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Las proteínas IMPACT, objeto de estudio en este trabajo, se encuentran en 

la mayoría de tejidos y tipos celulares, pero los niveles de expresión más elevados 

se encuentran en fibroblastos y en células del sistema nervioso central. El 

término IMPACT viene de la combinación de los términos en inglés “imprinted” y 

“ancient”. Por un lado, hoy en día el gen Impact es el único gen conocido en el 

cromosoma 18 que presenta impronta genética en roedores. La impronta 

genética es un mecanismo de herencia no mendeliano único en mamíferos. En el 

caso del gen Impact, esta impronta exhibe un patrón específico de especie ya que 

está presente en roedores pero no en el resto de mamíferos.   La impronta en 

roedores se ha relacionado con la ausencia de islas CpG intrónicas en el promotor 

del gen, ya que el promotor humano constituye una isla CpG que 

convencionalmente no está metilada. Dado que el gen murino que ha sufrido 

impronta presenta una mayor expresión en comparación con el gen humano, se 

ha propuesto un modelo donde la impronta ha evolucionado como una 

adaptación al aumento de dosis génica en roedores. Por otro lado, las proteínas 

IMPACT se encuentran organizadas en dos dominios: un dominio amino terminal 

conocido como RWD y un dominio carboxilo terminal al que se le ha denominado 

como dominio ancestral debido a que presenta un elevado grado de 

conservación secuencial entre todos sus homólogos. Sin embargo, actualmente 

se desconoce si este dominio desempeña alguna función por si mismo. El área 

que conecta ambos dominios se prevé que no posea estructura secundaria. 

Actualmente hay poca bibliografía relacionada con las proteínas IMPACT, 

dado que el papel de dichas proteínas dentro de la célula es poco conocido. 

Hasta la fecha, la única función conocida de las proteínas IMPACT es su rol en el 

control de la traducción bajo condiciones de estrés, particularmente en ayuno. 

La traducción es un proceso crucial para la vida. De hecho, la adaptación a 

diferentes tipos de estrés que puedan comprometerla marca la diferencia entre la 
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vida y la muerte. En eucariotas el elevado número de factores que intervienen en 

este proceso permiten que se regule la traducción en base a señales 

extracelulares. El inicio de la misma es el principal punto de regulación del 

proceso. 

La traducción comienza con el reclutamiento de un ARN de transferencia 

iniciador (tRNAMet), capaz de interaccionar con el codón de inicio del ARN 

mensajero (mRNA).  Para poder llegar a ese punto, en primer lugar el complejo 

terciario (TC), que está formado por las tres subunidades del factor de iniciación 

de la traducción 2 (eIF2) en eucariotas α, β y γ unido a GTP y al tRNAMet, se une a 

la subunidad 40S del ribosoma formando el complejo pre-iniciador 43S. Los 

factores de traducción  3 y 4 son necesarios para que el complejo 43S pueda 

unirse al mRNA, ya que reclutan a la cadena de mensajero y relajan la estructura 

secundaria cerca del extremo 5’. Una vez unido, el complejo 43S rastrea el 

mensajero en busca del codón de inicio. Cuando el complejo 43S reconoce el 

codón iniciador, el GTP del TC se hidroliza y se libera eIF2-GDP. Es entonces 

cuando la subunidad 60S del ribosoma se une dando lugar al complejo iniciador 

80S (pág. 39). El reciclaje de eIF2-GDP a eIF2-GTP es un punto crucial si se quiere 

asegurar unos ratios de inicio de la traducción elevados. Es por ello que existe un 

factor intercambiador de GDP, conocido como eIF2B, que ayuda a dicho reciclaje. 

La fosforilación del factor de iniciación de la traducción 2 (eIF2) en el 

residuo serina 51 de su subunidad alfa es una de las vías más utilizadas para 

reprimir la traducción, ya que el factor encargado del reciclaje de eIF2-GDP a 

eIF2-GTP se une con mayor afinidad a la forma fosforilada de la proteína. De este 

modo, eIF2B quedaría secuestrado por eIF2 fosforilado y el reciclaje a eIF2-GTP 

se vería disminuido. 
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En mamíferos se han descrito 4 quinasas capaces de llevar a cabo dicha 

fosforilación y cada una de esas quinasas se ve activada ante diferentes 

situaciones de estrés como infecciones víricas, estrés oxidativo, choque térmico, 

estrés en el retículo endoplásmico o limitación de nutrientes (pág. 41). La quinasa 

GCN2 interviene en la regulación en condiciones de ayuno y la respuesta que 

desencadena se conoce como ruta general de control de aminoácidos. 

La ruta general de control de aminoácidos se activa cuando un ARN de 

transferencia vacío llega al sitio P del ribosoma y es transferido desde el ribosoma 

hasta el dominio hisRS de GCN2. Este movimiento está mediado por una proteína 

conocida como GCN1. La unión de GCN2 al ARN de transferencia vacío hace que 

se produzca un cambio conformacional que desemboca en la activación del 

dominio quinasa de GCN2, encargado de la fosforilación del eIF2 (pág. 43). Esta 

fosforilación desencadena la activación de rutas biosintéticas de aminoácidos y 

en el caso de mamíferos también promueve la expresión de transportadores de 

aminoácidos que aumentarán el flujo de captación de estos desde el exterior. Las 

proteínas IMPACT compiten con GCN2 por la unión a GCN1, ya que tanto IMPACT 

como GCN2 poseen un dominio RWD que es capaz de interaccionar con GCN1 en 

la misma zona. Al evitar la fosforilación de eIF2, IMPACT estaría manteniendo 

unos niveles continuos de traducción. Dado sus elevados niveles de expresión en 

el sistema nervioso central, IMPACT podría intervenir en la regulación de la 

traducción de algunas neuronas específicas que se encuentren en condiciones de 

escasez de aminoácidos. 

Por otro lado, se ha descrito muy recientemente que existe cierta relación 

entre el ciclo celular y las proteínas IMPACT.  Estudios en levadura revelan que, 

cuando se elimina el homólogo de IMPACT (Yih1), las células tienden a 

acumularse en las fases G2/M  del ciclo celular. Se vio que la ciclina dependiente 

de quinasas 28 (Cdc28) precipitaba conjuntamente con Yih1 de igual manera que 
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lo hacían sus homólogos en humano IMPACT y CDK1 respectivamente, 

apuntando a que la interacción se ha conservado durante la evolución. Sin 

embargo, el rol preciso desempeñado por IMPACT en el ciclo celular se 

desconoce. 

Por último, se ha descrito la relación entre la inducción del enzima 

indoleamina 2 3-dioxygenasa (IDO) y la sobre expresión de IMPACT debido a la 

reducción de triptófano que conlleva la actividad de IDO. Dicha enzima se activa 

tras la exposición de las células a interferón gamma y participa en el catabolismo 

del triptófano para producir unos compuestos tóxicos conocidos como 

kineurinas. Teniendo en cuenta el papel de IMPACT en la traducción, podría 

ayudar  a las células a superar dicha situación de escasez de triptófano. 

Objetivos 

Con estas premisas, se establecieron una serie de objetivos a culminar 

durante el desarrollo de la tesis: 

 1.      Determinar la estructura tridimensional de la proteína IMPACT. 

2.       Identificación de nuevas funciones de IMPACT. 

3.      Integración de las nuevas capacidades de IMPACT en la célula. 

Resultados 

Caracterización estructural del dominio ancestral  

Dada la experiencia y trayectoria del grupo donde se ha realizado el 

trabajo, la técnica escogida para la determinación de la estructura tridimensional 

de la proteína IMPACT fue la cristalografía de proteínas y difracción por rayos X. 
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En primer lugar, se puso a punto la sobreexpresión y purificación de Yih1 

(homólogo de IMPACT en S.cerevisiae) e IMPACT (H.sapiens) en un sistema de 

expresión heterólogo como es Escherichia coli. A continuación, se procedió a 

realizar los ensayos de cristalización. Aunque dichos ensayos fueron infructuosos 

en el caso de la proteína humana, en el caso de Yih1 si se obtuvieron cristales. 

Dichos cristales, pertenecientes al grupo espacial I222, mostraban una difracción 

de escasa resolución y baja calidad. Para mejorar la calidad de los cristales 

obtenidos se utilizaron diversas aproximaciones y aunque se consiguió una 

mejora en tamaño y apariencia,  la calidad y resolución de la difracción no fueron 

suficientes para poder resolver la estructura. 

Dada la reciente tendencia de utilizar organismos termófilos para obtener 

las estructuras de ciertas proteínas o complejos proteicos de difícil cristalización, 

se procedió al clonaje, expresión y purificación del homólogo de IMPACT 

en Chaetomium thermophilum, al que se decidió llamarle CIH (del 

inglés Chaetomium IMPACT homolog). Tras analizar que efectivamente tenía una 

mayor temperatura de desnaturalización en comparación con los homólogos de 

levadura y humano (pág. 102) y por tanto mayor estabilidad, se procedió con los 

ensayos de cristalización. Dichos ensayos, se efectuaron utilizando la técnica de 

difusión de vapor en placas de gota sentada. Se obtuvieron cristales que 

difractaban a 2.2Å  de resolución pero cuyas dimensiones no eran suficientes 

para albergar una molécula completa de proteína en la unidad asimétrica. Tras 

resolver el problema de las fases por reemplazo molecular usando el modelo 

2cve disponible en el PDB (del inglés Protein Data Bank), se pudo observar que la 

proteína había sufrido un proceso de proteólisis dentro de la gota de 

cristalización y que el dominio cristalizado era el conocido como dominio 

ancestral. Dicho dominio presentaba la topología predicha, βαββαα (pág. 107). 

Tras el análisis estructural del mismo se observó, no sin asombro, cierto grado de 
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homología estructural con el dominio RNasa PH (pág.112). Este dominio se 

encuentra presente en algunas proteínas con capacidad ribonucleolítica, como lo 

son las proteínas que componen el exosoma bacteriano o en el enzima 

polinucleotidil fosforilasa. 

Las proteínas IMPACT son enzimas 

El hecho de que el dominio ancestral presentase cierta homología 

estructural con el dominio RNasa PH nos condujo a investigar si CIH tenía la 

capacidad de unir ADN. Para ello se realizó un retardo en gel de agarosa y se 

observó que efectivamente, CIH era capaz de unir ADN de doble cadena y que el 

dominio ancestral por si solo era capaz de unir dicho ácido nucleico. Tras  esta 

comprobación,  se prosiguió realizando una pequeña prueba en la que 

comprobamos que las preparaciones de IMPACT, Yih1 y CIH degradaban ADN 

lineal de doble cadena (pág. 115).  Esta actividad no había sido descrita con 

anterioridad y de confirmarse asignaría a las proteínas IMPACT la categoría de 

enzimas. 

Para comprobar que la actividad DNasa provenía efectivamente de las 

proteínas IMPACT, se diseñaron toda una serie de mutantes sobre residuos 

localizados en zonas potenciales de unión al ADN o de actividad catalítica. Tras la 

obtención de diferentes mutantes que mostraban nula o reducida actividad 

DNasa (pág. 118), se procedió a la caracterización de dicha actividad. Durante los 

ensayos de caracterización, se ha utilizado siempre por cuestiones de mayor 

estabilidad y solubilidad el homólogo de C.termophilum. Los experimentos 

realizados nos permitieron concluir que nos encontrábamos ante un enzima con 

capacidad endolítica (pág. 137), que  producía los cortes en las dos cadenas de 

ADN de manera secuencial (pág. 138) y cuya actividad se veía inhibida en 

presencia de concentraciones de cloruro sódico igual o superiores a 0,6 M (pág. 
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136). Además, tras un análisis de hipercromicidad con diferentes concentraciones 

de ADN, pudimos observar que el enzima presentaba un comportamiento de 

inhibición por sustrato (pág.  140). Asimismo, una caracterización más exhaustiva 

de la capacidad de unión de CIH a ácidos nucleicos reveló que la proteína unía 

con afinidad muy similar ADN de cadena doble, ADN de cadena simple y ARN de 

cadena simple, sin mostrar especificidad alguna de secuencia. De este modo, se 

definió a CIH como una proteína con capacidad de unir ácidos nucleicos de 

manera universal (pág. 122). Por otro lado, un ensayo enzimático utilizando los 

diferentes dominios de CIH reveló que el dominio RWD no es necesario para 

llevar a cabo la actividad nucleasa (pág. 141). 

Paralelamente, se procedió a intentar cristalizar la proteína en presencia 

de ADN, utilizando tanto la proteína completa como el dominio ancestral. En este 

último caso se obtuvieron cristales que difractaron a una resolución de 1.5Å  y 

aunque la estructura cristalizada no se encontraba unida a ADN, si se encontró un 

fosfato unido en una zona equivalente a la que se observa el fosfato unido en el 

enzima polinucleótido fosforilasa (PNPasa) y que ha sido descrito como su centro 

activo.   

Las proteínas IMPACT se comportan como sensores citosólicos de ácidos 

nucleicos 

Los resultados comentados anteriormente junto con la relación descrita 

en la bibliografía existente entre IMPACT e IDO, llevaron a plantear la posibilidad 

de que existiera algún tipo de relación entre IMPACT y el sistema inmune más allá 

de lo actualmente descrito. Para ello se realizaron ensayos ex vivo con 

fibroblastos de ratón (línea celular 3T3). En dichos ensayos se transfectaba ARN 

de interferencia específico para IMPACT o sin diana concreta para las células 

control, junto con un ADN de doble cadena de 45 pares de bases con una 
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secuencia perteneciente al genoma de Listeria monocytogenes (ISD), que 

estimula la producción de interferón o un análogo de ARN de doble cadena (poli 

I:C).  En estos ensayos se observó que los niveles de interferón β producidos por 

dichos fibroblastos tras la transfección de ISD  o poli I:C se veían alterados en 

células donde se había silenciado la expresión de IMPACT con respecto a las 

células control. Además, se observó una respuesta opuesta dependiendo de si se 

transfectaba ADN de doble cadena (ISD) o ARN de doble cadena (poli I:C).  En 

concreto, tras la transfección con ISD, las células donde se había silenciado la 

expresión de IMPACT mostraban que la cantidad de ARN mensajero de interferón 

β caía a unos niveles inferiores a la mitad de los observados en las células control 

(pág. 132). Para el caso del poli I:C se observó una respuesta totalmente opuesta. 

En las células donde se había silenciado IMPACT, la transfección con poli I:C 

produjo un aumento en la cantidad de ARN mensajero de interferón β por 

encima de tres veces el valor observado en las células control. 

Caracterización estructural del dominio RWD 

Por otro lado, teniendo en cuenta que la resolución estructural de la 

proteína completa fue infructuosa se diseñó una construcción que abarca el 

dominio RWD de CIH para su caracterización estructural. Los cristales obtenidos 

difractaron a una resolución de 1.4Å y debido a que el problema de las fases no 

pudo ser resuelto mediante reemplazo molecular usando un modelo del dominio 

RWD de GCN2 murino (1ukx) obtenido por resonancia magnética nuclear y 

disponible en el PDB, se procedió a la obtención de las fases ab initio mediante el 

uso del programa informático Arcimboldo y con la colaboración de la Dra. Isabel 

Usón. La estructura del dominio RWD de CIH (pág.  144) presenta una 

elevadísima similitud estructural con el modelo disponible del dominio RWD 

murino aunque la secuencia no se encuentre conservada. La combinación de los 

datos ya publicados sobre la caracterización de la interacción entre GCN1 y Yih1 
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junto con el análisis del potencial electrostático en superficie de la estructura de 

CIH, apuntan a que la interacción entre GCN1 e IMPACT o cualquiera de sus 

homólogos tiene un gran componente electrostático. 

Conclusiones 

En base al trabajo realizado en esta tesis y a los resultados obtenidos, 

hemos extraído las siguientes conclusiones: 

1.      CIH es una proteína con capacidad universal de unir ácidos nucleicos. 

Además une ADN y ARN con afinidades muy similares y sin aparente 

especificidad de secuencia. 

2.      El dominio ancestral de CIH presenta cierto grado de homología 

estructural con el dominio RNasa PH. 

3.      El dominio ancestral de CIH une un ion fosfato en la zona equivalente 

a la que se encuentra el ion unido en el dominio RNasa PH y que ha sido descrito 

como su centro activo. 

4.      Las proteínas IMPACT son enzimas. En concreto, son DNasas con 

actividad endolítica con un mecanismo enzimático asistido por un nucleófilo 

donde los iones magnesio o manganeso son esenciales. 

5.      El corte que produce CIH sobre ADN de doble cadena es secuencial. 

6.      CIH muestra un valor Kunitz  muy bajo que viene dado por las 

condiciones del ensayo. 

7.      La actividad DNasa de CIH muestra un patrón de inhibición por 

sustrato. Entre las concentraciones probadas el óptimo se encontró en 
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100µg/mL. Por otro lado, la actividad DNasa se ve inhibida en presencia de 

concentraciones de sal por encima de 600mM. 

8.      Diferentes mutantes de CIH como H203A, R232A, Y253A, C221A, 

R262G, R271A, D223A/D224A o D223A/E226A muestran actividad nucleasa no 

detectable frente a ADN. 

9.      Las proteínas IMPACT se comportan como sensores citosólicos de 

ácidos nucleicos en fibroblastos, influenciando los niveles de mRNA para INF-β en 

respuesta a la presencia de ADN de doble cadena o de un análogo de ARN de 

doble cadena. 

10. El dominio RWD no es necesario para la actividad DNasa de CIH. 

11. El dominio RWD mantiene una estructura tridimensional muy 

conservada a pesar de la baja homología de secuencia. 

12. Dada la fuerte carga negativa presente en la zona del dominio RWD 

descrita como necesaria para la interacción con GCN1, la naturaleza de dicha 

interacción debe ser de carácter electrostático. 
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IMPACT proteins are known to be present in almost all cell types, but they 

are highly expressed in fibroblasts and central nervous system.  The term IMPACT 

comes from the fact that the Impact gene in rodents is the only imprinted gene 

found at chromosome 18 up to date. This imprinting is not found in other 

mammalian species. The protein is divided in two domains, an RWD domain at 

the N-terminus and the ancient domain at the C-terminus. Between those 

domains there is a linker region with no predicted structure. All IMPACT proteins 

display very high sequence conservation, mostly on its ancient domain. However, 

there is no known function of the protein related to the ancient domain. 

Little is known about the role of IMPACT proteins within the cell. 

Nowadays, the only well-known function of IMPACT proteins is to assure 

translation levels upon amino acid starvation conditions. Protein translation is a 

crucial process for life. Hence, adaptation to stress conditions that compromise 

translation is a matter of survival. IMPACT proteins are able to compete with 

GCN2 for the binding to GCN1, since both GCN2 and IMPACT harbour an RWD 

domain able to interact with GCN1. GCN2 binding to GCN1 is necessary to 

activate the kinase domain of GCN2. The activation of the kinase domain results 

in eIF2 phosphorylation at serine 51 on its alpha subunit. Phosphorylation of 

eIF2α leads to general translation repression but it activates the expression of 

some transcription factors involved into cell remediation and amino acid 

biosynthetic pathways. Since it is overexpressed in central nervous systems it may 

be involved in the regulation of translation in some specific neuronal cells upon 

amino acid starvation. On the other hand, it has been described that IDO 

induction is able to provoke IMPACT overexpression by tryptophan depletion. IDO 

activity is based on tryptophan catabolism into toxic compounds known as 

kinenurines. Regarding its role in translation regulation, IMPACT proteins would 

help cells to overcome tryptophan depletion. 
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Recent studies are trying to shed light into new possible roles of IMPACT in 

the cell biology have linked IMPACT proteins with cell cycle, since it has been 

demonstrated that IMPACT and its yeast counterpart Yih1 are able to interact 

with CDK1 or cdc28 respectively, although the particular function of the 

interaction remains unknown.  

In this work we describe for the first time the three dimensional structure 

of the IMPACT RWD and ancient domains from a thermophilic fungus known as 

Chaetomium thermophilum. We have proved that IMPACT proteins are able to 

bind both, RNA and DNA in vitro. Extensive biochemical analysis from human, 

S.cerevisiae and C.thermophilum and detailed structural analysis of the obtained 

structures lead us to the identification of IMPACT proteins as enzymes that are 

able to endolytically cleave DNA. Besides, further characterization of the reaction 

revealed that the cleavage was not simultaneous in both strands and that the 

enzyme displays substrate inhibition. Given the cytosolic location of the protein, 

we wonder if IMPACT proteins would be related to immune system. In vitro 

experiments also demonstrated that IMPACT proteins act as cytosolic DNA 

sensors, since IMPACT knock down in mouse fibroblasts affects to interferon beta 

mRNA levels after transfection with ISD. In brief, these findings open a new field 

for the study of the roles of IMPACT proteins within cell biology. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                     

“La verdadera ciencia enseña, sobre todo, a dudar y ser ignorante.”  

                                              Miguel de Unamuno.  
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Inside the cell, deoxyribonucleic acid (DNA) encodes all the functional 

information needed for life. To execute this information DNA needs to be 

transcribed into ribonucleic acid (RNA). Some of those RNA’s are functional by 

themselves, but there is a fraction of RNA that needs to be translated and 

converted into an amino acidic sequence. This directionality on information flow 

has been historically known as the central dogma of molecular biology (CRICK, 

1958).  

Translation is a complex process essential for life. In order to achieve a 

reliable translation of messenger RNA (mRNA) to protein, many factors are 

required. Translation takes place in three different steps: Initiation, elongation 

and termination (Figure 1.1).  

 
 

 

 

Figure 1.1. mRNA translation in eukaryotes. Three stages of mRNA translation in eukaryotes are 

shown. Open reading frames are depicted in blue. Untranslated regions are shown as black lines 

being the 5' cap structure drawn as black circle. AAA indicates the poly(A)-tail. Ribosomal subunits 

(40S and 60S) are depicted in green and the polypeptide in red. Essential components of the 

translational machinery are indicated for each step. Abbreviations are detailed right after: eEFs, 

eukaryotic elongation factors; eIFs, eukaryotic initiation factors; eRFs, eukaryotic release factors; 

Met, methionine (taken from Scheper et al., 2007). 
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1.1. Eukaryotic translation initiation: General overview 

The initiation of protein synthesis consists in the recruitment of an 

initiator transfer RNA (tRNA) complex to the initiation codon of a messenger RNA 

(mRNA). Eukaryotes have taken advantage of the evolution of novel mRNA 

structures, to develop new mechanisms for the recruitment of the ribosome to 

the mRNA (Scheper et al., 2007). In that sense we find that the ternary complex 

(TC), composed by the three subunits (α, β and γ) of the eukaryotic translation 

initiation factor 2 (eIF2) complexed with GTP and the initiator tRNAMet, binds to 

the 40S ribosomal subunit forming a pre-initiator complex 43S. Translation 

factors eIF4 and eIF3 are essential since they recruit the mRNA and relax the 

secondary mRNA structure nearby the 5’ capped end. The 43S complex binds the 

mRNA close to the 5´capped end, and although it has natural capacity to bind 

mRNA, the 43S complex needs the activity of eIF4 and eIF3 to do it (Sonenberg 

and Hinnebusch, 2007). The ribosomal subunit with the ternary complex scans 

the mRNA looking for the first AUG codon. After reaching this codon, the 43S pre-

initiator complex binds the ribosomal 60S subunit, forming the 80S initiation 

complex. Once the AUG codon has been recognized, the GTP from the TC gets 

hydrolysed and eIF2-GDP is released. Recycling eIF2-GTP is crucial if rapid 

translation initiation wants to be assured, so there is a GDP exchange factor 

known as eIF2B that helps recycling eIF2-GDP to eIF2-GTP, hence allowing the 

availability of eIF2-GTP for a new 43S ribosome ready to start the translation 

process (Jackson et al., 2010) (Figure 1.2).                                         
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Figure 1.2. Canonical pathway of eukaryotic translation initiation. The model for the canonical pathway 

of eukaryotic translation initiation comprises 9 steps. mRNA has been depicted in blue with 5’capped end and a 

poly-A tail. Ribosomes are depicted in light orange. All the factors involved have been named at the picture 

(taken from (Jackson et al., 2010)). 



                                                                                                            
     

38 

1.2.  Translation control in eukaryotes 

The complex composition of the ribosome allows a very tight regulation. 

The huge amount of factors required during the whole translation process allows 

translation control depending on extracellular signals that might, for example, 

phosphorylate some translation factors important for translation regulation 

(Sonenberg and Hinnebusch, 2009). Translation initiation is the main stage where 

protein synthesis is regulated (Jackson et al., 2010). 

1.2.1 Regulation of translation initiation 

One of the crucial events in the control of protein synthesis is the eIF2 

phosphorylation on serine 51 located in the in α subunit (eIF2α). In response to 

environmental stresses there are several kinases that phosphorylate eIF2, leading 

to the activation of several pathways that remediate the damage or induce 

apoptosis. In mammals there are four known kinases that phosphorylate eIF2 at 

the residue 51 (eIF2α-P). Each kinase acts in different stress situations. The RNA 

dependent protein kinase (PKR) is activated by viral infections and participates in 

the anti-viral defense mediated by interferon. There is another kinase, haeme-

regulated inhibitor (HRI) which is activated by heat shock, oxidative stress and 

haeme deficiency in erythroid tissues. Pancreatic eIF2α kinase (PEK) is activated 

in response to misfolded proteins in the endoplasmic reticulum. The last kinase 

to mention is the general control non-derepressible-2 (GCN2) also known in 

mammals as eukaryotic translation initiation factor 2 alpha kinase 4 (EIf2αK4). 

From now on we will refer to it as GCN2. GCN2 has been identified as the sole 

eIF2α kinase found in Saccharomyces cerevisiae until now and it is known to be 

induced by nutrient deprivation, UV irradiation and proteasome inhibition (Wek 

et al., 2006) (Figure 1.3).  
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Figure 1.3. The eIF2 kinases regulate translation in response to different stress types. The four 

known kinases in mammals phosphorylate eIF2 at Ser-51 in response to different environmental 

stresses. The phosphorylation inhibits eIF2B GEF activity reducing translation initiation levels.(Wek 

et al., 2006) 

 

GCN2 is a protein composed by 1659 amino acids which harbours 4 

different domains: an RWD domain which is necessary for protein interaction, a 

pseudo-kinase domain (ΨKD), necessary for the activation of the following kinase 

domain (KD), responsible for eIF2 phosphorylation in starved cells, a histidyl-

tRNA synthetase-like domain (HisRS) and a C-terminal domain involved in 

ribosome interaction (Figure 3) (Donnelly et al., 2013). GCN2 has been shown to 

interact not only with translating ribosomes but also with free ribosomal subunits 

(Ramirez et al., 1991). 
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Now that the kinases involved in eIF2α phosphorylation have been 

presented, the next issue to address is how this phosphorylation is affecting the 

translation initiation process. As mention at the initiation step (section 1.1), eIF2-

GTP-tRNAMET complex is crucial for the initiation to occur and there is one GEF 

protein that recycles eIF2-GTP from eIF2-GDP. This protein, named eIF2B, is 

therefore essential for translation initiation. EIF2B also has the ability to bind 

eIF2α-P with higher affinity than un-phosphorylated eIF2. In the event of eIF2 

phosphorylation, eIF2B will not be able to exchange the guanine in eIF2α-P and, 

in addition, any remaining un-phosphorylated eIF2-GDP will not be recycled to 

eIF2-GTP since eIF2B would be sequestered by eIF2α-P leading to suppression or 

acute deceleration of translation initiation. 

1.3. General amino acid control pathway  

The environment where we live changes continuously. Unfortunately 

nutrient availability is not always assured and an appropriate response to this 

particular stress condition is essential for survival. There are different pathways 

that recognize the deficiency on nutrient availability and coordinate a response 

that implies changes in gene expression in order to alleviate the particular 

deficiency and be able to survive. 

We are particularly interested in the general amino acid control (GAAC) 

pathway since the protein object of this study is involved in its regulation.  

1.3.1. General amino acid control pathway in yeast 

Amino acid starvation triggers the accumulation of empty tRNA inside the 

cell. In this situation, empty tRNAs go inside the translating ribosome, where 

general control non derepressible protein 1 (GCN1), facilitates the shift of the 

empty tRNA from the A site of the ribosome to GCN2 hisRS domain (Garcia-Barrio 
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et al., 2000) (Kubota et al., 2000) (Kubota et al., 2001). 

The binding of the tRNA to the HisRS induces conformational change that 

results in an increased accessibility of the ΨKD to sites of allosteric activation 

present in the KD and thus, the activation of the GCN2 kinase domain which 

phosphorylates the eIF2α (Lageix et al., 2014) (Figure 1.4).  

 

 

Figure 1.4. Model for allosteric activation of GCN2 KD domain by its interaction with ΨKD. The 

interaction with empty tRNA provokes a conformational change that activates the GCN2 kinase 

domain. ΨKD has been marked at the figure as YKD. Modified from (Lageix et al., 2014) 

 

As we have explained before, this phosphorylation is inhibiting the recycle 

of eIF2-GDP to eIF2-GTP and thus, the translation initiation. In this situation, 

GCN4 protein starts expressing, since the translation of this protein is inversely 

related to the amount of eIF2. This can be explained because GCN4 mRNA has 4 

upstream open reading frames (uORF). The presence of uORF 1 and uORF 4 is 

necessary for a total prevention of GCN4 translation. When there is plenty of TC 

available for translation, ribosomes will translate uORF 1 and they will reinitiate 

translation at uORF 4 and dissociate before reaching AUG from GCN4 and hence 

preventing its translation. However under starvation conditions, available TC 

levels are low and the ribosome, which starts scanning after uORF 1 translation, 
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will pass by uORFs 2, 3 and 4 without translating them and will reinitiate the 

translation at GCN4 (Ramirez et al., 1991)(Hinnebusch, 1997)(Figure 1.5) 

(Abastado et al., 1991). Removal of the 4 uORFs leads to high GCN4 levels in 

starvation and non-starvation conditions (Mueller and Hinnebusch, 1986). 

 

 
Figure 1.5. A model for translational control of yeast GCN4 by phosphorylation of eIF2α by the 

protein kinase GCN2. When eIF2-GDP can be rapidly recycled to eIF2-GTP, the fourth ORF can be read 

and thus the ribosome disassembles before reaching GCN4 ORF (left panel). When low levels of eIF2-

GTP are present, ORF4 is not read and ribosome reaches GCN4 ORF ready to initiate translation (right 

panel). ORF2 and ORF3 are not represented at the figure. Figure from (Hinnebusch, 1997) 

 

GCN4 is a transcriptional activator of amino acid biosynthetic enzymes, 

and thus its expression activates the amino acid biosynthetic pathways, relieving 

the lack of amino acids (Ramirez et al., 1991) . GCN4 is also involved in starvation-
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induced autophagy (Tallóczy et al., 2002). 

1.3.2. The general amino acid control in mammals 

Mammalian amino acid homeostasis is more complex than yeast 

homeostasis because there are 8 essential amino acids that cannot be 

synthetized by the cells. Those amino acids are obtained from the diet, so eIF2α 

phosphorylation is not only controlling the activation of amino acid biosynthetic 

pathways, but is also regulating mammalian target of rapamycin (mTOR) and 

autophagy (Chen et al., 2014).  

GAAC pathway in mammals is also based in empty tRNA binding to GCN2 

that leads to eIF2 phosphorylation. This phosphorylation also leads to a general 

translation repression and an enhanced translation of selected mRNAs. The way 

GCN4 counterpart, activating transcription factor 4 (ATF4), gets an enhanced 

expression is very similar to GCN4 overexpression. In this case, ATF4 mRNA has 

two uORFs and deficiency in TC availability allows the small ribosome subunit to 

reach scanning the ATF4 starting codon and initiate the translation. ATF4 

expression entails the induction of other transcriptional regulators as activating 

translation factor 3 (ATF3) or CCAAT enhancer-binding protein homologous 

protein (CHOP). They are able to induce an expression program for genes 

important to alleviate the starvation, not only because activates amino acid 

biosynthetic pathways but also because upregulates the expression of amino acid 

transporters (Wek et al., 2006). This elevated expression leads to an increase in 

the uptake of amino acids, which ends in mTOR reactivation and autophagy 

suppression (Chen et al, 2014). On the other hand, CHOP is also able to trigger an 

apoptotic program (Wek et al., 2006). 
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1.4. IMPACT gene 

Genomic imprinting is a non-Mendelian inheritance system unique to 

mammals where one of the inherited copies of a gene is silenced by epigenetic 

modifications. Expression of imprinted genes is parent-of-origin specific, meaning 

that, depending on the gene, always one of the parental alleles will be silenced 

(Kaneko-Ishino et al, 2003; Morison & Reeve, 1998). The imprint is re-established 

or erased during gametogenesis, depending on the sex of the individual and it is 

maintained during the offspring’s life (Okamura et al., 2004).  

Mouse Impact has been found to be the only imprinted gene at 

chromosome 18 until today (Okamura et al., 2000). The imprinting of Impact is 

very interesting for two reasons. One reason is that the vast majority of imprinted 

genes have been found inside of a cluster of imprinted genes, but Impact is 

surrounded by genes that do not show any imprinting. The other interesting 

point is that Impact exhibits a specie-specific imprinting, while it has been found 

to be imprinted in rodents, it is not in most vertebrates such as monkey, pig, frog 

and human (Okamura et al., 2004). 

Human IMPACT has been localized in chromosome 18q11.2, a syntenic 

region to the locus of mouse Impact, within the critical region for bipolar 

affective disorder (Kosaki et al., 2001). The imprinting has been related with the 

lack of intronic CpG islands in the mouse gene promoter, due to the fact that the 

human promoter constitutes a conventional non methylated CpG island. On the 

other hand, there is a methylated CpG island inside the first intron of the mouse 

gene but not at the human one, which are frequently found nearby imprinted 

genes. It is noteworthy that imprinted mouse Impact shows and enhanced 

expression when compared with human IMPACT and this is thought to be due to 

the presence of those methylated CpG islands. Regarding this situation, a model 

has been proposed where the Impact imprinting has evolved as an adaptation for 

increased gene dosage in rodents (Okamura et al., 2004, 2000).  
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1.5. IMPACT protein  

The name of the family arises from imprinted and ancient. Impact proteins 

are known to have two domains separated by a linker region. This family of 

cytosolic proteins is characterized because it shows high degree of sequence 

conservation, mostly at the half C-terminal part (Figure 1.6). 

 The N-terminal domain harbours an RWD domain which plays an 

essential role for the sole known function of the protein, which we will discuss 

later. The name of this RWD domain comes from domain found in RING finger 

proteins, WD-repeat-containing proteins and DEAD-like helicases (Waller et al., 

2012). The C-terminal region, known as ancient domain, is the only domain 

forming part of the Pfam protein family 01205 (PF01205) which is also known as 

unknown protein family 0029 domain (UPF0029). This last domain has been 

predicted to have a ββαββαβα topology, very similar to the ferredoxins (βαββαβ), 

but the particular function of the ancient domain remains unknown (Figure 1.6) 

(Sattlegger et al., 2011). 

In yeast, there is only one isoform of the protein. It corresponds with a full 

length protein and it has been called yeast IMPACT homologue 1 (Yih1). In other 

organisms such as humans or Caenorhabditis elegans, two isoforms of the 

protein are found to be produced by alternative splicing. The isoform 1 

corresponds with the full length protein and the isoform 2 lacks the RWD 

domain. 
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Figure 1.6. Sequence alignment of the Yih1/IMPACT family of proteins. Protein IMPACT sequence from 

organisms of diverse phylogenetic groups have been aligned, highlighting identical residues. Panel A, structural 

characteristics of GCN2-RWD domain from Mus musculus are show for RWD domain sequence at the bottom of the 

alignment. At panel B, structural features of UPF0029 domain of YigZ protein from E.coli is shown for the UPF0029 

sequence at the bottom of the alignment.  Adapted from (Sattlegger et al., 2011) 
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1.6. Insights into IMPACT proteins function 

Little is known about the function of IMPACT inside the cell. Most of the 

information available is relating IMPACT protein with the general amino acid 

control pathway (GAAC), but recent studies are shedding light on new possible 

roles. 

1.6.1. IMPACT and GAAC 

The study of the relation between IMPACT and the GAAC pathway has 

been carried out mainly using the yeast homologue Yih1. Below, all the 

characteristics of Yih1 related to the GAAC pathway are commented. 

1.6.1.1 Yih1 binds GCN1 
 

As mentioned before, Yih1 harbours a RWD domain at its N-terminal part. 

The RWD domain is enough for GCN1 binding; in fact it has been shown that 

residues 1-67 do not participate in the interaction, revealing that helices 2 and 3 

of the RWD domain are sufficient for GCN1 binding (Sattlegger et al., 2011). The 

observation of an increased GCN1 binding affinity when Asp90 and Glu87 are 

mutated to alanine, together with the role of Asp102 and Glu106 for in vivo 

binding, led to the conclusion that helixes 2 and 3 of the RWD domain as direct 

interactors with GCN1. From GCN1, Arg2259 is essential for Yih1 binding in vivo 

and in vitro, as it is for GCN2 binding (Sattlegger et al, 2004; Sattlegger & 

Hinnebusch, 2000). Yih1-GCN1 interaction under stress conditions is very 

important since it is responsible for inhibition of GCN2 dependent eIF2α 

phosphorylation.  

1.6.1.2 Yih1 binds actin 

Endogenous Yih1 FLAG-tagged when purified appeared as 1:1 complex 

with monomeric actin without GCN1 implication (Sattlegger et al., 2004). A 
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fragment of YIH1 comprised by residues range 68 to 258 showed the strongest 

interaction with actin, although fragments 2 to 171 or 68 to 171 also succeeded 

precipitating actin (Sattlegger et al., 2011). Same Yih1 mutations that increased 

affinity for GCN1 binding, E87A and D90A, also increased actin binding affinity 

(Sattlegger et al., 2011). 

1.6.1.3 Yih1 resides in a complex with ribosomes 

Yih1 (and IMPACT) can associate with ribosomes independently of GCN1. 

A fragment corresponding to the central part of the protein (residues 68 to 171) 

is sufficient for polyribosome cosedimentation. This interaction was also present 

under amino acid starvation conditions (Waller et al., 2012). 

By crosslinking it was determined that Yih1 is interacting with the large 

ribosomal protein 39 (RPL39) (Waller et al., 2012). 

1.6.1.4 GAAC model for GCN2 regulation 

Two possible models for Yih1/IMPACT dependent GCN2 regulation have 

been proposed regarding all the characteristics commented above (Figure 1.7).  

As we have explained before GCN2 binds through its RWD domain to a 

particular area of GCN1 also recognized by Yih1. Under non stressed conditions, 

Yih1 would be in an inactive complex with actin. GCN1 and GCN2 stay in a 

complex with the ribosome, which are known to be bound to the cytoskeleton. 

When Yih1 is released from monomeric actin, starts competing with GCN2 for 

GCN1 binding. On the other side, there are evidences for Yih1 binding to 

ribosome independently of GCN1. This would allow a fastest regulation of GCN2 

(Waller et al., 2012) in comparison with the model where the Yih1-actin complex 

is free in the cytoplasm. Avoiding GCN2-GCN1 interaction, Yih1 is inhibiting the 

kinase domain of GCN2 and thus, assuring the maintenance of general translation 

levels.  Nevertheless, in normal conditions Yih1 (IMPACT) is complexed with actin, 
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so the inhibition of the kinase activity of GCN2 has been proposed to occur when 

maximal protein synthesis is necessary due to any special condition, when there 

is a high overexpression of Yih1 (IMPACT) or at specific cellular compartment 

where Yih1 (IMPACT) might be released from its interaction with actin (Sattlegger 

et al., 2004).  Taking into account that the number of Yih1 molecules inside the 

cells is less than half of GCN1, and that only a small portion of Yih1 will bind 

ribosomes, only a small population of ribosome-GCN1-GCN2 complexes will be 

under possible Yih1 control (Waller et al., 2012).  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Proposed models for Yih1 on the ribosome. Ribosomes are known to be attached to the 

actin cytoskeleton. GCN1 and GCN2 reside on the ribosome. GCN1 direct contact to GCN2 facilitates 

its activation. Under certain conditions Yih1, usually complexed with globular actin, is released from 

its interaction and binds GCN1, thus inhibiting GCN2 activity (Panel A). Yih1 remains bound to the 

ribosome although inhibited by its interaction with actin. When GCN2 has to be inactivated, Yih1 

bound to ribosome levels increase allowing faster GCN2 regulation (Panel B) Taken from (Waller et 

al., 2012). 
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1.6.2. IMPACT and neuronal differentiation 

In mice, high levels of IMPACT protein have been found at the central 

nervous system (NCS) not only in adult individuals but also in embryos. It is worth 

to note that those levels even increased during brain development.  This 

increased expression was coordinated with higher levels of neuronal 

differentiation markers and GCN2 expression reduction. Polysome profiling 

revealed that IMPACT binding to polysomes was highly increased during 

differentiation (Roffé et al., 2013).  

ATF5, a transcriptional factor regulated by the transcriptional activation 

mediated by ATF4 (Zhou et al., 2008), inhibits neurite development induced by 

nerve growth factor (Angelastro et al., 2003). Then, regarding that extracellular 

signals may promote or inhibit neurite outgrowth and that high levels of IMPACT 

bound to polysomes have been found in differentiating cells, it has been 

proposed that differentiation of N2a cells (mouse neuroblastoma cells) triggers 

IMPACT association with translating ribosomes and that the abundance of 

IMPACT may promote translation by decreasing GCN2 activity in a timely manner 

to support neurite outgrowth (Roffé et al., 2013). 

1.6.3. IMPACT and cell cycle 

Cyclin dependent Kinases (Cdks) are protein kinases which its activation or 

inactivation controls the eukaryotic cell division. In yeast there is only one Cdk 

that regulates the cell cycle progression, Cdc28, the orthologue of mammalian 

CDK1. Cdk’s activity is regulated by phosphorylation and the interaction with 

negative effectors (Alberghina et al., 2004; Bloom and Cross, 2007). 

It has been recently described a relation between cell cycle and Yih1. 

When Yih1 is deleted from yeast, cells tend to accumulate in the G2/M phases of 

the cell cycle and this delay in the cycle is not related with GCN1 or GCN2. Cdc28 

was found to co-precipitate with Yih1, and IMPACT with CDK1, result that is 
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evidencing the evolutionary conservation of the interaction. This binding has 

been proven to be independent of GCN1 (Silva et al., 2015).  

Yih1 preferentially binds active Cdc28 complexes, and the RWD domain 

has been found to be the responsible for the interaction. Substitution of two 

residues within the RWD domain, glutamic 87 and aspartic 90 to alanine, is 

producing a stronger interaction as it was also described for GCN1 and actin 

(Sattlegger et al., 2011; Silva et al., 2015).  

1.6.4. IMPACT and the immune system 

A direct link between IMPACT and a very well-known immunomodulatory 

factor, Indoleamine 2,3-dioxygenase (IDO), has been reported (Habibi et al., 

2010). IDO is an enzyme involved in the tryptophan catabolism, performing the 

first and rate-limiting step of the pathway (Takikawa, 2005) and it was firstly 

identified in rabbit intestine. IDO catalyses tryptophan conversion to N-formyl-

kynurenine. This product is further metabolised in different downstream 

metabolites, depending on the enzymes that are expressed downstream by each 

cell type. IDO expression can be induced upon cell exposure to interferon gamma 

(INF-γ) (Taylor and Feng, 1991) and other factors such as transforming growth 

factor β or interleukin 10 (Powrie and Maloy, 2003) (Figure 1.8). 

It has been shown that overexpression of IDO has immunosuppressive 

effects, and those effects are attributed in part to tryptophan depletion and/or 

accumulation of kynurenines, which are toxic metabolites obtained from 

tryptophan catabolism (Fallarino et al., 2006). Some studies point to the 

signalling pathway triggered by GCN2 as a mechanism that enables T-cell to 

sense stress conditions generated by IDO (Munn et al., 2005).   
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Figure 1.8. Activation of IDO expression and enzyme activity.  IDO inducers activate JAK-STAT 

signalling pathway that acts on interferon stimulatory response elements (ISREs) and γ-activating 

sequences (GAS) present on the IDO promoter. Functional activity regulation can occur via 

undescribed post-translational modifications and also by the presence of inhibitors or by limiting the 

access to the haeme cofactor. The obtained products vary depending on the cell type. Adapted from 

(Mellor and Munn, 2004).  

 

It has been shown that GCN2 pathway is selectively activated in immune 

cells but not in skin cells. Interestingly, this has been related with the non-

detectable or low constitutive expression of IMPACT in Jurkat and T cells 
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respectively in contrast with the higher expression levels found in skin cells 

(Habibi et al., 2010). In stress condition induced by IDO, Jurkat cells initiate GCN2 

pathway which induces cell cycle arrest and finally ends in apoptosis. 

Overexpression of IMPACT in Jurkat cells reduces the apoptosis ratio (Habibi et 

al., 2010) which is consistent with previous observations where Jurkat cells, due 

to its lower IMPACT expression levels when compared with primary T cells, 

showed higher apoptotic tendency relative to those primary T cells (Ghahary et 

al., 2004). 

1.7. Nucleic acid recognition and immune response 

There are different mechanisms that allow cells to respond to infectious 

agents. Recognition of foreign nucleic acids within the cytoplasm, usually due to a 

viral infection or intracellular bacteria is one of them (Gehrke et al., 2013). 

Several cytosolic nucleic acid sensors have been described and they form part of 

the innate immune response. Usually those cytosolic sensors will trigger, by 

activating different signalling pathways, the secretion of cytokines and type I 

interferons (interferons α and β) (Atianand and Fitzgerald, 2013; Hornung and 

Latz, 2010) (Figure 1.9).  

Although the cell is able to differentiate between self and non self RNA, it 

is less specific recognising self DNA (Keating et al., 2011) . Special characteristics 

of nucleic acids, as unmethylation of C-G dinucleotides, particular secondary 

structures, location or abundance are specifically contributing to immune 

recognition. These are critical parameters since inappropriate nucleic acid 

recognition and activation of the immune response can lead to autoimmune 

diseases (O’Neill and Bowie, 2010). 

Given the increasing number of cytosolic DNA sensors and that they 

usually recognise the same substrates; we can say that there is high redundancy 

among them. It is thought that some of the DNA sensors can be cell type specific 
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and as consequence one can find many different signalling pathways implicated. 

Figure 1.9. Immune response triggered by the presence of nucleic acids in the cytosol. Cytosolic 

nucleic acids sensors for each type of nucleic acid and triggered downstream pathways are 

indicated.  Picture obtained from “Cytosolic DNA sensors: a STING in the tail, from invivogen”. 
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1.8. Objectives 

IMPACT proteins are highly conserved, but little is known about its role in 

the cell. Despite the relation found between IMPACT and the immune system or 

cell cycle, the only known function is related to GCN2 inhibition. The role of 

IMPACT proteins has been always linked to other proteins, but there are not 

intrinsic functions for IMPACT proteins yet described. 

From the structural point of view, no previous information regarding its 

tridimensional architecture is available. Although the N-terminal domain has 

been annotated as an RWD domain, there are no experimental evidences of its 

structure. The ancient domain, located at protein C-terminus, belongs to the 

PF01205. This domain shows very high degree of sequence conservation but any 

particularity about it is known until date. 

 

With these premises, the objectives were: 

1. Determine the three dimensional structure of the protein IMPACT using        

X-ray crystallographic techniques. 

2. Identification and characterization of new IMPACT capabilities. 

3. Investigate possible functions within the cell for new IMPACT capabilities. 
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2.1 Production of IMPACT proteins in E.coli expression system 

2.1.1 Obtainment of expression plasmids 

Two different methods were used to clone all constructs: 
 

In-Fusion: Commercial Kit from Clontech Laboratories. This method was 

used with pOPINF vector. It was used accordingly to the manufacturer’s 

instructions. In brief, an insert of the desired construct was generated carrying 

two different overhangs. Each specific overhang in the insert is able to recombine 

with one end of the linearized pOPINF, so the insert can be introduced into the 

plasmid making it circular again. Since the recombination is sequence dependent, 

the proper direction of the cloning is assured.  
 

Sequence and ligase independent cloning (SLIC):  The SLIC method was 

used to clone proteins into pET28-NKI/LIC 6His/3C (NKI) (kind gift from Dr. Tassos 

Perrakis) and GKI (generated in the lab) plasmids. GKI conserves the same 

backbone as NKI but the histidine tag has been changed for a glutathione-S-

transferase (GST) tag. For the reaction, two microliters of insert were mixed with 

two microliters of linearized plasmid and 1µL of T4 DNA polymerase buffer 

(Fermentas). After the addition of 0.2µL of T4 DNA polymerase, the sample was 

incubated for 1 minute at room temperature. Afterwards it was transformed as 

described below. 

2.1.1.1  Yeast IMPACT homolog 

Three different orthologues have been expressed, IMPACT human protein, 

Yeast Impact Homolog (Yih1) and Chaetomium thermophilum Impact Homolog 

(CIH). Plasmids containing yeast Yih1 and GCN1 constructs (Figure 2.1) were 

obtained from Dr. Bertrand Séraphin (Illkirch, Strasbourg) as part of the European 
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Union 6th Framework program 3D repertoire (contract LSHG-CT-2005-512028).  

             
 

Figure 2.1. Scheme showing the constructs obtained from Dr. Bertrand Séraphin. The black bar 

shows the position of the 6 histidine tag at the N-terminal part of Yih1. Numbers between 

parentheses are pointing the residue range of the respective domain. The plasmid scaffold for these 

constructs is pET24d+. Figures are not drawn to scale. 

 

Since GCN1 expression was not detected in none of the four plasmids 

from Bertrand Séraphin, a construct carrying only Yih1FL was made amplifying the 

open reading frame (ORF) from pBS4717 with primers carrying the overhangs 

necessary for pOPINF cloning (Table 2.1). 

2.1.1.2  Chaetomium IMPACT homolog 

The plasmid pOPINF (Figure 2.2) containing CIH full length (CIHFL) was 

obtained by cloning the IMPACT gene from a Chaetomium thermophilum gene 

library generated in the laboratory. The DNA that was used as insert was 

amplified by the polymerase chain reaction (PCR) technique using an Eppendorf 

thermal cycler. The reaction consisted in 1 unit of KAPA HiFi DNA polymerase, 
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(Kapa Biosystems) in the commercial buffer (KAPA HiFi fidelity buffer), 0.3 mM 

dNTP mix, 0.3 µM oligonucleotide primer synthesized by Sigma (Table 2.1) , 

DMSO and around 50 ng DNA template in 25µL final volume. The PCR reaction 

was carried out as given: 95°C for 3 minutes followed by 30 cycles of 

amplification (denaturation step of 98°C for 20 seconds, annealing for 20 seconds 

at 55°C followed by elongation step at 72°C calculated for 1Kb amplified for 30 

seconds of reaction). The PCR product was confirmed by 1% agarose gel and 

cleaned with a DNA purification kit (GE healthcare). After extracting the gene 

from the library, a new PCR was performed as described above with primers that 

were incorporating an overhang necessary for the cloning with pOPINF vector 

(table 2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. pOPINF vector map. Resistance, origin of replication and position of cleavage site for 

some restriction enzymes are shown. Map obtained from: www.addgene.org 

Different truncations of the protein were made on the CIH sequence and 

http://www.addgene.org/


                                                                                                                                                                                                                                       
      

64 

cloned into different plasmids. The different constructs and the oligonucleotide 

primers used to generate them are shown in table 2.1. 

Completed reactions were transformed into 100µL of chemically 

competent E. coli DH5α cells by incubating for 20 minutes at 4°C and then heat 

shocking at 42°C for 1 minute 30 seconds. Afterwards the mix was kept in ice for 

5 minutes prior to incubation al 37°C for 1 hour in 300µL of Lysogeny Broth (LB) 

without antibiotics. Finally all the cells were spread in an LB plate with the 

selected antibiotic and incubated overnight at 37°C. Selected colonies were 

grown in 5mL of LB with proper antibiotic at 37°C and the plasmid DNA was 

extracted with Qiagen miniprep spin column kit (Qiagen). The constructs were 

confirmed by sequencing. 

 
 

Table 2.1. Constructs for Yih1, IMPACT and CIH . Column named Res does refer to vector resistance. 

Primers used for cloning are shown and marked with F for forward and R for reverse. Overhangs 

necessary for cloning are highlighted in grey.   

 

Construct Vector Boundaries Res Primers 

Yih1 pOPINF 1-258 Amp F-AAGTTCTGTTTCAGGGCCCGATGGATGACGATCACGAACAGTTGGTCG                  
R-ATGGTCTAGAAAGCTTTACGAGTCGAAGCCGGCCCTGACAAC   

IMPACT pOPINF 1-320 Amp F-AAGTTCTGTTTCAGGGACCCGGTATGGCTGAGGGGGACGCAGGGAG                                 
R-CGAGGAGAAGCCCGGTTAATGTTCATTCCTCTTCTTGTCTTTTCTTAC 
TTTTTTGTTCTTTCCCAAAGC     

CIH pOPINF 1-292 Amp F-AAGTTCTGTTTCAGGGCCCGATGTCAGAAGCGCTGCTCG                               
R-ATGGTCTAGAAAGCTTTATTTTCCTCCCTTCTTCTTC 

CIH 1-111 NKI 1-111 Kan F-CAGGGACCCGGTATGTCAGAAGCGCTGCTCGATGAAATAGAAGCCATC         
R-CGAGGAGAAGCCCGGTTATTTCACGGCAGCCAGGAGTTCCTGTACC 

CIH111-292 NKI 111-292 Kan F-CAGGGACCCGGTAACCGTGATGGCCGGCACAC                                               
R-CGAGGAGAAGCCCGGTTATTTTCCTCCCTTCTTCTTCTTCTCCCCGC 

CIH1-160 NKI 1-160 Kan F-CAGGGACCCGGTATGTCAGAAGCGCTGCTCG                                                   
R-CGAGGAGAAGCCCGGTTACAGAGTCCACGGTGGAGGGCTAGATA 

CIH152-292 GKI 152-292 Kan F-CAGGGACCCGGTCCCTCCACCGTGGACTCTGTC                                               
R-CGAGGAGAAGCCCGGTTATTTTCCTCCCTTCTTCTTCTTCTCCCCGC 
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Confirmed constructs and mutants were transformed in 50µL E.coli (DE3) 

BL21 codon plus RIPL (BL21C+ RIPL) (Agilent technologies). This strain is used for 

protein expression. The transformation by heat shock was performed as follows: 

heat shock at 42°C for 25 seconds, 5 minutes incubation on ice followed by the 

addition of 300µL of LB and the incubation for 1 hour at 37°C. For obtaining 

single colonies, 100µL of these transformed cells were spread in an LB plate with 

the selected antibiotic for the vector resistance and chloramphenicol for the RIPL 

cells resistance, and kept it overnight at 37°C.  A mixture of 750µL of a single 

colony grown overnight in LB plus the proper antibiotics and 250µL of 100% 

glycerol were kept in a -80°C freezer as a stock for starting new cultures. 

2.1.1.3  Human IMPACT 

In order to prepare a vector containing the human IMPACT open reading 

frame, it was PCR-amplified from the MegaMan human transcriptome library 

(Agilent technologies) and cloned into pOPINF vector as described above. Primers 

for cloning are shown at Table 2.1. 

2.1.2 Expression and purification of the different constructs  

Adequate expression of the proteins was first assured by small scale 

expression in 20mL cultures (LB media containing the selected antibiotic) induced 

with 1mM IPTG final concentration, followed by batch purification using affinity 

Ni-NTA resin (Agarose Bead Technologies, ABT) and confirmed by sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE). 

Large scale expression of the recombinant proteins, if not mentioned 

otherwise, was carried out in LB with IPTG induction. A pre-culture was grown in 

50mL of LB containing appropriate antibiotic, starting from the glycerol stock, at 

37°C overnight in a shaking incubator at 190 r.p.m. The next day the pre-culture 
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was inoculated into 950mL LB containing appropriate antibiotic inside a 2 liter 

conical flask and grown until O.D600nm between 0.5-0.7. When reaching this point, 

a final concentration of 1mM IPTG was added to the media and the temperature 

decreased to 20°C. The culture was left incubating overnight at 190 r.p.m. The 

next day the cells were harvested by centrifugation at 4547g for 30min in a 

Beckman Coulter J6-HC centrifuge using a JS-4.2A rotor at 4°C. The pellet was 

washed with 35mL PBS 1x and centrifuged again in an Eppendorf Centrifuge 

5810R at 3220g for 25min at 4°C. The supernatant was discarded and the pellet 

frozen with liquid nitrogen and stored in a -80°C freezer until use  (Baneyx, 1999; 

Makrides, 1996). 

Frozen pellets, originated from 1 liter culture,  were thawed on ice and 

resuspended in 30mL lysis buffer (1% Triton X-100, 500 mM NaCl, 5% Glycerol, 80 

mM Tris pH 7.5 and 1 mM β-mercapto-ethanol) plus one tablet of complete™ 

EDTA free protease inhibitor cocktail (Roche). Cells were sonicated using a 

vibracell 75042 sonicator (Bioblock scientific) for 15 minutes on ice using 37% 

amplitude with 1 second on 1 second off cycles. Afterwards the sonicated 

fraction was centrifuged for 40 minutes at 17000 r.p.m in a Sorval centrifuge 

using ss-34 rotor in order to separate cell debris. The supernatant was filtered 

through a 0.4 µm syringe filter prior to the first step of purification: affinity 

chromatography. For purifying proteins with a 6-histidine tag (all pOPINF and NKI 

constructs) from the lysate extract, an affinity chromatography step using 5 mL 

Ni-HisTrap column (GE Healthcare) was performed.  The individual tagged 

proteins were isolated since the 6-histidines tag binds to the nickel ions in the 

column resin. Proteins of interest were eluted by applying step-wise imidazole 

gradient. Imidazole competes with histidines for the binding sites of nickel 

allowing the elution of the tagged proteins. Besides, the use of a step-wise 

gradient facilitates the separation between proteins harboring histidines on their 

surface which might be retained due to unspecific binding, and the protein of 

interest.  
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All the fractions collected were analyzed by SDS polyacrylamide gel 

electrophoresis (SDS-PAGE), and those containing the desired protein were 

further purified by size exclusion chromatography. The type of column used for 

size exclusion chromatography was depending on the size of each construct. 

Taking into account the molecular weight of the protein, Superdex 200 26/60 or 

Superdex 75 16/60 (GE Healthcare) was used. For each protein, the different 

peaks eluted in size exclusion were analyzed by SDS-PAGE and homogenous pure 

protein was concentrated using centrifugal filter units (Millipore) with adequate 

pore size for each protein and used for crystallization trials. 

 

2.2 Differential scanning fluorimetry to assess protein stability 

Fluorescence based thermal shift assay is also known as ThermoFluor 

assay. It uses a hydrophobic fluorophore, in this case SYPRO® Orange (Sigma) to 

monitor protein denaturation (Reinhard et al., 2013) (Figure 2.3). 

 

            

Figure 2.3. SYPRO® Orange emission. With progressive protein denaturation hydrophobic areas are 

exposed. Then SYPRO® Orange dye binds to the hydrophobic core of the protein and the fluorescent 

emission starts.(http://www.beta-sheet.org). 
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Thermofluor was performed using 198µL of protein samples at 1mg/mL  in 

buffer  50mM Hepes pH 7.5 plus 2µL of SYPRO® Orange (final concentration 5x) in 

a 96 well Micro-Amp Fast Optical reaction plate. The plates were aliquoted with 

38µL of 48 different buffers (table 2.2), so each condition could be measured by 

duplicate using the 96 wells.  

Table 2.2. Buffers used for thermofluor assay. Variables at each condition are shown in red.  

  1 2 3 4 5 6 7 8 9 10 11 12 

A 

150mM 

NaCl 

100mM 

AcNa 

pH 4.5 

150mM 

NaCl 

100mM 

Bis Tris 

pH 5.5 

150mM 

NaCl 

100mM 

citrate pH 

5.6 

150mM 

NaCl 

100mM 

cacodilate 

pH 6.5 

150mM 

NaCl 

100mM 

MES pH 

6.5 

150mM 

NaCl 

100mM 

Hepes pH 

7 

150mM 

NaCl 

100mM 

Hepes   

pH 7.5 

150mM 

NaCl 

100mM 

Phosphate  

pH 7.5 

150mM 

NaCl 

100mM 

Tris    

pH 8 

150mM 

NaCl 

100mM 

Tris        

pH 8.5 

150mM 

NaCl 

100mM 

Bicine   

pH 9 

150mM 

NaCl 

100mM 

CHES         

pH 9.5 

B 

150mM 

NaCl 

100mM 

SPG 4.5 

150mM 

NaCl 

100mM 

SPG 5.5 

150mM 

NaCl 

100mM 

SPG 6.5 

150mM 

NaCl 

100mM 

SPG 7.5 

150mM 

NaCl 

100mM 

SPG 8 

150mM 

NaCl 

100mM 

SPG 9 

150mM 

NaCl 

100mM 

MMT4.5 

150mM 

NaCl 

100mM 

MMT5.5 

150mM 

NaCl 

100mM 

MMT 

pH6.5 

150mM 

NaCl 

100mM 

MMT    

pH 7.5 

150mM 

NaCl 

100mM 

MMT 8 

150mM 

NaCl 

100mM 

MMT 9 

C 

Hepes 

pH 7.5 

100mM 

NaCl 

Hepes 

pH 7.5 

250mM 

NaCl 

Hepes   

pH 7.5 

500mM 

NaCl 

Hepes   

pH 7.5 

150mM 

NaCl 

100mM 

Hepes 

pH7.5   

5% 

Glycerol 

150mM 

NaCl 

100mM 

Hepes 

pH7.5 

10% 

Glycerol 

150mM 

NaCl 

100mM 

Hepes   

pH 7.5      

15% 

Glycerol 

150mM 

NaCl 

100mM 

Hepes      

pH 7.5       

1mM MgCl2 

150mM 

NaC 

100mM 

Hepes   

pH 7.5       

1mM 

CaCl2 

150mM 

NaCl 

100mM 

Hepes   

pH 7.5     

0.1mM 

ZnCl2 

0.1mM 

CoCl2 

150mMN

aCl 

100mM 

Hepes   

pH 7.5        

1mM 

CdCl2 

1mM 

MnCl2 

150mM 

NaCl 

100mM 

Hepes     

pH 7.5         

1mM DTT 

D 

150mM

NaCl 

100mM 

Hepes 

pH7.5 

1mM 

EDTA 

100mM 

Hepes 

pH7.5 

150mM

LiCl2 

100mM 

Hepes 

pH7.5 

150Mm 

KCl 

100mM 

Hepes 

pH7.5 

150mM 

NaF 

100mM 

Hepes 

pH7.5 

150mM 

SO4NH4 

100mM 

Hepes 

pH7.5 

150mM 

NO3NH4 

150mM 

NaCl 

100mM 

Hepes pH 

7.5 

100mM 

Sucrose 

150mM 

NaCl 

100mM 

Hepes pH 

7.5  

300mM 

Sucrose 

150mM 

NaCl 

100mM 

Hepes 

pH 7.5        

Urea 

0.5M 

150mM 

NaCl 

100mM 

Hepes pH 

7.5              

L-Arg 

50mM      

L-Glu 

50mM 

150mM 

NaCl 

100mM 

Hepes   

pH 7.5 

Betaine 

100mM 

150mM 

NaCl 

100mM 

Hepes pH 

7.5          

1% Triton 

X-100 
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After the addition of 2µL of the protein-dye mix to each well, 20µL were 

pipetted out to perform the replicates. Plates were sealed with Micro-Amp 

optical sealing tape (Applied Biosystems), spin down for 1minute at 1000 r.p.m 

and heated from 20°C to 85°C in increments of 1°C in a T7500 Fast Real-Time PCR 

System (Applied Biosystems). The wavelength for excitation and emission were 

490nm and 550nm respectively. Results were analyzed and visualized graphically 

in GraphPad Prism 4 software (GraphPad Software Inc.).  

This technique is a good choice for testing protein stability. However it has 

some limitations, as for example, proteins showing hydrophobic patches on their 

surface will bind the hydrophobic dye and the emission will start when the 

protein is not denatured. These aspects must be taken into account when 

analyzing graphical results. 

      

2.3 Crystallization of Chaetomium IMPACT homolog domains 

Protein crystallization is, usually, the limiting step in a crystallographer’s 

life. The conditions where a given protein would crystallize cannot be predicted.  

 

 

 

 

 

 

  

 

                             

                                       Modified from http:// www.dissertationwriteservicebro.com 

 

Crystallization occurs when the protein precipitates in an ordered manner. 

There are several methods to obtain protein crystals, but at the institute the most 

http://www.dissertationwriteservicebro.com/
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extended is vapor diffusion, which is perhaps the most convenient for screening. 

The vapor diffusion technique allows protein concentration over time. Protein 

solution is mixed with the reservoir solution, which usually contains a crystallant 

that decreases protein solubility, and by vapor diffusion the water from the mixed 

drop migrates to the reservoir in the well, leading to a slow concentration of the 

protein and precipitating agent. There are many variables influencing protein 

crystallization that can be changed when seeking for a proper crystallization 

condition (Figure 2.4). There are also different techniques that one can try when 

crystals need to be improved, as for example random micro-seeding or macro-

seeding (Chayen and Saridakis, 2008; St John et al., 2008) .  

 

 

Figure 2.4. Scheme of crystallization process. In order to obtain crystals, the protein solution should 

favor nucleation. Once crystal nuclei are formed, protein concentration decreases due to crystal 

growth, reaching and ideal metastable area where crystal will remain (Left panel). Several parameters 

can be adjusted to move from under-saturated conditions to more optimal conditions for crystal 

growth (Right panel) (http://crystal.csiro.au/User-Guide/Crystallisation) (Chayen and Saridakis, 2008)  

http://crystal.csiro.au/User-Guide/Crystallisation
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2.3.1 Crystallization trials 

The crystallization service from the institute was in charge of dispensing 

both, the purified protein and the mother liquor for each condition. Devices used 

by the service in order to set up crystallization screenings and optimization of 

crystal growth conditions were Janus automated workstation (Perkin Elmer), that 

aliquots the reservoir condition into every well of the crystallization plates, and 

honey bee X8 (Cartesian dispensing systems) which dispenses the reservoir and 

the protein drop into the well suitable for sitting drop. Typical volumes for 

protein drops were varying from 0.3µL to 0.5µL range and were mixed in 1:1 ratio 

with the reservoir solution.   

Sparse matrix screenings like INDEX (Hampton Research) or JBS I and II 

(Jena Bioscience), grid screenings as JCSG+ (Molecular Dimensions) or screenings 

with a combination grid, sparse matrix and incomplete factorial screening like 

INDEX (Hampton research) were used for crystallization trials. Screenings with 

alternative precipitants as MIDAS (Molecular Dimensions) were also tested.  

 

2.3.1.1  Crystallization of Chaetomium IMPACT homolog  

JBS I and JBS II, Wizard (Emerald Biosystems), Index, JCSG + and MIDAS 

screenings were firstly tested in order to obtain full length CIH crystals. Poorly 

diffracting large crystals were obtained in JBS I F4 condition (15 % w/v PEG 6000, 

50 mM Potassium Chloride and 10 mM Magnesium Chloride). In order to avoid 

crystal damage during cryo-cooling, crystals were separated into smaller pieces 

for a faster cryo-cooling. For cryoprotection, crystals were taken out of the 

original drop by using a nylon loop (Hampton Research) and placed in a drop with 

Paratone® (Hampton Research) and moved until all the solvent was removed. 

Afterwards, they were cryo-cooled in liquid nitrogen using the same nylon loop 
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and kept in a Dewar (Jencons) upon arrival to ALBA Synchrotron. 

2.3.1.2  Crystallization of Chaetomium IMPACT homolog  RWD 

domain 

Different commercially available crystallization screens were set up in 

order to obtain crystals. CIH residues 1 to 111 (RWD domain) crystals were 

obtained in 1.26 M Sodium phosphate monobasic monohydrate, 0.14 M 

Potassium phosphate dibasic, pH 5.6, from INDEX screening (Hampton research). 

Crystals were cryoprotected with Paratone® (Hampton Research) before freezing 

in liquid nitrogen.  

 

2.3.1.3  Crystallization of  Chaetomium IMPACT homologue ancient 

domain with DNA 

After checking the ability of CIH for binding nucleic acids, crystal 

screenings were set up with full length CIH and CIH152-292 with different length of 

dsDNA with randomly chosen sequence. Some crystals were obtained with 

Wizard and Index screenings in the presence of 20bp dsDNA 

(ggatgaagatgaataactcg - cgagttattcatcttcatcc). Crystal optimization was performed 

by modification of the initial crystallization conditions. 

 Co-crystallization trials of CIH152-292 with 20bp dsDNA yielded plate-like 

crystals (grown in 18% PEG 3500, Bis-tris propane 0.1M pH 5.5 and 0.2M NaCl) 

that diffracted up to 1.5 Å. Data reduction was carried out using iMOSFLM and 

SCALA (Battye et al., 2011; Evans, 2011). Phases were obtained by molecular 

replacement using Phaser from phenix (Adams et al., 2010; McCoy et al., 2007).  
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2.3.2 Crystal data collection, structure determination, refinement and 

analysis 

A complete dataset for every type of crystal was collected at XALOC 

beamline, ALBA synchrotron. This beamline has a Pilatus 6M-dectris detector. The 

photon energy range goes from 5 to 22 Kiloelectron-Volts (keV). The 

diffractometer, where the crystal is going to be rotated for data collection is a 

MD2M device from Bruker. All the structure refinement carried out was cross-

validated using RWORK and RFREE values (Brünger, 1992; Kleywegt and Brünger, 

1996; Tickle et al., 2000). 

2.3.2.1  RWD domain 

CIH1-111 crystals diffracted up to 1.4 Å. Data reduction was carried out using 

XDS (Kabsch, 2010). Ab initio phasing was successfully performed with 

Arcimboldo (Sammito et al., 2014) and the model was built inside the electron 

density using Autobuild as implemented in Phenix (Adams et al., 2010). Initial 

refinement with rigid body was performed and final refinement was carried out 

with Phenix refine, using anisotropy refinement in the last cycles until RFREE and 

RWORK values were 0.2078 and 0.1674 respectively (table 3.4). The automatic 

refinement was performed in combination with manual model building using 

Coot (Emsley and Cowtan, 2004; Emsley et al., 2010).   

2.3.2.2  Ancient domain 

Crystals were tested for diffraction at XALOC beamline, taking 4 images 

separated by 90° for indexing. The best crystal was diffracting up to 2Å, so the 

detector distance was adjusted to the resolution and a complete dataset was 

collected. Diffraction data integration was performed with iMOSFLM (Battye et 
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al., 2011; Powell et al., 2013). Data merging and scaling was carried out with 

Aimless (Evans and Murshudov, 2013; Potterton et al., 2003). Phases were 

obtained by molecular replacement, using MRage (Adams et al., 2010) from 

phenix, which using the sequence of CIH protein, found a model from the protein 

data bank corresponding with a highly conserved hypothetical protein from 

Thermus thermophilus (2cve) valid for molecular replacement. Automatic 

refinement using Phenix refine was combined with manual cycles of model 

building using Coot. Translation/Libration/Screw (TLS) refinement was carried out 

in the last refinement cycles. Refinement was carried out until RWORK and RFREE 

values were 19.5 and 23.6 respectively. 

2.3.2.3  Co-crystallization of the ancient domain with DNA 

Ancient domain co-crystallization with DNA yielded crystals that diffracted 

up to 1.5Å resolution. A complete dataset was collected by taking 800 images 

using 0.25 degrees oscillation per frame, thus collecting 200 degrees in one single 

crystal. Data integration, merging and scaling was performed as described at 

section 2.3.2.2. Phases were obtained by molecular replacement using as a 

template our previous model of the ancient domain (5hcs). Refinement of the 

model was done with Phenix refine, performing rigid body refinement during the 

first refinement cycles and TLS refinement at the last cycles. Final RWORK and RFREE 

values were 14.45 and 17.20 respectively.  

 

2.4 Design and expression of  mutants 

2.4.1 Site directed mutagenesis 

Mutagenesis of full length CIH was accomplished using a modified site 

directed mutagenesis protocol. In brief, a PCR was carried out with 
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oligonucleotides designed with the mutation of interest (Table 2.3). All the steps 

remain as described above (section 2.1) except for the number of cycles 

(decreased to 16) and the elongation time, adjusted to the insert and plasmid 

size (6.4 Kb approximately). Afterwards, the PCR product was digested for 1 hour 

at 37°C with DPN I (New England Biolabs), an enzyme that digests parental DNA 

by recognizing methylated DNA. After parental DNA digestion, the resulting 

product was transformed in E.coli DH5α as described before. Plasmid DNA 

amplification and extraction was performed as already mentioned and the 

mutations were confirmed by sequencing.  

 

Table 2.3. Oligonucleotides used for directed mutagenesis.  Forward and reverse oligonucleotides 

start with an F or R respectively. 

 

Mutation Oligonucleotides 

H203A 
F- GCGAGCCGCAACGGCAAACATGACGGCC                       
R- GGCCGTCATGTTTGCCGTTGCGGCTCGC 

C221A 
F- CAGTTTCCAAGATGCAGATGATGATGGC                                 
R- GCCATCATCATCTGCATCTTGGAAACTG 

D223A/D224A 
F- CCAAGATTGTGATGCTGATGGCGCGACGGCAGCTGG                        
R- CCAGCTGCCGTCGCGCCATCAGCATCACAATCTTGG 

D223A/E226A 
F- TGTGATGATGCTGATGGCGCGACGGCAGCTGG            
R-CCAGCTGCCGTCGCGCCATCAGCATCATCACA 

R232A 
F- GCAGCTGGAGGCGCATTACTTCATCTC                                
R- GAGATGAAGTAATGCGCCTCCAGCTGC 

Y253A 
F- GTGGTGTCACGATGGGCCGGCGGCGTCAAGCTG          
R- CAGCTTGACGCCGCCGGCCCATCGTGACACCAC 

R261E/R262E 
F- CTGGGACCTGAGGAGTTCACGCTC                                          
R- GAGCGTGAACTCCTCAGGTCCCAG 

R262G  
F- GGGACCTAGGGGTTTCACGCTCATC                                       
R- GATGAGCGTGAAACCCCTAGGTCCC 

R271A 
F- CAACCAAGTCGCCGCCGACGCATTCGTTC                        
R-GAACGAATGCGTCGGCGGCGACTTGGTTG                 
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2.5 Nucleic acid binding and hydrolysis assays 

2.5.1  Agarose EMSA  

In order to test the capability of Chaetomium IMPACT homolog to bind 

DNA, an electrophoretic mobility shift assay (EMSA) in low melting agarose 

(Conda) gel with unlabelled DNA was performed (Hellman and Fried, 2007). A 

mixture of 50ng of random DNA (control insert of Infusion kit from clontech, 2 

kilobase long) with increasing amounts of protein (6, 16, 32, 38, 57 and 64µg 

respectively) were incubated for five minutes at 4°C in binding buffer (50mM Tris 

pH 7.5, 150mM NaCl, 1mM β-mercaptoethanol and 5mM MgCl2) and run at 8°C 

in Tris EDTA acetic acid pH 8 (TAE) buffer  1% agarose gel containing GelRed 

(Biotium) for DNA visualization. The EMSA performed with the RWD domain and 

the ancient domain was performed as described above but using a single protein 

concentration of 1mM for each construct. 

2.5.2 Biolayer interferometry: Dissociation constant  

Dissociation constant (KD) was determined accurately by BioLayer 

Interferometry using BLitZ system (Forte Bio) (Sultana and Lee, 2015). A sample 

containing 40μg/ml of 20 nucleotide-long 5’-biotinylated single stranded DNA, or 

hybridized with complementary 20 nucleotide-long (for double stranded DNA) 

from Sigma-Aldrich was immobilized on Streptavidin biosensors (Forte Bio) 

previously hydrated with sample buffer (50mM Hepes pH 7.5; 150mM NaCl; 

5mM  glycerol and 2mM β-mercaptoethanol). Increasing amounts of CIHR232A 

(0μM, 0.125μM, 0.25μM, 0.5μM, 0.75μM, 1μM, 2μM and 7μM) were used in 

association and dissociation steps. Curve fitting of each triplicate and KD 

calculation were carried out with BLitZ Pro 1.2 software. The same procedure was 

followed for the characterization of the RNA dissociation constant, immobilizing 
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on Streptavidin sensors (Forte Bio) a sample containing 50μg/ml of 15 

nucleotide-long 5’-biotinylated polyU from Sigma-Aldrich.  

2.5.3 DNase activity assays  

Different constructs and mutants of CIH were tested for DNase activity. 

DNase activity assays were performed in reaction buffer 50mM Tris pH 7.5, 2mM 

MgCl2 150mM NaCl. Protein (1µL of a 1mM dilution) was incubated with DNA 

(900 nucleotides, 100ng) for 1 hour at 40°C adding 5µL of reaction buffer. 

Afterwards, 1% agarose gel was run in order to monitor DNA degradation. In the 

case of the different CIH constructs (section 3.12.6), the pH of reaction buffer was 

adjusted to 8.5. 

Several mutants were designed in order to confirm that the DNase activity 

was originated from our protein of interest, CIH, and was not due to 

contaminants from the purification. The absence of activity was checked by 

running an agarose gel after DNA treatment for every mutant. 

2.5.4 Metal requirements for DNA cleavage 

In order to eliminate any trace metal originated during the purification, 

protein was diluted in buffer (50mM Hepes pH 7.5, 150mM NaCl, 2.5mM EDTA 

and 10% glycerol) to a final concentration of 1mM and afterwards diluted in the 

same buffer without EDTA and the specific metal (5mM) to a final concentration 

of 0.3mM. Then the reaction was performed as follows. A mix was prepared with 

5µL of reaction buffer (Hepes 7.5, 150mM NaCl, 10% Glycerol and 5mM of the 

correspondent metal) and dsDNA (100ng final concentration, 800 base pairs long) 

obtained from PCR of an unrelated gene and purified with E.Z.N.A PCR cycle pure 

(OMEGA). Only 1µL of the 0.3mM protein solution was added to the respective 

tubes containing the same metal and the reaction was incubated at 42 ̊C for 
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30minutes. DNA degradation was monitored by running the digestion in an 

agarose gel (1%). A control with the protein in the buffer solution with 1mM EDTA 

(final concentration) was performed for each metal tested. 

2.5.5 Salt requirements for DNA cleavage 

In order to figure out how ionic strength was affecting nuclease activity of 

CIH, five reaction buffers containing different salt concentrations were tested. 

The reaction buffer composition was 50mM Hepes pH 7.5, 3mM MgCl2, 5% 

Glycerol and 0, 0.15, 0.3, 0.6 and 1mM NaCl respectively. The reaction mixture 

(50 ng dsDNA +2µg CIH + 7µL of reaction buffer) was incubated at 40 ̊C for 1 hour. 

After incubation time, DNA cleavage was monitored for every buffer running the 

digested samples on 1% agarose gel with GelRed, in order to stain dsDNA and be 

able to follow degradation. The DNA used, a fragment of 1.1 Kb, was obtained by 

PCR using as template the ORF of an unrelated gene.  

2.5.6 Characterization of the DNA cleavage 

Covalently closed circular DNA (cccDNA) is known to present different 

conformations: supercoiled, relaxed nicked circular and linear. We took advantage 

of the supercoiled pBR322 to study the CIH mechanism of DNA cleaving. DNA 

amplification was performed by transformation of pBR322 into DH5α and 

plasmid extraction using Qiagen miniprep kit following manufacturer’s 

instructions. After isolation of the plasmid, the supercoiled DNA was purified by 

cutting the band from an agarose gel and further extracted with  NucleoSpin® Gel 

and PCR Clean-up (Macherey-Nagel). DNase activity assay was performed as 

explained before (section 2.5.3), by incubating 1µg of CIH with the supercoiled 

DNA for 3 and 60 minutes at 37 °C. The input control was incubated for 60 

minutes in reaction buffer at 37 °C with no protein. 
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2.5.7 Hyperchromicity assays 

Hyperchromicity assays take advantage of differential absorption of single 

nucleotides, oligonucleotides or highly polymerized DNA at 260nm to monitor 

nucleic acid degradation. This technique is not only adequate for exonucleases, 

but it also permits monitor nucleic acid degradation by endonucleases (KUNITZ, 

1950).  

The increase in the absorbance at 260nm due to DNA cleavage, was 

monitored in all the assays using a UV-Visible Spectrophotometer (Ultrospec 

3000, Pharmacia Biotech®), and absorbance was measured every 15 seconds 

until absorbance increment at 260nm was cero. Synthetic Quartz glass cuvettes 

of 0.5mL volume (Hellma®) with 10mm light path were used for every assay. 

2.5.7.1  Kunitz assay 

One Kunitz unit is defined as the amount of protein necessary to produce 

an increment of 0.001 units of absorbance at 260nm in one minute, carried out 

with 1mg/mL of salmon sperm DNA (boehringer bioproducts) in sodium acetate 

pH 5 buffer and performed at 25°C. In order to calculate the Kunitz present in one 

milligram of CIH protein, a standard curve was obtained by measuring initial 

260nm absorbance increments obtained in 1mL of the DNA solution at 25°C after 

the addition of 0, 0.3, 1 or 3 DNase I Kunitzs. This standard was used to obtain 

the Kunitz from the increments obtained from the assays carried out with 120 µg 

and 244 µg of CIH in the conditions described above.  

2.5.7.2  Substrate inhibition assay 

A fixed concentration of CIH (3.18µM) and different salmon sperm DNA 

(boehringer bioproducts) concentrations (0, 50, 60, 75, 100, 150 and 200µg/mL) 
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in reaction buffer (50mM Hepes pH 7.5, 150mM NaCl and 5mM MgCl2) were 

used as a substrate for the hyperchromicity assay (KUNITZ, 1950). Reaction was 

carried out in 1mL quartz cuvette with 600µL of the DNA solution and the 

absorbance at 260nm was measured immediately after addition of CIH. Due to 

stability reasons, the assay was carried out only with C.termophilum IMPACT 

homolog, at 40°C, since it is a thermophilic organism that is able to live at 

temperatures up to 60°C. 

2.6  Other bioinformatics tools 

Different softwares were used to structurally characterize the protein. 

Electronic surface potential was calculated using APBS module from Chimera. 

Surface conservation was rendered with Chimera (Pettersen et al., 2004) upon 

addition of all reviewed IMPACT sequence and YigZ alignment. Alignment was 

carried out with multalin web server (Corpet, 1988) and residues were coloured 

using clustalX (Thompson et al., 2002) as implemented in Jalview (Waterhouse et 

al., 2009)  . Nucleic acid (ssDNA) binding docking was performed using HADDOCK 

web server (de Vries et al., 2010). Structure comparison and superimposition was 

done using the MatchMaker module from Chimera (Pettersen et al., 2004) . Pisa 

web server (Krissinel and Henrick, 2007) was used to assess biological assembly 

of every domain in solution. 

Search for structural homologs was performed using the webserver DALI 

(Holm and Rosenström, 2010)  and prediction of protein disordered regions was 

carried out with the online server PrDOS (Ishida and Kinoshita, 2007) 
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2.7 .Cells culture and knock down assays 

2.7.1 3T3 cells culture 

Cells were a kind gift from Dr. Susana Masiá. 3T3 (mouse fibroblast) cells 

were cultured in DMEM with glutamine (Sigma), 10% of fetal bovine serum (FBS) 

and with Penicillin (100 units/mL) and streptomycin (100 µg/mL) as antibiotics. 

When 80% of confluency was reached, cells were split in two plates until the 

amount of cells was enough for the desired experiment (approximately 1.8x106). 

2.7.2 siRNA transfection for IMPACT knock down   

In order to obtain a good gene silencing for IMPACT protein, 3T3 cells were 

transfected with 10, 25 and 40nM of a commercial pool of 4 siRNA targeting 

murine IMPACT (Dharmacon) (Agrawal et al., 2003; Fire et al., 1998). A control 

with the same concentrations of non-targeting siRNA (Dharmacon) was 

performed in order to compare mRNA levels. The previous day of the 

transfection, 200.000 cells were plated in each well of a 6- wells plate (P6). 

 

 Transfection was carried out as follows. A mixture of the siRNA with 

OPTIMEM (Gibco) was prepared. 

10nM IMPACT: 1µL of siRNA IMPACT (20µM stock) + 199µL OPTIMEM 

20nM IMPACT: 2µL of siRNA IMPACT (20µM stock) + 198µL OPTIMEM 

40nM IMPACT: 4µL of siRNA IMPACT (20µM stock) + 196µL OPTIMEM 

10nM Control: 1µL of non-targeting siRNA (20µM stock) + 199µL 

OPTIMEM 

20nM Control: 2µL of non-targeting siRNA (20µM stock) + 198µL  

OPTIMEM 

40nM Control: 4µL of non-targeting siRNA (20µM stock) +196µL OPTIMEM 
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Afterwards we prepared 6 tubes containing 5µL of dharmafect 4 

(Dharmacon®) with 195 µL OPTIMEM each. After 5 minutes of incubation at 

room temperature (RT) we added the tubes containing the siRNA in the tubes 

containing the dharmafect and let incubate for 20 minutes at RT.  Meanwhile, we 

changed the media of the 6 wells for OPTIMEM (1.6 mL). After incubation time, 

we added the 400µL of mixture to the corresponding wells and let the cells 

incubate during 6 hours. After the incubation period, the media was replaced by 

DMEM with glutamine with 10% FBS and penicillin/streptomycin. Cells were 

harvested for mRNA or protein analysis after 48 and 72 hours respectively. RNA 

extraction was performed immediately and RNA was kept at -80°C until retro-

transcription to cDNA was performed. Retro-transcription was performed using 

high capacity cDNA reverse transcription kit from applied Biosystems following 

manufacturer’s instructions. Cell pellet for protein extracts were kept at -20°C 

and protein extract was prepared immediately before western blot was 

performed.   

The same procedure was followed for co-transfecting IMPACT siRNA with 

interferon stimulatory DNA (ISD) or poly I:C.  ISD is a non-CpG 45 base pairs 

dsDNA oligonucleotide from Listeria monocytogenes genome and poly I:C is a 

double stranded RNA analogue.  For ISD co-transfection with IMPACT siRNA, 

40nM IMPACT siRNA or non-targeting siRNA for control cells was mixed with 4µL 

of 25µM ISD solution and 192µL of OPTIMEM. Tubes for poly I:C IMPACT siRNA 

co-transfection were prepared by mixing 4µg of poly I:C (from 1 mg/mL stock) 

with 40nM IMPACT siRNA or non-targeting siRNA for control cells and 192µL of 

OPTIMEM. Tubes containing dharmafect were prepared as described above. All 

the tubes were incubated for 5 minutes separately and afterwards solution 

containing siRNA and nucleic acid was added to the respectively tube containing 

dharmafect and left incubating for 20 minutes at room temperature (RT). The 

procedure continues as explained above for siRNA transfection. 
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2.7.3 Protein extraction from 3T3 cells 

Protein extraction was performed 72 hours after transfection of 20nM and 

40nM siRNA IMPACT or non-targeting siRNA in order to find concentration of 

siRNA suitable for expression silencing. In brief, 3x105 cells were washed with 

phosphate saline buffer (PBS) 1X and resuspended with RipA buffer (10mM 

sodium phosphate, 150mM sodium chloride, 0.5% sodium deoxycolate and 1% 

NP-40) with protease and phosphatase inhibitors (Roche). Afterwards, the 

suspension was vortexed for 30 seconds and incubated on ice for 20 minutes. 

After that period of time Bradford was performed to measure protein 

concentration and equal amounts of proteins (usually about 20µg) were loaded 

onto an SDS-PAGE and western blot (WB) was performed with an IMPACT 

antibody from Santa Cruz Biotechnology (ref: sc-84851) using nitrocellulose 

membrane and a semidry device from BioRad. Transference was carried out 

during 1 hour and 15 minutes with a constant voltage of 25mV. Once 

transference was done, the membrane was blocked by incubating with TBST and 

0.5% powder milk during 2 hours. This step was followed by incubation with the 

primary antibody, goat anti-murine IMPACT (Santa Cruz), performed overnight at 

4 ̊C. The next morning the membrane was washed three times with 0.5% milk in 

TBST for 10 minutes each wash step and then incubated with the secondary 

antibody anti-goat from abcam® (ref: ab6741) conjugated with horseradish 

peroxidase for 1 hour. The WB was revealed using Pierce® ECL Western Blotting 

Substrate (Thermo Scientific). After revealing the WB, the antibody was stripped 

out of the membrane to perform a loading control with a rabbit anti-mouse actin 

antibody from abcam® (ref: 15263). In this case, a secondary antibody anti-rabbit 

fused to horseradish peroxidase from abcam® (ref: 6728) was used to reveal the 

WB. 
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2.7.4 RNA extraction from 3T3 cells 

After washing each well on a P6 plate with PBS, cells were resuspended 

with 500 µL of Trizol® (Chadderton et al., 1997), and transferred into a 1.5mL 

tube. 100 µL of chloroform was added to each tube. After vortexing 15 seconds, 

the tubes were incubated 5 minutes at room temperature and then, centrifuged 

at 12000g for 15 minutes at 4°C.  We transferred the aqueous phase into a new 

tube carefully, without disturbing the white phase were proteins accumulate. 

Isopropanol (0.3 mL) was added to the aqueous phase in order to precipitate the 

RNA, and after vortexing 5 seconds we left the tube incubating for 10 minutes at 

RT. The mixture was centrifuged at 12000g for 10 minutes at 4°C. The RNA 

precipitates as a transparent gel. The RNA pellet was washed once with ethanol 

75% (0.5 mL) and centrifuged at 7500g for 5 minutes at 4°C. The ethanol was 

pipetted out and the tube was left open until the RNA pellet was dry. Then, the 

RNA was resuspended with 30 µL of RNase free water. The RNA extraction was 

always checked in an agarose gel and the concentration measured with a 

Nanodrop ND-1000 spectrophotometer (NanodropTM). 

2.7.5 Quantitative real-time PCR 

After RNA extraction, reverse transcription PCR (RT-PCR) was performed using a 

high capacity cDNA Reverse Transcription Kit (Applied Biosystems) following 

manufacturer’s instructions. Once cDNA was obtained, 7500 fast quantitative 

real-time PCR (qPCR) (Applied Biosystems) was used to quantify cDNA levels 

corresponding to mRNA from beta and gamma interferons (Wong and Medrano, 

2005) . The mix for the reaction was prepared by adding 8µL of 1:10 diluted 

cDNA, 1µL of each oligo at 2µM and 10µL of Power SYBR green (Applied 

Biosystems). The reaction was carried out with a hold step at 95°C for 10 minutes 

followed by 40 cycles of 95°C during 15 seconds and 60°C for one minute. The 
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software v.2.0.4 of the 7500 fast quantitative real-time PCR (Applied Biosystems) 

was used to do comparative analysis following the 2-ΔΔCt  method (Livak and 

Schmittgen, 2001). Graphical display and analysis was carried out with 7500 

software v.2.0.4 (Applied Biosystems). Differences between control and 

experimental groups were evaluated with Student’s t-test. 

The sequences of the oligonucleotides used for mRNA levels quantitation 

are available at table 2.4.+ 

 

 

Table 2.4 Oligonucleotides used for qPCR. The correspondent sequence for each primer is shown. 

 

Primer Sequence 

Actin mouse F 5'-ATCATGTTTGAGACCTTCAACACCCC-3' 

Actin mouse R 5'-CACGATTTCCCTCTCAGCTGTGG-3' 

Impact mouse F 5'-GAACGCTCCCTGGCTG-3' 

Impact mouse R 5'-TCTTCGGACTCAACCTCAAC-3' 

Interferon β mouse F 5'-ATGCAGAAGAGTTACACTGCC-3' 

Interferon β mouse R 5'-AGTTGAGGACATCTCCCAC-3' 
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3.1  Expression and purification of Yih1 

Yih1 was successfully expressed and purified from three of the four 

constructs from Dr. Bertrand Séraphin: pBS4717, pBS4719 and pBS4720. Small 

scale purification revealed that the plasmid pBS4718 was not expressing any 

detectable Yih1. However, GCN1 expression was not detected in any of the 

plasmids available (Figure 3.1).  

                                                                      
 

Figure 3.1. 10% SDS-PAGE analysis of 

small scale purification. Lines 1 to 4 were 

loaded with the Nickel-beads elution 

fraction from bacteria expressing pBS4717, 

pBS4718, pBS4719 and pBS4720 

constructs respectively. The non-bound 

fraction and the wash fraction from the 

Nickel-beads, follow the same loading 

order as lines 1 to 4. Black dots indicate 

the presence of Yih1 soluble protein. 

Numbers at MW line indicate the weight in 

KDa for reference bands. 

 

Since plasmids pBS4718 and pBS4720 carry the same construct 

boundaries of Yih1 but different boundaries for GCN1 fragment, we do not 

discard the possibility that small expression levels of GCN1 in pBS4720 construct 

not detected by SDS-PAGE could be helping in Yih1-RWD domain expression. 

Afterwards, we decided to prepare a construct carrying only the full length 

sequence for Yih1 in order to be completely sure that we were having Yih1 

proteins with no GCN1 traces. Yih1 was expressed with IPTG induction method. 

Soluble fraction of the protein was purified in two steps: Affinity chromatography 

and size exclusion chromatography. This last step was used to achieve structurally 

homogeneous, crystallization grade, pure protein. 
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Figure 3.2. Yih1FL (pBS4717 

construct) size exclusion 

chromatography in Superdex 

200 26/60. Fractions marked 

with a colored bar have been 

marked with the same color in 

the gel. Numbers at MW line in 

the gel indicate the weight in 

KDa for reference bands. The 

peak marked with a black bar 

has an elution volume of 

211mL and the one marked 

with light grey bar 131.7mL. 
 

Protein obtained from the expression of plasmid pBS4719 in E.coli BL21C+ 

RIPL showed exactly the same elution pattern as Yih1FL obtained from bacteria 

expressing pBS4717. This result is not surprising since both plasmids carry the 

same Yih1 boundaries. Both Yih1 full length (Yih1FL), showed two peaks at the size 

exclusion chromatography (Figure 3.2), which is not surprising regarding that 

both plasmids carry the same Yih1 boundaries. One peak was corresponding to a 

monomer, with an elution volume that was varying from 211 to 209 mL, which 

corresponds approximately to a 35 KDa size. A wide peak was always found to 

elute at volumes corresponding to very high molecular weight (centred at 130mL 

which corresponds to a molecular weight of approximately 500 KDa). SDS-PAGE 

analysis revealed the presence of Yih1FL and some faint bands with higher 

molecular weight. Yih1FL has been demonstrated to be present in polyribosomes 

(Waller et al., 2012) and thus we cannot discard the idea that the peak 

corresponding to a 500 KDa could be a complex formed by some polyribosome 

interactors that remained bound to Yih1 until this last step. The purification 

procedure followed for Yih1FL obtained from bacteria containing pBS4717 or 

pBS4719 plasmids was appropriate for the given protein, since the obtained 
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amount and purity degree were suitable for crystallization and subsequent 

assays. The same strategy was applied to Yih1FL pOPINF constructs with 

successful results and the protein showed the same behaviour in size exclusion 

chromatography as Yih1FL protein obtained from the expression of pBS4717 or 

pBS4719 plasmids in E.coli BL21C+ RIPL. 

On the other hand, size exclusion chromatography of Yih1 RWD domain 

expressed from E.coli BL21C+ RIPL transformed with pBS4720, eluted in size 

exclusion with a volume much higher than the expected for a monomer. 

 

Figure 3.3. Yih1-RWD domain 

(pBS4720 construct) size 

exclusion chromatography in 

Superdex 75 16/60. Fractions 

marked with a colored bar have 

been marked with the same color 

in the gel. Numbers at MW line 

indicate the weight in KDa for 

reference bands.  The elution 

volume of the peak is 48 mL.  

The SDS-PAGE analysis of the eluted peak (Figure 3.3) showed the 

presence of bands corresponding to proteins with higher molecular weight. In 

order to discard abnormal migration of the RWD domain of Yih1 on the SDS-

PAGE, mass spectrometry analysis was carried out for the three strongest bands 

(migrating as 15, 32 and 72 KDa). The analysis confirmed that the band at 15KDa 

was Yih1-RWD domain, but the upper bands were contaminants from E.coli. It is 

worth to mention that the band with a molecular weight of 32KDa corresponded 

to the ribosomal protein S2 (RPS2). This finding is very interesting since it has 

been published that Yih1 resides in a complex with ribosomes. The band 
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observed approximately at 72 KDa corresponds to a protein from E.coli known as 

ARNA. Taking into account that the elution volume of the peak in the Superdex 

75 16/60 corresponds to an approximated molecular weight of 80 KDa, it is more 

likely that ARNA protein in that peak is in a monomeric conformation that co-

eluted with a complex composed by the RPL2 and the RWD domain from Yih1.  

As mentioned in the introduction (1.5.1.3) a fragment corresponding to 

the central part of the protein (residues 68 to 171) is sufficient for detecting Yih1 

together with polysomes. The fact that Yih1-RWD domain co-purifies with RPS2 is 

suggesting that this domain might be also involved in ribosome binding. In order 

to prove so, RNase treatment was performed during Yih1-RWD purification. After 

size exclusion, RPS2 was still co-eluting with Yih1-RWD, confirming that the 

interaction was not mediated by RNA.  RPS2 has found to be exposed to the 

solvent in the 30S ribosome (Boehringer et al., 2012), but when the binding 

between both subunits of the ribosome takes place, RPS2 remains in an inner 

position. This result could suggest that Yih1 binding to polysomes might be 

performed involving different proteins and is not depending only on RPL39 

(Waller et al., 2012), but RPS2 location within the mature ribosome would hinder 

the interaction with Yih1. 

3.2  Yih1 crystallization 

To shed light into new possible functions of IMPACT and its homologs, it 

was necessary to perform a structural study of the protein. Given the group 

expertise and the resources available at the institute, X-ray crystallography was 

the technique of choice for developing this study. The first crystallization 

attempts were performed with the yeast IMPACT homolog (Yih1). 

Purified Yih1FL from E.coli BL21C+ RIPL transformed with plasmids 

pBS4717, pBS4719 or Yih1FL pOPINF was used to screen for setting up 

crystallization conditions of the full length protein. Tiny crystals of Yih1FL obtained 
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from E.coli BL21 C+ RIPL transformed with pBS4717 appeared in some of the 

INDEX (A6, A4 y C5) and JBScreen Classic HTS II (A2) (Table 3.1). 

 

Table 3.1. Conditions where Yih1FL crystals were obtained. Right images correspond to a picture 

of the obtained crystals illustrating morphology.  
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Those crystals were diffracting up to 8Å, so a screening around the initial 

condition was performed in order to improve the resolution of the crystal 

diffraction.  Larger Yih1 crystals were obtained at 0.1M Tris pH 8.5, 2M 

ammonium sulphate and 5% glycerol with 30mg/mL of Yih1FL at a 1:1 ratio by 

mixing 0.5µL of protein solution and 0.5 µL of the crystallant condition. Those 

crystals diffracted up to 3.8 Å. After this result, in order to continue improving 

resolution, crystals were grown in the presence of a set of additives (Table 3.2), 

but no improvement on the resolution was achieved. 

 

Table 3.2. Additives present at the improving Yih1FL crystallization condition and diffracting 

resolution. Final concentration and type of molecule have been indicated. The mother liquor, 

common to all additives was 0.1M Tris pH8, 2M ammonium sulphate and 5% glycerol. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

  Additive    Type Resolution 

0.1M Ectoine  Zwitterion 5.5Å 

1M Glycine Zwitterion 7Å 

1M Pyridine Non-ionic 20Å 

0.1M Phenol Non-ionic No diffraction 

0.1M Betaine 
monohydrate 

Zwitterion 20Å 

0.1M Taurine  Zwitterion No diffraction 

 

3.2.1 Yih1FL Data processing  

As mentioned before, the best diffracting resolution obtained for Yih1 

crystals was 3.8 Å. Data merging and scaling carried out with SCALA (Evans, 2011)  

showed that, due to radiation damage the final resolution of the dataset was 5.3 
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Å. Crystal  belonged to space group I222 and cell dimensions were 110.2, 134.8 

and 173.8 with three angles of 90 degrees, enough to accommodate 4 full length 

Yih1 molecules into the asymmetric unit  with 51% of solvent (Matthews 

coefficient 2.52). 

 Any further attempts to increase resolution were unsuccessful. 

3.3 IMPACT expression and purification 

Regarding the limited understanding of the molecular mechanisms 

involving IMPACT proteins and given the high conservation degree among all the 

homologs, we considered that overexpression and purification of human IMPACT 

would be very interesting not only for structural purposes, but also to prove 

possible new protein features. Protein IMPACT with a 6 histidines tag at the N-

terminal was expressed with IPTG induction method as explained in materials 

and methods. Soluble protein was firstly purified by affinity chromatography and 

after concentration of the fractions of interest; a size exclusion step was 

performed in order to obtain a homogenous sample (Figure 3.4). 

The obtained elution pattern shows two main populations with different 

oligomeric states. The peak with an elution volume of 161mL corresponds to a 

tetrameric conformation whereas the peak eluting at 186mL corresponds to a 

dimeric conformation.   

Purification strategy was the appropriate since enough amounts of soluble 

protein were obtained.  Unfortunately, crystallization attempts performed with all 

the resources available at the institute did not succeed. 
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Figure 3.4. Size exclusion chromatography of IMPACT protein. Elution pattern from Superdex 200 

26/60 is shown. First eluting peak, marked with a grey bar is centred at 161mL and the second peak 

has its maximum value at 186mL. Correspondent fractions have been marked with the same colour in 

the 10% SDS-PAGE. Numbers at MW line indicate the weight in KDa reference bands. 

 

3.4 CIH expression and purification 

The same strategy as the one used for Yih1 and IMPACT has been used for 

purification of C.thermophilum IMPACT homolog (CIH). Different CIH constructs 

have been successfully expressed and purified (see table 2.1). Except CIH152-292, 

the rest of the constructs were purified using HisTrap column followed by size 

exclusion chromatography.  

CIH full length (CIHFL) expressed very well in E.coli. Due to the high amount of 

protein obtained from the pellet of 1 litre culture, (approximately 60mg) the 

protein was eluted in two peaks in size exclusion (Figure 3.5) corresponding to 

dimeric and monomeric forms. When lower amounts of protein were injected in 

size exclusion, the elution pattern was consistent with a unique monomeric form. 



                                                                                                   RESULTS & DISCUSSION                                                                                                             
 

97 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 CIHFL size exclusion chromatography in Superdex S200 16/60. Fractions marked with a 

colored bar have been marked with the same color at the gel. Numbers next to MW line indicate the 

weight in KDa for reference bands.  The elution volume of each shoulder of the peak is 77 and 82mL, 

which corresponds with a dimer and monomer respectively.  

The 10% SDS-PAGE is clearly showing the presence of the two populations, 

since it can be observed how the protein concentration increases and decreases 

in the chromatogram before increasing again to previous levels. This pattern was 

not observed when the amount of protein injected in size exclusion was reduced 

(data not shown) and only a peak corresponding to a monomeric conformation 

was appearing. 

Purification of a construct lacking the amino terminal domain (CIH111-292) 

showed two peaks in size exclusion chromatography. The peak marked with the 

black bar elutes with an approximated size of a dimer (two molecules of 20 KDa), 

while the peak marked with a light grey bar corresponds to approximately 190 

KDa which corresponds with an oligomer around 10 molecules (Figure 3.6, panel 

A). The ancient domain (CIH152-292) after GST tag removal was injected in size 
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exclusion and showed one elution peak corresponding to a monomer (Figure 3.6, 

panel C). 

 

 

Figure 3.6 Size exclusion elution pattern for different CIH constructs. A) CIH1-111 size exclusion 

chromatography is Superdex 200 26/60, B) CIH1-160 size exclusion chromatography in S200 26/60, C) 

CIH152-292 size exclusion pattern in S75 16/60 and D) CIH111-292 size exclusion chromatography in S200 

26/60. Fractions marked with a colored bar have been marked with the same color at the gel. 

Numbers next to MW line indicate the weight in KDa for reference bands.  
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The two peaks observed in CIH111-292 chromatogram correspond with a 

elution pattern for a dimer and a monomer ( 137mL and 158mL respectively). 

The rest of the constructs produced for CIH were behaving in solution as 

expected, with elution volumes for size exclusion chromatography that were 

corresponding to monomers.  

In general, selected buffers for purification were appropriate for IMPACT, 

Yih1 and CIH proteins. Size exclusion elution patterns for the three IMPACT 

counterparts show a clear dimerization tendency of full length proteins.  

3.5 Chaetomium IMPACT is more thermostable than Yih1 or IMPACT 

Chaetomium thermophilum is a thermophilic fungus of the phylum 

Ascomycota that can live with temperatures up to 60°C. Due to its higher 

thermostability it was a good candidate for protein crystallization since the 

stability of the protein has been related with the success in crystallization and 

diffraction (Reinhard et al., 2013). The stability of Yih1, IMPACT and Chaetomium 

IMPACT homolog (CIH) in different buffer solutions was measured with 

differential scanning fluorimetry (Figure 3.7) (Boivin et al., 2013).  

As expected, CIH showed higher melting temperature compared to Yih1 or 

IMPACT. Precisely, CIH presented a melting temperature of 53°C, which is 

approximately 12°C and 7°C higher than melting temperatures observed for Yih1 

(41.5°C) and IMPACT (46°C )respectively. Although IMPACT seems to be more 

stable than Yih1, IMPACT is less soluble than Yih1. This fact could be the reason 

why IMPACT does not easily crystallize.  

Protein stability and solubility has been directly related with success in 

crystallization and good diffraction quality (Ericsson et al., 2006) . Since we could 

not obtain crystals for IMPACT, Yih1 showed poor diffraction quality and, in 

general, the structure is more conserved than sequence across species, we 

considered CIH as a good IMPACT homolog for obtaining the three dimensional 
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structure due to its higher in vitro stability and  solubility (up to 230mg/mL) . 

 

Figure 3.7. Differential scanning fluorimetry comparison between Yih1, IMPACT and CIH. IMPACT 

denaturation process in 50mM Hepes pH 7.5, 150mM NaCl, 5% Glycerol and 1mM β-mercaptoethanol 

can be followed by the increase of fluorescence emision. Temperatures in celsius degrees are 

indicated in the X axis. 

 

3.6 Crystallization trials of CIHFL yielded ancient domain crystals due to in situ 

proteolysis  

Many crystallization trials were setup for the full-length CIH protein. Initial 

crystals were obtained using the vapour diffusion method at 21°C. Crystals were 

obtained using 60mg/mL of more than 95% pure protein (Figure 3.8). Crystal 

dimensions were approximately 40x20x5 µm (long:wide:deep).These crystals 

were diffracting up to 2Å in XALOC beamline (ALBA synchrotron).  

 

12000

14000

16000

18000

20000

15 25 35 45 55 65

Fl
u

o
re

sc
e

n
ce

 e
m

is
si

o
n

 (
A

U
) 

Temperature  ( ̊C) 

Yih1

CIH

IMPACT



                                                                                                   RESULTS & DISCUSSION                                                                                                             
 

101 

 

 

Figure 3.8: Ancient domain crystals from C.termophilum IMPACT homolog. 

CIH152-292
 
crystals in JBS II (Jena Bioscience) (15 % w/v 2-propanol, 100 mM 

Hepes sodium salt pH 7.5 and 200 mM Magnesium Chloride). 

 

3.6.1 Data processing and refinement 

Complete dataset was collected at XALOC beamline, ALBA synchrotron. 

The crystals belonged to C2221 space group. Cell parameters (Table 3.3) were not 

large enough to accommodate one single molecule of the full length protein 

hence, a proteolytic event was suspected to occur.  

Molecular replacement performed with MRage as implemented in Phenix, 

gave as a result one molecule of CIH C-terminal domain within the asymmetric 

unit.  The crystallized part corresponded to the whole ancient domain, where 

visible residues after refinement were in the range 152 to 292. Proteolysis inside 

the drop was thus confirmed.  

The diffraction obtained from the crystal was showing certain anisotropy 

degree, where axis h and l where showing a maximum resolution of 2.03Å 

whereas the K axis was showing a maximum resolution of 2.5Å. Refinement was 

carried out at 2.03Å resolution until the model, reached RWORK and RFREE values of 

19.5/23.6 respectively. The model has 99% of residues within the favourable 

Ramachandran regions and no Ramachandran outliers. One rotamer outlier, 

correspondent to valine 178, is present in the model. The protein data bank code 

correspondent to this model is 5hcs. All the refinement statistics can be found at 

table 3.3. 

 

 

 



                                                                                                                                                                                                                                       
 

102 

Table 3.3 Data collection and refinement statistics for the ancient domain. Statistics for the highest 

resolution shell are shown in parentheses. 
 

 
 

a
 Rmeas = {Σhkl [N/(N-1)]

1/2
 Σi |Ii(hkl) - <I(hkl)>|} / Σhkl Σi Ii(hkl), where Ii(hkl) are the observed intensities, <I(hkl)> are 

the average intensities and N is the multiplicity of reflection hkl. 
b
 Rwork = Σhkl {[Fobs(hkl)] - [Fcalc(hkl)]} /Σhkl 

[Fobs(hkl)], where Fobs(hkl) and Fcalc(hkl) are the structure factors observed and calculated, respectively. 
c
 Rfree 

corresponds to Rfactor calculated using 5% of the total reflections selected randomly and excluded during 
refinement. 

d
 RMSD is the root mean square deviation 

Wavelength (Å)                                             0.9795 

Resolution range (Å)                                    33.2 - 2.026 (2.098 - 2.026)  

Space group                                              C2 2 2 1 

Unit cell                                               71.75 97.36 45.4 90 90 90 

Total reflections                                930519 (86216) 

Unique reflections                                10676 (1056) 

Multiplicity                                                      8.5 (7.7) 

Completeness (%)                                          99.9 (99.9) 

Mean I/sigma (I)                                11.51 (2.86) 

Wilson B-factor                                               39.62 

R-merge                                               0.078 (0.414) 

R-measa                                               0.086 (0.477) 

CC1/2                                                             0.995(0.978) 

CC*                                                             0.987 (0.995) 

R-workb                                               0.1952 (0.3096) 

R-freec                                                             0.2357 (0.4381) 

Number of non-hydrogen atoms   1004 

  Macromolecules                                979 

  Water                                                             25 

Protein residues                                127 

RMSDd (bonds)                                               0.007 

RMSDd (angles)                                               1.04 

Ramachandran favored (%)                         99 

Ramachandran outliers (%)                  0 

Clashscore                                               4.65 

Average B-factor                                61.10 

  Macromolecules                                61.10 

  Solvent                                               60.10 
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3.6.2 In situ  CIHFL proteolysis due to the presence of PEST regions 

 We looked for protease susceptibility sequences as candidate targets and 

two PEST regions were found. The first PEST motif is composed by 19 amino acids 

between amino acid 121 and 141 and the second is found between residues 145 

and 168. The major part of the area for both PEST motifs is predicted to be 

unstructured and thus, accessible to proteases (Ishida and Kinoshita, 2007) 

(Figure 3.9). This finding is very common since PEST motifs are known to display 

intrinsic unstructuredness (Singh et al., 2006). 

 

 

Figure 3.9. Disorder probability of CIH structure based on sequence. Residues above the threshold, 

marked as a red line, are considered to be part of an unstructured region. The black bar indicates the 

position of the PEST sequence among CIH residues. Prediction performed with PrDOS (Ishida and 

Kinoshita, 2007). 

 

These PEST sequences are also present in human IMPACT and its yeast 

counterpart Yih1 and they are located in an equivalent area: the linker region. 

PEST sequences are known to be involved not only in fast protein turnover and 
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regulation, but also in several cellular processes as phosphorylation or protein-

protein interaction (Sandhu and Dash, 2006). Both PEST regions are located 

within the fragment necessary for actin binding and polyribosome co-

sedimentation. This observation suggests that the PEST sequence could be 

involved in fast downregulation of IMPACT related functions such as the reported 

translational control. 

3.7 Ancient domain structural characterization  

The ancient domain is the sole domain composing the unknown protein 

family 0029 (UPF0029) also known as protein family 01205 (Pfam: 

http://pfam.xfam.org/). This domain is found only in IMPACT proteins and YigZ, a 

protein present in bacteria. This last protein is considered part of the IMPACT 

protein family. There is a structure available for YigZ from E.coli at the protein 

data bank (1vi7) (Park et al., 2004), so the obtained structure for IMPACT ancient 

domain is very useful to corroborate structural homology and that they do belong 

to the same family indeed. 

Ancient domain from C.termophilum IMPACT homolog displays a 

ββαββαβα topology as predicted. This topology is very similar to the one found in 

ferredoxins, however the three dimensional structural organization of both 

motifs is completely different. Three dimensional structure of CIH shows a β-

sheet composed of 5 anti-parallel strands that is surrounded by two α helices in 

one side and another helix on the opposite side (Figure 3.10). 
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Figure 3.10. Ribbon representation of CIH Ancient domain. Two different views are shown for the 

ancient domain. Degrees and direction of the rotation between both representations are indicated. 

Helices and the first β-strand have been numbered according to the appearance in the sequence. N-

terminal and C-terminal regions are indicated with Nt and Ct respectively.  

 

This organization, namely an antiparallel β-sheet surrounded by α-helices, 

represents a common fold among proteins. The structure for CIH ancient domain 

matches almost perfectly with the ancient domain from YigZ (Park et al., 2004) 

(RMSD 0.965 for 73 residues) (Figure 3.11). This result is not surprising regarding 

the high degree of sequence conservation found among ancient domains (Figure 

3.12). 
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Figure 3.11. Ribbon superposition of ancient domains from YigZ and CIH. Ribbon superposition of 

the ancient domain of CIH, rendered in magenta, with YigZ full length structure depicted in olive 

green (Panel A). Two views of the structural superposition of both ancient domains rotated 180 ̊ 

(Panel B). N-terminal and C-terminal regions are indicated with Nt and Ct respectively.  
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Figure 3.12 Sequence alignments among YigZ ancient domain and the ancient domain of IMPACT 

proteins from C.termophilum, H.sapiens and S.cerevisiae. Residues have been coloured by 

conservation using clustalX as implemented in Jalview. 

 

Residue conservation becomes evident in a surface representation 

rendered depending on the aligned sequences among ancient domains from all 

reviewed IMPACT proteins at Uniprot, and the only reviewed sequence at Uniprot 

for YigZ, which belongs to the protein from E.coli (Figure 3.13). The conservation 

shows the peculiarity of being much higher in one half of the domain structure. 

Taking into account that in some organisms as humans, there is an isoform 

generated by alternative splicing that lacks the RWD domain (Gerhard et al., 

2004) and the strong sequence conservation found in the ancient domain, it 

turns out to be interesting that no known function developed by the ancient 

domain has yet been reported.  
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Figure 3.13. Surface residue conservation among ancient domains. Surface residue conservation 

representation among IMPACT homologs and the ancient domain of YigZ.  Conservation is rendered 

with green and purple. Contour levels are in the range from 0 (not conserved) to 1 (totally conserved) 

respectively.  

 
 

Concerning to the electrostatic potential on the surface (Figure 3.14), it is 

remarkable to say that the two charged patches present at the surface, one small 

negative area and other bigger positively charged patch, match with the most 

conserved areas. A particular function for these charged areas might be selecting 

its conservation degree. It is worth to note that in both charged patches there is a 

crevice. Those cavities might be indicating two possibilities. Either the charged 

patches are needed for the interaction with the RWD domain if that interaction 

exists, or those areas are potential binding surfaces for unknown ligands and 

finding those ligands might give a clue about the particular function of the 

ancient domain if any.   
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Figure 3.14. Three different views for the electrostatic surface potential of the ancient domain. 

Positively charged areas have been depicted in blue, and negatively charged areas in red. Neutral 

charged zones have been coloured with white. Contour levels, are in range from -10 to 10 kT/e and 

have been calculated at 300K. 

3.8 The ancient domain of CIH shows structural similarity with RNase PH 
domain 

As we have shown before, the sequence and structure of the ancient 

domain is highly conserved but no function for this domain has been described 

so far. The three dimensional structure of a protein is almost in all cases directly 

related with its function. We speculated that, regarding the presence in some 

organisms such as C.elegans or H.sapiens sapiens of an isoform of the IMPACT 

protein composed only by the ancient domain and produced by alternative 

splicing, it should be playing a role of enough relevance for this alternative 
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splicing to occur. 

 
Figure 3.15. Main chain superposition of RNase PH domain from RRP46 and the ancient domain of 

CIH. Ribbon representation for both structures. RNase PH domain from RRP46 (4ifd) is depicted in 

blue and CIH ancient domain in magenta. N-terminal and C-terminal regions are indicated with Nt 

and Ct respectively.  

To shed light into possible functions for the ancient domain, a search 

performed to find structural homologs was performed using DALI web server 

(Holm and Rosenström, 2010b). The top two scores in the structural comparison 

were related to two proteins containing the UPF0029 motif, but interestingly, the 

third and fourth proteins with an RMSD value of 2.9 for 87 residues and 2.8 for 90 

were a polyribonucletide phosphorilase (4aid) and the exosome complex 

component RRP46 respectively (4ifd, chain D). In both cases the similarity was 

related to the RNA nuclease (RNase) PH domain that both proteins harbour 

(Figure 3.15).  

RNase PH in bacteria is a phosphorolytic 3’. Although it uses inorganic 

phosphate as the nucleophile, the phosphorolytic activity is Mg2+ dependent 

Ct 

Nt Ct 
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(Deutscher and Li, 2001) . Bacterial polynucleotide phosphorylase (PNPase) is the 

paralog of RNase PH. PNPase is a homotrimeric enzyme that catalyses either RNA 

phosphorolysis or polymerization of nucleoside diphosphates (Carzaniga et al., 

2014) . RRP46 is a protein that forms part of the exosome. The exosome is a 

multisubunit RNA-processing complex found in archaea and eukaryotes whose 

core is composed by six RNase PH subunits, architecture that is homologous to 

the bacterial PNPase. RNase PH domain has been demonstrated to be the 

catalytic domain for RNA degradation by the exosome in prokaryotes. In E.coli, 

RNase PH has been demonstrated to be involved in rRNA degradation upon 

starvation of the cultures (Jain, 2012). In eukaryotes, there is only one protein 

catalytically active called DIS3 and the rest of proteins carrying RNase PH domain 

are used to guide the RNA molecule to the exosome centre (Ng et al., 2010).  

Neither this structural similarity nor an enzymatic activity for any IMPACT 

homolog has been reported. Usually, structure is directly related to protein 

function and the similarity found is giving a wide range of potential functions for 

Chaetomium IMPACT protein and given the very high sequence conservation of 

the domain, probably to all IMPACT proteins. Regarding the structural similarity 

and the electronic potential distribution on the surface we considered relevant to 

firstly focus on further investigation about whether CIH, Yih1 or/and IMPACT have 

any nuclease activity or nucleic acid binding ability.  

3.9 Chaetomium IMPACT homolog binds nucleic acids  

Due to high structural similarity of the ancient domain with the RNase PH 

domain, an electrophoretic mobility shift assay (EMSA) on agarose was carried 

out in order to test if CIHFL was able to bind nucleic acids. Since DNA has more 

stability than RNA, we decided to first test the ability to bind double stranded 

DNA (dsDNA) (Figure 3.16, panel A). The DNA used for the assay, as explained in 

section 2.5.1, was the insert control used for in-fusion kit, with non-available 
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sequence. 

The obtained result clearly shows that CIH is binding dsDNA. The resulting 

migration indicates that there is likely to be more than one DNA binding site, 

since increasing amounts of protein (from 1:2 to 1:21.5 molar ratios) over the 

equimolarity were augmenting the band shift. Nevertheless, more tests have 

been performed to prove unspecificity of the binding. Those experiments will be 

discussed later. 

       
 

Figure 3.16. Agarose EMSA with dsDNA and CIH. Two kilobase (Kb) length dsDNA was incubated with 

increasing amounts of CIHFL protein. The first line, on the left, corresponds to the migration of the 2Kb 

dsDNA in the absence of protein (Panel A). EMSA performed with the CIH ancient domain (Ct) or the 

RWD domain (Nt) (Panel B). In both gels, the first line corresponds to the input DNA (2Kb) in absence 

of any CIH. 
 

The ability of binding DNA is an uncharacterised new feature of the CIHFL. 

The next step was to clarify whether the DNA binding was carried out through 

the ancient domain, the RWD domain or whether both domains were necessary 

to bind DNA (Figure 3.16, panel B). Abnormal migration of the DNA is observed in 

the presence of the C-terminus of CIH, which corresponds to the ancient domain. 

This migration is due to a very high isoelectric point of the domain (pI=9.76). In 
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contrast, DNA in presence of the RWD domain does not show shift in the 

migration. This result indicates that for CIH, the RWD domain appears to be 

dispensable for binding DNA whereas the sole ancient domain is enough for DNA 

binding. RNA binding ability will be discussed below (section 3.10.2).  

This function might explain why the ancient domain has been highly 

conserved during evolution. The particular utility of the DNA binding ability will 

be further investigated. 

3.10 Identification of IMPACT proteins as DNases 

Following the observation that CIH has the ability to bind DNA, we further 

investigated the possibility of a catalytic activity on the IMPACT family. Indeed, 

we actually demonstrate the presence of a DNase activity in full length IMPACT, 

Yih1 and CIH preparations indicated by the disappearance of the DNA band in the 

presence of the purified proteins (Figure 3.17). This result suggests that there is 

an evolutionarily conserved DNase activity within the IMPACT family. The next 

step was to assure that DNase activity was indeed originated from the IMPACT 

proteins and not a contamination product of the preparation. Due to stability and 

solubility reasons the characterization of the DNase activity and mutants lacking 

nuclease activity have been performed using CIH. 

 

 

 

 

 
 

Figure 3.17. DNase activity is present in full length Yih1, IMPACT 

and CIH purifications. First line, marked as MW corresponds to 

the DNA ladder. Second line (-) is the DNA used as input. Lanes Y, 

I and C correspond with digestions preformed using full length 

Yih1, IMPACT and CIH proteins respectively. 
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3.10.1 Point mutations abolish DNase activity in CIH 

To prove that the DNase activity belongs to IMPACT proteins and it is not 

due to any contamination of the protein preparation, several mutants were 

designed. Residues were mutated regarding mainly its conservation degree. 

 Using an alignment of some reviewed IMPACT sequences, residues were 

coloured using clustalX as implemented in Jalview following sequence 

conservation (Figure 3.18). As shown, many residues are conserved, so it was 

very difficult to select among all of them. It was necessary to enclose a smaller 

area to look for candidates. Hence we delimited the search using the following 

criteria: 

On one hand there was one patch positively charged at the ancient 

domain and it was located in a very well conserved area, as it has been shown 

before.  

On the other hand, there are some defined sequence motifs that are 

found in the active site of the different nuclease families. The most wide 

extended is the DEDD motif, but other variants of this family such as DEDDy or 

DEDDh can be found, where D refers to amino acid aspartic, E is a glutamic 

residue, y is tyrosine and h is histidine. There are other sequence motifs as DERK, 

DHH or PD(D/E)XK, this last motif is also known as DEK. DEK motif represents the 

major restriction enzyme nuclease fold. All the motifs mentioned above can be 

found in the different types of nucleases, including RNases (Yang, 2011).  

One variation of the motifs listed above that we were able to find in the 

sequence is DDDE (residues 222, 223, 224 and 226), where the motif is located in 

a loop next to a positively charged pocket. That pocket corresponds to a highly 

conserved area where D224 and E226 residues are very close to a histidine, 

H203, what from our point of view, was increasing the probabilities of these 

residues to be involved in the nuclease reaction. 
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Figure 3.18. Sequence alignment of IMPACT homologs. Structural motifs related to CIH sequence are 

shown above the sequence. Unknown structure has been depicted as grey bars and gaps in sequence 

alignment with black dots. Red loops represent β-hairpins in the structure. Sequence conservation has 

been rendered with clustalX.  
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A priori the possibility for the RWD domain to be the catalytic domain by 

itself without involving the ancient domain was excluded, since RWD domain 

have been more extensively studied and characterised than the ancient domain 

and nuclease activity has never been reported. Besides, negatively charged 

surface is not optimal for nucleic acid binding (section 3.14) and little sequence 

conservation among RWD domains from IMPACT proteins was suggesting that 

the presence of an enzymatic activity conserved during evolution was very 

difficult to sustain. Moreover, this was consistent in our experiments with the fact 

that the RWD domain did not produce any band shift when an agarose EMSA was 

performed (figure 3.16). The high structure similarity of the ancient domain with 

the RNase PH domain showed very obviously to us that the catalytic properties of 

CIH were not related to the RWD domain; nevertheless, cooperation between 

both domains was not discarded. 

Hence, with all the information available from the literature and the 

structure, several mutants were generated and tested (table 3.4). Some of them 

were still exhibiting nuclease activity, but there were mutations abolishing it, 

confirming that DNase activity is present in CIH proteins (Figure 3.19).  

Table 3.4. Mutations analysed for DNase activity.  One letter code residue followed by the position 

on the sequence and the amino acid used in the mutation are indicated. 

  

 

 

 

 

 

 

Mutation DNase activity? 

H203A NO 

C221A NO 

D223A/D224A NO 

D223A/E226A NO 

R232A NO 

Y253A NO 

R261E/R262E YES 

R262G REDUCED 

R271A NO 
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Figure 3.19. DNase activity assays for mutants. CIH mutants R232A, H203A (H/A), C221A (C/A) 

R261E/R262E (RR/EE) and R271A activities have been tested following this order (Panel A). Three 

different gels with activity assays for CIH mutants D223A/D224A (DD/AA), D223A/E226A (DE/AA), 

Y253A (Y/A) and R262G are shown. FL refers to CIHFL (positive control) and – to the input DNA. 

 

As shown (Figure 3.19, panels A and B), several point mutants displayed 

no detectable DNase activity as R232A, H203A, Y253A C221A.  The three first 

clearly display a band shift in the agarose gel, so the DNA binding affinity has not 

been affected by the mutation of R232, H203 or Y253. However, although the 

C221A mutant does not seem to degrade DNA, it does not display a clear band 

shift. The mutant R262G showed reduced activity when compared with the wild 

type protein, since a faint smear can be observed at lower molecular weights 

than the input DNA. The R271A mutant does not seem to display detectable 

activity, and the fraction of DNA precipitated in the well could be pointing to a 

reduced solubility of the protein that precipitated in complex with DNA.  Double 
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mutants do not show detectable activity. 

Mutated residues are located nearby or within positively charged areas 

(Figure 3.20). Given the electro-positive surface extension it is unlikely that a 

point mutation would prevent DNA binding to the ancient domain. The effect on 

the DNase activity might therefore be related to the role of the mutated residues 

in the DNA proper orientation for catalysis or directly involved in the nuclease 

reaction itself.  

      

Figure 3.20. Position of the mutations within the CIH ancient domain structure and electrostatic 

surface. Ribbon representation of CIH ancient domain. Shown residues rendered in pale yellow 

correspond with mutated residues tested for DNase activity (Panel A). Surface representation of CIH 

ancient domain with the same orientation as in panel A. Electrostatic surface potential, calculated at 

300K, has been rendered with red (negative) and blue (positive) colours, using contour levels in the 

range from -10 to 10 kT/e respectively (panel B). N-terminal and C-terminal regions are indicated with 

Nt and Ct respectively. 

Ct 
Nt 
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The result here provided evidences, for the first time, that IMPACT 

proteins have an intrinsic enzymatic activity that involves the ancient domain. 

Until now the only characterized function for IMPACT protein inside the cell was 

related to the interaction with another partner, GCN1. With no doubt this result 

is laying the foundations for future studies that will shed light on the role of 

IMPACT within the cell

3.10.2 CIH binds both DNA and RNA with similar affinity 

 To accurately characterise the binding affinity of CIH to nucleic acids, 

biolayer interferometry (BI) assays were carried out using BLitZ. The inactive 

mutant CIHR232A was used to measure binding affinities for three different types of 

nucleic acids: ssDNA, dsDNA and ssRNA. (Figure 3.21 panels A, B and C 

respectively). 

After the performance of three independent experiments for each nucleic 

acid type, no significant differences have been found in the binding affinities for 

dsDNA, ssDNA or ssRNA. This lack of substrate specificity reveals IMPACT proteins 

as universal nucleic acid binding proteins. Yih1 has been found to co-sediment 

with polyribosomes. As it has been already mentioned, using crosslinking and 

pull-down techniques, it was determined that Yih1 was interacting with RPL39 

and RPS22, two ribosomal proteins (Waller et al., 2012) . Taking into account the 

new characterized ability of CIH, this result has to be handled carefully, since at 

the published article the authors did not eliminate RNA from the sample before 

the crosslinking or the pulldown, and the interaction found could be the result of 

finding both proteins bound to RNA. 
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Figure 3.21. Representative BI experiments for CIHR232A binding affinity calculation to DNA and 

RNA. Association and dissociation have been monitored by BI. Binding  for dsDNA (A) ssDNA (B) and 

ssRNA (C) have been tested. Protein concentration tested on every curve has been indicated.  

Numbers on the right side of the binding curves correspond to the dissociation constant calculated 

from 3 independent experiments. 

 
 

3.10.3 Co-crystallization of the ancient domain with DNA yields crystals with a 

phosphate bound to the structure 

For further extend the understanding of CIH nucleic acid binding, we 
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decided to set up co-crystallization trials with the ancient domain of CIH (CIH152-

292) or CIHR232A, with different lengths of dsDNA oligonucleotides. This co-

crystallization was performed in the presence of MgCl2. Crystals were obtained in 

18% polyethylene glycol 3500, 0.1M Bis Tris pH 5 and 0.2M sodium chloride in 

the presence of 10 base pairs long dsDNA (Figure 3.22)  

 

Figure 3.22. Crystal of the ancient domain obtained in presence of dsDNA.              

Co-crystallization of Ancient domain with dsDNA (10 base pairs long) obtained in a 96 

well sitting drop plate. 

3.10.3.1 Data collection and processing 

A complete dataset was collected at XALOC beamline, ALBA synchrotron. 

Crystals belonged to C2 space group and diffracted up to 1.4Å resolution. Data 

reduction was performed using SCALA (Evans, 2011) and molecular replacement 

was carried out using our previous model of the ancient domain (PDB code 5hcs).   

Refinement was carried out using Phenix.refine (Adams et al., 2010) 

combined with manual model building using Coot (Emsley and Cowtan, 2004; 

Emsley et al., 2010) . Anisotropic refinement was carried out at final refinement 

cycles. The structure of the ancient domain with a phosphate ion has been solved 

at 1.5Å resolution. All the refinement statistics can be found at Table 3.5. Electron 

density maps obtained after structure refinement showed that the DNA was not 

present in the crystal, however a phosphate was found to be bound to the 

structure. The refined model showed no Ramachandran or rotamer outliers and 

the PDB code assigned after deposition was 5fcv. 
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Table 3.5. Data collection and refinement statistics for the ancient domain bound to a phosphate 

ion. Statistics for the highest resolution shell are shown in parentheses 
 
 

 

 
a
 Rmeas = {Σhkl [N/(N-1)]

1/2
 Σi |Ii(hkl) - <I(hkl)>|} / Σhkl Σi Ii(hkl), where Ii(hkl) are the observed intensities, <I(hkl)> are 

the average intensities and N is the multiplicity of reflection hkl. 
b
 Rwork = Σhkl {[Fobs(hkl)] - [Fcalc(hkl)]} /Σhkl 

[Fobs(hkl)], where Fobs(hkl) and Fcalc(hkl) are the structure factors observed and calculated, respectively. 
c
 Rfree 

corresponds to Rfactor calculated using 5% of the total reflections selected randomly and excluded during 
refinement. 

d
 RMSD is the root mean square deviation. 

Wavelength (Å)                                              1.072 

Resolution range (Å)                                    38.02 - 1.5 (1.554 - 1.5) 

Space group                                               C1 2 1 

Unit cell                                                81.32 37.60 51.01 90 117.41 90 

Total reflections                                80797 (8064) 

Unique reflections                                21880 (2139) 

Multiplicity                                                      3.7 (3.8) 

Completeness (%)                                          98.90 (97.89) 

Mean I/sigma (I)                                12.19 (1.96) 

Wilson B-factor                                              15.23 

R-merge                                               0.066 (0.67) 

R-measa                                               0.077 (0.736) 

CC1/2                                                             0.998 (0.778) 

CC*                                                             1 (0.936) 

R-workb                                               0.1445 (0.2356) 

R-freec                                                             0.1720 (0.2796) 

Number of non-hydrogen atoms   1264 

  Macromolecules                         1039 

  Ligands                                   25 

  Water                                                             200 

Protein residues                                130 

RMSDd (bonds)                                               0.006 

RMSDd (angles)                                               1.00 

Ramachandran favored (%)                         99 

Ramachandran outliers (%)                  0 

Clashscore                                               0.47 

Average B-factor                                20.70 

  Macromolecules     17.70 

  Ligands                                              42.70 

  Solvent                                              33.50  
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3.10.3.2 Structural characterization 

Ancient domain crystals showed no visible DNA, but a phosphate ion was 

found in the structure, located in the same pocket where the DDE motif and 

H203 are present. Forming part of this cavity there are several residues as 

arginine 251 (R251), arginine 262 (R262), tyrosine 253 (Y253) and lysine 257 

(K257), whose side chains are facing to the inner part of the hollow. Other 

residues on the vicinity of the cavity are arginine 232 (R232), phenylalanine 263 

(F263). No conformational changes in the domain have been observed upon 

phosphate binding. Phosphate ion is located on a positively charged pocket on 

the surface of the domain (Figure 3.23) and in the previous obtained structure 

(5hcs) at 2 Å; a water molecule was occupying that position. It is interacting 

mainly with three residues on the cavity: arginine 251, lysine 257 and arginine 

262.  It is worth to note that some point mutations of the residues located in the 

vicinity of the phosphate (Y253, R262, H203 and R232) abolish DNase activity. In 

particular, R262 establishes direct interaction with the phosphate ion. 

Phosphate binding area is highly conserved among homologs. When the 

RNase PH domain from 4aid is superimposed with CIH, both phosphates occupy 

similar positions (Figure 3.24). This phosphate in RNase PH domain is bound at 

the active site of the molecule. The fact that the structure of the domain is 

similar to a domain present in phosphorolytic enzymes (RNase PH and PNPase) 

and that the phosphate binds in an equivalent area might be suggesting that it 

also has a phosphorolytic mechanism.  In any case, we have trapped a substrate 

related phosphate, evidencing the similarity of the area with the active site of the 

PNPase or RNase PH. 
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Figure 3.23. Phosphate ion bound to the ancient domain. Ribbon representation of the ancient 
domain. Residues involved in phosphate contacts are shown. Interactions are marked with a 
discontinuous black line and distances are indicated for each interaction (Panel A).  Model inside Fo - 

Fc map (green), calculated in the absence of the phosphate ion is contoured at 6σ (Panel B). N-
terminal region is indicated with Nt.  

Nt 
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Figure 3.24. Ribbon representation of CIH ancient domain (5fcv) and RNase PH domain from a 
polyribonucleotide phosphorylase (4aid) superposition. RNase PH domain and its bound phosphate 
have been depicted in green, whereas the ancient domain has been depicted in purple. Phosphate 
bound to the ancient domain has been rendered in red and gold. On the right side of the picture, 
zoomed phosphate binding areas and the residues involved in phosphate coordination are shown. N-
terminal and C-terminal regions are indicated with Nt and Ct respectively. 

The phosphate present in the structure could be produced by DNA 

degradation inside the drop or it could be from cellular origin during 

overexpression, since no phosphate containing buffers have been used during the 

purification. HADDOCK docking assays performed with ssDNA and the ancient 

domain confirmed that, the positively charged groove where the phosphate is 

present in the structure is compatible with the binding of the nucleic acid (Figure 

3.25). Besides, the point that mainly the phosphate backbone from the nucleic 

Nt 

Ct 
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acid is establishing the interaction with the surface would be consistent with a no 

sequence specific DNA binding. 

 

  
Figure 3.25. ssDNA docking over CIH ancient domain. The phosphate found in the structure has been 

depicted in yellow with a ball and stick representation. Six nucleotides long ssDNA has been coloured 

using the heteroatom colour pattern from chimera. Docking parameters for the selected cluster are 

shown on the right. Electrostatic surface potential, calculated at 300K, has been rendered using red 

(negative) and blue (positive) colours. Contour levels are in the range from -10 to 10 kT/e 

respectively.                                                                                     

When looking closer to the surrounding phosphate binding area, we find a 

histidine from a neighbouring molecule very close to the phosphate. The 

combination on the histidine ring and the phosphate might be mimicking the 

position of a nitrogenous base from a potential nucleic acid substrate (Figure 

3.26).  The tyrosine that is located behind the histidine 235 from the symmetric 

molecule (named H235’ at the figure) could be involved in the positioning of the 

nucleic acid in the groove due to stacking interactions with the DNA bases. 
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Figure 3.26. Histidine 235 from a 
symmetric molecule locates 
nearby the phosphate ion. The 
symmetric molecule and the 
phosphate have been rendered 
with grey backbone. Residues from 
the main molecule are coloured in 
light green. The histidine 235 from 
the symmetric molecule is 
indicated in the figure as H235’. 
The phosphate ion and residue 
Y253 are also indicated. 

 

3.11 IMPACT proteins are cytosolic nucleic acid sensors 

Cytoplasm is a compartment of the cell that is usually free of DNA. The 

presence of self or foreign DNA in the cytosol, usually as consequence of an 

infection or tissue damage, triggers a response that involves the production of 

type I interferons and the proteolytic activation of caspases (Hornung and Latz, 

2010). There are many types of proteins that are able to sense and signal the 

presence of cytosolic DNA or dsRNA (Keating et al., 2011) Some nucleic acid 

cytosolic sensors are nucleases as TREX1 (Atianand and Fitzgerald, 2013; Gehrke 

et al., 2013) . In that sense, since we have demonstrated that IMPACT proteins 

bind with the same affinity DNA and RNA, we wanted to test whether IMPACT 

proteins were related to innate immune response inside the cell being able to 

signal or not the presence of such nucleic acids.  
 

An ex vivo assay with 3T3 cells and small interference (siRNA) was 

performed in order to optimize the concentration of siRNA necessary for 

silencing the Impact gene. The siRNA used for IMPACT silencing was a commercial 
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pool composed by 4 different siRNAs. Normalization of mRNA levels obtained by 

real-time PCR was carried out using actin mRNA (Figure 3.27).  

 

Figure 3.27. IMPACT silencing with siRNA in 3T3 cells. Silencing after transfection with dharmafect 

was tested for 20nM and 40nM of siRNA. For lipofectamine only 40nM siRNA was tested. Blue bars 

indicate IMPACT mRNA fold levels after transfection with siRNA IMPACT normalized against the 

IMPACT mRNA levels obtained with siRNA control (red bars).  

The very poor quality of the only commercially available antibody for 

murine IMPACT protein was making very difficult to achieve a good western blot 

where the silencing was obvious. Regarding the loading control (actin), for the 

case of 40nM siRNA transfected with dharmafect, the amount of the protein 

loaded for the siRNA IMPACT sample is approximately three times the amount 

loaded for siRNA CONTROL whereas the IMPACT protein detected by the 

antibody is similar in both cases. We can say that we have obtained a decreased 

expression of the protein when compared with the control (Figure 3.28). 

Transfection of 20nM IMPACT siRNA with dharmafect or 40nM IMPACT siRNA 

with lipofectamine did not silenced IMPACT.  
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Figure 3.28. IMPACT protein levels 

analysis after silencing. siRNA 

concentration and reactive used for 

transfection are indicated above 

each pair of samples. Lines labelled 

as C indicate samples from cells 

transfected with siRNA CONTROL 

and lines I correspond to cell 

extracts treated with siRNA 

IMPACT.  
 

 

Once the interference conditions were established, we proceeded to test 

whether IMPACT proteins were related to the innate immune system by analysing 

the correlation of INF-β levels with IMPACT. Fibroblasts are known to produce 

mainly INF-β as response to an infection. ISD and poly I:C have been widely used 

to induce interferon production in these cells. ISD, from interferon stimulatory 

DNA, is a dsDNA non CpG oligonucleotide 45 base pairs long from the genome of 

Listeria monocytogenes, and poly I:C is a dsRNA analogue.  We have measured 

mRNA levels for INF-β after transfection of ISD or poly I:C in control cells and cells 

with the Impact gene partially silenced by siRNA. Surprisingly, two different 

responses were found depending on the nature of the nucleic acid co-transfected 

with the siRNA. When ISD and IMPACT siRNA were co-transfected, mRNA levels 

for INF-β appeared to decrease approximately 5 times in comparison with cells 

transfected with ISD and non-targeting siRNA (figure 3.29). On the other hand, 

when IMPACT gene is silenced and there is poly I:C in the cytoplasm, mRNA levels 

for INF-β increased more than 3 times in comparison with control cells (Figure 

3.29). Normalization of mRNA levels was also carried out using actin mRNA. 

These results are revealing that IMPACT proteins have effects on INF-β 
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levels and suggest a function related to innate immune response. Regarding its 

ability to unspecifically bind nucleic acids, the obtained responses of the 

treatment with ISD or poly I:C in knock down or wild type cells are pointing 

IMPACT proteins as cytosolic nucleic acid sensors. The specific mechanism used 

by IMPACT proteins to trigger these responses remains unclear.   

 

 
 

Figure 3.29. Relative amounts of β-interferon mRNA levels after IMPACT silencing and ISD or poly 

I:C treatment. INF-β mRNA levels normalized against control cell mRNA levels (red bars) and 

IMPACT knock down (blue bars) cells after ISD (n=3) or poly I: C (n=3) transfection are shown. 

Asterisk, P < 0.015 when compared with siRNA CONTROL. 

As it has been mentioned in the introduction (1.6.4), a relationship 

between the immune suppressive effects of Indoleamine 2,3-dioxygenase (IDO) 

dependent tryptophan depletion and the over expression of IMPACT exists. 

Tryptophan depletion by IDO activates the GCN2 kinase pathway that results in 

translation inhibition, proliferative arrest and finally apoptosis (Lee et al., 2002). 

Cells, like fibroblasts, that display IDO induced IMPACT overexpression are able to 

overcome tryptophan depletion and to avoid apoptosis. However, some immune 
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cells like Jurkat or B cells do not survive GCN2 kinase pathway activation since 

they show very low or non-detectable levels of IMPACT and therefore fail to 

overcome tryptophan depletion (Habibi et al., 2010; Poormasjedi-Meibod et al., 

2013). 

IDO activity is not the only immunoregulatory mechanism available and 

although it has many functions in the immune system, not all of them are clearly 

beneficial to the host. It has been demonstrated that tryptophan depletion 

induced by IDO can inhibit pathogen replication in vitro in the case of auxotroph 

organisms and some virus (Adams et al., 2004; Bodaghi et al., 1999; Gupta et al., 

1994; Pfefferkorn, 1984).  However, the biological relevance in vivo for infection 

control is not well understood. Besides the ability of control over some infections, 

IDO induced expression leads to the suppression of T-cell response by the 

adaptive immune system either by the production of toxic metabolites or by 

tryptophan depletion. With the results obtained, we can hypothesize that, 

despite interferon-γ induced overexpression of IDO, and subsequent suppression 

of T-cell response, compensating effects might occurs in IMPACT expressing cells. 

Over expression of IMPACT could degrade DNA inside the cytosol and/or rapidly 

signal the infection to neighbouring cells by INF-β production. Besides, interferon 

β is known to increase survival of B and T cells and decreases the threshold for 

the activation of B cells (Braun et al., 2002), fact that could somehow 

compensate death by tryptophan depletion. Hence, IMPACT overexpression 

could be helping not only to overcome tryptophan depletion but also to have the 

cell prepared for detecting, signalling and fighting the infection. However, this 

proposed model would be valid only for infections involving DNA from the 

pathogen, since the observed response for the dsRNA analogue is the opposite.  

In relation to the observed response obtained with poly I:C, since IMPACT 

proteins are involved in translation and can be found in polyribosomes, it is 

reasonable to think that IMPACT would be silencing immune response against 
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RNA molecules. Due to its role in translation control it will be in contact with 

different types of RNA molecules and it would be reasonable to think that 

IMPACT proteins would not be involved in immune response against cytosolic 

RNA. However, it has been described that cells are able to discriminate between 

self and non self RNA (Keating et al., 2011), so no immune response from self 

RNA would be expected to be triggered by IMPACT proteins. Although we have 

not been able to unequivocally confirm IMPACT RNase activity, it cannot be 

discarded. IMPACT RNase activity  could provide an explanation for the response 

obtained in these assays, since some cytosolic exoribonucleases that suppress 

interferon production against some virus, like Trex-1 does with HIV, have been 

reported (Yan et al., 2010). Nevertheless the reason why IMPACT is silencing 

immune response to foreign RNA is not obvious and more experiments would 

need to be performed in order to understand it.  

These results confirm that the IMPACT protein behave as cytosolic nucleic 

acid sensor in murine fibroblasts, although the mechanisms they use to trigger or 

silence innate immune response, depending on the nature of the nucleic acid, 

remain unknown. The response pattern in other cell types may not be conserved, 

since cytoplasmic nucleic acid sensors have been demonstrated to be in many 

cases cell type specific. On the other side, if the nucleic acid sensor role inside 

the cell is related with its nuclease activity remains an open question. 

3.12 DNase activity characterization 

Nucleases can be classified in many ways, depending on the parameter we 

are looking at. Type of cleavage, metal ion activity dependence and sequence 

motifs are characteristics frequently used for their classification.  

 

 



                                                                                                   RESULTS & DISCUSSION                                                                                                             
 

133 

3.12.1 DNase activity in CIH requires Mg2+ or Mn2+ 

The first question to answer was if there was any specific metal 

requirement. DNase assay in presence of different metal cations revealed that 

either magnesium or manganese were essential for the reaction to occur (Figure 

3.30). This result is not surprising since most nucleases show requirement for 

magnesium or manganese. In contrast, calcium which is necessary for DNase I 

activity and stability (Guéroult et al., 2010) does not seem to be required for CIH 

DNase activity, and with Nickel the protein displays very little DNase activity. In 

the particular case of cobalt, it seems to precipitate the DNA. CIH in presence of 

1mM EDTA and no metal did not show DNase activity, reinforcing the idea of an 

ion assisted hydrolytic mechanism. 
 

            

Figure 3.30. CIH requires magnesium or manganese for its DNase activity.  1% Agarose gel showing 

DNase activity on 100ng of 1100bp long dsDNA. Five different reactions have been performed using 

different salts in order to assess metal requirements. Type of salt or EDTA are indicated. CIHFL 

presence (+) or absence (-) in the sample has been marked. Enzymatic activity is monitored by 

disappearance of the control band (lane -) after incubation of the reaction mix during 40 minutes at 

40°C. 
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Magnesium is an ion highly available inside the cell (between 2 and 3mM 

free Mg2+ available). Reviews about nuclease activities and their requirement 

point that the suitability of Mg2+ is due to its small ionic radius, which makes Mg2+ 

in some cases easy to incorporate inside the protein. But Mg2+ has high tendency 

to hydration, being most of the times coordinated by 6 or 4 water molecules, so 

its ionic radio increases drastically (Cowan, 2002; Yang, 2011). Manganese, the 

other suitable nucleophile for CIH, is usually presenting a coordination that 

involves 4 water molecules. This fact is leading us to the idea that the area 

binding the nucleophile necessary for the reaction must be an accessible groove 

large enough to accommodate such coordination.   

3.12.2 DNase activity is disrupted with high ionic strength  

To shed light on DNase optimum conditions, buffers with different NaCl 

concentration, and therefore different ionic strength were tested.  

 
 
 

 
Figure 3.31. DNase activity with different ionic strength. 1% 
Agarose gel showing DNase activity on 100ng of 800bp long 
dsDNA. The first line corresponds to the dsDNA input   (-). The 
same amount of CIHFL (15µg) was added to all the samples 
except the input. Numbers above each line refer to NaCl 
concentration present in the reaction buffer. Enzymatic activity 
is monitored by disappearance of the control band (lane 1) after 
incubation of the reaction mix during 40 minutes at 40°C. 

As shown (Figure 3.31) high salt concentrations are avoiding DNA 

hydrolysis. A range of different salt concentrations between 0 and 300 mM 

showed nuclease activity. These results are not surprising since those 

concentrations are somehow in the physiological range, confirming that DNase 
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activity would be feasible inside the cell. High ionic strength is probably 

disrupting the interaction between the DNA substrate and the protein.  

3.12.3 IMPACT proteins are endonucleases  

It was necessary to clarify whether IMPACT proteins are endonucleases or 

exonucleases. Previous experiments related to DNase activity of IMPACT proteins 

were always performed with linear dsDNA. In order to figure out if the IMPACT 

family of proteins was showing endonuclease activity, a DNase treatment with 

covalently closed circular DNA (cccDNA) was carried out to test if CIH and IMPACT 

were able to degrade it (Figure 3.32). The obtained result clearly shows that 

IMPACT proteins are endonucleases.  

 
 

 
Figure 3.32. CIH and IMPACT show endonuclease 
activity. 1% Agarose gel showing DNase activity on 150ng 
of plasmidic DNA. CIH is able to degrade cccDNA (Panel 
A). The same test was performed with human IMPACT 
protein, and the endonucleolytic activity is found to be 
conserved (Panel B). Enzymatic activity is monitored by 
disappearance of the control bands (lane 2) after 
incubation of the reaction mix during 40 minutes at 30 
and 40 ̊C for IMPACT and CIH respectively. 
 

Taking advantage of pBR322 supercoiled form, an assay to elucidate how 

CIH cuts dsDNA was performed. Since supercoiled, relaxed circular and linear 

DNA present different migration properties on agarose gel, simultaneous CIH 

cleaving of both chains or sequential single chain cleavage could be monitored 

(Figure 3.33). This assay is giving us precious information necessary to figure out 

what is the catalytic mechanism of the cleavage. 
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Figure 3.33. pBR322 digestion. 1% Agarose 

gel showing DNase activity on of cccDNA. First 

line shows the 3 different conformation of the 

pBR322 plasmid. Gel purified supercoiled 

isoform used as input is shown at line 2. Lines 

3 and 4 show digestion products after 3 and 

60 minutes respectively performed at 40 ̊C. 

Line 2 (-) was incubated for 60 minutes in 

reaction buffer with no protein at 37 °C. 

The ability to cut both strands simultaneously in the same site or to 

produce single strand cuts is a criterion used to classify endonucleases. The 

appearance of two upper bands after 3 minutes of incubation with purified 

supercoiled DNA (cccDNA) is clearly revealing that the cut at both strands is 

sequential and not simultaneous 

3.12.4 Kunitz assay 

Although nowadays there are different methods to detect DNase activity, 

hyperchromicity assay is the most widely used. One Kunitz assay is defined as the 

amount of enzyme necessary to produce an increase of the absorbance at 260nm 

of 0.001 in one minute using a 1mg/mL of salmon sperm DNA solution in sodium 

acetate pH 5 buffer and performed at 25°C. 

In order to calculate how many Kunitz were present in one milligram of 

CIH, we first performed a standard curve with known DNaseI Kunits (Figure 3.34). 

Two different concentrations of CIH were measured. For 122µg of CIHFL the 

obtained ∆Abs/min is 0.0003 and for 244µg ∆Abs/min is 0.0006. When we 

extrapolate the ∆Abs/min and calculate the value for 1mg of CIH, the obtained 
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value was 2.68 Kunitz/mg. This is an extraordinary low Kunitz value, since one can 

find in the literature values ranging from 56000 Kunitz/mg for DNase I to 660 

Kunitz/mg LS-DNAse (Baron et al., 1998). 

Figure 3.34. Standard curve for Kunitz calculation. The ΔAbs/min has been monitored for each 

DNase I Kunitz measurement. The equation used to extrapolate ΔAbs/min into Kunitz is indicated. 

Enzymatic reaction was followed by increase of absorbance at 260 nm. 

It could be that the low Kunitz obtained might be related to the relative 

low temperature that was carried out since C.termophilum is a thermophilic 

organism. Other possibility is that the pH of the reaction was not the optimum 

for the protein, since theoretical pI for the protein is 5.05 and protein solubility is 

reduced when the pH is similar to the pI of the protein. In fact, small precipitation 

was observed when the protein was added to the cuvette to start the reaction. 

This obtained result further encouraged us to characterise the particularities of 

the enzyme. 
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3.12.5 CIH DNase activity displays substrate inhibition 

Initial velocities, ∆Absorbance/second (∆Abs/sec), for the reaction were 

measured with different substrate concentrations. The units had to remain in 

absorbance units because the size of the obtained product is not exactly known. 

When represented, the obtained data (Figure 3.35) clearly showed a decrease of 

the initial velocity when DNA concentration was above 100µg/mL. 

              
 

Figure 3.35. Substrate inhibition assay. Average initial velocity of the reaction from two independent 

experiments (represented as Δ Absorbance at 260nm/second) has been represented for each DNA 

concentration tested. Standard deviations for each value are represented as black bars. 

Among the concentrations tested, 100µg/mL showed optimum values 

whereas increasing the concentration to 200µg/mL was decreasing the initial 

velocity under values obtained with 50µg/mL. This pattern is consistent with an 

enzymatic substrate inhibition profile, and gives an explanation to the very low 

Kunitz value obtained, since the assay is carried out at a DNA concentration of 

1mg/mL. 
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3.12.6 The RWD domain is dispensable for the DNase activity 

Although the RWD domain did not show the ability of binding DNA, the 

cooperation between both domains or the implication of the linker in the 

nuclease activity cannot be discarded. 

In order to figure out what is the role of each domain on the enzymatic 

activity, a DNase assay was carried out using different truncations of the protein 

(Figure 3.36).  
 

           

Figure 3.36. DNase assay with different CIH domains. The first line (-) corresponds with the linear 

dsDNA input used for the assay. A scheme of the domains used for each assay (1 to 4) is represented 

on the right side of the figure. After 1 hour of reaction, samples were boiled before were run in 1% 

agarose gel to monitor DNA degradation. 

As it is shown, the elimination of the RWD from the full length protein is 

not affecting the DNase activity. However, the sole ancient domain appears to 

have a strong decrease on its activity. Since removal of the linker region seems to 

affect DNase activity, it must be somehow implicated in the reaction, either in the 

nucleophile binding or in the proper positioning of the DNA for the reaction.  
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3.13 Crystallization of the RWD domain from CIH 

Since crystallization trials with CIHFL were giving crystals only after protein 

degradation, we decided to set up crystallization screenings with the N-terminal 

domain of CIH (RWD domain). Large single crystals (Figure 3.37) were obtained 

after the first set of screenings using 47mg/mL of pure protein (CIH1-111) and using 

the vapour diffusion technique at 21°C. Crystals appeared in 1.26 M Sodium 

phosphate monobasic monohydrate, 0.14 M Potassium phosphate dibasic, pH 

5.6. 

 

 

Figure 3.37. Crystal of RWD domain from C.termophilum IMPACT homolog. 

Crystal grown in 96-well sitting drop plate at 21 ̊C. 

 

3.13.1  CIH RWD domain data processing and refinement statistics 

RWD crystals were diffracting up to 1.37Å. Crystals belonged to P21 21 21 

space group. In order to solve the phase problem, and despite there was not any 

available model in the protein data bank with high sequence identity to CIH RWD 

domain, we tried molecular replacement with the RWD domain of murine GCN2 

(Nameki et al., 2004) structure that was solved by Nuclear Magnetic Resonance 

(NMR) and was available at the PDB (1UKX). Unfortunately, this molecular 

replacement did not give any confident result.  

Since the dataset of the diffracting crystal was collected at 1.37Å with a 

low resolution limit of 37.94 Å, the dataset was suitable for Ab initio phasing, that 

was carried out in collaboration with Dr. Isabel Usón IBMB-CSIC, Barcelona using 

Arcimboldo software (Sammito et al., 2014). 

 

 



                                                                                                   RESULTS & DISCUSSION                                                                                                             
 

141 

Table 3.6. Data collection and refinement statistics for RWD domain (5edo). Statistics for the highest 

resolution shell are shown in parentheses 
 

 
 
a
 Rmeas = {Σhkl [N/(N-1)]

1/2
 Σi |Ii(hkl) - <I(hkl)>|} / Σhkl Σi Ii(hkl), where Ii(hkl) are the observed intensities, <I(hkl)> are 

the average intensities and N is the multiplicity of reflection hkl. 
b
 Rwork = Σhkl {[Fobs(hkl)] - [Fcalc(hkl)]} /Σhkl 

[Fobs(hkl)], where Fobs(hkl) and Fcalc(hkl) are the structure factors observed and calculated, respectively. 
c
 Rfree 

corresponds to Rfactor calculated using 5% of the total reflections selected randomly and excluded during 
refinement. 

d
 RMSD is the root mean square deviation. 

Wavelength (Å)                                              0.9795 

Resolution range (Å)                                    35.77 - 1.4 (1.45 - 1.4) 

Space group                                               P 21 21 21 

Unit cell                                                37.89 48.36 53.15 90 117.41 90 

Total reflections                                278273 (27299) 

Unique reflections                                19815 (1937) 

Multiplicity                                                      14 (14.1) 

Completeness (%)                                          99.96 (99.95) 

Mean I/sigma (I)                                28.57 (5.19) 

Wilson B-factor                                              18.86 

R-merge                                               0.049 (0.54) 

R-measa                                               0.051 (0.506) 

CC1/2                                                             0.999 (0.964) 

CC*                                                             1 (0.991) 

R-workb                                               0.1674 (0.1598) 

R-freec                                                             0.2078 (0.2251) 

Number of non-hydrogen atoms   791 

  Macromolecules                         744 

  Water                                                             47 

Protein residues                                97 

RMSDd (bonds)                                               0.008 

RMSDd (angles)                                               1.17 

Ramachandran favored (%)                         100 

Ramachandran outliers (%)                  0 

Clashscore                                               0 

Average B-factor                                30.80 

  Macromolecules     30.70 

  Solvent                                               32.30  
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The obtained density showed one molecule per asymmetric unit. 

Refinement was carried out until RWORK and RFREE parameters were 16.74 and 

20.78 respectively. Refinement statistics are shown in Table 3.6. PDB code 

assigned 5edo. 

3.14 CIH RWD structural characterization 

The structure of the RWD CIH domain (residues 1 to 111) exhibits a 

topology αββββαα, where the four anti-parallel β-strands are composing a β-

sheet that has one α helix in one side and the other two at the other side (Figure 

3.38). The helix α3 contacts with α1, forming a globular structure.  One side of 

the β-sheet stays hidden by the three α helixes, thus any possible interactions 

would not involve this area unless a drastic conformational change takes place.          

  

Figure 3.38. Ribbon representation of the CIH RWD domain. Non visible parts of the model have 

been represented as a discontinuous line. N-terminal and C-terminal regions are indicated with Nt 
and Ct respectively.  
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Analysis of temperature factors in the structure show very low values 

except for some residues very close to non-visible loops and for the β-turn 

connecting β-strand 2 with the β-strand 3, which suggest that a non-induced 

conformational change involving the movement of the α-helixes is not likely to 

take place (Figure 3.39). 

  

 
Figure 3.39.  Temperature factors of CIH RWD backbone in worm representation. Radii and colour 

are proportional to the average temperature factor of each residue. Residues with high temperature 

factors are depicted in red and residues with low temperature factors are rendered in purple. Radii is 

increased for residues with high average temperature factors. . N-terminal and C-terminal regions are 

indicated with Nt and Ct respectively. 

 

The electrostatic surface potential shows two different distributions. There 

is a negatively charged area corresponding to the surface of the alpha helixes, 

and a neutral area with small positive patches distributed all over the beta-sheet 

(Figure 3.40). The negatively charged area corresponds to the helixes that have 
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been previously described as essential for GCN1 binding. Thus, this finding 

suggests that GCN1-IMPACT interaction might have a strong electrostatic 

component. 

 

  
 

Figure 3.40. CIH RWD domain electrostatic surface potential representation. RWD surface coloured 

depending on its electronic potential. The electronic potential has been rendered in red and blue for 

negatively and positively charged areas respectively. White colour shows areas with neutral charge. 

Contour levels, indicated in the colour key, are in range from -10 to 10 kT/e and have been calculated 

at 300K.  Both views are rotated 180 ̊ between them.   

3.14.1  Comparison between RWD domains from GCN2 and CIH  

Sequence alignment of RWD domains from GCN2 and IMPACT reveals low 

residue conservation, displaying 13.7% of identity between murine RWD domain 

from GCN2 and RWD domain from C.termophilum sequences (calculated using 

SIAS tool: http://imed.med.ucm.es/Tools/sias.html). Alignment between RWD 

domain from GCN2 and IMPACT from different species shows that conserved 

http://imed.med.ucm.es/Tools/sias.html
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residues are grouped towards both terminal ends of the domain (Figure 3.41).  

 

 

Figure 3.41. RWD protein sequence alignment. Sequence for RWD domains of IMPACT proteins 

from C.termophilum, H.sapiens and M.musculus are aligned with RWD domain sequence from 

GCN2 of H.sapiens, M.musculus and S.cerevisiae. Residue conservation has been coloured with 

ClustalX. Protein and source organism are indicated for each sequence. 

 

However, this low conservation degree does not prevent similar overall 

structures for RWD domains, as it is observed when RWD-GCN2 alpha carbons 

from mouse and RWD-CIH structures are superimposed (Figure 3.41). This 

result is showing that the folding can be conserved despite the poor 

conservation degree of the sequence. Structural alignment between RWD 

domains from GCN2 and CIH reveal that some of the conserved residues might 

be related to structure conservation since they are involved in contacts 

between two helixes (Figure 3.42). 
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Figure 3.42. Structural superimposition between RWD domains from CIH and GCN2 proteins. Two    

different views of RWD domain from CIH (5edo) and murine GCN2 (1ukx) depicted in purple and 

light grey respectively. Identical residues in both RWD domains are coloured in black in both 

structures.  

High structural similarity observed between both models makes difficult to 

understand why the molecular replacement did not yield a better result. Prior to 

molecular replacement all unstructured regions were removed from the model. 

The change in the angle of helix 2 is the most significant difference and might be 

responsible for the lack of solution in the molecular replacement. It is also worth 

mentioning in this sense that NMR coordinates in general do not usually provide 

good starting models for molecular replacement phasing.   

As commented in the introduction (1.5.1.1), helices 2 and 3 of the Yih1 

RWD domain have been proposed as direct interactors with GCN1 and actin since 

Asp90 and Glu87 mutations to alanine increased Yih1 binding affinity for both 

proteins and Asp102 and Glu106 are required for in vivo binding (Sattlegger et al., 

2011). However, conservation of these specific residues is very poor among both 
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IMPACT and GCN2 proteins (Figure 3.41). Although glutamic 106 in Yih1 is 

conserved among IMPACT proteins it is not conserved among GCN2 proteins. 

Aspartic 102 is not conserved in GCN2 or IMPACT proteins and glutamic 87 is the 

residue displaying higher conservation degree. It is worth to note that residue 

arginine 2259 in GCN1, is essential for the binding of both Yih1 and GCN2, but it 

has been pointed that GCN1 binding affinity for Yih1 is much lower than GCN1 

binding affinity for GCN2.  

A reason for the conservation of Yih1 glutamic acids 106 and 87 among 

IMPACT sequences could be a GCN1 non-related function, but the truth is that 

although it has been demonstrated that residues E87 and E106 affect to Yih1 

cdc28 binding and that this binding is GCN1 independent, the same residues 

affect the binding of Yih1 to GCN1 or actin.  

Mutation on Yih1 E87 and D90 to alanine increased the binding affinity for 

GCN1 and actin. Those residues, E87 and D90, that apparently decrease the 

binding affinity for Yih1 interactors, might be important for the regulation of Yih1 

activity in translation control. 

3.15  Concluding remarks 

Chaetomium thermophilum has been essential in this research work. Its 

higher stability has allowed the success of the structural characterization. 

Structural information has been essential to extend the functional knowledge of 

IMPACT proteins. This work is a clear example about how a given function is 

going to be always related to the three dimensional structure of the protein, and 

even more important, how structural information can help to discover totally 

unexpected functional characteristics of a given protein.    

We have discovered IMPACT proteins as DNases, and although 

ribonuclease activity has not been confirmed it has not been discarded either 

since CIH is able to bind with similar affinity dsDNA, ssDNA and ssRNA. The 
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DNase activity has been shown to be metal dependent and to display substrate 

inhibition. Besides, the distortion of INF-β mRNA levels in cells with the IMPACT 

expression silenced is suggesting another function for the IMPACT family. IMPACT 

proteins behave as cytosolic nucleic acid sensors that affect immune response 

and the different response for DNA or RNA might be related to other binding 

proteins or to its DNase activity.  

On the other side, structural characterization of RWD domain shows high 

degree of structural conformation related to very poor sequence conservation 

and remarks the electrostatic nature of the RWD – GCN1 interaction.  

This work lays the foundations for future detailed studies related to the 

role and importance of IMPACT proteins within the cell and reasserts the 

importance of the structural information for a better understanding of protein 

functions.  
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1. CIH is a universal nucleic acid binding protein. It binds DNA and RNA with 

similar affinity and no sequence specificity. 

2. The ancient domain has certain structural similarity with RNase PH 

domain. 

3. The ancient domain binds a phosphate ion in an equivalent area of the 

RNase PH domain and that has been described as its active site. 

4. IMPACT proteins are enzymes. In particular, IMPACT proteins are DNases 

with endolytic activity that display a nucleophile assisted mechanism 

where magnesium or manganese are essential. 

5. The cleavage produced on dsDNA is sequential. 

6. CIH displays a very low Kunitz value given by the conditions of the assay. 

7. CIH DNase activity displays substrate inhibition with an optimal DNA 

concentration (among tested) of 100µg/mL. On the other side, the activity 

gets disrupted with salt concentration above 600mM. 

8. Different CIH mutants as H203A, R232A, Y253A, C221A, R271A, 

D223A/D224A o D223A/E226A show not detectable nuclease activity 

against DNA. 

9. IMPACT proteins behave as cytosolic nucleic acid sensors in mouse 

fibroblasts, affecting INF-β mRNA levels in response to the presence of 

dsDNA or dsRNA analogue in the cytosol. 

10. RWD domain is dispensable for the DNase activity. 

11. RWD domain maintains a conserved three dimensional structure despite 
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the low sequence homology.  

12. Regarding the RWD surface electrostatic potential at the area described as 

necessary for GCN1 binding, the interaction between the CIH RWD 

domain with GCN1 might have a strong electrostatic nature. 
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