were quite controversial because they were far from

the SM predictions, as we discussed in chapter 4.
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Figure C.9: The left panel shows neutrino production at Fermilab. The right: scheme of
the NuTeV detector [308].

Figure C.10: Signals registered in the NuTeV detector: CC signal and the NC signal
respectively [308].

C.4 Experiments giving constraints on NHL

π → e ν (TRIUMF)

This experiment [265, 266] tested the universality from studying the branching ratio of

π → e ν with respect to the common decay π → µ ν obtaining [265]:

Rπeν =
Γ(π → e ν + π → e ν γ)

Γ(π → µ ν + π → µ ν γ)
= 1.2265± 0.0034(stat)± 0.0044(syst)× 10−4 . (C.13)

The experiment was performed in the M13 channel at TRIUMF, using a π+ beam

of momentum P = 83 MeV/c and ∆P/P = 1. The incoming beam was detected in a

scintillator and stopped close to the target counter with a rate of 7× 104 s−1. Then, the

produced positrons were detected with two 203 mm×203 mm wire chambers, before being

analyzed in a 460 mm diam × 510 mm long NaI crystals, ”TINA.”

The mixing with extra heavy neutrinos should produce additional peaks in the positron

energy spectrum from decays like π+ → e+ ν and K+ → e+ ν, leading to the following
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ratio which can be related to a heavy state [266]:

Rei =
Γ(π → e νi)

Γ(π → e ν1)
= |Uei|2ρe , (C.14)

with ν1 being a massless neutrino.

PS191

PS191 [267] was an experiment located at CERN, which was expressly designed to search

for neutrino decays in a low-energy neutrino beam. The apparatus consisted in a ∼ 10

m long decay volume, built with eight pairs of flash chambers and a shower detector,

including also a scintillator hodoscope for triggering purposes.

Several channels were studied, as K+ → e+ ν and νH → e+ e− ν, being used to find

bounds on the matrix elements |Ue|2 and |U∗e Uµ| as a function of mH .

NA3

NA3 [268] was a spectrometer used in SPS at CERN in order to search new and long-lived

particles. The experiment used a beam of 300 GeV/c of π−, colliding on an hadron iron

absorber of 2 m long.

The device had to be able to detect neutrinos heavy enough to decay in a final states,

which could be: e+e−ν, µ+µ−ν, π+e−, µ+e−ν or µ+µ−. Such heavy neutrinos may be

produced in rare decays of π, K, D, F or B mesons. The branching ratio of these mesons

decaying into a heavy a neutrino νh has the following expression related with the mixing

matrix element Uih:

B.R. = c |Uih| , (C.15)

with c = 0.1× 10−3 depending on de mass of νh.

CHARM

In the CHARM experiment [269, 286] (described above), the heavy neutrino production

was searched in decays of the charmed D meson. Heavy neutrinos should have e+e−νe,

µ+e−νe, e
+µ−νµ or µ+µ−νµ as decaying signature, but no evidence was found.

This experiment was prepared to detect decays of neutrinos with masses in the range
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0.5− 2.8 GeV, finding two upper limits [269]:

|Uei|2 |Uµi|2 < 10−7 for masses around 1.5 GeV , (C.16)

|Uµi|2 < 3× 10−4 for masses around 2.5 GeV . (C.17)

DELPHI

DELPHI [231] was a detector of LEP, collecting data from 3.3× 106 hadronic Z0 decays

(e+e− → Z0 → νH ν̄) coming from a total sample of 12.3 × 106 events. From the data

analysis, an upper limit was obtained [231],

B.R.(Z0 → νH ν̄) = B.R.(Z0 → νν̄) |U |2
(

1−
m2
νH

m2
Z0

) (
1 +

1

2

m2
νH

m2
Z0

)
< 1.3×10−6 (C.18)

at 95% C.L., leading to

|U |2 < 2.1× 10−5 . (C.19)

L3

L3 [271] was a device of LEP, which was composed by a central vertex chamber (TEC)

with inner radius of 9 cm and outer of 47 cm, a high resolution electromagnetic calorimeter

of BGO crystals, a ring of scintillation counters, an uranium and brass hadron calorimeter

and a precise muon chamber system. These detectors were placed around a 12 m diameter

magnet which produced an uniform field of 0.5 Tesla along the beam axis.

As in DELPHI, the search was performed through Z0 decay (e+e− → Z0 → νH ν̄),

obtaining the following values at 95% C.L.:

B.R.(e+e− → Z0 → νH ν̄) < 3× 10−5 , (C.20)

|U |2 < 10−4 . (C.21)

K → µ ν (KEK)

As we have already said, a discrete muon peak in the muon momentum spectrum produced

in K+ decays could imply a heavy neutrino emission. This special production could be

possible due to the mixing of heavy neutrinos with the light ones.

In order to look for the emission of a heavy neutrino, a high resolution magnetic

spectrograph was built at the K3 beam channel of the 12 GeV proton synchrotron at the
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National Laboratory for High Energy Physics (KEK) [278, 279]. It used a 550 MeV/c

K+ beam crossing through ten layers of plastic scintillators (seven 8× 20× 0.6 cm3, two

8 × 20 × 0.2 cm3 and one 8 × 20 × 0.1 cm3). Although, the number of stopped K+ was

high (about 5000 per beam) no heavy neutrino was found.

BEBC

BEBC [282] was a bubble chamber filled with a mixture of Ne/H2, giving rise to a fiducial

mass of 11.5 t. This material was exposed to a neutrino flux produced by 1.9 × 1018

protons colliding on a solid copper target and 0.18 × 1018 protons hitting a laminated

copper target. BEBC was equipped with an External Muon Identifier. The most relevant

results of BEBC are compiled in Ref. [282].

FMMF

FMMF [281] was a detector designed for studying high-energy neutrino interactions. It

was used at Fermilab Tevatron, being placed 1599 m downstream of the neutrino target. It

consisted of two parts; a calorimeter with alternating planes of target material (sand and

steel) interleaved with flash chamber planes and proportional tube planes, and a muon

spectrometer which measured the momentum and polarity of any high-energy muons

coming from the calorimeter.

CHARM-II

CHARM-II [280, 309] was a neutrino detector at CERN. It consisted of a large target

calorimeter equipped with streamer tubes and a muon spectrometer. It was constructed

in order to look for heavy neutrinos in the muon-neutrino-nucleon scattering and the

subsequent decay into µ+µ−νµ.

The analysis was based on 2 × 107 NC neutrino events collected between 1987-1991,

searching heavy neutrinos in the mass range 0.3 − 2.4 GeV/c2. The best limit for the

mixing parameter with muon-neutrino was [280]

|Uµi|2 < 3× 10−5 (C.22)

for a mass around 2 GeV/c2.

This new analysis improved by an order of magnitude previous results stemming from

CHARM.
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NOMAD

A search for heavy neutrinos (νh) was performed studying the decay D → τνh at the SPS

proton target. After this decay, another process, with signature νh → ντe
+e−, could be

produced and detected in NOMAD [285], proving the existence of heavy neutrinos. It

must be said that no evidence was found.
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