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RESUMEN 

La política en alimentación de la Unión Europea debe garantizar los mayores 

niveles de seguridad y calidad alimentaria, lo que supone proteger y promover la 

salud de los consumidores. A éstos se les debe ofrecer un abanico amplio de 

alimentos seguros y de elevada calidad, por lo que el objetivo de la presente tesis 

es el análisis de compuestos bioactivos y parámetros de calidad en bebidas a base 

de zumos de frutas y sus modificaciones tras el procesado por tecnologías no 

térmicas, así como el estudio de la bioaccesibilidad de estos compuestos. 

 Se ha formulado y caracterizado un alimento nuevo, una bebida a base de 

zumo de papaya, mango, naranja y bebida de avena adicionado con açaí 

deshidratado y extracto acuoso de stevia como edulcorante acalórico natural con 

capacidad antimicrobiana y antioxidante.  

Se ha evaluado la aplicación de distintas tecnologías no térmicas (altas 

presiones hidrostáticas, pulsos eléctricos, descargas eléctricas de alto voltaje y 

ultrasonidos) en la obtención de estas bebidas a base de zumo de frutas. Los 

resultados muestran que la aplicación conjunta de dos estrategias de 

conservación (aplicación de tecnologías no térmicas junto con el empleo de 

stevia) permite un mayor contenido de compuestos bioactivos y capacidad 

antioxidante total en la bebida final. De entre los pulsos eléctricos, descargas 

eléctricas de alto voltaje y ultrasonidos, los pulsos eléctricos son en general la 

tecnología que permite la obtención de una bebida a base de zumo de papaya, 

mango y stevia con el mayor contenido de compuestos bioactivos y capacidad 

antioxidante. Además, la aplicación de pulsos eléctricos como pretratamiento al 

prensado a temperaturas bajo cero evidencia una mejora en la cinética de 

obtención de zumo de manzana y en su contenido en compuestos bioactivos. Los 

resultados avalan la aplicación de tecnologías no térmicas para obtener bebidas a 

base de frutas de mayor calidad. 

Se ha realizado una revisión de los métodos de determinación de 

bioaccesibilidad y biodisponibilidad de los compuestos bioactivos en alimentos, 

para posteriormente, estudiar la bioaccesibilidad de los compuestos bioactivos de 

la bebida a base de zumo de frutas edulcorada con stevia a través de una 
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simulación gastrointestinal. El aumento en la concentración de extracto acuoso de 

stevia da lugar a un incremento en la bioaccesibilidad de compuestos fenólicos, 

antocianinas, capacidad antioxidante total y glucósidos de esteviol, mientras que 

repercute negativamente sobre la bioaccesibilidad del ácido ascórbico, 

evidenciando de este modo la importancia de realizar estudios de bioaccesibilidad 

de los compuestos bioactivos y no únicamente la determinación de su contenido 

en cada matriz y técnica empleada en el procesado de los alimentos. 
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SUMMARY 

European Union food policy must ensure the highest levels of food safety and 

food quality, protecting and promoting consumers health. Consumers should be 

offered a wide range of safe and high quality food products, which is why the aim 

of this thesis is the analysis of nutritional and quality parameters of beverages 

based on fruit juices and their modifications after non-thermal processing 

technologies, along with the bioaccessibility study of these compounds. 

 A novel beverage based on papaya, mango and orange juice, oat beverage 

mixed with açaí and stevia water extracts as a natural non-caloric sweetener with 

antimicrobial and antioxidant capacity was formulated and analysed.  

The application of non-thermal technologies (high pressure processing, pulsed 

electric fields, high voltage electrical discharges and ultrasound) in the 

obteinment of these beverages was assessed. Results show that the joint 

application of two conservation strategies (application of non-thermal 

technologies along with the use of stevia) allowed a higher content of bioactive 

compounds and total antioxidant capacity in the final beverage. When comparing 

pulsed electric fields, high voltage electrical discharges and ultrasound, pulsed 

electric fields was generally the technology which led to the papaya and mango 

juice beverage sweetened with stevia with the highest bioactive compounds 

content and total antioxidant capacity. Furthermore, pulsed electric fields applied 

as pretreatment to pressing at subzero temperatures showed an improvement in 

the kinetics of production of apple juice and in the bioactive compounds content. 

Results support the application of non-thermal technologies for higher quality 

fruit beverages. 

A review of the methods for determining bioaccessibility and bioavailability of 

bioactive compounds was performed, so as to later study bioaccessibility of 

bioactive compounds in the beverages based on fruit juices sweetened with stevia 

through a gastrointestinal simulation. Higher stevia concentration led to an 

increase in the phenolic compounds, anthocyanins, total antioxidant capacity and 

steviol glycosides bioaccessibility, while stevia addition had a negative impact on 

ascorbic acid bioaccessibility, demonstrating the importance of bioactive 
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compounds bioaccessibility studies and not only bioactive compounds content 

determination with each food matrix and technology applied in the food 

processing.  
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1. INTRODUCCIÓN GENERAL 

1.1. Bebidas funcionales 

Dado que la prevención de enfermedades crónicas constituye una mejor 

estrategia que su tratamiento, reducir el riesgo de sufrir enfermedades 

cardiovasculares o cáncer es de gran interés para profesionales de la salud, 

científicos y para la industria alimentaria. Por esta razón, la industria alimentaria 

ha centrado sus esfuerzos en la producción de alimentos con "propiedades 

saludables", conocidos como alimentos funcionales (Zawistowski, 2014). El 

término alimento funcional se refiere a un alimento o ingrediente capaz de 

mejorar la salud y/o reducir el riesgo de padecer enfermedad (Corbo y col., 2014). 

Estos alimentos se consumen como parte de la dieta y producen efectos 

beneficiosos que van más allá de los requerimientos nutricionales tradicionales. 

Puede tratarse de alimentos naturales enteros, alimentos con algún componente 

añadido, o productos alimentarios a los que se les elimina algún componente. 

Asimismo, se incluyen alimentos con uno o más componentes modificados, 

alimentos cuya biodisponibilidad de uno o más componentes ha sido modificada, 

o cualquiera de las combinaciones anteriores. Éstos pueden estar dirigidos a toda 

la población en general o a grupos particulares, por ejemplo, por edad o 

constitución genética (Roberfroid, 2002). Junto con un estilo de vida saludable, los 

alimentos funcionales pueden contribuir de forma positiva a la salud y al bienestar 

de las personas. Ya no basta con evitar déficits nutricionales, sino asegurar una 

alimentación “óptima”, donde la identificación de los compuestos biológicamente 

activos en los alimentos, con potencial para optimizar el bienestar físico y mental 

y reducir el riesgo de enfermedad, son claves. 

Según la “Guía de Alimentos Funcionales”, publicada por la Sociedad Española 

de Nutrición Comunitaria (SENC), la Confederación Española de Consumidores y 

Usuarios (CECU) y el Instituto Omega 3 de la Fundación Puleva, en España existen 

más de 200 alimentos funcionales a la venta y se calcula que este tipo de 

productos, que en 2003 apenas representaban un 5% del mercado español, hoy 

suponen alrededor de un tercio del mismo (Özen y col., 2014). La mayoría de ellos 

pertenecen al grupo de los lácteos, aunque también existen alimentos infantiles, 
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platos preparados, productos de panadería y cereales, productos cárnicos y 

bebidas con algún componente modificado, como los ácidos grasos o la fibra, o 

con alguna sustancia biológicamente activa adicionada, como compuestos 

fitoquímicos, esteroles, antioxidantes, prebióticos o probióticos.  

Concretamente, las bebidas son con diferencia el grupo con mayor interés por 

su facilidad de manejo, distribución y almacenamiento y posibilidad de incorporar 

nutrientes deseables y compuestos bioactivos. Específicamente, el sector de las 

frutas y verduras presenta una gran oportunidad en el mercado actual, donde las 

frutas y sus derivados están ganando cuota de mercado (Corbo y col., 2014). Su 

consumo resulta beneficioso, no sólo por su aporte en nutrientes, sino por su 

capacidad para disminuir el riesgo de padecer enfermedades como cáncer, 

diabetes y enfermedades cardiovasculares, así como de retrasar procesos 

degenerativos, entre los cuales se encuentra el envejecimiento. Estos efectos se 

atribuyen principalmente a sus componentes biológicamente activos como la 

fibra, compuestos fenólicos, carotenoides, vitamina A, C y E, glucosinolatos y 

compuestos organosulfurados, entre otros. En España y en la mayoría de países 

de la Unión Europea se recomienda un consumo de 5 piezas de frutas y verduras 

diarias (five-a-day) (Braesco y col., 2013), excluyendo patatas y otras raíces 

amiláceas e incluyendo una ración de zumo de frutas. En términos de salud 

pública, se ha demostrado que el consumo de zumos de frutas y verduras puede 

ser tan eficaz como el consumo de frutas y verduras enteras en cuanto a la 

reducción del riesgo de enfermedades degenerativas (Bhardwaj y col., 2014). 

En este contexto, la investigación científica está encaminada hacia la 

optimización de la producción y formulación de nuevas bebidas funcionales. 

Cuando se diseña una nueva bebida, es importante el estudio de las interacciones 

que pueden ocurrir al mezclar los distintos ingredientes, ya que la funcionalidad 

de estos productos se puede perder o reducir por formación de precipitado, 

oxidación o degradación de sus componentes. Asimismo, es importante el estudio 

de la bioaccesibilidad (fracción del componente alimentario que se libera en el 

intestino para su absorción en la mucosa intestinal) y biodisponibilidad (fracción 

del componente alimentario que alcanza su lugar de acción) de los compuestos 

bioactivos para asegurar la mejora efectiva de la funcionalidad de bebidas. 
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Además, se debe garantizar su presencia en la matriz de la bebida durante el 

procesado. Por ello, algunos autores se centran en la aplicación de tecnologías no 

convencionales, tales como el procesado por altas presiones hidrostáticas (APH), 

pulsos eléctricos de alta intensidad (PEAI) y ultrasonidos (USN) para mejorar la 

producción de alimentos funcionales sin comprometer sus propiedades 

sensoriales y funcionales (Zulueta y col., 2013). En esta línea, los ingredientes 

naturales con actividad antioxidante y antimicrobiana podrían utilizarse en el 

diseño de estas bebidas, representando una alternativa a los conservantes 

químicos y ampliando el mercado de las bebidas funcionales (Sun-Waterhouse, 

2011). Por tanto, la investigación encaminada hacia la búsqueda de estrategias 

exitosas que mejoren el atractivo de las bebidas funcionales y demuestren su 

inequívoca eficacia en la promoción de la salud se presenta como necesaria. 

Dentro del grupo de bebidas funcionales se encuentran los zumos funcionales, 

que suelen ser mezclas de productos que contienen sustancias activas que 

protegen la salud, sobre todo con capacidad antioxidante. En la elaboración de 

estos zumos se emplean frutas u otros ingredientes que destacan por su riqueza 

en nutrientes y compuestos antioxidantes beneficiosos para la salud, basándose 

en la evidencia científica. Entre ellos figuran los siguientes: 

La papaya es apreciada por su sabor, calidad nutricional y propiedades 

digestivas. Tiene un alto contenido en carotenoides, flavonoides, potasio, fibra y 

ácido ascórbico. Contiene 108 mg de ácido ascórbico por 100 g de fruta fresca, 

valor superior al que presenta la naranja (67 mg/100 g) (Gayosso-García y col., 

2011) y es una de las frutas con mayor capacidad antioxidante (Vij & Prashar, 

2015). Por otra parte, contiene papaína, una enzima proteolítica similar a la 

pepsina que le confiere propiedades digestivas. 

El mango es una fruta tropical que destaca por su color, sabor y por su alto 

contenido en fibra, vitamina C, β-caroteno, vitamina E y compuestos fenólicos (Li 

y col., 2014), que le aportan una alta capacidad antioxidante. Representa para los 

consumidores una nueva fuente natural de β-caroteno (provitamina A) y vitamina 

C (44 mg/100 g), que, como antioxidantes, contribuyen a reducir el riesgo de 

múltiples enfermedades crónicas. Entre sus compuestos fenólicos se encuentran 

el ácido tánico, con propiedades antioxidantes y antibacterianas, el ácido elágico y 
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la manguiferina, específica del mango. El ácido elágico y la manguiferina poseen 

propiedades antiinflamatorias y anticancerígenas que ayudan a fortalecer el 

sistema inmunológico del organismo. Su contenido en fibra le confiere 

propiedades laxantes. Existen numerosos estudios sobre el valor nutritivo y el 

efecto del procesado sobre los compuestos bioactivos y capacidad antioxidante 

del mango (García-Magaña y col., 2013; Kaushik y col., 2014). 

La naranja, por su parte, es rica en vitamina C, ácido fólico y minerales como 

el potasio, magnesio y calcio. También aporta cantidades importantes de β-

caroteno, lo que hace de ella una fruta con un gran poder antioxidante. Contiene 

fibra que se encuentra concentrada en el albedo, entre la pulpa y la piel. Su zumo 

es el de mayor elaboración y consumo a nivel mundial (Zvaigzne & Karklina, 2013). 

Se han realizado diversos estudios sobre el efecto que las tecnologías térmicas y 

no térmicas pueden tener sobre su contenido en compuestos bioactivos (Cortés y 

col., 2008; Esteve y col., 2009). 

La manzana presenta un alto contenido en minerales, fibra y compuestos 

bioactivos como el ácido ascórbico y compuestos fenólicos con capacidad 

antioxidante (Wu y col., 2007). El zumo de manzana es el tercero en orden de 

consumo (después del de naranja y el multisabor) en el mercado europeo (AIJN, 

2015). Sin embargo, presenta el inconveniente de pardearse con facilidad, por lo 

que se han llevado a cabo numerosos estudios para el desarrollo de estrategias 

capaces de prevenir su pardeamiento (Sun y col., 2015).  

Por otra parte, la avena es un cereal con un índice glucémico bajo, un alto 

contenido de proteínas (16,9%) y alta digestibilidad. Contiene todos los 

aminoácidos esenciales, aunque no en la proporción óptima, ya que es 

relativamente pobre en lisina y treonina, mientras que tiene un exceso de 

metionina. Aunque la avena contiene alrededor de 7 g/100 g de grasa, 

predominan los ácidos grasos insaturados (80%), entre los que destaca el 

linoleico. Presenta también vitaminas del grupo B (niacina, vitamina B6 y ácido 

fólico), vitamina E, fósforo, y hierro (4,72 mg/100 g). Destaca por su contenido en 

fibra soluble, cuyo principal componente es el β-glucano, derivado soluble de la 

celulosa. Esto le confiere un efecto laxante suave, pero sobre todo, capacidad de 

disminuir el contenido de colesterol (Zheng y col., 2015). 
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Otro ingrediente es el extracto de açaí (Euterpe oleracea). El açaí es el fruto de 

la palmera originaria de la región brasileña del Amazonas. En los últimos años se 

ha asociado con beneficios para la salud por su importante contenido en 

compuestos bioactivos (vitamina C, E y A y compuestos fenólicos) que le confieren 

una alta capacidad antioxidante y una potencial capacidad antimicrobiana 

(Schauss, 2010), por lo que se ha incluido en lo que se denominan “superfrutas”. 

En Brasil, forma parte de distintos tipos de bebidas y refrescos y en el mercado 

europeo y en EEUU, su presencia es creciente. Existe una gran demanda de 

nuevos sabores y que proporcionen un valor añadido, si es posible, a alimentos ya 

conocidos y hacerlos más atractivos, como yogures, batidos o helados, y en la 

industria y comercio alimentarios, el açaí ocupa ese espacio emergente 

(Yamaguchi y col., 2015). 

Stevia rebaudiana Bertoni, una planta originaria de la cordillera de Amambay, 

entre Paraguay y Brasil, utilizada como edulcorante por los indios guaraní durante 

siglos, también presenta interés como ingrediente en la elaboración de bebidas. 

Sus hojas constituyen la parte más dulce de la planta (unas 10-30 veces más 

dulces que el azúcar). Contienen glucósidos de esteviol y un gran número de 

micronutrientes como flavonoides, ácidos fenólicos, β-sitosterol, vitamina C, 

hierro, fósforo, calcio, potasio, sodio, magnesio y zinc. En las hojas es donde se 

encuentran estos compuestos que tienen propiedades beneficiosas. Sin embargo, 

dado que normalmente se consume en bajas cantidades, su aporte apenas es 

significativo. Además, los extractos comercializados de stevia son más refinados y 

su contenido en estos compuestos es menor (Wölwer-Rieck, 2012). 

Los glucósidos de esteviol son las moléculas responsables del sabor dulce de 

la stevia y son entre 100 y 300 veces más dulces que la sacarosa. Éstos pueden 

utilizarse como edulcorantes acalóricos en sustitución de la sacarosa, fructosa o 

glucosa. Son resistentes al calor y a condiciones ácidas, lo que les permite ser 

utilizados en alimentos y bebidas sin apenas degradación. Su esqueleto está 

compuesto por el esteviol, cuyo grado de glucosilación da lugar a los distintos 

glucósidos de esteviol (Figura 1). Los principales son el esteviósido (5-10%), el 

rebaudiósido A (2-4%), el rebaudiósido C (1-2%) y el dulcósido A (0,5-1%). Ya en 

menor proporción se encuentran el esteviolbiósido, el rubusósido y los 
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rebaudiósidos B, D, E y F (Gasmalla y col., 2014). Se ha visto que el esteviósido y el 

rebaudiósido A no se absorben, sino que se convierten en esteviol en la flora 

intestinal. En los seres humanos y ratas, el esteviol se convierte rápidamente en el 

glucurónido, y éste no se metaboliza sino que es excretado (Renwick & Tarka, 

2008). Por tanto, son acalóricos y no proporcionan valor energético. 

 
Figura 1.  Estructura química de los glucósidos de esteviol. 

El uso en alimentos de edulcorantes derivados de stevia se ha permitido 

durante años en América del Sur y en varios países de Asia, incluyendo China, 

Japón y Corea del Sur. Más recientemente, se ha aprobado su uso en México, 

Australia, Nueva Zelanda y Hong Kong. En Estados Unidos, desde 1995 se han 

utilizado glucósidos de esteviol como suplementos dietéticos, y desde 2008, la 

FDA (Food and Drug Administration) reconoce su estatus de GRAS (Generally 

Recognised As Safe) y se permite su uso como edulcorante en alimentos, 

concretamente, los glucósidos de esteviol o el rebaudiósido A con un nivel de 

pureza superior al 95% (FDA, 2008). Se permite específicamente para alimentos 

que se producen en gran volumen, como productos horneados y bebidas no 

alcohólicas y se excluye su uso en productos cárnicos y aves de corral, así como en 

preparados para lactantes. En 2008, la JECFA (Joint FAO/WHO Expert Committee 

on Food Additives) aprobó una ingesta diaria admisible (IDA) de 0-4 mg/kg peso 

corporal, expresada como esteviol (JECFA, 2008). En Europa, en Noviembre del 
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2011 se autorizaron los glucósidos de esteviol como aditivos alimentarios (E 960) 

(EC, 2011). Esto no incluye las hojas, que deben considerarse nuevos alimentos, 

todavía pendiente de autorización. 

En el año 2014, se consumieron unas 4670 toneladas de glucósidos de 

esteviol, un 14% superior al año anterior (Zenith International, 2014). Los 

principales países productores son China y Japón (80%), mientras que la India y 

América del Sur comparten el resto de la producción. En Japón, donde el consumo 

de edulcorantes artificiales como la sacarina o ciclamato está limitado ante la 

sospecha de su efecto cancerígeno, su uso representa actualmente el 41% de 

mercado de edulcorantes (Zenith International, 2014). Además, los glucósidos de 

esteviol ya se incluyen como ingredientes en una amplia variedad de productos en 

la industria alimentaria (Figura 2): bebidas como zumos y refrescos, productos 

lácteos, salsas, confitería, galletas, etc. y productos bajos en calorías (Nachay, 

2015). 

 
Figura 2.  Productos comercializados a nivel mundial que contienen Stevia 

rebaudiana en su composición. 
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1.2. Compuestos bioactivos 

Hoy en día, el efecto beneficioso de las frutas y verduras en la prevención de 

enfermedades crónicas se atribuye principalmente a sus compuestos bioactivos, 

que se definen como constituyentes fitoquímicos presentes en los alimentos 

capaces de modular procesos metabólicos y de esta forma mejorar la salud de las 

personas. Son sintetizados en pequeñas cantidades en la naturaleza y entre sus 

funciones destacan su capacidad antioxidante, inhibición o inducción de enzimas, 

inhibición de actividades del receptor, e inducción e inhibición de la expresión 

génica (Correia y col., 2012). Dentro de este grupo se incluyen una gran variedad 

de compuestos con distinta estructura química (hidrófilos/lipófilos), distribución 

en la naturaleza, rango de concentración, lugar de acción, eficacia contra especies 

oxidativas, especificidad y acción biológica (Porrini & Riso, 2008). 

Según su estructura química se pueden agrupar en compuestos fenólicos, 

vitaminas antioxidantes, derivados de terpeno, compuestos de azufre, 

fitoesteroles, péptidos y aminoácidos, minerales, ácidos grasos poliinsaturados, 

fibra dietética, ácido fítico y bacterias lácticas (Gil-Chávez y col., 2013). 

 Compuestos fenólicos 1.2.1.

Los compuestos fenólicos son metabolitos secundarios de las plantas 

formados químicamente por un anillo aromático unido a uno o más grupos 

hidroxilo. Se pueden clasificar según su estructura química en ácidos fenólicos 

(ácidos hidroxi-benzoicos y ácidos hidroxi-trans-cinámicos), cumarinas, lignanos, 

flavonoides (flavonas, flavonoles, flavanonas, flavanololes, flavanoles y 

antocianidinas), estilbenos, isoflavonoides y polímeros fenólicos 

(proantocianidinas y taninos hidrolizables) (Craft y col., 2012) (Figura 3).  

La presencia de compuestos fenólicos en las plantas es muy variada y 

depende de factores como la especie vegetal, variedad, parte de la planta, 

condiciones agroclimáticas y aspectos tecnológicos relacionados con el procesado 

y conservación. En frutas exóticas, se encuentran en el rango de 13,5 a 159,9 mg 

ácido gálico/100 g. Su concentración en zumos de frutas oscila entre 2 y 500 mg/L, 

dependiendo del tipo de fruta, aunque en zumos que contienen naranja su 
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concentración es mayor (hasta 700 mg/L) (Suna y col., 2013). Su distribución en 

tejidos vegetales y células varía considerablemente según su estructura química. 

Se sitúan en el interior de la célula o en la pared celular y son secretados como 

mecanismo de defensa ante situaciones de estrés de la célula vegetal. 

 
Figura 3. Clasificación y estructura de los compuestos fenólicos. 

Estos compuestos desempeñan funciones protectoras en las plantas frente a 

patógenos y depredadores, radiaciones ultravioleta u otras situaciones de estrés 

físico. También contribuyen al color y características sensoriales de frutas y 

verduras. En los seres humanos, estos compuestos pueden tener implicaciones 

sobre su salud, concretamente en la reducción de enfermedades degenerativas 

como ciertos tipos de cánceres y enfermedades cardiovasculares, efectos 

atribuidos a sus múltiples propiedades fisiológicas (antialergénicos, 

antiinflamatorios, antimicrobianos, antioxidantes, antitrombóticos, 
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antiarterogénicos, vasodilatadores y cardioprotectores) (Heleno y col., 2014). La 

capacidad antioxidante de estos compuestos depende de su estructura, en 

particular del número y posición de los grupos hidroxilo y de las sustituciones en 

los anillos aromáticos. Pueden ejercer su acción a través de varios mecanismos: 

reaccionando contra radicales libres, protegiendo y regenerando otros 

antioxidantes de la dieta o por quelación de iones metálicos (Craft y col., 2012). La 

importancia de estos compuestos también radica en la formación de quinonas 

cuando son oxidados por la enzima polifenoloxidasa, produciendo el 

pardeamiento enzimático de los alimentos y afectando así a la calidad de muchas 

frutas y verduras durante su procesado (Criado y col., 2014). 

Los flavanoides constituyen el grupo mayoritario de compuestos fenólicos 

englobando a flavonas, flavonoles, flavanonas, flavanololes, flavanoles y 

antocianidinas y desempeñan diferentes funciones. Dentro de este grupo, se 

encuentran las antocianinas (glucósidos de antocianidinas), que contribuyen al 

color rojo-azul de muchas frutas y verduras, dependiendo del pH, como uvas, 

arándanos, cerezas, coles rojas, judías y batatas púrpuras y se han relacionado con 

numerosas propiedades saludables, entre las que destacan la antiinflamatoria, 

antioxidante y anticancerígena (Pojer y col., 2013). 

 Ácido ascórbico 1.2.2.

El ácido ascórbico posee una estructura de enodiol que se halla conjugada con 

el grupo carbonilo en el anillo lactona. Los dos átomos de hidrógeno enólicos son 

los que confieren a este compuesto su carácter ácido y proporcionan los 

electrones para su función antioxidante. Es un ácido inestable, fácilmente 

oxidable y se puede destruir en presencia de oxígeno y altas temperaturas. En 

presencia de oxígeno, el ácido ascórbico se oxida a ácido dehidroascórbico, que 

tiene su misma actividad vitamínica. Esta actividad se pierde después de la 

hidrólisis a pH fisiológico del ácido dehidroascórbico a ácido 2,3-dicetogulónico. El 

término vitamina C incluye ácido ascórbico, ácido dehidroascórbico y sales de 

ascorbato (Figura 4). 
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Figura 4. Estructura química del ácido ascórbico y sus derivados. 

El ácido ascórbico es esencial para el ser humano ya que no podemos 

sintetizarlo por la falta de la enzima gulonolactona oxidasa. La ingesta diaria 

recomendada para la población española es de 60-90 mg al día (Cuervo y col., 

2010), aunque en personas fumadoras o expuestas a tabaco estos requerimientos 

son superiores. Se encuentra principalmente en frutas y verduras frescas, aunque 

su contenido varía en función de la variedad, madurez, clima, condiciones del 

suelo y condiciones de procesado y almacenamiento. Su concentración es elevada 

en cítricos, pimientos, fresas, kiwis, tomates, brócoli y coles de Bruselas. La 

ingesta de zumos de frutas proporciona en torno a un 21% de la ingesta diaria 

recomendada (Almeida, 2014) y en frutas exóticas, se encuentra dentro del rango 

de 1,2 a 96,3 mg ácido ascórbico/100 g (Almeida y col., 2011). 

El ácido ascórbico es termolábil y su concentración disminuye durante su 

almacenamiento, en función de las condiciones de temperatura, presencia de 

oxígeno y luz (Esteve y col., 1996). Por tanto, puede utilizarse como indicador de 

la pérdida de otras vitaminas o compuestos como pigmentos naturales y 

sustancias aromáticas. Su absorción intestinal se lleva a cabo mediante transporte 

activo, siendo muy variable la concentración de ácido ascórbico en los diferentes 

órganos y tejidos.  

Se considera uno de los antioxidantes naturales más eficaces y es necesario 

para el funcionamiento normal del organismo ya que está implicado en muchas 

funciones fisiológicas y protege el cuerpo de los efectos nocivos de radicales libres 

y contaminantes. Participa en el crecimiento del tejido y curación de heridas, 

mantenimiento de la integridad del tejido conjuntivo, especialmente de las 

paredes capilares, prevención del escorbuto y actúa como cofactor de varias 

enzimas implicadas en la biosíntesis de carnitina y ciertos neurotransmisores y en 

Ácido ascórbico Ácido dehidroascórbico Ácido 2,3-dicetogulónico
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el metabolismo de la tirosina, ácido fólico y triptófano, además de favorecer la 

absorción del hierro iónico (Grosso y col., 2013). 

 Carotenoides  1.2.3.

Los carotenoides son pigmentos liposolubles de color rojo-amarillo 

ampliamente distribuidos en muchas frutas y verduras que se dividen en 

carotenos (hidrocarbonos insaturados: α-caroteno, β-caroteno y licopeno…) y 

xantófilas (derivados oxigenados de los carotenos: luteína, zeaxantina…). Están 

formados por largas cadenas de dobles enlaces conjugados siendo su estructura 

de naturaleza isoprénica. Los principales carotenoides presentes en verduras son 

la luteína y el β-caroteno, mientras que en las frutas las xantófilas se encuentran 

generalmente en mayor proporción. 

 

Figura 5. Estructura de algunos de los principales carotenoides. 

En los seres humanos, algunos carotenoides contribuyen al aporte de 

vitamina A al ser metabolizados a retinal o retinol (Simons y col., 2015), lo que 

permite clasificarlos en dos grandes grupos: provitamínicos y no provitamínicos 
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(Figura 5). El número de carotenoides precursores de la vitamina A oscila entre 

50-60, destacando los α, β y γ-carotenos y algunas xantofilas como la β-

criptoxantina. 

Los carotenoides se absorben por un proceso pasivo en el que influyen varios 

factores como la ingesta dietética de grasa, el consumo de fibra o el aporte de 

vitamina A. Tras la ingesta, el 10-50% de los carotenoides se absorben en la 

mucosa intestinal incorporados en micelas lipídicas junto con otros compuestos 

lipofílicos (Read y col., 2015). Los quilomicrones son los responsables del ulterior 

transporte de los carotenoides al sistema linfático. Tras su liberación al torrente 

sanguíneo, los carotenoides participan en la síntesis de retinoides o se unen a 

lipoproteínas de muy baja densidad, que posteriormente pasan a lipoproteínas de 

baja densidad, siendo ésta su principal forma de transporte en sangre. 

Dependiendo de la posición de los sustituyentes y los dobles enlaces, los 

carotenoides presentan dos configuraciones químicas y se denominan E/Z o 

cis/trans estereoisómeros. Los carotenoides predominantemente se encuentran 

en la naturaleza en configuración trans, termodinámicamente más estable 

(Rodríguez-Amaya, 2003). Debido a su insaturación, los carotenoides son 

propensos a la isomerización y/o la oxidación. 

El β-caroteno se absorbe con menos facilidad que el retinol y debe ser 

convertido a retinal y retinol por el organismo. Por ello se emplea el término 

equivalente de retinol (ER) que tiene en cuenta la bioeficacia de los carotenoides: 

1 ER=1 µg de retinol=12 µg de β-caroteno=24 µg de α-caroteno=24 µg de β-

criptoxantina. Se ha estimado una ingesta recomendada de vitamina A de 600-800 

equivalentes de retinol por día (Cuervo y col., 2010). Aproximadamente, el 26-

34% de la vitamina A proviene de los carotenoides. 

El β-caroteno tiene gran importancia desde el punto de vista nutricional dado 

que es el precursor de la vitamina A. En las células vegetales, los carotenoides 

protegen de la oxidación y su descomposición. En el organismo humano, actúan 

como antioxidantes reaccionando contra radicales libres. Se ha demostrado que 

existe una asociación inversa entre la ingesta de carotenoides y el riesgo de 

padecer determinados tipos de cánceres (estómago y pulmón), calcificación ósea, 

degeneración ocular y daño neuronal (Bovier y col., 2014; Kaur y col., 2011). Es 
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por ello que se recomienda aumentar el consumo de frutas y verduras ricas en 

carotenoides. 

 Capacidad antioxidante 1.2.4.

La mayoría de compuestos bioactivos presentan una marcada actividad 

antioxidante, que se pone de manifiesto en su capacidad para atrapar radicales de 

oxígeno, nitrógeno y radicales orgánicos. Un compuesto antioxidante se define 

como aquel que está presente en una concentración baja con respecto a un 

sustrato oxidable y es capaz de retrasar o inhibir su oxidación (Brewer, 2011). La 

actividad biológica de antioxidantes naturales presentes en los alimentos, como el 

ácido ascórbico, tocoferoles, carotenoides, compuestos fenólicos, aminoácidos, 

fosfolípidos y esteroles, ha sido ampliamente demostrada in vitro e in vivo 

(Heleno y col., 2014; Wan y col., 2015). Las frutas y verduras se caracterizan por 

tener una alta concentración de estos compuestos y por tanto, una alta capacidad 

antioxidante. 

La capacidad antioxidante de los alimentos depende de muchos factores, 

entre los que destacan las propiedades coloidales de los sustratos, las condiciones 

de oxidación y el estado y ubicación de los antioxidantes en los alimentos (Choe & 

Min, 2009). Dada la complejidad de los sistemas antioxidantes del organismo 

humano, cada tipo e incluso cada compuesto presenta un mecanismo de acción y 

una actividad propia, por lo que a la hora de medir la capacidad antioxidante en 

general, no basta con el empleo de un único método de ensayo, sino que en 

general, se recurre a la combinación de dos o más métodos de evaluación 

(Zulueta y col., 2009). 

Los métodos empleados para medir la capacidad antioxidante se pueden 

clasificar en dos grupos, atendiendo a su mecanismo de acción. En primer lugar se 

encuentran los métodos basados en la transferencia de átomos de hidrógeno. 

Entre ellos se incluye el método ORAC (Oxygen Radical Absorbance Capacity), que 

consiste en la determinación fluorimétrica de la disminución de la fluorescencia 

en presencia de antioxidantes. Además, existen métodos basados en la 

transferencia de electrones. Entre éstos, se incluyen los métodos de DPPH (2,2-

diphenyl-1-picrylhydrazyl) y TEAC (Trolox Equivalent Antioxidant Capacity), que 
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consisten en la determinación espectrofotométrica para conocer la disminución 

de la absorbancia de los radicales DPPH y ABTS (2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid)) en presencia de antioxidantes. 

1.3. Tecnologías de conservación no térmicas  

Desde hace varias décadas, el tratamiento por calor ha sido la tecnología más 

empleada en la conservación de alimentos. A través de este proceso se consiguen 

alimentos microbiológicamente seguros y con baja actividad enzimática. Sin 

embargo, en ocasiones, conlleva un detrimento de la calidad sensorial y 

nutricional del producto, causando modificaciones de aroma, cambios de color, 

desnaturalización de proteínas, cambios físicos y degradación de vitaminas 

termolábiles. 

Este hecho ha llevado a la industria alimentaria a la búsqueda de tecnologías 

de conservación no térmicas (aquellas que no emplean la temperatura como 

principal forma de inactivación de microorganismos y enzimas) que aseguren que 

las cualidades nutricionales y organolépticas de los distintos alimentos no se vean 

prácticamente afectadas. Si bien es cierto que en la mayoría de estos 

tratamientos se produce un leve incremento de la temperatura, éste nunca llega a 

ser tan elevado como en un tratamiento térmico. El objetivo principal de estas 

tecnologías no térmicas es lograr alimentos que conserven al máximo su calidad 

sensorial y nutricional sin renunciar a la seguridad alimentaria, como alternativa a 

los tratamientos térmicos tradicionales y algunas de ellas además ofrecen mejoras 

en la eficiencia energética y reducción de residuos. Entre dichas tecnologías 

destacan las altas presiones hidrostáticas, campos eléctricos de alta intensidad, 

ultrasonidos, irradiación y campos magnéticos oscilantes. En ocasiones se recurre 

a la aplicación de procesos combinados, donde la asociación o aplicación 

simultánea de varios procedimientos permite potenciar el efecto de cada uno de 

ellos y reducir el impacto adverso en las características de los alimentos tratados 

(Barba y col., 2014). 
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 Altas Presiones Hidrostáticas (APH) 1.3.1.

La aplicación de altas presiones hidrostáticas (APH), también conocida por las 

siglas HHP (High Hydrostatic pressure), HPP (High Pressure Processing) y UHP 

(Ultra High Pressure), se basa en someter un producto a elevadas presiones 

hidrostáticas (entre 100 y 800 MPa) de forma continua durante un cierto tiempo 

(desde pocos segundos hasta 20 minutos) junto con un líquido presurizante, 

normalmente agua, pudiéndose combinar con la aplicación de calor, alcanzando 

temperaturas que pueden ir desde los 0 °C hasta los 100 °C. Esta técnica se 

asienta fundamentalmente en dos principios: a) Principio de Le Chatelier, que 

enuncia que cualquier fenómeno (reacciones químicas, cambios moleculares, etc.) 

que va acompañado de una disminución de volumen se ve favorecido por la 

presión y viceversa. Según este principio la aplicación de la alta presión desplaza 

el equilibrio de un proceso hacia el estado que ocupa menos volumen. b) Ley de 

Pascal, según la cual una presión externa aplicada a un fluido confinado se 

transmite de forma uniforme e instantánea en todas las direcciones. Ello evita la 

deformación del producto, a pesar de estar sometido a tan altas presiones, y hace 

que éste sea muy homogéneo y no presente zonas sobretratadas. De acuerdo con 

este último principio, esta tecnología puede aplicarse directamente a alimentos 

líquidos o a cualquier producto envasado, sumergidos en un fluido de 

presurización de baja compresibilidad. La presión aplicada al sistema permite un 

tratamiento isostático y uniforme independientemente del tamaño, forma y 

volumen del material procesado.  

El tratamiento con APH puede afectar, en mayor o menor grado, la viabilidad 

de microorganismos y la actividad enzimática, así como modificar los 

componentes de los alimentos y cambiar sus características organolépticas 

(Terefe y col., 2014). Presiones inferiores a 1000 MPa no afectan a enlaces 

covalentes, dado que tienen baja compresibilidad, por lo que la estructura 

primaria de las moléculas no se ve modificada. Sin embargo, sí que contribuyen a 

la disociación de grupos ácidos de las cadenas laterales de aminoácidos y a la 

ruptura de puentes salinos intramoleculares (Chakraborty y col., 2014). Asimismo, 

son capaces de reducir o incluso inhibir reacciones de Maillard relacionadas con la 



29 

Introduction 

 

 

 

mala conservación de alimentos. Entre los mecanismos por el que las APH 

producen estos efectos destacan el aumento de la porosidad y consecuente 

permeabilidad de las membranas celulares, disminución de la síntesis de ácido 

desoxirribonucleico y desnaturalización de biopolímeros y proteínas, incluida la 

inactivación de enzimas por cambios en la estructura intramolecular (>300 MPa). 

En los microorganismos, la estructura afectada en primer lugar es la membrana 

celular, con formación de poros en ella o modificación de sus sistemas de 

transporte, lo que en definitiva implica un intercambio entre el citoplasma y el 

medio extracelular distinto del intrínseco, que afecta a la homeostasis celular y, 

en consecuencia, las posibilidades de supervivencia de la célula.  

Los equipos de APH empleados en el procesado de alimentos constan de una 

cámara de presión (cilíndrica de acero de elevada resistencia), un generador de 

presión (generalmente un sistema de bombeo constituido por una bomba 

hidráulica y un sistema multiplicador de presión), un sistema de control de 

temperatura y un software (controlador), tal como aparece en la Figura 6.  

 

Figura 6. Equipo de tratamiento de APH del IATA (CSIC). 

Para proceder al tratamiento por APH, se coloca la muestra en el interior de la 

cámara de presurización. En el caso de alimentos envasados, el envase debe ser 

Depósito de fluido

Bomba + filtros

Válvula aguja Baño de 
temperatura

Vasija de 
tratamiento
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flexible y deformable, tolerando reducciones de volumen de hasta un 15%. Con el 

fin de asegurar la máxima eficacia de presurización, es especialmente importante 

la evacuación de gases. Una vez que la cámara se carga con el alimento envasado 

y se cierra, se llena con el medio de presión-transmisión, generalmente agua. El 

sistema de bombeo va sustituyendo el aire de la cámara por el fluido de 

presurización hasta su total llenado y posteriormente, incrementa la presión hasta 

los niveles establecidos. Una vez alcanzada la presión deseada, una válvula que 

cierra el circuito permite el mantenimiento de la presión, sin necesidad de aporte 

adicional de energía, durante el tiempo estipulado. El registro de la temperatura 

en el interior de la vasija se realiza mediante termopares inmersos en el fluido 

presurizante. La compresión aumenta uniformemente la temperatura de los 

alimentos, aproximadamente 3 °C por cada 100 MPa. Un aumento en la 

temperatura del alimento por encima de la temperatura ambiente aumenta la 

tasa de inactivación de microorganismos durante el procesado por APH. El tiempo 

de tratamiento depende del tipo de alimento y de la temperatura del proceso. 

Una vez finalizado el tiempo de procesado se descomprime la cámara para sacar 

el alimento tratado (Figura 7).  

 

Figura 7. Esquema de funcionamiento de un equipo de APH. 

En el procesado por APH influyen principalmente los parámetros de tiempo y 

presión, además de la temperatura del tratamiento, incluyendo la 

correspondiente al calentamiento adiabático. Además, intervienen otros factores 
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críticos como el “come-up-time” (tiempo empleado en aumento del nivel de 

presión hasta la presión de tratamiento), tiempo de descompresión (tiempo 

requerido para reducir la presión desde el nivel de presión de tratamiento hasta 

presión atmosférica), temperatura del producto inicial, cambios de temperatura 

producidos durante la compresión/descompresión (calentamiento/enfriamiento 

adiabático), pH, composición y actividad de agua del producto, integridad del 

material de empaquetado y contribuciones del proceso coexistentes. Todos estos 

factores pueden influir en las características microbiológicas, nutricionales y 

organolépticas del producto final.  

En general, presiones de 400 y 600 MPa en frío (4-10 °C) o a temperatura 

ambiente producen importantes reducciones (4 unidades logarítmicas) de la 

mayoría de microorganismos en su forma vegetativa (bacterias, virus, levaduras, 

mohos y parásitos), mientras que las esporas pueden requerir presiones 

superiores a los 1000 MPa. La inactivación de esporas es mayor cerca de la 

neutralidad y más pequeña a niveles extremos de pH. En productos vegetales de 

pH 4, es necesaria la combinación de los tratamientos de APH con otras 

tecnologías de conservación como el calor suave o aditivos (Tola & Ramaswamy, 

2014). Por ello, con las presiones y temperaturas empleadas en equipos 

industriales se suele hablar de pasteurización por alta presión, ya que no se 

destruyen las células vegetativas de los géneros más resistentes o las esporas. Es 

por esto que los alimentos presurizados comerciales deben mantenerse en 

refrigeración. Sin embargo, la combinación de presión y temperatura moderada 

(60-80 °C) o alta (100-110 °C) puede llegar a afectar, parcial o totalmente, a las 

esporas. En este caso se habla de esterilización por presión y temperatura 

(pressure assisted thermal sterilisation). 

En cuanto a los efectos en los componentes y características de los alimentos, 

en condiciones habituales de procesado, el efecto de las APH es mínimo, ya que 

los enlaces covalentes no se ven afectados y en general, los compuestos de bajo 

peso molecular (vitaminas, compuestos responsables del aroma y pigmentos) no 

suelen verse modificados. Aunque se produce un ligero aumento de la 

temperatura durante la aplicación de APH, este aumento no es suficiente para la 

degradación de estos compuestos. De esta forma, se pueden obtener productos 
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con propiedades nutricionales y sensoriales prácticamente iguales a la de los 

productos frescos, satisfaciendo la demanda del consumidor de alimentos 

nutritivos, saludables, y naturales, además de asegurar su calidad, seguridad y una 

mayor vida útil. Sin embargo, en ocasiones sí que se pueden producir cambios de 

color, apariencia y modificaciones de textura, aunque depende en gran medida de 

la matriz alimentaria y las condiciones de tratamiento (Barba y col., 2012).  

La aplicación de APH está aprobada como técnica de pasteurización de 

productos empaquetados para alimentos de baja acidez en Estados Unidos. En 

España, la comercialización de productos sometidos a altas presiones está 

regulada por el Reglamento Comunitario EC 258/97 y EC 424/2001 (EC, 1997, 

2002), que contemplan los “nuevos alimentos y nuevos ingredientes alimentarios” 

y que consideran a los productos presurizados como productos sometidos a 

pasteurización por presión (baropasteurización). Existe ya una amplia gama de 

alimentos comercializados, aunque el coste asociado a la instalación de un equipo 

comercial de alta presión es una barrera importante para su implantación en la 

industria alimentaria. 

 

Figura 8. Productos tratados por altas presiones comercializados en España. 

Entre los alimentos comercializados tratados por APH se incluyen alimentos 

sólidos, preferentemente envasados al vacío (productos cárnicos cocidos o 

curados, quesos, pescado, marisco, platos preparados, salsas, frutas, mermeladas 
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y verduras) y alimentos líquidos, en envase suficientemente flexible (productos 

lácteos, zumos de frutas y preparados nutraceúticos). No son alimentos 

adecuados para este tipo de tratamiento alimentos sólidos con aire incluido (pan 

y mousse), alimentos envasados en envases totalmente rígidos (de cristal o lata) 

ni alimentos con muy bajo contenido en agua (especias y frutos secos). En la 

Figura 8 se recogen algunos de los productos comercializados actualmente en 

nuestro país. 

En zumos de frutas es una de las técnicas de procesado no térmico más 

utilizadas en las últimas décadas, ya que puede contribuir a extender su vida útil y 

conservar su textura, sabor, vitaminas y otros compuestos (Rao y col., 2014). Al 

ser de naturaleza ácida, la pasteurización de zumos de frutas por APH no requiere 

temperaturas elevadas, sino que se puede lograr a temperatura ambiente y 

presión inferior a 300 MPa. A nivel industrial, se suelen aplicar presiones de 400-

600 MPa. Mediante esta técnica, los compuestos bioactivos y capacidad 

antioxidante no se ven prácticamente alterados con respecto al producto fresco, 

aunque los resultados dependen de las condiciones de procesado y de la matriz 

alimentaria (Barba y col., 2014). Además, también se ha observado que estos 

compuestos se conservan mejor durante el almacenamiento refrigerado en 

comparación con aquellos sometidos a una pasteurización convencional (Liu y 

col., 2014). 

 Pulsos eléctricos de alta intensidad (PEAI) 1.3.2.

La tecnología de PEAI consiste en la aplicación de pulsos eléctricos de corta 

duración (1- 2500 μs) e intensidades de campo altas (10-80 kV/cm) a un alimento 

con una conductividad eléctrica adecuada situado entre dos electrodos. Se basa 

en la propiedad que tienen los alimentos fluidos, compuestos principalmente por 

agua y nutrientes, de ser buenos conductores eléctricos debido a las altas 

concentraciones de iones y a su capacidad de transportar cargas eléctricas. La 

aplicación de PEAI genera la polarización de moléculas bipolares y el movimiento 

de electrones en el interior de los alimentos, induciendo una corriente eléctrica 

que puede dar lugar a la destrucción mecánica de la membrana celular de 

microorganismos, la electrólisis de sustancias y la producción de calor por el 
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efecto Joule, propiciando la destrucción de microorganismos (Barbosa-Cánovas y 

col., 2000). Sin embargo, esta técnica se considera un método de procesado no 

térmico, ya que los alimentos tratados se mantienen a temperatura ambiente o 

en todo caso a temperaturas inferiores a las de pasteurización (Terefe y col., 

2015a). 

La destrucción de microorganismos se basa en la deformación o destrucción 

de la pared celular al aplicar pulsos eléctricos de alta intensidad. Cuando la 

diferencia de potencial entre ambos lados de la membrana (potencial 

transmembrana) alcanza un valor crítico, que varía en función del tipo de 

microorganismo, se originan poros en la membrana (electroporación) y se facilita 

su permeabilización. Estos poros pueden ser reversibles o irreversibles, según si se 

excede o no un determinado umbral de intensidad de campo eléctrico.  

Aunque el mecanismo de inactivación enzimático no está completamente 

dilucidado, esta tecnología puede desnaturalizar enzimas, romper sus enlaces 

covalentes u originar reacciones redox entre los grupos sulfuro y los enlaces 

disulfuro y con ello, dar lugar a un cambio de conformación con la consecuente 

pérdida de actividad enzimática (Buckow y col., 2013). Sin embargo, en algún 

caso, no se han producido modificaciones de la actividad enzimática o incluso ésta 

ha aumentado con tratamientos suaves (Van Loey y col., 2001). En general, se 

requieren condiciones más drásticas para la inactivación de enzimas que para la 

destrucción de microorganismos.  

El nivel de inactivación microbiana y enzimática alcanzado depende de una 

serie de parámetros técnicos (intensidad del campo eléctrico, duración, número y 

forma del pulso, temperatura y tiempo de tratamiento), de la naturaleza del 

producto a tratar (pH, conductividad, resistencia y propiedades dieléctricas del 

alimento) y de la enzima o microorganismo de referencia. La inactivación 

microbiana aumenta al disminuir la conductividad y la presencia de nutrientes, así 

como al aumentar la acidez y la temperatura de tratamiento. Aunque esta técnica 

permite la inactivación de células vegetativas de hongos y bacterias, las esporas 

bacterianas presentan resistencia a la acción de los campos eléctricos.  
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Básicamente, un equipo de PEAI consta de un generador de pulsos, una 

cámara de tratamiento, un sistema de impulsión del alimento y sistemas de 

control del tratamiento (Figura 9). 

 

Figura 9. Equipo de tratamiento de PEAI del IATA (CSIC). 

El generador de pulsos está formado por un generador de energía y una serie 

de condensadores, resistencias e interruptores. El generador de energía es el 

encargado de suministrar energía eléctrica a un voltaje seleccionado. Para ello 

transforma la corriente alterna de la red en corriente continua con la que se carga 

el condensador. Los condensadores son los componentes encargados de 

almacenar la energía eléctrica que se va a descargar a través del interruptor. El 

interruptor libera la energía en forma de pulso con las características deseadas. 

Toda esta combinación de condensadores, resistencias e interruptores se 

denomina red formadora de pulsos (pulse-forming network). La distinta 

disposición y número de componentes de cada elemento de la red dan lugar a las 

distintas formas de los pulsos (Figura 10).  

La cámara de tratamiento es el recinto donde se sitúa el alimento entre dos 

electrodos, uno conectado al condensador a través del interruptor y otro 

conectado a tierra, separados por un aislante (1-50 mm). Según el régimen de 

trabajo, las cámaras pueden aplicar tratamientos estáticos o continuos, siendo 

estos últimos los más indicados para equipos de conservación de alimentos. 
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Figura 10. Esquema de funcionamiento de un equipo de PEAI. 

El sistema de impulsión del alimento permite el suministro del alimento a las 

cámaras de tratamiento. Además, el equipo debe disponer de un sistema que 

registre los parámetros del proceso tales como la forma del pulso, número de 

pulsos, voltaje, intensidad de corriente que circula a través de la cámara de 

tratamiento, temperatura de tratamiento y caudal del producto en el caso de un 

proceso en continuo. Para el registro de los parámetros eléctricos, las sondas se 

conectan a un osciloscopio. 

Después de los tratamientos por PEAI, los alimentos deben ser envasados 

asépticamente y almacenarse refrigerados, para prevenir deterioros enzimáticos o 

germinación de esporas bacterianas. Hay que destacar que la presencia o 

formación de burbujas en un alimento es un inconveniente si se quiere aplicar 

PEAI, ya que si el campo eléctrico supera la resistencia dieléctrica de las burbujas 

de gas, puede generar problemas durante el procesado. 

La aplicación de PEAI se adecua mejor a alimentos líquidos, aunque también 

se han tratado algunos semisólidos y pulverulentos (Góngora-Nieto y col., 2002). 

El tamaño de las partículas de los alimentos es una limitación para la aplicación de 

los pulsos ya que el máximo admisible debe ser menor que el espacio que hay 

entre los electrodos de la cámara de tratamiento. Además, los alimentos a tratar 

deben tener baja conductividad eléctrica, fuerza iónica y viscosidad, gran 
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homogeneidad y bajo riesgo de ruptura dieléctrica. Los zumos de fruta son 

alimentos idóneos para ser tratados por esta tecnología (Elez-Martínez y col., 

2012). Alimentos con una alta conductividad eléctrica reducen la resistencia de la 

cámara y requieren mayor energía para conseguir un campo eléctrico adecuado. 

Frente al tratamiento térmico convencional, esta técnica permite una menor 

degradación de las características organolépticas y valor nutricional de los 

alimentos, una menor duración del tratamiento y una mayor eficiencia energética 

(Guo y col., 2014; Mena y col., 2014; Zulueta y col., 2013). Se ha empleado 

satisfactoriamente (a escala piloto o de laboratorio) en alimentos líquidos o 

semilíquidos como zumos de frutas y verduras, leche y derivados, huevo líquido y 

derivados, vino, cerveza, horchata, salsas y sopas (Espina y col., 2014; Milani y 

col., 2015; Sharma y col., 2014; Timmermans y col., 2014), aunque también 

existen varios productos tratados por PEAI comercializados a nivel mundial. En la 

actualidad, se está investigando la combinación de PEAI con otras tecnologías 

(antimicrobianos, pH, actividad de agua, temperatura suave…), para incrementar 

la efectividad de esta técnica (por ejemplo, para inactivar esporas) y permitir su 

aplicación en diferentes alimentos líquidos. 

Esta tecnología también se emplea en la extracción de compuestos de interés 

en los alimentos (Parniokov y col., 2016). La formación de poros en la membrana 

celular permite la extracción de sustancias como pigmentos, azúcares y otros 

compuestos, pudiéndose aplicar PEAI como pretratamiento en la obtención de 

zumos de frutas ricos en compuestos bioactivos (Bobinaite y col., 2015). También 

se han empleado en la mejora de procesos de marinado y sazonado y en la 

obtención de mostos, al reducir el tiempo de maceración e incrementar el color 

de los vinos y la extracción de componentes intracelulares (Puértolas y col., 2010).  

 Descargas eléctricas de alto voltaje (DEAV) 1.3.3.

Esta tecnología (DEAV) consiste en la aplicación de descargas eléctricas de alto 

voltaje localizadas en un alimento que se sitúa entre dos electrodos, uno de los 

cuales está conectado a tierra y el otro a un generador de alta tensión, dando 

lugar a la ruptura eléctrica del agua (descarga electrohidráulica), y con ello una 

serie de procesos físicos (ondas de choque) y químicos (formación de O3) que 
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afectan a las células y a los microorganismos y enzimas presentes en alimentos. 

Aunque los mecanismos de formación de la descarga eléctrica en el agua no están 

totalmente elucidados, la primera hipótesis, conocida como teoría de la burbuja, 

supone el desarrollo de burbujas de aire, donde tiene lugar el movimiento de 

electrones. La segunda hipótesis, conocida como modelo de ionización por 

impacto directo, postula que no es necesaria la formación de la fase gaseosa, sino 

que la ruptura del agua se rige por la multiplicación de los transportadores de 

electrones causados por la ionización del líquido. La descarga eléctrica conduce a 

la generación de plasmas calientes localizados que emiten radiación UV de alta 

intensidad, producen ondas de choque que se propagan radialmente en el medio 

líquido y generan radicales hidroxilo durante la fotodisociación del agua, 

causando la fragmentación de partículas y dañando la estructura celular 

(Boussetta & Vorobiev, 2014). 

A través de estos fenómenos físicos y químicos, se produce la fragmentación y 

desintegración celular, dando lugar a la inactivación microbiana e inhibición 

enzimática y por tanto, a un aumento del tiempo de vida útil del producto 

tratado. Sin embargo, se necesitan más estudios acerca del efecto de esta 

tecnología sobre las propiedades sensoriales y nutricionales del producto 

procesado. A diferencia de los PEAI que resultan en la pérdida de la integridad de 

las membranas celulares al someter a un campo eléctrico externo 

(electroporación), las DEAV afectan tanto a las paredes de las células como a las 

membranas, con lo que se puede causar un mayor daño al producto. 

Un equipo de DEAV consta básicamente de un generador de descargas 

eléctricas, una cámara de tratamiento y equipos de control del tratamiento, tal 

como se aprecia en la Figura 11. El generador de descargas eléctricas de alto 

voltaje consta a su vez de un electrodo de aguja y un electrodo de placa 

conectado a tierra, un banco de condensadores y un interruptor. El producto se 

coloca en la cámara de tratamiento donde se le suministran las descargas 

eléctricas. En todo momento se controla la temperatura del alimento durante el 

tratamiento. 
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Figura 11. Esquema de funcionamiento de un equipo de DEAV (Koubaa y col., 

2015). 

El proceso de descomposición del agua consta de dos fases: una fase de pre-

ruptura (corriente eléctrica) y una fase de descomposición (arco eléctrico) 

(Boussetta & Vorobiev, 2014). Durante la fase de pre-ruptura, se inicia una 

corriente eléctrica en un punto localizado al aplicar un campo eléctrico de alto 

voltaje. Esta corriente eléctrica se propaga hacia el electrodo opuesto a través de 

canales de plasma ionizados. Cuando la corriente eléctrica alcanza el electrodo 

opuesto se produce un arco eléctrico (fase de descomposición). Dado que la 

resistencia del arco disminuye en un tiempo muy corto (ns), la corriente aumenta 

y el voltaje cae muy rápidamente, entonces, la corriente se ve limitada 

principalmente por el circuito eléctrico externo. La energía eléctrica total por 

pulso es la suma de la energía liberada con la propagación de la corriente eléctrica 

más la energía disipada en el arco. 

Además de la ruptura eléctrica del agua, se producen procesos físicos y 

químicos que incluyen ondas de choque y formación de especies reactivas. La 

formación de arcos eléctricos está asociada con la emisión de una onda de choque 

de gran alcance que se multiplica radialmente en el agua. La onda de choque de 

elevada presión es seguida por una onda de rarefacción que produce cavitaciones. 
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El colapso de estas cavitaciones crea fuertes choques secundarios de muy corta 

duración que pueden afectar a las células. 

Esta técnica se ha empleado para la extracción de compuestos de alimentos 

vegetales (Parniakov y col., 2014; Sarkis y col., 2015), inactivación de 

microorganismos (Butscher y col., 2016), trituración electrohidráulica de sólidos y 

limpieza de agua con impurezas orgánicas (Lu y col., 2015). 

 Ultrasonidos (USN) 1.3.4.

Los ultrasonidos son ondas sonoras con una frecuencia superior a la 

perceptible por el oído humano, mayor de 20 kHz. Estas ondas, a su paso por los 

alimentos, producen fenómenos de cavitación (formación, crecimiento e 

implosión de diminutas burbujas de gas en el líquido), colapso de burbujas (al 

producir extremos incrementos de temperatura y presión en puntos localizados) y 

sonólisis (formación de radicales libres oxidantes), provocando daños en las 

membranas de los microorganismos y su destrucción. Por tanto, esta técnica se 

puede emplear en la conservación de alimentos dado que es capaz de inactivar 

microorganismos en forma vegetativa y reducir la resistencia térmica de esporas a 

través de fenómenos de cavitación. 

En general, la frecuencia de los USN se encuentra en el intervalo de 20 kHz-10 

MHz, dando lugar a tres regiones: USN de baja frecuencia y alta potencia (20-100 

kHz), USN de frecuencia intermedia y media potencia (100 kHz-1 MHz) y USN de 

alta frecuencia y baja potencia (1-10 MHz). En función de los requisitos del 

tratamiento, se seleccionará un rango de frecuencia u otro. Para la conservación 

de alimentos suelen emplearse ondas de baja frecuencia (18-100 kHz; λ=145 nm) 

y alta intensidad (10 a 1000 W/cm2) (Chandrapala & Leong, 2015). 

Ahora bien, el empleo de USN como única técnica de conservación en muchas 

ocasiones es insuficiente para la inactivación microbiana, ya que se requieren 

niveles de intensidad muy elevados, lo que puede repercutir negativamente en las 

propiedades nutricionales y sensoriales de los alimentos. Es por ello que esta 

técnica se suele asociar a otros métodos de conservación como calor, alta presión, 

antimicrobianos naturales o luz ultravioleta (Gabriel, 2015). La combinación de 

USN con temperaturas moderadas inferiores a 100 °C (termosonicación), presión 
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inferior a 500 MPa (manosonicación) y combinación de USN, calor y presión 

(manotermosonicación) han sido efectivas en la inactivación microbiana y 

enzimática (Lee y col., 2013). 

Un equipo de USN consta básicamente (Figura 12) de un generador eléctrico, 

un transductor, una cámara de tratamiento y un sistema de control. El generador 

produce pulsos de energía de alto voltaje a la frecuencia establecida en el 

transductor. El transductor piezoeléctrico trasforma la energía eléctrica en 

oscilaciones mecánicas. Existe otro tipo de transductor, denominado 

magnetoestrictivo, que se basa en generar distorsiones mecánicas en los 

alimentos cuando se les somete a un campo magnético intenso, aunque éste es 

menos frecuente. La onda ultrasónica se transmite a través del líquido, 

generalmente agua, en el que se encuentra inmerso el producto a tratar. El 

sistema de control es el encargado de asegurar que la temperatura alcanzada no 

sobrepase un determinado valor. 

 
Figura 12. Esquema de un equipo de ultrasonidos. 

En un medio líquido, los ultrasonidos generan ciclos alternativos de 

compresión y expansión. Cuando la presión negativa en el líquido, creada por el 

ciclo de expansión alternativo, es baja y supera las fuerzas intermoleculares 

(fuerza de tensión), aparecen pequeñas burbujas de gas inmersas en la matriz 

líquida tratada. Tras sucesivos ciclos, dichas burbujas crecen, alcanzan un tamaño 

crítico y, al superarlo, se colapsan. Al chocar entre sí las moléculas del líquido, 

como consecuencia del colapso, se producen ondas de presión que se transmiten 

por el medio, inactivando bacterias y disgregando la materia en suspensión, 
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fenómeno que se conoce como cavitación. Uno de los fenómenos resultantes de 

la cavitación acústica es el aumento de temperatura en puntos localizados 

alrededor de la burbuja, además de turbulencias, fuerzas de cizallamiento, 

choques de ondas, presiones altas en puntos localizados y generación de radicales 

libres altamente reactivos (Chandrapala & Leong, 2015).  

Entre los parámetros que definen las ondas ultrasónicas destacan la amplitud, 

que es el valor máximo que toma una magnitud oscilante en un semiperiodo y la 

frecuencia, referida al número de oscilaciones o vibraciones de un movimiento 

por unidad de tiempo. La frecuencia es inversamente proporcional al tamaño de 

burbuja formado. Por tanto, el empleo de USN de baja frecuencia genera grandes 

burbujas de cavitación y altas temperaturas y presiones en la zona de cavitación. 

A medida que la frecuencia aumenta, el mecanismo principal es la transmisión 

acústica. 

La eficacia del proceso depende de factores técnicos (frecuencia, potencia de 

irradiación y tiempo de tratamiento), del alimento a tratar (volumen, 

composición, pH, presencia de gases disueltos y tensión superficial) y del 

microorganismo o enzima en cuestión. La fuerza de tensión de líquidos puros es 

muy alta y difícil de superar. Sin embargo, la mayoría de alimentos líquidos 

contienen burbujas de gas que pueden actuar como núcleos de cavitación. 

Puede considerarse como técnica de pasteurización de alimentos ya que 

cumple con el requisito de la FDA de alcanzar una reducción de 5 ciclos 

logarítmicos de Escherichia coli en zumos de frutas (Patil y col., 2009). Sin 

embargo, las formas esporuladas son muy resistentes a la acción de los 

ultrasonidos y se requieren horas para su inactivación (Ferrario y col., 2015). 

Respecto a la inactivación enzimática, los estudios son contradictorios, ya que 

pueden producirse activaciones e inactivaciones dependiendo de diversos 

factores, entre ellos la estructura molecular de la enzima (Terefe y col., 2015b). 

Esta técnica se ha empleado con éxito en la pasteurización de la leche. La 

leche tratada muestra un mayor grado de homogenización, color blanco y mejor 

estabilidad después del procesado. Empleando esta técnica, la pasteurización y 

homogeneización se completan en un solo paso, lo que resulta provechoso para 

minimizar problemas de sinéresis de algunos productos lácteos como el yogur o el 
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queso fresco (Bermúdez-Aguirre & Barbosa-Cánovas, 2010). También se ha 

investigado su aplicación en zumos de frutas, intentando alcanzar la letalidad de 

una pasteurización y una esterilización sin que las características organolépticas se 

vean modificadas (Martínez-Flores y col., 2014). Se ha observado que el contenido 

de ácido ascórbico apenas se ve modificado en zumos de frutas tratados por USN 

e incluso su estabilidad es mayor durante el almacenamiento en comparación con 

los tratados térmicamente. Este efecto se atribuye a la eliminación del oxígeno 

ocluido en los zumos (Knorr y col., 2004), dado que éste es un parámetro crítico 

que influye en la degradación del ácido ascórbico. 

Los ultrasonidos de alta intensidad se emplean para limpieza de equipos 

(Tuziuti, 2016), desgasificado de líquidos, homogeneización (Zisu & Chandrapala, 

2015), inducción de reacciones de oxidación/reducción, extracción de compuestos 

alimentarios (Parniakov y col., 2015) e inducción de la nucleación durante la 

cristalización (Cogné y col., 2016). Hasta el momento, se han desarrollado equipos 

a escala semi-industrial e industrial encaminados a la eliminación de espumas y 

deshidratación de vegetales. 

1.4. Ingredientes naturales con capacidad antimicrobiana 

Los aditivos de origen natural incluyen una gran variedad de compuestos 

antimicrobianos naturales (lisozimas, aceites aromáticos, compuestos fenólicos…) 

que inhiben el crecimiento de ciertos microorganismos alteradores y patógenos. 

Constituyen una alternativa para ofrecer productos sanos y seguros, ante la 

creciente inquietud de los consumidores en cuanto al uso de conservantes 

químicos artificiales (Calo y col., 2015). Estas sustancias, además de ser 

ingredientes que actúan en la formulación del alimento, aportan un cierto 

carácter funcional y a su vez pueden actuar previniendo el desarrollo de 

microorganismos de riesgo (Pina-Pérez y col., 2014). La gran ventaja que tiene 

usar ingredientes naturales con capacidad antimicrobiana es su estatus legal. Su 

uso en alimentación está autorizado y aunque muchas veces su fin no es 

contribuir a la inocuidad del alimento, sí es interesante aprovechar su capacidad 

antimicrobiana como medida de control adicional (Sanz-Puig y col., 2015). 
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Muchos de estos ingredientes pueden reducir de 1 a 2 ciclos logarítmicos el 

crecimiento microbiano, pero tienen que actuar sinérgicamente con otros 

tratamientos térmicos o no térmicos. Dependiendo del tipo de material vegetal 

utilizado (especias, extracto o aceite esencial), origen (país, altitud a la que crece, 

temporada de cosecha), proceso de producción, grado de pureza y conservación, 

el efecto antimicrobiano puede verse intensificado o disminuido (Sánchez & 

Aznar, 2015). Además, la actividad antibacteriana de estos ingredientes varía de 

acuerdo con el tipo de microorganismo y se ve influenciada por la temperatura de 

almacenamiento del alimento. Las bacterias Gram positivas son generalmente 

más sensibles a los antimicrobianos naturales que las Gram negativas. Se ha 

demostrado que el uso de altas concentraciones de antimicrobianos naturales 

puede prolongar considerablemente la fase de latencia de microorganismos e 

incluso su inhibición (Belda-Galbis y col., 2015). 

Los antimicrobianos naturales están compuestos por diferentes grupos 

químicos, por lo que su actividad antimicrobiana no se debe a un mecanismo 

específico, sino a la acción combinada de varios de ellos sobre distintas 

localizaciones de la célula bacteriana (Farzaneh & Carvalho, 2015). Se ha atribuido 

a los compuestos fenólicos gran parte del poder antimicrobiano de las sustancias 

naturales, aspecto relacionado a su vez con las características de sus grupos 

hidroxilo (He y col., 2014). Los compuestos fenólicos son capaces de causar la 

degradación de la pared celular, daño en la membrana citoplasmática y en las 

proteínas de membrana, pérdida del contenido intracelular al exterior, 

coagulación del citoplasma y pérdida de la fuerza motriz de protones, dando lugar 

a la inactivación bacteriana. 

Entre los distintos ingredientes con actividad antimicrobiana de origen vegetal 

se encuentran los aceites esenciales, también conocidos como aceites volátiles, 

como los de canela, orégano, romero, albahaca, y subproductos cítricos, así como 

compuestos activos específicos como el timol, eugenol, carvacrol y geraniol, entre 

otros (Raybaudi-Massilia y col., 2009). También destacan las hierbas y especias 

como la menta y canela en polvo. Recientemente, se está investigando la 

actividad antimicrobiana del extracto de stevia y del extracto de açaí para su 
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potencial uso como ingrediente natural con capacidad antimicrobiana, además de 

antioxidante (Belda-Galbis y col., 2014; Belda-Galbis y col., 2015).  

Cuando se aplican dos tecnologías de conservación de alimentos 

conjuntamente, se puede producir un efecto sinérgico y conseguir un mayor 

efecto que la simple suma de efectos atribuidos a cada acción por separado. Este 

hecho se ha observado también en el uso de ingredientes naturales combinados 

con otras técnicas de conservación de alimentos, demostrando la aparición de 

sinergismos sobre la inactivación microbiana, reduciendo la necesidad de 

tratamientos más severos y aumentando la efectividad del conjunto (Pina-Pérez y 

col., 2013). El efecto sinérgico entre tecnologías no térmicas de conservación y 

sustancias naturales con propiedades antimicrobianas además de conferir efectos 

saborizantes y aromatizantes, abre un campo potencial de trabajo hacia posibles 

tratamientos más suaves combinados con concentraciones moderadas de estas 

sustancias de gran aceptación entre los consumidores (Martín-Belloso & Sobrino-

López, 2011). 

1.5. Bioaccesibilidad y biodisponibilidad 

La bioaccesibilidad se refiere a la cantidad o fracción de un compuesto que se 

libera de la matriz alimentaria en el tracto gastrointestinal, quedando disponible 

para su absorción intestinal e incorporación al torrente sanguíneo (Heaney, 2001). 

Esta definición incluye todos los procesos que tienen lugar durante la digestión 

del alimento, absorción/asimilación de las células epiteliales y el metabolismo 

pre-sistémico (tanto intestinal como hepático). El término biodisponibilidad 

incluye también en su definición la utilización del nutriente y por tanto, se puede 

definir como la fracción del compuesto o nutriente ingerido que alcanza la 

circulación sistémica y ejerce su acción. Es decir, la biodisponibilidad incluye la 

digestión gastrointestinal, absorción, metabolismo, distribución tisular y 

bioactividad. La bioactividad, por su parte, es el efecto específico que provoca la 

exposición al compuesto e incluye la captación tisular y la respuesta fisiológica 

consiguiente (Fernández-García y col., 2009). 
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En el estudio de la biodisponibilidad existen factores intrínsecos (fisiológicos) 

y extrínsecos (dietéticos) al organismo que pueden modificarla en función de 

interacciones (sinérgicas o antagónicas) que tengan lugar. Entre los factores 

intrínsecos se encuentran la variabilidad interindividual, edad, estado fisiológico y 

nutricional, flora intestinal y capacidad individual de adaptación a aportes 

variados de nutrientes, susceptibles de influir en su disponibilidad para su 

posterior absorción y metabolismo. Entre los factores extrínsecos se incluyen el 

aporte total de la dieta, forma química en la que se encuentra el compuesto, 

solubilidad e interacción con otros componentes del alimento o de la dieta. 

Además, debe tenerse en cuenta la estructura química de los compuestos 

alimentarios, ya que condiciona en gran medida su posterior biodisponibilidad 

(Velderrain-Rodríguez y col., 2014). 

Los métodos empleados en los estudios de bioaccesibilidad y 

biodisponibilidad pueden clasificarse en dos grandes grupos: in vivo e in vitro. En 

general, la bioaccesibilidad suele evaluarse a través de procedimientos in vitro, 

mientras que la biodisponibilidad se evalúa in vivo. 

 Métodos in vivo  1.5.1.

Los métodos in vivo estudian la biodisponibilidad de un compuesto mediante 

su administración a un organismo vivo. Dado que los factores fisiológicos del 

organismo humano son difíciles de reproducir en el laboratorio, se puede decir 

que los métodos in vivo proporcionan la mejor estimación de la biodisponibilidad 

de nutrientes a partir de alimentos. Entre dichos métodos se encuentran el 

balance químico, el empleo de isótopos y los ensayos con animales. En este último 

caso, el principal inconveniente radica en la dificultad de extrapolar los resultados 

al hombre, dadas las diferencias entre el metabolismo animal y humano. 

En el caso de los compuestos bioactivos, la evaluación in vivo de su 

biodisponibilidad se lleva a cabo de forma indirecta, mediante el incremento de la 

capacidad antioxidante en plasma tras el consumo de alimentos ricos en estos 

compuestos o de forma directa midiendo su concentración en plasma u orina tras 

la ingesta tanto de compuestos puros como de alimentos con una cantidad 

conocida de los compuestos de interés (Heleno y col., 2014). Ahora bien, muchos 
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de estos compuestos bioactivos sufren modificaciones a lo largo del proceso de 

digestión, absorción y distribución, por lo que las formas que alcanzan la sangre y 

tejidos difieren de su forma original en la que se encuentran en los alimentos, 

dificultando su identificación. 

 Métodos in vitro 1.5.2.

Los sistemas in vitro simulan las condiciones fisiológicas y son útiles para 

predecir situaciones in vivo. Estos estudios presentan como ventajas un menor 

coste, sencillez, rapidez, mejor control de las variables experimentales, además de 

permitir el barrido de múltiples muestras. Todo ello ha propiciado su creciente 

uso en la evaluación de la bioaccesibilidad de distintos componentes alimentarios. 

Mediante los estudios in vitro se pueden simular las condiciones 

fisicoquímicas del tracto gastrointestinal (pH, temperatura y tiempo de 

incubación) y evaluar las posibles transformaciones de los compuestos presentes 

en el alimento, así como las interacciones entre los distintos componentes que 

puedan tener lugar durante su tránsito intestinal. Sin embargo, las estimaciones 

que proporcionan estos métodos son relativas y no absolutas, dado que no tienen 

en cuenta todos los factores fisiológicos del organismo (estado nutricional, 

secreción gastrointestinal, flora intestinal, transporte activo, interacciones con la 

mucosa, cinética del tránsito intestinal, etc.). 

Se basan, generalmente, en la simulación del proceso de digestión 

gastrointestinal humano. Consiste en un tratamiento secuencial enzimático en 

etapas, comenzando con la salivar, con la adición de α-amilasa y mucina a un pH 

en torno a 6,5-7, seguida de la etapa gástrica, con la adición de pepsina a un pH 

entre 1,8 y 2,5 y finalmente la etapa intestinal, en la que se añaden pancreatina y 

sales biliares a pH 5-6,5. Tras este procedimiento, se estima la fracción del 

compuesto de interés soluble o dializable a través de una membrana de 

determinado tamaño de poro (fracción bioaccesible). 

Los métodos basados en la solubilidad determinan la cantidad del compuesto 

que se encuentra en el sobrenadante obtenido por centrifugación o filtración 

(Brandon y col., 2014). De este modo se estima la fracción máxima del compuesto 

ingerido disponible para ser absorbido. 
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Los métodos basados en la diálisis incorporan una membrana de diálisis 

durante el proceso de digestión intestinal que simula la difusión pasiva a través 

del epitelio intestinal. El proceso de diálisis puede llevarse a cabo en equilibrio 

(Miller y col., 1981) o en continuo (Promchan & Shiowatana, 2005). Estos métodos 

proporcionan información relativa a la fracción del componente soluble que se 

encuentra potencialmente disponible para la absorción, con tamaño inferior al de 

poro de membrana empleada. 

En ocasiones se realizan estudios con cultivos celulares que permiten evaluar 

la captación y transporte en el epitelio intestinal a partir de la fracción 

bioaccessible obtenida del alimento. Las más empleadas son las células Caco-2, 

provenientes de carcinoma de colon, que crecen en monocapas y presentan 

muchas de las características funcionales y morfológicas de los enterocitos 

intestinales (Alemany y col., 2013). 

Los métodos in vitro son difíciles de extrapolar in vivo y no reproducen todas 

las condiciones dinámicas y mecanismos de homeostasis del organismo humano. 

A pesar de esta limitación, los estudios in vitro de compuestos bioactivos 

proporcionan datos útiles que permiten establecer comparaciones entre distintos 

alimentos, así como determinar el efecto causado por diversos factores en la 

bioaccesibilidad de los compuestos bioactivos (Rodríguez-Roque y col., 2013), por 

lo que son los procedimientos más empleados cuando se realiza un estudio de 

bioaccesibilidad de compuestos bioactivos. 

Existen numerosos estudios para determinar los factores críticos de la 

bioaccesibilidad de compuestos bioactivos, de gran importancia cuando se 

formula una matriz alimentaria. Así, el contenido de grasa y el perfil lipídico 

parecen ser determinantes en la absorción de carotenoides (Anese y col., 2015). El 

procesado del alimento (por tecnologías térmicas y no térmicas) también influye 

en la bioaccesibilidad de carotenoides, compuestos fenólicos y ácido ascórbico 

(Fonteles y col., 2016; Wang y col., 2014). Estos estudios ponen de manifiesto la 

necesidad de obtener información sobre la concentración de compuestos 

bioactivos que está disponible para ejercer su función biológica en el organismo 

humano, y no sólo su concentración en el alimento correspondiente. 
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2. OBJETIVOS 

El objetivo general del presente trabajo es el estudio de compuestos 

bioactivos y parámetros de calidad en bebidas a base de frutas adicionadas de 

stevia, sus modificaciones tras el procesado por tecnologías no térmicas así como 

su bioaccesibilidad.  

Para alcanzar este objetivo general se plantean los siguientes objetivos 

específicos: 

1. Formulación de bebidas a base de frutas (papaya, mango, naranja) con un 

alto contenido de compuestos bioactivos y capacidad antioxidante, 

adicionadas o no de stevia. 

2. Evaluación del efecto de la aplicación de distintas tecnologías no térmicas 

(APH, PEAI, DEAV y USN) sobre compuestos bioactivos y capacidad 

antioxidante de las bebidas formuladas. 

3. Estudio de la combinación de los PEAI y congelación para obtener un zumo 

de fruta con un alto contenido en compuestos bioactivos. 

4. Evaluación de la bioaccesibilidad de compuestos bioactivos y capacidad 

antioxidante en las bebidas formuladas a base de frutas adicionadas o no de 

stevia. 
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2. OBJECTIVES 

The overall objective of this work is the study of bioactive compounds and 

quality parameters from fruit based beverages with stevia, their changes after 

non-thermal technologies processing and their bioaccessibility. 

To reach this goal, the following specific objectives are proposed: 

1. Formulation of fruit based beverages (papaya, mango, orange) with a high 

content of bioactive compounds and antioxidant capacity, with or without 

stevia addition. 

2. Evaluation of the effect that different non-thermal processing technologies 

(HPP, PEF, HVED and USN) exert on the bioactive compounds content and 

antioxidant capacity of the formulated beverages. 

3. Assessment of the combination of PEF and freezing in order to obtain a fruit 

juice with a high content of bioactive compounds. 

4. Evaluation of the bioaccessibility of bioactive compounds and antioxidant 

capacity in the formulated fruit based beverages with or without stevia 

addition. 
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ABSTRACT 

Stevia rebaudiana leaf extract, used as a vegetable-based sweetening additive 

in drinks and other foods due to steviol glycosides content, has been 

demonstrated to exhibit extremely high antioxidant capacity due to its high 

content in potential antioxidant food compounds such as phenolic compounds. 

However, concentration of bioactive compounds and total antioxidant capacity in 

stevia products may depend on the origin of the product. For this reason, stevia 

leaves direct infusions, stevia crude extract (Glycostevia-EP®), purified steviol 

glycosides (Glycostevia-R60®), and commercialised stevia powdered samples in 

different countries (PureVia, TruVia and Stevia Raw) were evaluated for their 

content in ascorbic acid (AA), total carotenoids (TC), total phenolic content (TPC), 

phenolic profile, total anthocyanins (TA), steviol glycosides profile, and 

antioxidant capacity (trolox equivalent antioxidant capacity (TEAC) and oxygen 

radical absorbance capacity (ORAC)). Eleven phenolic compounds, including 

hydroxybenzoic acids (2), hydroxycinnamic acids (5), flavones (1), flavonols (2) and 

flavanols (1) compounds, were identified in stevia-derived products. Of these, 

chlorogenic acid was the major phenolic acid. Rebaudioside A and stevioside were 

the most abundant sweet-tasting diterpenoid glycosides. Total antioxidant 

capacity (TEAC and ORAC) was obtained to be correlated with TPC. From all of the 

analysed samples, stevia leaves direct infusions and stevia crude extract 

(Glycostevia-EP®) were found to be a good source of sweeteners with potential 

antioxidant capacity. 

 

Keywords: Stevia rebaudiana, food additives, steviol glycosides, phenolic 

compounds. 
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1. Introduction 

In recent years, growing awareness in human health, nutrition and disease 

prevention has enlarged consumers’ demand for functional foods with a high 

nutritional and sensory quality. Food industry has shown increased interest in 

plant food materials, as they can be a useful tool in order to provide new food 

products of proven nutritional quality, thus increasing added value [1-3]. 

New products with functional properties based on exotic and innovative 

ingredients are becoming common in Europe and the North American market, 

with a good consumer acceptance and a high nutritional value, largely due to its 

high content in bioactive compounds and antioxidant capacity. Demand for these 

products is growing and thus, a thorough study on the characteristics and benefits 

attributed to such ingredients is necessary [4]. 

Recently, there has been an increasing interest in the use of a natural 

sweetener obtained from the leaves of the plant called Stevia rebaudiana, which 

contain twelve known leaf sweetening diterpenic glycosides (200 times sweeter 

than sucrose), as it can be a nutritional strategy in order to replace or substitute 

sugar energy content with one or more ingredients of low-calorie content [5]. 

Stevia has attracted economic and scientific interests due to the sweetness and 

the supposed therapeutic benefits of its leaf. FDA approved stevia for 

commercialisation in 2008 and more recently, in November 2011, the European 

Commission has approved steviol glycosides as a new food additive (E 960) [6-7]. 

In recent years, food industry is developing an array of new products based on 

stevia plant extracts in order to satisfy the demand of consumers concerned with 

healthier eating. Many of these new low-sugar products are not just the old 

standbys like diet sodas and sugarless gum, but foods and drinks like cereals, fruit 

juices, cookies, bread, ice cream, flavoured milk, pasta sauce and even bottled 

water [8]. The products may range from crude stevia extracts to Reb A, which is a 

highly purified ingredient that contains the best-tasting component of the stevia 

leaf. In Europe, the recent green light will probably lead to wide-scale use [9]. So 

far, little data has been available regarding the practical applications in foods [10]. 
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Stevia rebaudiana yields a sweet aqueous extract containing various 

glycosides. Coca-Cola Company and Cargill use stevia in Japan for its Diet Coke and 

are seeking exclusive rights to develop and market Stevia rebaudiana derived 

sweetener rebaudioside A, Truvia, for use in drinks [11]. Furthermore, no 

significant photodegradation in acidic beverages containing rebaudioside A or 

stevioside, when exposed to light, has been reported. Stevioside is stable during 

different processing and storage conditions, which is essential for its effective 

application in processed beverages [12]. 

Moreover, Stevia rebaudiana water extracts have been demonstrated as a 

good source of antioxidant additives such as vitamin C and phenolic compounds 

[13] which can serve as potential additives for preventing quality deterioration or 

to retain the quality of different food products [14] and are beneficial 

components which have been implicated in the reduction of degenerative human 

diseases, mainly because of their antioxidant potential [15-17]. Moreover, these 

bioactives can be used as natural food additives. Due to the growing popularity of 

phenolic antioxidants over the past 2 decades, an increasing interest in 

determining the antioxidant activities exhibited by phenolic acids and their 

derivatives should also be noted [18]. Their protective effect can be ascribed to 

their capacity to transfer electron free radicals, chelate metal catalysts, activate 

antioxidant enzymes, reduce α-tocopherol radicals, and inhibit oxidases [19]. 

In the literature available at present, there is a lack of information about the 

natural potential food additives found in Stevia rebaudiana products. Thus, at this 

stage of development, it is necessary to evaluate their content for a promising use 

of Stevia rebaudiana in the formulation of new food products.  

2. Materials and methods 

2.1. Samples 

The research was conducted on seven different stevia-derived products. 

Samples were prepared in accordance with manufacturer’s instructions. Stevia 

leaves, Glycostevia-EP® (GE-EP) and Glycostevia-R60® (GE-R60) were supplied by 

Anagalide, S.A. (Huesca, Spain). To prepare a stock solution of stevia water extract 
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at 1%, w/v (SWE1), 100 mL of bottled water at 100 ºC were added on the dried 

leaves (1 g) and were kept for 30 min. The infusion was vacuum filtered using 

filter paper (Whatman No. 1). A sample of Glycostevia-EP® (GE-EP), which was a 

crude extract outcome of the industrial water extraction of stevia leaves, at 1% 

w/v; and a sample of Glycostevia-R60® (GE-R60), which was a purified extract with 

95% of Rebaudioside A (1% w/v), were also studied. 

Moreover, a stevia water extract 2 (SWE2) was prepared from Stevia 

rebaudiana leaves purchased from a local supermarket (Navarro Herbolario, 

Valencia). Following the manufacturer’s instructions, the sample (1 g) was mixed 

with 100 mL of boiling water for 30 minutes with constant shaking and the 

samples where then filtered through Whatman No. 1 filter paper.  

In addition, different stevia-derived products from local and international 

supermarkets: TruVia (Azucarera, Madrid, Spain), PureVia (Whole Earth 

Sweetener Company, Paris, France) and stevia extract in the Raw (Cumberland 

Packing corp., Brooklyn, USA) were also studied and stored at room temperature. 

Each sample (1 g) was mixed with 100 mL of distilled water. Samples were 

prepared in triplicate just before use. 

2.2. Chemicals and reagents 

Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), as a 

standard substance (2 mM) to measure TEAC, 2,2´-azobis(2-

methylpropionamidina) dihydrochloride (ABTS), fluorescein sodium salt, 2,2´-

azobis(2-amidinopropane) dihydrochloride (AAPH), disodium metabisulfite, Folin-

Ciocalteau (ammonium molibdotugstat) reagent, chlorogenic acid, ρ-coumaric 

acid, (+)-catechin, ferulic acid, 3,4-dihydroxybenzoic, trans-cinnamic acid, caffeic 

acid, rebaudioside A, stevioside hydrate and steviol hydrate were purchased from 

Sigma (Steinheim, Germany). Gallic acid 1-hydrate in distilled water, as a standard 

(10 mg/mL) for phenolic compounds, was purchased from UCB (Brussels, 

Germany). Oxalic acid, acetic acid, chlorhidric acid, acetone, sodium acetate, 

potassium persulphate (K2S2O8), sodium di-hydrogen phosphate (anhydrous) 

(NaH2PO4) and di-potassium hydrogen phosphate (K2HPO4) were purchased from 

Panreac (Barcelona, Spain), and ethanol, methanol, acetonitrile, hexane, sodium 
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carbonate anhydrous (Na2CO3), trichloroacetic acid and sodium sulphate from 

Baker (Deventer, The Netherlands). Ascorbic acid was obtained from Merck 

(Darmstadt, Germany), rutin trihydrate and quercetin dehydrate from Hwi 

analytic GMBH (Rülzheim, Germany) and rebaudioside C and rebaudioside F from 

Wako (Osaka, Japan). 

2.3. Liquid chromatographic analysis of steviol glycosides 

The method of JECFA [20], with various modifications, was used. Samples 

were filtered through a Sep-Pak® cartridge (a reverse-phase C-18 cartridge; 

Millipore, MA, USA) which retains steviol glycosides. Cartridges were previously 

activated with 10 ml of methanol (MeOH) and 10 ml of water. Every 10 ml of 

sample was eluted with 2 ml of MeOH, and all methanolic fractions were 

collected, filtered through a 0.45 µm membrane filter Millex-HV13 (Millipore) and 

then analysed by liquid chromatography. Kromasil 100 C18 precolumn (guard 

column) (5 µm, 150 x 4.6 mm) and Kromasil 100 C18 column (5 µm, 150 x 4.6 mm) 

(Scharlab, Barcelona, Spain) were used. The mobile phase consisted of two 

solvents: Solvent A, acetonitrile and Solvent B, 10 mmol/L sodium phosphate 

buffer (pH=2.6) (32:68, v/v). Steviol glycosides were eluted under 1 mL/min flow 

rate and temperature was set at 40 °C. Triplicate analyses were performed for 

each sample. Chromatograms were recorded at 210 nm. Identification of steviol 

glycosides was carried out by the addition of authentic standards, while 

quantification was performed by external calibration with standards. 

2.4. Polarographic determination of ascorbic acid 

The method used was in accordance to Barba et al. [21]. Plant food material 

(5 mg) was diluted to 25 ml with the extraction solution (oxalic acid 1%, w/v, 

trichloroacetic acid 2%, w/v and sodium sulphate 1%, w/v). After vigorous 

shaking, the solution was filtered through a folded filter (Whatman No. 1). Oxalic 

acid (9.5 ml) 1% (w/v) and 2 ml of acetic acid/ sodium acetate 2 M buffer (pH=4.8) 

were added to an aliquot of 0.5 ml of filtrate and the solution was transferred to 

the polarographic cell. A Metrohm 746 VA Trace Analyser (Herisau, Switzerland) 

equipped with a Metrohm 747 VA stand was used for the polarographic 
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determination. The working electrode was a Metrohm multi-mode electrode 

operated in the dropping mercury mode. A platinum wire counter electrode and a 

saturated calomel reference electrode were used. The following instrumental 

conditions were applied: DP50, drop mercury mode, drop size 2, drop time 1 s, 

scan rate 10 mV/s, initial potential -0.10 V. Determinations were carried out using 

the peak heights and standard additions method.  

2.5. Total carotenoids 

Extraction of total carotenoid was carried out in accordance with the method 

of Lee and Castle [22]. An aliquot of sample (2.5 mL) was homogenised with 5 mL 

of extracting solvent (hexane/acetone/ethanol, 50:25:25, v/v) and centrifuged for 

5 min at 6,500 rpm at 5 °C. The top layer of hexane containing the colour was 

recovered with a Pasteur pipet and transferred to glass tubes protected from light 

and homogenised. After that, 1 mL of this supernatant was transferred to a 25 mL 

volumetric flask, and volume was completed with hexane. Total carotenoid 

determination was carried out measuring the absorbance of an aliquot of the 

hexane extract at 450 nm. Total carotenoids were calculated according to Ritter 

and Purcell [23] using an extinction coefficient of β-carotene of E1%=2505. 

2.6. Phenolic compounds 

2.6.1. Liquid chromatographic analysis of phenolic profile 

HPLC analysis was performed in accordance to Kelebek et al. [24], with some 

modifications. Samples were filtered through a Sep-Pak® cartridge (a reverse-

phase C-18 cartridge; Millipore, MA, USA) which retains phenolic compounds. 

Cartridges were previously activated with 10 ml of methanol (MeOH) and 10 ml of 

water. Every 10 ml of sample was eluted with 2 ml of MeOH and all methanolic 

fractions were collected, filtered through a 0.45 µm membrane filter Millex-HV13 

(Millipore) and then analysed by liquid chromatography. The liquid 

chromatography system consisted of two isocratic pumps (Prostar 210, Varian Inc, 

California, USA) with degasser (Degassit, MetaChem, USA), column thermostat 

(Prostar 510, Varian) and UV-vis detector (Varian Inc, California, USA). The whole 

liquid chromatography system was operated by a Varian STAR Chromatography 
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Workstation Ver. 6.0 (Varian Inc, California, USA). Luna PFP(2) precolumn (guard 

column) and Luna 100 PFP(2) column (5 µm, 150 x 4.6 mm) (Phenomenex, Spain) 

were used. The mobile phase consisted of two solvents: Solvent A, water/formic 

acid (95:5; v/v) and Solvent B, acetonitrile/solvent A (60:40; v/v). Phenolic 

compounds were eluted under the following conditions: 1 mL/min of flow rate, 

40 °C of temperature and isocratic conditions from 0 to 10 min with 0% B, 

gradient conditions from 0% to 15% B in 20 min, from 15% to 22% B in 45 min, 

from 22% to 100% B in 15 min, from 100% to 0% B in 5 min, followed by washing 

and reconditioning of the column. Triplicate analyses were performed for each 

sample. Chromatograms were recorded at 280 nm. Identification of phenolic 

compounds was carried out by using authentic standards and by comparing 

retention times, while quantification was performed by external calibration with 

standards. A known quantity of each of the phenolic standards was added to each 

of the samples analysed in order to confirm the identification of this compounds 

and the method described was applied. Furthermore, in order to verify phenolic 

compounds, UV-vis spectra was determined with a diode-array detector. 

2.6.2. Total phenolic compounds 

Total phenolic compounds were determined according to the method 

reported by Georgé et al. [25], with some modifications. Briefly, 10 mL of sample 

were homogenised with 50 mL of a mixture of acetone/water (7/3, v/v) for 30 

min. Mixture supernatants were then recovered by filtration (Whatman No. 2, 

England) and constituted the raw extracts (REs). REs (2 mL) were settled on an 

Oasis cartridge (Waters). Interfering water-soluble components (steviol 

glycosides, reducing sugars, ascorbic acid) were recovered with 2 x 2 mL of 

distillate water. The recovered volume of the washing extract (WE) was carefully 

measured. In order to eliminate vitamin C, heating was carried out on the washing 

extract (3 mL) for 2 h at 85 °C and led to the heated washing extract (HWE). All 

extracts (RE, WE, and HWE) were submitted to the Folin-Ciocalteu method, 

adapted and optimised [26]. Gallic acid calibration standards with concentrations 

of 0, 100, 300, 500, 700 and 1000 ppm were prepared and 0.1 mL were 

transferred to borosilicate tubes. 3 mL of sodium carbonate solution (2%, w/v) 
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and 0.1 mL of Folin–Ciocalteu reagent (1:1, v/v) were added to 0.1 mL of all gallic 

acid standard and sample tubes. The mixture was incubated for 1 h at room 

temperature and absorbance was measured at 765 nm. 

2.7. Total anthocyanins 

Total anthocyanins were determined using a modified method of Mazza et al. 

[27]. A 10-fold diluted sample of 100 μL was mixed with 1700 μL of distilled water 

and 200 µL of 5% (v/v) HCl. The sample was hold at room temperature for 20 min 

before measuring the absorbance at 520 nm in a 10 mm cuvette. Calculations of 

total anthocyanins were based on cyanidin-3-glucoside (molar absorptivity 26900 

L/mol·cm). All spectrophotometric analyses were performed using a UV–visible 

spectrophotometer Lambda 20 (Perkin-Elmer, Überlingen, Germany). 

2.8. Total antioxidant capacity 

2.8.1. Trolox Equivalent Antioxidant Capacity (TEAC) 

The method used was described by Re et al. [28], based on the capacity of a 

sample to inhibit the ABTS radical (ABTS•+). The radical was generated using 440 

μL of potassium persulfate (140 mM). The solution was diluted with ethanol until 

an absorbance of 0.70 was reached at 734 nm. Once the radical was formed, 2 mL 

of ABTS•+ was mixed with 100 μL of appropriately diluted beverage (1:25, v/v), 

and absorbance was measured at 734 nm for 20 min in accordance with Zulueta 

et al. (2009).  

2.8.2. Oxygen Radical Absorbance Capacity Assay (ORAC) 

The oxygen radical absorbance capacity (ORAC) assay used, with fluorescein 

as the “fluorescent probe”, was that described by Ou et al. [29] The automated 

ORAC assay was carried out on a Wallac 1420 VICTOR2 multilabel counter (Perkin-

Elmer, USA) with fluorescence filters, for an excitation wavelength of 485 nm and 

an emission wavelength of 535 nm. The measurements were made in plates with 

96 white flat bottom wells (Sero-Wel, BibbySterilin Ltd., Stone, UK). The reaction 

was performed at 37 °C, as the reaction was started by thermal decomposition of 

AAPH in 75 mM phosphate buffer (pH 7.0). The final reaction tested and the 



74 

Results 

 

 

concentrations of the different reagents were determined following Zulueta et al. 

[30]. 

2.9. Statistical analysis 

All determinations were performed in triplicate. An analysis of variance 

(ANOVA) was applied to the results obtained in order to verify whether there 

were significant differences in the parameters studied in relation to sample 

analysed and to ascertain possible interactions between factors (differences at 

p<0.05 were considered significant). Where there were differences, an LSD test 

was applied to indicate the samples in which differences were observed. A 

multiple regression analysis was performed in order to study the influence of the 

potential natural food additives in the antioxidant capacity (results are shown in 

the significant cases, p<0.05). Finally, a study was conducted with the aim of 

determining whether there were correlations between a pair of variables. All 

statistical analyses were performed using SPSS® (Statistical Package for the Social 

Sciences) v.20.0 for Windows (SPSS Inc., Chicago, USA). 

3. Results and discussion 

Stevia rebaudiana has many different functions in foods, such as sweetening, 

preserving and flavouring properties, along with antioxidant and antimicrobial 

activity. Some of the compounds responsible of these properties were studied in 

the present research. 

More than 100 compounds have been identified in Stevia rebaudiana, the 

best known being the steviol glycosides, particularly stevioside and rebaudioside A 

which are the most abundants (Wölver-Rieck 2012). Four different steviol 

glycosides were detected (Table 1, Figure 1) with the high-performance liquid 

chromatography (HPLC), although the actual JECFA analytical method [20] lists 

nine different steviol glycosides. Their concentrations vary widely depending on 

the genotype, cultivation conditions and preparation of the sample. Stevia water 

extract 2 showed the highest yield of the four steviol glycosides analysed. 

Stevioside was found to be the major compound (411.9 mg/100 g) in stevia water 

extract 2, followed by rebaudioside F and rebaudioside A (26.6 and 26.1 mg/100 g 
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respectively). In stevia water extract 1, concentrations of rebaudioside A and 

stevioside were similar (22.5 and 22.0 mg/100 g respectively). In purified steviol 

glycosides, only rebaudioside A and stevioside in the case of TruVia were 

detected. Rebaudioside A ranged from 0.7 mg/100 g in Glycostevia-R60® up to 

411.9 mg/100 g in stevia water extract 2. These results were in accordance with 

Gardana et al. [32], who studied steviol glycosides in stevia leaves from southern 

Italy and commercial preparations (Truvia).  

 
Figure 1. Chromatogram HPLC analysis of steviol glycosides 1: Rebaudioside A, 2: 

Stevioside hydrate, 3: Steviol hydrate, 4: Rebaudioside F, 5: Rebaudioside C in a) 

standard mixture and b) Stevia water extract 1. 

Ascorbic acid was only detected in stevia water extracts (SWE) obtaining the 

higher values in SWE1 (11.3±0.1 mg/100 g) in comparison to SWE2 (9.8±0.1 

mg/100 g). These findings were in accordance with those obtained by Kim et al. 

[33], when they studied stevia leaf and callus extracts. They found a vitamin C 

content of 14.97 mg/100 g in stevia leaf extract.  

In addition, experimental results showed that carotenoids were not detected 

in the samples analysed in the present research. These results were similar to 

those found by Muanda et al. [34] in different stevia-derived products. 
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Table 1. Concentration of steviol glycosides (mg/100 g) in different samples. 

Sample Reb A Ste Reb F Reb C 

SWE1 58.9±0.9 255.0±1.8 5.79±0.08 23.74±0.45 

SWE2 26.1±0.7 411.9±21.9 26.64±0.55 8.82±0.2 

GE-EP 24.3±0.2 22.8±0.9 1.17±0.11 5.00±0.05 

GE-R60 0.7±0.1 0.5±0.1 0.03±0.01 0.10±0.01 

PureVia 16.7±0.8 - - - 

TruVia 11.2±0.6 12.0±0.9 - - 

Stevia extract raw 48.1±0.3 - - - 

SWE1: stevia water extract 1. SWE2: stevia water extract 2. GE-EP: Glycostevia-EP®. 
GE-R60: Glycostevia-R60®. Reb A: rebaudioside A. Ste: stevioside. Reb F: 
rebaudioside F. Reb C: rebaudioside C. 

Phenolic compounds are beneficial components mainly found in plant food 

products [35]. Among the different phenolic compounds, anthocyanins contribute 

significantly to the antioxidant capacity of plant products. Glycostevia-EP® 

exhibited the highest value of total phenolic compounds (20.85±27.80 g gallic acid 

equivalents (GAE)/100 g), followed by SWE1 (12.64±10.81 g GAE/100 g) and SWE2 

(10.46±32.22 g GAE/100 g), whilst no phenolic compounds were detected in 

purified stevia extracts (Glycostevia-R60®, PureVia, TruVia and Stevia extract raw), 

just containing steviol glycosides (>95%). These values were in the range of those 

previously reported by other authors [34, 36-37] in different stevia-derived 

products (2-24 g gallic acid/100 g). A significant difference of total phenolic 

compounds between the different water extracts was observed due to the 

different variety of the stevia leaves. 

In order to make a deeper study of the phenolic compounds, an HPLC analysis 

of the phenolic profile was performed. Figure 2 shows a chromatogram of stevia 

water extract 1. A total of 11 phenolic compounds were identified in stevia-

derived products and quantified, including hydroxybenzoic acids (2), 

hydroxycinnamic acids (5), flavones (1), flavonols (2) and flavanols (1). 



77 

Results 

 

 

 

 
Figure 2. Chromatogram HPLC analysis of stevia water extract 1: Gallic acid, 2: 

Protocatechuic acid, 3: Catechin, 4: Caffeic acid, 5: Chlorogenic acid, 6: Coumaric 

acid, 7: Ferulic acid, 8: Transcinnamic acid, 9: Rutin, 10: Quercetin, 11: Apigenin. 

Table 2. Phenolic content (mg/100 g) of Stevia rebaudiana water extracts (SWE) 

and Glycostevia-EP® (GE-EP). 

Compound Rt (min) SWE1 SWE2 GE-EP 

Gallic acid 5.3 1.8±0.1 15.7±1.1 49.5±7.1 

Protocatechuic acid 7.9 8.6±0.3 3.7±0.2 - 

Catechin 19.3 494.2±23.3 905.0±45.2 13.4±0.3 

Caffeic acid 21.2 76.9±1.0 118.5±3.3 250.2±6.2 

Chlorogenic acid 23.2 343.4±32.0  293.1±6.3 668.4±65.3 

Coumaric acid 26.3 50.8±4.4 37.0±0.6 212.1±9.6 

Ferulic acid 34.1 141.6±1.3 10.4±0.2 270.4±34.2 

Transcinnamic acid 44.5 14.4±0.1 403.6±5.4 101.1±17.3 

Rutin 50.2 2797.1±28.9 401.0±4.4 10972.4±504.8 

Quercetin 64.0 3619.4±80.0 3342.5±9.4 3077.7±25.2 

Apigenin 67.2 1186.6±43.1 933.9±31.0 1383.3±28.1 

Total phenolics (Sum up)  8734.8±121.0 6464.3±32.1 16998.4±637.0 

Rt: retention time SWE1: stevia water extract 1. SWE2: stevia water extract 2. GE-
EP: Glycostevia-EP®. 
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Phenolic profile obtained in the present study for stevia samples was similar 

to the one found by different authors in stevia-derived products [32-33]. As can 

be shown in Table 2, quercetin and rutin were the predominant phenolic 

compounds in stevia-derived products, followed by apigenin, catechin and 

chlorogenic acid. A different phenolic profile was obtained for each sample. In 

addition, the major hydroxybenzoic acid was gallic acid (3, 4, 5-trihydroxybenzoic 

acid). This compound is present in foods of plant origin, and since it was found to 

exhibit antioxidative properties, it has attracted considerable interest. Except for 

protocatechuic acid and transcinnamic acid, a significant correlation was found 

between each phenolic compound and total phenolic contents measured using 

Folin-Ciocalteu method. A significant correlation was also found between the sum 

up of the eleven phenolic compounds identified and the total phenolic 

compounds measured both with Folin-Ciocalteu (R2=0.998). 

Within the phenolics, total anthocyanins were also measured, showing that 

these compounds were only detected in stevia water extracts, obtaining the 

higher concentrations in the SWE2 (0.975±0.008 g/100 g) in comparison to SWE1 

(0.802±0.003 g/100 g). Results were in accordance with those found by Muanda 

et al. [34] who reported values of 0.35 mg total anthocyanins/g dry matter when 

they studied the chemical composition of water extracts from Stevia rebaudiana 

Bertoni. 

Total antioxidant capacity values of stevia-derived products measured both by 

TEAC and ORAC assays are given in Figure 3. Remarkable antioxidant capacities 

were found in stevia extracts, with a high correlation to the total phenolic 

contents measured with the Folin-Ciocalteu method. These results were in 

accordance to those reported by Kim et al. [33] in stevia products. Both 

antioxidant assay systems showed comparable values (R2=0.995, p<0.05). As can 

be expected, Glycostevia-EP® with the highest total phenolic contents had the 

highest antioxidant capacity using TEAC and ORAC assays. The nearly twice higher 

ORAC values (201.7 mmol TE/100 g) in Glycostevia-EP® compared to TEAC values 

(105.9 mmol TE/100 g) showed the excellent ability of phenolic compounds to 

scavenge peroxyl radicals. Meanwhile purified steviol glycosides, without total 

phenolic compounds detected, did not display any antioxidant capacity using 
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TEAC assay. However, remarkable antioxidant capacity was detected with ORAC 

assay, revealing 64.1, 1.16, 1.62 and 2.32 mmol TE/100 g in Glycostevia-R60®, 

Purevia, Truvia and Stevia extract raw, respectively. TEAC assay is suitable for 

compounds such as phenols, which have a redox potential lower than that of 

ABTS•+. Only then can a reduction of ABTS•+ occur [38]. Other compounds, such as 

butylated hydroxyanisole (BHA) may contribute to the total antioxidant capacity 

measured with ORAC in Glycostevia-R60®. These results were in accordance to 

those previously reported by other authors who found that phenolic compounds 

are strongly related to antioxidant activity [39]. In addition, a Pearson test was 

conducted in order to establish the possible correlation between the phenolic 

profile with the total antioxidant capacity (TEAC and ORAC method) (Table 3). 

 

Figure 3. TEAC and ORAC values (mmol TE/100 g) in Stevia rebaudiana water 

extracts (SWE), Glycostevia-EP® (GE-EP), Glycostevia-R60®, PureVia, TruVia, and 

Stevia extract raw. 

A strong correlation was found for TEAC and ORAC method with specific 

phenolic compounds (gallic acid, caffeic acid, chlorogenic acid, coumaric acid and 

rutin) in stevia herbal products, whereas protocatechuic acid, catechin, 

transcinnamic acid and quercetin turned out to be negatively correlated with 

TEAC and ORAC values. The results revealed significant differences between 

samples from different origin and were not comparable as the based chemical 

reactions and the parameters being determined varied considerably. As a result, 

TEAC ORAC

m
m

o
l/
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no single antioxidant method accurately reflects all antioxidants, which shows the 

necessity to standardise the methods in order to determine antioxidant capacity 

[38]. 

Table 3. Correlations of phenolic compounds with TEAC and ORAC in stevia-

derived products. 

Compound TEAC ORAC 

Gallic acid 0.6617 0.6754 

Protocatechuic acid 0.2053 -0.0739 

Catechin 0.2277 -0.0537 

Caffeic acid 0.9768 0.8461 

Chlorogenic acid 0.8906 0.9039 

Coumaric acid 0.8774 0.8327 

Ferulic acid 0.8718 0.8900 

Transcinnamic acid 0.7475 0.6395 

Rutin 0.7622 0.7200 

Quercetin 0.5654 0.3165 

Apigenin 0.7999 0.8093 

TEAC: trolox equivalent antioxidant capacity. ORAC: 
oxygen radical antioxidant capacity. 

Furthermore, concentration curves for steviol glycosides standards (10-50 

mg/100 mL) were also prepared in order to verify the response of the two 

antioxidant methods to different concentrations of these compounds (Figure 4). 

When the Reb A concentration increased, the antioxidant capacity was higher 

with the ORAC method (p<0.01), (R2=0.949), but no antioxidant activity was 

detected applying the TEAC method. The same results were observed for 

stevioside (R2=0.942), rebaudioside F (R2=0.968), rebaudioside C (R2=0.990) and 

steviol (R2=0.990) applying the ORAC method. As the standard line slopes indicate, 

same concentration produces a higher increase in total antioxidant capacity with 

rebaudioside C and steviol. 
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Figure 4. Antioxidant capacity of reference substances evaluated by ORAC (oxygen 

radical antioxidant capacity) method. Reb A: rebaudioside A. Ste: stevioside. Reb 

F: rebaudioside F. Reb C: rebaudioside C. TE: trolox equivalent. 

This observation suggests that the antioxidant capacity found in steviol 

glycosides must be assayed with ORAC method and not with TEAC method, due to 

the nature of steviol glycosides compounds. Chaturvedula and Prakrash [39] 

described the presence of three anomeric glucose protons in diterpene glycosides 

from stevia. As the ORAC method is a reaction based on the transfer of H atoms 

[30], these compounds present in Stevia rebaudiana may be better represented 

by this assay.  

4. Conclusion 

Stevia water extracts can be considered a good source of natural sweeteners 

and antioxidants, especially phenolic compounds. Overall, components of stevia 

products are clearly attractive targets for the scientific community to develop 

novel food products with a given added value. Consequently, Stevia rebaudiana, a 

natural acaloric sweetener, considered an exogenous dietary antioxidant, can be 

used as a nutraceutical ingredient in food products in order to provide new 

functional foods of proven nutritional quality, thus increasing added value.  
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ABSTRACT 

New developed functional beverages, with a high content in bioactive 

compounds, based on exotic fruits (mango juice, papaya juice and açaí) mixed 

with orange juice, oat and sweetened with different concentrations (0, 1.25 and 

2.5% w/v) of Stevia rebaudiana extracts, a natural source of non-caloric 

sweeteners (steviol glycosides), were formulated and studied. Ascorbic acid, total 

carotenoids, total phenolics, anthocyanins, total antioxidant capacity (TEAC and 

ORAC methods) and steviol glycosides were evaluated. Beverages sweetened with 

1.25 and 2.5% (w/v) stevia showed a significant increase (≈3-fold and 4-fold 

higher, respectively) in phenolic compounds as well as in antioxidant properties in 

comparison with the beverage without stevia. The displayed results indicate the 

potential use of stevia as an alternative non-caloric sweetener in the preparation 

of beverages based on fruit juice mixtures and oat, as it may provide good 

nutritional and physicochemical properties and also enhance the already existing 

beneficial effects of fruit juices. Synergistic interactions observed between 

phytochemicals and steviol glycosides in the complex food beverages when TEAC 

method was used suggest an improved solubility, stability and/or different 

mechanisms of action of antioxidant compounds and hence, the combined 

antioxidant capacity measured with TEAC assay is potentiated in the complex food 

matrix. 

 

Keywords: Exotic fruits, Stevia rebaudiana, bioactive compounds, antioxidant 

capacity, interaction factor. 
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Introduction 

During the last decade, research dealing with health promoting features of so-

called functional foods is increasing, with a promising future and a challenging 

development. A change in food consumption trend is observed, mainly due to 

lifestyle changes. Proportionally, juices obtained from exotic fruits is the group 

with the highest growing rate, both in Europe and in North America (Heckman et 

al. 2010). In terms of public health, drinking fruit and vegetable juices may well be 

as effective as consuming whole fruits and vegetables with regard to reducing the 

risk of chronic disorders (Ruxton et al. 2006). Many fruits including acerola, açaí, 

avocado, durian, kiwi, mango, papaya, oranges, etc., have attracted much 

attention because of their health benefits due to the wide range of bioactivities 

(Dembitsky et al. 2011), containing a large quantity of bioactive compounds such 

as ascorbic acid, phenolic compounds and carotenoids, which have been shown to 

be good contributors to total antioxidant capacity of foods (Barba et al. 2013; 

Zulueta et al. 2009).  

Meanwhile, açaí (Euterpe oleracea) berry, native of Brazil, has been acclaimed 

to have a wide range of health-promoting and therapeutic benefits due to its 

reportedly high levels of antioxidants, with a relative high content of polyphenols, 

mainly anthocyanins (de Rosso et al. 2008). Findings demonstrate that açaí pulp 

improves biomarkers of physiological oxidative stress (de Souza et al. 2010). 

Furthermore, the use of natural green plant extracts or their derived products 

in foods and beverages is also becoming an increasing trend in food industry 

(Bhardwaj and Pandey 2011). Stevia rebaudiana, an herb native to South America, 

is used as a natural source of non-caloric sweeteners (steviol glycosides) and is 

thought to possess antioxidant, antimicrobial and antifungal activity (Lemus-

Mondaca et al. 2012). Although stevia-derived products have been used in 

different countries for several years, in Europe they have not been used 

extensively. FDA approved stevia for commercialisation in 2008 (FDA GRAS 275 

and 323) and more recently, in November 2011, the European Commission (EU) 

has approved steviol glycosides as a new food additive (E 960). Recent green light 

will probably lead to wide-scale use of stevia-derived products (Stoyanova et al. 
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2011). Stevia rebaudiana may be used as an alternative of synthetic additives in 

marketed food products (Food Consulting, 2010; FSA, 2010). So far, little data has 

been available regarding practical applications in foods (Nehir El and Simsek 

2012). 

Differently from synthetic pharmaceuticals, based upon single chemicals, 

many phytomedicines exert their beneficial effects through additive or synergistic 

action of several bioactive compounds. Following research focused on increasing 

antioxidant consumption in a healthy diet, as well as providing alternatives for 

decreasing sugar consumption, the aim of this work was to study the potential use 

of Stevia rebaudiana water extracts as sources of non-caloric sweeteners to 

formulate novel beverages based on exotic fruits (papaya, mango and açaí), 

orange juice and oat beverage, as well as to evaluate antioxidant capacity and 

synergistic interactions between bioactive compounds in these new beverages. 

Materials and methods 

Preparation of orange, mango and papaya juice, oat beverage, açaí and stevia 

stock solution 

Cultivars of papaya (Carica papaya), mango (Mangifera indica), oranges 

(Citrus sinensis L.), Navel variety and oat beverage (Santiveri, Lérida, Spain) were 

purchased from a local supermarket. Papaya, mango and orange juices were 

extracted after appropriate washing and hygienisation of the fruits and the pulp 

was removed. Açaí (containing 450 mg of açaí berries extract, with 10% of 

polyphenols) was provided by Nature’s Way Products Inc. (Utah, USA).  

Stevia rebaudiana leaves were supplied by Anagalide, S.A. (Barbastro, Huesca, 

Spain) and stored at room temperature. A stock solution (8.33%, w/v) of Stevia 

rebaudiana was prepared in order to formulate the beverage. For this purpose, 

100 mL of bottled water at 100 ºC were added on the dried leaves (8.33 g) and 

were kept for 30 min. Infusion was vacuum filtered using filter paper (Whatman 

No. 1) and the filtrate obtained was stored at –40 ºC.  
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Preparation of beverages 

Beverages were prepared by mixing 32.5%, 10%, and 7.5% (v/v) of papaya, 

mango and orange juices, respectively, with the pulp removed, 20% (v/v) of oat 

beverage and 30% (v/v) of water (0% stevia) or the different stevia leaves infusion 

(1.25 and 2.5%, w/v). Finally, açaí (1% w/v) was added to the beverage. Solid 

ingredients were placed in water in the weight proportions indicated. The 

beverage was prepared just before use. Each sample was prepared in triplicate. 

The maximum stevia concentration (2.5%) was selected taking into account the 

sucrose concentration of commercial fruit based beverages and the sweetness 

equivalence stevia/sucrose (Savita et al. 2004). 

Chemicals and reagents 

Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), as a 

standard substance (2 mM) to measure TEAC, 2,2´-azobis(2-

methylpropionamidina)dihydrochloride (ABTS), fluorescein sodium salt, 2,2´-

azobis(2-amidinopropane)dihydrochloride (AAPH), disodium metabisulfite, Folin-

Ciocalteu (ammonium molibdotugstat) reagent, rebaudioside A, stevioside and 

steviol hydrate were purchased from Sigma (Steinheim, Germany). Gallic acid 1-

hydrate in distilled water, as a standard (10 mg/mL) for phenolic compounds, was 

purchased from UCB (Brussels, Germany). Oxalic acid, acetic acid, chlorhidric acid, 

acetone, sodium acetate and potassium persulphate (K2S2O8) were purchased 

from Panreac (Barcelona, Spain). Di-sodium hydrogen phosphate (anhydrous) 

(Na2HPO4) and potassium di-hydrogen phosphate (KH2PO4) were obtained from 

Scharlau (Barcelona, Spain). Ethanol, methanol, acetonitrile, hexane, sodium 

carbonate anhydrous (Na2CO3), trichloroacetic acid and sodium sulphate 

proceeded from Baker (Deventer, The Netherlands), while rebaudioside C and 

rebaudioside F from Wako (Osaka, Japan). L(+)-ascorbic was obtained from Merck 

(Darmstadt, Germany). 

Polarographic determination of ascorbic acid 

Beverage (5 mL) was diluted to 25 ml with an extraction solution (oxalic acid 

1%, w/v, trichloroacetic acid 2%, w/v, and sodium sulphate 1%, w/v). After 
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vigorous shaking, the solution was filtered through a folded filter (Whatman No. 

1). Oxalic acid (9.5 ml) 1% (w/v) and 2 ml of acetic acid/ sodium acetate 2 M 

buffer (pH=4.8) were added to an aliquot of 0.5 ml of filtrate and the solution was 

transferred to the polarographic cell. A Metrohm 746 VA Trace Analyser (Herisau, 

Switzerland) equipped with a Metrohm 747 VA stand was used for polarographic 

determination. Working electrode was a Metrohm multi-mode electrode 

operated in the dropping mercury mode. A platinum wire counter electrode and a 

saturated calomel reference electrode were used. The following instrumental 

conditions were applied: DP50, drop mercury mode, drop size 2, drop time 1 s, 

scan rate 10 mV/s, initial potential -0.10 V. Determinations were carried out by 

using the peak heights and standard additions method (Barba et al. 2013).  

Total carotenoids 

An aliquot of sample (2 mL) was homogenised with 5 mL of extracting solvent 

(hexane/acetone/ethanol, 50:25:25, v/v) and centrifuged for 5 min at 4000 rpm at 

5 ºC. The top layer of hexane containing the colour was recovered and transferred 

to a 25 mL volumetric flask. The volume of recovered hexane was then adjusted 

to 25 mL with hexane. Total carotenoid determination was carried out on an 

aliquot of the hexane extract by measuring absorbance at 450 nm (Barba et al. 

2013). Total carotenoids were calculated using an extinction coefficient of β-

carotene, E1%=2505.  

Phenolic compounds 

Total phenols were determined according to the method reported by Georgé 

et al. (2005), with some modifications. Briefly, 10 mL of sample were 

homogenised with 50 mL of a mixture of acetone/water (7/3, v/v) for 30 min. 

Mixture supernatants were then recovered by filtration (Whatman No. 2, England) 

and constituted the raw extracts (REs). REs (2 mL) were settled on an Oasis 

cartridge (Waters). Interfering water-soluble components (reducing sugars, 

ascorbic acid) were recovered with 2 x 2 mL of distillate water. The recovered 

volume of the washing extract (WE) was carefully measured. In order to eliminate 

vitamin C, heating was carried out on the washing extract (3 mL) for 2 h at 85 °C 
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and led to the heated washing extract (HWE). All extracts (RE, WE, and HWE) were 

submitted to Folin-Ciocalteu method, adapted and optimised (Barba et al. 2013): 

Sodium carbonate solution (3 mL) 2% (w/v) and 100 μL of Folin–Ciocalteau 

reagent were added to an aliquot of 100 μL of sample. The mixture was incubated 

for 1 h at room temperature. Absorbance was measured at 765 nm. 

Total anthocyanins 

Total anthocyanins were determined using a modified method of Mazza et al. 

(1999). A 10-fold diluted sample of 100 μL was mixed with 1700 μL of distilled 

water and 200 µL of 5% (v/v) HCl. Sample was hold at room temperature for 20 

min before measuring the absorbance at 520 nm in a 10 mm cuvette. Calculations 

of total anthocyanins were based on cyanidin-3-glucoside (molar absorptivity 

26900 L/mol·cm). All spectrophotometric analyses were performed using a UV–

visible spectrophotometer Lambda 20 (Perkin-Elmer, Überlingen, Germany). 

Total antioxidant capacity 

Trolox Equivalent Antioxidant Capacity (TEAC) assay: The TEAC test was 

determined according to the method reported by Barba et al. (2013), based on 

the capacity of antioxidants to inhibit the radical cation 2,2-azino-bis(3-

ethylbenzothiazoline6-sulphonate) (ABTS), which has a characteristic long-

wavelength absorption spectrum, showing a maximal peak at 734 nm. The ABTS 

radical cation is formed by the interaction of ABTS (7 mM) with K2S2O8 (2.45 mM).  

Oxygen Radical Absorbance Capacity (ORAC) Assay: The ORAC assay used, 

with fluorescein as the “fluorescent probe”, was that described by Barba et al. 

(2013). Automated ORAC assay was carried out on a Wallac 1420 VICTOR2 

multilabel counter (Perkin-Elmer, USA) with fluorescence filters, for an excitation 

wavelength of 485 nm and an emission wavelength of 535 nm. Measurements 

were made in plates with 96 white flat bottom wells (Sero-Wel, BibbySterilin Ltd., 

Stone, UK). Reaction was performed at 37 °C, as the reaction is started by thermal 

decomposition of AAPH in 75 mM phosphate buffer (pH 7.0).  
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Physicochemical properties 

pH was determined in a Crison GLP 21 pH-meter (Barcelona, Spain) equipped 

with a temperature compensation sensor at 20 °C. Brix was determined with an 

Atago RX-1000 digital refractometer (Atago Company Ltd., Tokyo, Japan). To 

measure turbidity index (TI), samples were centrifuged (618×g, 10 min, 20 °C), 

supernatant was taken and absorbance at 660 nm was measured (Krop and Pilnik 

1974). To determine browning index (BI), samples were centrifuged (824×g, 20 

min, 18 °C), supernatant was taken and diluted with ethanol (1:1, v/v). The 

mixture was filtered with Whatman No. 42 filters and absorbance of the filtrate 

was measured at 420 nm (Meydav et al. 1977). Hydroxymethylfurfural (HMF) 

content was measured using the method described by International Federation of 

Fruit Juice Producers (1984). The colour analysis was performed using a Hunter 

Labscan II spectrophotometric colorimeter (Hunter Associates Laboratory Inc., 

Reston, U.S.A.) controlled by a computer that calculates colour ordinates from the 

reflectance spectrum. Results were expressed in accordance with the Commission 

International d′Eclairage LAB (CIELAB) system with reference to illuminant D65 

and with a visual angle of 10°. Three consecutive measurements of each sample 

were taken and L* (lightness [0=black, 100=white]), a* (–a*=greenness, 

+a*=redness) and b* (–b*=blueness, +b*=yellowness) values were measured 

(Calvo 2004).  

Liquid chromatographic analysis of steviol glycosides 

The method of Joint FAO/WHO Expert Committee on Food Additives (JECFA) 

(JECFA 2010) with various modifications was used. Samples were filtered through 

a Sep-Pak® cartridge (a reverse-phase C-18 cartridge; Millipore, USA) which 

retains steviol glycosides. Cartridges were previously activated with 10 ml of 

methanol (MeOH) and 10 ml of water. Every 10 ml of sample was eluted with 2 ml 

of MeOH and all methanolic fractions were collected, filtered through a 0.45 µm 

membrane filter Millex-HV13 (Millipore) and then analysed by liquid 

chromatography. Kromasil 100 C18 precolumn (guard column) (5 µm, 150 x 4.6 

mm) and Kromasil 100 C18 column (5 µm, 150 x 4.6 mm) (Scharlab, Barcelona, 
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Spain) were used. The mobile phase consisted of two solvents: Solvent A, 

acetonitrile and Solvent B, 10 mmol/L sodium phosphate buffer (pH=2.6) (32:68, 

v/v). Steviol glycosides were eluted under 1 mL/min flow rate and temperature 

was set at 40 °C. Chromatograms were recorded at 210 nm. Identification of 

steviol glycosides were obtained using authentic standards and comparing 

retention times, while quantification was performed by external calibration with 

standards. 

Theoretical approach 

The interaction factor (IF), which provides an explanation for the mode of 

interaction, was determined, according to Eq. (1) (Gawlik-Dziki 2012): 

       IF=AM/AT      (1) 

where AM=measured activity of a mixture of samples, and AT=theoretically 

calculated mixture activity (based on the dose response of single components at 

various concentrations). IF value>1 indicates synergistic interaction; IF<1 indicates 

antagonism; IF≈1 indicates additional interactions. 

Statistical analysis 

All determinations were performed in triplicate. Normality and 

homoscedasticity (variance homogeneity) were assayed as premises prior to 

parametric statistical tests using a Shapiro-Wilk test and a Levene test, 

respectively, as described by Granato et al. (2014). When variances were 

heterogeneous, dependent variables were transformed by the Box-Cox 

transformation. An analysis of variance (ANOVA) was applied in order to verify 

whether there were significant differences in the parameters studied in relation 

to the sample analysed and to ascertain possible interactions between factors 

(differences at p<0.05 were considered significant). Where there were 

differences, an LSD test was applied to indicate the samples in which differences 

were observed. A multiple regression analysis was performed to study the 

influence of bioactive compounds to antioxidant capacity (results are shown in 

the significant cases, p<0.05). Finally, a study was conducted with the aim of 
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determining whether there were correlations between a pair of variables 

(Pearson´s test). All statistical analyses were performed using Statgraphics® 

Centurion XVI (Statpoint Technologies Inc., USA). 

Results and discussion 

Physicochemical and nutritional characterisation of single components 

Advantages of fruit mixtures are widely known, such as organoleptic 

improvements (aromas and flavours combination) and the synergy effects 

between their nutritional components. In the present study, nutritional and 

physicochemical characterisation of papaya, mango and orange juices as well as 

oat beverage, Stevia rebaudiana extracts and açaí capsules were conducted in 

order to determine potential interactions among the antioxidant compounds 

when the fruits were combined (Table 1). Mango and orange juices had pH values 

of 3.53 and 3.90, respectively, while papaya juice (5.40) stevia (6.97) and oat 

beverage (7.52) had higher pH values. pH is related to the stability of bioactive 

compounds in fruit-derived products. Thus, the combination of different 

ingredients with different pH can avoid oxidation reactions and microbial 

deterioration of food by decreasing pH values (Gao and Vasantha 2012). Total 

soluble solids content of fruits varied from 10.70 to 14.30 °Brix; the products are 

thus indicated for different consumers, submitted to diets with different calories. 

These contents were similar to those found by other authors in mango and 

papaya purées (Guerrero and Alzamora 1998; El-Mansy et al. 2005). 

As can be seen in Table 1, the selected fruits constitute a good source of 

ascorbic acid (22.99-57.81 mg/100 mL), carotenoids (421.90-708.75 µg/100 mL), 

phenolic compounds (84.90-132.84 mg gallic acid equivalents (GAE)/L) and 

antioxidant capacity (TEAC (4.75-27.63 mM TE) and ORAC (2.78-8.22 mM TE)). 

Fruit juices were mixed with oat beverage, which is a good source of proteins 

from vegetal origin and showed also a high content in carotenoids (369.60±28.28 

µg/100 mL).  



 

 

Table 1. Bioactive compounds, total antioxidant capacity (TAC), physicochemical properties and steviol glycosides 
profile of the different ingredients used in the formulation of samples. 

 Orange  
juice 

Mango  
Juice 

Papaya  
juice 

Oat  
beverage 

Stevia infusion 
8.33% (w/v) 

Açaí  
Capsules* 

Bioactive compounds and antioxidant capacity 

Ascorbic acid (mg/100 mL) 31.85±0.28 22.99±0.60 57.81±0.78 - - - 
Total carotenoids (µg/100 
mL) 

421.90±31.82 639.00±36.77 708.75±46.57 369.60±28.28 - 97.33±3.50 

TPC (mg GAE/L) 132.84±3.59 84.90±2.26 105.23±0.47 79.45±1.48 1216.30±12.30 100.55±0.07 
TA (mg/100 mL) - 251.86±1.62 - - 0.22±0.03 280.45±13.46 
TEAC (mM TE) 27.63±4.28 4.75±0.75 7.30±0.78 2.16±0.06 61.30±0.28 18.98±0.05 
ORAC (mM TE) 8.22±0.35 2.78±0.85 6.11±0.47 0.93±0.11 122.05±0.78 18.94±0.33 

Physicochemical properties 

pH 3.90±0.04 3.53±0.04 5.40±0.03 7.52±0.01 6.97±0.06 6.35±0.07 
ºBrix 11.90±0.14 14.30±0.14 10.70±0.14 11.75±0.07 1.15±0.07 - 
HMF (mg/L) 0.07±0.01 0.16±0.02 0.14±0.02 0.14±0.01 - - 
Turbidity index 0.20±0.01 2.48±0.02 0.33±0.01 0.25±0.01 2.44±0.01 1.15±0.01 
Browning index 0.09±0.01 0.10±0.01 0.08±0.01 0.05±0.01 2.77±0.03 3.01±0.02 
Lightness (L*) 48.36±0.05 36.47±0.03 52.08±0.02 68.55±0.05 22.53±0.03 31.66±0.50 
Redness (a*) 3.72±0.04 23.46±0.04 25.79±0.01 -1.94±0.04 12.50±0.02 8.82±0.13 
Blueness (b*) 50.36±0.05 46.79±0.04 61.74±0.02 6.38±0.02 20.36±0.04 18.40±0.02 

Steviol glycosides 

Reb A (mg/100 mL) - - - - 1061.24±40.85 - 
Reb C (mg/100 mL) - - - - 222.08±7.46 - 
Ste (mg/100 mL) - - - - 1881.70±1.47 - 
Reb F (mg/100 mL) - - - - 56.04±3.51 - 

*per mg/g/kg product. -. Non-detectable. TPC: total phenolic compounds. GAE: gallic acid equivalent. TA: total anthocyanins.TEAC: trolox 
equivalent antioxidant capacity. ORAC: oxygen radical antioxidant capacity. Reb: rebaudioside. Ste: stevioside. 
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In addition, Stevia rebaudiana extract can be used as a natural sweetener, due 

to its high content in steviol glycosides (rebaudioside A (1061.24±40.85 mg/L), 

rebaudioside C (222.08±7.46 mg/L), stevioside (1881.70±1.47 mg/L), and 

rebaudioside F (56.04±3.51 mg/L)) with sweeting properties, and can also be a 

useful tool in order to increase phenolic consumption (1216.30±12.30 mg/100 mL) 

and total antioxidant capacity of food products (TEAC (61.30±0.28 mM TE) and 

ORAC (122.05±0.78 mM TE)). Moreover, açaí fruit is another exotic fruit which has 

attracted researcher’s interest as to its high nutritional properties (Yamaguchi et 

al. 2015). For this reason, it was selected as an ingredient in the formulation of 

highly nutritional antioxidant beverages. As can be seen in Table 1, açaí capsules 

had a high content in anthocyanins and total antioxidant capacity. 

Phenolic compounds, total anthocyanins, ascorbic acid and total carotenoids in the 

formulated beverages 

Total phenolic content (TPC) in the beverage based on exotic fruits (mango 

juice, papaya juice and açaí) mixed with orange juice, oat and without stevia was 

of 66.4 mg gallic acid equivalents (GAE)/L. As can be seen in Table 2, TPC were 

significantly (p<0.05) higher when stevia at 1.25% (≈3-fold) and 2.5% (≈4-fold) was 

added to the formulation. These results were in concordance to those obtained by 

different authors who reported Stevia rebaudiana as an excellent source of 

phenolic compounds (Kim et al. 2011; Muanda et al. 2011). 

Total anthocyanins (TA) in the beverage without stevia were found in a 

concentration of 22.0±1.4 mg cyanidin-3-glucoside/L. However, this value was 1.3- 

and 1.4-fold higher when stevia at 1.25% and 2.5% stevia (w/v) was used as a 

sweetener, respectively (Table 2). Muanda et al. (2011) reported values of 0.35 

mg total anthocyanins/g dry matter when they studied the chemical composition 

of water extracts from Stevia rebaudiana Bertoni and de Rosso et al. (2008) 

obtained values of total anthocyanins ranging from 282 to 303 mg/100 g in açaí. 

The proposed beverages can be considered an excellent source of total 

anthocyanins, mainly due to the presence of açaí in its composition. A significant 

correlation between anthocyanins and total phenolic compounds (p=0.0073) was 

found when the Pearson test was studied for the different stevia concentrations. 
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Table 2. Bioactive compounds, total antioxidant capacity, physicochemical 

properties and steviol glycosides of three different beverages mixture of exotic 

fruit juices and oat beverage, sweetened with 0%, 1.25% and 2.5% stevia. 

 % SR 

Parameter 0 1.25 2.5 

Bioactive compounds and antioxidant capacity 

Ascorbic acid (mg/100 mL) 24.8±0.2a 24.9±0.2a 24.6±0.2a 

Total carotenoids (µg/100 
mL) 

436.6±17.6a 399.2±35.3a 424.2±35.3a 

TPC (mg GAE/L) 230.8±10.9a 2353.8±16.1b 4715.4±15.4c 

TA (mg/L) 22.0±1.4a 27.8±1.4b 29.7±0.3c 

TEAC (mM TE) 6.4±0.3a 20.3±2.2b 30.4±0.7c 

ORAC (mM TE) 5.1±0.1a 23.5±0.1b 36.1±0.1c 

Physicochemical properties 

pH 4.38±0.20a 4.50±0.10a 4.49±0.10a 

ºBrix 7.70±0.14a 8.70±0.14b 9.70±0.20c 

HMF (mg/L) 0.057±0.003a 0.099±0.004b 0.224±0.031c 

Turbidity index 2.430±0.006a 2.620±0.005b 2.798±0.005c 

Browning index 0.080±0.003a 1.140±0.004b 2.416±0.005c 

Lightness (L*) 59.0±0.1a 40.7±0.2b 33.5±0.1c 

Redness (a*) 11.9±0.1a 8.5±0.1b 9.2±0.2b 

Blueness (b*) 38.5±0.1a 31.8±0.2b 30.8±0.1c 

Steviol glycosides (mg/100 mL) 

Rebaudioside A - 171.5±1.5 286.9±8.4 
Rebaudioside C - 30.1±0.6 63.6±0.1 
Stevioside - 363.8±2.6 637.5±3.0 
Rebaudioside F - 7.5±0.1 14.6±0.1 

a–c Different letters in the same row indicate a significant difference in function 
of the samples analysed (p<0.05). TPC: total phenolic compounds. GAE: gallic acid 
equivalent. TA: total anthocyanins. TEAC: trolox equivalent antioxidant capacity. 
ORAC: oxygen radical antioxidant capacity. HMF: hydroxymethylfurfural. 

Ascorbic acid concentration in the beverage without stevia was 24.8±0.2 

mg/100 mL (Table 2). These results were in close agreement with the values 

obtained by other authors in papaya, mango and orange (Burdurlu et al. 2006; 
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Almeida et al. 2011). Non-significant modifications of ascorbic acid content 

resulting from the presence of stevia water extracts (1.25% and 2.5% (w/v)) were 

found. 

Total carotenoids content was of 436.6±17.6 µg/100 mL in the sample without 

stevia and these values did not increase with the addition of stevia to the 

beverage. Experimental results did not show any presence of carotenoids in 

stevia-derived products. These results were in accord to those of Muanda et al. 

(2011) when they studied the chemical composition stevia water extracts. 

Antioxidant capacity 

The beverage without stevia added exhibited a more elevated antioxidant 

activity (p<0.05) when measured with TEAC method (6.4±0.3 mM TE) compared to 

values obtained with ORAC assay (5.1±0.1 mM TE) (Table 2). However, when 

stevia was added, antioxidant capacity was higher using ORAC method. The 

different increase in antioxidant values of stevia-sweetened samples measured 

with both TEAC and ORAC methods can be explained considering that the two 

tests, apart from differing in the reactive species, are performed at different 

reaction phases. This consideration suggests that the two tests furnished a diverse 

kind of information as they emphasised differently the antioxidant capacity of 

hydrophilic and hydrophobic antioxidants compounds. Results indicated that in 

stevia-sweetened beverage, hydrophobic constituents contributed to antioxidant 

capacity in higher amounts than water soluble antioxidants.  

Independently of the method employed, antioxidant capacity of beverages 

sweetened with stevia at 1.25% and 2.5% (w/v) was higher than that obtained in 

beverages without stevia (Table 2). This was more evident when ORAC method 

was used. ORAC values were 5 and 7 times higher for beverages with 1.25% and 

2.5% (w/v) compared to the beverage without stevia while TEAC values were 

about 3 and 5 times greater for samples with 1.25% and 2.5% (w/v) stevia, 

respectively. Therefore, the addition of stevia contributed to a considerable 

increase of the antioxidant activity in both of the beverage types.  

A significant correlation between TEAC and ORAC values (p<0.05) was found. 

These results were in accordance with those found by other authors in different 
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liquid food matrices (Proteggente et al. 2003). Furthermore, Pearson´s test 

showed that antioxidant activity determined by TEAC and ORAC was significantly 

correlated (p<0.05) with total phenolic compounds and total anthocyanins. This 

was also observed by Granato et al. (2015) when they analysed various juices 

from different botanical origins. 

Physicochemical properties 

Results obtained for physicochemical properties of the beverages analysed in 

the present study are shown in Table 2. The values of pH and ºBrix in the 

beverage without stevia were 4.38±0.20, and 7.70±0.14, respectively. Non-

significant changes were found in pH values when stevia was added as a 

sweetener, while a significant increase was found in ºBrix. The values of 

hydroxymethylfurfural (HMF), turbidity index and browning index of the samples 

without stevia added were 0.057 mg/L, 2.430, and 0.080, respectively. As can be 

observed in Table 2, a significant increase was obtained in HMF content, turbidity 

and browning index of samples when stevia percentage was higher in comparison 

to the beverage without stevia. However, parameters which define the colour of 

the samples (L*, lightness; a*, redness; and b*, blueness) decreased significantly 

when increasing stevia percentage compared to sample without stevia added 

(L*=59.0; a*=11.9; b*=38.5). 

Steviol glycosides 

Results obtained for steviol glycosides of the beverages analysed in the 

present study are shown in Table 2. Four different steviol glycosides (rebaudioside 

A (reb A), rebaudioside C (reb C), rebaudioside F (reb C), and stevioside (ste)) were 

detected and quantified (Table 2, Figure 1) in samples containing stevia. 

Stevioside was the predominant steviol glycoside identified in the beverages with 

stevia at 1.25% (363.8 mg/100 mL) and 2.5% (637.5 mg/100 mL), while the lower 

values were found for rebaudioside F. As can be expected, the ANOVA analysis 

showed a significant increase (p<0.05) in reb A, reb C, reb F and ste when stevia 

percentage used in the formulation of the beverages was increased, enhancing 

the sweetening properties of the beverages. In a previous study, Carbonell-
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Capella et al. (2014) demonstrated that steviol glycosides standards showed 

antioxidant capacity using the ORAC method, so the presence of these 

compounds in the beverages could explain in part the increase of the antioxidant 

capacity measured with ORAC method. 

 

 Chromatogram HPLC analysis of steviol glycosides 1: Rebaudioside A, 2: Figure 1.

Stevioside, 3: Rebaudioside F, 4: Rebaudioside C in a beverage mixture of exotic 

fruit juice and sweetened with Stevia rebaudiana Bertoni at 2.5% (w/v). 

Interaction assay 

In order to investigate deeply the antioxidant capacity of bioactive 

compounds found in the orange, mango and papaya juice combined with oat 

beverage and açaí and sweetened with different concentrations of stevia water 

extracts, the interaction factor (IF) was determined (Table 3). This assay is a 

simple way to explain the mode of interaction and may be used to make a 

preliminary assessment of the types of interactions between the examined 

extracts or chemical compounds. Antioxidant activity of beverages and 

theoretically calculated mixture activity (based on the dose response of single 

components at various concentrations) was calculated.  
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Table 3. Comparison of interaction factors (IF) in the beverages sweetened with 

Stevia rebaudiana (0%, 1.25% and 2.5%). 

Stevia rebaudiana Activity AM AT IF 

0% TEAC  6.44 5.54 1.16 

 ORAC  5.05 3.25 1.55 

1.25% TEAC  20.30 14.73 1.38 

 ORAC  23.46 21.56 1.09 

2.5% TEAC  30.41 23.93 1.27 

 ORAC  36.09 39.87 0.91 

AM: Measured activity. AT: Theoretical calculated activity. TEAC: Trolox 
equivalent antioxidant capacity. ORAC: Oxygen radical antioxidant 
capacity. 

When examining the antioxidant capacity using the TEAC method, antiradical 

scavengers included in the fruit juices, oat beverage and açaí acted synergistically 

in the beverages without stevia added. In the case of 1.25% and 2.5% stevia 

beverages, the same kind of interaction was observed. Unlike in the case of 

synthetic pharmaceuticals based on the activity of single active compounds, 

numerous phytochemicals act in a beneficial manner via an addition of synergistic 

activity in target sites connected to physiological processes. Synergistic 

interactions observed when TEAC assay is employed in the beverage sweetened 

with 2.5% stevia suggest an improved solubility or stability of the antioxidant 

compounds and therefore, the combined antioxidant capacity of the mixture 

measured by TEAC method is potentiated. These results are in line with those 

reported by Gawlik-Dziki (2012), who observed synergistic interactions for 

constituents within the total extracts of a single plant-derived product, as well as 

between different plant products in a formulation, obtaining that the whole or 

partially purified extract of a fruit and vegetables offers advantages over a single 

isolated ingredient.  

The antioxidant capacity measured using the ORAC method also revealed 

synergistic interactions between the single components of the beverages without 

stevia. However, the addition of 1.25% and 2.5% of stevia to the beverages 

indicated additional interactions (≈1) between the individual components of the 
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beverages. Unlike TEAC values, antioxidant activity measured with ORAC method 

when stevia is included in the formulation was similar to that predicted, revealing 

that the presence of stevia water extract may be engaged in shaping the potential 

antioxidant activity of the studied beverages. Several studies conducted on food 

products fortified with phenolic-rich ingredients such as onion skin (Gawlik-Dziki 

et al. 2013), quinoa leaves (Świeca et al. 2014) and parsley leaves (Sęczyk et al. 

2016) show that part of the antioxidant activity may be masked as a result of 

interactions between selected phenolic compounds with other food components. 

Nevertheless, despite these possible interactions, the addition of phenolic rich 

ingredients results in the promotion of the total antioxidant capacity of foods. 

Conclusions 

The beverage based on exotic fruits (mango juice, papaya juice and açaí) 

mixed with orange juice, oat and sweetened with Stevia rebaudiana water 

extracts at 2.5% (w/v) was found to contain the highest amount of total phenolic 

compounds, almost 4-fold higher than the sample without stevia, and 

consequently presented the highest antioxidant capacity measured both with 

ORAC and TEAC method. From these results, it can be concluded that the use of 

Stevia rebaudiana as a natural non-caloric sweetener can also be a good source of 

bioactive compounds. Synergistic interactions observed for phytochemicals and 

steviol glycosides in the complex food beverages when TEAC method was used 

suggest an improved solubility, stability and/or different mechanisms of action of 

antioxidant compounds and hence, the combined antioxidant capacity of the 

mixture measured by TEAC assay is potentiated in the complex food matrix. 
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ABSTRACT 

A new method for quick analysis of available lysine content in different food 

products has been developed by automating a 96-well microtiter plate assay. 

Although manual fluorometric methods validated in order to determinate 

available lysine content already existed for this compound, the benefits of 

applying appropriate automation should provide continuous operation, increased 

precision, an affordable electronic audit trail and significantly reduced time and 

reagent consumption. The objective of this work was to adapt the ortho-

phthaldialdehyde (OPA) fluorometric method to an automated workstation. 

Considerable effort went into developing and validating an automated method. 

The analytical parameters of linearity (R2=0.999), the precision of the method 

(relative standard deviations (RSD)=2.8-3.0% for the different samples) and the 

results of the comparison with the corresponding OPA manual fluorometric 

method show that the studied method is useful for the measurement of available 

lysine in several food products from different natural origins such as liquid foods 

(soy, oat, quinoa beverages and ultra-high temperature (UHT)/sterilised milk) and 

powdered samples (powdered adapted, powdered follow-up and junior milk 

infant formulas) with reduced time and reagent consumption. 

 

Keywords: Lysine, 96-well microtiter plate assay, automation, Maillard reaction, 

fluorometric determination.  
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1. Introduction 

Maillard browning is one of the main chemical reaction causing deterioration 

of proteins during processing and storage of foods. This reaction between free 

amino groups and reducing sugars reduces protein digestibility and amino acid 

availability (Malec et al. 2002).  

Available lysine content is an indicator of early and advanced Maillard 

reaction phases (Ferrer et al. 1999) and can be a useful tool in order to predict 

nutritional losses. The quantitative analysis of available lysine content together 

with its degradation products have been used as a chemical marker of protein 

quality (Meade et al. 2005).  

Different methods like spectrophotometric (Carpenter 1960; Kakade and 

Liener 1969; Vigo et al. 1992), chromatographic (Albalá-Hurtado et al. 1997; 

Fernández-Artigas et al. 1999; McEwen et al. 2010), and fluorometric (Ferrer et al. 

2003; Goodno et al. 1981; Morales et al. 1995) have been proposed for the 

determination of available lysine content in food products. Conventionally, the 

fluoro-2,4-dinitrobenzene (FDNB) assay has been the most extensively used 

method (Smith 2010). However, Vigo et al. (1992) and Morales, Romero, & 

Jiménez-Pérez (1995) demonstrated that this method was time consuming and 

special precautions were necessary. Dialysis of carbohydrate-rich samples is 

recommended since it avoids the uncertainty inherent in applying correction 

factors for reaction interference, but this adds two or three days to each assay 

(Tomarelli et al. 1985). In order to eliminate possible interferences by 

spectrophotometric methods, Goodno et al. (1981) established a fluorometric 

analysis, using ortho-phthaldialdehyde (OPA) for estimating reactive lysine in 

proteins, which has been used widely in the published literature (Morales et al. 

1995; Swaisgood and Ctagnani 1985; Vigo et al. 1992). The use of OPA does not 

require hydrolysis or amino acid analysis of the sample and does not require 

heating or solvent extraction that can release lysine from modified forms (Ferrer 

et al. 2003). The OPA reaction is rapid and complete at room temperature, and 

the complex formed by lysine and OPA is fluorescent, while side-products are not 

fluorescent. Furthermore, the amount of sample needed is small, sugars do not 
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interfere, and the assay is reproducible and easy to perform. The main 

disadvantage is the instability of the fluorescent complex (Goodno et al. 1981). 

More recently, chromatography has been used for determination of available 

lysine. Chromatographic methods offer good linearity and reproducibility but they 

are time and solvent consuming. The aim of the current study was to develop and 

validate a new method (sensitive, economical and with minimal solvent 

consumption), for quick analysis of available lysine content in different food 

products by automating a 96-well microtiter plate assay.  

2. Materials and methods 

2.1. Samples 

Three units from each of two batches of different food products marketed in 

Spain were purchased from a local supermarket (Valencia, Spain) and were 

analysed: liquid foods (soy, oat, quinoa beverages and UHT/sterilised milk) and 

powdered samples (powdered adapted, powdered follow-up and junior milk 

infant formulas) were used. The powdered samples were rehydrated in 

accordance with the manufacturer’s instructions (130 g/L). Table 1 gives details 

(as indicated on the label) of each of the samples analysed. 

Table 1. Nutritional composition of the commercial samples analysed as 

indicated on the labels. 

 Sample Proteins Carbohydrates Fat 

Liquid 

samples 

(g/100 

mL) 

Soy beverage 3.4 3.7 0.9 

Oat beverage 1.0 6.1 1.0 

Quinoa beverage 3.0 3.7 2.8 

Liquid UHT milk 

Liquid sterilised milk 

3.0 

3.0 

4.9 

4.6 

1.6 

1.5 

Powdered 

samples 

(g/100 g) 

Powdered adapted infant formula 9 58 26 

Powdered follow-up infant formula 10 62 19 

Junior milk infant formula 13 56 25 

UHT: ultra-high temperature. 
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2.2. Materials and reagents 

All reagents were of analytical reagent grade. Anhydrous ethanol, sodium 

tetraborate, and sodium hydroxide were from Panreac (Barcelona, Spain). Casein 

from bovine milk was from Sigma-Aldrich (Steinheim, Germany). Intermediate (10 

mg/mL casein) and working standard solutions were prepared in sodium 

tetraborate buffer (pH=9). Trichloroacetic acid was from Fluka (Buchs, 

Switzerland). Hydrochloric acid, β-mercaptoethanol, sodium dodecyl sulfate (SDS) 

and ethanol were from Merck (Darmstadt, Germany). Ortho-phthaldialdehyde 

(OPA) reagent was prepared daily according to Goodno et al. (1981) as follows: 80 

mg OPA 99% (Merck) in 2 mL ethanol, 50 mL 0.1 M sodium tetraborate buffer (pH 

9.7–10.0), 5 mL SDS (200 g/L), and 0.2 mL β-mercaptoethanol. Ninety-six-well 

black bottom plates were from Sero-Wel, Bibby Sterilin Ltd. (Stone, UK).  

2.3. Instrumentation 

All analysis were performed on a Spectrofluorophotometer (RF-5000 

Shimadzu Corporation, Kyoto, Japan) for the OPA manual method and on a 

microplate spectrofluorometer Wallac 1420 VICTOR2 multilabel counter from 

Perkin–Elmer (California, USA) for the OPA automated method. Setting was: 

excitation=340 nm and emission=455 nm. 

2.4. Procedure for analytical optimisation of the automated method 

Preparation of samples, interferences determination, preparation of blanks, 

calibration and calculations of available lysine determination were already 

optimised during the previous development of the manual method of the OPA 

assay (Ferrer et al. 2003). The amount of sample and the volume of water needed 

to obtain a solution containing 0.6-3% of proteins were used. Then, 1 mL of SDS 

solution (120 g/L) was added to 950 µL of water and 50 µL of liquid food or 

powdered sample (0.3-1.5 mg of proteins). In order to eliminate possible 

interferences caused by small peptides, 2 mL of trichloroacetic acid were added to 

2 mL of liquid samples or powdered samples, and then centrifuged at 3000 rpm 

for 15 min. Nine hundred µL of water and 1 mL SDS solution (120 g/L) were added 
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to 100 µL of supernatant. For the preparation of blanks, 1 mL of SDS solution (120 

g/L) was added to 1 mL of water. The tubes from samples, interferences and 

blanks were allowed to cool at 4 ºC for 12 h and the sonicated for 15 min at 25 ºC. 

Figure 1 shows a diagram of the preparation process. A standard of casein bovine 

milk was used to prepare a calibration curve. A set of casein working standards 

(0.1–1 mg/mL casein in assay solution), with lysine contents ranging from 0.0085 

to 0.0850 mg lysine/mL assay solution, were prepared using 0.1 M sodium 

tetraborate buffer (pH=9) as solvent. The conversion factor of casein to lysine was 

calculated considering that: as1-casein, as2-casein, -casein and -casein have, 

respectively, 14, 24, 11 and 9 residues of lysine/protein molecule, that the s1-

casein:s2-casein:-casein:-casein ratio was 0.45:0.12:0.33:0.10, the molecular 

weights were 23615, 25230, 23983 and 19007 daltons (Da), respectively, and the 

molecular weight of lysine was 146.1 Da (Eigel et al. 1984; Modler 1985). Thus, mg 

lysine/mg casein (F)= (RL x WL/Wc x Rp)=0.08484, where RL are the residues of 

lysine in each casein; WL is the molecular weight of lysine; Wc is the molecular 

weight of each casein, and Rp is the protein ratio in each casein. 

3. Results and discussion 

3.1. Adaptation and optimisation of the OPA method by automating a 96-well 

microtiter plate assay 

There is no methodology available to analyse available lysine using 96-well 

microtiter plates, the use of which would allow a rapid determination of available 

lysine in different samples after processing or storage at the same time. The 

described method is an adaptation of the OPA fluorometric assay for the 

determination of available lysine proposed by Ferrer et al. (2003) with 

modifications. After applying the method described, it was seen that with the 

conditions applied it was not possible to determinate available lysine content due 

to the reduced volume of wells. Sample quantity was decreased (5-20 µL). When 8 

µL of sample was used, the best reproducibility of the results was found. The plate 

allows the analysis of a high number of samples at the same time.  
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 Experimental procedure scheme for available lysine determination.  Figure 1.
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The spectrofluorometer Wallac 1420 VICTOR2 multilabel was programmed to 

use a two-reagent system. The reaction mode pipetted and transferred the 

sample (8 µL), 0.1 M sodium tetraborate buffer (pH=9) (8 µL), and main reagent 

(250 µL OPA) into the main reagent wells of their respective cuvette rotor 

positions. With the spinning of the rotor, the reagents were mixed and incubated 

for 2 minutes at 25 ºC and fluorescence was measured. Figure 1 shows a 

schematic of the experimental arrangement for automated determination of 

available lysine. The 0.1 M sodium tetraborate buffer (pH=9) was used as a blank, 

and 0.1, 0.2, 0.4, 0.6, 0.8 and 1 mg/mL casein were used as standards. A sample of 

0.3 mg/mL casein was used as quality control (QC). Samples and standard 

calibration solutions were always analysed in duplicate in a “forward-then-

reverse” order as follows: blank, 0.1 mg/mL casein, 0.2 mg/mL casein, 0.4 mg/mL 

casein, 0.6 mg/mL casein, 0.8 mg/mL casein and 1 mg/mL casein, QC, sample 1 ... 

sample 1, QC, 1 mg/mL casein, 0.8 mg/mL casein, 0.6 mg/mL casein, 0.4 mg/mL 

casein, 0.2 mg/mL casein, 0.1 mg/mL casein, blank. This arrangement can correct 

possible errors due to the signal drifting associated with the different positions of 

the same sample. Determinations were carried out in quadruplicate. The 

absorbance of samples was corrected with the absorbance of the blank and of the 

interferences. Lysine content (mg) was obtained by interpolation in the calibration 

curve.  

3.2. Validation of the OPA automated using a 96-well microtiter plate assay 

To verify the quality and usefulness of the method, the analytical parameters 

linearity, sensitivity, precision and percentage of recovery were determined for all 

the matrices mentioned in section 2.1. Linearity was checked in the range of 0.1-1 

mg standard casein/mL, corresponding to 0.0085-0.085 mg available lysine/mL. 

Good linearity was obtained for the studied range of available lysine contents for 

the OPA fluorometric automated (y=7·106 x + 6135.9; R2=0.999) and manual 

(y=217.890 x + 0.554; R2=0.999) methods. 

Sn-1 value was estimated based on the standard deviation of the blank 

obtained by analysing n=10 blanks. Detection limit values of the automated 

method were calculated in the cuvette and in the samples (liquid and powdered). 
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Detection limits in cuvette were 0.00008 mg and 0.00264 mg for automated and 

manual methods, respectively. In addition, detection limits of liquid samples were 

0.0090 g/L and 0.0331 g/L for automated and manual methods, respectively. 

Meanwhile, detection limit values of powdered samples were 0.2544 g/kg and 

0.6881 g/kg for automated and manual methods, respectively. These results 

showed that the OPA automated method was more sensitive than manual 

method for liquid and powdered samples, although in all cases, values obtained 

allowed the detection of available lysine in the studied samples. In addition, the 

OPA automated method was more sensitive for liquid foods than for powdered 

samples. 

LOQ corresponds to the minimum quantity with which it is possible to 

quantify without uncertainty (LOQ=10·Sn-1/m). Detection limit values for the 

automated method were calculated in the cuvette and in the samples (liquid and 

powdered). Quantification limits in cuvette were 0.00026 mg and 0.00879 mg for 

automated and manual method, respectively. In addition, quantification limits for 

liquid samples were 0.1102 g/L and 0.2982 g/L for automated and manual 

method, respectively. Meanwhile, quantification limit values for powdered 

samples were higher in automated (0.8480 g/kg) and manual (2.2937 g/kg) 

method. These results showed that the OPA automated and manual method 

allowed the quantification of all the samples analysed, in the present study, 

without problems.  

Instrumental precision was checked from six consecutive analysis of a sample 

extract and was expressed as relative standard deviations (RSD%). The 

instrumental precision values of liquid foods were 2.5% and 3.1% for automated 

and manual method, respectively. With regard to powdered samples, 

instrumental precision values given by the automated (2.1%) and manual method 

(2.9%) were in the range of those previously reported in liquid samples. 

The precision of the method was determined by preparing six aliquots of the 

sample and was expressed as RSD (%). The RSDs for 6 replicates of liquid samples 

given by automated and manual methods were 3.0% and 3.8%, respectively. With 

regard to powdered samples, method precision values were 2.8% and 4.3%, for 

automated and manual methods, respectively. Due to the difficulty in finding 
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certified samples similar to those used in this study for evaluating method 

conditions, a recovery assay was carried out. A known quantity of casein standard 

(1 mg/mL casein assay; 0.085 mg/mL lysine of assay) was added to each of the 

samples analysed in this study and the method described was applied. The 

recovery percentages obtained in liquid samples were 100.3±1.9% and 

101.0±1.2% for automated and manual method, respectively. Results obtained 

when the recovery assays were performed in powdered samples were in accord 

to those obtained for liquid samples. In this case, automated and manual methods 

quantified the 101.2±1.0% and 103.3±3.4% of available lysine, respectively. 

In order to estimate if the studied methods can be used with the same 

confidence, precision and accuracy of the different samples were compared 

(Tables 2-3). 

Table 2. F test for comparison of the precision of the OPA automated and 

manual fluorometric methods. 

Samples S´1 S´2 F testa 

Soy beverage 0.0013 0.0027 0.4316    

Oat beverage 0.0007 0.0009 0.7576    

Quinoa beverage 0.0038 0.0065 0.5787    

Liquid UHT and sterilised milk 0.0026 0.0031 0.8321    

Powdered adapted formula 0.0103 0.0214 0.4800    

Powdered follow-up formula 0.0293 0.1098 0.2665    

Junior milk formula 0.0481 0.0720 0.6679    

n=6. S´2: corrected sample variance. UHT: ultra-high temperature. 
aF=S1

´2/S2
´2. tabulated F values: F0.05(5,5)=5.05 (p=0.05). F0.01(5,5)=10.97 

(p=0.01).  

In the comparison of precision, six batches of sample were analysed for the 

studied methods. A comparison of variance by an F test showed that the methods 

were similar in precision (p>0.05) (Table 2). In the comparison of accuracy (t test), 

six batches of the different samples were analysed by each method, twice and on 

different days (Table 3). From these results it should be noted that non-significant 
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differences (p<0.05) among the OPA manual and automated fluorometric assays 

were obtained for the samples analysed. 

Table 3. t test for comparison of the accuracy of the OPA automated and 

manual fluorometric methods. 

Samples 

Paired data t-test 

𝑑̅ Sn-1 
|𝑑̅|

𝑆𝑛−1

·  √𝑛 

Soy beverage -0.04 -0.06 1.60 

Oat beverage 0.02 0.04 1.45 

Quinoa beverage 0.10 0.09 2.30 

Liquid UHT and sterilised milk 0.08 0.07 2.52 

Powdered adapted formula -0.04 0.16 0.61 

Powdered follow-up formula -0.19 0.34 1.23 

Junior milk formula 0.03 0.32 0.19 

n=6. UHT: ultra-high temperature. 𝑑̅: mean value of differences (OPA 
automated method – OPA manual method). Sn-1: standard deviation of 
differences. tn-1

0.05/2
=2.571. 

3.3. Comparison of the available lysine contents after determination with OPA 

method using automated 96-well microtiter plate assay and traditional OPA 

method 

Table 4 shows the available lysine contents in the samples analysed 

(expressed as g/L for liquid foods and g/kg for powdered samples). In general, the 

average available lysine value in dairy proteins based formulas was in the range of 

the standard values of amino acid requirements established by the Institute of 

Medicine (2005) (children≤2 years 58, 10-12 years 44 and adults 16 mg lysine/g 

reference protein) and the mean value accepted for human milk (66 mg/g) 

established by WHO (2000). Available lysine contents of these formulas was lower 

than that for powdered milk prepared in a laboratory studied by Pereyra-Gonzáles 

et al. (2003) (80.4 mg/g), or those reported in the literature (76.6–85.4 mg/g 

protein) by different authors (Erbersdobler and Hupe 1991; Ferrer et al. 2003; van 

Mil and Jans 1991; Vigo et al. 1992). However, powdered adapted infant formula, 
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containing soy protein, had a lower content in available lysine (p<0.05) in 

comparison to the other formulas. Pereyra-Gonzáles et al. (2003) also observed 

significantly lower values in formulas containing soy protein with regard to dairy 

protein based formulas, obtaining similar values (45.0±8.3 mg/g protein) to those 

found in the present study. In addition, powdered infant formulas had lower 

contents of available lysine than those reported for the corresponding protein 

sources: soy protein (63.4–64.1 mg/g protein); casein (79.8–85.0 mg/g protein); 

milk (76.6–85.4 mg/g protein); whey protein (80–97.5 mg/g protein) 

(Erbersdobler and Hupe 1991; Friedman and Brandon 2001; Souci et al. 2000; Vigo 

et al. 1992). The losses were probably a consequence of the combined effects of 

the type of protein, the treatments during the manufacture and the different time 

and conditions of storage. 

Table 4. Chemically available lysine content by OPA manual and automated 

fluorometric methods. 

Samples  Manual Automated 

Liquid samples g/L mg lys/g ref 

protein 

g/L mg lys/g ref 

protein 

Soy beverage 1.09±0.04 31.91±1.04 1.07±0.03 31.47±0.83 

Oat beverage 0.67±0.02 67.50±1.41 0.66±0.02 66.00±2.83 

Quinoa beverage 2.08±0.07 69.17±2.59 2.22±0.05 74.33±1.41 

Liquid UHT and sterilised milk 2.02±0.04 68.00±1.89 2.12±0.04 71.00±2.36 

Powdered samples g/kg mg lys/g ref 

protein 

g/kg mg lys/g ref 

protein 

Powdered adapted formula 3.72±0.09 41.22±1.41 3.45±0.07 38.33±0.79 

Powdered follow-up formula 5.97±0.22 59.45±2.47 5.42±0.13 54.25±1.06 

Junior milk formula 8.56±0.20 65.81±1.03 8.54±0.17 65.58±0.82 

n=6. Lys: lysine. Ref: reference. UHT: ultra-high temperature. 

Amigo-Benavent et al. (2008) found available lysine values ranging from 1.54 

to 9.76 mg/g of protein in soy products. When they studied a liquid soymilk 

beverage similar to the soymilk studied in the present study, they reported 
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available lysine content (29.2 mg/g) very closed to that found in this study. In 

addition, data on lysine content of the soymilk studied in this work compared well 

with previously published data (Kwok et al. 1998; Souci et al. 2000). 

In the published literature, it was not possible to find any studies of 

chemically available lysine contents in oat or quinoa-based beverages in order to 

make a comparison with results obtained in this study. However, bearing in mind 

the nutritional purpose of these foods in some population groups, it should be 

noted that compliance in available lysine content is essential to ensure nutritional 

quality and to avoid potential harmful effects in target groups. Moreover, taking 

into account the lysine content of oat and quinoa beverages, it can be concluded 

that generally the protein quality of these beverages was comparable to that of 

cow’s milk (74.3 mg/g of protein) and egg whites (64.9 mg/g of protein) (Souci et 

al. 2000). 

4. Conclusion 

The analytical parameters: linearity, detection limit, precision and accuracy of 

the assay showed that the automated method studied was useful for measuring 

the available lysine content in food products. The method was easy to perform 

and the fact that sample preparation was the same for all the samples makes it 

suitable as a method for routine determinations. This method was valid in order 

to quantify the changes in the available lysine content of liquid foods and 

powdered samples after processing/preservation treatments and subsequent 

storage. 
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ABSTRACT 

The impact of high pressure processing (HPP) technology on physicochemical 

properties (colour, browning index, turbidity index), bioactive compounds 

(ascorbic acid, total phenolic compounds, total anthocyanins, total carotenoids) 

and antioxidant capacity of a fruit juice mixture (papaya (32.5%, v/v), mango 

(10%, v/v) and orange (7.5%, v/v)) sweetened with Stevia rebaudiana Bertoni at 

different percentages was studied. The experimental design comprised a response 

surface methodology according to a central composite face-centred design. The 

variable ranges were 300–500 MPa (pressure), 5-15 min (time), 0-2.5% stevia 

percentage. This design was used to determine the optimal high pressure-stevia 

concentration in order to obtain the best retention of physicochemical and 

nutritional quality in the beverage following high pressure. HPP conducted at 300 

MPa for 14 min led to a beverage with the greatest presence of antioxidant 

compounds and total colour differences lower than 3.  

 

Industrial relevance: There has been an increased interest in the use of non-

caloric sweeteners from plant sources, among them is Stevia rebaudiana Bertoni, 

due to the growing evidence of its health benefits. Combined mixtures of S. 

rebaudiana water extracts and fruit juice can be a useful tool in order to provide 

new food products with increased nutritional properties. Moreover, high pressure 

processing (HPP) allows the acquisition of drinks that keep their characteristics 

similar to the fresh product. A deeper knowledge of the effect of HPP on the 

nutritional and physicochemical characteristics of these new beverages processed 

by HPP with regard to unprocessed juices is necessary. 

 

Keywords: Stevia rebaudiana, exotic fruits, orange, bioactive compounds, total 

antioxidant capacity, high pressure processing. 
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1. Introduction 

In the last years, new functional juices without sugar and/or obtained from 

exotic fruits are becoming common in Japanese, US and EU markets and have 

been receiving considerable attention as their market potential grows (Perumalla 

& Hettiarachchy, 2011; Puri, Sharma, & Tiwari, 2011). In addition, food industry 

has shown increased interest in plant extracts from Stevia rebaudiana, because it 

can be a nutritional strategy in order to replace or substitute sugar energy content 

due to its high content in non-nutritive sweeteners (Nehir El & Simsek, 2012). 

Currently, stevia in leaf or extracted forms was approved by FDA as a dietary 

supplement in the US, and under similar classifications in several other countries. 

In November 2011, the European Commission approved steviol glycosides as food 

additives (European Commission, 2011), which will probably lead to wide-scale 

use in Europe (Stoyanova, Geuns, Hideg, & Van den Ende, 2011). So far, little data 

has been available regarding the practical applications in foods and stability under 

different processing and storage conditions (Nehir El & Simsek, 2012). The leaves 

of stevia have functional and sensory properties superior to those of many other 

high-potency sweeteners, and is likely to become a major source of high-potency 

sweetener for the growing natural food market (Goyal, Samsher, & Goyal, 2010). 

Moreover, it has been reported that stevia is nutrient-rich, containing substantial 

amounts of minerals, vitamins, polyphenols and other antioxidant compounds. In 

some countries, stevia has been consumed as a food and medicine 

(ethnobotanical) for many years, including most notably Japan and Paraguay 

(Lemus-Mondaca, Vega-Gálvez, Zura-Bravo, & Ah-Hen, 2012). In addition, stevia 

sweetener extractives are suggested to exert beneficial effects on human health, 

as they have anti-hyperglycaemic, anti-hypertensive, anti-inflammatory, anti-

tumour, anti-diarrhoeal, diuretic, and immunomodulatory effects 

(Chatsudthipong & Muanprasat, 2009).  

On the other hand, orange and different exotic fruits such as mango and 

papaya are a good source of bioactive compounds like ascorbic acid, polyphenols, 

and carotenoids. These compounds have been shown to be good contributors to 

the total antioxidant capacity of foods (Zulueta, Esteve, & Frígola, 2009; Vijaya, 
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Sreeramulu, & Raghunath, 2010) and have been involved in the prevention of 

some degenerative diseases (Devalaraja, Jain, & Yadav, 2011). 

The development of non-thermal processing technologies combined with 

natural additives with antioxidant activity to obtain healthier and safer food 

products is one of the major challenges facing the food industry in the new 

century (Barros-Velazquez, 2011; Norton & Sun, 2008). So, high pressure 

processing (HPP) can be a useful tool in order to achieve this goal. With this kind 

of treatment it is possible to inactivate and inhibit microorganisms, and it can 

activate or inactivate enzymes at low temperatures (Saucedo-Reyes, Marco-

Celdrán, Pina-Pérez, Rodrigo, & Martínez-López, 2009; USFDA, 2000), while 

compounds of low molecular weight, such as vitamins and compounds related to 

pigmentation and aroma, remain unaltered (Rastogi, Raghavarao, 

Balasubramaniam, Niranjan, & Knorr, 2007). In fluid foods, pressure is transmitted 

uniformly and instantly, that is, there are no gradients (it follows the so-called 

isostatic rule) (Thakur & Nelson, 1998; Toepfl, Mathys, Heinz, & Knorr, 2006). 

Unlike what happens with heat processes, HPP is independent of the size and 

geometry of the product, which reduces the time required to process large 

quantities of food (Rastogi et al., 2007).  

Response surface methodology (RSM) has been used in the optimisation of 

food processes to define the relationships between the responses and 

independent variables. RSM has important application in the design, 

development, and formulation of new products (Bas & Boyaci, 2007). Different 

authors have used RSM to evaluate the HPP conditions such as the pressure, 

temperature and time on antioxidant compounds and physicochemical 

parameters of food products (Roldán-Marín, Sánchez-Moreno, LLoría, De Ancos, & 

Cano, 2009; Terefe, Matthies, Simons, & Versteeg, 2009). These authors 

concluded that all the factors, pressure, temperature, and time, significantly 

influenced different nutritional and quality parameters. 

The aims of the present study were (1) to investigate the effects of the HPP 

conditions, specifically pressure and time, as well as the influence of stevia 

concentrations on bioactive compounds (ascorbic acid, total phenolics, total 

anthocyanins, total carotenoids), antioxidant capacity, and physicochemical 
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properties (turbidity, browning, colour) of a fruit juice mixture sweetened with 

stevia and (2) to determine optimum conditions in order to obtain a fruit juice 

mixture beverage sweetened with stevia with the highest levels of health-related 

compounds and the best physicochemical properties. 

2. Materials and methods 

2.1. Samples 

2.1.1. Fruit juice mixture 

Oranges (Citrus aurantium, cultivar Salustiana), mango (Mangifera indica), 

and papaya (Carica papaya) were purchased from a local supermarket (Valencia, 

Spain). Orange, mango and papaya juices were extracted after appropriate 

washing and hygienisation of the fruits, then the pulp was removed. The fruit juice 

mixture was prepared by mixing 32.5% (v/v) of papaya juice, 10% (v/v) of mango 

juice, 7.5% (v/v) of orange juice, and water to 100%. 

2.1.2. Stevia infusion 

A stock solution of 8.33% (w/v) was prepared from dried leaves. One hundred 

mL of boiling distilled water were added to the dried leaves (8.33 g), the mix was 

covered and let infuse for 30 min. The infusion was vacuum filtered using filter 

paper (Whatman® No. 1, Whatman International Ltd., UK) and the filtrate 

obtained was stored at –40 ºC. 

2.1.3. Fruit juice-stevia mixture (FJ-stevia) 

Different volumes of stevia stock solution (3 and 6 mL) were added to 14 mL 

of fruit juice mixture to obtain stevia concentrations of 1.25 and 2.50%, 

respectively. Water was added when necessary to complete a final matrix volume 

of 20 mL. In parallel, a blank sample without stevia in its composition (0% stevia) 

was formulated with 14 mL of fruit mixture juice and 6 mL of water. The 

maximum stevia concentration (2.5%) was selected taking into account the 

sucrose concentration of commercial fruit based beverages and the sweetness 
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equivalence stevia/sucrose (Savita et al., 2004). Under these conditions, samples 

were rated as excellent and were characterised by higher acceptability. 

2.2. Chemicals 

Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), ABTS (2,2´-

azinobis(3-ethylbenzothiazoline 6-sulfonate)), Folin-Ciocalteu reagent, and 

fluorescein sodium salt were purchased from Sigma-Aldrich (Steinheim, 

Germany). Gallic acid was purchased from UCB (Brussels, Belgium). Hexane (LC 

grade), potassium hydroxide, and hydrogen peroxide were purchased from 

Scharlau (Barcelona, Spain). Sodium and disodium phosphate, L(+)-ascorbic acid, 

acetonitrile (special grade), magnesium hydroxide carbonate (40-45%), and 2,2´-

azobis-(2-amidinopropane) dihydrochloride (AAPH) were purchased from Panreac 

(Barcelona, Spain). Ethanol, diethyl ether, methanol, hydrochloric acid, and 

sodium chloride (special grade) from Baker (Deventer, The Netherlands). 

Chloroform was obtained from Merck (Darmstadt, Germany). 

2.3. HPP Equipment 

Samples, inserted in low density polyethylene bottles, were placed in 

polyethylene bags filled with water and heat-sealed (MULTIVAC Thermosealer, 

Hünenberg, Switzerland) before being placed in the HPP unit (High-Pressure Food 

Processor; EPSI NV, Belgium). The equipment consists on a vessel with an internal 

diameter of 100 mm and 300 mm high, with an operation pressure vessel of 689 

MPa and an operation temperature vessel of −20 to 100 °C and a volume of 2.35 

L. The pressure medium was a water–ethylenglycol mixture (70:30). Samples were 

pressurised at 300, 400 and 500 MPa for specific times in a range of 5, 10, and 15 

min. Pressure level, pressurisation time, and temperature were controlled 

automatically. Pressure increase rate was 300 MPa/min and depressurisation time 

was less than 1 min. Initial temperature was 15 °C, final temperature after 

pressurisation at highest pressure was 32 °C, final temperature after holding time 

at highest pressure was 26.6 °C and final temperature after decompression at 

highest pressure was 12.5 °C. Come-up time was 90 s and decompression time 

was 15 s. All treatments were applied in duplicate, with three bottles per 
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treatment. Immediately after pressurisation, samples were transferred to an 

ice/water bath (Armfield FT61, UK), packed, and then stored under refrigeration 

(4±1 °C) until needed for analysis. For HPP, literature reports 5-15 min at 300-500 

MPa to achieve 5-log reduction of different foodborne pathogens in different 

liquid foods (Alpas, Kalchayanaud, Bozoglu, & Ray, 2000; Donsì, Ferrari, Di Matteo, 

& Bruno, 1998). 

2.4. Determination of ascorbic acid 

A Metrohm 746 VA Trace Analyser (Herisau, Switzerland) equipped with a 

Metrohm 747 VA stand was used for the polarographic determination. The 

working electrode was a Metrohm multi-mode electrode operated in the 

dropping mercury mode. A platinum wire counter electrode and a saturated 

calomel reference electrode were used. The following instrumental conditions 

were applied: DP50, dropping mercury mode, drop size 2, drop time 1 s, scan rate 

10 mV/s, initial potential −0.10 V. Beverage (5 mL) was diluted to 25 mL with the 

extraction solution (oxalic acid 1% w/v, trichloroacetic acid 2% w/v, sodium 

sulfate 1% w/v). After vigorous shaking, the solution was filtered through a folded 

filter (Whatman® No. 1, Whatman International Ltd., UK). Oxalic acid (9.5 mL) 1% 

(w/v) and 2 ml of acetic acid/sodium acetate 2 M buffer (pH=4.8) were added to 

an aliquot of 0.5 mL of filtrate and the solution was transferred to the 

polarographic cell. Determinations were carried out by using the peak height and 

standard addition method in accordance to Barba, Esteve, Tedeschi, Brandolini, 

and Frígola (2013). 

2.5. Total Phenolic Compounds 

Total phenols were determined according to the method reported by Georgé, 

Brat, Alter, and Amiot (2005). Briefly, 10 mL of sample was homogenised with 50 

mL of a mixture of acetone/water (7/3, v/v) for 30 min. Mixture supernatants 

were then recovered by filtration (Whatman® No. 2, England) and constituted the 

raw extracts (REs). REs (2 mL) were settled on an Oasis cartridge (Waters). 

Interfering water-soluble components (Steviol glycosides, reducing sugars, 

ascorbic acid) were recovered with 2 x 2 mL of distillate water. The recovered 
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volume of the washing extract (WE) was carefully measured. In order to eliminate 

vitamin C, heating was carried out on the washing extract (HWE). All extracts (RE, 

WE, and HWE) were submitted to the Folin−Ciocalteu method, adapted and 

optimised (Barba et al., 2013). Gallic acid calibration standards with 

concentrations of 0, 100, 300, 500, 700 and 1000 ppm were prepared and 0.1 mL 

was transferred to borosilicate tubes. 3 mL of sodium carbonate solution (2% w/v) 

and 0.1 mL of Folin–Ciocalteau reagent (1:1, v/v) were added to 0.1 mL of all gallic 

acid standard and sample tubes. The mixture was incubated for 1 h at room 

temperature and absorbance was measured at 765 nm. 

2.6. Total anthocyanins 

Total anthocyanins were determined using a modified method of Mazza, 

Fukumoto, Delaquis, Girard, and Ewert (1999). A 10-fold diluted sample of 100 μl 

was mixed with 1700 μl of distilled water and 200 μl of 5% (v/v) HCl. The sample 

was hold at room temperature for 20 min before measuring the absorbance at 

520 nm in a 10 mm cuvette. This reading corresponds to the total anthocyanins 

content after considering the relevant dilution. Calculations of total anthocyanins 

were based on cyanidin-3-glucoside (molar absorptivity 26900 L/mol·cm).  

2.7. Total Carotenoids 

Extraction of total carotenoid was carried out in accordance with Lee and 

Castle (2001). An aliquot of sample (2 mL) was homogenised with 5 mL of 

extracting solvent (hexane/acetone/ethanol, 50:25:25, v/v) and centrifuged for 5 

min at 4000 rpm at 5 ºC. The top layer of hexane containing the colour was 

recovered and adjusted to 25 mL with hexane. Total carotenoid determination 

was carried out on an aliquot of the hexane extract by measuring the absorbance 

at 450 nm. Total carotenoids were calculated according to Ritter and Purcell 

(1981) using an extinction coefficient of β-carotene, E1%=2505.  
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2.8. Total Antioxidant Capacity 

2.8.1. ABTS•+test 

The method used was described by Re et al. (1999), based on the capacity of a 

sample to inhibit the ABTS radical (ABTS•+) (Sigma-Aldrich, Steinheim, Germany) 

compared with a reference antioxidant standard (Trolox®) (Sigma-Aldrich, 

Steinheim, Germany). The radical was generated using 440 µL of potassium 

persulfate (140 mM). The solution was diluted with ethanol (Baker, Deventer, The 

Netherlands) until an absorbance of 0.70 was reached at 734 nm. Once the radical 

was formed, 2 mL of ABTS•+ was mixed with 100 µL of appropriately diluted 

sample and the absorbance was measured at 734 nm for 20 min in accordance 

with Zulueta, Esteve, and Frígola (2009). Results, obtained from duplicate 

analyses, were expressed as: mM TE (millimolar Trolox equivalents). 

2.8.2. ORAC (Oxygen Radical Absorbance Capacity) assay 

The ORAC assay used, with fluorescein (Sigma-Aldrich, Steinheim, Germany) 

as the “fluorescent probe,” was that described by Ou, Hampsch-Woodill, and Prior 

(2001). The automated ORAC assay was carried out on a Wallac 1420 VICTOR2 

multilabel counter (Perkin-Elmer, Valencia, Spain) with fluorescence filters, for an 

excitation wavelength of 485 nm and an emission wavelength of 535 nm. The 

measurements were made in plates with 96 white flat-bottom wells (Sero-Wel, 

Bibby Sterilin Ltd., Stone, UK). The reaction was performed at 37 °C as the 

reaction was started by thermal decomposition of AAPH in 75 mM phosphate 

buffer (pH 7.0) because of the sensitivity of fluorescein to pH. The final reaction 

tested and the concentrations of the different reagents were determined 

following Zulueta, Esteve, and Frígola (2009). 

2.9. Physicochemical Properties 

To measure turbidity index (TI), samples were centrifuged (618 g, 10 min, 20 

°C), supernatant was taken, and absorbance at 660 nm was measured (Krop & 

Pilnik, 1974). To determine browning index (BI), samples were centrifuged (824×g, 

20 min, 18 °C), and the supernatant was taken and diluted with ethanol (1:1, v/v). 
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The mixture was filtered with Whatman® No. 2 filters and absorbance of the 

filtrate was measured at 420 nm (Meydav, Saguy, & Kopelman, 1977). Colour 

analysis was performed using a Hunter Labscan II spectrophotometric 

colourimeter (Hunter Associates Laboratory Inc., Reston, VA., U.S.A.) controlled by 

a computer that calculates colour ordinates from the reflectance spectrum. 

Results were expressed in accordance with the Commission International 

d′Eclairage LAB (CIELAB) system with reference to illuminant D65 and with a visual 

angle of 10°. Three consecutive measurements of each sample were taken. CIE L* 

(lightness [0=black, 100=white]), a* (–a*=greenness, +a*=redness) and b* (–

b*=blueness, +b*=yellowness) values were used to calculate the total colour 

differences (E*=[(L*)2+(a*)2+(b*)2]1/2), where L*, a*, and b* are 

differences between the untreated HP-treated beverage (Calvo, 2004). 

2.10. Experimental design and statistical analysis 

A face-centred central composite response surface analysis was used to 

determine the effect of pressure (MPa) (P), time (minutes) (t) and S. rebaudiana 

concentration (%, w/v) (% stevia) on the health-related compounds (ascorbic acid, 

total phenolic compounds, total anthocyanins, total carotenoids), antioxidant 

capacity (TEAC and ORAC methods), and physicochemical properties (colour, 

turbidity and browning index) of the beverage. Response surface methodology 

(RSM) consists of a set of mathematical and statistical methods developed for 

modelling phenomena and finding combinations of a number of experimental 

factors (variables) that will lead to optimum responses. With RSM, several 

variables are tested simultaneously with a minimum number of trials, according to 

special experimental designs, which elucidates interactions between variables. 

This is not an option with classical approaches. In addition, RSM has the 

advantage of being less expensive and less time-consuming than the classical 

methods. The independent variables of the RSM were: pressure (from 300 to 500 

MPa), time (from 5 to 15 minutes) and stevia concentration (from 0 to 2.5%, w/v). 

The levels for each independent parameter were chosen considering sample and 

equipment limitations. Three (maximum, minimum and central) values of each 

factor were considered, leading to 26 experiments (Table 1). 



 

 

Table 1.  Experimental design matrix in terms of actual variables and the average values of the response for 
experiments on the effect of combined high pressure-Stevia rebaudiana concentration on the antioxidant activities of a 
fruit juice mixture. 

Runa Pressure 
(MPa) 

Time 
(min) 

Stevia 
(%) 

TCb (µg/100 
mL) 

TPCb (mg 
GAE/L) 

TAb (mg/L) 
 

TEACb (mM 
TE) 

ORACb (mM 
TE) 

 (X1) (X2) (X3) (Y1) (Y2) (Y3) (Y4) (Y5) 

1 500 15 0 364.3±15.1 165.7±9.8 21.4±1.0 2.91±0.21 3.41±0.41 

2 300 5 0 294.6±17.3 184.5±10.2 23.2±0.4 2.68±0.12 4.67±0.50 

3 500 15 0 349.3±15.4 143.7±8.6 22.9±0.5 2.92±0.31 3.20±0.25 

4 500 15 2.5 329.3±18.3 3683.1±151.5 46.4±1.1 23.54±1.01 34.95±0.71 

5 300 15 0 279.4±15.3 164.2±9.6 22.3±0.3 2.34±0.32 4.87±0.43 

6 300 5 2.5 304.6±20.4 4494.6±201.5 30.7±0.6 18.73±0.81 33.33±0.32 

7 400 10 1.25 319.4±16.1 2756.5±156.4 26.3±0.4 18.47±0.72 19.22±0.63 

8 300 15 2.5 304.4±15.6 4146.5±210.3 28.9±0.3 26.32±1.01 30.73±0.81 

9 500 5 2.5 330.3±12.7 3815.8±198.4 39.1±1.0 34.03±1.03 37.68±0.85 

10 400 10 1.25 300.6±18.3 2869.2±156.1 26.2±0.5 19.24±0.81 20.81±0.75 

11 400 5 1.25 289.4±20.1 2837.1±149.3 27.1±0.6 17.35±0.92 24.13±0.67 

12 400 10 2.5 305.3±21.1 3901.0±205.6 36.6±0.8 29.64±0.71 29.81±0.65 

13 300 15 2.5 284.4±13.6 4220.6±210.9 33.2±1.1 26.32±0.81 30.73±0.81 

14 500 5 2.5 325.6±12.5 4000.2±208.7 39.6±1.0 34.05±0.83 36.09±1.00 

15 300 10 1.25 289.5±14.6 3057.9±132.6 27.5±0.9 16.21±0.61 24.09±0.71 

16 500 5 0 295.4±17.0 170.7±9.6 23.0±1.0 2.80±0.24 4.33±0.21 

17 500 15 2.5 314.4±17.2 4060.4±263.4 45.6±2.0 23.54±0.71 34.95±0.86 

18 500 5 0 300.7±13.6 173.8±10.0 23.3±1.8 2.93±0.10 4.07±0.15 

19 300 15 0 289.4±15.3 184.8±7.6 23.6±1.0 2.72±0.31 4.64±0.16 

20 400 15 1.25 315.4±14.4 2919.3±123.6 28.1±0.9 20.07±0.72 21.63±0.51 

21 400 10 0 279.9±16.6 169.5±8.3 24.0±0.7 3.67±0.21 3.95±0.17 

22 300 5 2.5 248.6±15.3 4355.5±213.1 29.3±0.8 18.92±0.80 29.43±0.61 

23 400 10 1.25 339.3±16.1 2638.8±160.5 26.7±0.9 19.22±1.01 20.47±0.55 

24 400 10 1.25 349.3±15.2 2728.9±149.7 27.9±0.7 18.89±0.92 19.26±0.43 

25 300 5 0 304.6±15.2 177.9±7.3 22.3±0.8 2.37±0.34 3.78±0.12 

26 500 10 1.25 315.8±12.3 2818.5±162.5 25.5±0.6 20.43±0.81 22.05±0.46 

TC: total carotenoids. TPC: total phenolic compounds. TA: total anthocyanins. TEAC: trolox equivalent antioxidant capacity. ORAC: 
oxygen radical antioxidant capacity.

a
 Order of the assays was randomised.

b
 Data shown are the mean±SD of two treatment 

repetitions, each assay was performed in triplicate. 
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The experimental design was performed twice, resulting in two blocks of 

experiments. The combinations included HPP-stevia conditions with an 

intermediate level (central point) of the three variables replicated 4 times, which 

was used to determine inherent variance in the technique. Experiments were 

randomised to minimise the systematic bias in the observed responses due to 

extraneous factors and to increase precision. Experimental data were fitted to a 

polynomial response surface. The second-order response function was predicted 

using the following equation (Eq. (1)): 

                    𝑌 =  𝑏0 + ∑ 𝑏𝑖𝑋𝑖 +  ∑ 𝑏𝑖𝑖
3
𝑖=1 𝑋𝑖

2 +  ∑ ∑ 𝑏𝑖𝑗
3
𝑖=𝑖+1

2
𝑖=1 𝑋𝑖𝑋𝑗     3

𝑖=1  (1) 

where 𝑌 represents a response variable, 𝑏0 is the centre point of the 

system, 𝑏𝑖, 𝑏𝑖𝑖, and 𝑏𝑖𝑗, are coefficients of the linear, quadratic and interactive 

effect, respectively; 𝑋𝑖, 𝑋𝑖
2, and 𝑋𝑖𝑋𝑗 represent linear, quadratic and interactive 

effect of the independent variables, respectively. 

The non-significant terms were deleted from the second-order polynomial 

model after an ANOVA test, and a new ANOVA was performed to obtain the 

coefficients of the final equation for better accuracy. The experimental design and 

the data analysis were performed were performed using SPSS® (Statistical Package 

for the Social Sciences) v.19.0 for Windows (SPSS Inc., Chicago, USA). The 

optimisation was done following the method proposed by Derringer and Suich 

(1980). All the individual desirability functions obtained for each response were 

combined into an overall expression, which is defined as the geometrical mean of 

the individual functions. The nearer the desirability value to the unit, the more 

adequate the system (Ross, 1996). In the present study, desirability functions 

were developed in order to obtain the beverage with the highest levels of 

antioxidant compounds and the best physicochemical properties. Subsequently, 

an ANOVA of three factors (pressure, time, and Stevia rebaudiana concentration) 

was applied, and in the parameters for which significant differences were 

obtained with more than two levels, Tukey’s test was applied to ascertain the 

range of values in which the differences were located. Finally, a study was 

conducted with the aim of determining whether there were correlations between 

a pair of variables (Pearson's test). 
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3. Results and discussion 

3.1. Effect of HPP and stevia concentration on nutritional qualities and antioxidant 

capacity of the beverages 

The ascorbic acid concentration in the fruit juice blend (papaya, mango and 

orange) without stevia was 25.5±0.3 mg/100 mL (Table 2). These results were in 

close agreement with the values obtained by other authors in papaya, mango and 

orange (Beserra-Almeida et al., 2011; Burdulu, Koca, & Karadeniz, 2006; U.S. 

Department of Agriculture (USDA) & Agricultural Research Service, 2012). In 

addition, similar results were found for the fruit juice mixtures sweetened with 

stevia at 1.25% (w/v) (25.3±0.2 mg/100 mL), and 2.5% (w/v) (25.3±0.1 mg/100 

mL), respectively. Immediately after HPP, ascorbic acid retention was higher than 

92% in all cases (data not shown). Several authors have reported that ascorbic 

acid of fruit and vegetable juices was minimally affected by HPP at mild 

temperatures (Barba, Esteve, & Frígola, 2010; Barba, Esteve, & Frígola, 2011a; Bull 

et al., 2004). 

Table 2. Physicochemical and nutritional characteristics of untreated fruit juice 

mixture sweetened with Stevia rebaudiana Bertoni. 

Parameters Beverage with stevia (%) 

 0 1.25 2.50 

Ascorbic acid (mg/100 mL) 25.5±0.3
a 

25.3±0.2
a 

25.3±0.1
a 

Total phenolics (mg GAE/L) 166.9±11.7
a 

2509.5±142.5
b 

3824.4±100.0
c 

Total anthocyanins (mg/L) 21.8±0.1
a 

24.6±0.5
b 

28.8±0.3
c 

Total carotenoids (µg/100 mL) 329.3±14.1
a 

337.6±10.1
a 

324.4±7.1
a 

ORAC (mM TE) 4.5±0.5
a 

22.2±0.7
b 

32.8±1.7
c 

TEAC (mM TE) 2.3±0.1
a 

17.9±1.4
b 

20.5±0.8
c 

Browning index 0.097±0.003
a 

2.313±0.033
b 

1.581±0.004
c 

Turbidity index 0.075±0.001
a 

0.613±0.004
b 

0.316±0.003
c 

Lightness (L*) 72.4±0.2
a 

39.3±0.1
b 

36.7±0.1
c 

Redness (a*) -1.9±0.1
a 

10.8±0.2
b 

10.1±0.1
c 

Blueness (b*) 8.5±0.2
a 

50.4±0.2
b 

39.3±0.1
c 

ºBrix 6.4±0.1
a 

7.4±0.1
b 

7.8±0.1
c 

a-c Different letters in the same file indicate significant statistical differences in 
function of the stevia percentage. 
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Results obtained for total phenolic compounds, total anthocyanins, total 

carotenoids and antioxidant capacity in the untreated and HPP samples are shown 

in Tables 1-2. Total phenolics content (TPC) of untreated fruit juice mixture 

without stevia sweetened was 166.9±11.7 mg GAE/L. However, TPC values were 

15 and 23-fold higher when stevia at 1.25% and 2.5% stevia (w/v) used as a 

sweetener, respectively. These results were in close agreement with some 

previous studies that have reported high levels of phenolic compounds in S. 

rebaudiana products. Tadhani, Patel, & Subhash (2007) and Abou-Arab & Abu-

Salem (2010) obtained that total phenolic compounds in stevia water extracts 

were 25.18 and 24.01 mg gallic acid equivalents (GAE)/g dry weight basis, 

respectively. In addition, Shukla, Mehta, Mehta, & Bajpai (2011) found 56.74 mg 

GAE in 1 g of aqueous leaf extract while ethanolic leaf extract of S. rebaudiana has 

been reported to show 61.50 mg GAE of phenols (Shukla, Mehta, Bajpai, & Shukla, 

2009).  

Three-way ANOVA showed that the preservation treatment applied (pressure, 

time) and the percentage of stevia had a significant influence (p<0.05) on the 

values of total phenolics. As can be seen in Figure 1, the behaviour of TPC was 

different after applying HPP depending on stevia concentration used in the 

formulation of the beverages. In addition, a multiple linear regression equation of 

a second order polynomial model was generated in order to elucidate the effects 

of % stevia and HPP (pressure and time) on the beverages. The reduced regression 

model presented in the Eq. (2) allowed for prediction of the effects of 

independent variables on total phenolic compounds.  

TPC (mg GAE/L) = -14240.5 + 91.9·P - 557.7·t + 2432.2·%stevia - 0.1 P2 + 1.3·P*t –  

   1.1·P*%stevia + 24.4·t*%stevia - 286.0·%stevia2    (2) 

The statistical analysis indicates that the quadratic model proposed for TPC 

was adequate (p<0.05) in order to evaluate the changes after applying HPP, with 

satisfactory determination coefficients (R2=0.961, p<0.05, standard error=1.761). 

No significant lack of fit of the model was found, showing that it fits properly 

within the range of HPP-stevia assayed conditions.  
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 Effects of pressure and time on total phenolic compounds (mg Figure 1.

GAE/100 mL) of a fruit juice sweetened with Stevia rebaudiana at: a) 0%, b) 

1.25%, and c) 2.50%. 

Phenols appeared to be relatively resistant to HPP and were even significantly 

increased (22%) after HPP (300 MPa/10 min) when the fruit juice mixture was 

sweetened with stevia (1.25%, w/v) and after 300 MPa for 5 min (18%) when the 

highest concentration of stevia (2.5%, w/v) was used. This increase in total 

phenolic content may be related to an increased extractability of some of the 

antioxidant components following high pressure processing. These results were in 

accord with those found by Plaza et al. (2011) in orange juice processed at 400 

MPa/40 ºC/1 min, Barba, Esteve, & Frígola. (2011a) in orange juice mixed with 
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milk processed at 100-400 MPa/20-42 °C/2-9 min, and Barba, Esteve, and Frígola 

(2011b) in blueberry juice after HPP at 200-600 MPa/20-42 ºC/5-15 min. They 

reported an increase in phenolic content following HPP. 

Total anthocyanins concentration in the fruit juice blend without stevia was 

21.8±0.1 mg/L. However, total anthocyanin concentration was higher when the 

fruit mixture was sweetened with 1.25% (w/v) stevia (24.6±0.5 mg/L) and 2.5% 

(w/v) stevia (28.8±0.3 mg/L), respectively. Muanda, Soulimani, Diop, & Dicko 

(2011) reported values of total anthocyanins (measured as cyanidin-3-glucoside) 

of 0.35±0.01 and 0.67±0.09 when they studied stevia water extracts and 

methanol-water extracts, respectively. In addition, the anthocyanin content, 

expressed as relative retention, ranged between 98% and 161% in HPP samples 

under the studied experimental conditions. The reduced regression model for 

total anthocyanins is presented in Eq. (3): 

TA (mg/L) = 197.736 - 1.337·P + 15.983·t - 1.854·%stevia + 0.002·P2 - 0.030·P*t +   

                         0.010·P*%stevia - 0.348·t2                   (3) 

Figure 2 indicates a positive influence of the pressure on the total anthocyanin 

content. The highest anthocyanin content was observed at the highest levels of 

both pressure and time (500 MPa/15 min) as well as stevia concentration (2.5%, 

w/v). This result indicates that in this particular range of processing conditions the 

HPP mainly modifies the mechanism of anthocyanin degradation by affecting the 

molecules involved in the kinetics of reaction, such as enzymes. Barba, Esteve, 

and Frígola (2011b) and Ferrari, Maresca, and Ciccarone (2010) observed similar 

results in HPP (200-600 MPa/15 min) blueberry juice and HPP (400-600 MPa/5-10 

min) pomegranate juice, respectively.  

Total carotenoid (TC) content in the untreated beverage sweetened with 0, 

1.25 and 2.5% (w/v) were 329.3±14.1, 337.6±10.1, and 324.4±7.1 µg/100 mL, 

respectively. The analysis of variance showed that the regression model was 

accurate enough (R2=0.921, p<0.05, standard error=28.744). The relationship 

between the independent variables and total carotenoids can be described by the 

Eq. (4): 
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TC (µg/100 mL) = -270.886 - 0.297·P - 0.141·P*t - 0.050·P*%stevia - 2.276·t2  (4) 

 
 Response surface plots for total anthocyanins content of the beverage Figure 2.

with 2.5% Stevia rebaudiana as affected by HPP at different pressures (300-500 

MPa) and times (5-15 minutes). 

Pressure had a significant positive effect (p<0.05) on the total carotenoids of 

the beverage independently of the stevia concentration used. Overall, at higher 

pressures, the values of total carotenoids were higher, reaching a maximum (4% 

increase) when pressures of 450-500 MPa were used (Figure 3), indicating that 

the beverages treated at higher pressure had an increased nutritional value.  

 
 Effect of % Stevia rebaudiana and HPP (pressure and time) on total Figure 3.

carotenoids (µg/100 mL): interactions. 
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Trolox equivalent antioxidant capacity (TEAC) and oxygen radical antioxidant 

capacity (ORAC) methods have been used widely for the determination of total 

antioxidant capacity (TAC) after applying HPP in fruit juice complex mixtures 

(Barba, Esteve, & Frígola, 2012b). In the present study, TAC values of untreated 

samples without stevia were 4.5±0.5 and 2.3±0.1 mM TE for ORAC and TEAC 

assays, respectively. ANOVA results indicated an increase in ORAC and TEAC 

values when stevia percentage was increased, independently of the preservation 

treatment applied. These results were in accordance to those found by different 

authors who have demonstrated the high antioxidant capacity of S. rebaudiana 

products (Muanda et al., 2011; Shukla et al., 2009, 2011; Tadhani et al., 2007). In 

addition antioxidant capacity values measured with ORAC assay were significantly 

higher (p<0.05) for the samples with stevia at 1.25% (22.2±0.7 mM TE) and 2.5% 

(32.8±1.7 mM TE) than those obtained with TEAC method (17.9±1.4 and 20.5±0.8 

mM TE for the beverages sweetened with 1.25 and 2.5% stevia, respectively). The 

antioxidant activity of some stevia-derived products has been attributed to the 

scavenging of free radical electrons and superoxides (Thomas & Glade, 2010). As 

the ORAC method is a reaction based on the transfer of H atoms, these 

compounds present in S. rebaudiana may be better represented by this assay. 

The results obtained for the three-way ANOVA showed that pressure, time 

and stevia percentage had a significant influence (p<0.05) on the total antioxidant 

capacity of the beverages measured as TEAC values. However, when ORAC assay 

was used, only stevia percentage had a significant effect. Moreover, the 

regression analysis test showed that a second-order model fits well the 

antioxidant capacity (ORAC and TEAC) after applying HPP. The determination 

coefficients were (R2=0.960, p<0.05, standard error=1.823) and (R2=0.970, p<0.05, 

standard error=2.220) for TEAC and ORAC methods, respectively. Experimental 

data were fitted by a second-order polynomial model (Eqs. (5)-(6)): 

TEAC (mM TE) = -24.048 - 0.013·P + 6.504·t + 5.270·%stevia - 0.007·P*t + 

0.005·P*%stevia - 0.218·t2 + 0.075·t*stevia2    (5) 

ORAC (mM TE) = 33.38820 + 15.61100·%stevia - 1.99497·%stevia2  (6) 
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When the possible correlation (Pearson test) between the various parameters 

that contribute to antioxidant capacity (ascorbic acid, total carotenoids, total 

phenolics and total anthocyanins) was studied for the different stevia 

concentrations, it was found that there was a positive correlation between total 

phenolics and TEAC (R2=0.920, p<0.05) and total phenolics with ORAC (R2=0.961). 

In this line, Cai, Luo, Sun, and Corke (2004) and Silva, Souza, Rogez, Rees, and 

Larondelle (2007) obtained a high correlation between TEAC and TPC when they 

studied 112 traditional Chinese medicinal plants and 15 Brazilian plants from 

Amazonian region, respectively. In addition, Ehlenfeldt and Prior (2001) and Bisby, 

Brooke, and Navaratnam (2008) also found a positive correlation between TPC 

and ORAC assays when they studied different plant food materials. Moreover, in 

the present study a positive correlation was found between ORAC and TEAC 

methods (R2=0.905, p<0.05). These results were in accord to those found by 

Barba, Esteve, and Frígola (2010) when they treated a vegetables beverage with 

HPP.  

3.2. Effect of HPP and stevia concentration on physicochemical properties of the 

beverages 

Results obtained for turbidity index (TI), browning index (BI) and colour 

parameters (a*, b* and L*) in the untreated and HPP samples are shown in Tables 

2-3 and Figure 4. As can be expected, among the studied parameters, stevia 

percentage had the greatest effect on the quality parameters of the beverages. 

Compared to untreated samples, lower browning index values were obtained for 

the HPP samples when 0 and 1.25% (w/v) stevia percentages were used, however 

a significant increase in BI was observed after applying HPP in the samples with 

2.5% (w/v) stevia. 

The regression model was accurate enough (R2=0.962, p<0.05, standard 

error=0.181). The regression equation describes the following model (Eq. (7)): 

BI = 8.066 - 0.0551·P + 0.4856·t + 0.6965·%stevia + 0.0001·P2 - 0.0009·P*t + 

0.0009·P*%stevia - 0.0108·t2 - 0.0092·t*%stevia  (7) 



 

 

Table 3. Experimental design matrix in terms of actual variables and average values of the response for experiments 
on the effect of combined high pressure-Stevia rebaudiana concentration on the physicochemical parameters of a fruit 
juice mixture. 

Runa Pressure (MPa) Time (min) Stevia (%) BIb TIb L*b a*b b*b ∆E 

 (X1) (X2) (X3) (Y1) (Y2) (Y3) (Y4) (Y5) (Y6) 

1 500 15 0 0.083±0.003 0.078±0.004 70.4±0.1 -1.5±0.1 11.3±0.2 3.5±0.2 

2 300 5 0 0.054±0.006 0.076±0.008 71.9±0.2 -1.8±0.1 8.3±0.2 0.5±0.1 

3 500 15 0 0.086±0.005 0.082±0.004 70.4±0.3 -1.5±0.1 11.3±0.3 3.5±0.3 

4 500 15 2.5 2.256±0.010 0.700±0.005 31.7±0.2 11.1±0.2 37.7±0.3 5.3±0.3 

5 300 15 0 0.056±0.004 0.070±0.004 72.1±0.1 -1.6±0.1 5.5±0.2 3.0±0.2 

6 300 5 2.5 1.890±0.009 0.429±0.008 36.0±0.2 9.1±0.2 38.8±0.3 1.3±0.1 

7 400 10 1.25 1.460±0.011 0.327±0.005 33.9±0.1 9.4±0.1 37.1±0.4 14.4±0.4 

8 300 15 2.5 1.641±0.012 0.414±0.006 37.2±0.2 10.4±0.1 44.5±0.4 5.2±0.2 

9 500 5 2.5 1.458±0.010 0.452±0.004 35.7±0.1 10.3±0.2 40.7±0.5 1.7±0.1 

10 400 10 1.25 1.468±0.009 0.333±0.006 35.0±0.2 9.0±0.1 33.0±0.2 18.0±0.5 

11 400 5 1.25 1.467±0.007 0.319±0.007 35.5±0.2 8.9±0.1 34.1±0.3 16.8±0.3 

12 400 10 2.5 1.990±0.009 0.445±0.006 33.8±0.2 9.5±0.1 37.0±0.2 3.7±0.3 

13 300 15 2.5 1.648±0.010 0.416±0.008 37.6±0.4 10.4±0.2 44.3±0.1 5.1±0.3 

14 500 5 2.5 1.472±0.011 0.466±0.009 35.8±0.3 10.3±0.1 40.3±0.2 1.4±0.1 

15 300 10 1.25 1.388±0.015 0.345±0.010 35.1±0.2 9.1±0.1 35.5±0.3 15.6±0.4 

16 500 5 0 0.083±0.003 0.076±0.003 70.6±0.3 -1.5±0.1 9.1±0.4 1.9±0.1 

17 500 15 2.5 2.235±0.010 0.697±0.011 31.7±0.2 11.1±0.2 37.4±0.2 5.4±0.2 

18 500 5 0 0.086±0.004 0.078±0.003 70.6±0.4 -1.5±0.1 9.1±0.2 1.9±0.1 

19 300 15 0 0.059±0.005 0.076±0.004 72.1±0.4 -1.6±0.1 5.5±0.1 3.0±0.1 

20 400 15 1.25 1.465±0.008 0.337±0.009 34.8±0.3 8.8±0.1 32.8±0.3 18.3±0.4 

21 400 10 0 0.201±0.006 0.115±0.009 71.0±0.5 -1.1±0.1 11.4±0.2 3.3±0.2 

22 300 5 2.5 1.910±0.010 0.426±0.011 36.0±0.3 9.0±0.2 38.5±0.2 1.5±0.2 

23 400 10 1.25 1.456±0.013 0.330±0.010 35.0±0.2 9.0±0.1 33.1±0.3 17.9±0.5 

24 400 10 1.25 1.463±0.012 0.335±0.010 35.0±0.2 9.0±0.1 33.0±0.4 18.0±0.6 

25 300 5 0 0.057±0.006 0.078±0.003 71.9±0.2 -1.9±0.1 8.3±0.1 0.5±0.1 

26 500 10 1.25 1.470±0.010 0.342±0.011 34.8±0.4 8.6±0.2 32.8±0.3 18.3±0.6 

BI: Browning index. TI: Turbidity index. ∆E: Total colour differences.a Order of the assays was randomised. b Data shown are the mean±SD 
of two treatment repetitions, each assay was performed in triplicate.  
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Overall, no statistically significant changes were observed in TI values of the 

HPP samples in comparison with the untreated beverage when stevia was not 

added. However, there was a statistically significant (p<0.05) decrease in the HPP 

samples with 1.25% (w/v) stevia in comparison with the unprocessed beverage.  

In addition, the opposite trend was obtained after applying HPP when stevia 

percentage was 2.5% (w/v) (Eq. (8)). 

TI = -0.4166 + 0.0141·%stevia + 0.0004·P*%stevia - 0.0152·t2    (8) 

With regard to lightness (L*), the three-way ANOVA showed that pressure, 

time and stevia concentration had a significant influence (p<0.05) on this 

parameter. Compared to the untreated beverages, lower L* values were found for 

samples treated by HPP independently of the stevia used in the formulation of the 

beverages. In addition, the response surface equation obtained in the present 

study described the experimental data adequately (R2=0.921, p<0.05, standard 

error=5.324), which also was confirmed by the insignificant lack of fit (p=0.810). 

The Eq. (9) was as follows: 

L* = -82.361 + 0.963·P - 6.430·t - 34.891·%stevia - 0.001·P2 + 0.013·P*t –  

0.020·P*%stevia + 0.238·t*%stevia + 9.834·%stevia2   (9) 

As can be observed, L* value decreased for all the HPP treatments applied, 

obtaining a higher decrease at higher pressure and longer time range. These 

results were in accord to those previously reported by Barba, Esteve, & Frígola 

(2011a) in HPP orange juice mixed with milk. These authors attributed it to partial 

precipitation of unstable particles in the juices after processing. 

With regard to a* values, the behaviour was different depending on stevia 

concentration of the untreated samples. The reduced regression model presented 

in the Eq. (10) allowed the prediction of the effects of independent variables on 

the a* values: 

a* = 41.967 - 0.304·P + 3.046·t + 11.683·%stevia + 0.001·P2 - 0.006·P*t +  

 0.002·P*%stevia - 0.067·P2 - 3.313·%stevia2         (10) 
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There were significant differences (p<0.05) in the a* values at different HPP 

conditions. Overall, the a* value changed toward a more positive direction for the 

HPP beverage with no stevia added for all high pressure treatments and the 

beverage with 2.5% (w/v) of stevia when HP treatment at 500 MPa/15 min was 

applied. The increase in CIE a* values were similar to the results found by Barba et 

al. (2010) when they studied the effects of HPP in a vegetables beverage and 

Patras, Brunton, Da Pieve, Butler, and Downey (2009) for high pressure processed 

tomato and carrot purées. However, the opposite trend was obtained when stevia 

at 1.25% (w/v) was added for all HPP conditions. The highest decrease in CIE a* 

values was observed at 500 MPa/10 min. The decrease in a* values was similar to 

the results found by Patras, Brunton, Da Pieve, and Butler (2009) in HPP 

strawberry and blackberry purées and by Barba, Cortés, et al. (2012) in HPP 

orange juice mixed with milk samples.  

The yellowness (b* values) of untreated samples were 8.5±0.2, 50.4±0.2 and 

39.3±0.1 when 0, 1.25 and 2.5% (w/v) of stevia was added. Overall, longer 

treatment times and processing at the highest pressure resulted in the highest 

decrease in b* values (see Table 3). These results were in accord with those found 

by Saldo, Suárez-Jacobo, Gervilla, Guamis, and Roig-Sagués (2009) in apple juice 

processed at 300 MPa/4 °C, Daoudi et al. (2002) in white grape juice processed at 

500 MPa/600 s/2 °C, and Barba, Cortés, et al. (2012) in orange juice-milk samples 

after HPP. Furthermore, statistical analyses showed a positive correlation 

between browning index and b* value (p=0.809). In addition, relatively low 

correlation coefficient was observed (R2=0.873) with a non-significant lack of fit 

(p=0.85). The regression Eq. (11) describes by the following model: 

b* = -48.276 + 29.040·%stevia - 0.026·P*%stevia + 0.435·t*%stevia –  

6.242·%stevia2               (11) 
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 The effect of combined high pressure-time and % of Stevia rebaudiana Figure 4.

on the colour of a beverage mixture of fruit juice sweetened with stevia. a) Effects 

of pressure and % stevia on total colour differences (ΔE) of the beverage for 10 

min treatment time. b) Effects of pressure and time on total colour differences 

(ΔE) of the beverage for 2.5% stevia. 

 

a)
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As can be expected, the linear and quadratic effects of stevia percentage were 

very significant for this model. In addition, the combined effect of time and stevia 

also had a significant effect.  

The total colour difference (ΔE*) indicates the magnitude of the colour 

difference. Depending on the value of ΔE, the colour difference between the 

treated and untreated samples can be estimated such as not noticeable (0–0.5), 

slightly noticeable (0.5–1.5), noticeable (1.5–3.0), well visible (3.0–6.0) and great 

(6.0–12.0) (Cserhalmi, Sass-Kiss, Tóth-Markus, & Lechner, 2006). As can be seen in 

Table 2, stevia addition had a strong effect of the beverage colour, increasing 

significantly (p<0.05) the browning of the juices. Moreover, in the present study, 

ΔE values were found to be different in behaviour, depending on treatment time 

or HPP intensity level (Table 3, Figure 4). Colour changes increased when pressure 

and treatment times were higher independently of the stevia percentage used, 

with the highest differences appearing at 500 MPa (3.3, 18.3 and 5.3 for 0, 1.25 

and 2.5% (w/v) stevia). The regression Eq. (12) describes the following model:  

ΔE = 141.297 - 0.858·P + 5.299·t + 13.257·%stevia + 0.001·P2 + 0.019·P*%stevia –  

0.218·t*%stevia 6.603·%stevia2              (12) 

3.3. Optimisation and validation of the HPP and stevia concentration conditions 

The combination of HPP critical parameters that lead to a beverage (fruit juice 

mixture sweetened with stevia) with the highest nutritional and physicochemical 

quality was determined. The same priority was assigned to each dependent 

variable in order to obtain a beverage with maximal retention of bioactive 

compounds (ascorbic acid, total phenolic compounds, total anthocyanins, and 

total carotenoids) and antioxidant capacity. Likewise, the conditions that lead to a 

beverage with total colour differences lower than 3 were selected. Therefore, the 

optimal conditions of HPP in the present study were as follows: 1.7% (w/v) of 

stevia concentration, and 300 MPa of high hydrostatic pressure for 14 min. Under 

such conditions the greatest retention of bioactive compounds, antioxidant 

capacity as well as physicochemical properties were achieved, with an overall 

score of 0.626.  
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4. Conclusion 

The results obtained in the present research suggested that optimising 

pressure–time conditions after HPP can be considered as a factor of great interest 

in order to obtain a better retention of bioactive compounds and physicochemical 

characteristics. HPP combined with S. rebaudiana water extracts can be a useful 

tool in order to provide new functional foods of proven physical and nutritional 

quality, thus increasing added value. In any case, more studies on the combined 

effect of pressure and time are required to elucidate the effects of HPP 

parameters on bioactive compounds and colour in foods, and further studies 

dealing with the effects of HPP in liquid foods during storage are needed. 
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3.5. Ascorbic acid in orange juice based beverages 

processed by pulsed electric fields 
 

 

 

  



 

 

 



 

 

Fruit juices. Types, nutritional composition and health benefits. Nutrition 

and diet research progress, Katherlyn Elizabeth Elder New York: Nova 

Publishers (2014) 103-124 

 

Ascorbic Acid in Orange Juice Based Beverages Processed by 

Pulsed Electric Fields 

 

Juana M. Carbonell-Capella, Francisco J. Barba, Ana Zulueta, María J. 

Esteve, Ana. Frígola* 

University of Valencia, Department of Nutrition and Food Science, Av. 

Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain 

 

 

 

 

 

 

 

*Corresponding author: 

Ana Frígola 

e-mail: ana.frigola@uv.es 

Phone: +34 963544955, Fax: +34 963544954 



160 

Results 

 

 

ABSTRACT 

Citrus fruits have been widely used as ingredients in fruit juices and 

beverages. However, vitamin C content may be reduced by thermal processing, 

thus reducing beneficial health effects. For this reason, the degradation kinetics of 

ascorbic acid were determined in orange juice based beverages after treatment 

by pulsed electric field, a novel emerging technology with increasing interest in 

the conservation of juices. The orange juice and orange-carrot juice mixture fitted 

a linear model, while the orange juice–milk beverage followed an exponential 

model. The degradation constants obtained in the orange juice were 

0.00046±1·10–4, –0.00051±5·10–5, –0.00074±8·10–5, and –0.00095±1·10–4 µs–1 for 

fields of 25, 30, 35, and 40 kV/cm, respectively. In the case of the orange–carrot 

juice they were –0.00037±3·10–5, –0.00042±5·10–5, –0.00119±7·10–5, and –

0.00091±2·10–4 µs–1 for fields of 25, 30, 35, and 40 kV/cm, respectively, and for 

the orange juice–milk beverage they were –0.00012±3·10–5, –0.00022±5·10–5, –

0.00042±7·10–5, and –0.00061±6·10–5 µs–1 for fields of 15, 25, 35, and 40 kV/cm, 

respectively, demonstrating the use of PEF as an alternative to pasteurisation 

treatments. The D value increased with electric field strength, and the ZE values 

were 42.9, 30.6, and 35.1 kV/cm for the orange juice, orange–carrot mixture, and 

orange juice–milk beverage, respectively. Therefore, the orange juice was more 

resistant to changes in electric field strength in PEF treatment, while the 

treatment time required to produce the same degradation of ascorbic acid was 

greater in the orange juice–milk beverage than for the orange juice or the 

orange–carrot juice mixture, showing the need to optimise treatment conditions 

whenever there is a change in the food matrix. 

 

Keywords: Ascorbic acid, pulsed electric fields, orange juice, carrot, milk, 

degradation kinetics. 
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Introduction 

Fruit juices constitute one of the most widespread food-products in the 

manufacturing industry. They contain compounds that have a protective effect 

against degenerative diseases, known as phytochemicals or bioactive compounds 

(phenolic compounds, carotenoids, vitamins A, C, glucosinates, etc.), whose 

biological activity has been studied in numerous ex vivo, in vitro assays and by 

tests on humans. Epidemiological studies also show that the consumption of fruit 

juices has a considerable protective effect against the risk of certain diseases such 

as cancer, cataract, macular degeneration, and cardiovascular diseases [1-10]. Not 

only fruit juices are rich in bioactive compounds; vegetable juices, dairy products 

and milk fractions (milk, whey, casein, and lactoferrin) have a powerful biological 

and functional activity and contain high concentrations of antioxidant compounds. 

The antioxidants in milk play an important part in preventing lipid peroxidation 

and maintaining milk quality [11, 12]. 

Growing consumer demand for safe processed foods requiring minimum 

preparation time and presenting maximum similarity to the fresh product has led 

the food industry to increase production of fruit juices and seek ways of ensuring 

that bioactive compounds and nutrients are retained or modified only minimally 

during processing and storage, until they reach the consumer [13-14]. 

Considerable importance is currently being gained by fruit juices not derived from 

concentrates, enriched or mixed with vegetable juices or milk. 

Moreover, technological innovation in the food industry is one of the pillars 

that form a basis for increased competitiveness and the provision of 

microbiologically safe food products that offer a nutritional quality and availability 

acceptable to the modern consumer. Apart from the improvements that have 

gradually been made in preservation process involving heat, such as continuous 

high temperature short time treatments, UHT, and aseptic packaging, new non-

thermal technologies are emerging to respond to the need for greater nutritional 

and sensory quality in certain manufactured foods whose freshness characteristics 

are particularly affected by heat treatment [15]. 
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During heat treatment, in addition to the inactivation of microorganisms, 

varying percentages of desirable constituents such as nutrients, color, aroma, and 

texture are destroyed [16-18]. Very high temperatures (135-150 ºC) are applied 

during sterilisation, with very short heating times (4-15 seconds). Most 

commercialised sterile foods have a shelf life of two years or more; any 

deterioration occurring after that time is due to changes in texture or aroma, not 

to microbial growth [19, 20]. Pasteurisation is a mild heat treatment causing 

minimal losses of organoleptic characteristics and nutritional quality. There are 

two major groups of pasteurisation technologies, those that use low 

temperatures (60-65 ºC) for fairly long times, and those that use higher 

temperatures (75-99 ºC) for short times. Currently, fruit and vegetable juices are 

subjected to temperatures ranging between 90 and 99 ºC for 15-60 seconds, and 

hot-filled aseptically. They are then cooled and stored in refrigeration for 

subsequent marketing [21]. 

Non-thermal preservation technologies such as high-intensity pulsed electric 

fields (PEF) are emerging in this context, with the aim of obtaining 

microbiologically safe foods with physicochemical, nutritional, and quality 

characteristics that are more like those of the fresh product. Treatment by high-

intensity pulsed electric fields is an emerging technology with promising results 

for the inactivation of microorganisms and enzymes, preserving the organoleptic 

and nutritional characteristics of the treated product [22-25], and therefore 

interest in this technology is increasing [26]. The electric field affects cell 

membranes, causing irreversible damage, alteration of ion transport, and changes 

in enzyme structure [27-29]. 

A study by the Institute of Food Technology [30] highlights the research needs 

for emerging preservation technologies, especially the identification of how they 

may affect bacterial inactivation, quality, nutritional value, and shelf life of foods, 

changes in critical processing factors, and the introduction of new factors. Several 

studies have been conducted on the effect of PEF on nutrients in various food 

matrices in recent years [22, 31-35]. The type and physicochemical characteristics 

of the product (conductivity, pH, ionic strength, water activity, presence of 

particles, etc.) influence the effectiveness of the process [36, 37]. 
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Studies on the loss and/or modification of vitamin contents are necessary to 

learn how treatment affects the product’s nutritional characteristics that are of 

particular importance for the consumer. Vitamin C is a thermolabile vitamin that 

is especially affected by heat treatment [38], and it has been used as a quality 

indicator after application of a preservation process [39-42]. Vitamin C 

degradation indicates not only loss of quality but also loss of other nutrients and 

organoleptic components. However, with appropriate stabilisation procedures 

and suitable storage conditions (e.g. temperature and light), ascorbic acid can be 

stable for long periods of time. 

The aim of the present study was to determine the degradation kinetics of 

ascorbic acid in various orange juice based beverages treated by high-intensity 

pulsed electric fields, and to analyse the possible influence of the product’s 

characteristics on the variation in ascorbic acid after the preservation treatment. 

Materials and Methods 

Samples 

Orange juice: The orange juice (Citrus sinensis L., Navel variety) was obtained 

by squeezing (FMC juice extractor with 2 mm perforated plates) and passed 

through a filter with pores having a diameter of 0.23 mm. The juice was packaged 

aseptically and stored at –40 ºC until the time for the analysis. 

Orange–carrot juice mixture: The orange juice was prepared as described 

above. To obtain the carrot juice, the carrots were washed first with a solution of 

sodium hydroxide and then with drinking water. The juice obtained was sieved 

and mixed with the orange juice in the following proportion: orange–carrot, 80:20 

(v/v). It was packaged aseptically and frozen at –40 ºC until the time for the 

analysis. 

Orange juice and milk beverage: The beverage was prepared by mixing 50% 

(v/v) of orange juice prepared as described above, 20% (v/v) of UHT skim milk 

(Grupo Leche Pascual S.A., Burgos, Spain), and 30% (v/v) of distilled water. Then 

7.5% of saccharose (w/v) (Panreac, Barcelona, Spain), 0.1% of citric acid (w/v) 

(Panreac, Barcelona, Spain), and 0.3% of high methoxyl pectin (w/v) (Unipectine 
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AYD 250 Degussa Food Ingredients, Boulogne, France) were added as sweetener, 

preservative, and stabiliser of the samples, respectively. The beverage was 

prepared just before treatment. 

A sufficient quantity of each product was prepared and divided into three 

parts: one was assigned as a control, one was processed by PEF, and one was 

pasteurised thermally. 

Heat Treatment 

The heat treatment was applied in an Armfield FT74P plate exchanger. The 

beverage was placed in a feed tank and driven by a pump towards the heat 

exchanger, where it attained the heat conditions selected (90 ºC, 20 s for the 

orange juice and the juice–milk beverage; 98 ºC, 21 s for the orange–carrot juice 

mixture, heat treatments of 90–99 ºC for 15–30 s being customary in the industry 

[21]. The beverage was cooled after treatment by means of a cooler (Armfield 

FT61), packaged aseptically, and stored in refrigeration (4±1 ºC) until it was 

analysed. The treatment was carried out in duplicate. 

PEF Treatment 

The treatment was applied in continuous mode in an OSU-4D system designed 

by the University of Ohio (USA) and installed at the Instituto de Agroquímica y 

Tecnología de los Alimentos (CSIC) in Valencia. The pulse system consisted of six 

“co-field” treatment chambers connected in series, having a diameter of 0.23 cm 

and a distance of 0.293 cm between electrodes, and two cooling coils submerged 

in a refrigerated bath (Polystat, Cole Parmer, IL, USA) connected before and after 

each pair of treatment chambers in order to keep the temperature within the 

designated range. The initial and final treatment temperatures were recorded by 

thermocouples placed at the entrance to the first treatment chamber and at the 

exit of the last chamber, respectively. The temperature, waveform, voltage, and 

treatment intensity were recorded with a digital oscilloscope (Tektronix TDS 210, 

Tektronix, OR, USA). The flow rate was set at 60 mL/min and controlled by a 

peristaltic pump (Cole-Parmer 75210-25, Cole-Parmer Instruments, IL, USA). The 

pulse duration selected was 2.5 s. The treatment time ranged from 30 to 700 s, 
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and the electric fields assayed were in the range 15– 40 kV/cm. The samples were 

collected after each treatment and stored in refrigeration (4±1 ºC) until they were 

analysed. The treatment was performed in duplicate. 

Table 1. Treatment conditions applied to the orange juice. 

E  
(kV/cm) 

τ (s)  (pulses/ 
chamber) 

T (ºC) Conductivity 
(mS/cm) 

Q (J/mL) W (J/mL/ 
pulse) 

25 40 16 37 4.56 41.04 2.57 
25 100 40 44 5.13 115.52 2.89 
25 170 68 52 5.79 221.47 3.26 
25 240 96 64 6.77 365.80 3.81 
25 300 120 67 7.02 473.85 3.95 
25 340 136 72 7.43 568.39 4.18 
30 40 16 38 4.64 116.05 4.18 
30 80 32 46 5.30 264.90 7.25 
30 100 40 49 5.54 346.51 8.28 
30 150 60 58 6.28 588.94 8.66 
30 190 76 63 6.69 794.67 9.82 
30 240 96 69 7.18 1077.60 11.23 
35 40 16 41 4.89 239.51 10.46 
35 60 24 46 5.30 389.40 11.23 
35 80 32 51 5.71 559.38 14.22 
35 100 40 55 6.04 739.41 16.23 
35 140 56 61 6.30 1119.55 16.98 
35 170 68 67 7.02 1461.92 21.50 
40 30 12 41 4.89 234.62 19.24 
40 40 16 44 5.13 328.58 20.49 
40 60 24 49 5.54 532.22 22.00 
40 80 32 55 6.04 772.61 19.55 
40 100 40 61 6.53 1044.48 20.54 
40 130 52 69 7.18 1494.27 28.74 

The energy of the electric pulse was calculated by means of the following 

equation: W (J·L–1)=E2··τ, where E is the electric field strength (V·m–1),  is the 

electric conductivity of the product (S·m–1) calculated for each temperature 

attained during processing, and τ is the length of the pulse (s). 
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When τ and E are constant, W depends only on , so that application of the 

same number of pulses generates greater energy (Q) when  is greater: Q (J·L-

1)=n·W, where n is the number of pulses. Tables 1 to 3 show the treatment 

conditions for each of the samples studied. 

Table 2. Treatment conditions applied to the orange–carrot juice. 

E  
(kV/cm) 

t (s) 
 (pulses/ 
chamber 

T (ºC) 
Conductivity 

(mS/cm) 
Q 

(J/mL) 
W (J/mL/ 

pulse) 

25 60 24 40 6.12 229.58 9.57 

25 110 44 44 6.54 449.49 10.22 

25 200 80 51 7.27 908.25 11.35 

25 280 112 58 7.99 1398.95 12.49 

25 340 136 65 8.72 1853.43 13.63 

30 60 24 42 6.33 341.82 14.24 

30 110 44 47 6.85 678.15 15.41 

30 170 68 56 7.79 1191.26 17.52 

30 200 80 61 8.31 1495.08 18.69 

30 220 88 64 8.62 1706.36 19.39 

35 60 24 44 6.54 480.54 20.02 

35 90 36 50 7.16 789.61 21.93 

35 110 44 55 7.58 1021.14 23.21 

35 130 52 59 8.10 1289.61 24.80 

35 150 60 64 8.62 1583.56 26.39 

40 30 12 43 6.43 308.83 25.74 

40 60 24 53 7.47 717.50 29.90 

40 80 32 61 8.20 1049.86 32.81 

40 90 36 60 8.31 1196.06 33.22 

40 110 44 65 8.72 1535.07 34.89 
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Table 3. Treatment conditions applied to the orange juice–milk beverage. 

E  
(kV/cm) 

t (s) 
 (pulses/ 
chamber 

T (ºC) 
Conductivity 

(mS/cm) 
Q 

(J/mL) 
W (J/mL/ 

pulse) 

15 40 16 35 3.89 35.04 2.19 

15 80 32 37 4.04 72.69 2.27 

15 130 52 38 4.15 121.31 2.33 

15 300 120 45 4.62 311.81 2.60 

15 500 200 55 5.35 601.36 3.01 

15 700 280 59 5.67 893.36 3.19 

25 40 16 35 4.11 893.36 6.42 

25 80 32 41 4.33 102.78 6.76 

25 130 52 45 4.62 216.45 7.22 

25 200 80 51 5.13 375.33 8.01 

25 280 112 57 5.53 640.95 8.64 

25 310 124 59 5.67 1098.97 8.86 

35 40 16 40 4.29 210.34 13.15 

35 60 24 44 4.58 336.86 14.04 

35 80 32 47 4.80 470.49 14.70 

35 100 40 51 5.09 623.68 15.59 

35 130 52 59 5.67 903.28 17.37 

35 180 72 63 6.29 1387.91 19.28 

40 40 16 43 4.47 286.35 17.90 

40 60 24 48 4.84 464.37 19.35 

40 80 32 53 5.20 665.63 20.80 

40 90 36 55 5.35 769.74 21.38 

40 110 44 58 5.41 952.66 21.65 

40 130 52 62 5.90 1227.26 23.60 

Determination of Physicochemical Parameters 

The physicochemical parameters were determined as follows: Electric 

conductivity by a Crison 525 conductivity meter (Crison Instruments S.A., Alella, 

Barcelona, Spain); pH by a Crison 2001 pH meter (Crison Instruments S.A., Alella, 

Barcelona, Spain), and soluble solids (ºBrix) by an Atago RX-1000 refractometer 

(Atago Company Ltd, Tokyo, Japan). 
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Polarographic determination of ascorbic acid 

The polarograph used comprised the following units:  Metrohm 746 VA 

Trace Analyser,  Metrohm 747 VA Stand,  Metrohm PC Software 693 VA Back 

Up. The working electrode was mercury operated in the continuous drop mode. 

An auxiliary platinum wire electrode and a saturated calomel reference electrode 

were used (Ag/AgCl, KCl 3 M). Five mL of the product was diluted and made up to 

25 mL with the extraction solution: 1% oxalic acid (w/v), 2% trichloroacetic acid 

(w/v), and 1% sodium sulfate (w/v). After vigorous shaking the solution was 

filtered through Whatman No. 1 paper. Then 9.5 mL of a solution of 1% oxalic acid 

(w/v) and 2 mL of acetic acid/sodium acetate 2 M buffer solution (pH=4.8) was 

added to 0.5 mL of the filtrate in the polarographic cell [43,44]. 

 
 Polarogram of a sample of the orange juice–milk beverage. Figure 1.

To avoid possible interference caused by the presence of oxygen, the sample 

was purged with extra pure nitrogen for 5 minutes before the analysis. The 

polarogram was recorded using a pulse width of 50 mV, a drop time of 1 second, 

and a scan rate of 10 mV/cm. The initial potential was –0.10 V. The additions 

method was used for the quantification, adding 25 L of ascorbic acid (1 g/mL) 

to the sample and recording the polarogram after each addition, obtaining a 

polarographic curve (Figure 1). 
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The accuracy of the method was determined by recovery assays. A known 

quantity of ascorbic acid (200, 100, and 50 g/mL) was added to each beverage, 

and the extraction and subsequent polarographic determination were then 

carried out. The recoveries ranged from 92.7 to 96.8%. The instrumental precision 

of the method was expressed by means of the coefficient of variation of nine 

consecutive determinations of a given aliquot and six determinations of 

independent aliquots of a given sample, the results obtained being 2.8% and 

2.9%, respectively. 

Results 

Table 4 shows the physicochemical parameters of each of the samples. It can 

be seen that the orange–carrot juice mixture had the highest conductivity, while 

the orange juice–milk beverage had the highest ºBrix. 

Table 4. Physicochemical characteristics of the beverages analysed: orange 

juice, orange–carrot juice mixture, and orange  

juice–milk beverage. 

 Orange juice 
Orange– 

carrot juice 
Orange juice–
milk beverage 

pH 3.35±0.01 3.84±0.04 3.92 ± 0.01 

ºBrix 11.8±0.1 10.3±0.3 14.3 ± 0.1 

Conductivity (mS/cm) 3.42± 0.04 4.55± 0.05 2.99 ± 0.05 

The ascorbic acid concentration in the untreated orange juice (47.6±1.4 

mg/100 mL) was higher than that of the other two samples (27.1±0.4 mg/100 mL 

and 25.9±1.4 mg/100 mL for the orange–carrot juice and the orange juice–milk 

beverage, respectively). 

Heat Treatment 

The ascorbic acid concentration in the orange juice after pasteurisation at 90 

ºC for 20 s did not vary significantly (p<0.01). The ascorbic acid retention in the 

pasteurised orange–carrot juice (98 ºC, 21 s) was 83%, while in the orange juice–
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milk mixture (90 ºC, 20 s) it was 86%. After pasteurising orange juice (90 ºC, 60 s), 

Elez-Martínez and co-workers [45] found an ascorbic acid retention of 82.4%, 

while Sánchez-Moreno and co-workers [46] obtained a higher value (92%) in the 

same conditions. Min and co-workers [47] applied the same temperature for 90 s 

and obtained a retention of 81%. 

High-intensity pulsed electric fields (PEF) 

Table 5. Ascorbic acid concentration in the orange juice  

after PEF treatment. 

E (kV/cm) t (s) Ascorbic acid (mg/100 mL) 

25 40 47.60±0.33 

100 45.24±0.72 

170 45.67±1.17 

240 44.73±0.75 

300 43.77±2.50 

340 38.82±1.63 

30 40 45.31±0.59 

80 45.03±0.56 

100 44.78±1.31 

150 43.74±0.78 

190 42.54±0.67 

240 41.64±0.71 

35 40 45.42±0.73 

60 44.32±1.78 

80 43.28±1.54 

100 43.17±0.81 

140 42.01±0.97 

170 41.41±1.34 

40 30 46.19±1.53 

40 45.12±0.97 

60 44.02±0.76 

80 44.23±1.21 

100 43.69±1.20 

130 41.54±0.37 
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Tables 5, 6, and 7 show the results obtained for the PEF treatments applied in 

the orange juice, the orange–carrot juice, and the orange juice–milk beverage, 

respectively.  

The retention of ascorbic acid after PEF treatment in the orange juice ranged 

between 81.6%, after a treatment of 25 kV/cm for 340 s, and 97.0% when the 

electric field strength applied was 40 kV/cm and the time was 30 s. Similar 

values were obtained in the orange–carrot juice, 83.1 and 97.1% for treatments of 

35 kV/cm (150 s) and 40 kV/cm (30 s), respectively. In the orange juice–milk 

beverage, however, the ascorbic acid retention was slightly higher, 90.7 and 

97.3% for treatments of 15 kV/cm (500 s) and 25 kV/cm (40 s), respectively. 

Table 6. Ascorbic acid concentration in the orange–carrot juice mixture after 

PEF treatment. 

E (kV/cm) t (s) Ascorbic acid (mg/100 mL) 

25 60 26.16±0.64 

110 25.57±0.32 

200 24.69±0.86 

280 24.40±0.69 

340 23.68±1.50 

30 60 26.07±0.47 

110 25.83±1.04 

170 25.47±1.03 

200 24.66±0.87 

220 24.60±1.03 

35 60 25.07±0.68 

90 24.24±0.27 

110 23.50±0.26 

130 23.46±0.44 

150 22.53±1.19 

40 30 26.32±0.26 

60 24.83±0.39 

80 25.38±0.15 

90 25.27±0.31 

110 24.21±0.29 
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Table 7. Ascorbic acid concentration in the orange juice–milk beverage after 

PEF treatment. 

E (kV/cm) t (s) Ascorbic acid (mg/100 mL) 

15 0 25.28±0.44 

40 24.54±0.32 

80 24.19±0.56 

130 23.93±0.21 

300 23.30±0.48 

500 22.92±0.35 

700 23.08±0.42 

25 0 22.72±0.34 

40 22.10±0.76 

80 21.69±0.43 

130 21.31±0.91 

200 21.17±0.56 

280 21.00±0.33 

310 20.99±0.23 

35 0 26.98±0.42 

40 26.03±0.54 

60 25.88±0.36 

80 25.66±0.74 

 100 25.28±0.65 

130 25.05±0.41 

180 25.01±0.35 

40 0 26.40±0.58 

40 25.39±0.44 

60 25.22±0.28 

80 24.98±0.89 

90 24.71±0.39 

110 24.48±0.42 

130 24.39±0.35 

These results are in agreement with those obtained by Elez-Martínez and co-

workers [45], in which vitamin C retention after PEF treatment lay between 87.5 

and 98.2%. Sánchez-Moreno and co-workers [46] found an ascorbic acid retention 
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of 93% in orange juice treated by PEF (35 kV/cm, 750 s), and Min and co-workers 

[47] did not observe significant changes in the vitamin C concentration when they 

applied PEF (40 kV/cm, 97 µs). 

A regression analysis was performed to analyse the influence of electric field 

strength (E, kV/cm) and treatment time (t, s) on ascorbic acid retention (C/C0) in 

each of the beverages studied. The results were fitted to a linear model (p<0.01): 

C/C0=1.118 – 0.004·E (kV/cm) – 0.0005·t (s) (R2=69.37, standard error 0.023) for 

orange juice; C/C0=1.079 – 0.004·E (kV/cm) – 0.0004·t (s) (R2=41.89, standard 

error 0.030) for orange–carrot juice; and C/C0=0.976 – 0.0006·E (kV/cm) – 

0.0001·t (s) (R2=68.24, standard error 0.011) for the orange juice–milk beverage. 

The fit was significant in all cases (p<0.01). It can be seen that both the electric 

field strength applied and treatment time influence the degradation of ascorbic 

acid, and it can be said that the orange juice and the orange–carrot juice show 

similar behaviour, and that it differs from the behaviour of the orange juice–milk 

beverage, as deduced from the slopes. 

To evaluate the treatments applied, a study was made of the degradation 

kinetics of ascorbic acid with treatment time in each of the fields applied. 

Orange juice: When the ascorbic acid retention was plotted against treatment 

time for each of the fields applied, it could be seen that it follows a zero-order 

kinetic (Figure 2): C=C0 – kt, where C is the ascorbic acid concentration after 

treatment (mg/100 mL) and C0 is the initial ascorbic acid concentration (mg/100 

mL), k indicates the ascorbic acid degradation rate (s–1), and t is treatment time 

(s). The degradation constant obtained from the degradation curve calculated by 

plotting Ln(C/C0) against time for each treatment was: –0.00046±1·10–4 s–1 

(correlation coefficient 0.857, standard error 0.039), –0.00051±5·10–5 s–1 

(correlation coefficient 0.980, standard error 0.009), –0.00074±8·10–5 s–1 

(correlation coefficient 0.969, standard error 0.012), and –0.00095±1·10–4 s–1 

(correlation coefficient 0.967, standard error 0.012), for fields of 25, 30, 35, and 

40 kV/cm, respectively. The fit was significant at the 99 percent confidence level 

(p<0.01) in all cases except the field of 25 kV/cm, where the fit was significant at 

the 95 percent level (p<0.05). 
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 Ascorbic acid retention in orange juice after PEF treatment. Figure 2.

 
 Ascorbic acid retention in orange–carrot juice after PEF treatment. Figure 3.

 
 Ascorbic acid retention in the orange juice–milk beverage after PEF Figure 4.

treatment. 
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Orange–carrot juice mixture: Least squares fitting of ascorbic acid retention 

versus treatment time in each of the fields showed that it follows a zero-order 

kinetic (Figure 3). The ascorbic acid degradation rate (kE) obtained was –

0.00037±3·10–5 s–1 (correlation coefficient 0.987, standard error 0.009); –

0.00042±5·10–5 s–1 (correlation coefficient 0.975, standard error 0.009); –

0.00119±7·10–5 s–1 (correlation coefficient 0.993, standard error 0.008), and –

0.00091±2·10–4 s–1 (correlation coefficient 0.917, standard error 0.018), for fields 

of 25, 30, 35, and 40 Kv/cm, respectively. The fit was significant at the 99 percent 

confidence level (p<0.01) in all cases except the field of 40 kV/cm, where the fit 

was significant at the 95 percent level (p<0.05).  

Orange juice–milk beverage: In this case, when the ascorbic acid retention 

was plotted against treatment time for each of the fields applied, it was seen that 

the experimental data for each electrical field fit an exponential model of the 

type: C/C0=a·e–bt (Figure 4). 

The ascorbic acid degradation rate (kE) obtained was: –0.00012±3·10–5 s–1 

(correlation coefficient 0.874, standard error 0.019); –0.00022±5·10–5 s–1 

(correlation coefficient 0.910, standard error 0.013); –0.00042±7·10–5 s–1 

(correlation coefficient 0.934, standard error 0.010), and –0.00061±6·10–5 s–1 

(correlation coefficient 0.979, standard error 0.006), for fields of 15, 25, 35, and 

40 Kv/cm, respectively. The fit was significant at the 99 percent confidence level 

(p<0.01) in all cases except the field of 15 kV/cm, where the fit was significant at 

the 95 percent level (p<0.05). 

To date, various authors have studied the thermal degradation kinetics of 

ascorbic acid in different kinds of foods, finding that it fits a first-order model; in 

this case the degradation curves divide clearly into two linear sections that 

correspond to two types of degradation, one aerobic and the other anaerobic [18, 

48-51]. For PEF treatment, Bendicho and co-workers [52] found first-order 

kinetics for ascorbic acid degradation in skim milk and ultrafiltered skim milk 

when treated by PEF (18.3–27.1 kV/cm). As Tannenbaum noted [53], ascorbic acid 

degradation mechanisms are specific for each particular food, depending on 

different factors that vary according to the composition of the food; hence the 

importance of conducting studies of nutrient modifications for each food [30]. 
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The differences observed between the degradation constants of the three 

beverages may be due to the physical and chemical characteristics of the 

products, which might affect the ascorbic acid degradation kinetics considerably. 

The initial ascorbic acid concentration in the orange juice (47.56±1.36 mg/100 mL) 

was higher than in the other two samples, and the pH was lower (3.35±0.01). In 

the orange–carrot juice mixture the values of ascorbic acid concentration 

(27.11±0.44) and pH (3.84±0.04) were similar to those of the orange juice–milk 

beverage (25.92±1.35 mg/100 mL and 3.92±0.01, respectively). The conductivity 

differed in the three products: 3.42 mS/cm in the orange juice, 4.55 mS/cm in the 

orange–carrot juice mixture, and 2.99 mS/cm in the orange juice–milk beverage. It 

is worth noting that when one parameter changes the other parameters are also 

affected to a greater or lesser extent and they might therefore influence the 

ascorbic acid degradation. A change in conductivity modifies the energy (J·L–1) 

applied during the treatment. Assuming that the energy formula is W=· τ ·E2, 

higher conductivity results in greater energy applied to the product (J·L–1) and 

might therefore have a greater effect on changes in the ascorbic acid content. For 

the orange juice–milk beverage, Sampedro and co-workers [54] found that the 

inactivation of L. plantarum achieved by pulses was lower than that found by 

other authors for products with a less complex composition. Bendicho and co-

workers [52] found that after PEF treatment vitamin C retention was greater in 

skim milk than in ultrafiltered skim milk owing to the greater complexity of the 

former and the protective role that some components of milk, especially caseins, 

play in vitamin C degradation. The protective effect of casein against the 

inactivation of microorganisms and enzymes was also described by Goff and Hill 

[55] and Phelan and co-workers [56]. Moreover, some authors have reported that 

the fat content in foods might present a barrier to inactivation of microorganisms, 

protecting them from treatment by electric pulses. The mechanisms of this effect 

have not yet been elucidated [57] and so far similar works for vitamins have not 

been found. 

It is also worth noting that the addition of 0.1% of citric acid to the product 

may give the ascorbic acid greater stability. Millán and Roa [58] found that there is 

a synergy between citric acid and ascorbic acid that works against degradation of 
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the latter. This can be explained by the acidulant and complexing capacity of the 

former, that acts as an aid to the chemical stability of ascorbic acid by chelation of 

metal ions and reduction in the pH of the medium, which is related with greater 

stability of the vitamin. 

The decimal reduction time (D), is the time required at a particular field 

strength to reduce the initial ascorbic acid concentration by 10%, was obtained 

from the destruction curve. It was calculated by using a procedure analogous to 

the one used in thermal destruction studies, from the expression D=2.303/kE. 

Table 8 shows the decimal reduction time values for each of the samples studied. 

Table 8. Decimal reduction time for each of the treatments applied and 

samples analysed. 

E (kV/cm) 

D (ms) 

Orange juice 
Orange–carrot 

juice 
Orange juice– 
milk beverage 

15 - - 19.54 

25 5.04 6.21 10.38 

30 4.50 5.54 - 

35 2.89 1.94 5.50 

40 2.43 2.52 3.80 

The D values (at each electric field strength) were higher in the orange juice–

milk beverage, indicating that to produce the same degradation of ascorbic acid 

the treatment time would have to be longer than that required for the orange 

juice and the orange–carrot juice. 

The D values were used to obtain the ZE value (parameter of sensitivity to 

electric field strength), which represents the increase in field strength (kV/cm) 

required for the ascorbic acid degradation rate to decrease 10 times. It was 

calculated as the negative inverse of the destruction curve obtained by plotting 

Log D against the field applied (E, kV/cm) (Figure 5), giving the following ZE values: 

42.9 kV/cm (correlation coefficient 0.978, standard error 0.040, p<0.05), 30.6 

kV/cm (correlation coefficient 0.856, standard error 0.156, p<0.1), and 35.1 kV/cm 

(correlation coefficient 0.999, standard error 0.010, p<0.05), for the orange juice, 
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orange–carrot juice mixture, and the orange juice–milk beverage, respectively. 

The higher value obtained in the orange juice indicates that it is more resistant to 

changes in electric field strength in PEF treatment.  

 
 Logarithm of D value against electric field applied to obtain the ZE Figure 5.

value. 

For microorganisms, Álvarez and co-workers [59] found ZE values of 14.8 

kV/cm for Salmonella enteritidis and 16.3 kV/cm for Salmonella typhimurium 

suspended in citrate–phosphate buffer when treated by PEF. Gómez and co-

workers [60] found a ZE value of 9.1 kV/cm for Lactobacillus plantarum in orange–

apple juice mixtures treated by PEF. With regard to inactivation of enzymes, 

Zhong and co-workers [61] found ZE values of 36.9 kV/cm for peroxidase and 16.2 

kV/cm for polyphenol oxidase in buffer systems, which they suggest may be 

because the structure of polyphenol oxidase is larger and more complex. All these 

results show that ascorbic acid and peroxidase are more resistant (lower 

degradation) to treatment by high-intensity pulsed electric fields than 

microorganisms, so that they can be used to obtain safe products that retain their 

nutritional and organoleptic characteristics. 
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 Degradation of ascorbic acid (C/C0) with energy (W) applied during Figure 6.

treatment. 
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Table 9. Variation in ascorbic acid concentration with W (J/mL). 

E (kV/cm) Equation R2 (error) 

 Orange juice 

25 0.998+0.0508·W–0.0199·W2 77.0 (0.04), p<0.10 

30 0.999+0.0045·W–0.0014·W2 98.3 (0.01), p<0.01 

35 1.000+0.0004·W–0.0003·W2 97.4 (0.01), p<0.01 

40 1.000+0.0026·W–0.0002·W2 94.0 (0.01), p<0.01 

 Orange–carrot juice 

25 1.004+0.0070·W–0.0012·W2 97.6 (0.01), p<0.01 

30 0.999+0.0038·W–0.0004·W2 97.8 (0.01), p<0.01 

35 1.000+0.0033·W–0.0004·W2 98.5 (0.01), p<0.01 

40 1.000+0.0022·W–0.0001·W2 83.2 (0.02), p<0.10 

 Orange juice–milk beverage 

15 1.001+0.0044·W–0.0111·W2 91.0 (0.01), p<0.01 

25 1.000+0.0008·W–0.0011·W2 95.5 (0.01), p<0.01 

35 1.000+0.0009·W–0.0002·W2 95.1 (0.01), p<0.01 

40 1.000+0.0018·W–0.0002·W2 97.2 (0.01), p<0.01 

For a constant pulse energy (W), an increase in the electric field applied 

means an increase in the ascorbic acid degradation constant (Figure 6). The 

regression analysis performed indicates a degradation of ascorbic acid with pulse 

energy that fits a quadratic function (Table 9). When the treatment time is 

constant, the increase in the strength of the electric field applied means an 

increase in electric conductivity and therefore in the degradation of ascorbic acid. 

As commented earlier, the energy applied in any treatment depends on the 

characteristics of the particular food (mainly conductivity). Therefore, to compare 

the effect of PEF on different foods it is necessary to calculate the energy applied 

(Q, J·mL–1) in each beverage, and thus it is possible to estimate the effect of the 

matrix when a particular energy is applied. Figure 7 shows the evolution of 

ascorbic acid in relation to treatment energy. A regression analysis by least 

squares showed that the curve fits the following model: C/C0=1.001 – 0.004·Q1/2 
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(R2=0.867, standard error=0.023); C/C0=1.003 – 0.003·Q1/2 (R2=0.868, standard 

error=0.024), and C/C0=0.999 – 0.002 Q1/2 (R2=0.900, standard error=0.011), for 

the orange juice, orange–carrot juice mixture, and the orange juice–milk 

beverage, respectively. 

 

 Variation in ascorbic acid versus energy applied (Q). Figure 7.

The slopes differ in the three cases, showing once again that the matrix 

influenced the ascorbic acid degradation rate, with the orange juice being more 

sensitive to the changes in energy applied in each treatment. 

Conclusion 

PEF treatment can be put forward as a firm alternative to traditional 

pasteurisation treatments. The orange juice was more resistant to changes in 

electric field strength in PEF treatment, while the treatment time required to 

produce the same degradation of ascorbic acid was greater in the orange juice–

milk beverage than for the orange juice or the orange–carrot juice mixture. These 

results show the need to optimise treatment conditions whenever there is a 

change in the matrix (food) or some processing factor. 
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ABSTRACT 

Considering pulsed electric fields (PEF) and Stevia rebaudiana Bertoni 

antimicrobial and antioxidant properties, response surface methodology (RSM) 

was used to define the optimal processing conditions needed to maximise the 

safety, stability and nutritional quality of a PEF treated juice mixture containing 

mango, papaya and stevia leaves infusion (1.25 and 2.50% (w/v)). With this aim, 

PEF and stevia effects on the microbial load, the polyphenoloxidase (PPO) and 

peroxidase (POD) activities, the total phenolic content (TPC), the non-enzymatic 

browning index (NEBI) and the total antioxidant capacity (TAC) of the formulated 

food were assessed. Results obtained show that submitting the fruit mixture to 40 

kV/cm for 360 µs, in presence of 1.79% (w/v) of stevia, maximised its TPC and 

TAC, while minimising the NEBI, as well as the microbial load and the activity of 

oxidative enzymes that could impair the nutritional and the sensory quality of 

minimally processed ready-to-eat foods. 

 

Keywords: Food preservation, Stevia rebaudiana Bertoni, pulsed electric field 

processing, spoilage and pathogenic microorganisms, oxidative enzymes, phenolic 

compounds, non-enzymatic browning index, total antioxidant capacity, response 

surface methodology. 
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1. Introduction 

Consumers currently know that fruit and vegetables regular intake has 

beneficial effects on their health. Drinking juices is undoubtedly one of the easiest 

and tastiest ways to increase these products daily intake and, therefore, juice 

consumption worldwide increases year on year. 

Traditionally, sterilisation and pasteurisation have allowed lengthen juices 

shelf life by means of different time-temperature combinations (D'Amico, Silk, 

Wu, & Guo, 2006). If not, just after their obtainment, a fast microbial, enzymatic, 

chemical and physical deterioration takes place (Bates, Morris, & Crandall, 2001), 

which makes the product unacceptable both for sale and consumption. Taking 

into account consumers’ preference for minimally processed ready-to-eat foods, 

in the past 30 years, development and implementation of non-thermal 

preservation technologies have been simulated as intense heat produces 

undesirable changes in the nutritional and sensory characteristics of any food 

(Corbo, Bevilacqua, Campaniello, D'Amato, Speranza, & Sinigaglia, 2009). High 

hydrostatic pressure (HHP) processing, ultraviolet exposure, membrane filtration 

and pulsed electric fields (PEF) application (Altuner & Tokuşoğlu, 2013; Buckow, 

Ng, & Toepfl, 2013; Noci, Riener, Walkling-Ribeiro, Cronin, Morgan, & Lyng, 2008; 

Zárate-Rodríguez, Ortega-Rivas, & Barbosa-Cánovas, 2001) are some of the 

existing alternatives nowadays. Among them, PEF processing is one of the most 

promising options for liquid foods, especially those rich in heat sensitive 

compounds. 

PEF processing is able to inactivate spoilage and/or pathogenic 

microorganisms as well as oxidative enzymes, such as polyphenoloxidase (PPO, EC 

1.14.18.1) and peroxidase (POD, EC 1.11.1.7), maintaining the nutritional quality, 

the antioxidant content and the freshness of foods (Altuntas, Evrendilek, Sangun, 

& Zhang, 2010; Buckow, Ng, & Toepfl, 2013; Terefe, Buckow, & Versteeg, 2015), 

especially if its application is combined with the use of preservatives from animal, 

vegetal and microbial origin, because they can increase PEF antimicrobial 

effectiveness (Ait-Ouazzou, Espina, García-Gonzalo, & Pagán, 2013; Pina-Pérez, 
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Martínez-López, & Rodrigo, 2013), as well as post-processing quality and safety, in 

absence of synthetic chemicals. 

The antimicrobial and antioxidant activity of different Stevia rebaudiana 

Bertoni extracts and its potential use as a natural preservative have recently been 

studied. In few years, different researchers have shown that stevia leaves contain 

polyphenols and other antioxidant compounds (Lemus-Mondaca, Vega-Gálvez, 

Zura-Bravo, & Ah-Hen, 2012; Tadhani, Patel, & Subhash, 2007) which can inhibit 

enzyme activity and microbial growth (Belda-Galbis, Pina-Pérez, Espinosa, Marco-

Celdrán, Martínez, & Rodrigo, 2014; Criado, Barba, Frígola, & Rodrigo, 2014; 

Muanda, Soulimani, Diop, & Dicko, 2011; Tadhani & Subhash, 2006), increasing, 

therefore, the value of yoghurts, beverages, chocolates and biscuits in which 

stevia is added in its formulation as a non-caloric sweetener (Yadav & Guleria, 

2012).  

Taking into account that stevia use and PEF application could be a good 

strategy to improve the microbial, nutritional and physicochemical quality of 

minimally processed ready-to-eat foods, the aim of this work was to evaluate PEF 

effects on the microbial load, the enzymatic activity (PPO and POD), the total 

phenolic content (TPC), the non-enzymatic browning index (NEBI) and the total 

antioxidant capacity (TAC) of a beverage containing mango, papaya and stevia in 

order to (i) elucidated if stevia increase PEF processing effectiveness, and to (ii) 

determine, by means of response surface methodology (RSM), which combination 

of electric field, treatment time and stevia concentration allows maximising the 

microbiological safety, the sensorial stability and nutritional quality of the matrix 

under study. 

2. Material and methods 

2.1. Samples 

2.1.1. Fruit juice mixture: Obtainment and characterisation 

Mango (Mangifera indica Linnaeus) and papaya (Carica papaya Linnaeus) 

juices were obtained separately using a household blender. To remove the pulp, 

before being mixed, the juices were filtered by means of a mesh sieve (pore size: 



193 

Results 

 

 

 

0.297 mm). The fruit juice mixture was prepared by mixing 50.75% (v/v) of 

papaya, 19.25% (v/v) of mango and 30% (v/v) of mineral water (in samples 

without stevia). 

2.1.2. Stevia infusion and sample preparation 

To prepare a concentrated stock solution of stevia leaves infusion 

(8.33±0.01% (w/v)), 100 mL of boiling mineral water were added to dried leaves 

(8.33 g) and the mixture was covered and allowed to infuse for 30 min. After that, 

before being stored at –40 °C, the water-leaves mix was vacuum filtered using a 

Kitasato flask, a Büchner funnel, a vacuum pump (VDE 0530, KNF Neuberger 

GmbH, Germany) and filter paper (Whatman® No. 1, Whatman International Ltd., 

UK). 

From the stock, samples with a 1.25 and 2.50% (w/v) of stevia were prepared, 

replacing part of the water added to the juices mix by infusion. The highest stevia 

concentration tested (2.50% (w/v)) was established taking into account the 

maximum sucrose percentage that can be used to obtain sensorial acceptable 

foods along with the sweetness equivalence stevia/sucrose (Savita, Sheela, 

Sunanda, Shankar, Ramakrishna, & Sakey, 2004).  

2.1.3. Microorganisms 

PEF antimicrobial potential, in presence and in absence of stevia, was 

evaluated both in non-sterile samples and in sterile samples inoculated with 

Listeria monocytogenes (CECT 4032), with the aim of assessing, respectively, (i) 

PEF inactivation of moulds, yeasts and mesophiles naturally present in the mix 

under studied, and (ii) PEF inactivation of a psychotropic foodborne pathogen 

commonly found in minimally processed ready-to-eat foods (Codex Alimentarius 

Commision, 2002). 

For that, from a lyophilised pure culture provided by the Spanish Type Culture 

Collection, a stock of vials containing L. monocytogenes (CECT 4032) was 

generated following the method described by Saucedo-Reyes, Marco-Celdrán, 

Pina-Pérez, Rodrigo, and Martínez-López (2009).  
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2.2. Methods 

2.2.1. PEF processing 

An OSU-4D bench-scale continuous PEF system designed at the Ohio State 

University (USA) was used to treat samples at laboratory scale setup. For this 

purpose, 8 co-field treatment chambers were connected in series, being 0.230 

and 0.293 cm, respectively, the chambers diameter and the gap distance. A heat 

exchanger was used to guarantee that samples and chambers pre-treatment 

temperature was 25±3 °C. Pre- and post-treatment temperatures at the inlet and 

the outlet of treatment chambers were monitored by type T thermocouples. A 

square-wave bipolar pulse was selected. The pulse width was fixed to 2.5 µs. Pulse 

waveform, voltage and intensity of treatment chambers were recorded with a 

digital oscilloscope (Tektronix TDS 210, Tektronix Inc., USA). The flow rate was 

adjusted to 30 mL/min with a peristaltic pump (Cole-Parmer® 75210-25, Cole-

Parmer Instruments Co., USA).  

Treatment time ranged from 100 to 360 µs and the electric field intensity 

from 20 to 40 kV/cm. In each experiment, inoculated and un-inoculated samples, 

with and without stevia, were collected before and after each treatment and 

stored under refrigeration (3±1 °C) until being analysed. Microbial load, PPO and 

POD activities, TPC, NEBI and TAC of both untreated (blank) and PEF-treated 

samples were evaluated. 

2.2.2. Assessment of microbial inactivation 

The cellular density of treated samples, with and without stevia, was 

determined in terms of log10 (cfu/mL), before and after different PEF treatments, 

by viable plate count. The inactivation associated with each of the treatments 

tested (log10 S) was established according to the difference existing between the 

counts obtained pre- and post-treatment. For that, aliquots of untreated and 

treated non-sterile and sterile inoculated samples were serially diluted, plated 

and incubated, at different temperatures.  



195 

Results 

 

 

 

Table 1. Media used and incubation conditions needed for viable plate count 

with the aim of assessing the antibacterial and antifungal properties of pulsed 

electric fields (PEF), in presence and in absence of stevia. 

Microorganism Media used for samples 

spreada 

Incubation conditions 

Moulds and yeasts Potato Dextrose Agar (PDA)b 22−25 °C, 5−7 d 

Mesophiles Plate Count Agar (PCA) 30 °C, 48 h 

Listeria monocytogenes Tryptic Soy Agar (TSA) 37 °C, 48 h 
a All were supplied by Scharlau Chemie, SA (Spain).b Supplemented with sterile 
10% (w/v) tartaric acid. 

The dilutions were done employing buffered peptone water (Scharlau Chemie 

SA, Spain). The media used and the incubation conditions needed to assess PEF 

antibacterial and antifungal properties are shown in Table 1. 

2.2.3. PPO and POD activities determination 

The enzyme extracts for PPO and POD activities determination were obtained 

following a modification of the method described by Cano, Hernández, and De 

Ancos (1997). Ten mL of fruit juice mixture were homogenised with 20 mL of 0.2 

M sodium phosphate buffer solution (Panreac Química SLU, Spain) at pH 7.0. The 

homogenate was centrifuged at 24000 g for 15 min at 4 °C, in polycarbonate 

tubes. The supernatant constituted the enzyme extract which and was used 

without delay to determine PPO and POD activities. 

PPO activity was determined measuring the increase in absorbance that 

occurs when 1950 µL of 1,2-dihydroxybenzene (pyrocatechol; Sigma-Aldrich® Co., 

LLC, USA) in sodium phosphate buffer (0.05 M, pH 7.00) as substrate reacted with 

0.1 mL of enzyme extract. For that, samples absorbance was recorded at 410 nm 

every 1 s, for 2.5 min, using a LAN OPTICS PG1800 UV-VIS scanning 

spectrophotometer (Labolan SL, Spain).  

POD activity was also measured spectrophotometrically by mixing 2.7 mL of 

0.05 M sodium phosphate buffer (pH 7.0), 0.2 mL of p-phenylenediamine (1% 

(w/v); Sigma-Aldrich® Co., LLC, USA) as H-donor, 0.1 mL of hydrogen peroxide 
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(1.5% (w/v); Sigma-Aldrich® Co., LLC, USA) as oxidant, and 0.1 mL of enzyme 

extract. The oxidation of p-phenylendiamine was measured at 485 nm.  

Enzyme activity results were obtained at 25 °C. Both activities were calculated 

from the slope of the linear part of the graph of absorbance vs time. One unit of 

PPO and POD activities was defined as the change in absorbance at 410 and 485 

nm, respectively, per min and mL of enzyme extract. In both cases, before and 

immediately after applying PEF, PPO and POD activities of the fruit juice extract 

were measured and compared with the initial activities of untreated samples. The 

enzyme activity was expressed as a percentage of relative activity (%RA), which 

was calculated using the following formula (Eq. (1)): 

% 𝑅𝐴 = 100 × (
𝐴

𝐴0
) (1) 

where A and A0 are PPO and POD enzyme activities of treated and untreated 

samples, respectively. 

2.2.4. TPC determination 

The TPC was determined according to the method described by Georgé, Brat, 

Alter, and Amiot (2005), with some modifications. Ten mL of sample were 

homogenised with 50 mL of a mixture of acetone-water (70:30 (v/v)) for 30 min. 

Mixture supernatants were recovered by filtration (Whatman® No. 2, Whatman 

International Ltd., UK) and constituted the raw extracts (REs). REs (2 mL) were 

settled on an Oasis® cartridge (Waters SA, Spain). Interfering water-soluble 

components (reducing sugars and ascorbic acid) were recovered with 2 × 2 mL of 

distilled water. The recovered volume of the washing extract (WE) was carefully 

measured. 

In order to eliminate vitamin C, heating was carried out on the WE (3 mL) for 2 

h at 85 °C and this led to the heated washing extract (HWE). All extracts (RE, WE 

and HWE) were submitted to the Folin-Ciocalteu method, adapted and optimised 

(Barba, Esteve, Tedeschi, Brandolini, & Frígola, 2013). Gallic acid calibration 

standards with concentrations of 0, 100, 300, 500, 700 and 1000 ppm were 

prepared and 0.1 mL was transferred to borosilicate tubes. Three mL of sodium 
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carbonate solution (2% (w/v)) (Scharlau Chemie SA, Spain) and 100 μL of Folin-

Ciocalteu reagent (1:1 (v/v)) were added to an aliquot of 100 μL from each gallic 

acid standard or sample tube. The mixture was incubated 1 h at room 

temperature and absorbance was measured at 765 nm, using a Perkin Elmer 

UV/VIS LAMBDA 2 spectrophotometer (Perkin-Elmer, Germany). Results were 

expressed as mg of gallic acid equivalents (GAE) per L. 

2.2.5. Determination of the NEBI  

To determine the NEBI, samples were centrifuged (824 g, 20 min, 18 ºC) and 

the supernatant was diluted in ethanol (1:1 (v/v)). The mixture was filtered using 

filter paper (Whatman® No. 42, Whatman International Ltd., UK) and the 

absorbance of the filtrate was spectrophotometrically measured at 420 nm 

(Meydav, Saguy, & Kopelman, 1977). 

2.2.6. TAC assessment  

Trolox equivalent antioxidant capacity (TEAC). The 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay was carried out following the 

method described by Re, Pellegrini, Proteggente, Pannala, Yang, and Rice-Evans 

(1999), which is based on the capacity of a sample to inhibit the ABTS radical 

(ABTS•+; Sigma-Aldrich® Co., LLC, USA) compared with a reference antioxidant 

standard (Trolox®; Sigma-Aldrich® Co., LLC, USA). The radical was generated using 

440 µL of potassium persulfate (140 Mm) (Sigma-Aldrich® Co., LLC, USA). The 

solution was diluted with ethanol in order to obtain an absorbance of 0.70±0.02 

units, at 734 nm. Once the radical was formed, 2 mL of ABTS•+ were mixed with 

100 µL of appropriately diluted sample and the absorbance was measured at 734 

nm for 20 min, using a Perkin Elmer UV/VIS LAMBDA 2 spectrophotometer 

(Perkin-Elmer, Germany), in accordance with Barba, Esteve, Tedeschi, Brandolini, 

and Frígola (2013). Results were expressed as mM Trolox® equivalents (TE). 

Oxygen radical absorbance capacity (ORAC). The ORAC assay described by Ou, 

Hampsch-Woodill, and Prior (2001) was used, employing fluorescein (FL; Sigma-

Aldrich® Co., LLC, USA) as “fluorescent probe” and a Wallac 1420 VICTOR2™ 

multilabel counter (Perkin-Elmer, USA) with fluorescence filters, for an excitation 
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wavelength of 485 nm and an emission wavelength of 535 nm. The measurements 

were made in plates with 96 white flat-bottom wells (Sero-Wel, Bibby Sterilin Ltd., 

UK). The reaction was performed at 37 °C as the reaction was started by thermal 

decomposition of 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH; Sigma-

Aldrich® Co., LLC, USA) in 75 mM phosphate buffer (pH 7.0) because of the 

sensitivity of FL to pH. The final reaction tested and the concentrations of the 

different reagents were determined following the methodology used by Barba, 

Esteve, Tedeschi, Brandolini, and Frígola (2013). 

2.3. Experimental design and statistical analysis 

The experimental design and data analysis were performed using the software 

Statgraphics® Centurion XV.II, version 11 (Statpoint Technologies Inc., USA). RSM 

was used to investigate the simultaneous effects of electric field strength, 

treatment time and stevia concentration on microbial inactivation, PPO and POD 

enzymatic activities, TPC, NEBI and TAC of the juice under study. Face-centred 

central composite design was used with 3 levels (maximum, minimum and 

central) of each independent variable, electric field strength (from 20 to 40 

kV/cm), treatment time (from 100 to 300 µs) and stevia concentration (from 0 to 

2.50% (w/v)), leading to 16 combinations (Table 2). 

Independent variable levels were selected considering the sample 

characteristics and the operating conditions of PEF equipment. The combinations 

included different PEF and stevia conditions with an intermediate level (central 

point) of the 3 variables, replicated 2 times to check the reproducibility and 

stability of results obtained. The experimental design was performed twice, 

resulting in 2 blocks of experiments. Accordingly, samples were treated in 

duplicate and analysed in triplicate. Experiments were randomised to minimise 

the systematic bias in the observed responses due to extraneous factors and to 

increase analysis precision.  

Regression coefficients for each of the term combinations of the independent 

variables were obtained and their significance was determined using the p-value 

generated by t-test. The quadratic model used for each response was the 

following (Eq. (2)): 
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𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽11𝑋1
2 + 𝛽22𝑋2

2 + 𝛽33𝑋3
2 + 𝛽12𝑋1𝑋2 +

                                        𝛽13𝑋1𝑋3 + 𝛽23𝑋2𝑋3                                                       (2) 

where Y represents the predicted response, Xi the independent variables, β0 a 

constant that fixed the response at the experiment central point and βii the 

regression coefficients for the linear, quadratic and interaction effect terms. 

Table 2. Experimental design matrix. 

 
Run 

Electric field 
kV/cm 

Time 
µs 

% Stevia 
(w/v) 

 (X1) (X2) (X3) 

1 30 230 0 

2 40 100 2.50 

3* 30 230 1.25 

4 40 360 2.50 

5 20 100 2.50 

6 40 100 0 

7 20 230 1.25 

8 30 100 1.25 

9 20 100 0 

10* 30 230 1.25 

11 20 360 2.50 

12 20 360 0 

13 30 230 2.50 

14 30 360 1.25 

15 40 360 0 

16 40 230 1.25 
* Design’s central point.   

The non-significant terms (p>0.05) were deleted from the second-order 

polynomial model after an ANOVA test and a new ANOVA was performed to 

obtain the coefficients of the final equation for better accuracy. For this purpose, 

the program always conducts one search beginning at the centre of the 

experimental region. Given that the starting point may affect whether a global or 

local optimum is located, the optimisation was also done using additional 

searches starting at the best design point (with highest predicted desirability), at 
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all design points, at the best vertex (combination of low or high level of each 

factor with highest predicted desirability), and at the all vertices, in order to 

obtain the best result amongst the set of searches that the program performs. 

3. Results and discussion 

3.1 Effect of PEF and stevia on microbial load, oxidative enzymes (PPO and POD), 

TPC, NEBI and TAC (ORAC and TEAC) of the juice mixture formulated 

Effect of PEF treatments in presence and in absence of stevia on microbial 

load, PPO and POD activities, TPC, NEBI and TAC (TEAC and ORAC) of the juice 

fruit formulated are shown in Table 3. 

In view of the results obtained, it can be concluded that PEF can reduce the 

microbial load present in the matrix developed before being treated. The 

inactivation achieved always increased as the electric field strength and the 

treatment time increased, regardless the stevia concentration used in the sample 

formulation (Table 3).  

On the other hand, for any electric field and treatment time combination, it 

was observed that PEF effects on L. monocytogenes were enhanced by the 

addition of stevia in a dose-dependent manner, whereas its addition reduced PEF 

effects on mesophiles, yeasts and moulds, also in a dose-dependent manner. The 

addition of stevia only reduced PEF effects on L. monocytogenes if the field was 40 

kV/cm and the treatment time was 360 µs. So, in general terms, the greater the 

stevia concentration, the higher the inactivation of L. monocytogenes but the 

lower the inactivation of mesophiles, yeasts and moulds. When food processing 

strategies are combined, they might act synergistically, provided that each 

element powered the effect of the others, and vice versa.  

 



 

 

Table 3. Effect of PEF and stevia on microbial load, PPO and POD activities, TPC, NEBI and TAC of the beverage. 

E t 
% 

Stevia 
Moulds & 

yeasts 
Mesophiles 

L.mono 
cytogenes 

PPO POD TPC NEBIb TEAC ORAC 

kV/cm µs (w/v) log10 S
a log10 Sa log10 S

a % RA % RA mg GAE/L  mM TE mM TE 

 0 0 0 0 0 100 100 0752.3±62.0* 1 07.05±0.35* 04.30±0.21* 

0 0 1.25 0 0 0 100 100 2891.8±26.9* 1 13.10±0.15* 28.47±3.39* 

 0 2.50 0 0 0 100 100 4267.5±10.8* 1 21.88±1.76* 35.09±3.38* 

 100 0 0.15±0.06* 0.14±0.05* 0.25±0.08* 100.7±1.6 101.9±0.8* 0744.7±35.0* 0.99±0.06* 06.40±0.36* 03.85±0.07* 

 100 2.50 0.12±0.01* 0.02±0.01* 0.39±0.02* ND* 104.3±6.4* 4378.1±59.3* 0.96±0.01* 21.73±1.09* 33.79±0.35* 

20 230 1.25 0.44±0.03* 0.25±0.05* 0.58±0.04* ND* 114.4±5.3* 2929.9±59.3* 1.01±0.02* 13.01±0.78* 26.55±1.21* 

 360 0 1.02±0.05* 0.32±0.04* 0.72±0.07* 103.1±2.8 104.7±1.1* 0786.6±8.1* 0.97±0.02* 04.89±0.66* 03.85±0.27* 

 360 2.50 0.29±0.03* 0.11±0.06* 0.96±0.04* ND* 097.5±2.7* 4465.7±43.1* 0.95±0.00* 22.88±1.50* 34.92±1.75* 

 100 1.25 0.51±0.03* 0.36±0.02* 1.00±0.02* ND* 100.0±3.2* 2918.5±32.3* 0.98±0.01* 13.66±0.87* 27.46±1.26* 

 230 0 1.79±0.02* 0.60±0.08* 1.62±0.04* 102.9±0.3 101.9±5.9* 0780.9±5.4* 0.83±0.07* 05.14±0.51* 05.00±0.07* 

30 230 1.25 1.13±0.10* 0.52±0.09* 2.09±0.10* ND* 100.4±1.5* 2954.7±2.7* 0.97±0.00* 13.16±0.02* 29.51±0.30* 

 230 2.50 0.79±0.07* 0.34±0.05* 1.99±0.08* ND* 099.2±7.3* 4564.8±43.1* 0.92±0.00* 23.37±2.89* 37.04±0.37* 

 360 1.25 1.99±0.01* 0.79±0.01* 2.46±0.04* ND* 051.1±4.8* 2968.0±27.0* 0.90±0.02* 13.14±0.85* 27.48±1.82* 

 100 0 1.80±0.07* 0.62±0.05* 1.88±0.03* 106.6±2.7 107.7±5.7* 0799.9±5.4* 0.86±0.07* 06.27±0.10* 08.13±0.25* 

 100 2.50 0.80±0.04* 0.49±0.07* 2.63±0.05* ND* 098.5±6.1* 4743.9±27.0* 0.92±0.00* 23.77±1.12* 34.72±0.74* 

40 230 1.25 2.71±0.04* 1.11±0.06* 2.49±0.04* ND* 042.6±6.1* 3013.7±27.0* 0.91±0.01* 14.50±0.56* 27.18±0.34* 

 360 0 3.23±0.12* 1.76±0.06* 3.73±0.06* ND* 077.0±0.8* 0809.5±2.7* 0.83±0.01* 04.67±0.70* 04.45±0.25* 

 360 2.50 2.50±0.65* 1.20±0.06* 2.72±0.04* ND* 028.4±0.8* 4850.6±27.0* 0.90±0.00* 24.21±1.45* 34.26±1.13* 
* Average of central point. a Number of inactivated log10 cycles. b Calculated as C/C0. PEF: pulsed electric fields. TAC: total antioxidant capacity. 
E: electric field. t: time. log S: decimal logarithm of the survival fraction. L. monocytogenes: Listeria monocytogenes. PPO: polyphenoloxidase. 
POD: peroxidase. %RA: residual activity. TPC: total phenolic content. GAE: gallic acid equivalents. NEBI: non-enzymatic browning index. TEAC: 
trolox equivalent antioxidant capacity. ORAC: oxygen radical antioxidant capacity. TE: trolox equivalents. ND: Not detected. 
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Many studies have shown that stevia leaves extracts have antibacterial and 

antifungal properties (Muanda, Soulimani, Diop, & Dicko, 2011; Puri & Sharma, 

2011; Silva, Oliveira, do Prado, de Carvalho, & de Carvalho, 2008), while others 

have shown that antimicrobial compounds from vegetal origin could enhance the 

antimicrobial effectiveness of non-thermal preservation technologies (Aymerich, 

Jofré, Garriga, & Hugas, 2005; Iucci, Patrignani, Vallicelli, Guerzoni, & Lanciotti, 

2007; Nguyen & Mittal, 2007). However, additive, antagonist and independent 

effects are also possible; the effectiveness of a determined combination depends 

on the microorganism, the matrix and the preservation strategies considered, 

taking into account that both the antimicrobial compounds concentration and the 

intensity of any treatment could modify the final result. This would explain the 

results obtained. 

Regarding the quality stability by inactivating oxidative enzymes, in the 

absence of stevia only the highest PEF treatment tested (40 kV/cm; 360 µs) 

induced the inactivation of both enzymes; in that case, PPO was completely 

inactivated while POD activity was reduced by 22.97%. Furthermore, it was 

observed that the higher the treatment time, the higher the enzymatic 

inactivation, with the electric field being 40 kV/cm. This could be attributed to the 

existence of a critical treatment intensity needed to produce enzyme inactivation. 

For the other PEF treatments assayed in absence of stevia, the relative activity of 

both enzymes remained equal to the initial value (about 100%), showing 

resistance to PEF inactivation. In fact, it is generally assumed that PEF has limited 

effects on enzymes. Based on the available information in literature, depending 

on enzymes source and PEF process characteristics (electric field strength, 

treatment time, temperature, pulse frequency and width), different levels of PEF 

inactivation of PPO and POD have been reported previously. While most enzymes 

are inactivated in model solutions or extracts (Giner, Ortega, Mesegué, Gimeno, 

Barbosa-Cánovas, & Martín, 2002; Quintão-Teixeira, Soliva-Fortuny, Mota Ramos, 

& Martín-Belloso, 2013), others are not affected or are even activated by PEF 

processing (Van Loey, Verachtert, & Hendrickx, 2001; Yang, Li, & Zhang, 2004). 

Table 3 shows the capacity of stevia to inhibit both PPO and POD enzymes, 

under given experimental conditions. To the best of our knowledge, this is the 
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first time that the combined effect of PEF and stevia on PPO and POD from fruit 

juices has been reported. The results obtained show that, for any electric field and 

treatment time combination, the complete inactivation of juice PPO was achieved 

when it was PEF processed in presence of stevia, regardless of the percentage 

added. In the case of POD, however, both electric field and treatment time had 

influence on its activity. According to this, only in the case of the highest electric 

field tested (40 kV/cm) stevia enhanced the inactivation percentage achieved by 

PEF. The addition of 2.50% (w/v) of stevia reduced the POD residual activity from 

77.03 to 28.38%, at the same electric field and treatment time (40 kV/cm, 360 µs). 

Moreover, in the case of POD increasing electric field from 30 to 40 kV/cm, in 

presence of 1.25% (w/v) of stevia resulted in higher inactivation of POD, when 

treatment time was 230 µs. When stevia concentration was 1.25% (w/v) and 

electric field was 30 kV/cm, increasing treatment time from 230 to 360 µs also 

resulted in a higher POD inactivation, its residual activity being reduced from 

100.41% to 51.09%. Increased level of POD and PPO inactivation has been 

observed with an increase in electric field strength and treatment time by other 

authors. Similar results were previously reported by Bi, Liu, Rao, Li, Liu, Liao, et al. 

(2013) in apple juice, and by Marsellés-Fontanet and Martín-Belloso (2007) in 

grape juice treated by PEF.  

As expected, taking into account that stevia leaves contain a great amount of 

phenolic compounds (Lemus-Mondaca, Vega-Gálvez, Zura-Bravo, & Ah-Hen, 2012; 

Tadhani, Patel, & Subhash, 2007), the TPC of untreated juice with stevia was 

considerably higher than the TPC of untreated non-containing stevia juice. The 

values obtained in absence of infusion as well as in presence of 1.25 and 2.50% 

(w/v) were, respectively, 752.29±61.98, 2891.77±26.90 and 4267.53±10.78 mg 

GAE/L. Results are in accordance to those published by other authors (Tavarini & 

Angelini, 2013; Zayova, Stancheva, Geneva, Petrova, & Dimitrova, 2013). 

Increasing the electric field also caused an increase in the fruit juice TPC. This 

could be explained by the fact that PEF processing enhances the extraction of 

intracellular contents (Agcam, Akyıldız, & Akdemir Evrendilek, 2014). This effect 

was more pronounced in samples containing stevia, partly due to the complete 

inactivation of the PPO, while treatment time did not affect significantly juice TPC. 
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These results are in close agreement with the ones obtained by Grimi, Mamouni, 

Lebovka, Vorobiev, and Vaxelaire (2011), working with apple juice, and by 

Puértolas, López, Saldaña, Álvarez, and Raso (2010), working with grape juice.  

Both, enzymatic and non-enzymatic browning is related with quality 

degradation reactions and therefore this parameter must be minimised when a 

processing technology is applied. NEBI is a measurement commonly used to 

indicate the browning development in samples. Keeping in mind the brownish 

colour of the infusion under study to assess PEF effect, the NEBI of treated 

samples, with or without stevia, was calculated using the following formula: C/C0, 

where C and C0 are, respectively, post- and pre-processing NEBI values of the 

sample concerned. According to these data, the higher the electric field and/or 

the treatment time, the lower the NEBI, probably due to the inactivation of 

enzymes responsible of browning. Thus, it can be concluded that PEF processing 

allows the obtainment of fresh-like fruit juices, with a minimum non-enzymatic 

browning. This was also observed by Aguiló-Aguayo, Soliva-Fortuny, and Martín-

Belloso (2009) in strawberry juice and by Altuntas, Akdemir Evrendilek, Sangun, 

and Zhang (2011) in peach nectar. 

According to the results obtained, the addition of stevia increased the TAC of 

untreated samples, from 7.05±0.35 to 13.10±0.15 and 21.88±1.76 mM TE for 

1.25% and 2.5% stevia, respectively, using TEAC method, and from 4.30±0.21 to 

28.47±3.39 and 35.09±3.38 mM TE for 1.25% and 2.5% stevia, respectively, when 

TAC was measured by ORAC method. Results were as expected, taking into 

account that TAC is closely related to TPC, and given the effect of stevia on juice’s 

TPC. In view of TEAC values, TAC was only dependent on stevia concentration. 

In view of ORAC values, TAC was dependent on stevia concentration, but also 

on electric field and treatment time, for determined processing conditions; in 

absence of stevia¸ ORAC values increased when increasing the electric field, 

treatment time being 100 µs, and when decreasing the treatment time, the 

electric field being 40 kV/cm. Although PEF application is considered a non-

thermal processing technology, it is associated with a temperature rise due to the 

electric current flowing across the liquid food to be processed (Lindgren, 

Aronsson, Galt, & Ohlsson, 2002). 
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 Effect of electric field (kV/cm), treatment time (µs) and stevia Figure 1.

concentration (% (w/v)) on microbial inactivation (log10 S). 



206 

Results 

 

 

It is possible that thermolabile compounds with antioxidant capacity, such as 

vitamin C, result adversely affected by this increment, especially when treatment 

intensity is high, as was observed by Cortés, Esteve, and Frígola (2008) in orange 

juice. This would explain the apparently effect of electric field and treatment time 

on ORAC values, in absence of stevia. In any case, the ORAC values were always 

higher than the TEAC ones. That could be due to ORAC method responds to a 

greater number antioxidants, with greater specificity (Zulueta, Esteve, & Frígola, 

2009). Despite the differences, however, the Pearson test showed a positive 

correlation between those values (R2=0.913), as well as between them and TPC 

values obtained (R2=0.965). 

3.2. Processing parameter optimisation based on their effect on the safety and 

quality of the formulated beverage 

Nowadays, foods are submitted to treatments that guarantee safety and 

quality, producing minimum changes in the sensory, nutritional and functional 

characteristics of the product concerned. For this reason, processing parameter 

optimisation is of outstanding importance from a practical point of view. RSM 

allows modelling phenomena and establishing which combinations of a certain 

number of factors (variables) will lead to optimum responses, taking into account 

the possible existence of interactions between factors (Giovanni, 1983). With this 

aim, Figures 1, 2 and 3 were constructed to know which relation exists between 

each of the experimental factors and each of the parameters considered, being 

relevant only the statistically significant relationships (p≤0.05). 

According to Figure 1, the three experimental factors under study (electric 

field, treatment time and stevia concentration) had a statistically significant 

influence on mesophiles, moulds and yeasts inactivation (p≤0.05). In all cases, the 

higher the electric field or the treatment time and the lower the stevia 

concentration, the higher the number of inactivated cycles. In addition, the higher 

the electric field and the higher the treatment time, the higher the L. 

monocytogenes inactivation (p≤0.05). According to Figure 2, stevia concentration 

was the only factor able to reduce PPO activity (p≤0.05), while POD resulted to be 

electric field and treatment time inversely dependent (p≤0.05).  
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 Effect of electric field (kV/cm), treatment time (µs) and stevia Figure 2.

concentration (% (w/v)) on PPO and POD activities (%). 

 
 Effect of electric field (kV/cm), treatment time (µs) and stevia Figure 3.

concentration (% (w/v)) on the total phenolic content (TPC; mg gallic acid 

equivalents (GAE)/L), the non-enzymatic browning index (NEBI) and the total 

antioxidant activity (TAC; mM trolox equivalents (TE)), based on the trolox 

equivalent antioxidant capacity (TEAC) and on the oxygen radical absorbance 

capacity (ORAC), of the juice mixture under study. 
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Finally, according to Figure 3, the TPC is mainly influence by stevia 

concentration, although PEF processing conditions also modify the final content 

obtained (p≤0.05). Electric field and stevia concentration had, moreover, a 

statistical significant effect on the NEBI and the TEAC value, whilst the ORAC one 

resulted to be only stevia significantly dependent (p≤0.05). 

Based on this data and using the desirability approach to optimise PEF 

processing taking advantage of the antioxidant, antimicrobial and nutritional 

properties of stevia, it was determined the optimal processing conditions to 

maximise microbial inactivation as well as TPC and TAC of the juice formulated, 

minimising NEBI, PPO and POD activities.  

The desirability function is a useful approach to optimise several responses at 

the same time to obtain the overall desirability, considering each individual 

response. Thus, to obtain a maximum overall desirability of 0.743, the juice 

formulated containing 1.79% (w/v) of stevia should be submitted to 40 kV/cm 

during 360 µs. 

4. Conclusions 

In response to increasingly demand of minimally processed juices, non-

thermal preservation technologies development as well as non-synthetic 

preservatives use have been encouraged. For these reason, PEF and stevia effects 

on microbial inactivation, enzyme activity, TPC, NEBI and TAC was evaluated, the 

matrix under study being a beverage containing mango, papaya and stevia leaves 

infusion. 

In view of data obtained, the joint implementation of both strategies can be a 

useful tool to obtain a safe and stable juice, without added sugars and with 

enhanced antioxidant properties, in absence of synthetic additives. With this aim, 

the optimum processing conditions, taking into account which were the variables 

under study and based on the results obtained, would be 40 kV/cm, 360 µs and 

1.79% (w/v) stevia. 
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ABSTRACT 

A fruit juice-stevia beverage was processed using pulsed electric fields (PEF), a 

non-thermal preservation technology, with the purpose of investigating the 

feasibility of PEF for bioactive compounds and steviol glycosides enhancement 

and its impact on physicochemical properties. Variable ranges of response surface 

methodology were 20-40 kV/cm (electric field strength), 100-360 µs (treatment 

time) and 0-2.5% (w/v) stevia. After PEF, ascorbic acid was retained by more than 

74% of the initial content. Some of the analysed PEF treatments resulted in an 

enhancement of total anthocyanins and carotenoids. The best results for 

rebaudioside A/stevioside ratio were obtained when PEF was applied at 30 kV/cm 

for 230 µs. Hydroxymethylfurfural content and total colour differences were 

maximum at the highest electric field strength assayed (40 kV/cm). PEF conducted 

at 21 kV/cm during 360 µs with 2.5% stevia led to the beverage with the greatest 

content in bioactive compounds and sweetening properties with minimal colour 

changes. 

Industrial Relevance: Thermal pasteurisation of fruit juices is used to extend their 

shelf life. However, thermal process may negatively affect sensorial and 

nutritional properties of juices. In this context, the use of pulsed electric fields 

(PEF) is a promising technique for the acquisition of beverages with fresh like 

properties with the potential to be implemented at a commercial scale by the 

brewing industry. The combination with Stevia rebaudiana may constitute a 

useful tool to provide fruit juices with an increased added value with the 

improvement of the nutritional, physicochemical and sensorial properties. 

Keywords: Pulsed electric field processing, Stevia rebaudiana Bertoni, Bioactive 

compounds, Steviol glycosides, Colour.  
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1. Introduction 

Increased awareness of the relationship between diet and health has 

stimulated a trend in nutritional science whereby more attention is given to the 

health effects of foods. Taking advantage of this awareness, a large quantity of 

beverages based on exotic fruits have been designed in response to consumer´s 

demand for highly nutritious foods, as well as innovative tastes and flavours. 

Between them, mango and papaya juices can be considered dietary sources of 

bioactive compounds, such as vitamin C, carotenoids and anthocyanins, which 

have shown to be related to colour of foods. Furthermore, an upsurge of interest 

in the therapeutic potential of plants and their addition to food products has been 

observed, with an increased interest in the use of the natural sweetener Stevia 

rebaudiana Bertoni (Korir, Wachira, Wanyoko, Ngure, & Khalid, 2014). Stevia 

leaves have been shown to exert antioxidant and antimicrobial activity and could 

be a useful tool to ensure safety and quality of food products (Ramya, 

Manogaran, Joey, Keong, & Katherasan, 2014). 

To prolong shelf life of juices, pasteurisation is the commonest method for 

inactivating microorganism and enzymes. However, loss of representative flavour 

compounds, colour and vitamins has been reported (Galaverna & Dall’Asta, 2014). 

Solving colour alterations of fruit juice-based beverages by preserving their 

phytochemical composition during processing is a major challenge for the 

beverage industry. In this sense, PEF (pulsed electric fields) have emerged as a 

non-thermal technology with potential to pasteurise foods nonthermally via 

exposure to short high-voltage pulses. Under the effect of PEF with electric field 

strength of 0.5–40 kV/cm and pulse duration from several microseconds to 

several milliseconds, cell membranes become electroporated with the following 

alteration in the transport of ions and changes in enzyme structures (Terefe, 

Buckow, & Versteeg, 2015). 

Retention studies of vitamins and organoleptic characteristics to assess the 

effects of food processing on the nutritive value of foods are of great importance 

to food technologists and consumers. For instance, vitamin C is a thermolabile 

vitamin that is especially affected by heat treatment and has been used as a 
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quality indicator after application of a preservation process, also because it is 

related to other parameters, such as colour retention (Zulueta, Barba, Esteve, & 

Frígola, 2013). Anthocyanin pigments readily degrade during processing of 

foodstuffs, which can have a dramatic impact on colour quality and may also 

affect nutritional properties (Guo et al., 2014). Carotenoids content may be also 

modified by the processing conditions with the consequent effect in the colour 

characteristics (Sanchez-Vega, Elez-Martínez, & Martín-Belloso, 2015). 

Furthermore, steviol glycosides related to the sweetening properties of stevia 

derived products may be affected by processing parameters (Espinoza et al., 

2014). 

Previous studies suggest that PEF treatment may have no detrimental effect 

on heat-labile compounds and even more, may increase extractability of some 

bioactive compounds. This could have not only nutritional consequences, but also 

colour and flavour modifications, which are recognised as the major factors 

affecting food product acceptance. 

However, compared to the wide range of research investigating enzyme and 

microorganism inactivation by PEF, there are few studies related to the effect of 

PEF treatment on sensorial characteristics and bioactive compounds of juices 

(Barba et al., 2012; Guo et al., 2014; Sanchez-Moreno, De Ancos, Plaza, Elez-

Martínez, & Pilar Cano, 2011; Wiktor et al., 2015), and to the best of our 

knowledge, none about the effect of PEF processing on steviol glycosides content 

in fruit juices sweetened with stevia. Therefore, taking into account that stevia 

use and PEF application could be a good strategy to improve nutritional and 

sensory quality of minimally processed ready-to-eat foods, the aim of the present 

study was to evaluate the impact of PEF on bioactive compounds, steviol 

glycosides and physicochemical parameters of a beverage containing mango, 

papaya and stevia in order to (i) elucidate if stevia influences PEF processing, and 

to (ii) determine by means of response surface methodology (RSM) which 

combination of electric field, treatment time and stevia concentration allows 

maximising bioactive compounds of the matrix under study while minimising 

colour changes. 
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2. Material and methods 

2.1. Fruit juice mixture and sample preparation 

Mango (Mangifera indica Linnaeus) and papaya (Carica papaya Linnaeus) 

juices were prepared separately using a household blender. The resulting juice 

was filtered using a mesh sieve with a pore size of 0.297 mm. The fruit juice 

mixture was prepared by mixing 50.75% (v/v) of papaya, 19.25% (v/v) of mango 

and 30% (v/v) of mineral water (in samples without stevia). 

A concentrated stock solution of stevia leaves infusion (8.33±0.01%, w/v) was 

prepared by adding 100 mL of boiling mineral water to 8.33 g of dried leaves, 

allowing it to infuse for 30 min. This infusion was vacuum filtered using a Kitasato 

flask, a Büchner funnel, a vacuum pump (VDE 0530, KNF Neuberger GmbH, 

Germany) and filter paper (Whatman® No. 1, Whatman International Ltd., UK). 

Samples with 1.25 and 2.50% (w/v) of stevia were prepared taking different 

volumes of stevia stock solution and were added to the fruit juice mixture 

replacing part of the water. The highest stevia concentration tested (2.50% (w/v)) 

was selected taking into account the maximum sucrose percentage that can be 

used to obtain sensorially acceptable foods and the sweetness equivalence 

stevia/sucrose (Savita, Sheela, Sunanda, Shankar, & Ramakrishna, 2004). 

2.2. PEF equipment 

PEF treatments were carried out in an OSU-4D continuous-flow bench-scale 

system (Ohio State University, USA). The system consisted of eight co-field 

treatment chambers connected in series with a diameter of 0.230 and an 

electrode gap of 0.293 cm. A heat exchanger was used to guarantee that samples 

and chambers pre-treatment temperature was 25±3 °C. The inlet and outlet 

temperatures of treatment chambers were monitored by type T thermocouples. A 

square-wave bipolar pulse was selected. The pulse width was fixed to 2.5 µs. Pulse 

waveform, voltage and intensity in the treatment chambers were fed into a digital 

oscilloscope (Tektronix TDS 210, Tektronix Inc., USA). The flow rate was set at 30 

mL/min and controlled by a peristaltic pump (Cole-Parmer® 75210-25, Cole-

Parmer Instruments Co., USA). In order to decide the most appropriate PEF 
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conditions, a number of alternative processing conditions were tested. Treatment 

time ranged from 100 to 360 µs and the electric field intensity from 20 to 40 

kV/cm. Samples were collected after each treatment and stored under 

refrigeration (3±1 °C) until being analysed. Experiments were performed in 

duplicate. 

2.3. Ascorbic acid determination 

Ascorbic acid was assayed by polarographic determination using a Metrohm 

746 VA Trace Analyser (Herisau, Switzerland) equipped with a Metrohm 747 VA 

stand. The working electrode was a Metrohm multi-mode electrode operated in 

the dropping mercury mode. A platinum wire counter electrode and a saturated 

calomel reference electrode were used. The following instrumental conditions 

were applied: DP50, mode DME, drop size 2, drop time 1 s, scan rate 10 mV/s, 

initial potential −0.10 V. Samples (5 mL) were diluted to 25 mL with the extraction 

solution (oxalic acid 1% w/v, trichloroacetic acid 2% w/v, sodium sulfate 1% w/v). 

After vigorous shaking, the solution was filtered through a folded filter 

(Whatman® No. 1, Whatman International Ltd., UK). Oxalic acid (9.5 mL) 1% (w/v) 

and 2 ml of acetic acid/sodium acetate 2 M buffer (pH=4.8) were added to an 

aliquot of 0.5 mL of filtrate and the solution was transferred to the polarographic 

cell. Determinations were carried out by using the peak height and standard 

addition method in accordance to Carbonell-Capella, Barba, Esteve, & Frígola 

(2013). 

2.4. Total anthocyanins assessment 

Total anthocyanins were determined using a modified method of Mazza, 

Fukumoto, Delaquis, Girard, & Ewert (1999). A 10-fold diluted sample of 100 μl 

was mixed with 1700 μl of distilled water and 200 μl of 5% (v/v) HCl. Samples 

were incubated at room temperature for 20 min before measuring the 

absorbance at 520 nm. Calculations of total anthocyanins were based on cyanidin-

3-glucoside (molar absorptivity 26900 L/mol·cm). 
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2.5. Total carotenoids determination 

Extraction of total carotenoid was carried out in accordance with Lee and 

Castle (2001). An aliquot of sample (2 mL) was homogenised with 5 mL of 

extracting solvent (hexane/acetone/ethanol, 50:25:25, v/v) and centrifuged for 5 

min at 4000 rpm at 5 ºC. The top layer of hexane was recovered and transferred 

to a 25 mL volumetric flask and volume was adjusted to 25 mL with hexane. 

Absorbance was measured at 450 nm and total carotenoids were calculated 

according to Ritter and Purcell (1981) using an extinction coefficient of β-

carotene, E1%=2505. 

2.6. Steviol glycosides analysis 

The method of JECFA (2010) with various modifications was used. Samples 

were filtered through a Sep-Pak® cartridge (a reverse-phase C-18 cartridge; 

Millipore, MA, USA) which retains steviol glycosides. Cartridges were previously 

activated with 10 ml of methanol (MeOH) and 10 ml of water. Every 10 ml of 

previously diluted sample was eluted with 2 ml of MeOH and collected, filtered 

through a 0.45 µm membrane filter Millex-HV13 (Millipore) and analysed by liquid 

chromatography. Kromasil 100 C18 precolumn (guard column) (5 µm, 150 x 4.6 

mm); Kromasil 100 C18 column (5 µm, 150 x 4.6 mm) (Scharlab, Barcelona, Spain). 

The mobile phase consisted of two solvents: Solvent A, acetonitrile and Solvent B, 

10 mmol/L sodium phosphate buffer (pH=2.6) (32:68, v/v). Steviol glycosides were 

eluted under 1 mL/min flow rate and the temperature was set at 40 °C with a 

column thermostat (Prostar 510, Varian). Triplicate analyses were performed for 

each sample. Chromatograms were recorded at 210 nm. Identification of steviol 

glycosides were obtained by addition of authentic standards, while quantification 

was performed by external calibration with standards. 

2.7. Physicochemical analysis 

°Brix (total soluble solid content) were measured in accord to IFU methods 

(2001). ºBrix was determined with an Atago RX-1000 digital refractometer (Atago 

Company Ltd., Tokyo, Japan). HMF content was measured using the method 

described by IFFJP (1984). 
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Colour analysis was performed using a Hunter Labscan II spectrophotometric 

colourimeter (Hunter Associates Laboratory Inc., Reston, VA., USA) controlled by a 

computer that calculates the colour ordinates from the reflectance spectrum. 

Results were expressed in accordance with the Commission International 

d′Eclairage LAB (CIELAB) system with reference to illuminant D65 and with a visual 

angle of 10°. Three consecutive measurements of each sample were taken. The 

CIE L* (lightness [0=black, 100=white]), a* (–a*=greenness, +a*=redness) and b* 

(–b*=blueness, +b*=yellowness) values were used to calculate the total colour 

differences (ΔE*=[(ΔL*)2+(Δa*)2+(Δb*)2]1/2), where ΔL*, Δa* and Δb* are the 

differences between the untreated and the treated (PEF) juice mixture (Calvo, 

2004). 

2.8. Experimental design and statistical analysis 

Response surface methodology was used to investigate the effect of electric 

field strength (20-40 kV/cm), time (100-360 µs) and Stevia rebaudiana 

concentration (0-2.5%, w/v) on the nutritional parameters (ascorbic acid, total 

carotenoids and total anthocyanins), steviol glycosides and physicochemical 

parameters (colour, HMF and ºBrix) of the beverage. A 3 level, 3 variable central 

composite design was used, resulting in 16 combinations (Table 1). 

Table 1. Independent variables and their levels used for the face-centred 

central composite analysis. 

Independent variable Code Variable level 

  -1 00 1 

Electric field intensity (kV/cm) X1 20 30 40 
Time treatment (µs) X2 100 230 360 
Stevia percentage X3 0 1.25 2.50 

The range of independent variables was established based on the conclusions 

of a previous study (Belda-Galbis et al., 2014), with an intermediate level (central 

point) of the 3 levels. The experimental design was performed twice, to check the 

reproducibility and stability of the results obtained. Experiments were 

randomised to minimise the systematic bias in the observed responses due to 
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extraneous factors and to increase precision. Experimental data were fitted by a 

second-order polynomial model (Eq. (1)): 

Y = b0 + b1X1 + b2X2 ++ b12X1X2 + b11X12 + b22X22                         (1) 

where Y represents the predicted response, Xi the independent variables, b0 is 

the centre point of the system and bii are coefficients of the linear, quadratic and 

interactive effect. 

The non-significant terms were deleted from the second-order polynomial 

model after an ANOVA test, and a new ANOVA was performed to obtain the 

coefficients of the final equation for better accuracy. Experimental design and 

data analysis was examined using Statgraphics® Centurion XVI (Statpoint 

Technologies Inc., USA). All the individual desirability functions obtained for each 

response were combined into an overall expression, which is defined as the 

geometrical mean of the individual functions. The nearer the desirability value to 

the unit, the more adequate the system (Ross, 1996). In the present study, 

desirability functions were developed in order to obtain the beverage with the 

highest levels of antioxidant compounds and the best physicochemical properties. 

Subsequently, an ANOVA of three factors (pressure, time, and Stevia rebaudiana 

concentration) was applied, and in the parameters for which significant 

differences were obtained with more than two levels, Tukey’s test was applied to 

ascertain the range of values in which the differences were located. Finally, a 

study was conducted with the aim of determining whether there were 

correlations between a pair of variables (Pearson's test). 

3. Results and discussion 

3.1. Effect of PEF and stevia on bioactive compounds content of the juice beverage 

To explore the impact of PEF on the nutritional indicators of the fruit juices, 

ascorbic acid, total anthocyanins and total carotenoids were analysed (Figures 1-

3). 

Ascorbic acid content for untreated papaya-mango juice without stevia added 

was 24.94±0.16 mg/100 mL. Previous studies have shown similar values in a 
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papaya, mango and orange beverage (Carbonell-Capella et al., 2013). After pulsed 

electric field treatments, a significant decrease (p<0.05) in the ascorbic acid 

content was observed in comparison with the untreated sample. Higher electric 

fields strength led to higher decrease in the ascorbic acid content, independently 

of the treatment time. 

 

  Effect of electric field (kV/cm), treatment time (µs) and stevia Figure 1.

concentration (%, w/v) on ascorbic acid (mg/100 mL). 

Addition of stevia to the fruit juice caused a significant reduction in ascorbic 

acid content (16.82±0.28 and 16.65±0.22 mg/100 mL for 1.25 and 2.5% stevia 

(w/v), respectively) in untreated beverages. Although Kim, Yang, Lee, & Kang 

(2011) detected ascorbic acid in stevia leaves and callus, differences in these 

results and those found in the present research could be attributed to the 

preparation of the stevia water extract (weight and temperature submitted). 

Furthermore, stevia addition may cause a change in the pH of the beverage, 

reducing the stability of ascorbic acid. PEF treatment caused a reduction of 

ascorbic acid in the fruit juice-stevia beverage, similarly to the fruit juice without 

stevia. Higher electric field strengths caused higher ascorbic acid reduction, as 

shown in Figure 1. This could be explained by the fact that electroporation caused 

by PEF processing enhances the extraction of intracellular contents, and 

consequently, ascorbic acid’s stability can be comprised. However, when stevia is 

used in a 2.5%, ascorbic acid seems to be better retained (81.2%) in comparison to 
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fruit juices sweetened with 1.25% of stevia (71.9%), which may be due to 

interactions between stevia components and ascorbic acid involved in the kinetics 

of reaction of ascorbic acid degradation.  

A regression analysis was performed to analyse the influence of electric field 

strength (E, kV/cm) and treatment time (t, µs) on ascorbic acid retention in each 

of the beverages studied. Results fitted to a linear model are shown in Eq. (2) 

(R2=0.946, standard error 0.008) for fruit juice beverage without stevia, Eq. (3) 

(R2=0.913, standard error 0.023) for fruit juice beverage sweetened with 1.25% 

stevia (w/v) and Eq. (4) (R2=0.808, standard error 0.024) for fruit juice beverage 

sweetened with 2.5% stevia (w/v):  

C/C0 = 1.027 - 0.003·E - 0.00004·t            (2) 

C/C0 = 1.307 - 0.011·E - 0.00044·t                  (3) 

C/C0 = 1.090 - 0.005·E - 0.00021·t      (4) 

The fit was significant in all cases (p<0.01). It can be seen that both electric 

field strength applied and treatment time influence the degradation of ascorbic 

acid and it can be said that the fruit juice beverage without stevia and with stevia 

at 1.25 and 2.5% (w/v) show similar behaviour. 

Furthermore, experimental data of all three beverages were fitted by a 

second-order polynomial model. Analysis of variance showed that the regression 

model was accurate enough (R2=0.980, standard error 0.558). The relation 

between the independent variables and total ascorbic acid can be described by 

the Eq. (5): 

  AA (mg/100 mL) = 26.842 - 0.101·E - 0.003·t- 10.371·%stevia +2.865·%stevia2 (5) 

Differently from ascorbic acid, the PEF processed and unprocessed juice 

samples had similar concentrations of total anthocyanins, with values from 78.1 

to 112.2% in PEF treated compared to untreated fruit juices. This was also 

observed by Guo et al. (2014) when they treated pomegranate juice at 35 and 38 

kV/cm during 281 μs. 
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 Effects of electric field and time on total anthocyanins (mg cyaniding-3-Figure 2.

glucoside/L) of a fruit juice sweetened with stevia at: a) 0%, b) 1.25% and c) 

2.50%. 

Superficie de Respuesta Estimada
% Stevia=0.0

20 24 28 32 36 40
Treatment

100

200

300

400

Time _min_

11

13

15

17

19
T

o
ta

l 
a
n

th
o

c
y
a
n

in
s
 _

m
g

_
1
0
0
 m

L
_

Total anthocyanins _mg_100 mL_
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0

To
ta

l a
n

th
o

cy
an

in
s 

(m
g

/L
)

a)

Superficie de Respuesta Estimada
% Stevia=1.25

20 24 28 32 36 40
Treatment

100

200

300

400

Time _min_

11

13

15

17

19

T
o

ta
l 

a
n

th
o

c
y
a
n

in
s
 _

m
g

_
1
0
0
 m

L
_

Total anthocyanins _mg_100 mL_
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0

To
ta

l a
n

th
o

cy
an

in
s 

(m
g

/L
)

b)

Superficie de Respuesta Estimada
% Stevia=2.5

20 24 28 32 36 40
Treatment

100

200

300

400

Time _min_

11

13

15

17

19

T
o

ta
l 

a
n

th
o

c
y
a
n

in
s
 _

m
g

_
1
0
0
 m

L
_

Total anthocyanins _mg_100 mL_
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0

To
ta

l a
n

th
o

cy
an

in
s 

(m
g

/L
)

c)



227 

Results 

 

 

 

When regression analysis was made, electric field was the factor that most 

influenced anthocyanin content, independently of the stevia concentration. As 

can be seen in Figure 2, behaviour of anthocyanin content was different after 

applying PEF depending on the stevia concentration. In the case of fruit juice 

without stevia, higher TA values were obtained when the beverage was treated at 

lower electric field strength (20 kV/cm). By contrast, fruit juices sweetened with 

stevia showed a higher TA content at higher electric field intensity (40 kV/cm). 

Electroporation may enhance the extractability of anthocyanins from fruit 

cells, but in the case of fruit juices without stevia, higher electric fields do not lead 

to a higher anthocyanin extraction maybe because PEF application at higher 

electric fields can also promote reactions which cause a decrease in bioactive 

compounds. This does not occur in fruit juices sweetened with stevia, as stevia 

may act as an antioxidant ingredient protecting other bioactive compounds from 

degradation. That is why the highest anthocyanin value (17.9±1.6 mg/L) was 

obtained in the fruit juice sweetened with stevia treated at 40 kV/cm during 360 

µs. These findings promote the combination of two strategies such as PEF 

technology along with the use of a natural ingredient with antioxidant and 

antimicrobial activity when processing food products. Previous studies (Carbonell-

Capella et al., 2013) also show the combination of stevia and another non-thermal 

technology (high pressure processing) to influence positively total anthocyanin 

content and attribute it to the effect that high pressure processing has on the 

molecules involved in anthocyanin degradation, such as enzymes, which can also 

occur after PEF treatment. The reduced regression model was as follows (Eq. (6)): 

     TA (mg/L) = 10.491 + 0.029·E + 0.006·t - 1.320·%stevia +0.062·E·%stevia (6) 

Untreated fruit juices had a total carotenoid content of 850.8, 898.2 and 

815.9 µg/100 mL for 0, 1.25 and 2.5% stevia, respectively, showing that stevia 

addition does not influence carotenoid content in untreated beverage. However, 

application of PEF changed total carotenoids (TC) content of fruit juices, as shown 

in Figure 3. Both electric field and treatment time had a significant positive effect 

(p<0.05) on total carotenoids. As previously observed for anthocyanins, fruit juices 
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without stevia had a maximum carotenoid content (107.3%) when electric field 

was of 20 kV/cm for 360 µs. 

 
 Response surface plot for total carotenoids content of the beverage Figure 3.

with 2.50% of stevia as affected by PEF at different electric fields (20-40 kV/cm) 

and times (100-360 µs). 

According to Wiktor et al., (2015), PEF can act ambiguously by enhancing 

extractability of carotenoids from the food matrix on the one hand, but 

generating ROS (reactive oxygen species) which can promote the oxidation of the 

β-carotene chain on the other hand. This would explain the enhancement of the 

carotenoid content at lower electric fields while at higher electric fields, 

carotenoid content would be lower. However, fruit juices sweetened with stevia 

reached a maximum (111.9 and 142.5% for 1.25 and 2.5% stevia, respectively) 

when samples were treated at an electric field of 40 kV/cm for 360 µs. Once 

more, fruit juices sweetened with stevia increased nutritional quality of fruit juices 

at higher electric fields and treatment time, which may be attributed to the 

protective effect of stevia antioxidant compounds. This effect was also observed 

by Pérez-Ramirez, Castanño-Tostado, Ramirez-De Leon, Rocha-Guzman, & 

Reynoso-Camacho, (2015) who obtained that the incorporation of stevia to a 

roselle beverage increased the stability of colour, phenolic compounds and 
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antioxidant capacity. Experimental data were fitted to a second-order polynomial 

model (Eq. (7)): 

      TC (µg/100 mL) = 1325.940 - 53.642·E + 0.735·t + 1.003·E2   (7) 

3.2 Effect of PEF and stevia on steviol glycosides of the juice beverage 

In the stevia sweetened beverages, four steviol glycosides were identified and 

analysed (rebaudioside A (reb A), stevioside (ste), rebaudioside F (reb F) and 

rebaudioside C (reb C)) in order to study the PEF effect on the sweetening 

properties of these beverages (Table 2). The major compound found in the 

samples containing a mixture of steviol glycosides was rebaudioside A followed by 

stevioside and in minor amounts, rebaudioside C and F. Rebaudioside A in 

untreated 1.25 and 2.5% stevia beverage was 233.6 and 273.8 mg/100 mL, 

respectively. Application of electric pulses resulted in mainly unchanged reb A, 

with the exception of 20 kV/cm for 360 µs and 30 kV/cm for 230 µs in the 2.5% 

stevia beverage, where reb A increased significantly compared to untreated 

samples. Although, to the best of our knowledge, no studies regarding PEF 

processing effect on steviol glycosides content have been carried out up to date, 

Duval, Grimi, and Vorobiev also observed an enhancement of steviol glycosides 

extraction yield from stevia after PEF pretreatment (20 kV/cm, 0.5-2 ms).  

A similar behaviour was obtained for stevioside. Stevioside content in 

untreated beverages was of 114.0 and 129.3 mg/100 mL for beverages with 1.25 

and 2.5% of stevia. Surprisingly, PEF treatment did not cause any significant 

change in the stevioside content in the 1.25% stevia beverage. 

However, 20 kV/cm-360 µs and 30 kV/cm-230 µs caused a significant 

enhancement of the stevioside content in the 2.5% stevia beverage. 

Electroporation caused by PEF may facilitate stevioside extraction, but only at 

moderate conditions, which may be attributed to degradation of this compound 

at higher electric fields. These results are in agreement with the findings of 

Periche, Castello, Heredia, & Escriche (2015) who reported that extraction 

assisted by ultrasound treatment increased steviol glycosides as long as low 

temperature and short times were applied. 



 

 

Table 2. Central composite response surface methodology design and response values for steviol glycosides 

concentration on HIPEF-treated fruit juice. 

Assay 
no.a 

Electric field 
strength 
(kV/cm) 

Time 
treatment 

(µs) 

Stevia 
(%) (w/v) 

Reb A 
(mg/100 mL) 

Ste 
(mg/100 mL) 

Reb F 
(mg/100 

mL) 

Reb C 
(mg/100 mL) 

1 40 100 2.50 281.6±4.7 133.4±1.9 14.8±0.3 39.5±2.2 
2 40 100 0.00 - - - - 
3 20 360 2.50 347.2±28.1 169.2±5.5 15.3±1.2 36.9±0.8 
4 20 230 1.25 230.5±4.0 111.2±0.7 7.2±0.3 24.1±0.4 
5b 30 230 1.25 236.8±8.4 112.6±8.1 7.6±0.7 29.3±0.6 
6 40 360 2.50 272.7±2.1 127.9±2.5 16.0±1.4 40.0±1.1 
7 40 360 0.00 - - - - 
8 20 100 0.00 - - - - 
9 20 360 0.00 - - - - 

10 40 230 1.25 227.9±1.7 108.8±0.7 9.4±0.5 30.9±1.1 
11 30 230 2.50 336.2±4.8 155.1±3.9 14.2±0.3 36.3±2.9 
12 30 230 0.00 - - - - 
13 30 100 1.25 228.5±3.6 113.9±0.5 7.1±0.4 27.1±0.7 
14b 30 230 1.25 240.4±10.6 116.2±5.0 7.5±0.4 29.4±0.4 
15 20 100 2.50 272.5±9.8 128.3±2.7 12.0±0.5 29.6±1.1 
16 30 360 1.25 225.0±5.8 108.1±2.6 9.2±0.5 29.0±0.9 

Reb A: rebaudioside A, Ste. stevioside, Reb F: rebaudioside F, Reb C: rebaudioside. 

a Order of assays was randomised. 
b Central points. 
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Untreated 1.25 and 2.5% stevia beverages had a rebaudioside F content of 6.8 

and 11.0 mg/100 mL, respectively. PEF treatment did not lead to significant 

changes in the 1.25% stevia beverage, but significantly higher values were 

obtained for PEF treated 2.5% stevia beverage. These differences may be 

attributed to the higher initial steviol glycosides content found in the 2.5% stevia 

beverage. Rebaudioside F may be product of the glycosylation of other steviol 

glycosides such as rebaudioside A and stevioside, although metabolism of these 

compounds is complex and not yet fully understood. Consequently, higher steviol 

glycosides content in the initial food product may stimulate the biosynthesis of 

rebaudioside F after high electric fields cause the electroporation and release of 

different enzymes involved in the steviol glycosides metabolism pathway. 

Regarding rebaudioside C content, it was noteworthy that 1.25% stevia fruit 

juice had a 24.2 mg/100 mL content, while 2.5% stevia fruit juice had a 28.2 

mg/100 mL content, not much higher. Interactions between the compounds 

present in the different ingredients of the beverage might take place masking 

their detection and also their biological action, making further studies evaluating 

steviol glycosides behaviour necessary. As observed for rebaudioside F content, 

PEF treatment did not result in any significant change in the 1.25% stevia fruit 

juice. Conversely, a significant increase in rebaudioside C content was obtained 

after PEF treatments, reaching the maximum (40.0 mg/100 mL) at 40 kV/cm, 360 

µs. Once more, this increase may be not only due to the release of these 

compounds from inside of the cells after electric pulses are applied, but probably 

also because of the formation of rebaudioside C from dulcoside A through the 

glycosylation of C-3′ of the C-13 glucose observed by Ceunen & Geuns (2013) 

because of the increase enzyme-substrate contact after the loss of 

compartmentalisation. Consequently, electric pulses application may favour 

certain steviol glycosides hydrolysis or glycosylation, altering their content in the 

different treated food products. 

Furthermore, it is important to consider the relative amounts of the two main 

compounds found in the beverages, observing that the ratio between 

rebaudioside A and stevioside increased after PEF treatments. This is a very 

interesting finding, since the rebaudioside A/stevioside ratio represents a good 
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qualitative measurement of the sweetness (the higher the ratio, the better the 

taste) (Tavarini & Angelini, 2013). The maximum rebaudioside A/stevioside ratio 

was reached in the 2.5% stevia fruit juice treated at 30 kV/cm for 230 µs, which 

must be taken into account when examining the sweetening juice quality. The 

regression equation (Eq. (8)) describes the following model accurately enough 

(R2=0.998): 

Reb A/ste ratio = 2.467·%stevia - 0.648·%stevia2   (8) 

3.3. Effect of PEF and stevia on physicochemical properties of the juice beverage 

ºBrix, hydroxymethylfurfural (HMF) and colour parameters (a*, b* and L*) 

(Table 3, Figure 4) were used to test the effect of PEF in the physicochemical 

properties of fruit juices. As can be expected, among the studied parameters, 

stevia percentage had the greatest effect on the physicochemical parameters of 

the juice beverage. Overall, no statistically significant changes were observed in 

ºBrix values of the PEF beverages compared to the untreated beverage with 0 and 

1.25% (w/v) stevia. PEF treatments with an electric field of 30 and 40 kV/cm 

produced a significant increase in ºBrix values in comparison with the 

unprocessed 2.5% (w/v) stevia beverage. A comparison of the results obtained by 

the response surface analysis showed that only stevia and electric field strength 

had a significant influence in the values of °Brix immediately after processing. A 

second-order response surface function fitted properly the experimental data 

with a determination coefficient (R2) of 0.970 and a nonsignificant lack of fit. The 

following model (Eq. (9)) describes ºBrix of PEF treated beverages with stevia 

added: 

  ºBrix = 8.890 + 0.001·E - 0.421·%stevia + 0.309·%stevia2  (9) 

A positive correlation was found between ºBrix and rebaudioside A/stevioside 

ratio in the stevia sweetened fruit juices, confirming the use of this ratio as a 

measure of the sweetness quality. 
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 Effect of electric field (kV/cm), treatment time (µs) and stevia Figure 4.

concentration (%, w/v) ºBrix values. 

Quality loss of processed foods can also be determined by the 

hydroxymethylfurfural (HMF) content, which is one of the final products of non-

enzymatic browning. Independently of the stevia concentration, higher electric 

fields led to significantly higher HMF value. However, HMF value in the presence 

of stevia was not as high as in the fruit juice without stevia, showing once more 

the protective effect of the stevia addition to the fruit juice. On the basis of 

experimental design presented in Table 1, the statistically significant regression 

equation (p<0.05) with R2=0.915 which displays the influence of electric field, 

treatment time and stevia concentration on the HMF content in terms of actual 

values was as follows (Eq. (10)): 

        HMF (mg/100 mL) = 0.601 - 0.052·E + 0.001·t - 0.354·%stevia + 0.002·E2       

               + 0.098·%stevia2                (10) 

Colour parameters of stevia-fruit beverages as affected by different PEF 

treatment conditions are shown in Table 3. Lightness (L*) is the most indicative 

parameter associated with fruit enzymatic browning (Chaikham, 

Apichartsrangkoon, & Seesuriyachan, 2014). 



 

 

Table 3. Central composite response surface methodology design and response values for physicochemical 

parameters on HIPEF-treated fruit juice. 

Assay 
no.a 

Electric field 
strength 
(kV/cm) 

Time 
treatment 

(µs) 

Stevia 
(%) 

(w/v) 

HMF 
(mg/100 mL) 

L* a* b* ΔE 

1 40 100 2.50 0.829±0.029 31.1±1.2 9.4±0.5 22.5±1.8 6.69±1.18 
2 40 100 0.00 0.933±0.059 37.7±1.1 16.0±0.1 30.9±0.4 10.95±0.72 
3 20 360 2.50 0.121±0.029 26.9±0.1 9.9±0.1 28.1±0.1 0.61±0.09 
4 20 230 1.25 0.121±0.029 29.8±0.1 11.7±0.1 30.6±0.1 1.34±0.07 
5b 30 230 1.25 0.288±0.029 30.4±0.1 11.7±0.1 31.0±0.1 1.80±0.11 
6 40 360 2.50 1.058±0.118 33.9±0.6 9.9±0.2 27.6±1.2 7.26±0.58 
7 40 360 0.00 1.267±0.059 39.3±0.1 16.2±0.4 32.6±0.3 10.05±0.28 
8 20 100 0.00 0.246±0.029 36.9±0.3 16.3±0.1 32.5±0.7 9.20±0.74 
9 20 360 0.00 0.329±0.029 36.9±0.6 16.3±0.4 33.0±1.1 8.72±1.25 

10 40 230 1.25 0.829±0.029 32.4±0.1 12.1±0.1 31.7±0.3 3.43±0.21 
11 30 230 2.50 0.121±0.029 27.1±0.1 9.9±0.1 28.2±0.1 0.78±0.16 
12 30 230 0.00 0.829±0.088 37.6±0.7 16.0±0.4 31.6±1.3 10.28±1.47 
13 30 100 1.25 0.121±0.029 30.0±0.1 11.8±0.1 31.1±0.0 1.84±0.04 
14b 30 230 1.25 0.308±0.059 30.3±0.1 11.7±0.1 30.9±0.1 1.67±0.02 
15 20 100 2.50 0.121±0.029 26.8±0.2 10.0±0.1 28.0±0.2 0.45±0.12 
16 30 360 1.25 0.496±0.029 31.6±0.1 12.1±0.1 31.7±0.1 2.93±0.11 

HMF: hydroxymethylfurfural, ΔE: total colour differences. Values are expressed as mean±SD of two treatment 
repetitions. Each assay was performed in duplicate. 
a Order of the assays was randomised 
b Central points 
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Initial L* values of untreated beverages were 34.2±0.1, 30.0±0.1 and 26.7±0.1 

for the 0, 1.25 and 2.5% stevia beverage, respectively, showing a significant 

decrease in L* values with the addition of stevia to the beverage. The three way 

ANOVA showed that electric field strength, time and stevia concentration had a 

significant influence (p<0.05) in this parameter. In the beverage without stevia, 

higher L* values were found for samples treated by PEF. However, in the 1.25 and 

2.5% stevia beverages, only electric fields of 40 kV/cm caused a significant 

increase in L* values. 

Azhuvalappil, Fan, Geveke, & Zhang (2010) also reported a significant increase 

in luminosity after PEF processing apple juice and they attributed it to partial 

precipitation of insoluble suspended particles in the juice. Furthermore, (Bi et al., 

2013) attributed the lightening tendency observed in a PEF-treated apple juice to 

the inactivation of enzymes responsible for browning. Thus, the maintenance of 

colour of the fruit juice-stevia beverage might be due to the inactivation of 

enzymes which catalyze phenolic compounds oxidation and cause enzymatic 

browning. 

Additionally, a* values were 17.9±0.1, 11.5±0.1 and 10.0±0.1 in the untreated 

fruit juice beverages with 0, 1.25 and 2.5% stevia beverage, respectively. Only 

treatment time and stevia percentage had a significant influence in this 

parameter, but not electric field strength. a* values diminished when the fruit 

juice beverage without stevia was treated by PEF, independently of the electric 

field strength and time treatment applied, while the opposite trend was observed 

for fruit juice beverages sweetened with 1.25 and 2.5% stevia. In this case, PEF 

treated at high electric field strengths and time treatments resulted in an increase 

of a* values. Regarding b* values, these were of 41.1±0.1, 29.3±0.1 and 27.6±0.1 

in the untreated fruit juice beverages sweetened with 0, 1.25 and 2.5% stevia, 

respectively. Electric field strength, time treatment and stevia percentage 

influenced significantly in this parameter. Yellowness was reduced in the PEF 

treated samples of the fruit juice beverage without stevia, while it increased 

significantly in the beverage with 1.25% stevia. However, no significant 

differences were observed after PEF treatments in the fruit juice beverage 

sweetened with 2.5% stevia. Finally, colour variations (ΔE) were greater in 
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beverages without stevia than in beverages with 1.25 and 2.5% stevia. Colour 

modifications may be due to the breakage of cellular membranes which would 

cause a loss of functional cell compartmentalisation, increasing enzyme-substrate 

contact with the consequent increase in tissue browning, also related with results 

obtained for L* parameter. However, stevia addition may cause inactivation of 

enzymes and therefore prevent the enzyme-substrate contact. Eq. (11) allowed 

the prediction of the effects of independent variables on the total colour 

differences (R2=0.939): 

ΔE = 8.183 + 0.053·E - 12.135·%stevia + 0.092·E·%stevia + 2.664·%stevia2 (11) 

It is noteworthy observing that changes in colour were significantly correlated 

with HMF values (R2=0.947), also related to changes in food products colour, and 

with ascorbic acid content (R2=0.875), whereas a negative correlation was found 

between changes of colour and steviol glycosides content (rebaudioside A, 

stevioside, rebaudioside F and rebaudiosice C). 

3.4. Processing parameter optimisation based on their effect on the quality of the 

formulated beverage  

For multi-response optimisation, critical PEF parameters which maximised 

bioactive compounds (ascorbic acid, total anthocyanins and total carotenoids) and 

sweetening properties (rebaudioside A/stevioside ratio and ºBrix) while 

minimising sensorial changes (HMF and total colour differences) were 

determined. The same priority was assigned to each independent variable in 

order to obtain a beverage with the maximal nutritional and sensorial quality, 

being the optimal conditions 21 kV/cm of pulsed electric field for 360 µs with 2.5% 

of stevia. At this conditions, the greatest retention of bioactive compounds as well 

as physicochemical properties were achieved, with an overall score of 0.774. 

4. Conclusions 

When applying a processing technology to a food product, special attention 

must be paid to its nutritional and sensorial quality in terms of bioactive 

compounds content along with the sweetening properties and colour, crucial for 
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consumer’s acceptance. Application of the experimental design permitted to 

investigate the optimum amounts of stevia along with processing PEF parameters 

in order to obtain a fruit juice beverage with the minimal quality and nutritional 

loss after PEF processing, enhancing its content in bioactive compounds and 

sweetening properties while minimising changes in colour.  
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ABSTRACT 

The purpose of this study was to compare the effects of the non-thermal 

technologies of pulsed electric fields (PEF), high voltage electrical discharges 

(HVED) and ultrasounds (USN) on bioactive compounds (ascorbic acid, total 

carotenoids, total phenolic compounds and total anthocyanins) and antioxidant 

capacity of a fruit juice (papaya and mango) blend sweetened with Stevia 

rebaudiana. Experiments were carried out at two equivalent energy inputs (32-

256 kJ/kg) for each technology. Principal Component Analysis (PCA) was used to 

understand the contribution of ascorbic acid, total carotenoids and ORAC (oxygen 

radical absorbance capacity) values. These parameters were better retained with 

PEF treatments. Nevertheless, the use of HVED and USN technologies cannot be 

ruled out, as they may enhance the contents of other bioactive compounds such 

as total phenolic compounds when HVED technology is applied at an energy input 

of 256 kJ/kg. The obtained data can contribute to the determination of optimum 

processing conditions for production of high nutritional quality liquid foods.  

 

Keywords: Exotic fruit juices · Pulsed electric fields · High voltage electrical 

discharges · Ultrasounds · Bioactive compounds · Antioxidant capacities. 
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Introduction 

In the last two decades, a growing demand for exotic fruits has been 

observed. Among these, mango and papaya are some of the most important, now 

ranked second and third of the total tropical fruit production, only behind banana 

production (Evans and Ballen 2012). Moreover, consumption of several mango- 

and papaya-derived products such as juices, purées, fresh-cut mango slices has 

increased in response to consumer´s demand for highly nutritious healthy foods 

(Rawson et al. 2011a). These products contain a large amount of bioactive 

compounds, including ascorbic acid, phenolic compounds and carotenoids, that 

have shown to be good contributors to the total antioxidant capacity of foods 

(Zulueta et al. 2009; Vijaya et al. 2010) and have been associated with a reduced 

risk of degenerative diseases such as cancer and coronary heart disease (Abuajah 

et al. 2014; Pistollato and Battino 2014). 

Although thermal treatments have been traditionally used in the preservation 

of liquid foods due to their ability to inactivate microorganisms and spoilage 

enzymes, several chemical and physical changes may take place, especially when 

high temperatures (>100 ºC) are used, impairing organoleptic properties and 

reducing bioactive compounds content. Consequently, new processing 

technologies which can avoid microbial contamination and allow the obtainment 

of high-quality food with “fresh-like” characteristics and improved functionalities 

are required (Rawson et al. 2011a). In this line, the use of electrotechnologies, 

such as pulsed electric fields (PEF), high voltage electrical discharges (HVED) and 

ultrasound (USN) processing, have been shown to be promising for liquid food 

preservation (Toepfl et al. 2006, 2007; Barba et al. 2012; Zulueta et al. 2013). 

Additionally, PEF and USN treatment can be combined with conventional 

preservative techniques, such as the use of green herbs with antimicrobial activity 

in order to enhance the lethal or inhibitory effect of these technologies on 

microorganisms (Ross et al. 2003) as well as their preservation of nutritional 

properties (Wang et al. 2008; Soria and Villamiel 2010; Boussetta and Vorobiev 

2014). Such combinations enhance food preservation at lower individual 

treatment intensities (Ross et al. 2003). Moreover, HVED, which is a pulsed 
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electric-based technology, has also the potential to be used for food preservation. 

However, the formation of reactive species (e.g. ozone) generated during the 

discharges makes necessary deeper studies about the effect of this technology in 

the nutritional properties of foods (Sarkis et al. 2015). 

In two previous studies, Carbonell-Capella et al. (2013) and Barba et al. (2014) 

combined a non-thermal technology (high pressure processing) with a natural 

antimicrobial Stevia rebaudiana Bertoni (Siddique et al. 2014), obtaining 

interesting results regarding Listeria monocytogenes, polyphenol oxidase (PPO) 

and peroxidase (POD) inactivation. Moreover, a significant increase of bioactive 

compounds and antioxidant capacity was found. However, there is a need to 

study if other mild preservation technologies such as PEF, HVED and USN have the 

same positive effect regarding antioxidant compounds. 

This manuscript discusses the effect of pulsed electric fields, high voltage 

electrical discharges and ultrasound technology on bioactive compounds 

retention and antioxidant capacity of a fruit juice blend based on mango and 

papaya sweetened with Stevia rebaudiana. Stevia 2.5% (w/v) was selected as a 

low-calorie sweetener with antioxidant potential based on a previous study 

(Barba et al. 2014). Equivalent energy inputs were applied in order to compare the 

different technologies between them and ascorbic acid, total carotenoids, total 

phenolic compounds, total anthocyanins and antioxidant capacity were 

investigated. 

Materials and Methods 

Sample Preparation 

Mango (Mangifera indica), and papaya (Carica papaya) were purchased from 

a local supermarket (Valencia, Spain) at commercial maturity stage. Mango and 

papaya juices were extracted after appropriate washing of the fruits and filtered 

by means of a mesh sieve (pore size: 0.297 mm).  

Dried Stevia rebaudiana leaves were supplied by Anagalide S. A. (Spain) and 

stored at room temperature. A stock solution of 8.33±0.01% (w/v) was prepared 

according to (Carbonell-Capella et al. 2015). 100 hundred mL of boiling distilled 
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water were added to the dried leaves (8.33 g) and the mixture was covered and 

allowed to infuse for 30 min at 100 ºC. The infusion was vacuum filtered using a 

Kitasato flask, a Büchner funnel, a vacuum pump (VDE 0530, KNF Neuberger 

GmbH, Germany) and filter paper (Whatman® No. 1, Whatman International Ltd, 

UK) and the filtrate obtained was stored at 40 ºC.  

The fruit juice blend was prepared by mixing 50.8% (v/v) of papaya juice, 

19.3% (v/v) of mango juice and completing volume up to 100% with stevia stock 

infusion, with a final stevia concentration of 2.5% (w/v). The final stevia 

concentration (2.5%) was selected according to a previous study (Belda-Galbis et 

al. 2014) which showed the highest antimicrobial activity at this concentration 

against Listeria innocua, a pathogen of great concern in minimally processed 

beverages because of its ubiquitous, psychotropic nature, and because of its 

ability to grow in acidic environments. 

Chemicals 

Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylicacid), ABTS (2,2′-

azinobis(3-ethylbenzothiazoline 6-sulfonate)), 2,2-Diphenyl-1-picrylhydrazyl 

(DPPH), Folin–Ciocalteu reagent, fluorescein sodium salt and sodium metabisulfite 

were purchased from Sigma-Aldrich (Steinheim, Germany). Gallic acid was 

purchased from UCB (Brussels, Belgium). Hexane (LC grade) and potassium 

dihydrogen phosphate (KH2PO4) were purchased from Scharlau (Barcelona, Spain). 

Oxalic acid, acetic acid, sodium acetate, potassium persulphate (K2S2O8), sodium 

and disodium phosphate and 2,2′-azobis-(2-amidinopropane) dihydrochloride 

(AAPH) were purchased from Panreac (Barcelona, Spain). Ethanol, methanol, 

hydrochloric acid, sodium chloride (special grade), sodium carbonate anhydrous 

(Na2CO3), trichloroacetic acid and sodium sulphate proceeded from Baker 

(Deventer, The Netherlands). L(+)-ascorbic acid was obtained from Merck 

(Darmstadt, Germany). 

PEF, HVED and USN Treatments 

Electrical treatments in PEF and HVED modes were done using a high voltage 

pulsed power 40 kV–10 kA generator (Tomsk Polytechnic University, Tomsk, 
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Russia). The initial temperature before PEF or HVED treatments was ≈20 °C and 

the temperature elevation after electrical treatment never exceeded 35 °C. 

Beverage temperature was controlled by a K-type thermocouple (±0.1 ºC) 

connected to a data logger thermometer Centre 305/306 (JDC Electronic SA, 

Yverdon-les-Bains, Switzerland). PEF treatments were carried out in a cylindrical 

batch treatment chamber between two plate electrodes of 9.5 cm2. The distance 

between electrodes was fixed to 2 cm with a corresponding electric field strength, 

E, of 25 kV/cm. Total treatment duration, tt (tt=n × ti), was changed by increasing 

the number of pulses, n, from 50 to 400. Time delay between sequential pulses 

was of t=2 s. Exponential decay of voltage, U exp (-t/ti), with effective decay 

time, ti10.00.1 s, was observed. Total specific energy input (W, kJ/kg) was 

chosen as a parameter to describe the treatment intensity. Two energy inputs 

were applied, which corresponded to samples PEF1 (32 kJ/kg) and PEF2 (256 

kJ/kg). The energy input (W) of PEF treatment was calculated as shown in Eq. (1). 

𝑊 =
∑ 𝑊𝑃𝐸𝐹

𝑛
𝑖=1

𝑚
      (1) 

where WPEF is the pulse energy (kJ/pulse), n is the number of pulses and m is 

the product mass (kg). WPEF was determined from Eq. (2). 

𝑊𝑃𝐸𝐹 = ∫ 𝑈𝐼𝑑𝑡
𝑡

0                           (2) 

where U is the voltage (V) and I is the current strength (A).  

For HVED treatments, the 1-L treatment chamber (inner diameter=10 cm, wall 

thickness=2.5 cm) was equipped with needle-plate geometry electrodes. The 

diameters of stainless steel needle and the grounded disk electrodes were of 10 

and 35 mm, respectively. The distance between the electrodes was of 5 mm. 

Energy was stored in a set of low-inductance capacitors, which were charged by 

the high-voltage power supply. Electrical discharges were generated by electrical 

breakdown in water with a peak pulse voltage (U) of 40 kV. Damped oscillations 

were thus obtained over a total duration ti of ≈10 μs. The voltage (Ross VD45-8.3-

A-K-A, Ross Engineering Corp., Campbell, California, USA) and current (Pearson 

3972, Pearson Electronics Inc., Campbell, California, USA) measurement units 
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were connected with a 108 Hz sampling system via an oscilloscope (Tektronix 

TDS1002, Beaverton, Oregon, USA). The software HPVEE 4.01 (Hewlett-Packard, 

Palo Alto, USA) was used for data acquisition. The energy input of HVED 

treatment was calculated as shown in Eqs. 1 and 2, where WPEF was substituted by 

WHVED. Total treatment duration (tt=n × ti) was changed by increasing the discharge 

number n from 50 to 400. The discharge pulse duration tHVED was approximately 

10 μs. The discharges were applied with a repetition rate of 0.5 Hz, which was 

imposed by the generator. In order to compare HVED treatments with PEF, 

equivalent energy inputs were used, obtaining sample HVED1 (32 kJ/kg) and 

HVED2 (256 kJ/kg). 

For ultrasounds (USN) treatments, an ultrasonic processor UP 400S (Hielscher 

GmbH, Germany) which operates at 400 W and a frequency of 24 kHz was used. 

Amplitude, which could be adjusted from 20% to 100%, was set at 100%. The 

instrument can be used in cycle mode (0 ∼ 1), where a cycle setting of 1 means 

that the solution is sonicated without interruption whereas with a cycle setting, 

for example, of 0.5 the solution is sonicated for 0.5 s and then sonication stops for 

0.5 s. Hence, in cycle mode, the ratio of sound-emission time to cyclic pause time 

can be adjusted continuously from 0% to 100% per second. In the present study, 

cycle was fixed at 1. The titanium sonotrode H14 with a diameter of 14 mm and a 

length of 100 mm was used to transmit ultrasound inside the sample. The sample 

was submerged in a cooling bath to avoid the heating induced by USN irradiation. 

The energy input of USN treatment was calculated as follows (Eq. (3)): 

𝑊𝑈𝑆𝑁 =
𝑃𝑂𝑊𝐸𝑅 𝑥 𝑡𝑈𝑆𝑁

𝑚                                (3) 

where tUSN is the total treatment duration (s), m is the product mass (kg) and 

the generator power (400 J/s). In order to obtain equivalent energy inputs to the 

other treatments applied, total treatment duration was of 20 and 160 s, obtaining 

USN1 (32kJ/kg) and USN2 (256 kJ/kg) samples. 

Polarographic Determination of Ascorbic Acid 

The beverage (5 mL) was diluted to 25 ml with the extraction solution (oxalic 

acid 1%, w/v, trichloroacetic acid 2%, w/v, sodium sulphate 1%, w/v). After 
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constant shaking at 1000 rpm during 30 s in a vortex (VV3, VWR International, 

Spain), the solution was filtered through a folded filter (Whatman® No. 1). Oxalic 

acid (9.5 ml) 1% (w/v) and 2 ml of acetic acid/ sodium acetate 2 M buffer (pH=4.8) 

were added to an aliquot of 0.5 ml of filtrate and the solution was transferred to 

the polarographic cell. A Metrohm 746 VA Trace Analyser (Herisau, Switzerland) 

equipped with a Metrohm 747 VA stand was used for the polarographic 

determination (Carbonell-Capella et al. 2013). 

Total Carotenoids 

Extraction of total carotenoids was carried out in accordance with Lee and 

Castle (2001). 5 mL of extracting solvent (hexane/acetone/ethanol, 50:25:25, v/v) 

was added to an aliquot of sample (2 mL) and centrifuged for 5 min at 3220 g at 5 

ºC. The top layer of hexane containing the colour was recovered and transferred 

to a 25-mL volumetric flask. The volume of recovered hexane was then adjusted 

to 25 mL with hexane. Total carotenoid determination was carried out on an 

aliquot of the hexane extract by measuring the absorbance at 450 nm. Total 

carotenoids were calculated according to Ritter and Purcell (1981) using an 

extinction coefficient of β-carotene, E1%=2505.  

Total Phenolic Compounds 

Total phenols were determined according to the method reported by Georgé 

et al. (2005), with some modifications. Briefly, 50 mL of a mixture of 

acetone/water (7/3, v/v) were added to 10 mL of sample and centrifuged for 30 

min at 3220 g. Mixture supernatants were then recovered by filtration (Whatman® 

No. 2, England) and constituted the raw extracts (REs). REs (2 mL) were settled on 

an Oasis cartridge (Waters). Interfering water-soluble components (reducing 

sugars, ascorbic acid) were recovered with 2 x 2 mL of distilled water. The 

recovered volume of the washing extract (WE) was carefully measured. In order to 

eliminate vitamin C, heating was carried out on the washing extract (3 mL) for 2 h 

at 85 °C and led to the heated washing extract (HWE). All extracts (RE, WE, and 

HWE) were submitted to the Folin-Ciocalteu method, adapted and optimised 

(Barba et al. 2014). Gallic acid calibration standards with concentrations of 0, 100, 
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300, 500, 700 and 1000 ppm were prepared and 0.1 mL was transferred to 

borosilicate tubes. 3 mL of 2% (w/v) sodium carbonate solution and 100 μL of 

Folin–Ciocalteau reagent (1:1, v/v) were added to 100 μL of all gallic acid standard 

and sample tubes. The mixture was incubated for 1 h at room temperature. 

Absorbance was measured at 765 nm. 

Total Anthocyanins 

Total anthocyanins were determined using a modified method of Mazza et al. 

(1999). A 10-fold diluted sample of 100 μL was mixed with 1700 μL of distilled 

water and 200 µL of 5% (v/v) HCl. The sample was hold at room temperature for 

20 min before measuring the absorbance at 520 nm. Calculations of total 

anthocyanins were based on cyanidin-3-glucoside (molar absorptivity 26900 

L/mol·cm). All spectrophotometric analyses were performed using a UV–visible 

spectrophotometer Lambda 20 (Perkin-Elmer, Überlingen, Germany). 

Total Antioxidant Capacity 

TEAC assay: TEAC (Trolox equivalent antioxidant capacity) was measured 

using the method of Re et al. (1999) based on application of ABTS decolourisation 

Assay (Sigma-Aldrich, Steinheim, Germany). The ABTS radical (ABTS•+) was 

generated using 440 μL of potassium persulfate (140 mM). The solution was 

diluted with ethanol (Baker, Deventer, The Netherlands) until an absorbance of 

0.70 was reached at 734 nm. Once the radical was formed, 2 mL of ABTS•+ was 

mixed in a vortex (VV3, VWR International, Spain) for 30 s with 100 μL of extract 

and the sample was incubated for 60 min at 20 ºC. Absorbance, A, was measured 

at the wavelength of 734 nm (Carbonell-Capella et al. 2013) and percentage of 

inhibition (% I) was calculated using the following formula (Eq. (4)): 

% I = (
1−final absorbance

Initial absorbance
) x100    (4) 

Results were expressed as Trolox-equivalent values (mM TE) using a standard 

calibration curve of Trolox in the range of 50-250 µM. 

ORAC assay: The oxygen radical absorbance capacity (ORAC) assay used, with 

fluorescein as the “fluorescent probe”, was that described by Barba et al. (2014). 
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The automated ORAC assay was carried out on a Wallac 1420 VICTOR2 multilabel 

counter (Perkin-Elmer, USA) with fluorescence filters, for an excitation wavelength 

of 485 nm and an emission wavelength of 535 nm. The measurements were made 

in plates with 96 white flat bottom wells (Sero-Wel, BibbySterilin Ltd., Stone, UK). 

The reaction was performed at 37 °C, as the reaction was started by thermal 

decomposition of AAPH in 75 mM phosphate buffer (pH 7.0). Calculations were 

done using Eq. (5) and results were expressed as mM TE (mM Trolox Equivalent): 

ORAC (mM TE) =
CTROLOX x (AUCSAMPLE−AUCWHITE)x K

(AUCTROLOX−AUCWHITE)x1000
      (5) 

where CTROLOX is 20 µM, AUC is the area under the curve and K is the dilution 

factor.     

DPPH assay: Antioxidant capacity was also measured following the method 

described by Brand-Williams, Cuvelier, & Berset (1995). The reaction was begun 

by adding 50 μL of a suitable dilution of sample to 1.45 mL of DPPH (2,2-diphenyl-

1-picrylhydrazyl) coloured radical. The sample was incubated for 30 min at room 

temperature (T=20 ºC). Absorbance was measured at the wavelength of 515 nm 

and percentage of inhibition (% I) was calculated using the following formula (Eq. 

(6)): 

% I = (
1−final absorbance

Initial absorbance
) x100        (6) 

Results were expressed as Trolox-equivalent values (mM TE) using a standard 

calibration curve of Trolox in the range of 0.05-1 mM. 

Statistical Analysis 

All determinations were performed in triplicate. One-way analysis of variance 

and Pearson test were used for statistical analysis of the data using Statgraphics® 

Centurion XVI (Statpoint Technologies Inc., USA) (differences at p<0.05 were 

considered significant). A principal component analysis based on the correlation 

matrix was performed to assess differences among the different treatments. 

Response variables were autoscaled prior to chemometrics application, in 

accordance to Granato et al. (2015).  
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Results and Discussion 

Effect of PEF, HVED and USN Treatment on Bioactive Compounds 

To establish the effect of the non-thermal technologies of PEF, HVED and 

USN, two equivalent energy inputs (32 and 256 kJ/kg) were applied to a fruit juice 

blend (papaya and mango) sweetened with Stevia rebaudiana Bertoni, and in all 

cases results were compared with the untreated beverage. Ascorbic acid, total 

carotenoids, total phenolic compounds, anthocyanins and total antioxidant 

capacity measured by TEAC, ORAC and DPPH method were determined. 

Table 1. Bioactive compounds and antioxidant capacity of untreated fruit juice 

blend sweetened with Stevia rebaudiana. 

Parameters Fruit juice-stevia blend 

Ascorbic acid (mg/100 mL) 18.5±0.4 

Total carotenoids (µg/100 mL) 676.1±3.5 

Total phenolics (mg/L) 2685.6±18.4 

Total Anthocyanins (mg/L) 11.8±1.4 

TEAC (mM TE) 23.9±0.9 

ORAC (mM TE) 30.8±0.9 

DPPH (mM TE) 24.3±0.5 

The ascorbic acid content in the fruit juice blend sweetened with stevia was 

18.5±0.4 mg/100 mL (Table 1). These results are in close agreement with values of 

ascorbic acid obtained by Murillo et al. (2012) in mango and papaya. Immediately 

after treatment by PEF, HVED and USN, ascorbic acid retention was of 17-91%. 

USN was the processing technique that better retained the ascorbic acid content 

of the fruit juice-stevia blend (84-91%), followed by PEF (80-83%). However, after 

HVED treatment, ascorbic acid retention decreased to 17-23%. This fact can be 

attributed to the formation of gaseous cavitation bubbles, as well as the emission 

of shock waves of high pressure and of high intensity UV light when electrical 

discharges are applied in liquids (Boussetta and Vorobiev 2014). In any case, 

higher energy inputs caused higher ascorbic acid losses, independently of the 

treatment applied, only significant in the case of HVED treatment (Figure 1), which 
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may be caused by the increase of temperature at high energy levels, causing the 

degradation of this thermolabile vitamin. Nevertheless, our results were in 

accordance to those found by other previous studies which have reported the 

feasibility of USN and PEF to preserve ascorbic acid when they are used for liquid 

food preservation (Barba et al. 2012; Tiwari et al. 2008a; Tiwari et al. 2008b; 

Zulueta et al. 2013).  

 

 Ascorbic acid of a fruit juice blend sweetened with Stevia rebaudiana Figure 1.

treated by PEF, HVED and USN processing. a–d Different letters indicate a 

significant difference in function of the samples analysed (p<0.05). 

Regarding total carotenoids, untreated sample exhibited a yield of 676.1±3.5 

µg/100 mL, higher than in a previous study of a mango, papaya and orange 

beverage sweetened with stevia (Carbonell-Capella et al. 2013). After PEF1 

processing, total carotenoids were significantly higher (p<0.05), with values of 

800.9±3.5 µg/100 mL (Figure 2). This may be due to carotenoids being released, or 

leaching of other minerals or solid substances into the juice as a result of the 

pulsed electric fields (Roohinejad et al. 2014).  
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 Total carotenoids of a fruit juice blend sweetened with Stevia Figure 2.

rebaudiana treated by PEF, HVED and USN processing. a–d Different letters indicate 

a significant difference in function of the samples analysed (p<0.05). 

In this line, Torregrosa et al. (2005) found that the application of various PEF 

treatments in orange–carrot juice produces a significant increase in carotenoid 

concentrations as treatment time increases. Moreover, Zulueta et al. (2010) also 

found a slight increase in the concentration of the extracted carotenoids when 

they applied PEF (25 kV/cm, 80 µs) in an orange juice-milk beverage. However, 

after PEF2 treatment at an energy input of 256 kJ/kg, total carotenoid diminished 

significantly (p<0.05).  

Behaviour of carotenoids after pulsed electric treatments is complex and 

although other authors have also seen that at higher field intensities, carotenoid 

content is reduced, this is not yet well understood. For instance, Torregrosa et al. 

(2005) applied PEF treatment at different field intensities (25, 30, 35 and 40 

kV/cm) and only with electric fields of 25 and 30 kV/cm, vitamin A content was 

higher than in the pasteurised juice. When using HVED technology, total 

carotenoids decreased, possibly because of the formation of reactive species 

generated during the treatment. In this case, HVED2 treatment led to the beverage 

with the lowest content in total carotenoids (46%). Boussetta et al. (2011) also 

observed a negative effect of HVED in antioxidant compounds above an energy 
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value of 80 kJ/kg. Carotenoids content after ultrasounds processing was of 429.1-

486.5 µg/100 mL. Differently from other technologies, higher treatment time of 

ultrasounds led to a higher carotenoid content. A possible explanation for this 

increase may be: 1) the ability of ultrasounds to enhance disruption of cell walls, 

which might have facilitated the release of bound carotenoid contents or 2) the 

rupture of carotenoid-proteins binding, thus facilitating the extractability of 

carotenoids. These results are in close agreement to those obtained by Abid et al. 

(2014), who found a significant improvement in carotenoid content of USN-

treated apple juices and Rawson et al. (2011b), who found a slight increase in 

lycopene content in USN-treated watermelon juice at low amplitude level. 

The contents of total phenolic compounds (TPC) in the untreated fruit juice-

stevia blend were 2685.6±3.5 mg/L, in accord with literature data in an exotic 

fruit-oat beverage with stevia (Carbonell-Capella et al. 2015). Phenolic 

concentration after PEF2 and HVED2 treatments were significantly higher than that 

of control (Figure 3), which indicated that extractability of TPC may be increased 

by the release of solutes into the solvent because of the irreversible pores in cell 

membranes caused by the use of electrical fields. 

 

 Total phenolic compounds of a fruit juice blend sweetened with Stevia Figure 3.

rebaudiana treated by PEF, HVED and USN processing. a–d Different letters indicate 

a significant difference in function of the samples analysed (p<0.05). 
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In support to these results, Hsieh and Ko (2008) obtained an increase in the 

amount of TPC when carrot juice was treated at 100 kV/m with high-voltage 

electrostatic field. On the other hand, although there is no clear trend regarding 

TPC behaviour after PEF, Morales-de la Peña et al. (2010) demonstrated the ability 

of PEF to increase the concentration of TPC in fruit juice–soymilk beverages (35 

kV/cm, 800-1400 μs). These authors attributed this phenomenon to biochemical 

reactions during the PEF processing, which led to the formation of new phenolic 

compounds; significant effects on cell membranes or in phenolic complexes with 

other compounds, releasing some free phenolic compounds after PEF processing 

and a possible inactivation of PPO after PEF treatment, preventing further loss of 

phenolic compounds. Nevertheless, after PEF1 and HVED1 treatments, non-

significant changes (p>0.05) in total phenolic compounds were found, confirming 

results obtained by Chen et al. (2014) in blueberry juice. After the fruit juice blend 

sweetened with stevia was treated by USN technology, non-significant differences 

were obtained when compared with untreated fruit juice-stevia, independently of 

the energy input applied. Results are in accord with those obtained by Martínez-

Flores et al. (2014), who did not find significant differences in phenolic 

compounds between control and thermo-sonicated carrot juice. 

In the untreated fruit juice-stevia blend, the concentration of total 

anthocyanins was 11.8±1.4 mg/L, which can be compared with previous results in 

an exotic fruit-oat beverage sweetened with stevia (Carbonell-Capella et al. 2015). 

A high retention of anthocyanin content was obtained immediately after PEF, 

HVED and USN treatments (94-110%). Total anthocyanins increased after applying 

PEF, HVED and USN treatments at an energy input of 256 kJ/kg with respect to 

fruit juice-stevia blends treated at an energy input of 32 kJ/kg, although 

differences were not significant (p>0.05) (Figure 4). Results indicate a high stability 

of anthocyanins to processing conditions. This was also observed in a study 

carried out by Guo et al. (2014), where PEF processed and unprocessed 

pomegranate juice had similar concentrations of total anthocyanins. Furthermore, 

Pérez-Ramírez et al. (2015) found that stevia addition decreased the degradation 

rate of anthocyanins in a roselle beverage. By contrast, Barba et al. (2012) did 

observe a statistically significant increase of total anthocyanin immediately after 
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blueberry juice was treated with pulsed electric fields at 36 kV/cm during 100 µs. 

Odriozola-Serrano et al. (2009) also reported greater anthocyanin retention in 

strawberry juice during PEF treatment in bipolar pulses mode compared to 

monopolar mode, showing that anthocyanin retention during PEF processing is 

influenced by polarity, treatment time and frequency employed. Meanwhile, total 

anthocyanins did not undergo any change when apple juice was sonicated at 

different treatment times in the study carried out by Abid et al. (2014). Similarly, 

significant retention of anthocyanin content (>94%) was observed by Tiwari et al. 

(2009) in blackberry juice at the same amplitude conditions of our study although 

with a treatment duration of 10 min, indicating stability of anthocyanin during 

sonication.  

 
 Total anthocyanins of a fruit juice blend sweetened with Stevia Figure 4.

rebaudiana treated by PEF, HVED and USN processing. a–c Different letters indicate 

a significant difference in function of the samples analysed (p<0.05). 

Effect of PEF, HVED and USN Treatment on Total Antioxidant Capacity 

Total antioxidant capacity (TAC) measured as TEAC and DPPH values in the 

untreated beverage were 23.9±0.9 mM TE and 24.3±0.5 mM TE, respectively, in 

the range of previous studies in mixture of fruits with stevia (Criado et al. 2014). A 
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good ABTS scavenging was already cited for a fruit juice mixture (mango, papaya 

and orange) sweetened with stevia rebaudiana (Carbonell-Capella et al. 2013).  

Table 2. Effect of PEF, HVED and USN on total antioxidant capacity (mM TE) of a 

fruit juice blend sweetened with Stevia rebaudiana. 

 TEAC  ORAC  DPPH  

Untreated 23.92±0.95a
 30.78±0.93ab

 24.27±0.55ab
 

PEF1 23.64±0.18a
 37.44±1.90c

 24.35±0.40ab
 

PEF2 25.63±0.33ab
 36.79±1.45c

 25.55±0.75ac
 

HVED1 23.73±1.67a
 29.06±1.32a

 24.45±0.75ab
 

HVED2 26.42±0.55b
 31.65±1.28b

 26.06±0.03c 

USN1 24.92±0.31ab
 35.82±0.12c

 23.30±0.75b 

USN2 25.53±0.67ab
 37.12±0.14c

 24.72±0.42abc
 

PEF: pulsed electric fields. HVED: high voltage electrical discharges. 
USN: ultrasounds. TEAC: trolox equivalent antioxidant capacity. ORAC: 
oxygen radical antioxidant capacity. DPPH: 2,2-diphenyl-1-
picrylhydrazyl. 1: 32 kJ/kg. 2: 256 kJ/kg. a–c Different letters in the same 
column indicate a significant difference in function of the samples 
analysed (p<0.05) 

As shown in Table 2, the increase in the ABTS and DPPH scavenging capacity 

of the fruit juice-stevia blend was only significant in HVED treated samples. This 

may be due to the ability of these techniques to enhance disruption of cell walls 

and thus facilitate the release of antioxidant compounds, increasing total 

antioxidant capacity measured with these methods. A positive impact of HVED on 

TEAC and DPPH values was observed in fruit juices-stevia blends treated at an 

energy input of 256 kJ/kg, while non-significant changes (p>0.05) were found 

immediately after PEF and USN treatment with regard to the control sample. 

Grimi et al. (2014) observed that HVED provided a more powerful disintegration 

of Nannochloropsis sp. microalgae suspensions than application of PEF, while 

Rajha et al. (2014) obtained that HVED lead to higher cell damage than PEF and 

USN for the same energy input due to the cavitation phenomena and pressure 

shock waves induced by HVED. Consequently, the beverage treated by HVED2 

would be better homogenised, which could explain the higher TAC values 

obtained. However, its applications in the food and pharmaceutical oriented 
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industry can be reduced because of possible contamination of the treated product 

by chemical products of electrolysis, free reactive radicals, etc. (Sarkis et al. 2015). 

In accordance with the present study, TEAC values were not significantly modified 

in PEF-treated orange juice-milk beverage in the research carried out by Zulueta 

et al. (2013). Moreover, Morales-de la Peña et al. (2010), immediately after PEF 

processing of fruit juice–soymilk beverage, did not observe significant changes in 

antioxidant capacity (TEAC and DPPH, respectively) in comparison with the 

untreated beverage. By contrast, Martínez-Flores et al. (2014) obtained an 

increase in the antioxidant capacity measured with DPPH assay due to the effect 

of ultrasound in carrot juice. It is noteworthy that although TEAC and DPPH are 

two different procedures used to measure the free radical-scavenging of food 

products, values obtained in the fruit juice-stevia blend were similar. 

ORAC value in the control fruit juice-stevia blend was 30.8±0.9 mM. This value 

is consistent with previous studies of a fruit juice mixture (papaya, mango and 

orange) sweetened with Stevia rebaudiana (Carbonell-Capella et al. 2013) and 

comparable to the results obtained in different fruit formulations (smoothies, fruit 

purees, concentrates and juices) by Müller et al. (2010). The ANOVA analysis 

confirmed an increase of TAC when the fruit juice-stevia blend was treated by PEF 

and USN (116.4-121.7%), independently of the energy input and time treatment, 

in comparison with the untreated fruit juice-stevia blend. This increase in TAC may 

be related to an increased extractability of some of the antioxidant components 

following PEF and USN processing. HVED treatment did not result in an increase of 

ORAC values in comparison with the untreated fruit juice-stevia blend, 

independently of the energy input applied. The different TAC levels obtained from 

the assays may reflect a relative difference in the ability of antioxidant 

compounds in the beverage to quench aqueous peroxyl radicals and to reduce 

ABTS and DPPH free radical in in vitro systems (Zulueta et al. 2009).  

When the possible correlation (Pearson test) between the various parameters 

that contribute to antioxidant capacity (ascorbic acid, total carotenoids, total 

phenolic compounds and total anthocyanins) was studied for the different non-

thermally treated fruit juice-stevia blends, a positive correlation between total 

carotenoids and total phenolic compounds with TEAC values (p=0.0496 and 
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p=0.0172, respectively) and between anthocyanins and DPPH values (p=0.0006) 

was observed, reflecting the importance of using different methods to measure 

total antioxidant capacity in foodstuff as different bioactive compounds may be 

better represented by one or another assay. In this line, Bishi et al. (2015) found a 

significant correlation between phenol content and antioxidant capacity 

measured with TEAC assay in forty-one Indian peanut cultivars. In addition, Paz et 

al. (2014) observed a positive correlation between total phenolic compounds and 

antioxidant capacity measured with DPPH method in mango pulp. Moreover, in 

model juices prepared exclusively with purified plum extract, a high correlation 

between total anthocyanins and TEAC was found (Hernández-Herrero and Frutos 

2015). 

Principal Component Analysis (PCA) 

 
 PCA plot for bioactive compounds and antioxidant capacity in Figure 5.

untreated and treated fruit juice blend sweetened with Stevia rebaudiana. PEF: 
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pulsed electric fields. HVED: high voltage electrical discharges. USN: ultrasounds. 

1: 32 kJ/kg. 2: 256 kJ/kg. 

In a way of comparing the different treatments applied to the fruit juice-stevia 

beverage, a principal component analysis was effectuated. The biplot for the first 

two principal components (accounting for 78% of the total variance, with an 

eigenvalue>1) is shown in Figure 5. PEF1 and PEF2 samples are separated from the 

others, whereas HVED1 and USN1 treated samples, and HVED2 and USN2 treated 

samples are clustered together. The PCA allowed discovering which parameters 

seemed to drive the whole distribution. Carotenoids and ascorbic acid seemed to 

be the key elements influencing the bioactive compound and antioxidant capacity 

distribution. Furthermore, PCA indicated that ORAC might also be an important 

component for antioxidant interactions, as it has been well-known (Zulueta et al. 

2009).  

 
 Ascorbic acid (AA), total carotenoids (TC) and ORAC values of Figure 6.

untreated and treated fruit juice blend sweetened with Stevia rebaudiana. PEF: 

pulsed electric fields. HVED: high voltage electrical discharges. USN: ultrasounds. 

1: 32 kJ/kg. 2: 256 kJ/kg. 

Focusing on these three parameters (total carotenoids, ascorbic acid and 

ORAC values), PEF treated fruit juice-stevia beverage at an energy input of 32 

kJ/kg was the treatment that better enhanced TC, AA and ORAC values, clearly 

separated from the rest of the samples and from untreated beverage and 
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followed by PEF treatment at an energy input of 256 kJ/kg (Figure 6). 

Consequently, it could be concluded that of all treatments, PEF technology 

resulted in the highest retention of bioactive compounds and antioxidant capacity 

with regard to the quality of the fruit juice-stevia beverage, always taking into 

account that the use of one or other technology will highly depend on which 

compound is pretended to be enhanced. 

Conclusions 

The non-thermal technologies discussed in the present study (PEF, HVED and 

USN) are processing technologies which can enhance bioactive compound 

retention and antioxidant capacity in the analysed fruit juice (papaya and mango)-

stevia blend. A high recovery of ascorbic acid, total carotenoids and ORAC values 

was obtained after PEF treatments. Nevertheless, HVED and USN processing 

technologies were also found to be useful for the retention of certain bioactive 

compounds. The results obtained in the present work may be used by food 

producers in order to obtain new functional foods rich in bioactive compounds 

and antioxidant capacity. However, further studies evaluating the impact of PEF, 

HVED and USN technology on microbiological safety, sensorial parameters and 

storage stability of liquid foods are required. 
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ABSTRACT 

The impact of apple pretreatment by pulsed electric field (PEF) on juice 

extraction using the freezing-assisted pressing was studied. Apple discs were PEF 

pretreated at electric field strength of E=800 V/cm and then air blast frozen inside 

the freezer (-40 ºC). Then, pressing experiments in a laboratory-pressing chamber 

(2-5 bars) were started at subzero temperature (-5 °C). Time evolution of juice 

yield and its nutritional qualities were compared for PEF and untreated apple 

samples. High improvements of juice yield were obtained for freeze-thawed (FT) 

and PEF+FT samples. The combination of PEF + pressing (5 bar) at subzero 

temperature gave optimum results for juice extraction with high levels of 

carbohydrates, and antioxidant bioactive compounds. At fixed value of extraction 

yield, Y, PEF pretreatment improved nutritional parameters. E.g., at Y=0.6, an 

increase in °Brix (by ≈1.27), carbohydrates (by ≈1.42), total phenolic compounds 

(by ≈1.16), flavonoids (by ≈1.09) and antioxidant capacity (by ≈1.29) was observed 

after PEF pretreatment.  

Industrial Relevance: Pressing constitutes one of the most commonly used 

technologies at industrial scale to obtain fruit juices. However, during the pressing 

some undesirable chemical, physical and biological changes may occur in juices, 

thus reducing their nutritional and sensorial properties. For instance, the use of 

freezing-assisted pressing is a promising technique for the production of juice 

concentrates rich in sugars and other solids as the low temperature operation 

prevents undesirable modifications. But this method is rather expensive and 

requires strong control of the quality of “ice” wines, their sensory and 

compositional profiles. Thus, there is an increased search for obtaining new 

efficient methodologies for producing high quality juices. In this line, PEF-assisted 

pressing has been shown as a useful technology to increase juice yield. Therefore, 

the combination of PEF-assisted “ice” juice extraction by pressing of fruits at 

subzero temperatures may be a useful tool to improve the extraction yield of 

juices, thus improving their nutritional, physicochemical and sensorial properties. 

Keywords: “Ice” juice, Apple, Pulsed electric fields, Freezing-assisted pressing. 
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1. Introduction 

A high juice yield is desirable in terms of economics, but organoleptic, 

nutritional properties and beneficial health effects of juices, partly attributed to 

the presence of antioxidants, especially phenolic compounds are also very 

important (Krawitzky et al., 2014). In this line, the potential of several juice 

extraction methods to obtain high juice yields with improved nutritional 

properties has been evaluated by both food researchers and food industry, 

concluding that the quality of juices is highly dependent of the production 

process. 

Moreover, it has been observed that low-temperature assisted processing of 

foods (e.g., freeze concentration, pressing, etc.) is rather preferable in application 

for products with very delicate flavors (fruit juices, coffee, tea, and alcoholic 

beverages) (Deshpande, Cheryan, Sathe, & Salunkhe, 1984; Sánchez, Ruiz, Auleda, 

Hernández, & Raventós, 2009).  

Freeze concentration is considered as a method for producing high quality 

juices. This method is based on a selective separation of water in the form of ice 

from the frozen solution. Freeze concentration has been applied in the production 

of concentrated “ice” juices from apple (Bayindirli, Özilgen, & Ungan, 1993; 

Hernández, Raventós, Auleda, & Ibarz, 2009; Olowofoyeku, Gil, & Kramer, 1980), 

pear (Hernández et al., 2009; Miyawaki, Kato, & Watabe, 2012; Tobitsuka, Ajiki, 

Nouchi, & Miyawaki, 2010), blueberry (Petzold, Moreno, Lastra, Rojas, & Orellana, 

2015), sugarcane (Rane & Jabade, 2005; Sahasrabudhe, Desai, & Jabade, 2012), 

pineapple (Bonilla-Zavaleta, Vernon-Carter, & Beristain, 2006; Petzold et al., 

2015), orange (Fang, Chen, Tang, & Wang, 2008; Sánchez, Ruiz, Raventós, Auleda, 

& Hernández, 2010), pomegranate (Khajehei, Niakousari, Eskandari, & Sarshar, 

2015), tomato (Liu, Miyawaki, & Hayakawa, 1999; Miyawaki et al., 2012) 

concentration of grape must (Hernández, Raventós, Auleda, & Ibarz, 2010), fresh 

tea juice (Feng, Tang, & Ning, 2006) and preparation of coffee extract 

(Gunathilake, Shimmura, Dozen, & Miyawaki, 2014). 

Among techniques of juice production, pressing is one of the most used at 

industrial scale (Markowski, Baron, Le Quéré, & Płocharski, 2015). Freezing 
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assisted pressing can be also used as a promising technique for the production of 

juice concentrates rich in sugars and other solids (Petzold et al., 2015). 

Concentrated aqueous solutions do not freeze, while pure water does, allowing a 

more concentrated juice product. The low temperature operation in freeze-

concentration prevents undesirable chemical, physical and biological changes that 

may occur in other types of processing. 

This procedure has already been employed in the production of the so-called 

“ice” wine, “ice” cider or “ice” juice by pressing of frozen fruits (Alessandria et al., 

2013; Bowen, 2010; Crandles, Reynolds, Khairallah, & Bowen, 2015; Kirkey & 

Braden, 2014; Motluk, 2003; Musabelliu, 2013). Such extreme processing allows 

the production of smaller amounts of concentrated and sweeter wines, e.g., high 

quality dessert wines. Application of cold pressing is rather popular in those 

countries (e.g., Canada and Germany), where fruit varieties are not harvested 

before the first frosts. However, this processing is rather expensive, risky and 

requires strong control of the quality of “ice” wines, their sensory and 

compositional profiles (Bowen, 2010). E.g., these characteristics may be 

significantly different for British Columbia, Ontario and German ice wines (Cliff, 

Yuksel, Girard, & King, 2002; Nurgel, Pickering, & Inglis, 2004). However, 

application of low-temperature assisted pressing is still very limited (Petzold et al., 

2015). 

The extraction efficiency by pressing may be noticeably enhanced using 

pulsed electric fields (PEF) pre-treatment (Lebovka & Vorobiev, 2010). Different 

examples of PEF-assisted dehydration of fruit and vegetable tissues have already 

been demonstrated (Donsi, Ferrari, & Pataro, 2010; Vorobiev & Lebovka, 2011). 

These techniques allow avoidance of undesirable changes typical of other 

techniques, such as thermal, chemical and enzymatic ones (Donsi, Ferrari, 

Maresca, & Pataro, 2011; Jaeger, Reineke, Schoessler, & Knorr, 2012; Jaeger, 

Schulz, Lu, & Knorr, 2012; Odriozola-Serrano, Aguiló-Aguayo, Soliva-Fortuny, & 

Martín-Belloso, 2013; Raso & Heinz, 2006) 

The positive effects of PEF pre-treatment on drying, freezing, freeze-drying 

processes, freezing tolerance and texture of biomaterials have been 

demonstrated (Ben Ammar, Lanoiselle, Lebovka, Van Hecke, & Vorobiev, 2010; 
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Jalte, Lanoiselle, Lebovka, & Vorobiev, 2009; Parniakov, Lebovka, Bals, & 

Vorobiev, 2015; Phoon, Galindo, Vicente, & Dejmek, 2008; Shayanfar, Chauhan, 

Toepfl, & Heinz, 2013, 2014; Shynkaryk, Lebovka, & Vorobiev, 2008; Wiktor, 

Schulz, Voigt, Witrowa-Rajchert, & Knorr, 2015). However, the effect of PEF pre-

treatment on freezing assisted pressing and in the production of “ice” juice has 

not yet been studied. 

This manuscript discusses the PEF-assisted “ice” juice extraction by pressing of 

apple at subzero temperatures. Apples were initially pretreated by PEF to a high 

level of electroporation, frozen and pressed during their thawing at 2-5 bars. 

Extraction yield and nutritional qualities of the extracted “ice” juice were 

analysed. 

2. Material and methods 

2.1. Raw material and sample preparation 

Apples (Malus domestica var. Jonagold) were purchased at the local 

supermarket and stored at 4 ºC until analysis. Wet basis moisture content was 

measured by drying 20 g of the fresh apple tissue at 105 °C to constant weight. It 

was found between 82-85% w. b. Apple discs (d=50 mm and h=5 mm) were 

prepared using a vegetable cutter (Robot Cupe CL 50, Montceau-en-Bourgogne-

Cedex, France).  

2.2. PEF pretreatment 

PEF pretreatment was carried out using a pulse generator, 400 V- 38 A 

(Service Electronique UTC, Compiegne, France). Apple sample was placed in the 

PEF-treatment cell between two electrodes (Figure 1). Electrical treatment cell 

consisted of a Teflon cylindrical tube (Atelier Genie des Procédés Industriels, UTC, 

Compiegne, France) with ≈110 mm inner diameter and an electrode (stainless 

steel 316 L) at the bottom. The apple disc-shaped sample was placed inside the 

cell on the bottom electrode and covered with fresh apple juice. After that, the 

second electrode was put on top of the samples. The distance between the 

electrodes, 5 mm, was determined by the height of the sample. Temperature was 
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controlled by a Teflon-coated thermocouple Thermocoax type 2-AB 25 NN 

(Thermocoax, Suresnes, France) inserted into the geometrical centre of the 

sample with a temperature measurement precision of ±0.1 ºC. The PEF generator 

provided bipolar pulses of near-rectangular shape with an electric field of E=800 

V/cm and series of N=10 were applied. Each separate series consisted of n=10 

pulses with pulse duration ti=100 µs, distance between pulses Δt=1000 µs and 

pause Δtt=10 s after each series. Total time of PEF treatment was calculated as 

tp=nNti. The chosen protocol of successive trains with long pause after each train 

allowed a fine control of the plant tissue permeabilisation without any significant 

temperature elevation (ΔT≤3 °C) during PEF treatment. These conditions were 

chosen according to a previous study (Parniakov et al., 2015) where a high level of 

tissue electroporation (conductivity disintegration index Z was ≈0.98) was 

obtained. Electrical conductivity of the sample was measured during the pause 

period Δtt between two consecutive series of pulses. All the output data (current, 

voltage, electrical conductivity and temperature) were collected using a data 

logger and special software adapted by Service Electronique UTC.  

 

 Schematic presentation of experimental procedures including PEF Figure 1.

pretreatment, freezing, and pressing-thawing experiments. 

2.3. Freezing 

Apple samples were frozen in an ultra-low-temperature air-blast freezer MDF-

U2086S (Sanyo, Gunma, Japan), supplied with a modular-type temperature 

controller SR Mini System (TC Ltd., Dardilly, France) and the software Spec-View 

Plus (SpecView Corporation, Gig Harbor, USA). Untreated and PEF pretreated 
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samples were placed inside the freezer at –40 ºC with an air velocity of 2 m/s 

controlled by an electronic device VEAT 2.5 A (Air-technic, Firminy, France). 

Sample temperature was measured with a T type thermocouple of 0.5 mm 

diameter (TC, Ltd., Dardilly, France) with an accuracy of ±0.1 ºC that was 

introduced in the geometrical centre of the sample. Initial temperature before 

freezing was uniform and constant at 20 ºC for the whole sample. Total freezing 

time, t, from the beginning of the cooling was 50 minutes, the final temperature 

of the sample was ≈-35 ºC. 

2.4. Pressing-thawing experiments 

Immediately after the end of freezing the apple samples were placed into a 

pressing chamber maintained at 20 ºC. The temperature inside the tissue was 

measured with a Teflon-coated thermocouple Thermocoax type 2-AB 25 NN 

(Thermocoax, Suresnes, France) with precision of ±0.1 ºC. Samples were 

compressed using a laboratory pressing chamber (hemispherical shape with a 

radius of 28 mm) equipped with an elastic diaphragm (Figure 1). The compression 

at 2, 3 and 5 bars was started when the temperature inside the tissue attained –5 

°C and continued for 100 min. The extracted juice was collected and weighted 

continuously by an electronic balance.  

In present experiments the maximum quantity of recovered juice, mm, was 

obtained for long time of pressing of PEF pretreated tissue, t≈5000 s, at P=5 bars. 

Extraction yield, Y, was calculated as 

Y=m/mm (1) 

In order to follow the pressing kinetic, an acquisition computer system was 

used to record the mass of recovered juice m every 5 s.  

2.5. Nutritional characteristics  

Concentration of total soluble matter was measured in accordance to IFU 

methods (IFU, 2001) with a digital refractometer (Atago, USA) at room 

temperature. Results were expressed in °Brix (g of total soluble solid content /100 

g solution). 
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Total carbohydrates concentration, Cc, was determined using the phenol–

sulphuric acid method (Du Bois, Gilles, Hamitton, Reders, & Smith, 1956), with 

some modifications (Parniakov, Lebovka, Van Hecke, & Vorobiev, 2014). 0.4 ml of 

sample were mixed with 0.2 ml of 5% (w/v) phenol solution and 1 ml of 

concentrated sulphuric acid (Sigma-Aldrich, France). Then the reaction mixture 

was kept at 25 °C for 30 min. Absorbance of the mixture was measured at 490 nm 

and the polysaccharide content was calculated using D-glucose (VWR 

International, Belgium) as a standard. Results were expressed in mg of glucose 

equivalent/L of extract. 

Adapted and optimised assay for total polyphenols determination was used 

(Singleton, Orthofer, & Lamuela-Raventos, 1999). Initially, 200 μL of diluted 

extract and 1000 μL of the Folin–Ciocalteau reagent (diluted 10 folds in distilled 

water, w/w) were mixed and left at room temperature for 5 min. Then, 800 μL of 

Na2CO3 solution (7.5 g of Na2CO3 and 100 g of water) were added. The mixture 

was kept for 1 hour at room temperature and absorbance was measured at 750 

nm using a UV–vis spectrophotometer (Milton Roy Company, Spectronic 20 

Genesys, United States). Gallic acid calibration standards with concentrations of 0, 

20, 40, 60, 80, 100 and 120 ppm were prepared and results were expressed as 

milligrams of gallic acid equivalents (GAE) per litre of apple juice (mg GAE/L). 

Total flavonoids content was determined using the method as described in 

Zhishen, Mengcheng, & Jianming (1999). 100 μL of sample were mixed with 

1.088 mL of ethanol (30%, v/v) and 48 μL of sodium nitrite solution (0.5 mol/L). 

After 5 min, 48 μL of aluminium chloride (0.3 mol/L) were added. The mixture was 

stirred and allowed to react for 5 min. Then, 320 μL of sodium hydroxide (1 mol/L) 

were added and absorbance was measured at 510 nm using a UV-Vis 

spectrophotometer (Milton Roy Company, Spectronic 20 Genesys, United States). 

Catechin was used as standard with concentrations in the range of 0-75 µg/L and 

results were expressed as milligrams of catechin equivalents (CTE) per litre of 

apple juice [mg CTE/L]. 

Total antioxidant capacity was measured using the TEAC (Trolox 

Equivalent Antioxidant Capacity) assay according to Carbonell-Capella et al. 

(2015). ABTS radical (ABTS•+) was generated using 440 μL of potassium persulfate 
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(140 mM). The solution was diluted with ethanol until an absorbance of 0.70 was 

reached at 734 nm. Once the radical was formed, 2 mL of ABTS•+ were mixed with 

100 μL of extract and incubated for 60 min at 20 ºC and absorbance was 

measured. 

The browning index (BI) was measured accordingly to (Meydav, Saguy, & 

Kopelman, 1977). For this purpose samples were centrifuged (824 g, 20 min, 20 

ºC) and supernatant was diluted in ethanol (1:1 (v/v)). The mixture was filtered 

using filter paper (Whatman® No. 2, Whatman International Ltd., UK) and 

absorbance was measured at 420 nm. 

2.6. Statistical Analysis 

Each experiment was repeated at least three times. Error bars presented on 

the figures correspond to the standard deviations. One-way analysis of variance 

was used for statistical analysis of the data using the Statgraphics plus (version 

5.1, Statpoint Technologies Inc., Warrenton, VA). Turkey tests were also 

performed on data for all pairwise comparisons of the mean responses to the 

different treatment groups. This test allows determination of treatments which 

are statistically different from the other at a probability level of p=0.05. 

3. Results and discussion 

Figure 2 presents typical examples of temperature evolution inside the apple 

discs during the cooling of untreated and PEF pretreated apples. The temperature 

decrease was initially rather slow. The first crystallisation stage corresponds to a 

phase transformation of water into ice inside the sample (Chevalier, Le Bail, & 

Ghoul, 2000). However, after some time, the temperature began to decrease 

rapidly to the storage value (-40 °C). The second cooling stage is started when the 

most freezable water is converted to ice. The effective freezing time, tf, was 

determined as a crosspoint of tangent lines of freezing and cooling part of T(t) 

curve (Figure 2). 

PEF pretreatment resulted in a significant acceleration of the freezing process. 

E.g., values of tf were ≈1400 s and ≈850 s for untreated and PEF-treated apple 

discs, respectively. Similar effects of PEF-pretreatment were previously reported 
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for potato (Ben Ammar et al., 2010; Jalte et al., 2009) and apple (Parniakov et al., 

2015). The different possible mechanisms of PEF-pretreatment in the increase of 

the freezing rate were earlier discussed (Jalte et al., 2009). In general, the 

resultant faster freezing is desirable, leading to smaller size of formed ice crystals 

and better quality of processed products (Delgado & Sun, 2001). 

 
 Evolution of temperature inside the geometrical centre of the apple Figure 2.

disc during freezing for untreated and PEF treated samples. Here, tf is an effective 

freezing time. 

 
 Evolution of temperature inside the geometrical centre of the apple Figure 3.

tissue during pressing-thawing experiments for untreated (P=0 bars) and PEF 

pretreated (P=2, 3 and 5 bars) apple tissue. The case of P=0 bars corresponds to 

the thawing without applied pressure. Break of the curve T(t) at t=te for P=0 is 

shown. Inset shows transition time, te, versus applied pressure P. 
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Figure 3 presents the temperature evolution inside apple samples during the 

pressing-thawing experiments for PEF pretreated samples at different pressures 

P=0, 2, 3 and 5 bars. The evolution of the temperature can be divided into two 

phases with the break of the curve T(t) at t=te (Figure 3). Transition time, te, 

decreased significantly with increase of the applied pressure P (see inset to Figure 

3).  

Figure 4 presents extraction yield, Y, and concentration of soluble solids in 

local portions of juice, °Brixl, versus extraction time, t, in pressing-thawing 

experiments at different pressures P. Data are presented for PEF pretreated 

apples. Extraction yield, Y, increased with the pressing time, t, and reached a 

maximum level, Ym, after a long time of pressing, t≥2400 s. Values of Ym(P) were 

≈0.6, ≈0.8 and =1 for P=2, 3 and 5 bars, respectively. Note that similar values of 

Ym(P) were also obtained in pressing-thawing experiments with untreated samples 

(data are not presented). However, the rate of juice release for PEF pretreated 

apples was significantly higher compared to untreated ones and the maximum 

level, Ym, for untreated samples was only obtained at t≥6000 s. So, 

electroporation facilitates the rate of juice release during thawing of frozen apple 

tissue, but does not change the amount of juice expressed. It can be speculated 

that this phenomenon reflects the changes in spatial distribution of unfrozen 

content inside the tissue that facilitates the juice flow when pressure is applied. 

The observed behaviour was also in accordance with significant decreasing of the 

transition time, te, with increase of the applied pressure P (see inset to Figure 3). 

Concentration of soluble solids in the first local fractions of apple juice, °Brixl, 

was rather high (Figure 4). During the pressing-thawing experiments, °Brixl value 

reached a maximum at t=tmax. At t≥tmax, values of °Brixl decreased significantly and 

reached approximately the same minimum value, ≈5.9, independently of the 

pressure applied. Initial expression of the most concentrated juice with the 

highest content of sugars and other solids was expected, as it reflects the typical 

process of freezing-assisted pressing. When time is increased, the thawing of the 

ice crystals found inside the apple tissue takes place and consequently, the 

concentration of soluble solids in the expressed juice drops gradually. The 
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observed time evolution of Y(t) and °Brixl(t) (Figure 4) is in qualitative 

correspondence with the temperature evolution presented in Figure 3.  

 
 Extraction yield, Y, and concentration of soluble solids in local portion Figure 4.

of juice, °Brixl, versus extraction time, t, in pressing-thawing experiments at 

different pressures P (2, 3 and 5 bars). Data are presented for PEF pretreated 

apples. 

However, the origin of °Brixl maximum at t=tmax is not completely clear. In the 

applied experimental schemes of freezing and pressing-thawing, the spatial 

distributions of the temperature and concentrations of the different components 

found inside the sample are highly heterogeneous. Freezing is started from the 

sample surface and can result in heterogeneous spatial distributions of both 

segregated ice crystals and unfreezable portions of juice inside the apple sample. 

From the other hand, during pressing-thawing, temperature is highest on the 

surface of the sample and initial portions of juice are expressed from the surface 

layer. Electroporation may have a supplementary effect on the heat and mass 

transfer processes in the sample. That’s why the maximum of °Brixl at t=tmax can 

be the reflection of the above-mentioned heterogeneities in temperature and 

component concentrations. 
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Figure 5 presents the concentration of soluble solids in local portion of juice, 

°Brixl, versus the extraction yield, Y, in pressing-thawing experiments at different 

pressures P. Note that the extraction yield of the most concentrated local portions 

of juice at t=tmax was rather small, Y≈0.1-0.15. Maximum values decreased 

whereas tmax values increased with increase of pressure, P (see inset to Figure 5). 

From a practical point of view, it is interesting to compare the characteristics 

of the total portion of accumulated juice at different values of extraction yield, Y. 

Figure 6 presents the concentration of soluble solids, °Brix, (a) and total phenolic 

compounds, CTPC, (b) versus juice yield, Y, at different pressures P. Data are 

presented for PEF pretreated (filled symbols, dashed lines) and untreated (open 

symbols, solid lines) apple samples. 

Results show that freezing assisted pressing is rather effective at high 

pressure, P=5 bars, and ineffective at small pressure, P=2 bars. At high pressure 

(P=5 bars), final values of ºBrix (Y=1) were ≈12.2 and ≈11.5 for PEF pretreated and 

untreated samples, respectively. However, at small pressure, P=2 bars, final 

values of ºBrix (Y≈0.4) were ≈8.8 for both PEF pretreated and untreated samples. 

This may reflect the capture of more concentrated juice inside the apple sample 

for the given mode of freezing-assisted pressing at P=2 bars.  

In further discussion, we will only evolve the data obtained at the highest 

pressure, P=5 bars. It is remarkable that in PEF-assisted pressing-thawing 

experiments, ºBrix values (Figure 6a) and CTPC (Figure 6b) noticeably exceeded 

those values obtained for untreated apple samples. 

It evidently reflects the impact of electroporation on the freezing-assisted 

pressing. Noticeably, both electroporation and freezing cause cell damage in 

tissues. However, electroporation can also affect heat and mass transfer 

processes during freezing, which was found to be important for enhancement of 

the pressing-thawing process.  

The different nutritional characteristics of apple juice obtained in pressing-

thawing experiments at 5 bars for untreated and PEF pretreated apples are 

compared in Table 1.  
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 Concentration of soluble solids in local portion of juice, °Brixl, versus Figure 5.

extraction yield, Y, in pressing-thawing experiments at different pressures P (2, 3 

and 5 bars). Data are presented for PEF pretreated apples. Insert shows the 

maximum values of °Brixl
max in local portion of juice and corresponding time of 

extraction, tmax, versus the applied pressure P. Data are presented for PEF 

pretreated apples. 

 

 Concentration of soluble solids, °Brix, (a) and total phenolic Figure 6.

compounds, CTPC, (b) versus juice yield, Y, at different pressures, P=2, 3 and 5 bars. 

Data are presented for PEF pretreated (filled symbols, dashed lines) and untreated 

(open symbols, solid lines) apple samples. 

At fixed value of extraction yield, Y, PEF pretreatment always allowed 

noticeable enhancement of nutritional parameters. E.g., at Y=0.6 an increase in 



285 

Results 

 

 

 

°Brix of ≈1.27, total carbohydrates of ≈1.42, total phenolic compounds of ≈1.16, 

flavonoids of ≈1.09 and total antioxidant capacity of ≈1.29 was observed after PEF 

pretreatment. The highest concentrations of total carbohydrates (CC≈281.5 g/L), 

total phenolic compounds (CTPC≈1310.4 mg GAE/L), flavonoids (CTF≈292.7 mg 

CTE/L) and total antioxidant capacity value (TAC≈9.2 mM trolox equivalent) were 

obtained with juice yields of ≈13%, ≈18%, ≈14% and ≈18%, respectively. 

Table 1. Different nutritional characteristics of apple juice obtained in pressing-

thawing experiments at 5 bars for untreated and PEF pretreated apples. 

Nutritional 
parameters 

Y 

0.2 0.4 0.6 0.8 1.0 

U
n

tr
ea

te
d

 

°Brix 13.50.1 12.80.1 12.00.1 11.10.1 11.50.1 
CC (g/L) 164.71.6 168.10.5 161.13.4 147.23.2 131.23.9 

CTPC 
(mg/L) 

1045.05.2 1042.23.2 1012.94.1 964.21.0 909.44.1 

CTF (mg/L) 247.52.5 248.31.9 237.01.9 223.04.3 211.71.2 
TAC (mM 

TE) 
7.460.09 7.140.14 6.530.11 6.030.05 5.920.07 

P
EF

 t
re

at
ed

 

°Brix 17.60.1 16.70.1 15.20.1 13.60.1 12.20.1 
CC (g/L) 278.44.3 255.82.7 227.81.8 200.31.6 176.30.5 

CTPC 
(mg/L) 

1309.77.2 1262.86.6 1174.82.1 1083.01.9 1007.81.2 

CTF (mg/L) 291.70.6 278.82.5 259.52.5 238.73.1 220.61.9 
TAC (mM 

TE) 
9.070.18 8.840.15 8.390.13 7.880.09 7.420.06 

Data are presented as mean ± standard deviation. °Brix: Total soluble solids. CC: 

Concentration of carbohydrates. CTPC: Concentration of total phenolic compounds. 
CTF: Concentration of total flavonoids. TAC: Total antioxidant capacity.  

Thus, freezing-assisted pressing of PEF pretreated samples has a positive 

effect on all nutritional parameters of the extracted apple juice and allowed 

obtaining an ice juice rich in bioactive compounds. Likewise, it was observed that 

browning index of juice obtained by freezing-assisted pressing of PEF pretreated 

samples was rather lower (BI≈0.101) than that of juice obtained by traditional 

method (BI≈0.306). 
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4. Conclusions 

Freezing-assisted pressing at subzero temperatures is an effective tool in 

order to obtain an apple juice rich in bioactive compounds. The efficiency of this 

process can be noticeably improved by the application of PEF pretreatment of 

apple tissue before freezing. PEF pretreatment resulted in a reduction of both 

freezing and thawing time of apple tissue and that pressing was more effective at 

high pressure, P=5 bars. Furthermore, PEF pretreatment facilitated the rate of 

juice release but did not change the total amount of juice expressed. The 

observed effects can reflect the impact of electroporation on heat and mass 

transfer at low temperature processes inside the apple sample. In PEF-assisted 

pressing-thawing experiments, ºBrix values and other nutritionally important 

parameters of apple juice noticeably exceeded those values obtained for 

untreated samples. It is remarkable that both electroporation and freezing can 

cause cell damage in tissues. However, electroporation can also affect the process 

of freezing, which was found to be important for the enhancement of the 

pressing-thawing. Thus, freezing-assisted pressing of PEF pretreated samples has a 

positive effect on all investigated nutritional parameters of the extracted apple 

juice. The proposed scheme of freezing-assisted pressing of PEF pretreated 

samples at subzero temperatures is applicable for different fruit and vegetable 

tissues and may be used by food producers in order to obtain a high quality ice 

juice rich in bioactive compounds. However, further investigations are required 

with regard to the adjustment and optimisation of pressing protocols, further 

improvement of beneficial PEF effects and checking the “ice” juice storage 

stability.  
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ABSTRACT 

Determination of bioactive compounds content directly from foodstuff is not 

enough for the prediction of potential in vivo effects, as metabolites reaching the 

blood system may be different from the original compounds found in food, as a 

result of an intensive metabolism that takes place during absorption. Nutritional 

efficacy of food products may be ensured by the determination of bioaccessibility, 

which provides valuable information in order to select the appropriate dosage and 

source of food matrices. However, between all the methods available, there is a 

need to establish the best approach for the assessment of specific compounds. 

Comparison between in vivo and in vitro procedures used to determine 

bioaccessibility and bioavailability is carried out, taking into account the strengths 

and limitations of each experimental technique, along with an intensive 

description of actual approaches applied to assess bioaccessibility of bioactive 

compounds. Applications of these methods for specific bioactive compound’s 

bioaccessibility or bioavailability are also discussed, considering studies regarding 

the bioavailability of carotenoids, polyphenolic compounds, glucosinolates, 

vitamin E, and phytosterols. 

 

Keywords: Bioaccessibility, bioavailability, bioactive compounds, in vitro methods, 

in vivo methods.  
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Introduction 

Nowadays, consumers are more and more aware of the benefits beyond basic 

nutrition provided by food and food compounds. Between these, plant foods 

including fruits and vegetables have been demonstrated to exhibit multiple health 

benefits, closely related to their high contents in vitamins and other bioactive 

compounds (vitamin C, carotenoids, phenolic compounds, vitamin E, 

glucosinolates) with antioxidant properties (Nehir and Simsek 2012; Barba and 

others 2013; Carbonell-Capella and others 2013a). However, when studying the 

role of bioactive compounds in human health, their bioavailability is not always 

well known. Before becoming bioavailable, they must be released from the food 

matrix and modified in the gastrointestinal tract. Therefore, it is important before 

concluding on any potential health effect, to analyse whether the digestion 

process affects bioactive compounds and their stability, as this, in turn, will affect 

their bioavailability and their possible beneficial effects. 

Different digestion models have been developed by the scientific community 

that accurately mimic the complex physicochemical and physiological conditions 

of the human gastrointestinal (GI) tract, along with in vivo models in living 

organisms (Hur and others 2011). However, comparison of results between 

different studies is difficult to accomplish, as there is no defined experimental 

model for studying bioaccessibility and bioavailability. Analysis of the procedures 

for measuring or predicting bioactive compounds bioavailability is therefore 

required, particularly as a result of continuous developments of new products by 

food industries considered “functional” because of their specific antioxidant or 

phytochemical contents. 

The aim of the present article is to critically review different approaches used 

in the estimation of bioaccessibility and bioavailability of food compounds, 

focusing on bioactive compounds, as these are of major interest in current 

functional food development. Furthermore, results of studies in which 

bioaccessibility and bioavailability of bioactive compounds were investigated are 

also discussed. 
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Bioaccessibility, Bioavailability, and Bioactivity 

The concept of bioaccessibility can be defined as the quantity or fraction 

which is released from the food matrix in the gastrointestinal tract and becomes 

available for absorption (Heaney 2001). This includes digestive transformations of 

food into material ready for assimilation, the absorption/assimilation into 

intestinal epithelium cells, and lastly, the presystemic metabolism (both intestinal 

and hepatic). For some nutrients, beneficial effects of unabsorbed nutrients (such 

as binding of bile salts by calcium in the tract) would be missed by absorption-

based definitions. Bioaccessibility is usually evaluated by in vitro digestion 

procedures, generally simulating gastric and small intestinal digestion, sometimes 

followed by Caco-2 cells uptake (Courraud and others 2013). 

Differently, the term bioavailability includes also in its definition the utilisation 

of a nutrient and therefore can be defined as the fraction of ingested nutrient or 

compound that reaches the systemic circulation and is utilised (Wood and others 

2005). Overall, bioavailability includes gastrointestinal digestion, absorption, 

metabolism, tissue distribution, and bioactivity. Consequently, in terms of 

bioavailability, when a claim is made, it must be demonstrated that the 

component analysed is efficiently digested and assimilated and then, once 

absorbed, exerts a positive effect in human health. However, practical and ethical 

difficulties are found when measuring bioactivity, so the term “bioavailability” is 

usually defined as the fraction of a given compound or its metabolite that reaches 

the systemic circulation (Holst and others 2008), without considering bioactivity. 

According to this definition, bioavailability of a compound is determined in vivo in 

animals or humans as the area under the curve (AUC) (plasma-concentration) of 

the compound obtained after administration of an acute or chronic dose of an 

isolated compound or a compound-containing food (Rein and others 2013). 

Bioactivity is the specific effect upon exposure to a substance. It includes 

tissue uptake and the consequent physiological response (such as antioxidant, 

anti-inflammatory). It can be evaluated in vivo, ex vivo, and in vitro (Figure 1) 

(Fernández-García and others 2009). 
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 Definition of bioavailability, bioaccessibility, and bioactivity and their Figure 1.

potential assessment methodologies. 

Meanwhile, digestibility applies specifically to the fraction of food 

components that is transformed by digestion into potentially accessible matter 

through all physical–chemical processes that take place in the lumen. 

Assimilation, meanwhile, refers to the uptake of bioaccessible material through 

the epithelium by some mechanism of transepithelial absorption (Etcheverry and 

others 2012). 

Bioavailability of Bioactive Compounds 

Bioactive compounds are phytochemicals that are present in foods and are 

capable of modulating metabolic processes, resulting in the promotion of better 

health. In general, these compounds are mainly found in plant foods such as fruit, 

vegetables, and whole grains (Gil-Chávez and others 2013; Carbonell-Capella and 

others 2013b) and typically occur in small amounts. These compounds exhibit 

BIOAVAILABILITY 

Gastrointestinal digestion, 
absorption, metabolism, tissue 

distribution, and bioactivity 

BIOACCESSIBILITY 

- Release from the food matrix 

- Transformation during digestion conditions 

- Assimilation through epithelium 

BIOACTIVITY 

- Tissue uptake 

- Metabolism 

- Physiological response 

In vivo 

methodologies 

In vitro, ex vivo, and 

in vivo 

methodologies 

In vitro 

methodologies 



298 

Results 

 

 

beneficial effects such as antioxidant action, inhibition or induction of enzymes, 

inhibition of receptor activities, and induction and inhibition of gene expression 

(Correia and others 2012). They can be considered an extremely heterogeneous 

class of compounds with different chemical structures (hydrophilic/lipophilic), 

distribution in nature (specific to vegetable species/ubiquitous), range of 

concentrations both in foods and in the human body, possible site of action, 

effectiveness against oxidative species, and specificity and biological action 

(Porrini and Riso 2008). Among them, polyphenolic compounds, carotenoids, 

tocopherols, phytosterols, and organosulfur compounds constitute important 

groups in the human diet.  

 
 Methodologies used in the assessment of bioavailability and Figure 2.

bioaccessibility of bioactive compounds. 

Indeed, bioavailability of bioactive compounds may be modified because of 

interactions with other macronutrients such as fibre in low-processed foods and 

beverages or proteins and polysaccharides in processed food products (Dupas and 

others 2006). Furthermore, when different foods come in contact in the mouth or 

digestive tract, various interactions may take place affecting phytochemical 

bioavailability (for example fat enhances quercetine bioavailabilty in meals) 

(Lesser and others 2006). On that basis, significant research effort has recently 

Methods used in the assesment of bioaccesibility
and bioavailability of bioactive compounds

Ex vivo modelsIn vitro models In vivo models

-Simulated
gastrointestinal digestion
-Artificial membranes
-Caco-2 cell cultures
-Isolated/Reconstituted
cell membranes
- Ussing chambers

-Animal studies
-Human studies

-Gastrointestinal 
organs in laboratory

conditions

In situ models

-Intestinal perfusion
in animals
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focused on achieving optimal uptake of phytochemicals to mantain body funcions 

and health and, consequently, carefully controlled studies are necessary in order 

to determine phytochemical bioavailability. 

As shown in Figure 2, different approaches to study bioaccessibility and 

bioavailability of bioactive compounds include in vitro methods, ex vivo 

techniques, in situ assays, and in vivo models. Advantages of each procedure are 

summarised in Table 1. However, comparisons between different approaches are 

difficult as conditions differ between them and only in vivo studies provide 

accurate values (Oomen and others 2002). 

Approaches in the Assesment of Bioaccessibility and Bioavailability of Bioactive 

Compounds 

Carotenoids 

Carotenoids are found in fruits and vegetables as carotenes (unsatured 

hydrocarbons) and xanthophylls (oxygenated derivatives). Generally, the main 

carotenoids in vegetables are lutein, β-carotene, violaxanthin, and neoxanthin, 

whereas in fruits xanthophylls are usually found in a greater proportion. They are 

prone to isomerisation and/or oxidation due to their unsaturation (Hill and others 

2012).  

Only a very low proportion of carotenoids has been reported to become 

bioaccesible (Courraud and others 2013). In some fruits (such as mango, papaya) 

carotenoids are found in oil droplets in chromoplast and hydroxycarotenoids are 

mostly esterified with fatty acids, being more easily extracted during digestion. 

Carotenoids bioavailability from foods varies greatly depending on endogenous 

(product-related) and exogenous (process-related) factors. Amount and type of 

fat present in the vicinity is a key factor that affects bioaccessibility. A minimum 

amount of fat is neccessary for absorption (Fernández-García and others 2012), so 

formulation of carotenoids in an oily matrix may enhance higher bioaccessibility. 

Important steps in carotenoid absorption are release from the food matrix, 

micelle formation, uptake into mucosal cells, packing into chylomicrons, and 

transport within the lymphatic system.  
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Table 1.  Strengths and drawbacks of in vivo and in vitro procedures used to 

assess bioaccessibility and bioavailability of bioactive compounds. 

 Advantages Disadvantages 

In vitro digestion   

Simulated 

gastrointestinal 

digestion 

Relatively inexpensive and 

technically simple 

Screening of numerous 

samples is possible 

Focus on small number of 

components 

Specific mechanisms of 

action can be tested 

Validation with reference 

material 

Efficiency of each 

digestion, absorption or 

transport mechanism can 

be studied 

Extrapolation to in vivo 

Homeostatic mechanisms are not 

present 

Dynamic conditions of 

gastrointestinal tract are not fully 

reproduced with biochemical and 

cell culture models 

Intestinal bacteria and hepatic 

metabolism is not always considered 

Oral and large intestinal phases are 

often not included although can 

readily be added 

Closed system not responsive to 

composition and quantity of foods 

Exocrine pancreas secretions not 

only contains pancreatin 

Caco-2 cells Phenotype is similar to 

normal absorptive 

epithelial cells 

Original from human colonic 

adencarcinoma 

Mucin, biofilms, and other epithelial 

cell types are not present  Grow on dish surface and 

on membrane inserts  

 Secretion of chylomicrons 

is posible 

In vivo digestion In vivo conditions Lower throughput 

 Selection of specific 

subjects 

Extremely complex functional 

systems 

 Pharmacokinetic studies 

can be performed  

Influence of different factors 

 Extrapolation from animal studies to 

human 

  Certified reference standards lack 

  High cost of equipment and labor 

  Ethical constraints 

Moreover, carotenoids content might be affected by oxidative reactions 

during analytical procedures, so incubation time should be kept to a minimum 
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without affecting sensitivity. Garret and others (2000) added α-tocopherol in 

order to ensure protection against oxidation and thus improve carotenoids 

stability. 

Different in vitro methods used in the assessment of carotenoid 

bioaccessibility comprise simulated gastrointestinal digestion, intestinal segments, 

brush-border and basolateral membrane vesicles, enterocytes, and transformed 

intestinal cell lines, mainly Caco-2 human cells (Table 2). Garret and others (1999) 

may be considered the pioneeers in the development of the Caco-2 procedure for 

the assesment of carotenoid bioaccessibility. The method consists of an in vitro 

digestion including a gastric and small intestinal step based on that described by 

Miller and others (1981) to estimate iron availability from foods. Subsequently, 

the digestate is filtered (which would be representative of micellarised 

carotenoids) and added to Caco-2 cells. To ensure that carotenoids were found in 

micelles, these authors filtered the aqueus fraction. They ascertained that 

lycopene was poorly micellarised and thus its quantity decreased after filtration, 

but lutein, α-carotene, and β-carotene did not change in their quantities. They 

also observed that hydrophobic species were efficiently micellarised when bile 

salts and pancreatic enzymes were combined. Furthermore, these authors found 

out that differentiated Caco-2 cells were able to accumulate carotenoids from 

mixed micelles. Further modifications were made to this method by Thakkar and 

others (2007) who included an oral digestion phase because of high starch 

content, and by Chitchumroonchokchai and Failla (2006) who added lipase and 

carboxyl ester lipase. These latter authors observed that xanthophyll esters were 

hydrolysed by carboxyl ester lipase before xanthophylls are transported into 

enterocytes, resulting in an enhanced cellular accumulation of zeaxanthin.  

Hedrén and others (2002) also developed an in vitro digestion method for the 

estimation of carotenoid bioaccessibility (called in vitro accessibility) in raw and 

cooked carrots, which was further used in several different studies assessing 

carotenoid bioaccessibility (Lemmens and others 2009; Colle and others 2013). 

The groups carefully examined critical steps in the digestion procedure, such as 

the impact of added pancreatic enzymes and different bile salts amounts, along 

with shaking conditions used in the micellarisation step, so as to validate the 
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method. When bile salts were not added, β-carotene bioaccessibility decreased by 

about 80%, but duplicating the amount of bile salts (from 25 to 50 g/L) resulted in 

no additional increment of carotenoid bioaccessibility. Moreover, orbital shaking 

gave more reproducible results in comparison with reciprocal shaking. In contrast 

to data by Garret and others (1999), they estimated not only the micellarised 

fraction, but total carotenoids released, as the intestinal phase was not achieved 

by centrifugation and filtration. Courraud and others (2013) introduced an oral 

phase to Hedrén’s method, without α-amylase as most of the matrices were 

nonstarchy. They obtained a significant loss of β-carotene only during the gastric 

phase and of retinyl palmitate in the oral and in the gastric phases, confirming 

that sensitivity of carotenoids to acidic conditions is higher than to alkaline 

conditions. 

Reboul and others (2006) made some modifications to the method 

established by Garret and others (1999). BHT used as antioxidant was replaced by 

pyrogallol, more water soluble. Gastric pH was set at 4 instead of 2, simulating the 

pH in the human stomach after vegetable-rich meals ingestion. Moreover, 

duodenal pH was adjusted to 6 instead of 7.5 as this is the pH measured in human 

duodenum during digestion. Instead of 2 h of incubation time, duodenal 

conditions were adjusted to 30 min to approach the digestive transit time, and 

amount of bile salts were increased. They observed that carotenoid 

bioaccessibility was dependent of the different food matrix, being more 

bioaccessible in carrot juice and processed tomato in comparison with crude 

tomato and watermelon sources, which had very low accessibility. Werner and 

Böhm (2011) employed this procedure in the assessment of carotenoid 

bioaccessibility in durum wheat and egg pasta. Durum wheat pasta exhibited 

higher carotenoid bioaccessibility. The authors also observed that results were 

highly dependent on bile extract concentration and to a lesser extent on gastric 

pH and incubation time with digestive enzymes. 



 

 

Table 2. Comparison of in vitro methods for carotenoid bioaccessibility determination. 

Step 

Method 

Failla and others 
(2008) (adapted 
from Garret and 

others 1999) 

Hedrén and 
others (2002) 

Reboul and 
others (2006) 

Granado-Lorencio and 
others (2007) 

Colle and others 
(2010) 

Cilla and 
others (2012) 

Food  
sample 
preparation 

Homogenisation Finely ground or 
cut into small 
pieces, with 
nitrogen blown 

Homogenisation 
in saline + 
pyrogallol 

Homogenisation with 
kitchen blender, 15 s, to 
simulate mastication 

Homogenisation in 
saline 

Homogenisation 

Oral phase α-Amylase, pH 6.8, 
10 min, 37 ºC 

  α-Amylase, pH 6.5, 5 
min, 37 ºC 

  

Gastric 
phase 

Porcine pepsin, pH 
2.5, 1 h, 37 ºC 

Porcine pepsin, pH 
2, 1 h, 37 ºC  

Porcine pepsin, 
pH 4, 30 min, 37 
ºC 

Mucin, bovine serum 
albumin, porcine pepsin, 
pH 1.1, 1 h, 37 ºC 

Porcine pepsin, pH 
4, 30 min, 37 ºC + 
pH 2, 30 min, 37 
ºC 

Porcine pepsin, 
pH 2, 2h, 37 ºC 

Small 
intestine 
phase 

Porcine bile 
extract, carboxyl 
ester lipase, 
porcine 
pancreatin, lipase, 
pH 6.5, 2 h, 37 ºC 

Porcine 
pancreatin, 
porcine bile salt, 
pH 7.5, 30 min, 37 
ºC. 

Porcine bile 
extract, porcine 
pancreatin, pH 
6, 30 min, 37 ºC 

Bovine bile, porcine 
pancreatin, human 
pancreatic lipase, 
colipase, cholesterol 
esterase, phospolipase 
A2, taurocholate salts, 
pH 7.8, 2 h, 37 ºC 

Porcine 
pancreatin, 
porcine bile salt, 
pH 6.9, 2 h, 37 ºC. 

Porcine 
pancreatin, 
porcine bile, pH 
6.5, 2 h, 37 ºC. 

Isolation of 
micellar 
fraction 

Centrifugation 
5000 x g, 45 min, 4 
ºC, filtration 

Centrifugation 
5000 x g, 20 min 

Centrifugation 
20000 rpm, 18 
h, 10 ºC, 
filtration 

Overnight 
sedimentation/ 
Centrifugation 5000 
rpm, 20 min 

Centrifugation 
16500 x g, 65 min, 
4 ºC, filtration 

Centrifugation 
3300 x g, 1 h, 4 
ºC 

Cell uptake Caco-2 cells, 4h, 
37 ºC 
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As previous methods were found unsuitable for xanthophyll ester hydrolysis, 

Granado-Lorencio and others (2007) adapted a method originally applied to the 

evaluation of soil contaminants. Compared to previous in vitro models, these 

authors included the use of human pancreatic lipase, phospholipase A2, 

cholesterol esterase, and taurocholate salts. They obtained a remainder of over 

70% of carotenoids in the final digesta and observed that cholesterol esterase 

hydrolysed xanthophyll esters, and human pancreatic lipase did not. 

The in vitro digestion procedure for carotenoids followed by Wright and 

others (2008), as adapted from Garret and others (1999) and Hedrén and others 

(2002) consisted of dissolving the carotenoids in the oily phase, considering thus 

exclusively the intestinal digestion phase, as previous research had not shown 

significant changes when eliminating the gastric step (Garret and others 1999). 

They observed that β-carotene transfer increased as did bile (from 0 up to 20 

mg/mL) and pancreatin concentration (from 0 up to 4.8 mg/mL) and with pH from 

3.5 to 9.  

Colle and others (2010) also introduced several modifications to the method 

established by Hedrén and others (2002). Both the pH and transit times were 

adapted to closely simulate human conditions. A certain amount of lipid (0-10%) 

was added to tomatoes prior to the in vitro digestion. A significant increase of 

lycopene bioaccessibility was observed when 5% of lipid was additioned. 

Cilla and others (2012) adapted a method used for iron bioaccessibility to 

determine carotenoid bioaccessibility of fruit juice-milk beverages, along with 

other bioactive compounds. Bioaccessibility of carotenoids was dependent of the 

type of milk used. Whole milk-fruit beverage led to a higher carotenoid extraction 

(11%) in comparison to the skimmed milk-fruit beverage. 

As reported in the review by Rodríguez-Amaya and others (2010), although 

these models simulate human digestion closely, a better description of the food 

sample preparation should be carried out. Furthermore, carotenoid extraction 

efficiency from food and micelles should be similar, so no overestimation or 

underestimation of micellarisation is done. Results obtained in the different 

studies are shown in Table 3. 
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Table 3. Carotenoid bioaccessibility and bioavailability (%) of plant-derived 

products. 

Sample Carotenoids 
bioavailability (%) 

Method employed in 
the determination 

Reference 

Baby food meal Lutein (24); β-carotene 
(13.8); α-carotene (10.4) 

Simulated gastric and 
small intestinal digestion 
coupled with Caco-2 cells 

Garret and 
others (1999) 

Spinach purée β-Carotene (29); lutein (27) Simulated gastric and 
small intestinal digestion 
(Garret and others 1999) 

Ferruzi and 
others (2001) 

Raw pulped 
carrot 

β-Carotene (21) Simulated gastric and 
small intestinal digestion 

Hedrén and 
others (2002) 

Carrot puree β-Carotene (8.9); α-
carotene (4.4) 

Simulated gastric and 
small intestinal digestion 

Reboul and 
others (2006) 

Spinach Lutein (37.6); α-carotene 
(2.4) 

Simulated gastric and 
small intestinal digestion 

Reboul and 
others (2006) 

Orange  β-Cryptoxanthin (45); 
zeaxanthin (43); lutein (26) 

Simulated oral, gastric, 
and small intestinal 
digestion 

Granado-
Lorencio and 
others (2007) 

Salad (tomato, 
spinach, carrot, 
lettuce and 
orange pepper) 

Lutein (+zeaxanthin) (45.6); 
β-carotene (2.8); α-carotene 
(2.0); lycopene (1.1)  

Simulated gastric and 
small intestinal digestion 

Huo and 
others (2007) 

Boiled cassava β-Carotene (30) Simulated oral, gastric and 
small intestinal digestion 
coupled with Caco-2 
(Garret and others 1999). 

Failla and 
others (2008) 

Lycopene from 
tomato extract 

Lycopene  In vivo single dose design Riso and 
others (2010) 

Orange fleshed 
melons 

β-Carotene (3.2) Simulated gastric and 
small intestinal digestion 

Fleshman and 
others (2011) 

Tomato pulp Lycopene (2) Simulated gastric and 
small intestinal digestion 
(Colle and others 2012) 

Colle and 
others (2012) 

Butternut 
squash 

α-Carotene (17.9); β-
carotene (16.5); lutein 
(15.9); violaxanthin (4.3) 

Simulated gastric and 
small intestinal digestión 
(Garret and others 1999) 

Jeffery and 
others 
(2012a) 

Carrot Lycopene (38.9); α-carotene 
(20.2); β-carotene (21.6); 
lutein (40.5); phytoene 
(64.2) 

Simulated gastric and 
small intestinal digestion 
(Garret and others 1999) 

Jeffery and 
others 
(2012a) 

Grapefruit Lycopene (4.5); β-carotene 
(7.9); lutein (8.7); 
violaxanthin (8.4); phytoene 
(47.1) 

Simulated gastric and 
small intestinal digestion 
(Garret and others 1999) 

Jeffery and 
others 
(2012a) 
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Mango β-Carotene (31.8); lutein 
(13.5); violaxanthin (19.4) 

Simulated gastric and 
small intestinal digestion 
(Garret and others 1999) 

Jeffery and 
others 
(2012a) 

Papaya β-Carotene (48.5); lutein 
(37.3); violaxanthin (21.6); 
phytoene (67.8) 

Simulated gastric and 
small intestinal digestion 
(Garret and others 1999) 

Jeffery and 
others 
(2012a) 

Tomato Lycopene (1.4); β-carotene 
(15.5); lutein (58.6); 
phytoene (96.2) 

Simulated gastric and 
small intestinal digestion 
(Garret and others 1999) 

Jeffery and 
others 
(2012a) 

Whole milk- fruit 
beverage 

Neoxanthin + 9-cis-
violaxanthin (47.3); 
zeaxanthin (14.7); lutein 
(13.9) 

Simulated gastric and 
small intestinal digestion 

Cilla and 
others (2012) 

Soy milk-fruit 
beverage 

Neoxanthin + 9-cis-
violaxanthin (18.5); 
zeaxanthin (4.4); lutein (3.7) 

Simulated gastric and 
small intestinal digestion 

Cilla and 
others (2012) 

Carrot juice Lutein (22); α-carotene 
(1.5), β-carotene (1.5) 

Simulated gastric and 
small intestinal digestion 
(Hedrén and others 2012) 

Courraud and 
others (2013) 

The dynamic digestion TIM® system that more closely mimics in vivo 

conditions was also employed in the assessment of lycopene bioaccessibility by 

Déat and others (2009), followed with Caco-2 cells. At the end of the dynamic 

experiment (300 min), lycopene decreased by 25%, in accordance with static in 

vitro models.  

Animal studies have also been designed in the assesment of carotenoid 

bioavailability (Zuniga and Erdman 2011; Sy and others 2012). They obtained 

more accurate results than with in vitro methods. Despite this, human carotenoid 

absorption and metabolism is not accurately mimicked by any animal model (Lee 

and others 1999). For instance, in enterocytes, β-carotene is converted to vitamin 

A in rodents much more efficiently than in humans. Likewise, Failla and others 

(2008) observed that gerbils and preruminant calves, but not ferrets, hydrolysed 

the ingested β-carotene to vitamin A with an efficiency similar to humans. 

Many studies have examined carotenoid bioavailability in humans (Micozzi 

and others 1992; Castenmiller and others 1999; Tyssandier and others 2003). The 

most frequently used in vivo approach to study bioavailability of carotenoids 

involves the single-dose design. An increase in β-cryptoxanthin, β-carotene, and 

zeaxanthin plasma concentrations was observed after supplementation of blood 

orange juice in a long-term human study (Riso and others 2005), although this did 
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not exert significant effects on several markers of oxidative stress. Meanwhile, 

Riso and others (2010) found a low increase of lycopene, along with inter-

individual variability. Interestingly, Ross and others (2011) demonstrated the fate 

of oral lycopene in humans in plasma, with the detection in skin for up to 42 days 

of lycopene and its metabolites. Goltz and others (2013) observed that carotenoid 

absorption increased when vegetables were consumed in a single meal rather 

than over multiple meals. 

Borel and others (1998) demonstrated a high correlation between in vitro 

carotenoid bioaccessibility, in vivo observations and with results from 

bioavailability trials with human subjects. Therefore, in vitro models may 

constitute a less tedious and less costly alternative to in vivo studies in the 

assessment of carotenoid bioaccessibility. 

Studies show that percentages of bioaccessibility and bioavailability of the 

different carotenoids vary widely. Lutein was more readily solubilised than α-

carotene, β-carotene, and lycopene (Garret and others 1999), probably because 

oxycarotenoids are more hydrophilic than hydrocarbon carotenoids and to 

different subcellular location and molecular interactions in plant foods. Sy and 

others (2012) also obtained a high recovery of lutein and astaxanthin, whereas 

lycopene was the least abundantly recovered. However, Jeffery and others 

(2012a) reported for the first time a high phytoene bioaccessibility, several times 

that of other carotenoids, followed by lutein in carrot and tomato and β-carotene 

in papaya and mango. In human studies, Tyssiander and others (2003) reported 

greater bioavailability of lutein and β-carotene compared to lycopene. 

Furthermore, dietary fat appears to be necessary for the efficient 

solubilisation of lipophilic compounds. In this line, Failla and others (2008) 

demonstrated an increase in carotenes when triglycerides were added to a 

carotenoid-rich salad, in accordance with Hedrén and others (2002), who 

observed a significant increase in β-carotene bioaccessibility after oil addition. 

Qian and others (2012) found the lowest bioaccessibility of β-carotene (0%) when 

orange oil was used as the carrier lipid, probably because flavored oils do not 

contain triacylglycerol components and thus cannot be digested into free fatty 

acids. Moreover, Borel and others (1998) demonstrated that β-carotene 
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incorporated into chylomicrons higher in meals with long-chain rather than 

medium-chain triglycerides. For this reason, Jeffery and others (2012b) used 

yogurt as a lipid source with long-chain triglycerides. Human studies have also 

prooved the importance of lipid in the absorption of dietary lutein. On this 

subject, Mamatha and others (2011) obtained a higher plasma lutein level in rats 

when lutein was solubilised in mixed micelles with fat. Brown and others (2004) 

also observed that consumption in humans of full-fat salad dressing enhanced a 

higher carotenoid bioavailability than reduced-fat salad dressing.  

Interestingly, not only lipid amount, but also qualitative lipid profile has its 

influence in carotenoid bioavailability (Goltz and Ferruzzi, 2013). Monounsatured 

fatty acids promote a higher carotenoid bioavailability than polyunsatured fatty 

acids, as demonstrated by Clark and others (2000) in mesenteric lymph duct 

cannulated rats. This was further observed by Gleize and others (2013), who 

found that bioaccessibility of the xanthophylls lutein and zeaxanthin was higher 

with saturated fatty acids than with monounsaturated and polyunsatured fatty 

acids both in an in vitro digestion model followed by Caco-2 cell study and in vivo 

in orally administered rats. Furthermore, long-chain triglyceride increased the β-

carotene bioaccessibility in comparison with medium-chain triglyceride in a 

simulated intestinal digestion (Salvia-Trujillo and others, 2013). 

Effect of pH on the transfer efficiency of carotenoids is also of importance, as 

suggested by in vitro results. Wright and others (2008) demonstrated an increase 

in the β-carotene transfer to the aqueous phase under higher pH conditions, while 

Jeffery and others (2012b) obtained a positive correlation of β-carotene and 

phytoene with food pH. However, this hypothesis can be rejected in in vivo 

methods, because there is no significant meal effect on stomach pH (Tyssandier 

and others 2003). 

Contrary to expectation, several authors (Parada and others 2007; Courraud 

and others 2013) have demonstrated that technological processes such as cooking 

of vegetables increase carotenoid bioavailability by disruption of the natural food 

matrix during food processing. However, severe thermal treatment or inadequate 

storage may cause isomerisation during the formation of by-products that can, in 

turn, reduce the absorption of desirable bioactive compounds. 
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Polyphenolic compounds 

Phenolic compounds or polyphenols form a large group of chemical 

substances considered as secondary metabolites of plants. They have an aromatic 

ring and a benzene ring with one or more hydroxide groups, including phenolic 

acids (hydroxy-benzoic acids and hydroxy-trans-cinnamic acids), coumarins, 

flavonoids (flavones, flavonols, flavanones, flavanolols, flavanols, and 

anthocyanidins), isoflavonoids, lignans, stilbenes, and phenolic polymers 

(proanthocyanidins and hydrolysable tanins) (Craft and others 2012). Among the 

various phenolic compounds, bioavailability appears to differ greatly and the most 

abundant ones in our diet don’t necessarily correspond to those with best 

bioavailability profile. Absorption and metabolism of polyphenolic compounds are 

determined primarily by their physicochemical characteristics. For example, 

molecular size, their basic structure, degree of polymerisation or glycosylation, 

solubility, and conjugation with other phenolics can be considered critical factors. 

Phenolic acids with small-molecular weight such as gallic acid and isoflavones are 

easily absorbed through the tract, as well as flavones, catechins, and quercetin 

glucosides (Martin and Apple 2010). On the contrary, large polyphenols such as 

proanthocyanidins are poorly absorbed. Most proanthocyanidins are degraded 

into monomer or dimer units before being absorbed (Hackman and others 2008).  

In plant products, most of the phenolic compounds are found as glycosylated 

forms or as esters or polymers that must be hydrolysed by intestinal enzymes or 

microflora before the released aglycones can be absorbed. However, 

anthocyanins can be absorbed as glycosides and appear as such in blood 

(D’archivio and others 2007). Metabolism is another factor, strongly affecting 

their bioavailability. Generally, after absorption, polyphenols undergo 

biotransformations of phase I and II into 3 main O-sulfated, O-glucuronidated, and 

O-methylated forms. Despite this, anthocyanins do not appear to undergo 

extensive metabolism. Neither do galloylated monomeric flavonols such as 

epigallocatechin and epicatechin gallate, which may appear unconjugated, at least 

to a large extent, in the systemic circulation (Cermak and others 2009). Thus, the 

structure of the resulting metabolites could be totally different from the parent 
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compounds, and they may or not exert their biological action (Denev and others 

2012). Results published by Vitaglione and others (2007) suggested that 

protocatechuic acid, which can be absorbed both from the small and large 

intestine, may be the metabolite involved in the activity observed after the intake 

of cyanidin-3-glucoside, whose absorption and excretion are reported to be below 

1% of intake. Therefore, evaluation of polyphenol bioavailability should include 

the analysis not only of native compounds, but also their metabolic products. 

Technological processes may also affect bioavailability of phenolic compounds, 

showing a significant increase of chlorogenic acid and naringenin in plasma levels 

when consuming cooked tomato in comparison with the fresh product (Bugianesi 

and others 2004). 

Despite the great variability of this group of substances, along with their 

occurrence in plant materials as a complex mixture, experiments reported in the 

literature have analysed bioavailability of polyphenolic compounds with different 

chemical structures and solubility through in vitro and in vivo assays, as shown in 

Table 4. The most widely used procedure for screening polyphenolic compound 

bioaccessibility is the in vitro static gastrointestinal method. Gil-Izquierdo and 

others (2001) may be considered the piooneers in adapting the method 

established by Miller and others (1981) to simulate human digestion and 

absorption of dietary iron in the study of phenolic compound release. During the 

intestinal phase, a cellulose dialysis tubing is used to simulate intestinal 

absorption. The main modification introduced by Gil-Izquierdo and others (2002) 

was the placement of the food and cellulose dialysis tubing in a polyethylene tube 

to assure close contact between food and membrane, reaching faster 

equilibration of pH values and thus a faster liquid exchange. They observed that 

phenolic composition was not affected by pepsin digestion in any of the assayed 

food products. 

 



 

 

Table 4. Comparison of in vitro methods for polyphenolic bioaccessibility determination. 

Step 

Method 

Gil-Izquierdo 
and others 

(2001) 

Bouayed and 
others (2011) 

Dupas and 
others 
(2006) 

Bermúdez-
Soto and 

others 
(2007) 

Gawlik-Dziki 
(2012) 

Shim and 
others (2012) 

Chen and others 
(2013) 

Food 
sample 
preparation 

Homogenisation Homogenisation   Homogenisation 
and 
centrifugation 

Homogenisation 
in saline 

Homogenisation 

Oral phase     Mucin, α-
amylase, 10 min, 
37 ºC 

Amylase, pH 6.9, 
5 min, 37 ºC 

 

Gastric 
phase 

Porcine pepsin, 
pH 2, 2 h, 37 ºC 

Porcine pepsin, 
pH 2-2.5, 1 h, 37 
ºC 

Porcine 
pepsin, pH 
2, 1 h, 37 ºC 

Porcine 
pepsin, pH 
2, 2 h, 37 ºC 

Porcine pepsin, 
pH 1.2, 1 h, 37 
ºC 

Porcine pepsin, 
pH 2, 1 h, 37 ºC 

Porcine pepsin, 
pH 2, 1 h, 37 ºC 

Transition 
step 

 pH 6.5, 45 min, 
37 ºC. 

Cooling in 
ice for 10 
min 

 pH 6 pH 5.3 pH 5.3 

Small 
intestine 
phase 

Porcine bile 
extract, porcine 
pancreatin, 
lipase, pH 7, 2 h, 
37 ºC 

Porcine bile 
extract, porcine 
pancreatin, pH 
7-7.5, 2 h, 37 ºC 

Porcine bile 
extract, 
porcine 
pancreatin, 
pH 6, 2 h, 
37 ºC 

Porcine bile 
extract, 
porcine 
pancreatin, 
pH 7, 2 h, 
37 ºC 

Porcine bile 
extract, porcine 
pancreatin, pH 
7, 2 h, 37 ºC 

Porcine bile 
extract, porcine 
pancreatin, lipase, 
pH 7, 2 h, 37 ºC 

Porcine bile 
extract, porcine 
pancreatin, 
taurodeoxycholat
e, taurocholate, 
pH 7.4, 2.5h, 37ºC 

Separation Dialysis in a 
semipermeable 
cellulose 
membrane 
simultaneously 
with intestinal 
phase 

Dialysis in a 
semipermeable 
cellulose 
membrane 
simultaneously 
with intestinal 
phase 

 Filtration Dialysis in a 
semipermeable 
cellulose 
membrane 2 x 
2h, 37 ºC 

Centrifugation at 
3000 rpm, 30 min, 
4 ºC. 

 

Cell uptake   Caco-2 cell     
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This method has been employed in the screening of multiple foods, including 

orange juice (Gil-Izquierdo and others 2002), pomegranate juice (Pérez-Vicente 

and others 2002), broccoli (Vallejo and others 2004), soymilk (Rodríguez-Roque 

and others 2013) and gooseberry (Chiang and others 2013) among other foods. 

These authors found that gastric digestion increased polyphenolic concentration, 

whereas the duodenal fraction significantly diminished polyphenolic content and 

even more so in the dialysed fraction. Results are shown in Table 5.  

Table 5. Polyphenolic bioaccessibility and bioavailability (%) of plant-derived 

products. 

Sample Polyphenolic 
bioavailability (%) 

Method employed in 
the determination 

Reference 

Orange juice 
(soluble 
fraction) 

Narirutin (10.5); hesperidin 
(16.2); total flavanones 
(12.0), vicenin-2 (18.6) 

Simulated gastric and 
small intestinal 
digestion with cellulose 
dialysis tubing 

Gil-
Izquierdo 
and others 
(2001) 

Orange juice 
(soluble 
fraction) 

Narirutin (23.4); hesperidin 
(24.0); hesperetin (21.1); 
total flavanones (23.5), 
vicenin-2 (24.5) 

Simulated gastric and 
small intestinal 
digestion with cellulose 
dialysis tubing  

Gil-
Izquierdo 
and others 
(2002) 

Strawberry Cyanidin-3-glucoside (6.6), 
pelargonidin-3-glucoside 
(12.6); pelargonidin-
rutinoside (11.7); ellagic 
acid-arabinoside (20.6); 
ellagic acid (172.8); 
quercetin-3-glucoside 
(28.3); kaempferol-3-
glucoside (27.4) 

Simulated gastric and 
small intestinal 
digestion with cellulose 
dialysis tubing 

Gil-
Izquierdo 
and others 
(2002) 

Strawberry 
jam 

Cyanidin-3-glucoside (2.3), 
pelargonidin-3-glucoside 
(3.7); pelargonidin-
rutinoside (3.8); ellagic acid-
arabinoside (6.1); ellagic 
acid (9.7); quercetin-3-
glucoside (6.1); kaempferol-
3-glucoside (12.0) 

Simulated gastric and 
small intestinal 
digestion with cellulose 
dialysis tubing 

Gil-
Izquierdo 
and others 
(2002) 

Coffee Chlorogenic acid (traces); 
benzoic acid (traces) 

In vivo digestion in rats Dupas and 
others 
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(2006) 
Chokeberry Cyanidin-3-glucoside (56.7), 

cyanidin (0), quercetin 3-
glucoside (81.2), quercetin 
(0), neochlorogenic acid 
(71.6), chlorogenic acid 
(123.6). 

Simulated gastric and 
small intestinal 
digestion followed by 
filtration 

Bermúdez-
Soto and 
others 
(2007) 

Tixia 
gooseberry 

Caffeic acid (44.1), 
epigallocatechin gallate 
(28.1), kaempferol (100.2), 
ρ-coumaric (61.0), 
pelargonidin chloride (96.6), 
quercetin hydrate (516.3), 
resveratrol (58.1), rutin 
(95.3). 

Simulated gastric and 
small intestinal 
digestion according to 
Gil-Izquierdo and others 
(2001) 

Chiang and 
others 
(2013) 

Invicta 
gooseberry 

Caffeic acid (59.5), 
kaempferol (82.8), ρ-
coumaric (73.4), quercetin 
hydrate (154.7), resveratrol 
(94.6), rutin (101.0). 

Simulated gastric and 
small intestinal 
digestion according to 
Gil-Izquierdo and others 
(2001) 

Chiang and 
others 
(2013) 

Further modifications (Villanueva-Carvajal and others 2013) included the use 

of crushed ice after each digestion phase to ensure the end of enzymatic activity. 

These authors also studied particle size and concluded that this was inversely 

proportional to phenolic release, so the enlargement of the contact area could 

improve digestion efficiency with an absorption increase of polyphenols. 

Bermúdez-Soto and others (2007) removed the employment of the dialysis 

membrane during intestinal digestion as substantial losses were observed of some 

of the phenolic compounds. They simply determined polyphenolic compounds 

after separation by filtration. During gastric digestion no significant changes were 

observed in the stability of polyphenols in chokeberry, but anthocyanins were 

increased, due to the low pH after the gastric step. During intestinal digestion a 

significant decrease in anthocyanins (43%) and flavonols (26%) was observed, 

whereas chlorogenic acid increased (24%). This method was further employed by 

Tagliazucchi and others (2010) in the assessment of grape polyphenols, with the 

addition of an oral phase. Furthermore, once the pancreatic digestion was 

finalised, samples were taken to pH 2 to ensure the stability of phenolic 
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compounds. Differently, these authors observed an increase in the bioaccessibility 

of total polyphenols, flavonoids, and anthocyanins during the gastric digestion in 

grape, while intestinal digestion caused a decrease in all classes of polyphenols. 

Bouayed and others (2011) also developed a method to assess free soluble 

polyphenols potentially available for further uptake than from Miller’s method. 

They found out that after simulated gastrointestinal digestion of apples, 

polyphenols release was mainly achieved during the gastric phase. Subsequently, 

a further increase (<10%) in total phenolics and flavonoids was obtained after the 

intestinal phase. This increase may be due to the additional time of extraction 

along with the effect of intestinal enzyme on the complex food matrix, which 

facilitates the release of phenolics bound to the matrix. Results showed a 

dialysability of 40% for flavonoids and 55% for free soluble phenolics, respectively, 

in comparisson with their undigested counterparts in apples. Regarding 

anthocyanins, these authors could not measure them after gastric and intestinal 

digestion, probably because they degradate in alkaline intestinal environment. 

Further studies carried out by Bouayed and others (2012) found that phenolic 

compounds in the gastric or intestinal medium were approximately similar 

(chlorogenic acid), higher (phloridzin and quercetin 3-О-glucoside) or lower (ρ-

coumaric acid) compared to those found in fresh apples, in accord with results 

obtained by Chiang and others (2013). Polyphenol concentration decreased 

during dialysis through the semipermeable cellulose membrane, although all 

polyphenols in the intestinal medium were dialysable, which could be indicative of 

passive diffusion, an important mechanisms for cellular polyphenol uptake, at 

least for several aglycones.  

Gawlik-Dziki and others (2012) carried out an in vitro digestion including an 

oral phase. Dialysis sacks were added after 2 h of intestinal digestion, for a total 

time of 4 h. They also obtained a decrease of phenolic compounds in the 

dialysate. Shim and others (2012) also included an oral phase. However, they did 

not use dialysis sacks but centrifugation. They used the in vitro method to 

compare phenolic bioaccessibility in different parts of Smilax china and obtained 

36.4, 17.8, and 9.9% of the remaining total polyphenols after digestion of leaf, 

root, and stem, respectively. 
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Chen and others (2013) carried out an in vitro digestion model according to 

the method established for carotenoid bioavailablity in the assessment of 9 

commercially available tea juices. After the gastric phase there was a significant 

decrease in total polyphenol content of 5 of the juices. After the duodenal phase, 

a further increase in the total polyphenol content was obtained in 4 of the juices, 

possibly due to structural transformation of polyphenols. 

However, these methods did not include a colonic phase and polyphenols may 

be metabolised by the colonic microflora. For this reason, Saura-Calixto and 

others (2007) estimated the bioaccessibility of dietary polyphenols with the 

isolated indigestible fraction (small intestine bioaccessibility) and a colonic 

fermentation of this fraction (large intestine bioaccessibility). Bioaccessibility of 

polyphenols in the large intestine was calculated by the difference of polyphenol 

contents between the total indigestile fraction and the residue after the 

fermentation; and 48% of dietary polyphenols were estimated bioaccessible in the 

small intestine, while 42% became bioaccesible in the large intestine. Only 10% 

was not accessible and remained in the food matrix after the entire digestion 

process. Furthermore, Nordlund and others (2012) used an in vitro colon model to 

study the formation of phenolic microbial metabolites from rye, wheat, and oat 

bran. The major metabolites found were hydroxylated phenylpropionic acid 

metabolites, closely related to the ferulic acid content in the cereal samples. 

The dynamic gastrointestinal model (TIM®) has also been extensively used to 

measure phenolic bioaccessibility. Colonic fermentation experiments may be 

incorporated in this model, so the assessment of polyphenol bioaccessibility may 

be more reliable. This model, which mimicks the biological environment through 

the duodenum, jejunum, and ileum was employed in the monitorisation of 

anthocyanins stability and bioaccessibility in maqui berry and wild blueberry (Lila 

and others 2012). These authors observed that after intake, most anthocyanins 

were bioaccessible between the second and third hours. López de Lacey and 

others (2012) also used a dynamic gastrointestinal model to study the 

bioaccessibility of green tea polyphenols incorporated into agar. Their results 

revealed that the polyphenols incorporated in the agar were bioaccessible, and 

consequently available for absorption. Furthermore, the gelatin used to simulate 
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the presence of protein during the digestion partly reduced green tea flavonols 

bioaccessibility. 

However, certain transport mechanisms such as unidentified stomach active 

transport or the transport in the small intestine of flavonoids through interaction 

with the sodium-dependent glucose transporter are not considered with the in 

vitro digestion method (Bermúdez-Soto and others 2007). For this reason, other 

methods have been developed. 

Bioaccessibility studies using Caco-2 cells have been conducted (Dupas and 

others 2006; Fernandes and others 2012). Glucuronidation, sulfation and 

methylation processes carried out by polyphenols can be studied using these cells. 

Yi and others (2006) found that by growing on Transwell membranes Caco-2 cells, 

anthocyanins could be degraded and demethylated during absorption and 

transport. Epigallocatechin was minimaly uptaken in the human intestinal Caco-2 

cell model (Vaidyanathan and Walle 2003), in accordance with Hong and others 

(2002), who observed a poor uptake of epigallocatechin gallate by HT-29 human 

colon adenocarcinoma cells. Neilson and others (2010) used this method to 

compare the efficiency of dimer absorption compared to monomers of catechin. 

In adittion, an assesment of proanthocyanidin transport showed that oligomers of 

6 units were transported approximately 10-fold less across a layer of Caco-2 cells 

than radiolabeled monomers, dimers, and trimers (Déprez and others 2001). A 

deeper study was carried out by Wang and others (2013) in which grape seed 

phenolic extract was subjected to in vitro gastrointestinal digestion and ileal 

fermentation, followed by Caco-2 cells assay. Only microbial metabolites, but not 

original phenolic compounds passed through the Caco-2 cell layer.  

Some polyphenols may be metabolised by Caco-2 cells, which must be taken 

into account. Ferulic acid-sulfate, synaptic acid-sulfate, ρ-coumaric acid-sulfate, 

and methyl ferulate-sulfate were generated after 24-h exposure of 

hydroxycinnamates to differentiated Caco-2 cells according to Kern and others 

(2003). Meanwhile, Yi and others (2006) suggested a degradation and 

demethylation of anthocyanins from blueberries during absorption and transport 

by Caco-2 cells. 



317 

Results 

 

 

 

Further assays include the use of the Ussing chamber, where a small section 

of intestinal mucosa is situated between two chambers with buffer solution, 

preserving the epithelial polarity (Clarke, 2009). Not only passive diffusion but 

transporter-mediated, transcellular, paracellular, and endocytosis transport can 

be measured. Bergmann and others (2009) employed the Ussing chamber in order 

to study the intestinal transport of polyphenols in apples. They used monolayers 

of the T84 colon carcinoma cell line and found that the transport of various 

hydroxycinnamic acids and flavonoids depended on the polarity. Cardinali and 

others (2013) also used colonic cells in a Ussing chamber and obtained a 

bioaccessibility of 0.1% of the polyphenol verbascoside. Moreover, Erk and others 

(2013) observed that the absorption of cofee polyphenols in the jejunum is 

governed by their physicochemical properties when they used pig jejunal mucosa 

in the Ussing chamber. 

In situ studies have also been carried out in the assessment of polyphenolic 

bioavailability. Wang and others (2011) followed this procedure in the study of 

total flavonoid extracts, with the inclusion of liver perfusion, in order to 

determine flavonoid metabolism. This method was also used by Fong and others 

(2012) to study the metabolism and absorption of flavones from herbs using rat 

intestines. This way they found out that acetaminophen, (-)-epicatechin, piperine, 

and mainly curcumin could significantly inhibit the intestinal metabolism of the 

flavone baicalein and subsequently increase its absorption. 

Meanwhile, in vivo studies were carried out to test the bioaccessibility of 

polyphenols in rats (Dupas and others 2006; Mateos-Martín and others 2012), 

pigs (Lesser and others 2006; Walton and others 2006), and dogs (Reinboth and 

others 2010). This way, Gonthier and others (2003) did not detect parent 

compounds or catechin derivatives in the plasma of rats given purified 

procyanidins. Crespy and others (2002) also used Wister rats to determine that 

quercetin, but not its glycosides, was absorbed from the rat stomach. Disparity in 

the results between in vitro data and epidemiological studies are likely atributed 

to the physicochemical characteristics of polyphenols. Bioavailability in rodent 

studies has been estimated to be over 10% of ingested dose, ranging from 2 to 

20%. Interestingly, quantification of the flavonol quercetin and its main 
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methylated metabolites (isorhamnetin and tamarixetin) by Surco-Laos and others 

(2011) in a Caenorhabditis elegans model revealed that higher levels of quercetin 

plus metabolites were present in the worm’s organism than those of isorhamnetin 

or tamarixetin plus their respective metabolites. This observation suggests that 

greater capacity of quercetin uptake than of methylated derivatives by the 

nematode exists, although quercetin is further transformed by Caenorhabditis 

elegans to a greater extent than isorhamnetin or tamarixetin. 

With reference to human studies, these are limited as large population sizes 

are necessary. Nevertheless, Manach and others (2005) reported plasma 

concentrations of phenolic metabolites of 0-4 µmol/L after 97 human volunteers 

ingested 50 mg aglycone equivalents. Russell and others (2009) recovered in the 

urine 26-27% of the major free benzoic acids (gentisic, protocatechuic, and ρ-

hydroxybenzoic) and the major conjugated acid (syringic acid), detected in plasma 

within 5 h after consumption of a single dose of a portion of strawberries. 

Research carried out by Hackman and others (2008) showed a rapid transport into 

blood of metabolites, in a dose-dependent manner, with peak plasma 

concentrations at 1 to 2.5 h after ingesting a flavanol-rich food, reaching baseline 

levels within 8 h. Colonic microflora metabolised most of the flavanols not 

absorbed in the small intestine to a variety of derivatives of phenolic acid and 

valerolactone, able to be absorbed. After 48 h of incubation with human colonic 

microflora, procyanidins of 6 units were degraded into low-molecular-weight 

aromatic acids (Deprez and others 2000). The wide variability of results obtained 

by Suárez and others (2011) indicated a high dependence on the individual in the 

absorption and metabolism of olive oil phenols. 

Moreover, although some in vitro studies suggest the degradation of 

anthocyanins in the intestinal phase, under in vivo conditions direct absorption of 

anthocyanins may take place in the stomach (Manach and others 2004). 

Bioavailability of anthocyanins has been demonstrated to be lower than that of 

other flavonoids, and according to Yang and others (2011), generally less than 1% 

of the consumed amounts (180-215 mg/day) is absorbed. They are absorbed by 

different mechanisms in the stomach and small intestine involving specific 

enzymes, such as bilitranslocase (Passamonti 2002). They subsequently enter the 
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circulatory system within 15-60 min, after passing through the liver, and are 

distributed to different tissues, with a maximum concentration of nanomolar 

levels. Mostly, anthocyanins reach the colon and are extensively metabolised 

there by bacteria, contributing therefore to their bioavailability (Hidalgo and 

others 2012).  

Among the isoflavones, genistein, daidzein, and glycitein are the most active 

compounds found in soybeans. Equol is a highly bioavailable metabolite that 

comes from diadzein and exhibits higher activity than the original isoflavone 

(Kanazawa 2011). Using a Caco-2 cell model, Simmons and others (2012) found 

that the lipid source and amount did not affect bioaccessibility of isoflavones. 

However, transport across the monolayer was greater with shorter molecules. 

The in vivo human study carried out by Shinkaruk and others (2012) revealed that 

the bioavailability of glycitein from soy-based food was similar to that of daidzein 

and its urinary excretion was significantly higher than that of genistein.  

Glucosinolates 

Glucosinolates have gained much attention as food compounds of high 

dietary value due to its alleged beneficial effect in cancer prevention (Fimognari 

and others 2002). Nearly all of the biological activities of these compounds may 

be attributed to their hydrolytic products, of which the isothiocyanates are 

prominent examples. Glucosinolates are hydrolysed into isothiocyanates 

mediated by myrosinase, which is still active in fresh vegetable products, and by 

the bacterial microflora of the gastrointestinal tract. Antibiotic treatment along 

with inactivation of the plant myrosinase (after cooking, for example) causes a 

decrease in bioavailability, as indicated by the fact that bioavailability is greater 

following ingestion of myrosinase-containing versus myrosinase-lacking 

preparations (Dinkova-Kostova and others 2012). One of the most extensively 

studied isothiocyanates is sulforaphane whose glucosinolate precursor is 

glucoraphanin, abundant in broccoli. In humans, metabolisation of 

isothiocyanates occurs via the mercapturic acid pathway.  

Simulated static gastrointestinal digestion, dynamic gastrointestinal digestion, 

Caco-2 uptake, transport assays, and/or in vivo studies with animals and with 
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humans have all been used as glucosinolate bioaccessibility and bioavailability 

screening methods. However, colonic fermentation is essential for the absorption 

of isothiocyanates, which must be taken into account. Recent evidence (Peñas 

and others 2012) suggests that certain strains of Lactobacillus spp., L. 

mesenteroides and L. plantarum, were capable of digesting in vitro glucosinolates. 

As a result, in human studies, degradation of glucosinolates to isothiocyanates 

exhibited high inter-individual variation beacuse of colonic microflora differences 

(Rungapamestryi and others 2007). It is important to note that urinary 

isothiocyanate metabolite (dithiocarbamate) excretion decreases from 47% to a 

neglible amount when bowel microflora is reduced by mechanical and antibiotics. 

As a result of the importance of colonic fermentation, few in vitro studies 

have been carried out towards the assessment of glucosinolate bioaccessibility. 

Despite the fact that mastication of cooked vegetables liberates glucosinolates, 

and mastication of fresh plants additionally causes enzymatic hydrolysis of 

glucosinolates, no in vitro research has yet been conducted on the impact of these 

process. Vallejo and others (2004) carried out a simulated in vitro digestion which 

consisted in a gastric phase followed by an intestinal phase that included a 

cellulose dialysis tubing, as described previously by Gil-Izquierdo and others 

(2001) for determinig phenolic bioaccessibility. These authors reported a high loss 

of glucosinolates (69%) under gastric conditions of homogenised fresh broccoli 

inflorescence. However, Iori and others (2004) suggested that the previous article 

had underestimated the degradative activity of myrosinase, still active in the 

uncooked broccoli. Consequently, stability of glucosinolates under pepsin 

digestion is considered quite high, as reported by Maskell and others (1994) who 

obtained after simulated gastric digestion an overall drop of total glucosinolates 

of only 14%. Progoitrin and gluconapoleiferin showed greater susceptibility to 

peptic digestion than gluconapin or glucobrassicin, and 4-hydroxyglucobrassicin 

became undetectable. Differences between the results obtained with the 

different inocula employed (Table 6) were minor. After 4 h of small intestine 

simulated digestion, the loss of the total glucosinolates was 32%. Lai and others 

(2010) effectuated an in vitro simulated digestion of glucoraphanin in the upper 

gastrointestinal tract, along with an ex vivo study using rat cecal microbiota and 
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an in situ rat cecum assay. The in vitro study confirmed that glucoraphanin was 

not degraded by upper gastrointestinal digestive enzymes, consequently reaching 

the rat cecum intact. Meanwhile, in both in situ and ex vivo procedures, 

glucoraphanin was hydrolysed to sulforaphane by F344 rat cecal microbiota and 

able to cross the cecal enterocyte for systemic absorption. 

A dynamic computer-controlled in vitro large-intestinal model was designed 

by Krul and others (2002), with the inoculation of complex microflora of human 

origin, a semi-permeable membrane, and pH continously adjusted to 5.8. They 

observed peak levels of allyl isothiocyanate 9-12 h after the addition of sinigrin, 

which accounts for 1% of the degraded sinegrin. Slightly higher values were 

obtained by Getahun and Chung (1999) who incubated human feces with cooked 

watercress juice for 2 h. They found that 18% of total glucosinolates were 

hydrolysed into isothiocyanates. 

Table 6. Comparison of in vitro methods for glucosinolates bioaccessibility 

determination. 

Step 
Method 

Maskell and others 
(1994) 

Vallejo and others 
(2004) 

Lai and others 
(2010) 

Food sample 
preparation 

 Homogenisation  

Oral phase - - Amylase, 3 
min, 37 ºC 

Gastric phase Porcine pepsin, pH 2, 4 h, 
37 ºC. 

Porcine pepsin, pH 2, 2 h, 
37 ºC 

Porcine pepsin, 
pH 2, 2 h, 37 ºC 

Transition 
step 

Centrifugation, 1000 rpm, 
20 min 

  

Small 
intestine 
phase 

Innocula of small intestine 
of pig fed with rapeseed 
meal/ soya-bean meal or 
commercial diet/Porcine 
pancreatin, pH 6, 1-4 h, 37 
ºC 

Porcine bile extract, 
porcine pancreatin, lipase, 
pH 7, 2 h, 37 ºC 

Porcine bile 
extract, 
porcine 
pancreatin, pH 
7.5, 2 h, 37 ºC 

Separation Centrifugation, 1000 rpm, 
20 min 

Dialysis in a semipermeable 
cellulose membrane 
simultaneously with 
intestinal phase 

Hydrolysation 
with 
myrosinase 



 

 

Table 7. In vivo studies regarding glucosinolate bioavailability (%) of plant-derived products. 

 Study desing Participants Sample preparation Measurements Major findings 

Shapiro 
and 
others 
(2001) 

Single dose study Inpatient 
and 
outpatient 
volunteers of 
a hospital. 

Uncooked fresh sprouts 
and homogenates of boiled 
sprouts devoid of 
myrosinase activity with 
either glucosinolates only 
or isothiocyanates only. 

Urine was collected 
throughout the entire 
study in 8-h collection 
intervals 

-No isothiocyanates were found in urine. 
-Dithiocarbamates were the major 
metabolites in urine.  
-Myrosinase activity in intact sprouts 
contributed significantly to bioavailability by 
boosting conversion to isothiocyanate. 

Gasper 
and 
others 
(2005) 

Single oral doses 
of 16 or 52 mmol 
of isothiocyanates 
(standard broccoli 
and high-
glucosinolate 
broccoli). 

16 Healthy 
subjects 

Individual soup portions of 
2 cultivars prepared by 
cooking 100 g florets with 
150 mL water for 90 s on 
high power in a 700-W 
microwave oven followed 
by homogenisation. 

Liquid 
chromatography 
linked to tandem 
mass spectrometry to 
quantify sulforaphane 
and thiol conjugates 
in plasma and urine. 

-GSTM1 (glutathione S-transferase M1 allele) 
genotypes had a significant effect on the 
metabolism of sulforaphane. 

Clarke 
and 
others 
(2011) 

Single oral doses 
of 161-221 mmol 
of glucosinolates, 
with or without 
active myrosinase. 

12 Healthy 
subjects  

Samples studied were fresh 
broccoli sprouts with active 
myosine and commercially 
available broccoli 
supplement and were 
designed to be 
indistinguishable from each 
other. 

Blood and urine 
samples were 
collected for 48 h 
during each phase 
and analysed for 
sulforaphane and 
erucin metabolites 
using LC–MS/MS. 

-Bioavailability of sulforaphane and erucin is 
dramatically lower and delayed in time when 
subjects consume broccoli supplements 
compared to fresh broccoli sprouts. 
-Broccoli supplements devoid of myrosinase 
activity did not produce equivalent plasma 
concentrations of the bioactive 
isothiocyanate metabolites compared to 
broccoli sprouts. 

Egner 
and 
others 
(2012) 

Multiple dose 
study of 800 mmol 
of glucoraphanin 
or 150 mmol of 
sulforaphane for 7 
days. 

50 Healthy 
subjects  

Re-hydrated, previously 
lyophilised broccoli sprout 
powders rich in either 
glucoraphanin or 
sulforaphane. 

Sulforaphane and 
sulforaphane 
metabolites in 
overnight (roughly 12 
h) urine samples. 

-70% of the administered sulforaphane was 
eliminated in 24 hours.  
-Only 5% of the administered glucoraphanin 
was recovered as sulforaphane metabolites. 
-Bioavailability of sulforaphane was far 
superior to glucoraphanin extracts. 
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Intact glucosinolate and its metabolites in feces were lowly recovered in 

animal studies, using different species, suggesting substantial absorption  

and metabolism of these compounds (Slominski and others 1988; Conaway and 

others 1999). In an in vivo animal study published by Hanlon and others (2008), 

rats were administered sulforaphane in either a single intravenous dose (2.8 

mmol/kg) or single oral doses of 2.8, 5.6, and 28 mmol/kg. This compound was 

well and rapidly absorbed, with an absolute bioavailability of 82%, which 

decreased at higher doses, indicating a dose-dependent pharmacokinetic 

behaviour. 

In an in vivo human study, Rouzaud and others (2004) observed that 

isothiocyanates release was delayed when ingesting cooked cabbage and, 

therefore, suggested that glucosinolates passed through the upper digestive tract 

without modification. Furthermore, Riso and others (2009) carried out an in vivo 

human cross-over intervention study (broccoli diet versus cruciferous-free diet). 

They observed an increase of isothiocyanate plasma concentrations, while the 

intervention did not affect plasma glucosinolate activity. Other in vivo studies 

discussed in Table 7 firmly established that, compared to isothiocyanates, intake 

of glucosinolates is associated with lower bioavailability, slower elimination, and 

greater inter-individual variation in excretion. Overall, the large inter-individual 

variability of conversion of glucosinolates to urinary dithiocarbamates is evident 

following administration of either single or multiple doses of glucosinolates, and 

ranges between 1% and more than 40% of the dose. Interestingly, there are also 

diurnal variations: conversion of glucosinolates to dithiocarbamates is greater 

during the day, whereas conversion of isothiocyanates to dithiocarbamates is 

more efficient during the night (Fajey and others 2012). 

Vitamin E 

Vitamin E is actually a family of molecules, which include the tocopherols and 

the tocotrienols, all of them with important antioxidant properties and health 

benefits. 

Alpha-tocopherol exhibits the highest biological activity and molar 

concentration of lipid-soluble antioxidants in the human.  
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A handful of in vitro and in vivo assays have been conducted on the 

determination of vitamin E bioaccessibility and bioavailability, as shown in Table 

8. It is important to note that during digestion, vitamin E must be packaged into 

micelles to facilitate absorption, the same as carotenoids. Therefore, Reboul’s 

simulated gastrointestinal digestion procedure (Reboul and others 2006) 

employed in the assessment of carotenoids is also used to study vitamin E 

bioaccessibility, with subsequent centrifugation and filtration steps. 

Table 8. Comparison of in vitro methods for vitamin E bioaccessibility 

determination. 

Step 

Method 

Reboul and 
others (2006) 

O’Callaghan and 
others (2010) 

Werner and 
Böhm (2011) 

Mandalari and 
others (2013) 

Food 
sample 
preparation 

Homogenisation 
in saline + 
pyrogallol 

Homogenisation Homogenisation 
in saline + 
pyrogallol 

 

Oral phase   Amylase, pH 6.5, 
5 min, 37 ºC 

Amylase, pH 6.9 

Gastric 
phase 

Porcine pepsin, 
pH 4, 30 min, 37 
ºC 

Porcine pepsin, 
lipase, pH 4, 1 h, 
37 ºC 

Porcine pepsin, 
pH 3.5-4.5, 0.5 h, 
37 ºC 

Porcine pepsin, 
37 ºC 

Transition 
step 

 pH 5.4   

Small 
intestine 
phase 

Porcine bile 
extract, porcine 
pancreatin, pH 6, 
30 min, 37 ºC 

Porcine 
pancreatin, pH 
7.8, 2 h, 37 ºC 

Porcine bile 
extract, porcine 
pancreatin, pH 
6.5-7, 0.5 h, 37 
ºC 

Porcine bile 
extract, porcine 
pancreatin, 
lecithin, 
cholesterol, 
sodium 
taurocholate pH 
7, 2 h, 37 ºC 

Separation Centrifugation 
20000 rpm, 18 h, 
10 ºC + Filtration 

Ultracentrifugatio
n 200 000 g, 95 
min + Filtration 

Centrifugation 
4000 rpm, 20 
min, 10 ºC + 
Centrifugation 
14000 rpm, 
5min, 22 ºC + 
Filtration 

Centrifugation, 
3700 rpm, 15 
min, 7 ºC. 

Cell uptake  Caco-2 cell   
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Desmarchelier and others (2013) followed Reboul´s in vitro digestion, with 

palm oil as added fat. These authors showed that α-tocopheryl acetate was 

distributed between mixed micelles (36%), liposomes (9%), and nonsolubilised 

food debris (52%). Furthermore, they followed the in vitro digestion by uptake 

studies using Caco-2 cells. These cells were able to hydrolyse α-tocopheryl acetate 

and to uptake α-tocopherol when α-tocopheryl acetate was incorporated into 

mixed micelles but not into emulsions. Werner and Böhm (2011) extended 

Reboul´s method by an oral phase. Overall, results obtained by these authors 

were highly dependent on the amount of bile extract present in the digestive 

medium and to a lesser extent on the simulated gastric pH and the incubation 

time with digestive enzymes. Bioaccessibility of β-tocotrienol was found to be 

higher than that of α-tocotrienol. 

Depending on the dietary source, the bioaccessibility of vitamin E has been 

shown to vary widely. O’Callaghan and others (2010), who used in vitro simulated 

gastrointestinal digestion coupled with Caco-2 cells, obtained bioaccessibility 

values of α-tocopherol ranging from 11% in apple sauce to 86% in beef. Likewise, 

Reboul and others (2006) reported a 100% bioaccessibility of α-tocopherol in 

bananas and bread, 29% and 22% in cheese and milk, respectively, and as low as 

0.5% in apples. These differences between different food sources may be due to 

different sites and physicochemical states of α-tocopherol, along with the 

presence of fibre, fat and phytosterols in the food source.  

A dynamic gastric digestion model with nonhomogeneous gastric mixing, 

shearing, and rate of delivery to the duodenum was employed by Mandalari and 

others (2013) in the assessment of tocopherols bioaccessibility of pistachios. They 

obtained a bioaccessibility of almost 100% of tocopherols after duodenal 

digestion. Déat and others (2009) employed the TIM procedure coupled to Caco-2 

cells. These authors showed that the absorption of α-tocopherol from a vitamin E 

containing meal was significantly lower when compared to the pure compound. 

This finding reveals that other components present in a meal may change the 

uptake behaviour of vitamin E or compete in the absorption through the SR-BI 

transporter. 
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In vivo studies have also been used in the assessment of vitamin E 

bioavailability. Nagy and others (2012) carried out a human study with healthy 

volunteers under maldigestion conditions. They found out that the acetylated 

form of α-tocopherol exhibited the same bioavailability as free α-tocopherol. A 

long-term human study was also carried out by Novotny and others (2012). They 

observed that ingesting diary 9.2 mmol (4 mg) of α-tocopherol maintained plasma 

concentrations of α-tocopherol at 23 mmol/L, suggesting that the dietary 

requirement for vitamin E may be less than that currently recommended. Johnson 

and others (2012), employing mouse and human in vivo assays, discovered novel 

urinary metabolites: α-carboxyethylhydroxychroman (α-CEHC) glycine, α-CEHC 

glycine glucuronide, and α-CEHC taurine. 

Correlation between in vitro bioaccessibility data with bioavailability 

determined by in vivo human assays was studied by Granado and others (2006). 

They observed no measurable difference in the case of broccoli in the plasma 

levels of α-tocopherol after a 7-day feeding intervention.  

Therefore, the great variety of methods employed in the assessment of 

tocopherol bioavailability provides different findings that will be important for 

future updates of intake recommendations and will aid in understanding the 

disposition and roles of vitamin E in vivo. 

Phytosterols 

Phytosterols have attracted much attention in recent years due to their health 

benefits, such as cholesterol lowering, anti-inflammatory, anti-atherogenicity, and 

anti-cancer potential. β-sitosterol is the most common phytosterol found in leaf 

vegetable natural products followed by campesterol, stigmasterol and sitostanol. 

Granado-Lorencio and others (2011) applied the same in vitro method as the 

one used to study polyphenols bioaccesibility (Granado-Lorencio and others 2007) 

in the assessment of phytosterol bioaccesibility. Mandak and others (2012) also 

used an in vitro digestion. These authors observed that bioaccessibility of steryl 

ferulates (various plant sterols esterified to ferulic acid) was found to be almost 

negligible. These findings suggest that intestinal enzymes immediately hydrolyse 

steryl ferulates and thus they are practically unavailable for absorption in the 
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small intestine, possibly being bioactive in the gut. This was also shown in a 

further study (Mandak and Nyström, 2013), where the low bioaccessibility of 

steryl ferulates (0.01-0.25%) was independent of the cereal matrix. A similar 

analytical method was applied by Alemany and others (2013). These authors 

obtained a sterol bioaccessibility of 2 to 6% in fruit-based milk beverages. 

However, a higher bioaccessibility was observed for oxides of β-sitosterol, 

suggesting differences in tha solubilisation and absorption mechanism between 

plant sterols and their oxides. 

Yi and others (2012) carried out an in vivo rat study where oral bioavailability 

of sterols enhanced by Flammulina velutipes was demonstrated. Although in vitro 

and in vivo methods have been used to measure sterols bioaccesibility and 

bioavailabilty respectively, in vitro procedures have yet to be validated against 

human absorption data.  

Conclusions 

The wide range of options available to evaluate digestion and uptake in in 

vitro and model organisms has guaranteed a role for them in bioaccessibility and 

bioavailability studies for years to come. Both in vitro and in vivo approaches are 

increasing our understanding of uptake of bioactive compounds from food 

products. Nevertheless, more validation studies are needed which compare in 

vivo with in vitro results. It is noteworthy that none of the methods presented in 

this report will absolutely predict how much of a specific bioactive compound a 

human will absorb and utilise. In addition, the low bioavailability of the bioactive 

compounds (in particular polyphenols), could imply the activation of some 

alternative mechanisms that can justify their possible beneficial effect. 

Nonetheles, results obtained with in vivo assays enable the prediction of the 

situation in humans quite accurately and may help accelerate the study of 

phytochemical absorption for better comprehension of their possible beneficial 

effects.  
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ABSTRACT 

In order to determine the impact of Stevia rebaudiana (SR) addition on 

bioactive compounds bioaccessibility of a new developed functional beverage 

based on exotic fruits (mango juice, papaya juice and açaí) mixed with orange 

juice and oat, an in vitro gastrointestinal digestion was performed. Ascorbic acid, 

total carotenoids, total phenolics, total anthocyanins, total antioxidant capacity 

and steviol glycosides were evaluated before and after a simulated 

gastrointestinal digestion. Salivary and gastric digestion had no substantial effect 

on any of the major phenolic compounds, ascorbic acid, total antioxidant capacity 

and steviol glycosides, whereas carotenoids and anthocyanins diminished 

significantly during the gastric step. All analysed compounds were significantly 

altered during the pancreatic-bile digestion and this effect was more marked for 

carotenoids and total anthocyanins. However, phenolic compounds, 

anthocyanins, total antioxidant capacity and steviol glycosides bioaccessibility 

increased as did SR concentration. Ascorbic acid bioaccessibility was negatively 

affected by the SR addition. 

 

Keywords: Stevia rebaudiana · Exotic fruits · Bioaccessibility · Bioactive 

compounds · Antioxidant capacity  
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1. Introduction 

Current trends and worldwide developments on new food products with 

functionality aim to demonstrate a significant bioactivity of exotic fruits with 

positive impact in several chronic disorders (Costa, García-Díaz, Jimenez, & Silva, 

2013). In this sense, research has focused on combinations of exotic fruits with 

other ingredients in beverages (Carbonell-Capella, Barba, Esteve, & Frígola, 2013). 

Fruit juice blends with other ingredients are gaining importance in the market 

probably due to public perception of juices as a healthy natural source of 

nutrients and increased public interest in health issues. 

Additionally, the use of Stevia rebaudiana (SR) leaves is increasing as a natural 

sweetener 300 times sweeter than sucrose without caloric value, allowing 

consumers to enjoy sweet taste without concerns about weight gain. They do not 

replace the sugar naturally present in foods, but they can be an excellent 

substitute for added sugars and thus an effective aid in weight management. The 

European Commission granted final regulatory approval for the use of stevia 

extracts in foods and beverages on 11 November 2011. Stevia leaves contain a 

mixture of diterpene glycosides (steviosides) and is considered a good source 

dietary fibre, minerals and essential amino acids (Kim, Yang, Lee, & Kang, 2011). 

Stevia leaf extract shows a high level of antioxidant activity, as well as a variety of 

phytochemicals such as phenolic compounds, directly associated with the removal 

of free electrons and superoxide radicals (Geuns, Hajihashemi, & Claes, 2012). 

Due to its chemical structure and health-promoting phytochemical components, 

stevia is suitable as a replacement for sucrose in beverages and for the production 

of functional food ingredients (Šic Žlabur et al., 2013). The sweetening power of 

steviol glycosides differ between them, with rebaudioside A being 400 times 

sweeter than sugar and stevioside about 300 times sweeter (Ceunen & Geuns, 

2013). As a result, determination of the steviol glycoside profile is of great interest 

to industry. 

Despite the enormous research on antioxidant properties of fruit beverages, 

studies investigating the effect of gastrointestinal digestion on dietary 

antioxidants are scarce. Only phytochemicals released from matrices become 
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bioaccessible and are potentially available for absorption by the gastro-intestinal 

tract, and, therefore, able to exert their beneficial effects in the human body. 

Under gastrointestinal conditions, transformations (degradation, epimerisation, 

hydrolysis and oxidation) and interactions between phytochemicals and food 

components may also occur, modifying therefore the biological activity of the 

bioactive compounds (Carbonell-Capella, Buniowska, Barba, Esteve, & Frígola, 

2014). Therefore, it is important, before concluding on any potential health effect, 

to assess how the digestion process affects bioactive compounds and their 

stability, as this, in turn, will affect their bioavailability for uptake, as well as their 

possible beneficial effects. 

Previous studies have confirmed that an in vitro digestion model system 

simulating human digestion could support reliable prediction of bioaccessibility of 

bioactive compounds and total antioxidant capacity in plant products (Rodríguez-

Roque, Rojas-Graü, Elez-Martínez & Martín-Belloso, 2013). However, the effect of 

SR extracts on the stability and bioaccessibility of phytochemicals in beverages 

typically consumed with adjuncts or as formulated products has not yet been 

reported in the literature data so far. The extent to which formulation may modify 

the bioactive compound profile of exotic fruit-oat beverages or influence their 

bioavailability is critical to understanding ultimate physiological effects elicited by 

these beverages. Furthermore, available knowledge on the digestibility of steviol 

glycosides is limited. Therefore, at this stage of development, it is necessary to 

study the impact of digestive conditions when a new specific formulation of 

commercial ready-to-drink matrix is designed in order to better design future 

studies focused on assessment of specific biological outcomes. 

The objective of the current study was to investigate the bioaccessibility of 

phenolic compounds, anthocyanins, carotenoids, ascorbic acid, steviol glycosides 

and antioxidative effect in exotic fruit-oat beverages with (1.25% and 2.5%) and 

without SR. The effect of SR extract addition on the bioaccessibility of bioactive 

compounds and total antioxidant capacity was evaluated with an in vitro 

physiological approach simulating human digestion in the upper gastrointestinal 

tract, with the inclusion of a salivary, gastric and duodenal step with a dialysis 

membrane. The release of bioactive compounds as well as the total antioxidant 
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capacity of the beverages were determined in aliquots collected at the end of 

each digestion step. 

2. Materials and methods 

2.1. Samples 

Cultivars of papaya (Carica papaya), mango (Mangifera indica), oranges 

(Citrus sinensis, cultivar Navel) and oat beverage (Santiveri, Lérida, Spain) were 

purchased from a local supermarket. Papaya, mango and orange juices were 

extracted after appropriate washing of the fruits and the pulp was removed. Açaí 

provided by Nature’s Way Products Inc. (Utah, USA) (containing 450 mg of açaí 

berries extract, with 10% of polyphenols) was added to the beverage. 

Stevia rebaudiana leaves were supplied by Anagalide, S.A. (Barbastro, Huesca, 

Spain) and stored at room temperature. A stock solution (8.33%, w/v) of Stevia 

rebaudiana was prepared in order to formulate the beverage (Carbonell-Capella 

et al., 2013). For this purpose, 100 mL of bottled water at 100 ºC were added on 

the dried leaves (8.33 g) and were kept for 30 min. The infusion was vacuum 

filtered using filter paper (Whatman No. 1) and the filtrate obtained was stored 

for the duration of the experiment at –40 ºC.  

The fruit juice mixture was prepared by mixing 32.5% (v/v) of papaya juice, 

10% (v/v) of mango juice, 7.5% (v/v) of orange juice, 20% of oat beverage, 1% of 

açaí powder (w/v) and water to 100%. To obtain final stevia concentrations of 

1.25% and 2.5% (w/v), different volumes of stevia stock solution (30 mL and 60 

mL) were added to prepare 200 mL of beverage instead of water. The higher 

stevia concentration (2.5%, w/v) was selected, taking into account the sucrose 

concentration of commercial fruit-based beverages and the sweetness 

equivalence of stevia and sucrose. 

2.2. Chemicals and reagents 

Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), as a 

standard substance (2 mM) to measure TEAC, 2,2´-azobis(2-

methylpropionamidina)dihydrochloride (ABTS), 2,2-Diphenyl-1-picrylhydrazyl 
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(DPPH), fluorescein sodium salt, 2,2´-azobis(2-amidinopropane)dihydrochloride 

(AAPH), disodium metabisulfite, Folin-Ciocalteu (ammonium molibdotugstat) 

reagent, rebaudioside A, stevioside, steviol hydrate, α-amylase from Bacillus, 

mucin from porcine stomach, pepsin from porcine gastric mucosa, pancreatin 

from porcine pancreas, bile extract porcine and EDTA Na2 were purchased from 

Sigma (Steinheim, Germany). Gallic acid 1-hydrate in distilled water, as a standard 

(10 mg/mL) for phenolic compounds, was purchased from UCB (Brussels, 

Germany). Oxalic acid, acetic acid, chlorhidric acid, acetone, sodium acetate, 

potassium persulphate (K2S2O8), sodium di-hydrogen phosphate (anhydrous) 

(NaH2PO4) and di-potassium hydrogen phosphate (K2HPO4) were purchased from 

Panreac (Barcelona, Spain), while di-sodium hydrogen phosphate anhydrous 

(Na2HPO4) and potassium dihydrogen phosphate (KH2PO4) from Scharlau 

(Barcelona, Spain). Ethanol, methanol, acetonitrile, hexane, sodium chlorure, 

sodium carbonate anhydrous (Na2CO3), trichloroacetic acid and sodium sulphate 

proceeded from Baker (Deventer, The Netherlands). Ascorbic acid and sodium 

dodecyl sulfate were obtained from Merck (Darmstadt, Germany) and 

rebaudioside C and rebaudioside F from Wako (Osaka, Japan). 

2.3. Simulated digestion 

A three-stage in vitro digestion model was performed based on the previously 

described procedure by Rodríguez-Roque et al. (2013), with the addition of a 

salivary step. Briefly, 50 mL of each beverage (in triplicate) was transferred to an 

Erlenmeyer flask, and a saliva solution (5 mL, pH 6.75±0.2) containing 2.38 g 

Na2HPO4, 0.19 g KH2PO4, 8 g NaCl, 100 mg of mucin and α-amylase (200 U/L of 

enzyme activity) in 1 L of distilled water was added. This mixture was kept in a 

shaking water bath (37 °C, 90 rpm) for 10 min. Salivary digested aliquots were 

taken for analysis. Afterwards, 13,08 mg of pepsin from porcine stomach was 

added and pH was adjusted to 2 by addition of HCl (12 M). This mixture was 

incubated in darkness in a water bath at 37 °C with continuous stirring (90 rpm) 

for 2 hours. At the end of the gastric digestion, aliquots were taken for analysis 

and 20 mL were used for titration with NaOH (0.5 M) to pH 7.5 after adding 5 ml 

of pancreatin (4 g/L) – bile (25 g/L) mixture.  
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Dialysis membrane was prepared by soaking it with 0.01 M EDTA Na2, 2% 

NaHCO3 and 0.1% sodium dodecyl sulfate at boiling point, rinsing it with distilled 

water and cutting it into segments of 30 cm. Dialysis membrane segments were 

filled with 25 mL of water-NaHCO3 mixture, with the amount of NaHCO3 (0.5 N) 

used in the previous titration. 20 mL of the gastric digest were placed into a 

beaker and the dialysis membrane was immersed in that digest until reaching pH 

5.0. This process allows gradual pH adjustment, mimicking intestinal conditions. 

After 30 min, 5 mL of pancreatin (4 g/L) - bile (25 g/L) mixture was added and the 

incubation continued for further 2 h (37 °C, 90 rpm). The dialysate (fraction inside 

the dialysis sac), consisting of soluble compounds of low molecular weight, and 

the retentate (fraction outside the dialysis sac), consisting of soluble and insoluble 

compounds of low and high molecular weight, were collected and placed in a cold 

water bath for 10 min. 

2.4. Bioactive compounds analysis 

2.4.1. Polarographic determination of ascorbic acid 

The method used was in accordance to Barba, Cortés, Esteve, & Frígola 

(2012). Beverage (5 mL) was diluted to 25 ml with the extraction solution (1% w/v 

oxalic acid, 2% w/v trichloroacetic acid and 1% w/v sodium sulphate). After 

vigorous shaking, the solution was filtered through a folded filter (Whatman No. 

1). 1% (w/v) oxalic acid (9.5 ml) and 2 ml of 2 M acetic acid/ sodium acetate buffer 

(pH=4.8) were added to an aliquot of 0.5 ml of filtrate and the solution was 

transferred to the polarographic cell. A Metrohm 746 VA Trace Analyser (Herisau, 

Switzerland) equipped with a Metrohm 747 VA stand was used for the 

polarographic determination. The working electrode was a Metrohm multi-mode 

electrode operated in the dropping mercury mode. A platinum wire counter 

electrode and a saturated calomel reference electrode were used. The following 

instrumental conditions were applied: DP50, mode DME, drop size 2, drop time 1 s, 

scan rate 10 mV/s, initial potential -0.10 V. Determinations were carried out by 

using the peak heights and standard additions method. 
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2.4.2. Total carotenoids 

Extraction of total carotenoid was carried out in accordance with Barba et al. 

(2012). An aliquot of sample (2 mL) was homogenised with 5 mL of extracting 

solvent (hexane/acetone/ethanol, 50:25:25, v/v) and centrifuged for 5 min at 

4000 rpm at 5 ºC. The top layer of hexane containing the colour was recovered 

and transferred to a 25-mL volumetric flask. The volume of recovered hexane was 

then adjusted to 25 mL with hexane. Total carotenoid determination was carried 

out on an aliquot of the hexane extract by measuring the absorbance at 450 nm. 

Total carotenoids were calculated using an extinction coefficient of β-carotene, 

E1%=2505. 

2.4.3. Total phenolic compounds 

Total phenols were determined according to the method reported by Georgé, 

Brat, Alter, & Amiot (2005), with some modifications. Briefly, 10 mL of sample 

were homogenised with 50 mL of a mixture of acetone/water (7/3, v/v) for 30 

min. Mixture supernatants were then recovered by filtration (Whatman No. 2, 

England) and constituted the raw extracts (REs). REs (2 mL) were settled on an 

Oasis cartridge (Waters). Interfering water-soluble components (reducing sugars, 

ascorbic acid) were recovered with 2 x 2 mL of distilled water. The recovered 

volume of the washing extract (WE) was carefully measured. In order to eliminate 

vitamin C, heating was carried out on the washing extract (3 mL) for 2 h at 85 °C 

and led to the heated washing extract (HWE). All extracts (RE, WE, and HWE) were 

submitted to the Folin-Ciocalteu method, adapted, and optimised (Barba et al., 

2012): 2 % (w/v) sodium carbonate solution (3 mL) and 100 μL of Folin–Ciocalteau 

reagent were added to an aliquot of 100 μL of sample. The mixture was incubated 

for 1 h at room temperature. Absorbance was measured at 765 nm. 

2.4.4. Total anthocyanins 

Total anthocyanins were determined using a modified method of Mazza, 

Fukumoto, Delaquis, Girard, & Ewert (1999). A 10-fold diluted sample of 100 μL 

was mixed with 1700 μL of distilled water and 200 µL of 5% (v/v) HCl. The sample 

was hold at room temperature for 20 min before measuring the absorbance at 
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520 nm in a 10 mm cuvette. Calculations of total anthocyanins were based on 

cyanidin-3-glucoside (molar absorptivity 26900 L/mol·cm). All spectrophotometric 

analyses were performed using a UV–visible spectrophotometer Lambda 20 

(Perkin-Elmer, Überlingen, Germany). 

2.4.5. Total antioxidant capacity 

2.4.5.1. Trolox Equivalent Antioxidant Capacity (TEAC) assay 

The Trolox Equivalent Antioxidant Capacity (TEAC) test was determined 

according to the method reported by Barba et al. (2012), based on the capacity of 

antioxidants to inhibit the radical cation 2,2-azino-bis(3-ethylbenzothiazoline6-

sulphonate) (ABTS), which has a characteristic long-wavelength absorption 

spectrum, showing a maximal peak at 734 nm. The ABTS radical cation is formed 

by the interaction of ABTS (7 mM) with K2S2O8 (2.45 mM).  

2.4.5.2. Oxygen Radical Absorbance Capacity (ORAC) Assay 

The oxygen radical absorbance capacity (ORAC) assay used, with fluorescein 

as the “fluorescent probe”, was that described by Barba et al. (2012). The 

automated ORAC assay was carried out on a Wallac 1420 VICTOR2 multilabel 

counter (Perkin-Elmer, USA) with fluorescence filters, for an excitation wavelength 

of 485 nm and an emission wavelength of 535 nm. The measurements were made 

in plates with 96 white flat bottom wells (Sero-Wel, BibbySterilin Ltd., Stone, UK). 

The reaction was performed at 37 °C, as the reaction was started by thermal 

decomposition of AAPH in 75 mM phosphate buffer (pH 7.0). 

2.4.5.3. DPPH Assay 

The value of DPPH (millimolar Trolox equivalents, mMTE) measures the 

antioxidant capacity of a given substance, as compared to the standard (Trolox). 

The method used was as described by Brand-Williams, Cuvelier, & Berset (1995). 

The reaction was begun by adding 50 μL of a suitable dilution of sample to 1.45 

mL of DPPH coloured radical. The sample was incubated for 30 min at room 

temperature (20 ºC). Absorbance, A, was measured at the wavelength of 515 nm. 
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2.5. Liquid chromatographic analysis of steviol glycosides 

The method of Joint FAO/WHO Expert Committee on Food Additives (JECFA) 

(2010) with various modifications was used. Samples were filtered through a Sep-

Pak® cartridge (a reverse-phase C-18 cartridge; Millipore, MA, USA) which retains 

steviol glycosides. The cartridges were previously activated with 10 ml of 

methanol (MeOH) and 10 ml of water. Every 10 ml of sample was eluted with 2 ml 

of MeOH, and all methanolic fractions were collected, filtered through a 0.45 µm 

membrane filter Millex-HV13 (Millipore) and then analysed by liquid 

chromatography using a Kromasil 100 C18 precolumn (guard column) and 

Kromasil 100 C18 column (5 µm, 250 x 4.6 mm) (Scharlab, Barcelona, Spain). The 

mobile phase consisted of two solvents: Solvent A, acetonitrile and Solvent B, 10 

mmol/L sodium phosphate buffer (pH=2.6) (32:68, v/v). Steviol glycosides were 

eluted under 1 mL/min flow rate and the temperature was set at 40 °C. 

Chromatograms were recorded at 210 nm. The identification of steviol glycosides 

were obtained out by using standards and by comparing the retention times, 

while quantification was performed by external calibration with standards. 

2.6. Statistical analysis 

All determinations were performed in triplicate. An analysis of variance 

(ANOVA) was applied to the results obtained in order to verify whether there 

were significant differences in the parameters studied in relation to sample 

analysed, and to ascertain possible interactions between factors (differences at 

p<0.05 were considered significant). Where there were differences, an LSD test 

was applied to indicate the samples in which differences were observed. A 

multiple regression analysis was performed to study the influence of bioactive 

compounds to antioxidant capacity (the results are shown in the significant cases, 

p<0.05). Finally, a study was conducted with the aim of determining whether 

there were correlations between a pair of variables (Pearson´s test). All statistical 

analyses were performed using Statgraphics® Centurion XVI (Statpoint 

Technologies Inc., USA). 
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3. Results and Discussion 

3.1. Bioactive compounds 

Ascorbic acid 

The effect of gastrointestinal digestion on the ascorbic acid recovery was 

distinct and affected by different SR content in the exotic fruit-oat beverages 

(Figure 1). 

 

 Ascorbic acid content of 0%, 1.25% and 2.5% (w/v) Stevia rebaudiana Figure 1.

(SR) beverage during in vitro gastrointestinal digestion, expressed as percentage. 

1: Non-digested sample. 2: Salivary digesta. 3: Gastric digesta. 4: Non-dialysed 

intestinal fraction. 5: Dialysed intestinal fraction. 

The three nondigested beverages (0, 1.25 and 2.5% SR) had similar ascorbic 

acid values (28-33 mg/100 mL). Although Kim et al. (2011) detected ascorbic acid 

in stevia leaves and callus, differences in these results and those found in the 

present research could be attributed to the preparation of the SR water extract 

(weight and temperature submitted). Ascorbic acid diminished just over 5-13% 

(corrected by the varying volumes of digesta) in the salivary phase, as pH is not 

substantially changed and duration is of only 10 minutes. Zulueta, Esteve, 

Frasquet, & Frígola (2007) found out that pH had a significant influence and 

correlated negatively with the ascorbic acid concentrations, as acid media 

contribute to the stability of the vitamin. This explains why the ascorbic acid did 

not diminish significantly (p>0.05) during the gastric digestion (pH 2.20±0.01) of 
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the three beverages (14-19%). These results are in agreement with previous 

findings, which proved that in vitro gastric conditions (pH 2 or 3) had very little 

effect on ascorbic acid stability. Only a slight loss (6.7%) was observed by Vallejo, 

Gil-Izquierdo, Pérez-Vicente, & García-Viguera (2004) in broccoli inflorescences 

after pepsin digestion. Rodríguez-Roque et al. (2013) also demonstrated that 

gastric digestion had little effect on ascorbic acid stability, recovering 83% of this 

bioactive compound in a blended fruit juice containing orange, pineapple and 

kiwi. However, neither of these authors submitted their sample to a salivary step 

before the gastric digestion, so bioaccessibility might be overestimated. 

Nevertheless, after in vitro intestinal digestion, there were significant 

decreases in ascorbic acid concentration in the non-dialysed fraction (54.8 and 

76.1 in the 0 and 1.25% SR beverage respectively) with regard to gastric digesta 

due to the low stability of this compound at high pH, and in the 2.5% SR beverage, 

ascorbic acid was not detected. In the dialysed fraction, an increase in the 

ascorbic acid content was obtained (8.3 and 10.2% in the 0 and 1.25% SR 

beverage, respectively) with regard to the non-dialysed fraction. These results are 

in agreement with previous results for broccoli inflorescences (91% loss) (Vallejo 

et al., 2004), pomegranate juice (80%) (Pérez-Vicente, Gil-Izquierdo, & García-

Viguera, 2002) and for orange, pineapple and kiwi blended fruit juice (75%) 

(Rodríguez-Roque et al., 2013). Differences in the composition of the samples and 

the use of dialysis membrane instead of solubility assays to obtain the 

bioaccessible fraction, could explain the differences found in comparison with our 

study. However, in an in vivo study, Davey et al. (2000) obtained values of 

biavailability of ascorbic acid between 80-100% at doses normally ingested (≤ 180 

mg). Aside from the passive transport mechanism which in humans is only 

predominant at high intake levels, ascorbic acid is also absorbed by an active 

transport system located in the gut (Stahl et al., 2002), which must be taken into 

account. 

When evaluating the effect of SR addition on ascorbic acid bioaccessibility, it 

is noteworthy that this compound remained undetected in the dialysed fraction of 

the 2.5% SR beverage. In the intestinal phase, SR may exert a negative effect over 

the ascorbic acid stability. This can be due to interferences between the steviol 
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glycosides with the ascorbic acid structure at basic conditions, as in previous steps 

no significant differences were detected with respect to the formulation involved. 

No study has been published up to date showing these possible interferences. 

Interaction between stevioside and ascorbic acid was investigated by Kroyer 

(2010), but he observed a protective effect of stevioside on the degradation of 

ascorbic acid. However, the pH used in his study is not specified. Interestingly, Šic 

Žlabur et al. (2013) obtained a decrease in the ascorbic acid content when apple 

purees were sweetened with stevia and pasteurised. However, they attribute this 

loss to the heat treatment and not to the stevia addition. 

According to Vallejo et al. (2004), ascorbic acid was the metabolite that 

showed the greater decrease (91% loss) after intestinal digestion. As ascorbic acid 

is a thermosensitive compound, in fruit and vegetables it has been used as an 

indicator of the loss of other vitamins (Zulueta et al., 2007). Consequently, the 

decrease in bioaccessibility observed for this bioactive compound may also be 

observed in other similarly alike thermosensitive vitamins, such as vitamin B 

group, although further studies are necessary.  

Total carotenoids 

The amounts of bioaccessible carotenoids after simulated gastrointestinal 

digestion expressed as µg/100 mL are presented in Table 1. As carotenoids are 

highly hydrophobic compounds, a micellisation step is needed in order to evaluate 

their bioaccessibility. With this purpose, digested samples were centrifuged 

during 20 min at 4000 rpm and 20ºC (Courraud, Berger, Cristol, & Avallone, 2013), 

but no statistical differences were found after the centrifugation step (data not 

shown). A statistically significant (p<0.05) decrease of 94–99.4% in the dialysed 

fraction with respect to the initial carotenoids in the original fruit-oat beverage 

was found. Although carotenoids are considered to be absorbed in a relatively 

non-specific way by passive diffusion of the micelles in the mucosa cells (Stahl et 

al., 2002), this low bioaccessibility of carotenoids is mainly caused by their limited 

solubilisation to the aqueous phase, which hinders their ability to be taken up by 

the intestines. Other authors have included the use of human pancreatic lipase, 

cholesterol esterase, phospholipase A2 and taurocholate salts in order to 
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reproduce more physiological conditions, as these enzymes may hydrolyse ester 

forms and provide optimum conditions for carotenoid hydrolysis and micellisation 

(Granado-Lorencio et al., 2007).  

The highest carotenoid recovery (6%) was achieved in the formulation with 

2.5% SR, showing a positive correlation between the content of SR and the 

bioaccessibility of total carotenoids. Results suggest that the addition of the 

natural sweetener SR may enhance somehow dialysability of carotenoids through 

the semipermeable membrane. Amongst the factors that affect carotenoid 

bioaccessibility, other authors have shown that the matrix in which carotenoids 

are embedded can play a significant role on bioaccessibility, along with effectors 

of absorption and bioconversion (West & Castenmiller, 1998). However, the use 

of a dialysis membrane does not take into account active transport via membrane 

transporters through which carotenoids are absorbed (Reboul & Borel, 2011), 

leading to an underestimation of the real bioaccessibility of carotenoids.  

Regarding the different steps through which the beverages pass in the 

digestion process, salivary addition enhances the release of carotenoids 

independently of the SR concentration. However, gastric and intestinal digestions 

lead to a decrease in the carotenoid content of around 15% and 21% respectively 

with regard to the undigested sample, without significant differences between the 

three formulations. Indeed, carotenoids are more sensitive to acidic than alkaline 

conditions (Rodríguez-Amaya, 2010). This is why the decrease was higher during 

the gastric phase. This was also confirmed by Wright, Pietrangelo, & 

MacNaughton (2008), who showed increased β-carotene transfer to the aqueous 

phase under higher pH conditions. 

Similar results were reported by Courraud et al. (2013) in carrot, but Granado-

Lorencio et al. (2007) reported a higher carotenoid stability of about 70% in the 

final digesta of loquat, orange and broccoli. As mentioned before, these authors 

included the use of human pancreatic lipase, cholesterol esterase, phospholipase 

A2 and taurocholate salts during the intestinal digestion and also a previous 

homogenisation to simulate mastication and did not include a semipermeable 

membrane. In a different study, Granado et al. (2006) concluded that behaviour of 

carotenoids under in vitro gastrointestinal conditions does not fully explain 
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changes observed in vivo, limiting the use of in vitro models for screening relative 

bioaccessibility of carotenoids. 

Phenolic compounds 

Absorption of polyphenolics from fruit beverages follows similar multistep 

pathways to other bioactive compounds that generally require (a) release of the 

specific phenolic from the beverage matrix, (b) solubilisation in the gut lumen, (c) 

stability of the polyphenolic to digestive conditions, (d) uptake by small intestinal 

absorptive epithelial cells and (d) potential for intracellular metabolism and 

secretion into blood stream. Nevertheless, phenolic compounds can also be 

metabolised by colonic microflora to simple phenolic, organic acids and several 

other products which are subsequently absorbed and distributed to tissues 

(Ferruzzi, 2010). However, for the purpose of this paper, only small intestinal 

absorption will be discussed. 

Total phenolic contents of the formulated beverages before and after in vitro 

simulated gastrointestinal digestion is shown in Table 1. Total soluble phenolic 

compounds of the three beverages before digestion ranged from 876 to 4896 

mg/L, measured as gallic acid equivalents. Recoveries of total polyphenols in the 

dialysed fraction were 30-33% compared to their non-digested counterparts. 

These results compare well with those reported of recoveries of total phenolic 

compounds from 29 to 62% in pomegranate juice (29%) (Pérez-Vicente et al., 

2002) and apples (Bouayed, Hoffmann, & Bohn, 2011) (44-62%). 

The effect of SR upon the soluble extractable phenolic content of exotic fruit-

oat beverages before and after digestion is depicted in Table 1. Prior to digestion, 

the 2.5% SR beverage exhibited the highest total phenolic content, indicating that 

Stevia rebaudiana could be useful as a potential source of natural polyphenols. 

After digestion, the 2.5% SR beverage still had six times more total soluble 

extractable polyphenols than the 0% SR beverage, confirming that the addition of 

SR extracts in formulated beverages is a way of enhancing the consumption of 

these beneficial components. 
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Table 1. Total carotenoids, total phenolic compounds and total anthocyanins of 

a beverage mixture of exotic fruit juices with oat beverage and sweetened with 

0%, 1.25% and 2.5% (w/v) Stevia rebaudiana (SR) during in vitro gastrointestinal 

digestion. 

1: Non-digested beverage. 2: Salivary digestion. 3: Gastric digestion. 4: Non-
dialysed intestinal fraction. 5: Dialysed intestinal fraction. GAE: Gallic acid 
equivalents. 

An increase in the total extractable phenolic content was observed (6-8%) 

after the salivary step, possibly by enhancement of solubilisation of phenolic 

compounds, as high molecular weight phenols may be insoluble and the enzyme 

activity or agitation conditions could facilitate the breakage of large molecules. 

After the gastric digestion, there was a slight loss in the total phenolic contents, 

although this decrease was not significant (p>0.05) and recoveries continued to be 

SR  Total carotenoids 
Total phenolic 

compounds 
Total anthocyanins 

  (µg/100 mL) % (mg GAE/L) % 
(mg cyanidin-

3-glucoside/L) 
% 

0% 

1 1629.2±10.6
 

 876.1±53.9
 

 40.4±1.1
 

 

2 1778.4±10.9
 

109.2 930.2±11.9
 

106.2 28.6±1.9
 

70.7 

3 1386.0±66.0
 

85.1 919.7±8.9
 

105.0 25.4±1.4
 

63.0 

4 1262.0±38.8
 

77.5 522.4±3.0
 

59.6 14.9±1.0
 

36.8 

5 10.0±1.4
 

0.6 262.9±4.5
 

30.0 0.1±0.1
 

0.2 

1.25% 

1 1719.0±24.7
 

 2994.7±12.9
 

 44.5±0.8
 

 

2 1901.9±50.5
 

110.6 3227.1±11.9
 

107.8 39.6±1.1
 

89.1 

3 1501.2±42.7
 

87.3 3160.0±11.9
 

105.5 38.9±1.1
 

87.3 

4 1420.3±9.7
 

82.6 1818.4±29.6
 

60.7 14.3±1.0
 

32.1 

5 34.3±9.7
 

2.0 942.7±22.2
 

31.5 2.1±1.4
 

4.8 

2.5% 

1 1671.7±7.1
 

 4896.3±26.4
 

 49.3±1.1
 

 

2 1841.6±27.2
 

110.2 5293.8±53.3
 

108.1 45.3±0.8
 

91.7 

3 1388.7±46.6
 

83.1 5205.7±94.9
 

106.3 45.1±1.6
 

91.3 

4 1317.4±97.0
 

78.8 3070.8±22.2
 

62.7 14.0±1.4
 

28.3 

5 99.5±14.6
 

6.0 1608.2±29.6
 

32.8 4.7±0.8
 

9.4 
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higher than their non-digested counterparts, possibly because the low pH reached 

may reduce oxidised species back to the native compounds (Stahl et al., 2002). 

Similarly, Pérez-Vicente et al. (2002) did not obtain differences in total phenolics 

content before and after pepsin digestion. However, the mild alkaline conditions 

reached during the intestinal digestion, along with possible interactions between 

polyphenols and other components such as enzymes, could explain the significant 

decrease (p<0.05) observed during the intestinal digestion. Polyphenol 

concentration decreased during dialysis through the semipermeable cellulose 

membrane, although all polyphenols found in the intestinal medium were also 

found to be dialysable, which could be regarded as indicative of passive diffusion, 

one of the most important mechanisms for cellular polyphenol uptake, at least for 

aglycones. A large portion of the phenolic compounds found in the non-dialysed 

fraction is likely to reach the colonic lumen where they can be metabolised by the 

microflora and hydrolysed (Ferruzzi, 2010). In this line, Saura-Calixto, Serrano, & 

Goñi (2007) estimated that about 48% of total phenolics are bioaccessible in the 

small intestine, whereas 42% become bioaccessible in the large intestine. 

Interestingly, Coates et al. (2013) demonstrated that polyphenols likely to reach 

the colon are capable of inhibiting several important stages in colon 

carcinogenesis in vitro. Furthermore, when Brown et al. (2014) compared in vivo 

and in vitro digestion in lingonberries, they observed notable differences in the 

phenolic composition between the in vitro digested extract and the ileal fluid, 

reinforcing the need of bioactivity studies when investigating dietary 

phytochemicals.  

The impact of gastrointestinal digestion on total anthocyanins is shown in 

Table 1. In general, the recovery of total anthocyanins diminished stepwise from 

salivary to dialysed digesta for all three beverages. Amounts of total anthocyanins 

detected after the salivary and intestinal phase were significantly lower than 

those determined in the non-digested 0% SR beverage. In general, no significant 

differences (p<0.05) were observed in the total anthocyanins recovery after 

gastric digestion. Similar results were obtained by Bouayed et al. (2011) with a 

91.2% of total anthocyanins gastric recovery in Jonaprinz apples. In the dialysed 

fractions, total anthocyanins were poorly recovered, with similar patterns 
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obtained by Pérez-Vicente et al. (2002) (2.4%) in pomegranate juice and Gil-

Izquierdo, Zafrilla, & Tomás-Barberán (2002) (2.3-3.8%) in strawberries. Bouayed 

et al. (2011) however, did not detect anthocyanins following intestinal digestion. 

At this stage of the digestion, part of the anthocyanins could be metabolised to 

some non-coloured forms, oxidised or degraded into other chemicals, escaping 

this way from the detection under present conditions. According to numerous 

studies, low bioaccessibility of anthocyanins can be attributed to their low 

stability in the alkaline conditions of small intestine, as it is generally accepted 

that anthocyanins are stable at low pH values (between 1 and 3) (Kosinska-

Cagnazz, Diering, Prim, & Andlauer, 2014). However, although in vitro studies 

suggest the degradation of anthocyanins in the intestinal phase, under in vivo 

conditions direct absorption may take place in the stomach (Manach, Williamson, 

Morand, Scalbert, & Remesy, 2005). Furthermore, the addition of SR led to a 

significant increase in the bioaccessibility of total anthocyanins, suggesting a 

higher harnessing of these bioactive compounds when SR is present in the 

digestive tract. 

3.2. Antioxidant capacity 

Due to the complex mechanism of antioxidant compounds, there is not an 

official method to determine total antioxidant capacity (TAC), so trolox equivalent 

antioxidant capacity (TEAC), DPPH (α,α-diphenyl-β-picrylhydrazyl) scavenging 

activity and oxygen radical antioxidant capacity (ORAC) were used in the 

determination of total antioxidant capacity (TAC) after the simulated 

gastrointestinal procedure of the fruit juice beverages. TAC values of undigested 

samples without SR were 11.4±0.9, 11.1±1.6 and 10.5±0.1 mM TE (Trolox 

Equivalent) for TEAC, DPPH and ORAC methods, respectively (Table 2). The 

ANOVA analysis confirmed an increase in TEAC, DPPH and ORAC values when SR 

concentration was increased, independently of the digestion step analysed. These 

results are in agreement with previous studies carried out by different authors 

who have shown a high antioxidant capacity of SR products (Šic Žlabur et al., 

2013). Furthermore, no significant differences (p>0.05) were observed between 

TEAC and DPPH values, albeit TAC values measured with ORAC assay were 
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significantly higher (p<0.05) for samples with SR at 1.25% (24.1±0.2 mM TE) and 

2.5% (35.5±0.6 mM TE) than those obtained with TEAC (22.0±2.1 and 32.2±1.9 

mM TE for 1.25 and 2.5% SR beverages, respectively) and DPPH method (21.1±1.1 

and 30.0±0.8 mM TE for the beverages with 1.25 and 2.5% SR, respectively). 

Differences may be explained because ORAC assay is based on the transfer of H 

atoms, whereas TEAC and DPPH assays are based on a redox reaction. 

Table 2. Antioxidant capacity values of a of a beverage mixture of exotic fruit 

juices with oat beverage and sweetened with 0%, 1.25% and 2.5% (w/v) Stevia 

rebaudiana (SR) during in vitro gastrointestinal digestion. 

SR: Stevia rebaudiana. TEAC: trolox equivalent antioxidant capacity. DPPH: α,α-
diphenyl-β-picrylhydrazyl. ORAC: oxygen radical antioxidant capacity. TE: Trolox 
Equivalent. 1: Non-digested sample. 2: Salivary digesta. 3: Gastric digesta. 4: Non-
dialysed intestinal fraction. 5: Dialysed intestinal fraction. 

SR  TEAC DPPH ORAC 

  (mM TE) % (mM TE) % (mM TE) % 

0% 

1 11.4±0.9  11.1±1.6  10.5±0.1  

2 10.7±1.1 94.3 10.4±1.3 94.0 11.5±0.1 109.6 

3 10.6±1.2 93.2 10.2±2.2 92.1 11.1±0.2 106.2 

4 6.1±0.4 53.4 5.6±1..5 50.8 7.9±0.2 75.8 

5 3.9±0.4 34.7 3.7±1.5 33.7 3.5±0.4 33.6 

1.25% 

1 22.0±2.1  21.1±1.1  24.1±0.2  

2 21.5±0.1 97.7 20.1±1.6 95.3 26.3±0.9 109.0 

3 21.2±0.5 96.2 19.9±0.8 94.2 25.7±0.6 106.8 

4 12.0±0.4 54.3 11.5±1.7 54.7 18.4±0.6 76.4 

5 7.9±0.6 36.0 7.5±1.1 35.7 8.5±0.5 35.5 

2.5% 

1 32.2±1.9  30.0±0.8  35.5±0.6  

2 31.6±0.9 98.2 29.5±4.8 98.5 39.0±1.0 109.7 

3 31.3±0.6 97.3 29.2±4.8 97.4 37.4±0.5 105.3 

4 17.9±1.5 55.7 16.5±3.5 55.1 26.5±0.4 74.7 

5 12.2±0.6 38.0 11.3±1.5 37.7 11.3±0.3 31.8 
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A multivariate regression analysis test was effectuated in order to study the 

contribution of the different bioactive compounds to the TEAC, DDPH and ORAC 

values (Eq. (1-3)). Coefficients of the equations were R2=0.939, p<0.05, standard 

error=0.836, R2=0.921, p<0.05, standard error=2.578 and R2=0.996, p<0.05, 

standard error=0.807 for TEAC, DPPH and ORAC methods, respectively. For TEAC 

and DPPH methods, only water-soluble components contributed to the total 

antioxidant capacity. Zulueta, Esteve, & Frígola (2009) compared the TEAC and 

ORAC methods, noting that the TEAC method had greater specificity for water-

soluble antioxidants.  

               TEAC = 0.818145 + 0.010975·(TPC)             (1) 

       DPPH = 2.36701 + 0.121547·(AA) + 0.00470771·(TPC)   (2) 

       ORAC = 2.34997 + 0.003246·(TC) - 0.074694·(AA) + 0.006221·(TPC)  (3) 

High correlation coefficients were found between the total phenolic content 

and TEAC, DDPH and ORAC assay (R2=0.9804, R2=0.9471 and R2=0.9896, 

respectively). Kim et al. (2011) also reported total phenolics to be responsible for 

the antioxidant activities of Stevia rebaudiana water extracts. 

Moreover, a strong correlation was found between total antioxidant capacity 

measured by TEAC and DPPH (R2=0.9656, p<0.05), TEAC and ORAC (R2=0.9743, 

p<0.05), and by DPPH and ORAC method (R2=0.9398, p<0.05). Zulueta et al. (2009) 

also obtained good correlations for ORAC and TEAC assays in orange juice 

(R2=0.955, p<0.05).  

3.3. Steviol glycosides 

Using high-performance liquid chromatography (HPLC), four different steviol 

glycosides were identified as rebaudioside A (reb A), stevioside (ste), rebaudioside 

F (reb F) and rebaudioside C (reb C) (Table 3, Figures 2-3), albeit the actual JECFA 

analytical method (JECFA, 2010) lists nine different steviol glycosides. 

Reb A content in the non-digested beverage sweetened with 1.25 and 2.5% 

(v/v) of SR was 46.5±0.1 and 85.1±0.6 mg/100 mL, respectively. The stevioside 

concentration was 38.7±0.8 and 73.7±1.6 mg/100 mL in the 1.25 and 2.5% SR 
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beverage, respectively. These two glycosides (reb A and ste), which are present in 

the highest concentration, show the highest sweetness activity and minor toxicity 

(Montoro et al 2013). 

 

 Steviol glycoside structures found in the beverage mixtures of exotic Figure 2.

fruit juice and oat sweetened with Stevia rebaudiana water extracts. 

Table 3. Steviol glycosides of a beverage mixture of exotic fruit juices with oat 

beverage and sweetened with 0%, 1.25% and 2.5% (w/v) Stevia rebaudiana (SR) 

during in vitro gastrointestinal digestion. 

Reb A: rebaudioside A. Ste: stevioside. Reb F: rebaudioside F. Reb C: rebaudioside 
C. 1: Non-digested sample. 2: Salivary digesta. 3: Gastric digesta. 4: Non-dialysed 
intestinal fraction. 5: Dialysed intestinal fraction. 

 

Compound name R1 R2 

Stevioside β-Glc β-Glc- β-Glc(21) 

Rebaudioside A β-Glc β-Glc- β-Glc(21) 
 
β-Glc(31) 

Rebaudioside C β-Glc β-Glc- α-Rha(21)  
 
β-Glc(31) 

Rebaudioside F β-Glc β-Glc- β-Xyl(21) 
 
β-Glc(31) 

SR  Reb A Ste Reb F Reb C 

  (mg/100 mL) % (mg/100 mL) % (mg/100 mL) % (mg/100 mL) % 

1.25% 

1 46.5±0.1  38.7±0.8  1.6±0.1  6.5±0.1  

2 51.4±0.3 110.5 40.3±0.3 104.3 1.7±0.1 110.8 7.4±0.2 114.1 

3 55.7±0.6 119.8 44.8±1.3 115.8 2.2±0.2 139.7 9.4±0.1 145.6 

4 42.5±1.1 91.4 34.5±2.8 89.3 4.5±0.2 289.0 5.9±0.1 90.5 

5 11.1±0.2 23.9 10.3±0.2 26.7 2.7±0.5 172.9 1.9±0.3 29.0 

2.5% 

1 85.1±0.6  73.7±1.6  3.5±0.1  13.4±0.5  

2 93.9±0.4 110.4 78.7±0.3 106.8 3.9±0.3 111.5 15.4±0.2 115.0 

3 122.9±4.6 144.5 104.3±2.4 141.5 5.1±0.1 146.4 20.1±2.4 149.5 

4 79.8±2.3 93.7 66.8±1.3 90.6 7.3±0.2 209.5 12.3±0.1 91.5 

5 21.0±1.6 24.6 19.8±2.6 26.9 5.6±0.1 160.3 3.8±0.3 28.0 



362 

Results 

 

 

Followingly, reb C content in the original 1.25 and 2.5% SR beverage was 

6.5±0.1 and 13.4±0.5 mg/100 mL, respectively. Finally, reb F was present in a 

lower concentration of 1.6±0.1 and 3.5±0.1 mg/100 mL in the beverage 

sweetened with 1.25 and 2.5% (v/v) of SR, respectively. No significant influence in 

the stevioside content was observed by Kroyer (2010) when stevioside was mixed 

with coffee or tea beverage, although minimal losses could be noticed after 4 h at 

high temperature. The contents of reb A, ste, reb F and reb C recorded in the 

present study are in agreement with and sometimes higher than those reported in 

literature (Montoro et al., 2013), notwithstanding that as is the case of most 

secondary metabolites, glycosides profiles of stevia are subjected to considerable 

variability according to geographic area, state of plant maturity, environment, 

harvesting and processing conditions. 

 

 Chromatogram HPLC analysis of steviol glycosides 1: rebaudioside A, 2: Figure 3.

stevioside, 3: rebaudioside F, 4: rebaudioside C in a beverage mixture of exotic 

fruit juice and oat sweetened with Stevia rebaudiana (SR) Bertoni at 2.5% (w/v). 

The analysis of variance indicated an increase (4-15%) in reb A, ste, reb F and 

reb C values after salivary digestion, independently of the SR percentage used. 

Steviol glycosides have glycosidic bonds which may be possible sites of action of 

α-amylase enzyme, and thus result in an increase of these compounds. 

Additionally, gastric digestion increased the reb A, ste, reb F and reb C content in 

about 9-35% with respect to salivary digesta, with independence of the SR 
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percentage. These compounds are diterpenoid glycosides and thus pepsin is not 

able to attack them. Therefore, the increase at this stage of digestion may be due 

to interactions at acidic pH. Our results differ from previous studies found in 

published literature. Hutapea, Toskulkao, Buddhasukh, Wilairat, & Glinsukon 

(1997) obtained no significant changes after in vitro digestion of stevioside with 

saliva, α-amylase, pepsin and pancreatin. By contrast, Kroyer (2010) detected a 

significant decrease in the stevioside concentration under strong acidic conditions 

(pH 1), but not at our gastric pH 2, where stevioside was remarkable stable. 

After intestinal digestion, reb A, ste, and reb C concentration diminished 

significantly (p<0.05). Reb F however, became highly bioaccessible. This could be 

attributed to important changes occurring during in vivo and in vitro metabolism 

of steviol glycosides. Ceunen & Geuns (2013) suggest a spatial separation of 

glycosidases from the steviol glycosides. Consequently, after cell disruption by 

enzymatic degradation, further metabolism might take place, reflecting a complex 

and dynamic process not yet fully understood, despite the known biosynthetic 

relationship between individual steviol glycosides. Dialysed fraction of reb A, ste 

and reb C was of 24-29% with respect to their undigested counterparts, 

suggesting an important loss of these compounds during digestion and dialysis 

process. Surprisingly, bioaccessibility of reb F was of 172.9 and 160.3% with 

regard to the undigested 1.25 and 2.5% SR beverages, respectively, showing the 

complex metabolism of steviol glycosides. Ceunen & Geuns (2013) explain that 

although stevioside and rebaudioside A are the most common steviol glycosides, 

they may not be the final product of the pathway, as further glycosilations are 

likely to take place, and although biosynthesis of rebaudioside F is not completely 

elucidated, it is believed that the enzymes UGT76G1 and UGT74G1 might be 

involved in it, explaining the high bioaccessibility of rebaudioside F. However, this 

hypothesis has not yet been characterised in vitro nor in vivo. Koyama et al. 

(2003) observed in an in vivo study that stevia mixture components were first 

degraded and then absorbed as steviol in the rat intestine. Geuns, Augustijns, 

Mols, Buyse, & Bert (2003) obtained a minor fraction of ste and reb A transported 

through Caco-2 cell layers, suggesting a carrier-mediated transport. However, 

they could not detect stevioside or steviol in the blood of pigs, probably because 



364 

Results 

 

 

in the Caco-2 study, steviol is applied as a solution facilitating the uptake, whereas 

in the colon, steviol is probably adsorbed to other compounds. Further studies 

have found out that ste and reb A are completely hydrolysed to the aglycon 

steviol when incubated with intestinal bacteria (Renwick & Tarka, 2008). 

There appears to be a positive correlation (p<0.05) between the amounts of 

reb A, ste and reb C and the total antioxidant capacity measured by TEAC, DPPH 

and ORAC assay. This correlation was stronger when the ORAC method was 

employed. However, a negative correlation was obtained between antioxidant 

capacity measured with TEAC and DPPH method and reb F content, suggesting 

that reb F could be the result of the degradation of any other steviol glycoside 

with potential antioxidant capacity. Previous studies have suggest that although 

phenolic compounds are the major responsible of the antioxidant capacity shown 

by stevia extracts, steviol glycosides are known to be potent ROS (reactive oxygen 

species) scavengers (Geuns et al., 2012). Toward hydroxyl radicals, they observed 

that stevioside and rebaudioside A had similar scavenging activities indicating that 

their antioxidant activity is mostly related to their common diterpene skeleton, 

but stevioside demonstrated a stronger scavenger activity than rebaudioside A for 

superoxide radicals.  

4. Conclusions 

The addition of 1.25% and 2.5% of SR in an exotic fruit-orange-oat beverage 

contributes to increase the concentration and bioaccessibility of total carotenoids, 

total phenolic compounds, total anthocyanins and total antioxidant capacity of 

the beverage. Nevertheless, ascorbic acid was not detected after the in vitro 

simulated digestion when SR was found in a 2.5% (w/v). Investigation of the 

specific interactions between ascorbic acid and SR extracts will be critical for 

understanding how the formulation can be used to optimise circulating and tissue 

levels of these phytochemical constituents. Despite these results, in vitro 

limitations should be taken into account, as these methods enable an approach, 

but will not absolutely predict how much of a specific bioactive compound a 

human will absorb and utilise. In vivo assays of beverages sweetened with SR 
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must be carried out in order to verify the relevance of the increase in the 

bioaccessibility of bioactive compounds in blood. 
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4. DISCUSIÓN GENERAL 

En la realización del presente trabajo de investigación se ha formulado una 

bebida a base de frutas exóticas (papaya, mango y açaí) y zumo de naranja, con un 

alto contenido en compuestos bioactivos y con nuevos sabores para el 

consumidor. Se ha adicionado stevia como edulcorante acalórico natural que 

además se considera un ingrediente natural antioxidante. Con el objetivo de 

obtener un zumo con un elevado contenido en compuestos bioactivos y con las 

características organolépticas más parecidas al fresco, se ha estudiado el efecto 

de la aplicación de tecnologías no térmicas (altas presiones hidrostáticas, pulsos 

eléctricos, descargas eléctricas de alto voltaje y ultrasonidos) en su conservación. 

Se ha evaluado la aplicación de pulsos eléctricos como pretratamiento para 

obtener un zumo de manzana rico en compuestos bioactivos. Finalmente se ha 

estudiado la bioaccesibilidad de los compuestos bioactivos en la bebida a base de 

zumos de frutas adicionada de stevia. 

4.1. Determinación de compuestos bioactivos y capacidad antioxidante de 

muestras de stevia y bebidas a base de zumo de frutas con bebida de avena 

y stevia adicionada 

Selección de un ingrediente natural con capacidad antioxidante 

En primer lugar se caracterizan diferentes muestras de Stevia rebaudiana de 

varias marcas comerciales y con distintos formatos de presentación. Entre ellas se 

incluyen glucósidos de esteviol purificados y extractos de hojas de stevia. Tras 

múltiples estudios químicos, toxicológicos y clínicos, los glucósidos de esteviol 

están permitidos como aditivo alimentario desde el 2 de diciembre del 2011 con 

el código E960 (EC, 2011), aunque no ocurre los extractos de hojas de Stevia 

rebaudiana (EC, 2000), que se consideran nuevos alimentos y están pendiente de 

autorización para su uso como aditivo en la Unión Europea. Sin embargo, se 

considera interesante su análisis con el fin de contribuir a una investigación 

científica más profunda previa a su aprobación en Europa, pues son ampliamente 

usados y están autorizados en otros países como Japón. 
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Los resultados muestran que los extractos de Stevia rebaudiana pueden 

utilizarse como edulcorantes acalóricos y además son fuente de compuestos 

bioactivos con una alta capacidad antioxidante. Tanto los compuestos bioactivos 

como la capacidad antioxidante total de los extractos acuosos de stevia dependen 

en gran medida del origen de sus hojas, coincidiendo con resultados observados 

en estudios previos (González y col., 2014).  

Los extractos acuosos preparados a partir de hojas de stevia junto con el 

extracto crudo de stevia (Glycostevia-EP®) se caracterizan por ser una buena 

fuente de glucósidos de esteviol. El mayor contenido en glucósidos de esteviol se 

obtiene en uno de los extractos acuosos de hojas de stevia, con un contenido 

mayoritario de steviósido, seguido por el rebaudiósido F y A. En los glucósidos de 

esteviol purificados disponibles comercialmente sólo se detecta el rebaudiósido A, 

y en el caso de Truvia®, además el esteviósido. 

En la literatura científica se observa que los glucósidos de esteviol, además de 

ser edulcorantes acalóricos de origen natural, presentan capacidad antioxidante 

(Stoyanova y col., 2011; Wozniak y col., 2014). Sin embargo, en el presente 

estudio, los resultados muestran que los extractos purificados de glucósidos de 

esteviol presentan capacidad antioxidante cuando se analizan con el método 

ORAC pero no con el método TEAC. Con el fin de verificar el distinto 

comportamiento de los glucósidos de esteviol con los dos métodos de análisis, se 

preparan y analizan distintas concentraciones de patrones de glucósidos de 

esteviol (10-50 mg/100 mL). Un incremento en la concentración de rebaudiósido 

A, C, F, esteviósido y esteviol da lugar a un incremento en la capacidad 

antioxidante con el método ORAC, pero no se detecta capacidad antioxidante con 

el TEAC, corraborando los resultados obtenidos previamente. Prakash & 

Chaturvedula (2014) describen la presencia de protones anoméricos en las 

estructuras de los glucósidos de esteviol y dado que el método ORAC se basa en la 

transferencia de átomos de hidrógeno (Zulueta y col., 2009), dichos compuestos 

pueden determinarse con este método de análisis, lo que se debe tener en cuenta 

cuando se establecen conclusiones acerca de la capacidad antioxidante de los 

glucósidos de esteviol. 
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Formulación de una bebida a base de zumo de frutas, bebida de avena y extracto 

acuoso de stevia 

Cuando se preparan tres formulaciones a base de zumo de frutas (papaya, 

mango y naranja), bebida de avena y açaí deshidratado con distintas 

concentraciones de extracto acuoso de stevia (0, 1,25 y 2,5%, p/v), se observa un 

aumento significativo de los compuestos fenólicos (unas 3 y 4 veces mayor) y de la 

capacidad antioxidante cuando se endulza la bebida con 1,25 y 2,5% (p/v) de 

stevia, respectivamente.  

Asimismo, se observan interacciones sinérgicas entre los distintos 

componentes de las matrices formuladas (0, 1,25 y 2,5% de stevia, p/v) en la 

capacidad antioxidante total medida con el método TEAC, posiblemente atribuido 

a la mejora de la solubilidad o estabilidad de los compuestos con capacidad 

antioxidante, tal como indican estudios previos (Sęczyk y col., 2016). Sin embargo, 

en la capacidad antioxidante medida con el método ORAC en las bebidas con 

stevia (1,25 y 2,5%, p/v) no se observan interacciones sinérgicas sino aditivas, lo 

que muestra que la presencia de stevia en la matriz alimentaria es determinante 

en la modulación de la capacidad antioxidante potencial de la bebida objeto de 

estudio. 

Puesta a punto de un método de determinación de lisina disponible en alimentos 

líquidos 

En ocasiones, las bebidas funcionales incluyen entre sus ingredientes 

alimentos que son fuente de proteínas, como es el caso de la bebida de avena. 

Entre sus aminoácidos, la lisina se considera un aminoácido limitante en cereales, 

con un requerimiento diario de 30 mg/kg/día de acuerdo con la OMS 

(WHO/FAO/UNU, 2007). Sin embargo, cuando los alimentos se someten a altas 

temperaturas se puede producir la destrucción de este aminoácido y la lisina 

queda inutilizada por unirse a la glucosa (reacción de Maillard). El resto de la lisina 

que se encuentra disponible puede ser usada como indicador de la calidad 

proteica y ser una herramienta para predecir cambios nutricionales (Lizarazo y 

col., 2015). Por este motivo, se pone a punto un método fluorimétrico 
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automatizado para el análisis de la lisina disponible en alimentos, para evaluar 

distintos parámetros nutritivos y de calidad de estas bebidas, sometidas o no a 

tecnologías no térmicas de conservación.  

Se automatiza el método fluorimétrico propuesto por Ferrer y col. (2003) 

empleando placas Well de 96 pocillos y se analiza el contenido de lisina en 

alimentos tanto de origen animal como vegetal incluyendo alimentos líquidos 

(bebida de avena, bebida de soja, bebida de quinoa y leche esterilizada UHT) y 

alimentos en polvo (fórmulas infantiles de inicio, continuación y crecimiento). 

Los parámetros analíticos muestran que el método es sensible, preciso y 

exacto, además de sencillo, lo que le hace adecuado para determinaciones 

rutinarias del contenido de lisina disponible en alimentos. 

4.2. Aplicación de tecnologías no térmicas en la elaboración y procesado de 

bebidas a base de frutas 

A continuación se estudia el uso de tecnologías no térmicas (altas presiones 

hidrostáticas (APH), pulsos eléctricos de alta intensidad (PEAI), descargas 

eléctricas de alto voltaje (DEAV) y ultrasonidos (USN)) en la elaboración y 

procesado de las bebidas formuladas para disminuir los cambios sensoriales y 

nutricionales que tienen lugar con la aplicación de calor. 

Procesado de zumos de frutas por APH adicionados de Stevia rebaudiana como 

ingrediente antioxidante 

Para estudiar el efecto de las APH en la bebida a base de zumo de papaya, 

mango y naranja, así como su combinación con el uso de stevia como ingrediente 

con capacidad antioxidante, se realiza un análisis de respuesta superficie con las 

siguientes variables: presión de 300-500 MPa, tiempo de tratamiento de 5-15 

minutos y porcentaje de stevia de 0-2,5% (p/v). 

Se obtiene un alto porcentaje de retención de ácido ascórbico (≥ 92%) al 

aplicar APH junto con el uso de stevia, lo que resulta prometedor por la elevada 

labilidad de esta vitamina y su especial interés cuando se ingieren bebidas a base 

de zumos de frutas. También se observa una relativa resistencia por parte de los 
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compuestos fenólicos a las APH, efecto que se ve potenciado en bebidas 

formuladas con stevia e incluso se obtiene un incremento en el contenido de 

compuestos fenólicos al aplicar una presión de 300 MPa durante 10 minutos en 

una bebida con 1,25% (p/v) de stevia y al aplicar la misma presión durante 5 

minutos con 2,5% (p/v) de stevia. Este incremento puede atribuirse a la extracción 

de algunos compuestos intracelulares tras la aplicación de APH. Asimismo, el 

contenido mayor de antocianinas se observa al aplicar el máximo nivel de presión 

(500 MPa), tiempo (15 minutos) y concentración de stevia (2,5%, p/v) por el 

motivo comentado anteriormente y la ruptura de enlaces entre antocianinas y 

distintas moléculas a las que se encuentran unidas, aumentando su contenido en 

la bebida a base de zumo de frutas y evitando su degradación, que cabría esperar 

tras el tratamiento térmico (Sui y col., 2016). La presión es el parámetro que más 

afecta a los carotenoides totales, con un aumento de su contenido al aumentar la 

presión. 

Como es de esperar, la capacidad antioxidante total de la bebida aumenta al 

aplicar de manera conjunta APH junto con la adición de stevia, obteniendo la 

máxima capacidad antioxidante al aplicar una presión de 500 MPa durante 5-15 

minutos y 2,5% (p/v) de stevia, lo que muestra la idoneidad de la combinación de 

estrategias de conservación en el procesado de bebidas a base de zumo de frutas. 

Sin embargo, las diferencias de color son superiores al aumentar la presión o 

el tiempo de tratamiento de APH. Las condiciones óptimas para obtener la bebida 

con el máximo contenido de compuestos bioactivos y capacidad antioxidante y el 

mínimo cambio de color son de 300 MPa, 14 minutos y 1,73% (p/v) de stevia. 

Estudio del efecto de los PEAI en el contenido de ácido ascórbico en bebidas a base 

de zumo de naranja 

Antes de proceder al estudio del efecto de los PEAI sobre la bebida a base de 

zumos de frutas con stevia, se estudia su efecto sobre el contenido en ácido 

ascórbico, vitamina termolábil fácilmente degradable con el tratamiento térmico 

que se emplea como indicador de calidad nutricional tras la aplicación de un 

proceso de conservación. Se evalua la cinética de degradación del ácido ascórbico 

tras la aplicación de PEAI en distintas bebidas a base de zumo de naranja (zumo 
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de naranja, mezcla de zumo de naranja y zanahoria y bebida a base de zumo de 

naranja y leche UHT desnatada), considerado el de mayor consumo a nivel 

mundial (AIJN, 2015) y se compara con las muestras tratadas térmicamente. 

La retención de ácido ascórbico en las muestras tratadas térmicamente es de 

92,5, 83,2 y 86,1% para el zumo de naranja, mezcla de zumo de naranja y 

zanahoria y bebida a base de zumo de naranja y leche, respectivamente. La 

aplicación de PEAI con un campo eléctrico de 15-40 kV/cm y un tiempo de 

tratamiento de 30-700 µs en las distintas muestras de naranja da lugar a una 

retención de ácido ascórbico superior al 97% en todas las muestras. Estos 

resultados se obtienen tras la aplicación de un campo eléctrico de 25 kV/cm 

durante 40 µs, 40 kV/cm durante 30 µs, y 25 kV/cm durante 40 µs para el zumo de 

naranja, mezcla de zumo de naranja y zanahoria y bebida a base de zumo de 

naranja y leche, respectivamente. 

El tiempo de reducción decimal de la bebida zumo-leche es superior al de las 

otras matrices, es decir, es necesario más tiempo de tratamiento para obtener 

una reducción del 10% de ácido ascórbico. En cambio, el zumo de naranja es el 

más resistente a los cambios de campo eléctrico. Este distinto comportamiento 

observado en la bebida a base de zumo de naranja y leche al estudiar la influencia 

del campo eléctrico y tiempo de tratamiento en la degradación del ácido 

ascórbico puede deberse a sus distintas características fisicoquímicas (pH y 

conductividad eléctrica), al efecto protector que pueden ejercer componentes de 

la leche, principalmente caseínas (Sobrino-López & Martín-Belloso, 2010), y/o a la 

adición de ácido cítrico como conservante en la bebida zumo-leche. 

Procesado de zumos de frutas por PEAI adicionados de Stevia rebaudiana como 

ingrediente natural con capacidad antioxidante/antimicrobiana 

Para evaluar el efecto del tratamiento de PEAI con la adición de Stevia 

rebaudiana como ingrediente natural con actividad antioxidante y antimicrobiana, 

se realiza un análisis de respuesta superficie (campo eléctrico de 20-40 kV/cm, 

tiempo de 100-360 µs y porcentaje de stevia de 0-2,5% (p/v)) a una bebida a base 

de zumo de papaya y mango, factible de ser tratada por PEAI, con una 

conductividad de 0,245 S/m. Además de demostrar la eficacia de stevia en la 
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inactivación de Listeria monocytogenes y de la actividad enzimática en 

combinación con la aplicación de PEAI, se observa un incremento de los 

compuestos fenólicos totales en esta bebida con stevia tratada por PEAI, que 

puede atribuirse a la extracción del contenido intracelular causado por la 

electroporación tras la aplicación de puslsos eléctricos junto con la demostrada 

inactivación de la polifenoloxidasa en presencia de stevia. 

Sin embargo, el tratamiento por PEAI da lugar a una disminución del 

contenido de ácido ascórbico (a mayor campo eléctrico, mayor degradación), 

posiblemente causado por la liberación de vitamina C tras la electroporación, 

susceptible de ser oxidada y degradada, como señalan otros autores (Leong y col., 

2016). El mayor contenido de antocianinas totales se obtiene al aplicar el mayor 

campo eléctrico (40 kV/cm) en presencia de stevia, de manera similar a los 

resultados obtenidos tras el tratamiento con APH. Este mismo efecto se observa 

con el contenido de carotenoides totales, ya que en presencia de stevia se 

alcanzan los máximos niveles con el tratamiento más intenso de PEAI. Los PEAI 

pueden actuar de modo ambiguo favoreciendo la extracción de carotenoides a 

partir de la matriz alimentaria pero generando especies reactivas que pueden dar 

lugar a la oxidación de los carotenoides, por lo que la stevia puede desempeñar 

un efecto protector dado su contenido en compuestos antioxidantes. 

En la bebida sin stevia tratada con un campo eléctrico de 40 kV/cm, un 

aumento del tiempo de tratamiento repercute negativamente en la capacidad 

antioxidante. Aunque los PEAI son una técnica de conservación no térmica, puede 

tener lugar un ligero aumento de la temperatura con campos eléctricos elevados, 

como han visto otros autores (Zhang y col., 2015), con lo que los compuestos 

termolábiles pueden verse afectados y disminuir la capacidad antioxidante. Sin 

embargo, no ocurre cuando se incluye stevia entre los ingredientes de la bebida, 

mostrando su efecto protector en la conservación de compuestos bioactivos y 

capacidad antioxidante de la bebida objeto de estudio. 

Como no sólo se pretende asegurar el aporte de compuestos bioactivos sino 

ofrecer un producto similar al fresco, se analizan también algunos parámetros 

fisicoquímicos tras los tratamientos de PEAI. Se obtiene una disminución del 

índice de pardeamiento al aumentar la concentración de stevia, el campo 
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eléctrico y el tiempo de tratamiento. El contenido de hidroximetilfurfural, 

relacionado con la pérdida de calidad de productos procesados, es menor en 

bebidas con adición de stevia, mostrando nuevamente el efecto protector de este 

ingrediente. La luminosidad (L*) aumenta tras la aplicación de PEAI en la bebida 

sin stevia, posiblemente en relación con la inactivación de enzimas responsables 

del pardeamiento tras la aplicación de pulsos eléctricos, tal y como señalan otros 

estudios (Bi y col., 2013). Las mayores variaciones de color observadas en bebidas 

sin stevia pueden deberse a la ruptura de membranas celulares con la 

consiguiente pérdida de funcionalidad de la compartimentalización celular y el 

aumento del contacto enzima-sustrato.  

Por lo que respecta a los glucósidos de esteviol, la aplicación de PEAI no 

modifica el contenido de rebaudiósido A y esteviósido de la bebida, salvo cuando 

se aplica 20 kV/cm durante 360 µs y 30 kV/cm durante 230 µs, dando lugar a un 

incremento de estos compuestos. Los PEAI pueden facilitar la extracción de los 

glucósidos de esteviol pero sólo aplicando condiciones moderadas, posiblemente 

por la degradación de estos compuestos a campos eléctricos altos, coincidiendo 

con observaciones de otros autores al emplear otras tecnologías no térmicas 

(Periche y col., 2015), que obtienen un incremento de la extracción de glucósidos 

de esteviol con ultrasonidos siempre que se empleen bajas temperaturas y 

tiempos de tratamiento. El contenido de rebaudiósido F y C aumenta tras el 

tratamiento por PEAI pero sólo en el caso de stevia al 2,5%, mostrando que hay 

una liberación de estos compuestos de la matriz alimentaria, y que además 

pueden tener lugar reacciones de síntesis y degradación como consecuencia de la 

pérdida de compartimentalización tras la electroporación, favoreciendo ciertas 

reacciones de hidrólisis o glicosilación de los glucósidos de esteviol y modificando 

su contenido en los productos alimentarios. Sin embargo, lo realmente 

interesante es el ratio rebaudiósido A/esteviósido, que representa un buen 

indicador cualitativo de la dulzura (a mayor ratio, mejor sabor) (Tavarini & 

Angelini, 2013). El mayor ratio se alcanza en la bebida adicionada de 2,5% de 

stevia tratada a 30 kV/cm durante 230 µs, correlacionado positivamente con los 

valores de sólidos solubles totales, por lo que puede valorarse su uso como 

medida de calidad edulcorante. 
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Teniendo en cuenta los resultados anteriores y como cabe esperar del mayor 

contenido de stevia (2,5%), la aplicación de un campo eléctrico de 21 kV/cm 

durante 360 µs permite la obtención del máximo contenido de compuestos 

bioactivos y propiedades edulcorantes y el mínimo cambio sensorial 

(hidroximetilfurfural y cambios de color). Sin embargo, cuando el objetivo es 

conocer las condiciones para obtener una bebida con la mínima carga microbiana, 

actividad enzimática y pardeamiento no enzimático y el máximo contenido de 

compuestos fenólicos y capacidad antioxidante con el fin de ofrecer al 

consumidor una bebida segura con una alta capacidad antioxidante, éstas son 40 

kV/cm de campo eléctrico, 360 µs de tiempo y 1,79%, (p/v) de stevia. Esta 

concentración de stevia coincide prácticamente con la obtenida en el estudio de 

optimización de APH aplicado a la bebida a base de zumo de papaya, mango y 

naranja. 

Comparación del procesado de zumos de frutas por tecnologías de pulsos 

eléctricos y ultrasonidos 

Asimismo, es importante comparar el efecto de las distintas tecnologías no 

térmicas, por lo que se trata la bebida a base de zumo de papaya y mango 

edulcorada con un 2,5% (p/v) de stevia, la de mayor contenido en compuestos 

bioactivos, a dos energías equivalentes (32 y 256 kJ/kg) con pulsos eléctricos de 

alta intensidad, descargas eléctricas de alto voltaje y ultrasonidos. 

En función del compuesto bioactivo analizado, una tecnología resulta mejor 

que otra. Así, los USN son la tecnología que permite la mayor concentración 

remanente de ácido ascórbico, mientras que en el caso de los carotenoides son 

los PEAI y en el caso de los compuestos fenólicos las DEAV con una energía de 256 

kJ/kg. Teniendo en cuenta estos resultados, se realiza un estudio de componente 

principal para poder ofrecer una conclusión sobre qué tecnología puede ser mejor 

para asegurar la presencia de compuestos bioactivos y capacidad antioxidante en 

la bebida. Los principales compuestos influyentes en la distribución de 

compuestos bioactivos son los carotenoides y el ácido ascórbico, seguido por los 

valores de capacidad antioxidante analizados por ORAC. Teniendo en cuenta esto, 

se puede concluir que el tratamiento de PEAI es el que permite obtener la bebida 
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a base de zumo de papaya, mango y stevia con mayor contenido de compuestos 

bioactivos. 

Obtención de zumo de “hielo” por prensado de manzanas pretratadas por PEAI 

La congelación del tejido vegetal y su posterior descongelación a la vez que se 

prensa permite la producción de un zumo más concentrado en las primeras 

etapas del proceso, cuando todavía existen cristales de agua en el tejido vegetal, 

mientras que se extraen los solutos no congelados, conocido como zumo de 

“hielo”. Buscando obtener un zumo con el mayor contenido en compuestos 

bioactivos, se estudia el prensado de tejidos de manzana (congelados y tratados 

por PEAI + congelados) a distintas presiones (2, 3 y 5 bares) para la obtención de 

zumo de manzana, el tercero en orden de consumo tras el de naranja y el 

multisabor (AIJN, 2015).  

En este caso se combina con el pretratamiento por PEAI, que acelera el 

proceso de congelación del tejido de manzana, posiblemente causado por los 

poros creados por los PEAI, lo que resulta beneficioso para la formación de 

cristales de hielo más pequeños y una mejor calidad del producto final. A pesar de 

que ambos procesos (congelación y aplicación de PEAI) causan daño celular, 

aumentando el rendimiento del zumo obtenido, la aplicación de PEAI puede dar 

lugar a cambios en la distribución espacial del contenido no congelado en el 

interior del tejido que facilita el flujo de zumo al aplicar una presión externa y por 

tanto explica la mejora en la cinética de producción del zumo de manzana. 

Las primeras fracciones de zumo de manzana obtenido cuando la temperatura 

en el interior del tejido es inferior a 0 ºC tienen un contenido de sólidos solubles 

(ºBrix) superior al de las últimas fracciones, alcanzando el máximo en el intervalo 

de temperatura entre 0 y 5 ºC, independientemente de la presión aplicada, como 

cabe esperar, dado que refleja el típico proceso de concentración por 

congelación, donde inicialmente se obtiene el zumo más concentrado y conforme 

pasa el tiempo, los cristales de hielo en el interior del tejido se descongelan y la 

concentración de sólidos solubles disminuye gradualmente. La aplicación de PEAI 

supone un aumento de la concentración de sólidos solubles en las primeras 

fracciones, lo que se puede explicar teniendo en cuenta que la descongelación 
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comienza en la superficie y la electroporación puede ejercer un efecto 

suplementario en el proceso de transferencia de materia en el tejido. 

Cuando se analiza la concentración de sólidos solubles en las porciones de 

zumo acumulado, se obtiene una mayor concentración de sólidos solubles en el 

zumo de manzana pretratado y sin pretratar (12,2 y 11,5 ºBrix, respectivamente) 

con el prensado a 5 bares en comparación con el prensado a 2 bares (8,8 ºBrix en 

ambos casos y un rendimiento de un 40% con respecto al zumo obtenido a 5 

bares). 

El pretratamiento por PEAI también da lugar a una mayor extracción de 

sólidos solubles, hidratos de carbono, compuestos fenólicos, flavonoides y 

capacidad antioxidante total en todos los casos. Por tanto, el proceso propuesto 

de PEAI + congelación + descongelado/prensado no sólo permite una reducción 

del tiempo de congelado, descongelado y prensado desde el punto de vista de 

ahorro de tiempo, sino también la obtención de un zumo de elevada calidad 

nutricional con un alto contenido en compuestos bioactivos. 

4.3. Evaluación in vitro de la bioaccesibilidad de compuestos bioactivos en 

bebidas a base de zumo de frutas y stevia 

Dada la importancia que los compuestos bioactivos se liberen de la matriz 

intestinal y se encuentren disponibles para ser absorbidos en el tracto 

gastrointestinal, se realiza un estudio de su bioaccesibilidad mediante una 

simulación gastrointestinal de las bebidas a base de zumo de papaya, mango, 

naranja, bebida de avena y açaí, edulcoradas con distintos porcentajes de stevia 

(0, 1,25 y 2,5%, p/v). Entre los métodos propuestos, se selecciona la simulación 

gastrointestinal descrita por Rodríguez-Roque y col. (2013) con algunas 

modificaciones, consistente en tres fases secuenciales: salivar (α-amylasa, mucina, 

Na2HPO4, KH2PO4 y NaCl, pH 6,75), gástrica (pepsina, pH 2) e intestinal incluyendo 

diálisis (pancreatina y bilis, pH 7,5). 

El contenido inicial de ácido ascórbico en las bebidas es de 28-33 mg/100 mL, 

mientras que en la fracción bioaccesible es inferior (0-13 mg/100 mL). No se 

detecta ácido ascórbico en la fracción bioaccesible de la bebida con stevia al 2,5% 
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(p/v), posiblemente porque la presencia de extracto acuoso de stevia puede 

interferir en la estabilidad del ácido ascórbico al aumentar el pH resultante. Con la 

ingesta de zumos a base de frutas se busca un aporte de vitaminas, siendo una de 

las principales la vitamina C que sólo está presente en alimentos de origen 

vegetal, lo que condiciona el uso del extracto acuoso de stevia como ingrediente 

en esta bebida, o al menos de su concentración, ya que en un porcentaje de 

1,25% (p/v), sí que se detecta ácido ascórbico en la fracción bioaccesible (6,1 

mg/100 mL), aunque inferior al contenido en la bebida sin stevia.  

Sin embargo, la adición de stevia supone una mejora en el contenido de 

carotenoides, compuestos fenólicos y antocianinas en la fracción bioaccesible. 

Además, la adición de extracto acuoso de stevia aumenta la capacidad 

antioxidante total en la fracción bioaccesible, por ser mayor ésta en la bebida 

inicial, independientemente del método de análisis empleado (TEAC, DPPH y 

ORAC), y por el aumento del porcentaje bioaccesible en el caso de TEAC y DPPH, 

posiblemente relacionado con el contenido en compuestos fenólicos como 

muestra el análisis de regresión múltiple. 

Los bajos valores de bioaccesibilidad de los carotenoides (0,6-6,0%) y 

antocianinas (0,2-9,4%) que se observan pueden atribuirse a su escasa 

incorporación en la fracción bioaccessible, pero debe tenerse en consideración 

que los resultados aquí presentados pueden estar subestimados, ya que en la 

absorción intestinal tienen lugar otros mecanismos de transporte (transporte 

facilitado y transporte activo) que no se analizan en el presente estudio. Además, 

en el caso de los compuestos fenólicos, la microflora intestinal también 

desempeña un papel crucial en la absorción de estos compuestos, no evaluado 

con el método descrito. Por ello, aunque estos datos puedan servir para 

establecer conclusiones preliminares, serían necesarios estudios adicionales in 

vivo evaluando la idoneidad de la adición de stevia en la bebida a base de zumo 

de papaya, mango, naranja, bebida de avena y açaí. 

A pesar del aumento del contenido de glucósidos de esteviol en la bebida tras 

el proceso de digestión al aumentar la concentración de stevia, su porcentaje de 

bioaccesibilidad no se ve modificado. Éste es de 23,9-29,0% en el caso del 

rebaudiósido A, esteviósido y rebaudiósido C, mientras que la bioaccesibilidad del 
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rebaudiósido F es muy elevada (160,3-172,9%), pudiéndose atribuir a una 

degradación enzimática a partir de otros glucósidos de esteviol (Pande & Gupta, 

2013), aunque el mecanismo de biosíntesis de los glucósidos de esteviol aún no 

está completamente elucidado. 
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5. CONCLUSIONES 

Del estudio realizado se pueden establecer las siguientes conclusiones: 

1. Los extractos acuosos de Stevia rebaudiana se pueden considerar una fuente 

natural de glucósidos de esteviol y compuestos antioxidantes, 

principalemente compuestos fenólicos. 

2. El empleo de un 2,5% (p/v) de extracto acuoso de stevia en una bebida a base 

de zumo de papaya, mango, naranja, bebida de avena y açaí aumenta el 

contenido en compuestos bioactivos y su capacidad antioxidante total, 

mostrando efectos sinérgicos cuando se emplea el método TEAC para 

determinar la capacidad antioxidante. 

3. El método fluorimétrico puesto a punto permite la cuantificación y 

automatización de la determinación de lisina disponible en alimentos líquidos 

y en polvo. Los parámetros analíticos indican que es un método sensible, 

preciso y exacto. 

4. Las APH, aplicando una presión de 300 MPa durante 14 minutos, junto con el 

empleo de stevia al 1,73% (p/v) maximiza el contenido de compuestos 

bioactivos (ácido ascórbico, compuestos fenólicos, antocianinas y 

carotenoides) y capacidad antioxidante mientras que minimiza las diferencias 

de color de una bebida a base de zumo de papaya, mango y naranja. 

5. Al aplicar los PEAI en distintos zumos a base de naranja se obtiene que el 

zumo de naranja es el más resistente a los cambios de intensidad de campo 

eléctrico mientras que para producir la misma degradación del ácido 

ascórbico, el tiempo de tratamiento es superior en la bebida de zumo de 

naranja-leche, mostrando la necesidad de optimizar las condiciones de 

tratamiento cada vez que se cambia la matriz o algún factor del procesado. 

6. La aplicación de dos estrategias de conservación (PEAI y stevia) a una bebida a 

base de zumo de papaya y mango permite obtener: 

a) Una bebida segura con la menor carga microbiana, actividad de enzimas 

oxidativas y pardeamiento no enzimático así como un alto contenido en 

compuestos fenólicos y capacidad antioxidante, con un campo eléctrico 

de 40 kV/cm durante 360 µs y la adición de 1,79% (p/v) de stevia. 
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b) Una bebida rica en compuestos bioactivos (ácido ascórbico, antocianinas y 

carotenoides), glucósidos de esteviol y mínimos cambios sensoriales 

(hidroximetilfurfural y color) con un campo eléctrico de 21 kV/cm durante 

360 µs y un porcentaje de stevia de 2,5% (p/v). 

7. El efecto de las tecnologías no térmicas estudiadas (PEAI, DEAV y USN) en la 

bebida a base de zumo de papaya, mango y stevia (2,5%, p/v) al aplicar 

energías de 32 y 256 kJ/kg depende del compuesto bioactivo estudiado, de 

modo que: 

a) Los USN permiten la obtención de la bebida con el mayor contenido de 

ácido ascórbico. 

b) Los PEAI son la tecnología que permiten un mayor contenido de 

carotenoides y capacidad antioxidante medida con el método ORAC. 

c) El contenido en compuestos fenólicos y capacidad antioxidante medida 

con el método TEAC y DPPH es superior en la bebida tratada por DEAV 

con una energía de 256 kJ/kg. 

d) Los PEAI son, en general, la tecnología que mejor retiene los compuestos 

bioactivos y capacidad antioxidante. 

8. Los PEAI constituyen una técnica que, aplicada como pretratamiento al 

prensado a temperaturas bajo cero, permite obtener un zumo de manzana 

con un mayor contenido de sólidos solubles, hidratos de carbono, compuestos 

fenólicos, flavonoides y capacidad antioxidante en las condiciones empleadas. 

9. El estudio de la bioaccesibilidad de la bebida a base de zumo de papaya, 

mango, naranja, bebida de avena y açaí, adicionada o no de stevia, indica que: 

a) No se detecta ácido ascórbico en la bebida con la máxima concentración 

(2,5%, p/v) de stevia tras el proceso de digestión. 

b) La adición de stevia supone un aumento de la bioaccesibilidad de 

carotenoides, compuestos fenólicos y antocianinas. 

c) La bioaccesibilidad de la capacidad antioxidante aumenta a medida que lo 

hace el contenido de stevia. 

d) A pesar del aumento del contenido de glucósidos de esteviol en la bebida 

tras el proceso de digestión al aumentar la concentración de stevia, su 

porcentaje de bioaccesibilidad no se ve modificado.  
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CONCLUSIONS 

The following conclusions can be established from the present study: 

1. Aqueous extracts of Stevia rebaudiana can be considered a natural source of 

steviol glycosides and antioxidant compounds, mainly phenolic compounds. 

2. The use of 2.5% (w/v) aqueous stevia extracts in a beverage based on papaya, 

mango and orange juice, oat beverage and açaí increases bioactive 

compounds and total antioxidant capacity, showing synergistic effects when 

TEAC method is used to determine total antioxidant capacity. 

3. The fluorimetric method developed allows quantification and automatisation 

of available lysine determination in liquid and powdered foods. Analytical 

parameters indicate it is a sensitive, precise and exact method. 

4. Application of HPP at a pressure of 300 MPa during 14 minutes, along with the 

use of 1.73% (w/v) of stevia maximises bioactive compounds content 

(ascorbic acid, phenolic compounds, anthocyanins and carotenoids) and 

antioxidant capacity while minimising the differences in colour of a drink 

made from papaya, mango and orange juice. 

5. When applying PEF treatment to different orange juice based beverages, 

orange juice is the most resistant to electric field strength changes while 

orange juice-milk beverage needs a greater treatment time in order to 

achieve the same ascorbic acid degradation. These results highlight the need 

to optimise processing conditions when food matrix or a processing factor is 

changed. 

6. Application of two conservation strategies (PEF and stevia) to a beverage 

based on papaya and mango juice allows the obteinment of: 

a) A safe beverage with the lowest microbial load, oxidative enzymes activity 

and non-enzymatic browning along with a high content of phenolic 

compounds and antioxidant capacity with an electric field of 40 kV/cm 

during 360 µs and 1.79% (w/v) of stevia. 

b) A beverage rich in bioactive compounds (ascorbic acid, anthocyanins, 

carotenoids), steviol glycosides and the minimum sensory changes 
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(hydroxymethylfurfural and colour) with an electric field of 21 kV/cm 

during 360 µs and 2.5% (w/v) of stevia. 

7. The effect of the studied non-thermal technologies (PEF, HVED and USN) in 

the papaya, mango juice and stevia (2.5%, w/v) based beverage when 

applying energy inputs of 32 and 256 kJ/kg depends on the bioactive 

compound studied, so:  

a) USN allows the obteinment of the beverage with the highest content of 

ascorbic acid. 

b) PEF technology allows the highest content of carotenoids and antioxidant 

capacity measured with the ORAC method. 

c) Phenolic content and antioxidant capacity measured with DPPH and TEAC 

method are highest in the beverage treated by HVED with an energy input 

of 256 kJ/kg. 

d) PEF is, in general, the technology which better retains bioactive 

compounds and antioxidant capacity. 

8. PEF treatment is a technique which, applied as pretreatment to pressing at 

subzero temperatures, allows the obteinment of an apple juice with a higher 

soluble solid content, carbohydrates, phenolic compounds, flavonoids and 

total antioxidant capacity under the assayed conditions. 

9. The bioaccessibility study of the beverage based on papaya, mango, orange, 

açaí and oat beverage, with or without stevia, indicates that: 

a) No ascorbic acid is detected in the beverage with the maximum stevia 

concentration (2.5%, w/v) after the digestion process. 

b) Stevia addition results in an increase in the carotenoid, anthocyanin and 

phenolic compound bioaccessibility. 

c) Bioaccessibility of antioxidant capacity increases as does stevia 

concentration. 

d) Despite the increase in the steviol glycosides content in the beverage after 

the digestion process when increasing the stevia concentration, 

bioaccessibility percentage does not modify.  
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Chapter 4 

Juana M. Carbonell-Capella, María J. Esteve and Ana Frígola*

Department of Nutrition and Food Chemistry,  
Universitat de València, Burjassot, Spain 

ABSTRACT

Stevia rebaudiana (Stevia) leaf extract, used as a vegetable-based sweetening 
additive in drinks and other foods due to steviol glycosides content, has been 
demonstrated to exhibit extremely high antioxidant capacity due to its high content in
potential antioxidant food compounds such as phenolic compounds. However, 
concentration of bioactive compounds and total antioxidant capacity in stevia products 
may depend on the origin of the product. For this reason, Stevia leaves direct infusions, 
Stevia crude extract (Glycostevia-EP®), purified steviol glycosides (Glycostevia-R60®), 
and commercialized Stevia powdered samples in different countries (PureVia, TruVia 
and Stevia Raw) were evaluated for their content in ascorbic acid (AA), total carotenoids 
(TC), total phenolic content (TPC), phenolic profile, total anthocyanins (TA), steviol 
glycosides profile, and antioxidant capacity (trolox equivalent antioxidant capacity 
(TEAC) and oxygen radical absorbance capacity (ORAC)). Eleven phenolic compounds, 
including hydroxybenzoic acids (2), hydroxycinnamic acids (5), flavones (1), flavonols 
(2) and flavanols (1) compounds, were identified in Stevia-derived products. Of these, 
chlorogenic acid was the major phenolic acid. Rebaudioside A and stevioside were the 
most abundant sweet-tasting diterpenoid glycosides. Total antioxidant capacity (TEAC 
and ORAC) was shown to be correlated with TPC. From all of the analysed samples, 
Stevia leaves direct infusions and Stevia crude extract (Glycostevia-EP®) were found to
be a good source of sweeteners with potential antioxidant capacity. 

Keywords: Stevia rebaudiana, food additives, steviol glycosides, phenolic compounds 
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Abstract A new method for quick analysis of available
lysine content in different food products has been developed
by automating a 96-well microtiter plate assay. Although
manual fluorometric methods validated in order to determi-
nate available lysine content already existed for this com-
pound, the benefits of applying appropriate automation
should provide continuous operation, increased precision,
an affordable electronic audit trail, and significantly reduced
time and reagent consumption. The objective of this work
was to adapt the ortho-phthaldialdehyde (OPA) fluorometric
method to an automated workstation. Considerable effort
went into developing and validating an automated method.
The analytical parameters of linearity (r00.999), the preci-
sion of the method (relative standard deviations02.8–3.0 %
for the different samples), and the results of the comparison
with the corresponding OPA manual fluorometric method
show that the studied method is useful for the measurement
of available lysine in several food products from different
natural origins such as liquid foods (soy, oat, quinoa bev-
erages, and ultra-high temperature/sterilized milk) and pow-
dered samples (powdered adapted, powdered follow-up, and
junior milk infant formulas) with reduced time and reagent
consumption.

Keywords Lysine . 96-Well microtiter plate assay .

Automation .Maillard reaction . Fluorometric determination

Introduction

Maillard browning is one of the main chemical reaction
causing deterioration of proteins during processing and stor-
age of foods. This reaction between free amino groups and
reducing sugars reduces protein digestibility and amino acid
availability (Malec et al. 2002).

Available lysine content is an indicator of early and
advanced Maillard reaction phases (Ferrer et al. 1999) and
can be a useful tool in order to predict nutritional losses. The
quantitative analysis of available lysine content together
with its degradation products has been used as a chemical
marker of protein quality (Meade et al. 2005).

Different methods like spectrophotometric (Carpenter
1960; Kakade and Liener 1969; Vigo et al. 1992), chro-
matographic (Albalá-Hurtado et al. 1997; Fernández-
Artigas et al. 1999; McEwen et al. 2010), and fluorometric
(Ferrer et al. 2003; Goodno et al. 1981; Morales et al. 1995)
have been proposed for the determination of available lysine
content in food products. Conventionally, the fluoro-2,4-
dinitrobenzene assay has been the most extensively used
method (Smith 2010). However, Vigo et al. (1992) and
Morales et al. (1995) demonstrated that this method was
time consuming and special precautions were necessary.
Dialysis of carbohydrate-rich samples is recommended
since it avoids the uncertainty inherent in applying correc-
tion factors for reaction interference, but this adds 2 or 3 days
to each assay (Tomarelli et al. 1985). In order to eliminate
possible interferences by spectrophotometric methods,
Goodno et al. (1981) established a fluorometric analysis
using ortho-phthaldialdehyde (OPA) for estimating reactive
lysine in proteins, which has been used widely in the pub-
lished literature (Morales et al. 1995; Swaisgood and
Ctagnani 1985; Vigo et al. 1992). The use of OPA does
not require hydrolysis or amino acid analysis of the sample
and does not require heating or solvent extraction that can
release lysine from modified forms (Ferrer et al. 2003). The
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OPA reaction is rapid and complete at room temperature, and
the complex formed by lysine and OPA is fluorescent, while
side-products are not fluorescent. Furthermore, the amount of
sample needed is small, sugars do not interfere, and the assay
is reproducible and easy to perform. The main disadvantage is
the instability of the fluorescent complex (Goodno et al.
1981). More recently, chromatography has been used for
determination of available lysine. Chromatographic methods
offer good linearity and reproducibility, but they are time and
solvent consuming. The aim of the current study was to
develop and validate a new method (sensitive, economical,
and with minimal solvent consumption) for quick analysis of
available lysine content in different food products by auto-
mating a 96-well microtiter plate assay.

Materials and Methods

Samples

Three units from each of two batches of different food
products marketed in Spain were purchased from a local
supermarket (Valencia, Spain) and were analyzed: liquid
foods (soy, oat, quinoa beverages, and ultra-high tempera-
ture/sterilized milk) and powdered samples (powdered adap-
ted, powdered follow-up, and junior milk infant formulas)
were used. The powdered samples were rehydrated in ac-
cordance with the manufacturer's instructions (130 g/L).
Table 1 gives details (as indicated on the label) of each of
the samples analyzed.

Materials and Reagents

All reagents were of analytical reagent grade. Anhydrous eth-
anol, sodium tetraborate, and sodium hydroxide were from
Panreac (Barcelona, Spain). Casein from bovinemilk was from
Sigma-Aldrich (Steinheim, Germany). Intermediate (10 mg/
mL casein) and working standard solutions were prepared in
sodium tetraborate buffer (pH09). Trichloroacetic acid (TCA)

was from Fluka (Buchs, Switzerland). Hydrochloric acid, β-
mercaptoethanol, sodium dodecyl sulfate (SDS), and ethanol
were from Merck (Darmstadt, Germany). OPA reagent was
prepared daily according to Goodno et al. (1981) as follows:
80 mg OPA 99 % (Merck) in 2 mL ethanol, 50 mL 0.1 M
sodium tetraborate buffer (pH9.7–10.0), 5 mL SDS (200 g/L),
and 0.2 mL β-mercaptoethanol. Ninety-six-well black bottom
plates were from Sero-Wel, Bibby Sterilin Ltd. (Stone, UK).

Instrumentation

All analyses were performed on a spectrofluorophotometer
(RF-5000 Shimadzu Corporation, Kyoto, Japan) for the
OPA manual method and on a microplate spectrofluorome-
ter Wallac 1420 VICTOR2 multilabel counter from Perkin-
Elmer (CA, USA) for the OPA automated method. Setting
was: lexcitation0340 nm and lemission0455 nm.

Procedure for Analytical Optimization of the Automated
Method

Preparation of samples, interferences determination, prepa-
ration of blanks, calibration, and calculations for available
lysine determination were already optimized during the
previous development of the manual method of the OPA
assay (Ferrer et al. 2003). The amount of sample and the
volume of water needed to obtain a solution containing 0.6–
3 % of proteins were used. Then, 1 mL SDS solution (120 g/
L) was added to 950 μL of water and 50 μL of liquid food
or powdered sample (0.3–1.5 mg of proteins). In order to
eliminate possible interferences caused by small peptides,
2 mL of TCA was added to 2 mL of liquid samples or
powdered samples and then centrifuged at 3,000 rpm for
15 min. Nine hundred microliters of water and 1 mL SDS
solution (120 g/L) were added to 100 μL of supernatant. For
the preparation of the blanks, 1 mL SDS solution (120 g/L)
was added to 1 mL of water. The tubes from samples,
interferences, and blanks were allowed to cool at 4 °C for
12 h and the sonicated for 15 min at 25 °C. Figure 1 shows a

Table 1 Nutritional composi-
tion of the commercial samples
analyzed as indicated on the
labels

IF infant formulas, UHT ultra-
high temperature

Sample Proteins Carbohydrates Fat

Liquid samples (g/100 mL) Soy beverage 3.4 3.7 0.9

Oat beverage 1.0 6.1 1.0

Quinoa beverage 3.0 3.7 2.8

Liquid UHT milk/liquid sterilized milk 3.0 4.9 1.6

3.0 4.6 1.5

Powdered samples (g/100 g) Powdered adapted IF 9 58 26

Powdered follow-up IF 10 62 19

Junior milk IF 13 56 25
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Fluorescence
λ = ex 340 nm
λ = em 455 nm

SAMPLE PREPARATION

Liquid
samples

Powdered
samples

No dilution 1.3 g in 10 mL

1 min 
shaking

50 μL
sample

15 min ultrasounds (25 ºC)

FLUOROMETRIC 
DETERMINATION

OPA
manual method

INTERFERENCES BLANK

2 mL
sample

+ 2 mL TCA  (10%,w/v)
1 min shaking

3000 rpm, 15 min, 4 ºC

100 μL 
supernatant

+ 900 μL water
+ 1 mL SDS 12% (w/v)

1 mL
water

+ 1 mL
SDS 12% (w/v)

OPA 
automated method

+ 950 μL water
+ 1 mL SDS 12% (w/v)

+ 100 μl 0.1 M sodium
tetraborate buffer (pH = 9)

+ 3 mL OPA 

Vortex
1 min

Water bath
2 min/25 ºC

100 μl sample
standard
blank

8 μl sample
blank
standard

+ 8 μl 0.1 M sodium
tetraborate buffer (pH = 9)

+ 250 μL OPA 

2 min/25 ºC
Shaking

Fluorescence
λ = ex 340 nm
λ = em 455 nm

Fig. 1 Schematic of the experimental procedure for the determination of available lysine
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diagram of the preparation process. A standard of casein bovine
milk was used to prepare a calibration curve. A set of casein
working standards (0.1–1mg/mL casein in assay solution), with
lysine contents ranging from 0.0085 to 0.0850 mg lysine mL−1

assay solution, was prepared using 0.1 M sodium tetraborate
buffer (pH09) as solvent. The conversion factor of casein to
lysine was calculated considering that as1-casein, as2-casein, β-
casein, and κ-casein have, respectively, 14, 24, 11, and 9 resi-
dues of lysine/protein molecule, that the αs1-casein:αs2-
casein:β-casein:κ-casein ratio was 0.45:0.12:0.33:0.10, the mo-
lecular weights were 23,615, 25,230, 23,983, and 19,007 Da,
respectively, and the molecular weight of lysine was 146.1 Da
(Eigel et al. 1984; Modler 1985). Thus, milligram lysine/milli-
gram casein (F)0Σ (RL×WL/Wc×Rp)00.08484, where RL are
the residues of lysine in each casein;WL is the molecular weight
of lysine; Wc is the molecular weight of each casein; and Rp is
the protein ratio in each casein.

Results and Discussion

Adaptation and Optimization of the OPA Method
by Automating a 96-Well Microtiter Plate Assay

There is no methodology available to analyze available
lysine using 96-well microtiter plates; the use of which
would allow a rapid determination of available lysine in
different samples after processing or storage at the same
time. The described method is an adaptation of the OPA
fluorometric assay for the determination of available lysine
proposed by Ferrer et al. (2003) with modifications. After
applying the method described, it was seen that with the
conditions applied, it was not possible to determinate avail-
able lysine content due to the reduced volume of wells.
Sample quantity was decreased (5–20 μL). When 8 μL of
sample was used, the best reproducibility of the results was
found. The plate allows the analysis of a high number of
samples at the same time. The spectrofluorometer Wallac
1420 VICTOR2 multilabel was programmed to use a two-
reagent system. The reaction mode pipetted and transferred
the sample (8 μL), 0.1 M sodium tetraborate buffer (pH09)
(8 μL), and main reagent (250 μL OPA) into the main
reagent wells of their respective cuvette rotor positions.
With spinning of the rotor, the reagents were mixed and
incubated for 2 min at 25 °C and fluorescence was mea-
sured. Figure 1 shows a schematic of the experimental
arrangement for automated determination of available ly-
sine. The 0.1-M sodium tetraborate buffer (pH09) was used
as a blank, and 0.1, 0.2, 0.4, 0.6, 0.8, and 1 mg/mL casein
were used as standards. A sample of 0.3 mg/mL casein was
used as quality control (QC). Samples and standard calibra-
tion solutions were always analyzed in duplicate in a “for-
ward-then-reverse” order as follows: blank, 0.1 mg/mL

casein, 0.2 mg/mL casein, 0.4 mg/mL casein, 0.6 mg/mL
casein, 0.8 mg/mL casein, and 1 mg/mL casein, QC, sample
1… sample 1, QC, 1 mg/mL casein, 0.8 mg/mL casein,
0.6 mg/mL casein, 0.4 mg/mL casein, 0.2 mg/mL casein,
0.1 mg/mL casein, and blank. This arrangement can correct
possible errors due to the signal drifting associated with the
different positions of the same sample. Determinations were
carried out in quadruplicate. The absorbance of the sample
was corrected for the absorbance of the blank and of the
interferences. Lysine content (in milligrams) was obtained
by interpolating in the calibration curve.

Validation of the OPA Automated Using a 96-Well
Microtiter Plate Assay

To verify the quality and usefulness of the method, the
analytical parameters linearity, sensitivity, precision, and
percentage of recovery were determined for all the matrices
mentioned in Section 2.1. Linearity was checked in the
range of 0.1–1 mg standard casein/mL, corresponding to
0.0085–0.085 mg available lysine per milliliter. Good line-
arity was obtained for the studied range of available lysine
contents for the OPA fluorometric automated (y07·106 x+
6135.9; r200.999) and manual (y0217.890 x+0.554;
r200.999) methods.

LOD was evaluated on the standard deviation of the
response of the blank and the slope using the ratio 3·Sn−1/
m, where Sn−1 is the standard deviation of the response of
the blank and m is the slope of the calibration curve of the
analyte. The Sn−1 value estimated on the standard deviation
of the blank was obtained by analyzing n010 blanks. The
values of the detection limit for the automated method were
calculated in the cuvette and in the samples (liquid and
powdered). The detection limits in cuvette were 0.00008
and 0.00264 mg for automated and manual methods,

Table 2 F test for comparison of the precision of the OPA automated
and manual fluorometric methods

Samples S′1 S′2 F testa

Soy beverage 0.0013 0.0027 0.4316

Oat beverage 0.0007 0.0009 0.7576

Quinoa beverage 0.0038 0.0065 0.5787

Liquid UHT and sterilized milk 0.0026 0.0031 0.8321

Powdered adapted IF 0.0103 0.0214 0.4800

Powdered follow-up IF 0.0293 0.1098 0.2665

Junior milk IF 0.0481 0.0720 0.6679

n06

IF infant formulas, S′2 corrected sample variance, UHT ultra-high
temperature
aF0S1

′2 /S2
′2 ; tabulated F values: F0.05 (5.5)05.05 (p00.05), F0.01 (5.5)0

10.97 (p00.01)
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respectively. In addition, the detection limits for liquid sam-
ples were 0.0090 and 0.0331 g/L for automated and manual
methods, respectively. Meanwhile, the values of detection
limit for powdered samples were 0.2544 and 0.6881 g/kg for
automated and manual methods, respectively. These results
showed that the OPA automated method was more sensitive
than manual method for liquid and powdered samples, al-
though in all the cases, the values obtained allowed the
detection of available lysine in the studied samples. In
addition, the OPA automated method was more sensitive
for liquid foods than for the powdered samples.

Limit of quantification (LOQ) corresponds to the mini-
mum quantity with which it is possible to quantify without
uncertainty (LOQ010·Sn−1/m). The values of the detection
limit for the automated method were calculated in the cu-
vette and in the samples (liquid and powdered). The quan-
tification limits in cuvette were 0.00026 and 0.00879 mg for
automated and manual methods, respectively. In addition,
the quantification limits for liquid samples were 0.1102 and

0.2982 g/L for automated and manual methods, respective-
ly. Meanwhile, the values of quantification limit for pow-
dered samples were higher in automated (0.8480 g/kg) and
manual (2.2937 g/kg) method. These results showed that the
OPA automated and manual methods allowed the quantifi-
cation of all the samples analyzed, in the present study,
without problems.

Instrumental precision was checked from six consecutive
analysis of a sample extract and was expressed as relative
standard deviations (RSD%). The instrumental precision
values of liquid foods were 2.5 and 3.1 % for automated
and manual methods, respectively. With regard to powdered
samples, the instrumental precision values given by auto-
mated (2.1 %) and manual method (2.9 %) were in the range
of those previously reported in liquid samples.

The precision of the method was determined by preparing
six aliquots of the sample and was expressed as RSD%. The
RSDs for six replicates of the liquid samples given by auto-
mated and manual methods were 3.0 and 3.8 %, respectively.
With regard to powdered samples, method precision values
were 2.8 and 4.3 %, for automated and manual methods,
respectively. Due to the difficulty in finding certified samples
similar to those used in this study for evaluating method
conditions, a recovery assay was carried out. A known quan-
tity of casein standard (1 mg/mL casein assay; 0.085 mg/mL
lysine of assay) was added to each of the samples analyzed in
this study and the method described was applied. The recov-
ery percentages obtained in liquid samples were 100.3±1.9
and 101.0±1.2 % for automated and manual methods, respec-
tively. The results obtained when the recovery assays were
performed in powdered samples were in accord to those
obtained for liquid samples. In this case, automated and man-
ual methods quantified the 101.2±1.0 and 103.3±3.4 % of
available lysine, respectively.

In order to estimate if the studied methods can be used
with the same confidence, the precision and accuracy of

Table 3 T test for comparison of the accuracy of the OPA automated
and manual fluorometric methods

Paired data t test

Samples d Sn−1
dj j

Sn�1
� pn

Soy beverage −0.04 −0.06 1.60

Oat beverage 0.02 0.04 1.45

Quinoa beverage 0.10 0.09 2.30

Liquid UHT and sterilized milk 0.08 0.07 2.52

Powdered adapted IF −0.04 0.16 0.61

Powdered follow-up IF −0.19 0.34 1.23

Junior milk IF 0.03 0.32 0.19

n06

IF infant formulas, UHT ultra-high temperature, d mean value of
differences (OPA automated method−OPA manual method), Sn−1
standard deviation of differences; tn−1

0.05/2 02.571

Table 4 Chemically available lysine content by OPA manual and automated fluorometric methods

Samples Manual Automated

g/L mg lys/g ref protein g/L mg lys/g ref protein

Liquid samples Soy beverage 1.09±0.04 31.91±1.04 1.07±0.03 31.47±0.83

Oat beverage 0.67±0.02 67.50±1.41 0.66±0.02 66.00±2.83

Quinoa beverage 2.08±0.07 69.17±2.59 2.22±0.05 74.33±1.41

Liquid UHT and sterilized milk 2.02±0.04 68.00±1.89 2.12±0.04 71.00±2.36

g/kg mg lys/g ref protein g/kg mg lys/g ref protein

Powdered samples Powdered adapted IF 3.72±0.09 41.22±1.41 3.45±0.07 38.33±0.79

Powdered follow-up IF 5.97±0.22 59.45±2.47 5.42±0.13 54.25±1.06

Junior milk IF 8.56±0.20 65.81±1.03 8.54±0.17 65.58±0.82

n06

IF infant formulas, Lys lysine, Ref reference, UHT ultra-high temperature
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these for the different samples were compared (Tables 2 and
3). In the comparison of precision, six batches of a sample
were analyzed for the studied methods. A comparison of
variance by an F test showed that the methods were similar
in precision (p>0.05; Table 2). In the comparison of accu-
racy (t test), six batches of the different samples were
analyzed by each method, twice and on different days
(Table 3). From these results, it should be noted that non-
significant differences (p<0.05) among the OPA manual
and automated fluorometric assays were obtained for the
samples analyzed.

Comparison of the Available Lysine Contents After
Determination with OPA Method Using Automated 96-Well
Microtiter Plate Assay and Traditional OPA Method

The available lysine contents in the samples analyzed are
shown in Table 4 (expressed as grams per liter for liquid foods
and grams per kilogram for powdered samples). In general, the
average available lysine value in dairy protein-based formulas
was in the range of the standard values of amino acid require-
ments established by Institute of Medicine (2005) (children
≤2 years 58, 10–12 years 44, and adults 16 mg lysine/g
reference protein) and the mean value accepted for humanmilk
(66 mg/g) established by World Health Organization (2000).
Available lysine contents of these formulas were lower than
that for powdered milk prepared in laboratory studied by
Pereyra-Gonzáles et al. (2003) (80.4 mg/g) or those reported
in the literature (76.6–85.4 mg/g protein) by different authors
(Erbersdobler and Hupe 1991; Ferrer et al. 2003; van Mil and
Jans 1991; Vigo et al. 1992). However, powdered adapted IF,
containing soy protein, had a lower content in available lysine
(p<0.05) in comparison to the other formulas. Pereyra-
Gonzáles et al. (2003) also observed significantly lower values
in formulas containing soy protein with regard to dairy protein-
based formulas, obtaining similar values of 45.0±8.3 mg/g
protein to those found in the present study. In addition, pow-
dered infant formulas had lower contents of available lysine
than those reported for the corresponding protein sources: soy
protein (63.4–64.1 mg/g protein); casein (79.8–85.0 mg/g
protein); milk (76.6–85.4 mg/g protein); and whey protein
(80–97.5 mg/g protein) (Erbersdobler and Hupe 1991;
Friedman and Brandon 2001; Souci et al. 2000; Vigo et al.
1992). The losses were probably a consequence of the com-
bined effects of the type of protein, the treatments during the
manufacture, and the different time and conditions of storage.

Amigo-Benavent et al. (2008) found available lysine
values ranging from 1.54 to 9.76 mg/g of protein in soy
products. When they studied a liquid soymilk beverage
similar to the soymilk studied in the present study, they
reported available lysine content (29.2 mg/g) very closed
to that found in this study. In addition, data on lysine content
of the soymilk studied in this work compared well with

previously published data (Kwok et al. 1998; Souci et al.
2000).

In the published literature, it was not possible to find any
studies of chemically available lysine contents in oat or in
quinoa-based beverages in order to make a comparison with
the results obtained in this study. However, bearing in mind
the nutritional purpose of these foods in some population
groups, it should be noted that compliance in available lysine
content is essential to ensure nutritional quality and to avoid
potential harmful effects in target groups. Moreover, taking
into account the lysine content of oat and quinoa beverages, it
can be concluded that generally the protein quality of these
beverages was comparable to that of cow's milk (74.3 mg/g of
protein) and egg whites (64.9 mg/g of protein) (Souci et al.
2000).

Conclusion

The analytical parameters linearity, detection limit, preci-
sion, and accuracy of the assay showed that the automated
method studied was useful for measuring the available ly-
sine content in food products. The method was easy to
perform, and the fact that sample preparation was the same
for all the samples makes it suitable as a method for routine
determinations. This method was valid in order to quantify
the changes in the available lysine content of liquid foods
and powdered samples after and during processing/preser-
vation treatment and subsequent storage.
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High pressure processing of fruit juice mixture sweetened with Stevia rebaudiana
Bertoni: Optimal retention of physical and nutritional quality
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The impact of high pressure processing (HPP) technology on physicochemical properties (color, browning
index, turbidity index), bioactive compounds (ascorbic acid, total phenolic compounds, total anthocyanins,
total carotenoids) and antioxidant capacity of a fruit juice mixture (papaya (32.5%, v/v), mango (10%, v/v)
and orange (7.5%, v/v)) sweetened with Stevia rebaudiana Bertoni at different percentages was studied.
The experimental design comprised a response surface methodology according to a central composite
face-centered design. The variable ranges were 300–500 MPa (pressure), 5–15 min (time), 0–2.5% Stevia
percentage. This design was used to determine the optimal high pressure-Stevia concentration in order to ob-
tain the best retention of physicochemical and nutritional quality in the beverage following high pressure.
HPP conducted at 300 MPa for 14 min led to a beverage with the greatest presence of antioxidant com-
pounds and total color differences lower than 3.
Industrial relevance: There has been increasing interest in the use of non-caloric sweeteners from plant
sources, among them is Stevia rebaudiana Bertoni, due to the growing evidence of its health benefits. Com-
bined mixtures of S. rebaudiana water extracts and fruit juice can be a useful tool in order to provide new
food products with increased nutritional properties. Moreover, high pressure processing (HPP) allows the
acquisition of drinks that keep their characteristics similar to the fresh product. A deeper knowledge of the
effect of HPP on the nutritional and physicochemical characteristics of these new beverages processed by
HPP with regard to unprocessed juices is necessary.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the last years, new functional juices without sugar and/or obtained
from exotic fruits are becoming common in Japanese, US and EUmarkets
and have been receiving considerable attention as their market potential
grows (Perumalla & Hettiarachchy, 2011; Puri, Sharma, & Tiwari, 2011).
In addition, food industry has shown increased interest in plant extracts
from Stevia rebaudiana (Stevia) Bertoni, because it can be a nutritional
strategy in order to replace or substitute sugar energy content due to its
high content in non-nutritive sweeteners (Nehir El & Simsek, 2012). Cur-
rently, Stevia in leaf or extracted forms was approved by FDA as a dietary
supplement in the US, and under similar classifications in several other
countries. InNovember 2011, the European Commission approved steviol
glycosides as food additives (European Commission, 2011), which will
probably lead to wide-scale use in Europe (Stoyanova, Geuns, Hideg, &
Van den Ende, 2011). So far, little data has been available regarding the
practical applications in foods and stability under different processing
and storage conditions (Nehir El & Simsek, 2012). The leaves of Stevia
have functional and sensory properties superior to those of many other

high-potency sweeteners, and is likely to become a major source of
high-potency sweetener for the growing natural food market (Goyal,
Samsher, & Goyal, 2010). Moreover, it has been reported that Stevia is
nutrient-rich, containing substantial amounts of minerals, vitamins, poly-
phenols and other antioxidant compounds. In some countries, Stevia has
been consumed as a food and medicine (ethnobotanical) for many
years, including most notably Japan and Paraguay (Lemus-Mondaca,
Vega-Gálvez, Zura-Bravo, & Ah-Hen, 2012). In addition, Stevia sweetener
extractives are suggested to exert beneficial effects on human health, as
they have anti-hyperglycemic, anti-hypertensive, anti-inflammatory,
anti-tumor, anti-diarrheal, diuretic, and immunomodulatory effects
(Chatsudthipong & Muanprasat, 2009).

On the other hand, orange and different exotic fruits such as
mango and papaya are a good source of bioactive compounds like
ascorbic acid, polyphenols, and carotenoids. These compounds have
been shown to be good contributors to the total antioxidant capacity
of foods (Vijaya, Sreeramulu, & Raghunath, 2010; Zulueta, Esteve, &
Frígola, 2009) and have been involved in the prevention of some de-
generative diseases (Devalaraja, Jain, & Yadav, 2011).

The development of non-thermal processing technologies combined
with natural additives to obtain healthier and safer food products is one
of the major challenges facing the food industry in the new century
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(Barros-Velazquez, 2011; Norton & Sun, 2008). So, high pressure pro-
cessing (HPP) can be a useful tool in order to achieve this goal. With
this kind of treatment it is possible to inactivate and inhibitmicroorgan-
isms, and it can activate or inactivate enzymes at low temperatures
(Saucedo-Reyes, Marco-Celdrán, Pina-Pérez, Rodrigo, & Martínez-
López, 2009; USFDA, 2000), while compounds of lowmolecular weight,
such as vitamins and compounds related to pigmentation and aroma,
remain unaltered (Rastogi, Raghavarao, Balasubramaniam, Niranjan, &
Knorr, 2007). In fluid foods, pressure is transmitted uniformly and in-
stantly, that is, there are no gradients (it follows the so-called isostatic
rule) (Thakur & Nelson, 1998; Toepfl, Mathys, Heinz, & Knorr, 2006).
Unlike what happens with heat processes, HPP is independent of the
size and geometry of the product, which reduces the time required to
process large quantities of food (Rastogi et al., 2007).

Response surface methodology (RSM) has been used in the opti-
mization of food processes to define the relationships between the re-
sponses and independent variables. RSM has important application in
the design, development, and formulation of new products (Bas &
Boyaci, 2007). Different authors have used RSM to evaluate the effect
of the HPP conditions such as the pressure, temperature and time on
antioxidant compounds and physicochemical parameters of food
products (Roldán-Marín, Sánchez-Moreno, Lloría, De Ancos, & Cano,
2009; Terefe, Matthies, Simons, & Versteeg, 2009). These authors con-
cluded that all the factors, pressure, temperature, and time, signifi-
cantly influenced different nutritional and quality parameters.

The aims of the present study were (1) to investigate the effects of
the HPP conditions, specifically pressure and time, as well as the in-
fluence of Stevia concentrations on bioactive compounds (ascorbic
acid, total phenolics, total anthocyanins, total carotenoids), antioxi-
dant capacity, and physicochemical properties (turbidity, browning,
color) of a fruit juice mixture sweetened with Stevia and (2) to deter-
mine optimum conditions in order to obtain a fruit juice mixture bev-
erage sweetened with Stevia with the highest levels of health-related
compounds and the best physicochemical properties.

2. Materials and methods

2.1. Samples

2.1.1. Fruit juice mixture
Oranges (Citrus aurantium, cultivar Salustiana), mango (Mangifera

indica), and papaya (Carica papaya) were purchased from a local su-
permarket (Valencia, Spain). Orange, mango and papaya juices were
extracted after appropriate washing and hygienization of the fruits,
then the pulp was removed. The fruit juice mixture was prepared,
based on sensory evaluations of color and appearance of 25 assessors
from the University of Valencia and Agro-Chemistry and Food Tech-
nology Inst., by mixing 32.5% (v/v) of papaya juice, 10% (v/v) of
mango juice, 7.5% (v/v) of orange juice, and water to 100%.

2.1.2. Stevia infusion
A stock solution of 8.33% (w/v) was prepared from dried leaves.

One hundred mL of boiling distilled water was added to the dried
leaves (8.33 g), the mix was covered and let infuse for 30 min. The in-
fusion was vacuum filtered using filter paper (Whatman No. 1) and
the filtrate obtained was stored at −40 °C.

2.1.3. Fruit juice-Stevia mixture (FJ-Stevia)
Different volumes of Stevia stock solution (3 and 6 mL) were

added to 14 mL of fruit juice mixture to obtain Stevia concentrations
of 1.25 and 2.50%, respectively. Water was added when necessary to
complete a final matrix volume of 20 mL. In parallel, a blank sample
without Stevia in its composition (0% Stevia) was formulated with
14 mL of fruit mixture juice and 6 mL of water. The maximum Stevia
concentration (2.5%) was selected taking into account the sucrose
concentration of commercial fruit based beverages and the sweetness

equivalence Stevia/sucrose (Savita et al., 2004). Under these condi-
tions the samples were rated as excellent and were characterized by
higher acceptability.

2.2. Chemicals

Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylicacid),
ABTS (2,2′-azinobis(3-ethylbenzothiazoline 6-sulfonate)), Folin–
Ciocalteu reagent, and fluorescein sodium salt were purchased from
Sigma-Aldrich (Steinheim, Germany). Gallic acid was purchased from
UCB (Brussels, Belgium). Hexane (LC grade), potassium hydroxide,
and hydrogen peroxide were purchased from Scharlau (Barcelona,
Spain). Sodium and disodium phosphate, L(+)-ascorbic acid, acetoni-
trile (special grade), magnesium hydroxide carbonate (40–45%), and
2,2′-azobis-(2-amidinopropane) dihydrochloride (AAPH) were pur-
chased from Panreac (Barcelona, Spain). Ethanol, diethyl ether, metha-
nol, hydrochloric acid, and sodium chloride (special grade) from Baker
(Deventer, The Netherlands). Chloroform was obtained from Merck
(Darmstadt, Germany).

2.3. HPP equipment

The samples, inserted in PE-LD bottles, were placed in polyethylene
bags filled with water and heat-sealed (MULTIVAC Thermosealer,
Hünenberg, Switzerland) before being placed in the HPP unit
(High-Pressure Food Processor; EPSI NV, Belgium). The equipment con-
sists on a vessel with an internal diameter of 100 mm and 300 mm
high, with an operation pressure vessel of 689 MPa and an operation
temperature vessel of−20 to 100 °C and a volume of 2.35 L. The pres-
sure mediumwas a water–ethylenglycol mixture (70:30). The samples
were pressurized at 300, 400 and 500 MPa for specific times in a range
of 5, 10, and 15 min. Pressure level, pressurization time, and tempera-
ture were controlled automatically. Pressure increase rate was
300 MPa/min and the depressurization time was less than 1 min. The
initial temperaturewas 15 °C, the final temperature after pressurization
at highest pressure was 32 °C, the final temperature after holding time
at highest pressurewas 26.6 °C and final temperature after decompres-
sion at highest pressure was 12.5 °C. Come-up time was 90 s and
decompression timewas 15 s. All the treatments were applied in dupli-
cate, with three bottles per treatment. Immediately after pressurization,
samples were analyzed. For HPP, literature reports 5–15 min at
300–500 MPa to achieve 5-log reduction of different foodborne patho-
gens in different liquid foods (Alpas, Kalchayanaud, Bozoglu, & Ray,
2000; Donsì, Ferrari, Di Matteo, & Bruno, 1998).

2.4. Determination of ascorbic acid

AMetrohm 746 VA Trace Analyzer (Herisau, Switzerland) equipped
with a Metrohm 747 VA standwas used for the polarographic determi-
nation. The working electrode was a Metrohm multi-mode electrode
operated in the droppingmercurymode. A platinumwire counter elec-
trode and a saturated calomel reference electrode were used. The fol-
lowing instrumental conditions were applied: DP50, mode DME, drop
size 2, drop time 1 s, scan rate 10 mV/s, and initial potential −0.10 V.
Beverage (5 mL) was diluted to 25 mL with the extraction solution
(oxalic acid 1% w/v, trichloroacetic acid 2% w/v, sodium sulfate 1%
w/v). After vigorous shaking, the solution was filtered through a folded
filter (Whatman no. 1). Oxalic acid (9.5 mL) 1% (w/v) and 2 mLof acetic
acid/sodium acetate 2 M buffer (pH=4.8) were added to an aliquot of
0.5 mL of filtrate and the solution was transferred to the polarographic
cell. Determinationswere carried out byusing the peak height and stan-
dard addition method in accordance to Barba, Esteve, Tedeschi,
Brandolini, and Frigola (2013).
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2.5. Total phenolic compounds

Total phenols were determined according to the method reported
by Georgé, Brat, Alter, and Amiot (2005), with some modifications.
Briefly, 10 mL of sample was homogenized with 50 mL of a mixture of
acetone/water (7/3, v/v) for 30 min. Mixture supernatants were then
recovered by filtration (Whatman no. 2, England) and constituted the
raw extracts (REs). REs (2 mL) were settled on an Oasis cartridge
(Waters). Interfering water-soluble components (steviol glycosides, re-
ducing sugars, ascorbic acid)were recoveredwith 2×2 mLof distillated
water. The recovered volume of thewashing extract (WE)was carefully
measured. In order to eliminate vitamin C, heating was carried out on
thewashing extract (3 mL) for 2 h at 85 °C and led to the heatedwash-
ing extract (HWE). All extracts (RE, WE, and HWE) were submitted to
the Folin–Ciocalteu method, adapted, and optimized (Barba et al.,
2013). Gallic acid calibration standards with concentrations of 0, 100,
300, 500, 700 and 1000 ppmwere prepared and 0.1 mLwas transferred
to borosilicate tubes. 3 mL of sodium carbonate solution (2%, w/v) and
0.1 mL of Folin–Ciocalteau reagent (1:1, v/v) were added to 0.1 mL of
all gallic acid standard and sample tubes. The mixture was incubated
for 1 h at room temperature and absorbance was measured at 765 nm.

2.6. Total anthocyanins

Total anthocyanins were determined using a modified method of
Mazza, Fukumoto, Delaquis, Girard, and Ewert (1999). A 10-fold di-
luted sample of 100 μL was mixed with 1700 μL of distilled water
and 200 μL of 5% (v/v) HCl. The sample was hold at room temperature
for 20 min before measuring the absorbance at 520 nm in a 10 mm
cuvette. This reading corresponds to the total anthocyanin content
after considering the relevant dilution. Calculations of total anthocya-
nins were based on malvidin-3-glucosid (molar absorptivity 28,000).

2.7. Total carotenoids

Extraction of total carotenoidwas carried out in accordancewith Lee
and Castle (2001). An aliquot of sample (2 mL) was homogenized with
5 mL of extracting solvent (hexane/acetone/ethanol, 50:25:25, v/v) and
centrifuged for 5 min at 4000 rpm at 5 °C. The top layer of hexane
containing the color was recovered and transferred to a 25-mL volu-
metric flask and the volume was then adjusted to 25 mL with hexane.
Total carotenoid determinationwas carried out on an aliquot of thehex-
ane extract by measuring the absorbance at 450 nm. Total carotenoids
were calculated according to Ritter and Purcell (1981) using an extinc-
tion coefficient of β-carotene, E1%=2505.

2.8. Total antioxidant capacity

2.8.1. ABTS•+ test
Themethod used was described by Re et al. (1999), based on the ca-

pacity of a sample to inhibit the ABTS radical (ABTS•+) (Sigma-Aldrich,
Steinheim, Germany) compared with a reference antioxidant standard
(Trolox®) (Sigma-Aldrich, Steinheim, Germany). The radicalwas gener-
ated using 440 μL of potassium persulfate (140 mM). The solution was
diluted with ethanol (Baker, Deventer, The Netherlands) until an absor-
bance of 0.70 was reached at 734 nm. Once the radical was formed,
2 mL of ABTS•+ wasmixed with 100 μL of appropriately diluted sample
and the absorbance was measured at 734 nm for 20 min in accordance
with Zulueta et al. (2009). The results, obtained fromduplicate analyses,
were expressed as: mM TE (millimolar Trolox equivalents).

2.8.2. ORAC (Oxygen Radical Absorbance Capacity) assay
The ORAC assay used, with fluorescein (FL) (Sigma-Aldrich,

Steinheim, Germany) as the “fluorescent probe,” was that described
by Ou, Hampsch-Woodill, and Prior (2001). The automated ORAC
assay was carried out on a Wallac 1420 VICTOR2 multilabel counter

(Perkin–Elmer, Valencia, Spain) with fluorescence filters, for an excita-
tionwavelength of 485 nmand an emissionwavelength of 535 nm. The
measurements were made in plates with 96 white flat-bottom wells
(Sero-Wel, Bibby Sterilin Ltd., Stone, UK). The reaction was performed
at 37 °C as the reaction was started by thermal decomposition of
AAPH in 75 mM phosphate buffer (pH 7.0) because of the sensitivity
of FL to pH. Thefinal reaction tested and the concentrations of the differ-
ent reagents were determined following Zulueta et al. (2009).

2.9. Physicochemical properties

To measure the turbidity index (TI), a sample was centrifuged
(618 ×g, 10 min, 20 °C), the supernatant was taken, and the absor-
bance at 660 nm was measured (Krop & Pilnik, 1974). To determine
the browning index (BI), a sample was centrifuged (824 ×g, 20 min,
18 °C), and the supernatant was taken and diluted with ethanol (1:1,
v/v). The mixture was filtered with Whatman no. 42 filters and the ab-
sorbance of the filtrate was measured at 420 nm (Meydav, Saguy, &
Kopelman, 1977). The color analysis was performed using a Hunter
Labscan II spectrophotometric colorimeter (Hunter Associates Labora-
tory Inc., Reston, VA., U.S.A.) controlled by a computer that calculates
color ordinates from the reflectance spectrum. The results were
expressed in accordance with the Commission International d'Eclairage
LAB (CIELAB) systemwith reference to illuminant D65 andwith a visual
angle of 10°. Three consecutive measurements of each sample were
taken. The CIE L* (lightness [0=black, 100=white]), a* (−a*=green-
ness, +a*=redness) and b* (−b*=blueness, +b*=yellowness)
values were used to calculate the total color differences (ΔE*=
[(ΔL*)2+(Δa*)2+(Δb*)2]1/2), where ΔL*, Δa*, and Δb* are differences
between the untreated HP-treated beverage (Calvo, 2004).

2.10. Experimental design and statistical analysis

A face-centered central composite response surface analysis was
used to determine the effect of pressure (MPa) (P), time (minutes)
(t) and S. rebaudiana concentration (Stevia) (%, w/v) (% Stevia) on
the health-related compounds (ascorbic acid, total phenolic com-
pounds, total anthocyanins, total carotenoids), antioxidant capacity
(TEAC and ORAC methods), and physicochemical properties (color,
turbidity and browning index) of the beverage. Response surface
methodology (RSM) consists of a set of mathematical and statistical
methods developed for modeling phenomena and finding combina-
tions of a number of experimental factors (variables) that will lead
to optimum responses. With RSM, several variables are tested simul-
taneously with a minimum number of trials, according to special ex-
perimental designs, which elucidates interactions between variables.
This is not an option with classical approaches. In addition, RSM has
the advantage of being less expensive and less time-consuming than
the classical methods. The independent variables of the RSM were:
pressure (from 300 to 500 MPa), time (from 5 to 15 min) and Stevia
concentration (from 0 to 2.5%, w/v). The levels for each independent
parameter were chosen considering sample and equipment limita-
tions. Three (maximum, minimum and central) values of each factor
were considered, leading to 26 experiments (Table 1). The experi-
mental design was performed twice, resulting in two blocks of exper-
iments. The combinations included HPP-Stevia conditions with an
intermediate level (central point) of the three variables replicated 4
times, which was used to determine inherent variance in the tech-
nique. Experiments were randomized to minimize the systematic
bias in the observed responses due to extraneous factors and to in-
crease precision. Experimental data were fitted to a polynomial re-
sponse surface. The second-order response function was predicted
using the following equation:

Y ¼ b0 þ∑
3

i¼1
biXi þ∑

3

i¼1
biiX

2
i þ∑

2

i¼1
∑
3

i¼iþ1
bijXiXj
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where Y represents a response variable, b0 is the center point of the
system, bi, bii, and bij, are coefficients of the linear, quadratic and inter-
active effect, respectively; Xi, Xi

2, and XiXj represent linear, quadratic
and interactive effects of the independent variables, respectively.
The non-significant terms were deleted from the second-order poly-
nomial model after an ANOVA test, and a new ANOVA was performed
to obtain the coefficients of the final equation for better accuracy. The
experimental design and the data analysis were performed using
SPSS® (Statistical Package for the Social Sciences) v.19.0 for Windows
(SPSS Inc., Chicago, USA). The optimization was done following the
method proposed by Derringer and Suich (1980). All the individual
desirability functions obtained for each response were combined
into an overall expression, which is defined as the geometrical mean
of the individual functions. The nearer the desirability value to the
unit, the more adequate the system (Ross, 1996). In the present
study, desirability functions were developed in order to obtain the
beverage with the highest levels of antioxidant compounds and the
best physicochemical properties. Subsequently, an ANOVA of three
factors (pressure, time, and S. rebaudiana concentration) was applied,
and in the parameters for which significant differences were obtained
with more than two levels, Tukey's test was applied to ascertain the
range of values in which the differences were located. Finally, a
study was conducted with the aim of determining whether there
were correlations between a pair of variables (Pearson's test).

3. Results and discussion

3.1. Effect of HPP and Stevia concentration on nutritional qualities and
antioxidant capacity of the beverages

The ascorbic acid concentration in the fruit juice blend (papaya,
mango and orange) without Stevia was 25.5±0.3 mg/100 mL (Table 2).
These results were in close agreement with the values obtained by
other authors in papaya, mango and orange (Beserra-Almeida et al.,

2011; Burdulu, Koca, & Karandeniz, 2006; U.S. Department of
Agriculture (USDA) & Agricultural Research Service, 2012). In addition,
similar results were found for the fruit juice mixtures sweetened with
Stevia at 1.25% (w/v) (25.3±0.2 mg/100 mL), and 2.5% (w/v) (25.3±
0.1 mg/100 mL), respectively. Immediately after HPP, ascorbic acid
retentionwas higher than 92% in all cases (data not shown). Several au-
thors have reported that ascorbic acid of fruit and vegetable juices was
minimally affected by HPP at mild temperatures (Barba, Esteve, &
Frigola, 2010; Barba, Esteve, & Frígola, 2012; Bull et al., 2004).

The results obtained for total phenolic compounds, total anthocya-
nins, total carotenoids and antioxidant capacity in the untreated and
HPP samples are shown in Tables 1–2. Total phenolic content (TPC)
of untreated fruit juice mixture without Stevia sweetened was
166.9±11.7 mg GAE/L. However, TPC values were 15 and 23-fold

Table 1
Experimental design matrix in terms of actual variables and the average values of the response for experiments on the effect of combined high pressure-Stevia rebaudiana concen-
tration on the antioxidant activities of a fruit juice mixture.

Runa Pressure (MPa) Time (min) Stevia (%) TCb (μg/100 mL) TPCb (mg GAE/L) TAb (mg/100 mL) TEACb (mM TE) ORACb (mM TE)

(X1) (X2) (X3) (Y1) (Y2) (Y3) (Y4) (Y5)

1 500 15 0 364.3±15.1 165.7±9.8 21.4±1.0 2.91±0.21 3.41±0.41
2 300 5 0 294.6±17.3 184.5±10.2 23.2±0.4 2.68±0.12 4.67±0.50
3 500 15 0 349.3±15.4 143.7±8.6 22.9±0.5 2.92±0.31 3.20±0.25
4 500 15 2.5 329.3±18.3 3683.1±151.5 46.4±1.1 29.54±1.01 40.95±0.71
5 300 15 0 279.4±15.3 164.2±9.6 22.3±0.3 2.34±0.32 4.87±0.43
6 300 5 2.5 304.6±20.4 4494.6±201.5 30.7±0.6 24.73±0.81 39.33±0.32
7 400 10 1.25 319.4±16.1 2756.5±156.4 26.3±0.4 18.47±0.72 19.22±0.63
8 300 15 2.5 304.4±15.6 4146.5±210.3 28.9±0.3 32.32±1.01 36.73±0.81
9 500 5 2.5 330.3±12.7 3815.8±198.4 39.1±1.0 40.03±1.03 43.68±0.85
10 400 10 1.25 300.6±18.3 2869.2±156.1 26.2±0.5 19.24±0.81 20.81±0.75
11 400 5 1.25 289.4±20.1 2837.1±149.3 27.1±0.6 17.35±0.92 24.13±0.67
12 400 10 2.5 305.3±21.1 3901.0±205.6 36.6±0.8 35.64±0.71 35.81±0.65
13 300 15 2.5 284.4±13.6 4220.6±210.9 33.2±1.1 32.32±0.81 36.73±0.81
14 500 5 2.5 325.6±12.5 4000.2±208.7 39.6±1.0 40.05±0.83 42.09±1.00
15 300 10 1.25 289.5±14.6 3057.9±132.6 27.5±0.9 16.21±0.61 24.09±0.71
16 500 5 0 295.4±17.0 170.7±9.6 23.0±1.0 2.80±0.24 4.33±0.21
17 500 15 2.5 314.4±17.2 4060.4±263.4 45.6±2.0 29.54±0.71 40.95±0.86
18 500 5 0 300.7±13.6 173.8±10.0 23.3±1.8 2.93±0.10 4.07±0.15
19 300 15 0 289.4±15.3 184.8±7.6 23.6±1.0 2.72±0.31 4.64±0.16
20 400 15 1.25 315.4±14.4 2919.3±123.6 28.1±0.9 20.07±0.72 21.63±0.51
21 400 10 0 279.9±16.6 169.5±8.3 24.0±0.7 3.67±0.21 3.95±0.17
22 300 5 2.5 248.6±15.3 4355.5±213.1 29.3±0.8 18.92±0.80 35.43±0.61
23 400 10 1.25 339.3±16.1 2638.8±160.5 26.7±0.9 19.22±1.01 20.47±0.55
24 400 10 1.25 349.3±15.2 2728.9±149.7 27.9±0.7 18.89±0.92 19.26±0.43
25 300 5 0 304.6±15.2 177.9±7.3 22.3±0.8 2.37±0.34 3.78±0.12
26 500 10 1.25 315.8±12.3 2818.5±162.5 25.5±0.6 20.43±0.81 22.05±0.46

TC: total carotenoids. TPC: total phenolic compounds. TA: total anthocyanins. TEAC: trolox equivalent antioxidant capacity. ORAC: oxygen radical antioxidant capacity.
a Order of the assays was randomized.
b Data shown are the mean±SD of two treatment repetitions, each assay was performed in triplicate.

Table 2
Physicochemical and nutritional characteristics of untreated fruit juice mixture sweet-
ened with Stevia rebaudiana (Stevia) Bertoni.

Parameters Beverage with Stevia (%)

0 1.25 2.50

Ascorbic acid (mg/100 mL) 25.5±0.3a 25.3±0.2a 25.3±0.1a

Total phenolics
(mg GAE/100 mL)

166.9±11.7a 2509.5±142.5b 3824.4±100.0c

Total anthocyanins
(mg/100 mL)

21.8±0.1a 24.6±0.5b 28.8±0.3c

Total carotenoids (μg/100 mL) 329.3±14.1a 337.6±10.1a 324.4±7.1a

ORAC(mM TE) 4.5±0.5a 22.2±0.7b 38.8±1.7c

TEAC(mM TE) 2.3±0.1a 17.9±1.4b 26.5±0.8c

Browning index 0.097±0.003a 2.313±0.033b 1.581±0.004c

Turbidity index 0.075±0.001a 0.613±0.004b 0.316±0.003c

Lightness (L*) 72.4±0.2a 39.3±0.1b 36.7±0.1c

Redness (a*) −1.9±0.1a 10.8±0.2b 10.1±0.1c

Blueness (b*) 8.5±0.2a 50.4±0.2b 39.3±0.1c

a–cDifferent letters in the same file indicate significant statistical differences in function
of the Stevia percentage.
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higher when Stevia at 1.25% and 2.5% Stevia (w/v) was used as a sweet-
ener, respectively. These results were in close agreement with some
previous studies that have reported high levels of phenolic compounds
in S. rebaudiana products. Tadhani, Patel, and Subhash (2007) and
Abou-Arab and Abu-Salem (2010) obtained that total phenolic com-
pounds in Stevia water extracts were 25.18 and 24.01 mg gallic acid
equivalents (GAE)/g dry weight basis, respectively. In addition,
Shukla, Mehta, Mehta, and Bajpai (2011) found 56.74 mg GAE in 1 g
of aqueous leaf extract while ethanolic leaf extract of S. rebaudiana
has been reported to show 61.50 mg GAE of phenols (Shukla, Mehta,
Bajpai, & Shukla, 2009).

Three-way ANOVA showed that the preservation treatment applied
(pressure, time) and the percentage of Stevia had a significant influence
(pb0.05) on the values of total phenolics. As can be seen in Fig. 1, the
behavior of TPC was different after applying HPP depending on Stevia
concentration used in the formulation of the beverages. In addition, a
multiple linear regression equation of a second order polynomial
model was generated in order to elucidate the effects of % Stevia and
HPP (pressure and time) on the beverages. The reduced regression
model presented in the Eq. (1) allowed for prediction of the effects of in-
dependent variables on total phenolic compounds.

TPC mg GAE=Lð Þ ¼ −14240:5þ 91:9 � P−557:7 � t þ 2432:2 � %Stevia
−0:1P2 þ 1:3 � P � t−1:1 � P � %Stevia
þ24:4 � t � %Stevia−286:0 � %Stevia2

ð1Þ

The statistical analysis indicates that the quadratic model pro-
posed for TPC was adequate (pb0.05) in order to evaluate the
changes after applying HPP, with satisfactory determination coeffi-
cients (R2=0.961, pb0.05, standard error=1.761). No significant
lack of fit of the model was found, showing that it fits properly within
the range of HPP-Stevia assayed conditions. Phenols appeared to be
relatively resistant to HPP, even they were significantly increased
(22%) after HPP (300 MPa/10 min) when the fruit juice mixture
was sweetened with Stevia (1.25%, w/v) and after 300 MPa for
5 min (18%) when the highest concentration of Stevia (2.5%, w/v)
was used. This increase in total phenolic content may be related to
an increased extractability of some of the antioxidant components
following high pressure processing. These results were in accord
with those found by Plaza et al. (2011) in orange juice processed at
400 MPa/40 °C/1 min, Barba, Esteve, et al. (2012) in orange juice
mixed with milk processed at 100–400 MPa/20–42 °C/2–9 min, and
Barba, Esteve, and Frígola (2011) in blueberry juice after HPP at
200–600 MPa/20–42 °C/5–15 min. They reported an increase in phe-
nolic content following HPP.

Total anthocyanin concentration in the fruit juice blend without
Stevia was 21.8±0.1 mg/100 mL. However, total anthocyanin con-
centration was higher when the fruit mixture was sweetened with
1.25% (w/v) Stevia (24.6±0.5 mg/100 mL) and 2.5% (w/v) Stevia
(28.8±0.3 mg/100 mL), respectively. Muanda, Soulimani, Diop, and
Dicko (2011) reported values of total anthocyanins (measured as
Cyaniding-3-glucoside) of 0.35±0.01 and 0.67±0.09 when they
studied Stevia water extracts and methanol–water extracts, respec-
tively. In addition, the anthocyanin content, expressed as relative re-
tention, ranged between 98% and 161% in HPP samples under the
studied experimental conditions. The reduced regression model for
total anthocyanins is presented in the Eq. (2):

TA mg=100mLð Þ ¼ 197:736þ 1:337 � P þ 15:983 � t−1:854 � %Stevia
þ0:002 � P2−0:030 � P � t þ 0:010 � P � %Stevia
−0:348 � t2:

ð2Þ
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Fig. 1. Effects of pressure and time on total phenolic compounds (mg GAE/100 mL) of a
fruit juice sweetened with Stevia rebaudiana at: a) 0%, b) 1.25%, and c) 2.50%.
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Fig. 2 indicates a positive influence of the pressure on the total an-
thocyanin content. The highest anthocyanin content was observed at
the highest levels of both pressure and time (500 MPa/15 min) as
well as Stevia concentration (2.5%, w/v). This result indicates that in
this particular range of processing conditions the HPP mainly mod-
ifies the mechanism of anthocyanin degradation by affecting the mol-
ecules involved in the kinetics of reaction, such as enzymes. Barba
et al. (2011) and Ferrari, Maresca, and Ciccarone (2010) observed
similar results in HPP (200–600 MPa/15 min) blueberry juice and
HPP (400–600 MPa/5–10 min) pomegranate juice, respectively.

Total carotenoid (TC) content in the untreated beverage sweet-
ened with 0, 1.25 and 2.5% (w/v) were 329.3±14.1, 337.6±10.1,
and 324.4±7.1 μg/100 mL, respectively. The analysis of variance
showed that the regression model was accurate enough (R2=0.902,
pb0.05, standard error=18.905). The relationship between the inde-
pendent variables and total carotenoids can be described by the
Eq. (3):

TC μg=100 mLð Þ ¼ 245:650þ 0:161·P: ð3Þ

Pressure had a significant positive effect (pb0.05) on the total ca-
rotenoids of the beverage independently of the Stevia concentration
used. Overall, at higher pressures, the values of total carotenoids
were higher, reaching a maximum (6–10% increase) when sample
without Stevia was HP-treated at 500 MPa/15 min (Fig. 3), indicating
that the beverages treated at higher pressure had an increased nutri-
tional value.

Trolox equivalent antioxidant capacity (TEAC) and oxygen radical
antioxidant capacity (ORAC) methods have been used widely for the
determination of total antioxidant capacity (TAC) after applying HPP
in fruit juice complex mixtures (Barba, Esteve, et al., 2012). In the
present study, TAC values of untreated samples without Stevia were
4.5±0.5 and 2.3±0.1 mM TE for ORAC and TEAC assays, respectively.
The ANOVA results indicated an increase in ORAC and TEAC values
when Stevia percentage was increased, independently of the preser-
vation treatment applied. These results were in accordance to those
found by different authors who have demonstrated the high antioxi-
dant capacity of S. rebaudiana products (Muanda et al., 2011; Shukla
et al., 2009, 2011; Tadhani et al., 2007). In addition antioxidant capac-
ity values measured with ORAC assay were significantly higher
(pb0.05) for the samples with Stevia at 1.25% (22.2±0.7 mM TE)

and 2.5% (38.8±1.7 mM TE) than those obtained with TEAC method
(17.9±1.4 and 26.5±0.8 mM TE for the beverages sweetened with
1.25 and 2.5% Stevia, respectively). The antioxidant activity of some
Stevia-derived products has been attributed to the scavenging of
free radical electrons and superoxides (Thomas & Glade, 2010). As
the ORAC method is a reaction based on the transfer of H atoms,
these compounds present in S. rebaudiana may be better represented
by this assay.

The results obtained for the three-way ANOVA showed that pres-
sure, time and Stevia percentage had a significant influence (pb0.05)
on the total antioxidant capacity of the beverages measured as TEAC
values. However, when ORAC assay was used, only Stevia percentage
had a significant effect. Moreover, the regression analysis test showed
that a second-order model fits well the antioxidant capacity (ORAC
and TEAC) after applying HPP. The determination coefficients were
(R2=0.960, pb0.05, standard error=1.823) and (R2=0.970, pb0.05,
standard error=2.220) for TEAC and ORAC methods, respectively. Ex-
perimental data were fitted by a second-order polynomial model
(Eqs. (4)–(5)):

TEAC mM TEð Þ ¼ −24:048þ 0:013 � P þ 6:504 � t þ 5:270 � %Stevia
−0:007 � P � t þ 0:005 � P � %Stevia−0:218 � t2
þ0:075 � t � Stevia2

ð4Þ

ORAC mM TEð Þ ¼ 33:38820þ 15:61100·%Stevia−1:99497·%Stevia2: ð5Þ

When the possible correlation (Pearson test) between the various
parameters that contribute to antioxidant capacity (ascorbic acid,
total carotenoids, total phenolics and total anthocyanins) was studied
for the different Stevia concentrations, it was found that there was a
positive correlation between total phenolics and TEAC (r=0.920,
pb0.05) and total phenolics with ORAC (r=0.961). In this line, Cai,
Luo, Sun, and Corke (2004) and Silva, Souza, Rogez, Rees, and
Larondelle (2007) obtained a high correlation between TEAC and
TPC when they studied 112 traditional Chinese medicinal plants and
15 Brazilian plants from Amazonian region, respectively. In addition,
Ehlenfeldt and Prior (2001) and Bisby, Brooke, and Navaratnam
(2008) also found a positive correlation between TPC and ORAC as-
says when they studied different plant food materials. Moreover, in
the present study a positive correlation was found between ORAC
and TEAC methods (r=0.905, pb0.05). These results were in accord
to those found by Barba et al. (2010) when they treated a vegetables
beverage with HPP.
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3.2. Effect of HPP and Stevia concentration on physicochemical properties
of the beverages

The results obtained for turbidity index (TI), browning index (BI)
and color parameters (a*, b* and L*) in the untreated and HPP sam-
ples are shown in Tables 2–3 and Fig. 4. As can be expected, among
the studied parameters, Stevia percentage had the greatest effect on
the quality parameters of the beverages. Compared to the untreated
samples, lower browning index values were obtained for the HPP
samples when 0 and 1.25% (w/v) Stevia percentages were used, how-
ever a significant increase in BI was observed after applying HPP in
the samples with 2.5% (w/v) Stevia. The regression model was accu-
rate enough (R2=0.962, pb0.05, standard error=0.181). The regres-
sion equation describes the following model (Eq. (6)):

BI ¼ 8:066−0:0551 � P þ 0:4856 � t þ 0:6965 � %Steviaþ 0:0001 � P2

−0:0009 � P � t þ 0:0009 � P � %Stevia−0:0108 � t2
−0:0092 � t � %Stevia:

ð6Þ

Overall, no statistically significant changes were observed in TI
values of the HPP samples in comparison with the untreated beverage
when Stevia was not added. However, there was a statistically signif-
icant (pb0.05) decrease in the HPP samples with 1.25% (w/v) Stevia
in comparison with the unprocessed beverage. In addition, the oppo-
site trend was obtained after applying HPP when Stevia percentage
was 2.5% (w/v) (Eq. (7)).

TI ¼ −0:4166þ 0:0141·%Steviaþ 0:0004·P � %Stevia−0:0152 � t2 ð7Þ

With regard to lightness (L*), the three-way ANOVA showed that
pressure, time and Stevia concentration had a significant influence
(pb0.05) on this parameter. Compared to the untreated beverages,
lower L* values were found for samples treated by HPP independently
of the Stevia used in the formulation of the beverages. In addition, the
response surface equation obtained in the present study described

the experimental data adequately (R2=0.921, pb0.05, standard
error=5.324), which also was confirmed by the insignificant lack of
fit (p=0.810). The Eq. (8) was as follows:

L� ¼ −82:361−0:963 � P−6:430 � t−34:891 � %Stevia−0:001 � P2

þ0:013 � P � t−0:020 � P � %Steviaþ 0:238 � t � %Stevia
þ9:834 � %Stevia2:

ð8Þ

As can be observed, L* value was decreased for all the HPP treat-
ments applied, obtaining a higher decrease at the higher pressure
and longer time range. These results were in accord to those previ-
ously reported by Barba, Cortés, Esteve and Frígola (2012) in HPP or-
ange juice mixed with milk. These authors attributed it to partial
precipitation of unstable particles in the juices after processing.

With regard to a* values, the behavior was different depending on
Stevia concentration of the untreated samples. The reduced regres-
sion model presented in the Eq. (9) allowed for prediction of the ef-
fects of independent variables on the a* values:

a� ¼ 41:967−0:304 � P þ 3:046 � t þ 11:683 � %Steviaþ 0:001 � P2

−0:006 � P � t þ 0:002 � P � %Stevia−0:067 � P2−3:313 � %Stevia2:
ð9Þ

There were significant differences (pb0.05) in the a* values at dif-
ferent HPP conditions. Overall, the a* value changed toward a more
positive direction for the HPP beverage with no Stevia added for all
high pressure treatments and the beverage with 2.5% (w/v) of Stevia
when HP treatment at 500 MPa/15 min was applied. The increase in
CIE a* values was similar to the results found by Barba et al. (2010)
when they studied the effects of HPP in a vegetable beverage and
Patras, Brunton, Da Pieve, Butler, and Downey (2009) for high pres-
sure processed tomato and carrot purées. However, the opposite
trend was obtained when Stevia at 1.25% (w/v) was added for all
HPP conditions. The highest decrease in CIE a* values was observed

Table 3
Experimental design matrix in terms of actual variables and the average values of the response for experiments on the effect of combined high pressure-Stevia rebaudiana concen-
tration on the physicochemical parameters of a fruit juice mixture.

Runa Pressure (MPa) Time (min) Stevia (%) BIb TIb L*b a*b b*b ΔE

(X1) (X2) (X3) (Y1) (Y2) (Y3) (Y4) (Y5) (Y6)

1 500 15 0 0.083±0.003 0.078±0.004 70.4±0.1 −1.5±0.1 11.3±0.2 3.5±0.2
2 300 5 0 0.054±0.006 0.076±0.008 71.9±0.2 −1.8±0.1 8.3±0.2 0.5±0.1
3 500 15 0 0.086±0.005 0.082±0.004 70.4±0.3 −1.5±0.1 11.3±0.3 3.5±0.3
4 500 15 2.5 2.256±0.010 0.700±0.005 31.7±0.2 11.1±0.2 37.7±0.3 5.3±0.3
5 300 15 0 0.056±0.004 0.070±0.004 72.1±0.1 −1.6±0.1 5.5±0.2 3.0±0.2
6 300 5 2.5 1.890±0.009 0.429±0.008 36.0±0.2 9.1±0.2 38.8±0.3 1.3±0.1
7 400 10 1.25 1.460±0.011 0.327±0.005 33.9±0.1 9.4±0.1 37.1±0.4 14.4±0.4
8 300 15 2.5 1.641±0.012 0.414±0.006 37.2±0.2 10.4±0.1 44.5±0.4 5.2±0.2
9 500 5 2.5 1.458±0.010 0.452±0.004 35.7±0.1 10.3±0.2 40.7±0.5 1.7±0.1
10 400 10 1.25 1.468±0.009 0.333±0.006 35.0±0.2 9.0±0.1 33.0±0.2 18.0±0.5
11 400 5 1.25 1.467±0.007 0.319±0.007 35.5±0.2 8.9±0.1 34.1±0.3 16.8±0.3
12 400 10 2.5 1.990±0.009 0.445±0.006 33.8±0.2 9.5±0.1 37.0±0.2 3.7±0.3
13 300 15 2.5 1.648±0.010 0.416±0.008 37.6±0.4 10.4±0.2 44.3±0.1 5.1±0.3
14 500 5 2.5 1.472±0.011 0.466±0.009 35.8±0.3 10.3±0.1 40.3±0.2 1.4±0.1
15 300 10 1.25 1.388±0.015 0.345±0.010 35.1±0.2 9.1±0.1 35.5±0.3 15.6±0.4
16 500 5 0 0.083±0.003 0.076±0.003 70.6±0.3 −1.5±0.1 9.1±0.4 1.9±0.1
17 500 15 2.5 2.235±0.010 0.697±0.011 31.7±0.2 11.1±0.2 37.4±0.2 5.4±0.2
18 500 5 0 0.086±0.004 0.078±0.003 70.6±0.4 −1.5±0.1 9.1±0.2 1.9±0.1
19 300 15 0 0.059±0.005 0.076±0.004 72.1±0.4 −1.6±0.1 5.5±0.1 3.0±0.1
20 400 15 1.25 1.465±0.008 0.337±0.009 34.8±0.3 8.8±0.1 32.8±0.3 18.3±0.4
21 400 10 0 0.201±0.006 0.115±0.009 71.0±0.5 −1.1±0.1 11.4±0.2 3.3±0.2
22 300 5 2.5 1.910±0.010 0.426±0.011 36.0±0.3 9.0±0.2 38.5±0.2 1.5±0.2
23 400 10 1.25 1.456±0.013 0.330±0.010 35.0±0.2 9.0±0.1 33.1±0.3 17.9±0.5
24 400 10 1.25 1.463±0.012 0.335±0.010 35.0±0.2 9.0±0.1 33.0±0.4 18.0±0.6
25 300 5 0 0.057±0.006 0.078±0.003 71.9±0.2 −1.9±0.1 8.3±0.1 0.5±0.1
26 500 10 1.25 1.470±0.010 0.342±0.011 34.8±0.4 8.6±0.2 32.8±0.3 18.3±0.6

BI: browning index. TI: turbidity index. ΔE: total color differences.
a Order of the assays was randomized.
b Data shown are the mean±SD of two treatment repetitions, each assay was performed in triplicate.
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at 500 MPa/10 min. The decrease in a* values was similar to the re-
sults found by Patras, Brunton, Da Pieve, and Butler (2009) in HPP
strawberry and blackberry purées and by Barba, Cortés, et al. (2012)
in HPP orange juice mixed with milk samples.

The yellowness (b* values) of untreated samples was 8.5±0.2,
50.4±0.2 and 39.3±0.1 when 0, 1.25 and 2.5% (w/v) of Stevia was
added. Overall, longer treatment times and processing at the highest
pressure resulted in the highest decrease in b* values (see Table 3).
These results were in accord with those found by Saldo, Suárez-
Jacobo, Gervilla, Guamis, and Roig-Sagués (2009) in apple juice
processed at 300 MPa/4 °C, Daoudi et al. (2002) in white grape juice
processed at 500 MPa/600 s/2 °C, and Barba, Cortés, et al. (2012) in or-
ange juice–milk samples after HPP. Furthermore, statistical analyses
showed a positive correlation between browning index and b* value
(p=0.809). In addition, relatively low correlation coefficient was ob-
served (R2=0.873) with a non-significant lack of fit (p=0.85). The re-
gression Eq. (10) describes the following model:

b� ¼ −48:276þ 29:040·%Stevia−0:026·P � %Stevia
þ0:435 � t � %Stevia−6:242·%Stevia2:

ð10Þ

As can be expected, the linear and quadratic effects of Stevia per-
centage were very significant for this model. In addition, the com-
bined effect of time and Stevia also had a significant effect.

The total color difference (ΔE*) indicates the magnitude of the color
difference. Depending on the value of ΔE, the color difference between
the treated and untreated samples can be estimated such as not notice-
able (0–0.5), slightly noticeable (0.5–1.5), noticeable (1.5–3.0),well vis-
ible (3.0–6.0) and great (6.0–12.0) (Cserhalmi, Sass-Kiss, Tóth-Markus,
& Lechner, 2006). As can be seen in Table 2, Stevia addition had a strong
effect on the beverage color, increasing significantly (pb0.05) the
browning of the juices. Moreover, in the present study, ΔE values
were found to be different in behavior, depending on treatment time
or HPP intensity level (Table 3, Fig. 4). Color changes increased when
pressure and treatment times were higher independently of the Stevia
percentage used, with the highest differences appearing at 500 MPa
(3.3, 18.3 and 5.3 for 0, 1.25 and 2.5% (w/v) Stevia). The regression
Eq. (11) describes the following model:

ΔE ¼ 141:297−0:858 � P þ 5:299 � t þ 13:257 � %Steviaþ 0:001 � P2

þ0:019 � P � %Stevia−0:218 � t � %Stevia−6:603 � %Stevia2:
ð11Þ

3.3. Optimization and validation of the HPP and Stevia concentration
conditions

The combination of HPP critical parameters that lead to a beverage
(fruit juicemixture sweetened with Stevia) with the highest nutritional
and physicochemical quality was determined. The same priority was
assigned to each dependent variable in order to obtain a beverage
with maximal retention of bioactive compounds (ascorbic acid, total
phenolic compounds, total anthocyanins, and total carotenoids), and
antioxidant capacity. Likewise, the conditions that lead to a beverage
with total color differences lower than 3 were selected. Therefore, the
optimal conditions of HPP in the present study were as follows: 1.7%
(w/v) of Stevia concentration, and 300 MPa of high hydrostatic pressure
for 14 min. Under such conditions the greatest retention of bioactive
compounds, antioxidant capacity as well as physicochemical properties
were achieved, with an overall score of 0.626.

4. Conclusion

The results obtained in the present research suggested that opti-
mizing pressure–time conditions after HPP can be considered as a fac-
tor of great interest in order to obtain a better retention of bioactive
compounds and physicochemical characteristics. HPP combined
with S. rebaudiana water extracts can be a useful tool in order to pro-
vide new functional foods of proven physical and nutritional quality,
thus increasing added value. In any case, more studies on the com-
bined effect of pressure and time are required to elucidate the effects
of HPP parameters on bioactive compounds and color in foods, and
further studies dealing with the effects of HPP in liquid foods during
storage are needed.
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ABSTRACT

Citrus fruits have been widely used as ingredients in fruit juices and beverages.
However, vitamin C content may be reduced by thermal processing, thus reducing 
beneficial health effects. For this reason, the degradation kinetics of ascorbic acid were 
determined in orange juice based beverages after treatment by pulsed electric field, a 
novel emerging technology with increasing interest in the conservation of juices. The 
orange juice and orange-carrot juice mixture fitted a linear model, while the orange juice
milk beverage followed an exponential model. The degradation constants obtained in the 

4, 5, 5, and 
4 µs 1 for fields of 25, 30, 35, and 40 kV/cm, respectively. In the case of 

the orange carrot juice they were 5, 5, 5,
and 4 µs 1 for fields of 25, 30, 35, and 40 kV/cm, respectively, and for the 
orange juice milk beverage they were 5, 5,

5, and 5 µs 1 for fields of 15, 25, 35, and 40 kV/cm, 
respectively, demonstrating the use of PEF as an alternative to pasteurization treatments. 
The D value increased with electric field strength, and the ZE values were 42.9, 30.6, and 
35.1 kV/cm for the orange juice, orange carrot mixture, and orange juice milk beverage, 
respectively. Therefore, the orange juice was more resistant to changes in electric field 
strength in PEF treatment, while the treatment time required to produce the same 
degradation of ascorbic acid was greater in the orange juice milk beverage than for the 
orange juice or the orange carrot juice mixture, showing the need to optimize treatment 
conditions whenever there is a change in the food matrix. 
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The impact of apple pretreatment by pulsed electric field (PEF) on juice extraction using the freezing-assisted
pressing was studied. Apple discs were PEF pretreated at electric field strength of E = 800 V/cm and then air
blast frozen inside the freezer (−40 °C). Then, pressing experiments in a laboratory-pressing chamber (2–5
bars) were started at sub-zero temperature (−5 °C). Time evolution of juice yield and its nutritional qualities
were compared for PEF and untreated apple samples. High improvements of juice yield were obtained for
freeze-thawed (FT) and PEF + FT samples. The combination of PEF + pressing (5 bar) at sub-zero temperature
gave optimum results for juice extraction with high levels of carbohydrates, and antioxidant bioactive com-
pounds. At fixed value of extraction yield, Y, PEF pretreatment improved nutritional parameters. E.g., at Y =
0.6, an increase in °Brix (by≈1.27), carbohydrates (by≈1.42), total phenolic compounds (by≈1.16),flavonoids
(by ≈1.09) and antioxidant capacity (by ≈1.29) was observed after PEF pretreatment.
Industrial relevance: Pressing constitutes one of the most commonly used technologies at industrial scale to ob-
tain fruit juices. However, during the pressing some undesirable chemical, physical and biological changes may
occur in juices, thus reducing their nutritional and sensorial properties. For instance, the use of freezing-
assisted pressing is a promising technique for the production of juice concentrates rich in sugars and other solids
as the low temperature operation prevents undesirable modifications. But this method is rather expensive and
requires strong control of the quality of “ice” juices, their sensory and compositional profiles. Thus, there is an in-
creased search for obtaining new efficient methodologies for producing high quality juices. In this line, PEF-
assisted pressing has been shown as a useful technology to increase juice yield. Therefore, the combination of
PEF-assisted “ice” juice extraction by pressing of fruits at subzero temperatures may be a useful tool to improve
the extraction yield of juices, thus improving their nutritional, physicochemical and sensorial properties.
Keywords: “Ice” juice, Apple, Pulsed electric fields, Freezing-assisted pressing

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A high juice yield is desirable in terms of economics, but organolep-
tic, nutritional properties and beneficial health effects of juices, partly
attributed to the presence of antioxidants, especially phenolic com-
pounds are also very important (Krawitzky et al., 2014). In this line,
the potential of several juice extraction methods to obtain high juice
yields with improved nutritional properties has been evaluated by
both food researchers and food industry, concluding that the quality of
juices is highly dependent of the production process.

Moreover, it has been observed that low-temperature assisted
processing of foods (e.g., freeze concentration, pressing, etc.) is rather

preferable in application for products with very delicate flavors
(fruit juices, coffee, tea, and alcoholic beverages) (Deshpande, Cheryan,
Sathe, & Salunkhe, 1984; Sánchez, Ruiz, Auleda, Hernández, & Raventós,
2009).

Freeze concentration is considered as a method for producing high
quality juices. This method is based on a selective separation of water
in the form of ice from the frozen solution. Freeze concentration has
been applied in the production of concentrated “ice” juices from apple
(Bayindirli, Özilgen, & Ungan, 1993; Hernández, Raventós, Auleda, &
Ibarz, 2009; Olowofoyeku, Gil, & Kramer, 1980), pear (Hernández
et al., 2009; Miyawaki, Kato, & Watabe, 2012; Tobitsuka, Ajiki, Nouchi,
& Miyawaki, 2010), blueberry (Petzold, Moreno, Lastra, Rojas, &
Orellana, 2015), sugarcane (Rane & Jabade, 2005; Sahasrabudhe,
Desai, & Jabade, 2012), pineapple (Bonilla-Zavaleta, Vernon-Carter, &
Beristain, 2006; Petzold et al., 2015), orange (Fang, Chen, Tang, &
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Wang, 2008; Sánchez, Ruiz, Raventós, Auleda, & Hernández, 2010),
pomegranate (Khajehei, Niakousari, Eskandari, & Sarshar, 2015), toma-
to (Liu, Miyawaki, & Hayakawa, 1999;Miyawaki et al., 2012) concentra-
tion of grape must (Hernández, Raventós, Auleda, & Ibarz, 2010), fresh
tea juice (Feng, Tang, & Ning, 2006) and preparation of coffee extract
(Gunathilake, Shimmura, Dozen, & Miyawaki, 2014).

Among techniques of juice production, pressing is one of the most
used at industrial scale (Markowski, Baron, Le Quéré, & Płocharski,
2015). Freezing assisted pressing can be also used as a promising tech-
nique for the production of juice concentrates rich in sugars and other
solids (Petzold et al., 2015). Concentrated aqueous solutions do not
freeze, while purewater does, allowing amore concentrated juice prod-
uct. The low temperature operation in freeze-concentration prevents
undesirable chemical, physical and biological changes that may occur
in other types of processing.

This procedure has already been employed in the production of the
so-called “ice”wine, “ice” cider or “ice” juice by pressing of frozen fruits
(Alessandria et al., 2013; Bowen, 2010; Crandles, Reynolds, Khairallah, &
Bowen, 2015; Kirkey & Braden, 2014; Motluk, 2003; Musabelliu, 2013).
Such extreme processing allows the production of smaller amounts of
concentrated and sweeter wines, e.g., high quality dessert wines. Appli-
cation of cold pressing is rather popular in those countries (e.g., Canada
and Germany), where fruit varieties are not harvested before the first
frosts. However, this processing is rather expensive, risky and requires
strong control of the quality of “ice” wines, their sensory and composi-
tional profiles (Bowen, 2010). E.g., these characteristics may be signifi-
cantly different for British Columbia, Ontario and German ice wines
(Cliff, Yuksel, Girard, & King, 2002; Nurgel, Pickering, & Inglis, 2004).
However, application of low-temperature assisted pressing is still very
limited (Petzold et al., 2015).

The extraction efficiency by pressing may be noticeably enhanced
using pulsed electric fields (PEF) pre-treatment (Lebovka & Vorobiev,
2010). Different examples of PEF-assisted dehydration of fruit and veg-
etable tissues have already been demonstrated (Donsi, Ferrari, & Pataro,
2010; Vorobiev & Lebovka, 2011). These techniques allow avoidance of
undesirable changes typical of other techniques, such as thermal, chem-
ical and enzymatic ones (Donsi, Ferrari, Maresca, & Pataro, 2011; Jaeger,
Reineke, Schoessler, & Knorr, 2012; Jaeger, Schulz, Lu, & Knorr, 2012;
Odriozola-Serrano, Aguiló-Aguayo, Soliva-Fortuny, & Martín-Belloso,
2013; Raso & Heinz, 2006)

The positive effects of PEF pre-treatment on drying, freezing, freeze-
drying processes, freezing tolerance and texture of biomaterials have
been demonstrated (Ben Ammar, Lanoiselle, Lebovka, Van Hecke, &
Vorobiev, 2010; Jalte, Lanoiselle, Lebovka, & Vorobiev, 2009; Parniakov,
Lebovka, Bals, & Vorobiev, 2015; Phoon, Galindo, Vicente, & Dejmek,
2008; Shayanfar, Chauhan, Toepfl, & Heinz, 2013, 2014; Shynkaryk,
Lebovka, & Vorobiev, 2008; Wiktor, Schulz, Voigt, Witrowa-Rajchert, &
Knorr, 2015). However, the effect of PEF pre-treatment on freezing
assisted pressing and in the production of “ice” juice has not yet been
studied.

This manuscript discusses the PEF-assisted “ice” juice extraction by
pressing of apple at sub-zero temperatures. Apples were initially
pretreated by PEF to a high level of electroporation, frozen and pressed
during their thawing at 2–5 bars. Extraction yield and nutritional qual-
ities of the extracted “ice” juice were analysed.

2. Material and methods

2.1. Raw material and sample preparation

Apples (Malus domestica var. Jonagold) were purchased at the local
supermarket and stored at 4 °C until analysis. Wet basis moisture
content was measured by drying 20 g of the fresh apple tissue at
105 °C to constant weight. It was found between 82 and 85% w. b.
Apple discs (d=50mmand h=5mm)were prepared using a vegeta-
ble cutter (Robot Cupe CL 50, Montceau-en-Bourgogne-Cedex, France).

2.2. PEF pretreatment

PEF pretreatment was carried out using a pulse generator, 400 V-38 A
(Service ElectroniqueUTC, Compiegne, France). Apple samplewas placed
in the PEF-treatment cell between two electrodes (Fig. 1). Electrical
treatment cell consisted of a Teflon cylindrical tube (Atelier Genie des
Procédés Industriels, UTC, Compiegne, France) with≈110 mm inner di-
ameter and an electrode (stainless steel 316 L) at the bottom. The apple
disc-shaped sample was placed inside the cell on the bottom electrode
and covered with fresh apple juice. After that, the second electrode was
put on top of the samples. The distance between the electrodes, 5 mm,
was determined by the height of the sample. Temperaturewas controlled
by a Teflon-coated thermocouple Thermocoax type 2-AB 25 NN
(Thermocoax, Suresnes, France) inserted into the geometrical centre of
the sample with a temperature measurement precision of ±0.1 °C. The
PEF generator provided bipolar pulses of near-rectangular shape with
an electric field of E = 800 V/cm and series of N = 10 were applied.
Each separate series consisted of n = 10 pulses with pulse duration
ti = 100 μs, distance between pulses Δt = 1000 ms and pause Δtt =
10 s after each series. Total time of PEF treatment was calculated as
tp = nNti. The chosen protocol of successive trains with long pause
after each train allowed a fine control of the plant tissue perme-
abilization without any significant temperature elevation (ΔT ≤ 3 °C)
during PEF treatment. These conditions were chosen according to a
previous study (Parniakov et al., 2015) where a high level of tissue elec-
troporation (conductivity disintegration index Z was ≈0.98) was ob-
tained. Electrical conductivity of the sample was measured during the
pause period Δtt between two consecutive series of pulses. All the out-
put data (current, voltage, electrical conductivity and temperature)
were collected using a data logger and special software adapted by
Service Electronique UTC.

Freezing treatment 

Thermocouple

Apple tissue 

FreezerTemperature 
controller

Pressing-Thawing 

Juice

Apple
tissue

PEF treatment 

Apple tissue 

Electrodes

Thermocouple

PEF generator 

ti

tt

n
Series

t

V
ol

ta
ge

 

Time 

Compressed
air

P = 2-5 bar 

Thermocouple

Balance

Fig. 1. Schematic presentation of experimental procedures including PEF pretreatment, freezing, and pressing–thawing experiments.
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2.3. Freezing

Apple samples were frozen in an ultra-low-temperature air-blast
freezer MDF-U2086S (Sanyo, Gunma, Japan), supplied with a modular-
type temperature controller SR Mini System (TC Ltd., Dardilly, France)
and the software Spec-View Plus (SpecView Corporation, Gig Harbor,
USA). Untreated and PEF pretreated samples were placed inside the
freezer at−40 °Cwith an air velocity of 2m/s controlled by an electronic
device VEAT 2.5 A (Air-technic, Firminy, France). Sample temperature
was measured with a T type thermocouple of 0.5 mm diameter (TC,
Ltd., Dardilly, France) with an accuracy of ±0.1 °C that was introduced
in the geometrical centre of the sample. Initial temperature before freez-
ing was uniform and constant at 20 °C for the whole sample. Total freez-
ing time, t, from the beginning of the cooling was 50 min, the final
temperature of the sample was≈−35 °C.

2.4. Pressing–thawing experiments

Immediately after the end of freezing the apple samples were placed
into a pressing chamber maintained at 20 °C. The temperature inside the
tissue was measured with a Teflon-coated thermocouple Thermocoax
type 2-AB 25 NN (Thermocoax, Suresnes, France) with precision of
±0.1 °C. Samples were compressed using a laboratory pressing chamber
(hemispherical shapewith a radius R=28mm)equippedwith an elastic
diaphragm (Fig. 1). The compression at 2, 3 and 5 bars was started when
the temperature inside the tissue attained−5 °C and continued for 100
min. The extracted juice was collected and weighted continuously by
an electronic balance.

In present experiments the maximum quantity of recovered juice,
mm, was obtained for long time of pressing of PEF pretreated tissue,
t ≈ 5000 s, at P = 5 bars. Extraction yield, Y, was calculated as

Y ¼ m=mm: ð1Þ

In order to follow the pressing kinetic, an acquisition computer sys-
tem was used to record the mass of recovered juice m every 5 s.

2.5. Nutritional characteristics

Concentration of total solublematterwasmeasured in accordance to
IFU methods (IFU, 2001) with a digital refractometer (Atago, USA) at
room temperature. Results were expressed in °Brix (g of total soluble
solid content/100 g solution).

Total carbohydrates concentration, Cc, was determined using the
phenol–sulphuric acid method (Du Bois, Gilles, Hamitton, Reders, &
Smith, 1956), with some modifications (Parniakov, Lebovka, Van
Hecke, & Vorobiev, 2014). 0.4 mL of sample were mixed with 0.2 mL
of 5% (w/v) phenol solution and 1 mL of concentrated sulphuric acid
(Sigma-Aldrich, France). Then the reaction mixture was kept at 25 °C
for 30 min. Absorbance of the mixture was measured at 490 nm and
the polysaccharide content was calculated using D-glucose (VWR Inter-
national, Belgium) as a standard. Results were expressed in mg of glu-
cose equivalent per liter of apple juice (mg/L).

Adapted and optimised assay for total polyphenols determination
was used (Singleton, Orthofer, & Lamuela-Raventos, 1999). Initially,
200 μL of diluted extract and 1000 μL of the Folin–Ciocalteau reagent
(diluted 10 folds in distilled water, w/w) were mixed and left at room
temperature for 5 min. Then, 800 μL of Na2CO3 solution (7.5 g of
Na2CO3 and 100 g of water) was added. The mixture was kept for 1 h
at room temperature and absorbance was measured at 750 nm using
a UV–vis spectrophotometer (Milton Roy Company, Spectronic 20
Genesys, United States). Gallic acid calibration standards with concen-
trations of 0, 20, 40, 60, 80, 100 and 120 ppmwere prepared and results
were expressed asmilligrams of gallic acid equivalents (GAE) per liter of
apple juice (mg/L).

Total flavonoid content was determined using the method as de-
scribed in (Zhishen, Mengcheng, & Jianming, 1999). 100 μL of sample
was mixed with 1.088 mL of ethanol (30%, v/v) and 48 μL of sodium ni-
trite solution (0.5 mol/L). After 5 min, 48 μL of aluminium chloride
(0.3 mol/L) was added. The mixture was stirred and allowed to react
for 5 min. Then, 320 μL of sodium hydroxide (1 mol/L) was added and
absorbance was measured at 510 nm using a UV–Vis spectrophotome-
ter (Milton Roy Company, Spectronic 20 Genesys, United States).
Catechin was used as standard with concentrations in the range of
0–75 μg/L and results were expressed as milligrams of catechin equiva-
lents (CTE) per litre of apple juice [mg C/L].

Total antioxidant capacity was measured using the TEAC (Trolox
Equivalent Antioxidant Capacity) assay according to Carbonell-Capella,
Buniowska, Esteve, and Frigola (2015). ABTS radical (ABTS•+)was gener-
ated using 440 μL of potassiumpersulfate (140mM). The solutionwas di-
luted with ethanol until an absorbance of 0.70 was reached at 734 nm.
Once the radical was formed, 2 mL of ABTS•+ was mixed with 100 μL of
extract and incubated for 60min at 20 °C and absorbance wasmeasured.

The browning index (BI) was measured accordingly to (Meydav,
Saguy, & Kopelman, 1977). For this purpose samples were centrifuged
(824 g, 20 min, 20 °C) and supernatant was diluted in ethanol (1:1
(v/v)). The mixture was filtered using filter paper (Whatman® No. 42,
Whatman International Ltd., UK) and absorbance was measured at
420 nm.

2.6. Statistical analysis

Each experimentwas repeated at least three times. Error bars present-
ed on thefigures correspond to the standarddeviations. One-way analysis
of variance was used for statistical analysis of the data using the
Statgraphics plus (version 5.1, Statpoint Technologies Inc., Warrenton,
VA). Tukey´s test was also performed on data for all pairwise compari-
sons of the mean responses to the different treatment groups. This
test allows determination of treatments which are statistically different
from the other at a probability level of P = 0.05.

3. Results and discussion

Fig. 2 presents typical examples of temperature evolution inside the
apple discs during the cooling of untreated and PEF pretreated apples.
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Fig. 2. Evolution of temperature inside the geometrical centre of the apple disc during
freezing for untreated and PEF treated samples. Here, tf is an effective freezing time. The
symbols are the experimental data. The curves were drawn for the guidance of eye.
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The temperature decrease was initially rather slow. The first crystalliza-
tion stage corresponds to a phase transformation ofwater into ice inside
the sample (Chevalier, Le Bail, & Ghoul, 2000). However, after some
time, the temperature began to decrease rapidly to the storage value
(−40 °C). The second cooling stage is started when the most freezable
water is converted to ice. The effective freezing time, tf, was determined
as a crosspoint of tangent lines of freezing and cooling part of T(t) curve
(Fig. 2).

PEF pretreatment resulted in a significant acceleration of the freez-
ing process. E.g., values of tf were ≈1400 s and ≈850 s for untreated
and PEF-treated apple discs, respectively. Similar effects of PEF-
pretreatment were previously reported for potato (Ben Ammar et al.,
2010; Jalte et al., 2009) and apple (Parniakov et al., 2015). The different
possiblemechanisms of PEF-pretreatment in the increase of the freezing
rate were earlier discussed (Jalte et al., 2009). In general, the resultant
faster freezing is desirable, leading to smaller size of formed ice crystals
and better quality of processed products (Delgado & Sun, 2001).

Fig. 3 presents the temperature evolution inside apple samples dur-
ing the pressing–thawing experiments for untreated (P = 0 bars) and
PEF pretreated samples at different pressures P = 0, 2, 3 and 5 bars.
The case of P=0bars corresponds to the thawingwithout applied pres-
sure. During the thawing, the temperature increased to reach the tem-
perature plateau or break of the curve T(t) in the vicinity of melting
point at some transition time t = te (Fig. 3). The temperature plateaus
were practically absent for the thawing without applied pressure
(P=0 bars) andwere present at P N 0 bars. For PEF pretreated samples
at P N 0 the transition time, te, characterises the starting point of inten-
sive releasing of juice from sample. Note, that transition time decreased
significantly with increase of the applied pressure P (see inset to Fig. 3).

Fig. 4 presents extraction yield, Y, and concentration of soluble solids
in local portions of juice, °Brixl, versus extraction time, t, in pressing–
thawing experiments at different pressures P. Data are presented for
PEF pretreated apples. Extraction yield, Y, increased with the pressing
time, t, and reached a maximum level, Ym, after a long time of pressing,
t ≥ 2400 s. Values of Ym(P) were ≈0.6, ≈0.8 and =1 for P = 2, 3 and
5 bars, respectively. Note that similar values of Ym(P)were also obtained

in pressing–thawing experiments with untreated samples (data are not
presented). However, the rate of juice release for PEF pretreated apples
was significantly higher compared to untreated ones and themaximum
level, Ym, for untreated sampleswas only obtained at t ≥ 6000 s. So, elec-
troporation facilitates the rate of juice release during thawing of frozen
apple tissue, but does not change the amount of juice expressed. It can
be speculated that this phenomenon reflects the changes in spatial dis-
tribution of unfrozen content inside the tissue that facilitates the juice
flow when pressure is applied. The observed behaviour was also in
accordancewith significant decreasing of the transition time, te, with in-
crease of the applied pressure P (see inset to Fig. 3).

Concentration of soluble solids in the first local fractions of apple
juice, °Brixl, was rather high (Fig. 4). During the pressing–thawing ex-
periments, °Brixl value reached amaximumat t= tmax. At t ≥ tmax, values
of °Brixl decreased significantly and reached approximately the same
minimum value, oBrixmin

l≈ 5.9, independently of the pressure applied.
Initial expression of the most concentrated juice with the highest con-
tent of sugars and other solids was expected, as it reflects the typical
process of freezing-assisted pressing. When time is increased, the
thawing of the ice crystals found inside the apple tissue takes place
and consequently, the concentration of soluble solids in the expressed
juice drops gradually. The observed time evolution of Y(t) and °Brixl(t)
(Fig. 4) is in qualitative correspondencewith the temperature evolution
presented in Fig. 3.

However, the origin of °Brixl maximum at t= tmax is not completely
clear. In the applied experimental schemes of freezing and pressing–
thawing, the spatial distributions of the temperature and concentra-
tions of the different components found inside the sample are highly
heterogeneous. Freezing is started from the sample surface and can
result in heterogeneous spatial distributions of both segregated ice
crystals and unfreezable portions of juice inside the apple sample.
From the other hand, during pressing–thawing, temperature is higher
on the surface of the sample and initial portions of juice are expressed
from the surface layer. Electroporation may have a supplementary
effect on the heat and mass transfer processes in the sample. That is
why the maximum of °Brixl at t = tmax can be the reflection of the
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Fig. 3. Evolution of temperature inside the geometrical centre of the apple tissue during pressing–thawing experiments for untreated (P= 0 bars) and PEF pretreated (P=0, 2, 3 and 5
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above-mentioned heterogeneities in temperature and component
concentrations.

Fig. 5 presents the concentration of soluble solids in local portion of
juice, °Brixl, versus the extraction yield, Y, in pressing–thawing experi-
ments at different pressures P. Note that the extraction yield of the
most concentrated local portions of juice at t = tmax was rather small,

Y≈ 0.1–0.15. Maximumvalues,oBrixmax
l , decreasedwhereas tmax values

increased with increase of a pressure, P (See, insert to Fig.5).
From a practical point of view, it is interesting to compare the char-

acteristics of the total portion of accumulated juice at different values of
extraction yield, Y. Fig. 6 presents the concentration of soluble solids,
°Brix, (a) and total phenolic compounds, CTPC, (b) versus juice yield, Y,
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at different pressures P. Data are presented for PEF pretreated (filled
symbols, dashed lines) and untreated (open symbols, solid lines)
apple samples.

Results show that freezing assisted pressing is rather effective at
high pressure, P = 5 bars, and ineffective at small pressure, P = 2
bars. At high pressure (P = 5 bars), final values of °Brix (Y = 1) were
≈12.2 and ≈11.5 for PEF pretreated and untreated samples, respec-
tively. However, at small pressure, P = 2 bars, final values of °Brix
(Y≈0.4) were ≈8.8 for both PEF pretreated and untreated samples.
This may reflect the capture of more concentrated juice inside the
apple sample for the given mode of freezing-assisted pressing at P = 2
bars.

In further discussion, we will only evolve the data obtained at
the highest pressure, P = 5 bars. It is remarkable that in PEF-assisted
pressing–thawing experiments, °Brix values (Fig. 6a) and CTPC (Fig. 6b)
noticeably exceeded those values obtained for untreated apple samples.
It evidently reflects the impact of electroporation on the freezing-
assisted pressing. Noticeably, both electroporation and freezing cause
cell damage in tissues. However, electroporation can also affect heat
andmass transfer processes during freezing, whichwas found to be im-
portant for enhancement of the pressing–thawing process.

The different nutritional characteristics of apple juice obtained in
pressing–thawing experiments at 5 bars for untreated and PEF
pretreated apples are compared in Table 1. At fixed value of extraction
yield, Y, PEF pretreatment always allowed noticeable enhancement of
nutritional parameters. E.g., at Y = 0.6 an increase in °Brix of ≈1.27,
total carbohydrates of ≈1.42, total phenolic compounds of ≈1.16, fla-
vonoids of≈1.09 and total antioxidant capacity of≈1.29 was observed
after PEF pretreatment. The highest concentrations of total carbohy-
drates (CC ≈ 281.5 g/L), total phenolic compounds (CTPC ≈ 1310.4 mg
GAE/L), flavonoids (292.7 mg CTE/L) and total antioxidant capacity
value (TAC≈ 9.2mMtrolox equivalent)were obtainedwith juice yields
of≈13%,≈18%,≈14% and≈18%, respectively. Thus, freezing-assisted
pressing of PEF pretreated samples has a positive effect on all nutritional
parameters of the extracted apple juice and allowed obtaining an ice
juice rich in bioactive compounds. Likewise, it was observed that brow-
ning index of juice obtained by freezing-assisted pressing of PEF
pretreated samples was rather lower (BI ≈ 0.101) than that of juice
obtained by traditional method (BI ≈ 0.306).

4. Conclusions

Freezing-assisted pressing at sub-zero temperatures is an effective
tool in order to obtain an apple juice rich in bioactive compounds. The
efficiency of this process can be noticeably improved by the application
of PEF pretreatment of apple tissue before freezing. PEF pretreatment
resulted in a reduction of both freezing and thawing time of apple tissue
and that pressing was more effective at high pressure, P = 5 bars.

Table 1
Different nutritional characteristics of apple juice obtained in pressing–thawing experiments at 5 bars for untreated and pulsed electric fields (PEF) pretreated apples.

Nutritional parameters Y

0.2 0.4 0.6 0.8 1.0

Untreated °Brix 14.8 ± 0.1a 14.1 ± 0.1ab 13.2 ± 0.1c 12.2 ± 0.1d 11.5 ± 0.1e

CC (g/L) 164.7 ± 1.6a 168.1 ± 0.5a 161.1 ± 3.4a 147.2 ± 3.2b 131.2 ± 3.9c

CTPC (mg/L) 1045.0 ± 5.2a 1042.2 ± 3.2a 1012.9 ± 4.1b 964.2 ± 1.0c 909.4 ± 4.1d

CTF (mg/L) 247.5 ± 2.5a 248.3 ± 1.9a 237.0 ± 1.9b 223.0 ± 4.3c 211.7 ± 1.2d

TAC (mM TE) 7.46 ± 0.09a 7.14 ± 0.14a 6.53 ± 0.11b 6.03 ± 0.05c 5.92 ± 0.07d

PEF treated °Brix 17.6 ± 0.1a 16.7 ± 0.1b 15.2 ± 0.1c 14.1 ± 0.1d 12.2 ± 0.1e

CC (g/L) 278.4 ± 4.3a 255.8 ± 2.7b 227.8 ± 1.8c 200.3 ± 1.6d 176.3 ± 0.5e

CTPC (mg/L) 1309.7 ± 7.2a 1262.8 ± 6.6b 1174.8 ± 2.1c 1083.0 ± 1.9d 1007.8 ± 1.2e

CTF (mg/L) 291.7 ± 0.6a 278.8 ± 2.5ab 259.5 ± 2.5b 238.7 ± 3.1c 220.6 ± 1.9d

TAC (mM TE) 9.07 ± 0.18a 8.84 ± 0.15ab 8.39 ± 0.13b 7.88 ± 0.09c 7.42 ± 0.06c

CC: Concentration of carbohydrates. CTPC: Concentration of total phenolic compounds. CTF: Concentration of total flavonoids. TAC: Total antioxidant capacity. TE: Trolox equivalent.
a–eFor each row, means followed by the same letter are not significantly different (P N 0.05).
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Fig. 6. Concentration of soluble solids, °Brix, (a) and total phenolic compounds, CTPC,
(b) versus juice yield, Y, at different pressures, P = 2, 3 and 5 bars. Data are presented
for PEF pretreated (filled symbols, dashed lines) and untreated (open symbols, solid
lines) apple samples. The symbols are the experimental data. The curves were drawn for
the guidance of eye.
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Furthermore, PEF pretreatment facilitated the rate of juice release but
did not change the total amount of juice expressed. The observed effects
can reflect the impact of electroporation on heat and mass transfer at
low temperature processes inside the apple sample. In PEF-assisted
pressing–thawing experiments, °Brix values and other nutritionally im-
portant parameters of apple juice noticeably exceeded those values ob-
tained for untreated samples. It is remarkable that both electroporation
and freezing can cause cell damage in tissues. However, electroporation
can also affect the process of freezing, whichwas found to be important
for the enhancement of the pressing–thawing. Thus, freezing-assisted
pressing of PEF pretreated samples has a positive effect on all investigat-
ed nutritional parameters of the extracted apple juice. The proposed
scheme of freezing-assisted pressing of PEF pretreated samples at sub-
zero temperatures is applicable for different fruit and vegetable tissues
and may be used by food producers in order to obtain a high quality
ice juice rich in bioactive compounds. However, further investigations
are requiredwith regard to the adjustment and optimization of pressing
protocols, further improvement of beneficial PEF effects and checking
the “ice” juice storage stability.
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Analytical Methods for Determining
Bioavailability and Bioaccessibility of Bioactive
Compounds from Fruits and Vegetables: A Review
Juana M. Carbonell-Capella, Magdalena Buniowska, Francisco J. Barba, Maŕıa J. Esteve, and Ana. Fŕıgola

Abstract: Determination of bioactive compounds content directly from foodstuff is not enough for the prediction
of potential in vivo effects, as metabolites reaching the blood system may be different from the original compounds
found in food, as a result of an intensive metabolism that takes place during absorption. Nutritional efficacy of food
products may be ensured by the determination of bioaccessibility, which provides valuable information in order to select
the appropriate dosage and source of food matrices. However, between all the methods available, there is a need to
establish the best approach for the assessment of specific compounds. Comparison between in vivo and in vitro procedures
used to determine bioaccessibility and bioavailability is carried out, taking into account the strengths and limitations of
each experimental technique, along with an intensive description of actual approaches applied to assess bioaccessibility of
bioactive compounds. Applications of these methods for specific bioactive compound’s bioaccessibility or bioavailability are
also discussed, considering studies regarding the bioavailability of carotenoids, polyphenolic compounds, glucosinolates,
vitamin E, and phytosterols.

Keywords: bioaccessibility, bioactive compounds, bioavailability, in vitro methods, in vivo methods

Introduction
Nowadays, consumers are more and more aware of the benefits

beyond basic nutrition provided by food and food compounds.
Between these, plant foods including fruits and vegetables have
been demonstrated to exhibit multiple health benefits, closely re-
lated to their high contents in vitamins and other bioactive com-
pounds (vitamin C, carotenoids, phenolic compounds, vitamin
E, glucosinolates) with antioxidant properties (Nehir and Sim-
sek 2012; Barba and others 2013; Carbonell-Capella and others
2013a). However, when studying the role of bioactive compounds
in human health, their bioavailability is not always well known.
Before becoming bioavailable, they must be released from the food
matrix and modified in the gastrointestinal (GI) tract. Therefore,
it is important before concluding on any potential health effect, to
analyze whether the digestion process affects bioactive compounds
and their stability, as this, in turn, will affect their bioavailability
and their possible beneficial effects.

Different digestion models have been developed by the scientific
community that accurately mimic the complex physicochemical
and physiological conditions of the human GI tract, along with
in vivo models in living organisms (Hur and others 2011). How-

MS 20131126 Submitted 08/9/2013, Accepted 10/17/2013. Authors are with
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ever, comparison of results between different studies is difficult to
accomplish, as there is no defined experimental model for study-
ing bioaccessibility and bioavailability. Analysis of the procedures
for measuring or predicting bioactive compounds bioavailability is
therefore required, particularly as a result of continuous develop-
ments of new products by food industries considered “functional”
because of their specific antioxidant or phytochemical contents.

The aim of the present article is to critically review different ap-
proaches used in the estimation of bioaccessibility and bioavailabil-
ity of food compounds, focusing on bioactive compounds, as these
are of major interest in current functional food development. Fur-
thermore, results of studies in which bioaccessibility and bioavail-
ability of bioactive compounds were investigated are also discussed.

Bioaccessibility, Bioavailability, and Bioactivity
The concept of bioaccessibility can be defined as the quan-

tity or fraction which is released from the food matrix in the GI
tract and becomes available for absorption (Heaney 2001). This
includes digestive transformations of food into material ready for
assimilation, the absorption/assimilation into intestinal epithelium
cells, and lastly, the presystemic metabolism (both intestinal and
hepatic). For some nutrients, beneficial effects of unabsorbed nu-
trients (such as binding of bile salts by calcium in the tract) would
be missed by absorption-based definitions. Bioaccessibility is usu-
ally evaluated by in vitro digestion procedures, generally simulating
gastric and small intestinal digestion, sometimes followed by Caco-
2 cells uptake (Courraud and others 2013).
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Figure 1–Definition of bioavailability, bioaccessibility, and bioactivity and
their potential assessment methodologies.

Differently, the term bioavailability includes also in its defini-
tion the utilization of a nutrient and therefore can be defined
as the fraction of ingested nutrient or compound that reaches the
systemic circulation and is utilized (Wood 2005). Overall, bioavail-
ability includes GI digestion, absorption, metabolism, tissue distri-
bution, and bioactivity. Consequently, in terms of bioavailability,
when a claim is made, it must be demonstrated that the com-
ponent analyzed is efficiently digested and assimilated and then,
once absorbed, exerts a positive effect in human health. How-
ever, practical and ethical difficulties are found when measuring
bioactivity, so the term “bioavailability” is usually defined as the
fraction of a given compound or its metabolite that reaches the
systemic circulation (Holst and Williamson 2008), without con-
sidering bioactivity. According to this definition, bioavailability of
a compound is determined in vivo in animals or humans as the
area under the curve (plasma-concentration) of the compound
obtained after administration of an acute or chronic dose of an
isolated compound or a compound-containing food (Rein and
others 2013).

Bioactivity is the specific effect upon exposure to a substance. It
includes tissue uptake and the consequent physiological response
(such as antioxidant, anti-inflammatory). It can be evaluated in
vivo, ex vivo, and in vitro (Figure 1) (Fernández-Garcı́a and others
2009).

Meanwhile, digestibility applies specifically to the fraction of
food components that is transformed by digestion into potentially
accessible matter through all physical–chemical processes that take
place in the lumen. Assimilation, meanwhile, refers to the uptake
of bioaccessible material through the epithelium by some mecha-
nism of transepithelial absorption (Etcheverry and others 2012).

Bioavailability of Bioactive Compounds
Bioactive compounds are phytochemicals that are present in

foods and are capable of modulating metabolic processes, resulting
in the promotion of better health. In general, these compounds
are mainly found in plant foods such as fruit, vegetables, and
whole grains (Carbonell-Capella and others 2013b; Gil-Chávez
and others 2013) and typically occur in small amounts. These
compounds exhibit beneficial effects such as antioxidant action,
inhibition or induction of enzymes, inhibition of receptor activ-
ities, and induction and inhibition of gene expression (Correia
and others 2012). They can be considered an extremely hetero-
geneous class of compounds with different chemical structures

(hydrophilic/lipophilic), distribution in nature (specific to veg-
etable species/ubiquitous), range of concentrations both in foods
and in the human body, possible site of action, effectiveness against
oxidative species, and specificity and biological action (Porrini and
Riso 2008). Among them, polyphenolic compounds, carotenoids,
tocopherols, phytosterols, and organosulfur compounds constitute
important groups in the human diet.

Indeed, bioavailability of bioactive compounds may be modified
because of interactions with other macronutrients such as fiber in
low-processed foods and beverages or proteins and polysaccharides
in processed food products (Dupas and others 2006). Furthermore,
when different foods come in contact in the mouth or digestive
tract, various interactions may take place affecting phytochemical
bioavailability (for example, fat enhances quercetine bioavailabilty
in meals) (Lesser and others 2006). On that basis, significant re-
search effort has recently focused on achieving optimal uptake of
phytochemicals to maintain body functions and health and, con-
sequently, carefully controlled studies are necessary in order to
determine phytochemical bioavailability.

As shown in Figure 2, different approaches to study bioacces-
sibility and bioavailability of bioactive compounds include in vitro
methods, ex vivo techniques, in situ assays, and in vivo models. Ad-
vantages of each procedure are summarized in Table 1. However,
comparisons between different approaches are difficult as condi-
tions differ between them and only in vivo studies provide accurate
values (Oomen and others 2002).

Approaches in the Assessment of Bioaccessibility
and Bioavailability of Bioactive Compounds
Carotenoids

Carotenoids are found in fruits and vegetables as carotenes
(unsatured hydrocarbons) and xanthophylls (oxygenated deriva-
tives). Generally, the main carotenoids in vegetables are lutein,
β-carotene, violaxanthin, and neoxanthin, whereas in fruits xan-
thophylls are usually found in a greater proportion. They are prone
to isomerization and/or oxidation due to their unsaturation (Hill
and Johnson 2012).

Only a very low proportion of carotenoids has been re-
ported to become bioaccesible (Courraud and others 2013). In
some fruits (such as mango, papaya) carotenoids are found in oil
droplets in chromoplast and hydroxycarotenoids are mostly esteri-
fied with fatty acids, being more easily extracted during digestion.
Carotenoids bioavailability from foods varies greatly depending
on endogenous (product-related) and exogenous (process-related)
factors. Amount and type of fat present in the vicinity is a key
factor that affects bioaccessibility. A minimum amount of fat is
necessary for absorption (Fernández-Garcı́a and others 2012), so
formulation of carotenoids in an oily matrix may enhance higher
bioaccessibility. Important steps in carotenoid absorption are re-
lease from the food matrix, micelle formation, uptake into mucosal
cells, packing into chylomicrons, and transport within the lym-
phatic system. Moreover, carotenoids content might be affected
by oxidative reactions during analytical procedures, so incubation
time should be kept to a minimum without affecting sensitivity.
Garret and others (2000) added α-tocopherol in order to ensure
protection against oxidation and thus improve carotenoids stability.

Different in vitro methods used in the assessment of carotenoid
bioaccessibility comprise simulated GI digestion, intestinal seg-
ments, brush-border and basolateral membrane vesicles, entero-
cytes, and transformed intestinal cell lines, mainly Caco-2 human
cells (Table 2). Garret and others (1999) may be considered the
pioneers in the development of the Caco-2 procedure for the
assessment of carotenoid bioaccessibility. The method consists of
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Methods used in the assesment of 
bioaccesibility and bioavailability of bioactive

compounds

Ex vivo modelsIn vitro models In vivo models

-Simulated
gastrointestinal
digestion
-Artificial membranes
-Caco-2 cell cultures
-Isolated/Reconstituted
cell membranes
- Ussing chambers

-Animal studies
-Human studies

-Gastrointestinal 
organs in laboratory

conditions

In situ models

-Intestinal
perfusion in
animals

Figure 2–Methodologies used in the assessment of bioavailability and bioaccessibility of bioactive compounds.

Table 1–Strengths and drawbacks of in vivo and in vitro procedures used to assess bioaccessibility and bioavailability of bioactive compounds.

Advantages Disadvantages

In vitro digestion
Simulated gastrointestina Relatively inexpensive and technically simple Extrapolation to in vivo

digestion Screening of numerous samples is possible Homeostatic mechanisms are not present
Focus on small number of components Dynamic conditions of gastrointestinal tract are not fully

reproduced with biochemical and cell culture models
Specific mechanisms of action can be tested Intestinal bacteria and hepatic metabolism is not always considered
Validation with reference material Oral and large intestinal phases are often not included although can

readily be added
Efficiency of each digestion, absorption or transport Closed system not responsive to composition and quantity of foods

mechanism can be studied Exocrine pancreas secretions not only contains pancreatin
Caco-2 cells Phenotype is similar to normal absorptive epithelial cells Original from human colonic adencarcinoma

Grow on dish surface and on membrane inserts Mucin, biofilms, and other epithelial cell types are not present
Secretion of chylomicrons is possible

In vivo digestion In vivo conditions Lower throughput
Selection of specific subjects Extremely complex functional systems
Pharmacokinetic studies can be performed Influence of different factors

Extrapolation from animal studies to human
Certified reference standards lack
High cost of equipment and labor
Ethical constraints

an in vitro digestion including a gastric and small intestinal step
based on that described by Miller and others (1981) to estimate
iron availability from foods. Subsequently, the digestate is filtered
(which would be representative of micellarized carotenoids) and
added to Caco-2 cells. To ensure that carotenoids were found in
micelles, these authors filtered the aqueus fraction. They ascer-
tained that lycopene was poorly micellarized and thus its quantity
decreased after filtration, but lutein, α-carotene, and β-carotene
did not change in their quantities. They also observed that hy-
drophobic species were efficiently micellarized when bile salts and
pancreatic enzymes were combined. Furthermore, these authors
found out that differentiated Caco-2 cells were able to accumu-
late carotenoids from mixed micelles. Further modifications were
made to this method by Thakkar and others (2007) who in-
cluded an oral digestion phase because of high starch content,
and by Chitchumroonchokchai and Failla (2006) who added li-
pase and carboxyl ester lipase. These latter authors observed that
xanthophyll esters were hydrolyzed by carboxyl ester lipase be-
fore xanthophylls are transported into enterocytes, resulting in an
enhanced cellular accumulation of zeaxanthin.

Hedrén and others (2002) also developed an in vitro digestion
method for the estimation of carotenoid bioaccessibility (called in
vitro accessibility) in raw and cooked carrots, which was further
used in several different studies assessing carotenoid bioaccessibility
(Lemmens and others 2009; Colle and others 2013). The groups
carefully examined critical steps in the digestion procedure, such
as the impact of added pancreatic enzymes and different bile salts
amounts, along with shaking conditions used in the micellariza-
tion step, so as to validate the method. When bile salts were not
added, β-carotene bioaccessibility decreased by about 80%, but
duplicating the amount of bile salts (from 25 to 50 g/L) resulted
in no additional increment of carotenoid bioaccessibility. More-
over, orbital shaking gave more reproducible results in comparison
with reciprocal shaking. In contrast to data by Garret and others
(1999), they estimated not only the micellarized fraction, but total
carotenoids released, as the intestinal phase was not achieved by
centrifugation and filtration. Courraud and others (2013) intro-
duced an oral phase to Hedrén’s method, without α-amylase as
most of the matrices were nonstarchy. They obtained a significant
loss of β-carotene only during the gastric phase and of retinyl
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ré

n
Re

bo
ul

G
ra

na
do

-L
or

en
ci

o
Co

lle
Ci

lla
(a

da
pt

ed
fr

om
G

ar
re

t
an

d
an

d
an

d
an

d
an

d
St

ep
an

d
ot

he
rs

19
99

)
ot

he
rs

(2
00

2)
ot

he
rs

(2
00

6)
ot

he
rs

(2
00

7)
ot

he
rs

(2
01

0)
ot

he
rs

(2
01

2)

Fo
o

d
sa

m
p

le
p

re
p

a
ra

ti
o

n
H

o
m

o
g

e
n

iz
a

ti
o

n
Fi

n
e

ly
g

ro
u

n
d

o
r

cu
t

in
to

sm
a

ll
p

ie
ce

s,
w

it
h

n
it

ro
g

e
n

b
lo

w
n

H
o

m
o

g
e

n
iz

a
ti

o
n

in
sa

li
n

e
+

p
yr

o
g

a
ll

o
l

H
o

m
o

g
e

n
iz

a
ti

o
n

w
it

h
ki

tc
h

e
n

b
le

n
d

e
r,

1
5

s,
to

si
m

u
la

te
m

a
st

ic
a

ti
o

n

H
o

m
o

g
e

n
iz

a
ti

o
n

in
sa

li
n

e
H

o
m

o
g

e
n

iz
a

ti
o

n

O
ra

lp
h

a
se

α
-A

m
yl

a
se

,p
H

6
.8

,1
0

m
in

,3
7

◦ C
α

-A
m

yl
a

se
,p

H
6

.5
,5

m
in

,
3

7
◦ C

G
a

st
ri

c
p

h
a

se
P

o
rc

in
e

p
e

p
si

n
,p

H
2

.5
,

1
h

,3
7

◦ C
P

o
rc

in
e

p
e

p
si

n
,p

H
2

,1
h

,
3

7
◦ C

P
o

rc
in

e
p

e
p

si
n

,p
H

4
,3

0
m

in
,3

7
◦ C

M
u

ci
n

,b
o

vi
n

e
se

ru
m

a
lb

u
m

in
,p

o
rc

in
e

p
e

p
si

n
,p

H
1

.1
,1

h
,

3
7

◦ C

P
o

rc
in

e
p

e
p

si
n

,p
H

4
,3

0
m

in
,3

7
◦ C

+
p

H
2

,3
0

m
in

,3
7

◦ C

P
o

rc
in

e
p

e
p

si
n

,p
H

2
,2

h
,

3
7

◦ C

Sm
a

ll
in

te
st

in
e

p
h

a
se

P
o

rc
in

e
b

il
e

e
xt

ra
ct

,
ca

rb
o

xy
le

st
e

r
li

p
a

se
,

p
o

rc
in

e
p

a
n

cr
e

a
ti

n
,

li
p

a
se

,p
H

6
.5

,2
h

,
3

7
◦ C

P
o

rc
in

e
p

a
n

cr
e

a
ti

n
,

p
o

rc
in

e
b

il
e

sa
lt

,p
H

7
.5

,3
0

m
in

,3
7

◦ C
.

P
o

rc
in

e
b

il
e

e
xt

ra
ct

,
p

o
rc

in
e

p
a

n
cr

e
a

ti
n

,p
H

6
,3

0
m

in
,3

7
◦ C

B
o

vi
n

e
b

il
e

,p
o

rc
in

e
p

a
n

cr
e

a
ti

n
,h

u
m

a
n

p
a

n
cr

e
a

ti
c

li
p

a
se

,
co

li
p

a
se

,c
h

o
le

st
e

ro
l

e
st

e
ra

se
,p

h
o

sp
o

li
p

a
se

A
2

,t
a

u
ro

ch
o

la
te

sa
lt

s,
p

H
7

.8
,2

h
,3

7
◦ C

P
o

rc
in

e
p

a
n

cr
e

a
ti

n
,

p
o

rc
in

e
b

il
e

sa
lt

,p
H

6
.9

,2
h

,3
7

◦ C
.

P
o

rc
in

e
p

a
n

cr
e

a
ti

n
,

p
o

rc
in

e
b

il
e

,p
H

6
.5

,
2

h
,3

7
◦ C

.

Is
o

la
ti

o
n

o
f

m
ic

e
ll

a
r

fr
a

ct
io

n
C

e
n

tr
if

u
g

a
ti

o
n

5
0

0
0

×
g,

4
5

m
in

,4
◦ C

,fi
lt

ra
ti

o
n

C
e

n
tr

if
u

g
a

ti
o

n
5

0
0

0
×

g,
2

0
m

in
C

e
n

tr
if

u
g

a
ti

o
n

2
0

0
0

0
rp

m
,1

8
h

,1
0

◦ C
,

fi
lt

ra
ti

o
n

O
ve

rn
ig

h
t

se
d

im
e

n
ta

ti
o

n
/

C
e

n
tr

if
u

g
a

ti
o

n
5

0
0

0
rp

m
,2

0
m

in

C
e

n
tr

if
u

g
a

ti
o

n
1

6
5

0
0

×
g,

6
5

m
in

,4
◦ C

,
fi

lt
ra

ti
o

n

C
e

n
tr

if
u

g
a

ti
o

n
3

3
0

0
×

g,
1

h
,4

◦ C

C
e

ll
u

p
ta

ke
C

a
co

-2
ce

ll
s,

4
h

,3
7

◦ C

palmitate in the oral and in the gastric phases, confirming that
sensitivity of carotenoids to acidic conditions is higher than to
alkaline conditions.

Reboul and others (2006) made some modifications to the
method established by Garret and others (1999). BHT used as
antioxidant was replaced by pyrogallol, more water soluble. Gas-
tric pH was set at 4 instead of 2, simulating the pH in the human
stomach after vegetable-rich meals ingestion. Moreover, duodenal
pH was adjusted to 6 instead of 7.5 as this is the pH measured
in human duodenum during digestion. Instead of 2 h of incu-
bation time, duodenal conditions were adjusted to 30 min to
approach the digestive transit time, and amount of bile salts were
increased. They observed that carotenoid bioaccessibility was de-
pendent of the different food matrix, being more bioaccessible
in carrot juice and processed tomato in comparison with crude
tomato and watermelon sources, which had very low accessibility.
Werner and Böhm (2011) employed this procedure in the assess-
ment of carotenoid bioaccessibility in durum wheat and egg pasta.
Durum wheat pasta exhibited higher carotenoid bioaccessibility.
The authors also observed that results were highly dependent on
bile extract concentration and to a lesser extent on gastric pH and
incubation time with digestive enzymes.

As previous methods were found unsuitable for xanthophyll
ester hydrolysis, Granado-Lorencio and others (2007) adapted a
method originally applied to the evaluation of soil contaminants.
Compared to previous in vitro models, these authors included the
use of human pancreatic lipase, phospholipase A2, cholesterol es-
terase, and taurocholate salts. They obtained a remainder of over
70% of carotenoids in the final digesta and observed that choles-
terol esterase hydrolyzed xanthophyll esters, and human pancreatic
lipase did not.

The in vitro digestion procedure for carotenoids followed by
Wright and others (2008), as adapted from Garret and others
(1999) and Hedrén and others (2002) consisted of dissolving the
carotenoids in the oily phase, considering thus exclusively the
intestinal digestion phase, as previous research had not shown sig-
nificant changes when eliminating the gastric step (Garret and
others 1999). They observed that β-carotene transfer increased as
did bile (from 0 up to 20 mg/mL) and pancreatin concentration
(from 0 up to 4.8 mg/mL) and with pH from 3.5 to 9.

Colle and others (2010) also introduced several modifications
to the method established by Hedrén and others (2002). Both
the pH and transit times were adapted to closely simulate human
conditions. A certain amount of lipid (0% to 10%) was added
to tomatoes prior to the in vitro digestion. A significant increase
of lycopene bioaccessibility was observed when 5% of lipid was
additioned.

Cilla and others (2012) adapted a method used for iron bioacces-
sibility to determine carotenoid bioaccessibility of fruit juice-milk
beverages, along with other bioactive compounds. Bioaccessibil-
ity of carotenoids was dependent of the type of milk used. Whole
milk-fruit beverage led to a higher carotenoid extraction (11%) in
comparison to the skimmed milk-fruit beverage.

As reported in the review by Rodriguez-Amaya (2010), al-
though these models simulate human digestion closely, a better
description of the food sample preparation should be carried out.
Furthermore, carotenoid extraction efficiency from food and mi-
celles should be similar, so no overestimation or underestimation
of micellarization is done. Results obtained in the different studies
are shown in Table 3.

The dynamic digestion TIMR© system that more closely mim-
ics in vivo conditions was also employed in the assessment of
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Table 3–Carotenoid bioaccessibility and bioavailability (%) of plant-derived products.

Carotenoids Method employed
Sample bioavailability (%) in the determination Reference

Baby food meal Lutein (24); β-carotene (13.8);
α-carotene (10.4)

Simulated gastric and small
intestinal digestion coupled
with Caco-2 cells

Garret and others (1999)

Spinach purée β-Carotene (29); lutein (27) Simulated gastric and small
intestinal digestion (Garret and
others 1999)

Ferruzzi and others (2001)

Raw pulped carrot β-Carotene (21) Simulated gastric and small
intestinal digestion

Hedrén and others (2002)

Carrot puree β-Carotene (8.9); α-carotene
(4.4)

Simulated gastric and small
intestinal digestion

Reboul and others (2006)

Spinach Lutein (37.6); α-carotene (2.4) Simulated gastric and small
intestinal digestion

Reboul and others (2006)

Orange β-Cryptoxanthin (45); zeaxanthin
(43); lutein (26)

Simulated oral, gastric, and small
intestinal digestion

Granado-Lorencio and others
(2007)

Salad (tomato, spinach, carrot,
romaine lettuce, and orange
pepper)

Lutein (+zeaxanthin) (45.6);
β-carotene (2.8); α-carotene
(2.0); lycopene (1.1)

Simulated gastric and small
intestinal digestion

Huo and others (2007)

Boiled cassava β-Carotene (30) Simulated oral, gastric, and small
intestinal digestion coupled
with Caco-2 (Garret and others
1999).

Failla and others (2008)

Lycopene from tomato extract Lycopene In vivo single dose design Riso and others (2010)
Orange fleshed melons β-Carotene (3.2) Simulated gastric and small

intestinal digestion
Fleshman and others (2011)

Tomato pulp Lycopene (2) Simulated gastric and small
intestinal digestion (Colle and
others 2012)

Colle and others (2012)

Butternut squash α-Carotene (17.9); β-carotene
(16.5); lutein (15.9);
violaxanthin (4.3)

Simulated gastric and small
intestinal digestion (Garret and
others 1999)

Jeffery and others (2012a)

Carrot Lycopene (38.9); α-carotene
(20.2); β-carotene (21.6);
lutein (40.5); phytoene (64.2)

Simulated gastric and small
intestinal digestion (Garret and
others 1999)

Jeffery and others (2012a)

Grapefruit Lycopene (4.5); β-carotene (7.9);
lutein (8.7); violaxanthin (8.4);
phytoene (47.1)

Simulated gastric and small
intestinal digestion (Garret and
others 1999)

Jeffery and others (2012a)

Mango β-Carotene (31.8); lutein (13.5);
violaxanthin (19.4)

Simulated gastric and small
intestinal digestion (Garret and
others 1999)

Jeffery and others (2012a)

Papaya β-Carotene (48.5); lutein (37.3);
violaxanthin (21.6); phytoene
(67.8)

Simulated gastric and small
intestinal digestion (Garret and
others 1999)

Jeffery and others (2012a)

Tomato Lycopene (1.4); β-carotene
(15.5); lutein (58.6); phytoene
(96.2)

Simulated gastric and small
intestinal digestion (Garret and
others 1999)

Jeffery and others (2012a)

Whole milk-fruit beverage Neoxanthin + 9-cis-violaxanthin
(47.3); zeaxanthin (14.7);
lutein (13.9)

Simulated gastric and small
intestinal digestion

Cilla and others (2012)

Soy milk-fruit beverage Neoxanthin + 9-cis-violaxanthin
(18.5); zeaxanthin (4.4); lutein
(3.7)

Simulated gastric and small
intestinal digestion

Cilla and others (2012)

Carrot juice Lutein (22); α-carotene (1.5),
β-carotene (1.5)

Simulated gastric and small
intestinal digestion (Hedrén
and others 2002)

Courraud and others (2013)

lycopene bioaccessibility by Déat and others (2009), followed
with Caco-2 cells. At the end of the dynamic experiment (300
min), lycopene decreased by 25%, in accordance with static in vitro
models.

Animal studies have also been designed in the assessment of
carotenoid bioavailability (Zuniga and Erdman 2011; Sy and others
2012). They obtained more accurate results than with in vitro meth-
ods. Despite this, human carotenoid absorption and metabolism
is not accurately mimicked by any animal model (Lee and oth-
ers 1999). For instance, in enterocytes, β-carotene is converted
to vitamin A in rodents much more efficiently than in humans.
Likewise, Failla and others (2008) observed that gerbils and preru-
minant calves, but not ferrets, hydrolyzed the ingested β-carotene
to vitamin A with an efficiency similar to humans.

Many studies have examined carotenoid bioavailability in hu-
mans (Micozzi and others 1992; Castenmiller and others 1999;

Tyssandier and others 2003). The most frequently used in vivo ap-
proach to study bioavailability of carotenoids involves the single-
dose design. An increase in β-cryptoxanthin, β-carotene, and
zeaxanthin plasma concentrations was observed after supplemen-
tation of blood orange juice in a long-term human study (Riso
and others 2005), although this did not exert significant effects on
several markers of oxidative stress. Meanwhile, Riso and others
(2010) found a low increase of lycopene, along with interindivid-
ual variability. Interestingly, Ross and others (2011) demonstrated
the fate of oral lycopene in humans in plasma, with the detec-
tion in skin for up to 42 d of lycopene and its metabolites. Goltz
and others (2013) observed that carotenoid absorption increased
when vegetables were consumed in a single meal rather than over
multiple meals.

Borel and others (1998) demonstrated a high correlation be-
tween in vitro carotenoid bioaccessibility, in vivo observations
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and with results from bioavailability trials with human subjects.
Therefore, in vitro models may constitute a less tedious and less
costly alternative to in vivo studies in the assessment of carotenoid
bioaccessibility.

Studies show that percentages of bioaccessibility and bioavail-
ability of the different carotenoids vary widely. Lutein was more
readily solubilized than α-carotene, β-carotene, and lycopene
(Garret and others 1999), probably because oxycarotenoids are
more hydrophilic than hydrocarbon carotenoids and to differ-
ent subcellular location and molecular interactions in plant foods.
Sy and others (2012) also obtained a high recovery of lutein
and astaxanthin, whereas lycopene was the least abundantly re-
covered. However, Jeffery and others (2012a) reported for the
1st time a high phytoene bioaccessibility, several times that of
other carotenoids, followed by lutein in carrot and tomato and
β-carotene in papaya and mango. In human studies, Tyssiander
and others (2003) reported greater bioavailability of lutein and
β-carotene compared to lycopene.

Furthermore, dietary fat appears to be necessary for the effi-
cient solubilization of lipophilic compounds. In this line, Failla
and others (2008) demonstrated an increase in carotenes when
triglycerides were added to a carotenoid-rich salad, in accordance
with Hedrén and others (2002), who observed a significant in-
crease in β-carotene bioaccessibility after oil addition. Qian and
others (2012) found the lowest bioaccessibility of β-carotene (0%)
when orange oil was used as the carrier lipid, probably because
flavored oils do not contain triacylglycerol components and thus
cannot be digested into free fatty acids. Moreover, Borel and others
(1998) demonstrated that β-carotene incorporated into chylomi-
crons higher in meals with long-chain rather than medium-chain
triglycerides. For this reason, Jeffery and others (2012b) used yo-
gurt as a lipid source with long-chain triglycerides. Human stud-
ies have also proved the importance of lipid in the absorption
of dietary lutein. On this subject, Mamatha and Baskaran (2011)
obtained a higher plasma lutein level in rats when lutein was sol-
ubilized in mixed micelles with fat. Brown and others (2004) also
observed that consumption in humans of full-fat salad dressing en-
hanced a higher carotenoid bioavailability than reduced-fat salad
dressing.

Interestingly, not only lipid amount, but also qualitative lipid
profile has its influence in carotenoid bioavailability (Goltz
and Ferruzi 2013). Monounsatured fatty acids promote a
higher carotenoid bioavailability than polyunsatured fatty acids,
as demonstrated by Clark and others (2000) in mesenteric
lymph duct cannulated rats. This was further observed by
Gleize and others (2013), who found that bioaccessibility of
the xanthophylls lutein and zeaxanthin was higher with sat-
urated fatty acids than with monounsaturated and polyunsat-
ured fatty acids both in an in vitro digestion model followed
by Caco-2 cell study and in vivo in orally administered rats.
Furthermore, long-chain triglyceride increased the β-carotene
bioaccessibility in comparison with medium-chain triglyceride
in a simulated intestinal digestion (Salvia-Trujillo and others
2013).

Effect of pH on the transfer efficiency of carotenoids is also
of importance, as suggested by in vitro results. Wright and others
(2008) demonstrated an increase in the β-carotene transfer to the
aqueous phase under higher pH conditions, while Jeffery and
others (2012b) obtained a positive correlation of β-carotene and
phytoene with food pH. However, this hypothesis can be rejected
in in vivo methods, because there is no significant meal effect on
stomach pH (Tyssandier and others 2003).

Contrary to expectation, several authors (Parada and Aguilera
2007; Courraud and others 2013) have demonstrated that techno-
logical processes such as cooking of vegetables increase carotenoid
bioavailability by disruption of the natural food matrix during food
processing. However, severe thermal treatment or inadequate stor-
age may cause isomerization during the formation of by-products
that can, in turn, reduce the absorption of desirable bioactive
compounds.

Polyphenolic compounds
Phenolic compounds or polyphenols form a large group of

chemical substances considered as secondary metabolites of plants.
They have an aromatic ring and a benzene ring with one or more
hydroxide groups, including phenolic acids (hydroxy-benzoic
acids and hydroxy-trans-cinnamic acids), coumarins, flavonoids
(flavones, flavonols, flavanones, flavanolols, flavanols, and antho-
cyanidins), isoflavonoids, lignans, stilbenes, and phenolic poly-
mers (proanthocyanidins and hydrolyzable tanins) (Craft and oth-
ers 2012). Among the various phenolic compounds, bioavailability
appears to differ greatly and the most abundant ones in our diet
do not necessarily correspond to those with best bioavailability
profile. Absorption and metabolism of polyphenolic compounds
are determined primarily by their physicochemical characteristics.
For example, molecular size, their basic structure, degree of poly-
merization or glycosylation, solubility, and conjugation with other
phenolics can be considered critical factors. Phenolic acids with
small-molecular weight such as gallic acid and isoflavones are eas-
ily absorbed through the tract, as well as flavones, catechins, and
quercetin glucosides (Martin and Apple 2010). On the contrary,
large polyphenols such as proanthocyanidins are poorly absorbed.
Most proanthocyanidins are degraded into monomer or dimer
units before being absorbed (Hackman and others 2008).

In plant products, most of the phenolic compounds are found
as glycosylated forms or as esters or polymers that must be hy-
drolyzed by intestinal enzymes or microflora before the released
aglycones can be absorbed. However, anthocyanins can be ab-
sorbed as glycosides and appear as such in blood (D’archivio and
others 2007). Metabolism is another factor, strongly affecting their
bioavailability. Generally, after absorption, polyphenols undergo
biotransformations of phase I and II into 3 main O-sulfated, O-
glucuronidated, and O-methylated forms. Despite this, antho-
cyanins do not appear to undergo extensive metabolism. Neither
do galloylated monomeric flavonols such as epigallocatechin and
epicatechin gallate, which may appear unconjugated, at least to
a large extent, in the systemic circulation (Cermak and others
2009). Thus, the structure of the resulting metabolites could be
totally different from the parent compounds, and they may or not
exert their biological action (Denev and others 2012). Results
published by Vitaglione and others (2007) suggested that proto-
catechuic acid, which can be absorbed both from the small and
large intestine, may be the metabolite involved in the activity ob-
served after the intake of cyanidin-3-glucoside, whose absorption
and excretion are reported to be below 1% of intake. Therefore,
evaluation of polyphenol bioavailability should include the analysis
not only of native compounds, but also their metabolic products.
Technological processes may also affect bioavailability of phenolic
compounds, showing a significant increase of chlorogenic acid and
naringenin in plasma levels when consuming cooked tomato in
comparison with the fresh product (Bugianesi and others 2004).

Despite the great variability of this group of substances, along
with their occurrence in plant materials as a complex mixture, ex-
periments reported in the literature have analyzed bioavailability
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of polyphenolic compounds with different chemical structures
and solubility through in vitro and in vivo assays, as shown in
Table 4. The most widely used procedure for screening polyphe-
nolic compound bioaccessibility is the in vitro static GI method.
Gil-Izquierdo and others (2001) may be considered the pioneers
in adapting the method established by Miller and others (1981)
to simulate human digestion and absorption of dietary iron in the
study of phenolic compound release. During the intestinal phase,
a cellulose dialysis tubing is used to simulate intestinal absorption.
The main modification introduced by Gil-Izquierdo and others
(2002) was the placement of the food and cellulose dialysis tubing
in a polyethylene tube to assure close contact between food and
membrane, reaching faster equilibration of pH values and thus a
faster liquid exchange. They observed that phenolic composition
was not affected by pepsin digestion in any of the assayed food
products. This method has been employed in the screening of
multiple foods, including orange juice (Gil-Izquierdo and others
2002), pomegranate juice (Pérez-Vicente and others 2002), broc-
coli (Vallejo and others 2004), soymilk (Rodriguez-Roque and
others 2013) and gooseberry (Chiang and others 2013) among
other foods. These authors found that gastric digestion increased
polyphenolic concentration, whereas the duodenal fraction signif-
icantly diminished polyphenolic content and even more so in the
dialyzed fraction. Results are shown in Table 5.

Further modifications (Villanueva-Carvajal and others 2013)
included the use of crushed ice after each digestion phase to ensure
the end of enzymatic activity. These authors also studied particle
size and concluded that this was inversely proportional to phenolic
release, so the enlargement of the contact area could improve
digestion efficiency with an absorption increase of polyphenols.

Bermúdez-Soto and others (2007) removed the employment
of the dialysis membrane during intestinal digestion as substantial
losses were observed of some of the phenolic compounds. They
simply determined polyphenolic compounds after separation by
filtration. During gastric digestion no significant changes were
observed in the stability of polyphenols in chokeberry, but antho-
cyanins were increased, due to the low pH after the gastric step.
During intestinal digestion a significant decrease in anthocyanins
(43%) and flavonols (26%) was observed, whereas chlorogenic acid
increased (24%). This method was further employed by Tagliazuc-
chi and others (2010) in the assessment of grape polyphenols,
with the addition of an oral phase. Furthermore, once the pan-
creatic digestion was finalized, samples were taken to pH 2 to
ensure the stability of phenolic compounds. Differently, these au-
thors observed an increase in the bioaccessibility of total polyphe-
nols, flavonoids, and anthocyanins during the gastric digestion in
grape, while intestinal digestion caused a decrease in all classes of
polyphenols.

Bouayed and others (2011) also developed a method to assess
free soluble polyphenols potentially available for further uptake
than from Miller’s method. They found out that after simulated
GI digestion of apples, polyphenols release was mainly achieved
during the gastric phase. Subsequently, a further increase (<10%)
in total phenolics and flavonoids was obtained after the intestinal
phase. This increase may be due to the additional time of extrac-
tion along with the effect of intestinal enzyme on the complex
food matrix, which facilitates the release of phenolics bound to the
matrix. Results showed a dialyzability of 40% for flavonoids and
55% for free soluble phenolics, respectively, in comparison with
their undigested counterparts in apples. Regarding anthocyanins,
these authors could not measure them after gastric and intestinal
digestion, probably because they degradate in alkaline intestinal Ta
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Table 5–Polyphenolic bioaccessibility and bioavailability (%) of plant-derived products.

Polyphenolic Method employed
Sample bioavailability (%) in the determination Reference

Orange juice (soluble fraction) Narirutin (10.5); hesperidin (16.2);
total flavanones (12.0), vicenin-2
(18.6)

Simulated gastric and small intestinal
digestion with cellulose dialysis
tubing

Gil-Izquierdo and others (2001)

Orange juice (soluble fraction) Narirutin (23.4); hesperidin (24.0);
hesperetin (21.1); total flavanones
(23.5), vicenin-2 (24.5)

Simulated gastric and small intestinal
digestion with cellulose dialysis
tubing

Gil-Izquierdo and others (2002)

Strawberry Cyanidin-3-glucoside (6.6),
pelargonidin-3-glucoside (12.6);
pelargonidin-rutinoside (11.7);
ellagic acid-arabinoside (20.6);
ellagic acid (172.8);
quercetin-3-glucoside (28.3);
kaempferol-3-glucoside (27.4)

Simulated gastric and small intestinal
digestion with cellulose dialysis
tubing

Gil-Izquierdo and others (2002)

Strawberry jam Cyanidin-3-glucoside (2.3),
pelargonidin-3-glucoside (3.7);
pelargonidin-rutinoside (3.8);
ellagic acid-arabinoside (6.1);
ellagic acid (9.7);
quercetin-3-glucoside (6.1);
kaempferol-3-glucoside (12.0)

Simulated gastric and small intestinal
digestion with cellulose dialysis
tubing

Gil-Izquierdo and others (2002)

Coffee Chlorogenic acid (traces); benzoic
acid (traces)

In vivo digestion in rats Dupas and others (2006)

Chokeberry Cyanidin-3-glucoside (56.7), cyanidin
(0), quercetin 3-glucoside (81.2),
quercetin (0), neochlorogenic acid
(71.6), chlorogenic acid (123.6).

Simulated gastric and small intestinal
digestion followed by filtration

Bermúdez-Soto and others (2007)

Tixia gooseberry Caffeic acid (44.1), epigallocatechin
gallate (28.1), kaempferol (100.2),
ρ-coumaric (61.0), pelargonidin
chloride (96.6), quercetin hydrate
(516.3), resveratrol (58.1), rutin
(95.3).

Simulated gastric and small intestinal
digestion according to
Gil-Izquierdo and others (2001)

Chiang and others (2013)

Invicta gooseberry Caffeic acid (59.5), kaempferol
(82.8), ρ-coumaric (73.4),
quercetin hydrate (154.7),
resveratrol (94.6), rutin (101.0).

Simulated gastric and small intestinal
digestion according to
Gil-Izquierdo and others (2001)

Chiang and others (2013)

environment. Further studies carried out by Bouayed and others
(2012) found that phenolic compounds in the gastric or intesti-
nal medium were approximately similar (chlorogenic acid), higher
(phloridzin and quercetin 3-О-glucoside) or lower (ρ-coumaric
acid) compared to those found in fresh apples, in accord with
results obtained by Chiang and others (2013). Polyphenol con-
centration decreased during dialysis through the semipermeable
cellulose membrane, although all polyphenols in the intestinal
medium were dialyzable, which could be indicative of passive dif-
fusion, an important mechanisms for cellular polyphenol uptake,
at least for several aglycones.

Gawlik-Dziki (2012) carried out an in vitro digestion includ-
ing an oral phase. Dialysis sacks were added after 2 h of intestinal
digestion, for a total time of 4 h. They also obtained a decrease
of phenolic compounds in the dialysate. Shim (2012) also in-
cluded an oral phase. However, they did not use dialysis sacks but
centrifugation. They used the in vitro method to compare pheno-
lic bioaccessibility in different parts of Smilax china and obtained
36.4%, 17.8%, and 9.9% of the remaining total polyphenols after
digestion of leaf, root, and stem, respectively.

Chen and others (2013) carried out an in vitro digestion model
according to the method established for carotenoid bioavailability
in the assessment of 9 commercially available tea juices. After the
gastric phase there was a significant decrease in total polyphenol
content of 5 of the juices. After the duodenal phase, a further
increase in the total polyphenol content was obtained in 4 of the
juices, possibly due to structural transformation of polyphenols.

However, these methods did not include a colonic phase and
polyphenols may be metabolized by the colonic microflora. For
this reason, Saura-Calixto and others (2007) estimated the bioac-

cessibility of dietary polyphenols with the isolated indigestible frac-
tion (small intestine bioaccessibility) and a colonic fermentation
of this fraction (large intestine bioaccessibility). Bioaccessibility of
polyphenols in the large intestine was calculated by the difference
of polyphenol contents between the total indigestile fraction and
the residue after the fermentation; and 48% of dietary polyphe-
nols were estimated bioaccessible in the small intestine, while 42%
became bioaccesible in the large intestine. Only 10% was not
accessible and remained in the food matrix after the entire diges-
tion process. Furthermore, Nordlund and others (2012) used an
in vitro colon model to study the formation of phenolic microbial
metabolites from rye, wheat, and oat bran. The major metabo-
lites found were hydroxylated phenylpropionic acid metabolites,
closely related to the ferulic acid content in the cereal samples.

The dynamic GI model (TIMR©) has also been extensively used
to measure phenolic bioaccessibility. Colonic fermentation ex-
periments may be incorporated in this model, so the assessment
of polyphenol bioaccessibility may be more reliable. This model,
which mimics the biological environment through the duode-
num, jejunum, and ileum, was employed in the monitorization
of anthocyanins stability and bioaccessibility in maqui berry and
wild blueberry (Lila and others 2012). These authors observed
that after intake, most anthocyanins were bioaccessible between
the 2nd and 3rd hours. López de Lacey and others (2012) also
used a dynamic GI model to study the bioaccessibility of green tea
polyphenols incorporated into agar. Their results revealed that the
polyphenols incorporated in the agar were bioaccessible, and con-
sequently available for absorption. Furthermore, the gelatin used
to simulate the presence of protein during the digestion partly
reduced green tea flavonols bioaccessibility.
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However, certain transport mechanisms such as unidentified
stomach active transport or the transport in the small intestine of
flavonoids through interaction with the sodium-dependent glu-
cose transporter are not considered with the in vitro digestion
method (Bermúdez-Soto and others 2007). For this reason, other
methods have been developed.

Bioaccessibility studies using Caco-2 cells have been con-
ducted (Dupas and others 2006; Fernandes and others 2012).
Glucuronidation, sulfation, and methylation processes carried out
by polyphenols can be studied using these cells. Yi and others
(2006) found that by growing on Transwell membranes Caco-2
cells, anthocyanins could be degraded and demethylated during
absorption and transport. Epigallocatechin was minimally uptaken
in the human intestinal Caco-2 cell model (Vaidyanathan and
Walle 2003), in accordance with Hong and others (2002), who
observed a poor uptake of epigallocatechin gallate by HT-29 hu-
man colon adenocarcinoma cells. Neilson and others (2010) used
this method to compare the efficiency of dimer absorption com-
pared to monomers of catechin. In addition, an assessment of
proanthocyanidin transport showed that oligomers of 6 units were
transported approximately 10-fold less across a layer of Caco-2
cells than radiolabeled monomers, dimers, and trimers (Déprez
and others 2000). A deeper study was carried out by Wang and
others (2013) in which grape seed phenolic extract was subjected
to in vitro GI digestion and ileal fermentation, followed by Caco-2
cells assay. Only microbial metabolites, but not original phenolic
compounds passed through the Caco-2 cell layer.

Some polyphenols may be metabolized by Caco-2 cells, which
must be taken into account. Ferulic acid-sulfate, synaptic acid-
sulfate, ρ-coumaric acid-sulfate, and methyl ferulate-sulfate were
generated after 24-h exposure of hydroxycinnamates to differen-
tiated Caco-2 cells according to Kern and others (2003). Mean-
while, Yi and others (2006) suggested a degradation and demethy-
lation of anthocyanins from blueberries during absorption and
transport by Caco-2 cells.

Further assays include the use of the Ussing chamber, where
a small section of intestinal mucosa is situated between 2 cham-
bers with buffer solution, preserving the epithelial polarity (Clarke
2009). Not only passive diffusion but transporter-mediated, tran-
scellular, paracellular, and endocytosis transport can be measured.
Bergmann and others (2009) employed the Ussing chamber in or-
der to study the intestinal transport of polyphenols in apples. They
used monolayers of the T84 colon carcinoma cell line and found
that the transport of various hydroxycinnamic acids and flavonoids
depended on the polarity. Cardinali and others (2013) also used
colonic cells in a Ussing chamber and obtained a bioaccessibility
of 0.1% of the polyphenol verbascoside. Moreover, Erk and others
(2013) observed that the absorption of coffee polyphenols in the
jejunum is governed by their physicochemical properties when
they used pig jejunal mucosa in the Ussing chamber.

In situ studies have also been carried out in the assessment
of polyphenolic bioavailability. Wang and others (2011) followed
this procedure in the study of total flavonoid extracts, with the
inclusion of liver perfusion, in order to determine flavonoid
metabolism. This method was also used by Fong and others (2012)
to study the metabolism and absorption of flavones from herbs us-
ing rat intestines. This way they found out that acetaminophen,
(-)-epicatechin, piperine, and mainly curcumin could significantly
inhibit the intestinal metabolism of the flavone baicalein and sub-
sequently increase its absorption.

Meanwhile, in vivo studies were carried out to test the bioac-
cessibility of polyphenols in rats (Dupas and others 2006; Mateos-

Martı́n and others 2012), pigs (Lesser and others 2006; Walton
and others 2006), and dogs (Reinboth and others 2010). This way,
Gonthier and others (2003) did not detect parent compounds or
catechin derivatives in the plasma of rats given purified procyani-
dins. Crespy and others (2002) also used Wister rats to determine
that quercetin, but not its glycosides, was absorbed from the rat
stomach. Disparity in the results between in vitro data and epi-
demiological studies are likely attributed to the physicochemical
characteristics of polyphenols. Bioavailability in rodent studies has
been estimated to be over 10% of ingested dose, ranging from 2%
to 20%. Interestingly, quantification of the flavonol quercetin and
its main methylated metabolites (isorhamnetin and tamarixetin) by
Surco-Laos and others (2011) in a Caenorhabditis elegans model re-
vealed that higher levels of quercetin plus metabolites were present
in the worm’s organism than those of isorhamnetin or tamarixetin
plus their respective metabolites. This observation suggests that
greater capacity of quercetin uptake than of methylated derivatives
by the nematode exists, although quercetin is further transformed
by C. elegans to a greater extent than isorhamnetin or tamarixetin.

With reference to human studies, these are limited as large
population sizes are necessary. Nevertheless, Manach and others
(2005) reported plasma concentrations of phenolic metabolites of
0 to 4 μmol/L after 97 human volunteers ingested 50 mg aglycone
equivalents. Russell and others (2009) recovered in the urine 26%
to 27% of the major free benzoic acids (gentisic, protocatechuic,
and ρ-hydroxybenzoic) and the major conjugated acid (syringic
acid), detected in plasma within 5 h after consumption of a sin-
gle dose of a portion of strawberries. Research carried out by
Hackman and others (2008) showed a rapid transport into blood
of metabolites, in a dose-dependent manner, with peak plasma
concentrations at 1 to 2.5 h after ingesting a flavanol-rich food,
reaching baseline levels within 8 h. Colonic microflora metabo-
lized most of the flavanols not absorbed in the small intestine to a
variety of derivatives of phenolic acid and valerolactone, able to be
absorbed. After 48 h of incubation with human colonic microflora,
procyanidins of 6 units were degraded into low-molecular-weight
aromatic acids (Deprez and others 2000). The wide variability of
results obtained by Suárez and others (2011) indicated a high de-
pendence on the individual in the absorption and metabolism of
olive oil phenols.

Moreover, although some in vitro studies suggest the degradation
of anthocyanins in the intestinal phase, under in vivo conditions
direct absorption of anthocyanins may take place in the stom-
ach (Manach and others 2004). Bioavailability of anthocyanins has
been demonstrated to be lower than that of other flavonoids, and
according to Yang and others (2011), generally less than 1% of
the consumed amounts (180 to 215 mg/day) is absorbed. They
are absorbed by different mechanisms in the stomach and small
intestine involving specific enzymes, such as bilitranslocase (Passa-
montia and others 2002). They subsequently enter the circulatory
system within 15 to 60 min, after passing through the liver, and
are distributed to different tissues, with a maximum concentration
of nanomolar levels. Mostly, anthocyanins reach the colon and are
extensively metabolized there by bacteria, contributing therefore
to their bioavailability (Hidalgo and others 2012).

Among the isoflavones, genistein, daidzein, and glycitein are
the most active compounds found in soybeans. Equol is a highly
bioavailable metabolite that comes from diadzein and exhibits
higher activity than the original isoflavone (Kanazawa 2011).
Using a Caco-2 cell model, Simmons and others (2012) found
that the lipid source and amount did not affect bioaccessibility of
isoflavones. However, transport across the monolayer was greater
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with shorter molecules. The in vivo human study carried out by
Shinkaruk and others (2012) revealed that the bioavailability of
glycitein from soy-based food was similar to that of daidzein and
its urinary excretion was significantly higher than that of genistein.

Glucosinolates
Glucosinolates have gained much attention as food compounds

of high dietary value due to its alleged beneficial effect in cancer
prevention (Fimognari and others 2002). Nearly all of the bio-
logical activities of these compounds may be attributed to their
hydrolytic products, of which the isothiocyanates are prominent
examples. Glucosinolates are hydrolyzed into isothiocyanates me-
diated by myrosinase, which is still active in fresh vegetable prod-
ucts, and by the bacterial microflora of the GI tract. Antibiotic
treatment along with inactivation of the plant myrosinase (after
cooking, for example) causes a decrease in bioavailability, as indi-
cated by the fact that bioavailability is greater following ingestion of
myrosinase-containing compared with myrosinase-lacking prepa-
rations (Dinkova-Kostova and Kostov 2012). One of the most ex-
tensively studied isothiocyanates is sulforaphane whose glucosino-
late precursor is glucoraphanin, abundant in broccoli. In humans,
metabolization of isothiocyanates occurs via the mercapturic acid
pathway.

Simulated static GI digestion, dynamic GI digestion, Caco-2
uptake, transport assays, and/or in vivo studies with animals and
with humans have all been used as glucosinolate bioaccessibility
and bioavailability screening methods. However, colonic fermen-
tation is essential for the absorption of isothiocyanates, which must
be taken into account. Recent evidence (Peñas and others 2012)
suggests that certain strains of Lactobacillus spp., L. mesenteroides
and L. plantarum, were capable of digesting in vitro glucosino-
lates. As a result, in human studies, degradation of glucosino-
lates to isothiocyanates exhibited high interindividual variation
because of colonic microflora differences (Rungapamestryi and
others 2007). It is important to note that urinary isothiocyanate
metabolite (dithiocarbamate) excretion decreases from 47% to a
negligible amount when bowel microflora is reduced by mechan-
ical and antibiotics.

As a result of the importance of colonic fermentation, few
in vitro studies have been carried out toward the assessment of
glucosinolate bioaccessibility. Despite the fact that mastication of
cooked vegetables liberates glucosinolates, and mastication of fresh
plants additionally causes enzymatic hydrolysis of glucosinolates,
no in vitro research has yet been conducted on the impact of
these process. Vallejo and others (2004) carried out a simulated
in vitro digestion which consisted in a gastric phase followed by
an intestinal phase that included a cellulose dialysis tubing, as
described previously by Gil-Izquierdo and others (2001) for de-
termining phenolic bioaccessibility. These authors reported a high
loss of glucosinolates (69%) under gastric conditions of homoge-
nized fresh broccoli inflorescence. However, Iori and others (2004)
suggested that the previous article had underestimated the degrada-
tive activity of myrosinase, still active in the uncooked broccoli.
Consequently, stability of glucosinolates under pepsin digestion
is considered quite high, as reported by Maskell and Smithardt
(1994) who obtained after simulated gastric digestion an over-
all drop of total glucosinolates of only 14%. Progoitrin and glu-
conapoleiferin showed greater susceptibility to peptic digestion
than gluconapin or glucobrassicin, and 4-hydroxyglucobrassicin
became undetectable. Differences between the results obtained
with the different inocula employed (Table 6) were minor. After
4 h of small intestine simulated digestion, the loss of the total

glucosinolates was 32%. Lai and others (2010) effectuated an in
vitro simulated digestion of glucoraphanin in the upper GI tract,
along with an ex vivo study using rat cecal microbiota and an in situ
rat cecum assay. The in vitro study confirmed that glucoraphanin
was not degraded by upper GI digestive enzymes, consequently
reaching the rat cecum intact. Meanwhile, in both in situ and ex
vivo procedures, glucoraphanin was hydrolyzed to sulforaphane by
F344 rat cecal microbiota and able to cross the cecal enterocyte
for systemic absorption.

A dynamic computercontrolled in vitro large-intestinal model
was designed by Krul and others (2002), with the inoculation of
complex microflora of human origin, a semipermeable membrane,
and pH continuously adjusted to 5.8. They observed peak levels of
allyl isothiocyanate 9 to 12 h after the addition of sinigrin, which
accounts for 1% of the degraded sinigrin. Slightly higher values
were obtained by Getahun and Chung (1999) who incubated
human feces with cooked watercress juice for 2 h. They found that
18% of total glucosinolates were hydrolyzed into isothiocyanates.

Intact glucosinolate and its metabolites in feces were lowly re-
covered in animal studies, using different species, suggesting sub-
stantial absorption and metabolism of these compounds (Slomin-
ski and others 1988; Conaway and others 1999). In an in vivo
animal study published by Hanlon and others (2008), rats were
administered sulforaphane in either a single intravenous dose (2.8
mmol/kg) or single oral doses of 2.8, 5.6, and 28 mmol/kg.
This compound was well and rapidly absorbed, with an absolute
bioavailability of 82%, which decreased at higher doses, indicating
a dose-dependent pharmacokinetic behavior.

In an in vivo human study, Rouzaud and others (2004) ob-
served that isothiocyanates release was delayed when ingest-
ing cooked cabbage and, therefore, suggested that glucosinolates
passed through the upper digestive tract without modification.
Furthermore, Riso and others (2009) carried out an in vivo hu-
man crossover intervention study (broccoli diet compared with
cruciferous-free diet). They observed an increase of isothiocyanate
plasma concentrations, while the intervention did not affect plasma
glucosinolate activity. Other in vivo studies discussed in Table 7
firmly established that, compared to isothiocyanates, intake of glu-
cosinolates is associated with lower bioavailability, slower elimina-
tion, and greater interindividual variation in excretion. Overall,
the large interindividual variability of conversion of glucosinolates
to urinary dithiocarbamates is evident following administration of
either single or multiple doses of glucosinolates, and ranges be-
tween 1% and more than 40% of the dose. Interestingly, there are
also diurnal variations: conversion of glucosinolates to dithiocar-
bamates is greater during the day, whereas conversion of isoth-
iocyanates to dithiocarbamates is more efficient during the night
(Fajey and others 2012).

Vitamin E
Vitamin E is actually a family of molecules, which include

the tocopherols and the tocotrienols, all of them with important
antioxidant properties and health benefits.

Alpha-tocopherol exhibits the highest biological activity and
molar concentration of lipid-soluble antioxidants in the human.

A handful of in vitro and in vivo assays have been conducted
on the determination of vitamin E bioaccessibility and bioavail-
ability, as shown in Table 8. It is important to note that during
digestion, vitamin E must be packaged into micelles to facilitate
absorption, the same as carotenoids. Therefore, Reboul’s simu-
lated GI digestion procedure (Reboul and others 2006) employed
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Table 6–Comparison of in vitro methods for glucosinolates bioaccessibility determination.

Method

Maskell and Vallejo and Lai and
Step Smithardt (1994) others (2004) others (2010)

Food sample preparation Homogenization
Oral phase – – Amylase, 3 min, 37 ◦C
Gastric phase Porcine pepsin, pH 2, 4 h, 37 ◦C. Porcine pepsin, pH 2, 2 h, 37 ◦C Porcine pepsin, pH 2, 2 h, 37 ◦C
Transition step Centrifugation, 1000 rpm, 20 min
Small intestine phase Innocula of small intestine of pig

fed with rapeseed
meal/soyabean meal or
commercial diet/Porcine
pancreatin, pH 6, 1 to 4 h,
37 ◦C

Porcine bile extract, porcine
pancreatin, lipase, pH 7, 2 h,
37 ◦C

Porcine bile extract, porcine
pancreatin, pH 7.5, 2 h, 37 ◦C

Separation Centrifugation, 1000 rpm, 20 min Dialysis in a semipermeable
cellulose membrane
simultaneously with intestinal
phase

Hydrolyzation with myrosinase

in the assessment of carotenoids is also used to study vitamin E
bioaccessibility, with subsequent centrifugation and filtration steps.

Desmarchelier and others (2013) followed Reboul’s in vitro di-
gestion, with palm oil as added fat. These authors showed that α-
tocopheryl acetate was distributed between mixed micelles (36%),
liposomes (9%), and nonsolubilized food debris (52%). Further-
more, they followed the in vitro digestion by uptake studies using
Caco-2 cells. These cells were able to hydrolyze α-tocopheryl ac-
etate and to uptake α-tocopherol when α-tocopheryl acetate was
incorporated into mixed micelles but not into emulsions. Werner
and Böhm (2011) extended Reboul’s method by an oral phase.
Overall, results obtained by these authors were highly dependent
on the amount of bile extract present in the digestive medium and
to a lesser extent on the simulated gastric pH and the incubation
time with digestive enzymes. Bioaccessibility of β-tocotrienol was
found to be higher than that of α-tocotrienol.

Depending on the dietary source, the bioaccessibility of vita-
min E has been shown to vary widely. O’Callaghan and O’Brien
(2010), who used in vitro simulated GI digestion coupled with
Caco-2 cells, obtained bioaccessibility values of α-tocopherol
ranging from 11% in apple sauce to 86% in beef. Likewise, Reboul
and others (2006) reported a 100% bioaccessibility of α-tocopherol
in bananas and bread, 29% and 22% in cheese and milk, respec-
tively, and as low as 0.5% in apples. These differences between
different food sources may be due to different sites and physico-
chemical states of α-tocopherol, along with the presence of fiber,
fat, and phytosterols in the food source.

A dynamic gastric digestion model with nonhomogeneous gas-
tric mixing, shearing, and rate of delivery to the duodenum was
employed by Mandalari and others (2013) in the assessment of
tocopherols bioaccessibility of pistachios. They obtained a bioac-
cessibility of almost 100% of tocopherols after duodenal digestion.
Déat and others (2009) employed the TIMR© procedure coupled
to Caco-2 cells. These authors showed that the absorption of
α-tocopherol from a vitamin E-containing meal was significantly
lower when compared to the pure compound. This finding reveals
that other components present in a meal may change the uptake
behavior of vitamin E or compete in the absorption through the
SR-BI transporter.

In vivo studies have also been used in the assessment of vita-
min E bioavailability. Nagy and others (2013) carried out a hu-
man study with healthy volunteers under maldigestion conditions.
They found out that the acetylated form of α-tocopherol exhibited
the same bioavailability as free α-tocopherol. A long-term human
study was also carried out by Novotny and others (2012). They

observed that ingesting diary 9.2 mmol (4 mg) of α-tocopherol
maintained plasma concentrations of α-tocopherol at 23 mmol/L,
suggesting that the dietary requirement for vitamin E may be less
than that currently recommended. Johnson and others (2012), em-
ploying mouse and human in vivo assays, discovered novel urinary
metabolites: α-carboxyethylhydroxychroman (α-CEHC) glycine,
α-CEHC glycine glucuronide, and α-CEHC taurine.

Correlation between in vitro bioaccessibility data with bioavail-
ability determined by in vivo human assays was studied by Granado
and others (2006). They observed no measurable difference in the
case of broccoli in the plasma levels of α-tocopherol after a 7-d
feeding intervention.

Therefore, the great variety of methods employed in the assess-
ment of tocopherol bioavailability provides different findings that
will be important for future updates of intake recommendations
and will aid in understanding the disposition and roles of vitamin
E in vivo.

Phytosterols
Phytosterols have attracted much attention in recent years

due to their health benefits, such as cholesterol lowering, anti-
inflammatory, antiatherogenicity, and anticancer potential. β-
Sitosterol is the most common phytosterol found in leaf veg-
etable natural products followed by campesterol, stigmasterol, and
sitostanol.

Granado-Lorencio and others (2011) applied the same in vitro
method as the one used to study polyphenols bioaccesibility
(Granado-Lorencio and others 2007) in the assessment of phy-
tosterol bioaccesibility. Mandak and Nyström (2012) also used an
in vitro digestion. These authors observed that bioaccessibility of
steryl ferulates (various plant sterols esterified to ferulic acid) was
found to be almost negligible. These findings suggest that intestinal
enzymes immediately hydrolyze steryl ferulates and thus they are
practically unavailable for absorption in the small intestine, possi-
bly being bioactive in the gut. This was also shown in a further
study (Mandak and Nyström 2013), where the low bioaccessibility
of steryl ferulates (0.01% to 0.25%) was independent of the ce-
real matrix. A similar analytical method was applied by Alemany
and others (2013). These authors obtained a sterol bioaccessibility
of 2% to 6% in fruit-based milk beverages. However, a higher
bioaccessibility was observed for oxides of β-sitosterol, suggest-
ing differences in the solubilization and absorption mechanism
between plant sterols and their oxides.

Yi and others (2012) carried out an in vivo rat study where
oral bioavailability of sterols enhanced by Flammulina velutipes was
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Table 8–Comparison of in vitro methods for vitamin E bioaccessibility determination.

Method

Reboul and O’Callaghan and Werner and Mandalari and
Step others (2006) others (2010) Böhm (2011) others (2013)

Food sample
preparation

Homogenization in saline +
pyrogallol

Homogenization Homogenization in saline +
pyrogallol

Oral phase Amylase, pH 6.5, 5 min, 37 ◦C Amylase, pH 6.9
Gastric phase Porcine pepsin, pH 4, 30 min,

37 ◦C
Porcine pepsin, lipase, pH 4,

1 h, 37 ◦C
Porcine pepsin, pH 3.5 to 4.5,

0.5 h, 37 ◦C
Porcine pepsin, 37 ◦C

Transition step pH 5.4
Small intestine phase Porcine bile extract, porcine

pancreatin, pH 6, 30 min,
37 ◦C

Porcine pancreatin, pH 7.8,
2 h, 37 ◦C

Porcine bile extract, porcine
pancreatin, pH 6.5 to 7,
0.5 h, 37 ◦C

Porcine bile extract, porcine
pancreatin, lecithin,
cholesterol, sodium
taurocholate pH 7, 2 h,
37 ◦C

Separation Centrifugation 20000 rpm,
18 h, 10 ◦C + Filtration

Ultracentrifugation 200000
g, 95 min + Filtration

Centrifugation 4000 rpm, 20
min, 10 ◦C +
Centrifugation 14000 rpm,
5 min, 22 ◦C + Filtration

Centrifugation, 3700 rpm, 15
min, 7 ◦C.

Cell uptake Caco-2 cell

demonstrated. Although in vitro and in vivo methods have been used
to measure sterols bioaccesibility and bioavailabilty respectively, in
vitro procedures have yet to be validated against human absorption
data.

Conclusions
The wide range of options available to evaluate digestion and

uptake in in vitro and model organisms has guaranteed a role for
them in bioaccessibility and bioavailability studies for years to
come. Both in vitro and in vivo approaches are increasing our un-
derstanding of uptake of bioactive compounds from food products.
Nevertheless, more validation studies are needed which compare
in vivo with in vitro results. It is noteworthy that none of the meth-
ods presented in this report will absolutely predict how much of
a specific bioactive compound a human will absorb and utilize.
In addition, the low bioavailability of the bioactive compounds
(in particular polyphenols), could imply the activation of some
alternative mechanisms that can justify their possible beneficial ef-
fect. Nonetheless, results obtained with in vivo assays enable the
prediction of the situation in humans quite accurately and may
help accelerate the study of phytochemical absorption for better
comprehension of their possible beneficial effects.
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a b s t r a c t

In order to determine the impact of Stevia rebaudiana (SR) addition on bioactive compounds bioaccessibil-
ity of a new developed functional beverage based on exotic fruits (mango juice, papaya juice and açaí)
mixed with orange juice and oat, an in vitro gastrointestinal digestion was performed. Ascorbic acid, total
carotenoids, total phenolics, total anthocyanins, total antioxidant capacity and steviol glycosides were
evaluated before and after a simulated gastrointestinal digestion. Salivary and gastric digestion had no
substantial effect on any of the major phenolic compounds, ascorbic acid, total antioxidant capacity
and steviol glycosides, whereas carotenoids and anthocyanins diminished significantly during the gastric
step. All analysed compounds were significantly altered during the pancreatic-bile digestion and this
effect was more marked for carotenoids and total anthocyanins. However, phenolic compounds,
anthocyanins, total antioxidant capacity and steviol glycosides bioaccessibility increased as did SR
concentration. Ascorbic acid bioaccessibility was negatively affected by the SR addition.

� 2015 Published by Elsevier Ltd.

1. Introduction

Current trends and worldwide developments on new food prod-
ucts with functionality aim to demonstrate a significant bioactivity
of exotic fruits with positive impact in several chronic disorders
(Costa, García-Díaz, Jimenez, & Silva, 2013). In this sense, research
has focused on combinations of exotic fruits with other ingredients
in beverages (Carbonell-Capella, Barba, Esteve, & Frígola, 2013).
Fruit juice blends with other ingredients are gaining importance
in the market probably due to public perception of juices as a
healthy natural source of nutrients and increased public interest
in health issues.

Additionally, the use of Stevia rebaudiana (SR) leaves is increas-
ing as a natural sweetener 300 times sweeter than sucrose without
caloric value, allowing consumers to enjoy sweet taste without
concerns about weight gain. They do not replace the sugar natu-
rally present in foods, but they can be an excellent substitute for
added sugars and thus an effective aid in weight management.
The European Commission granted final regulatory approval for
the use of stevia extracts in foods and beverages on 11
November 2011. Stevia leaves contain a mixture of diterpene gly-
cosides (steviosides) and is considered a good source dietary fibre,
minerals and essential amino acids (Kim, Yang, Lee, & Kang, 2011).

Stevia leaf extract shows a high level of antioxidant activity, as well
as a variety of phytochemicals such as phenolic compounds,
directly associated with the removal of free electrons and superox-
ide radicals (Geuns, Hajihashemi, & Claes, 2012). Due to its chemi-
cal structure and health-promoting phytochemical components,
stevia is suitable as a replacement for sucrose in beverages and
for the production of functional food ingredients (Šic Žlabur
et al., 2013). The sweetening power of steviol glycosides differ
between them, with rebaudioside A being 400 times sweeter than
sugar and stevioside about 300 times sweeter (Ceunen & Geuns,
2013). As a result, determination of the steviol glycoside profile
is of great interest to industry.

Despite the enormous research on antioxidant properties of
fruit beverages, studies investigating the effect of gastrointestinal
digestion on dietary antioxidants are scarce. Only phytochemicals
released from matrices become bioaccessible and are potentially
available for absorption by the gastro-intestinal tract, and, there-
fore, able to exert their beneficial effects in the human body.
Under gastrointestinal conditions, transformations (degradation,
epimerisation, hydrolysis and oxidation) and interactions between
phytochemicals and food components may also occur, modifying
therefore the biological activity of the bioactive compounds
(Carbonell-Capella, Buniowska, Barba, Esteve, & Frígola, 2014).
Therefore, it is important, before concluding on any potential
health effect, to assess how the digestion process affects bioactive
compounds and their stability, as this, in turn, will affect their
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bioavailability for uptake, as well as their possible beneficial
effects.

Previous studies have confirmed that an in vitro digestion model
system simulating human digestion could support reliable
prediction of bioaccessibility of bioactive compounds and total
antioxidant capacity in plant products (Rodríguez-Roque, Rojas-
Graü, Elez-Martínez, & Martín-Belloso, 2013). However, the effect
of SR extracts on the stability and bioaccessibility of phytochemicals
in beverages typically consumed with adjuncts or as formulated
products has not yet been reported in the literature data so far.
The extent to which formulation may modify the bioactive com-
pound profile of exotic fruit-oat beverages or influence their
bioavailability is critical to understanding ultimate physiological
effects elicited by these beverages. Furthermore, available knowl-
edge on the digestibility of steviol glycosides is limited. Therefore,
at this stage of development, it is necessary to study the impact of
digestive conditionswhen anewspecific formulation of commercial
ready-to-drink matrix is designed in order to better design future
studies focused on assessment of specific biological outcomes.

The objective of the current study was to investigate the bioac-
cessibility of phenolic compounds, anthocyanins, carotenoids,
ascorbic acid, steviol glycosides and antioxidative effect in exotic
fruit-oat beverages with (1.25% and 2.5%) and without SR. The
effect of SR extract addition on the bioaccessibility of bioactive
compounds and total antioxidant capacity was evaluated with an
in vitro physiological approach simulating human digestion in the
upper gastrointestinal tract, with the inclusion of a salivary, gastric
and duodenal step with a dialysis membrane. The release of bioac-
tive compounds as well as the total antioxidant capacity of the
beverages were determined in aliquots collected at the end of each
digestion step.

2. Materials and methods

2.1. Samples

Cultivars of papaya (Carica papaya), mango (Mangifera indica),
oranges (Citrus sinensis, cultivar Navel) and oat beverage
(Santiveri, Lérida, Spain) were purchased from a local supermarket.
Papaya, mango and orange juices were extracted after appropriate
washing of the fruits and the pulp was removed. Açaí provided by
Nature’s Way Products Inc. (Utah, USA) (containing 450 mg of açaí
berries extract, with 10% of polyphenols) was added to the
beverage.

S. rebaudiana leaves were supplied by company Anagalide, S.A.
(Barbastro, Huesca, Spain) and stored at room temperature. A stock
solution (8.33%, w/v) of S. rebaudiana was prepared in order to for-
mulate the beverage (Carbonell-Capella et al., 2013). For this pur-
pose, 100 mL of bottled water at 100 �C were added on the dried
leaves (8.33 g) and were kept for 30 min. The infusion was vacuum
filtered using filter paper (Whatman No. 1) and the filtrate
obtained was stored for the duration of the experiment at �40 �C.

The fruit juice mixture was prepared by mixing 32.5% (v/v) of
papaya juice, 10% (v/v) of mango juice, 7.5% (v/v) of orange juice,
20% of oat beverage, 1% of açaí powder (w/v) and water to 100%.
To obtain final stevia concentrations of 1.25% and 2.5% (w/v), dif-
ferent volumes of stevia stock solution (30 and 60 mL) were added
to prepare 200 mL of beverage instead of water. The higher stevia
concentration (2.5%, w/v) was selected, taking into account the
sucrose concentration of commercial fruit-based beverages and
the sweetness equivalence of stevia and sucrose.

2.2. Chemicals and reagents

Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic
acid), as a standard substance (2 mM) to measure TEAC, 2,20-azobis

(2-methylpropionamidina)dihydrochloride (ABTS), 2,2-diphenyl-
1-picrylhydrazyl (DPPH), fluorescein sodium salt, 2,20-azobis
(2-amidinopropane)dihydrochloride (AAPH), disodium metabisul-
fite, Folin–Ciocalteu (ammonium molibdotugstat) reagent, rebau-
dioside A, stevioside hydrate, steviol hydrate, a-amylase from
Bacillus, mucin from porcine stomach, pepsin from porcine gastric
mucosa, pancreatin from porcine pancreas, bile extract porcine and
EDTA Na2 were purchased from Sigma (Steinheim, Germany).
Gallic acid 1-hydrate in distilled water, as a standard (10 mg/mL)
for phenolic compounds, was purchased from UCB (Brussels,
Germany). Oxalic acid, acetic acid, chlorhidric acid, acetone,
sodium acetate, potassium persulphate (K2S2O8), sodium di-hydro-
gen phosphate (anhydrous) (NaH2PO4) and di-potassium hydrogen
phosphate (K2HPO4) were purchased from Panreac (Barcelona,
Spain), while di-sodium hydrogen phosphate anhydrous
(Na2HPO4) and potassium dihydrogen phosphate (KH2PO4) from
Scharlau (Barcelona, Spain). Ethanol, methanol, acetonitrile, hex-
ane, sodium chlorure, sodium carbonate anhydrous (Na2CO3), tri-
chloroacetic acid and sodium sulphate proceeded from Baker
(Deventer, The Netherlands). Ascorbic acid and sodium dodecyl
sulphate were obtained from Merck (Darmstadt, Germany) and
rebaudioside C and rebaudioside F from Wako (Osaka, Japan).

2.3. Simulated digestion

A three-stage in vitro digestion model was performed based on
the previously described procedure by Rodríguez-Roque et al.
(2013), with the addition of a salivary step. Briefly, 50 mL of each
beverage (in triplicate) was transferred to an Erlenmeyer flask,
and a saliva solution (5 mL, pH 6.75 ± 0.2) containing 2.38 g
Na2HPO4, 0.19 g KH2PO4, 8 g NaCl, 100 mg of mucin and a-amylase
(200 U/L of enzyme activity) in 1 L of distilled water was added.
This mixture was kept in a shaking water bath (37 �C, 90 rpm)
for 10 min. Salivary digested aliquots were taken for analysis.
Afterwards, 13.08 mg of pepsin from porcine stomach was added
and pH was adjusted to 2 by addition of HCl (12 M). This mixture
was incubated in darkness in a water bath at 37 �C with continuous
stirring (90 rpm) for 2 h. At the end of the gastric digestion, ali-
quots were taken for analysis and 20 mL were used for titration
with NaOH (0.5 M) to pH 7.5 after adding 5 mL of pancreatin
(4 g/L) – bile (25 g/L) mixture.

Dialysis membrane was prepared by soaking it with 0.01 M
EDTA Na2, 2% NaHCO3 and 0.1% sodium dodecyl sulphate at boiling
point, rinsing it with distilled water and cutting it into segments of
30 cm. Dialysis membrane segments were filled with 25 mL of
water–NaHCO3 mixture, with the amount of NaHCO3 (0.5 N) used
in the previous titration. 20 mL of the gastric digest were placed
into a beaker and the dialysis membrane was immersed in that
digest until reaching pH 5.0. This process allows gradual pH adjust-
ment, mimicking intestinal conditions. After 30 min, 5 mL of pan-
creatin (4 g/L) – bile (25 g/L) mixture was added and the
incubation continued for further 2 h (37 �C, 90 rpm). The dialysate
(fraction inside the dialysis sac), consisting of soluble compounds
of low molecular weight, and the retentate (fraction outside the
dialysis sac), consisting of soluble and insoluble compounds of
low and high molecular weight, were collected and placed in a cold
water bath for 10 min.

2.4. Bioactive compounds analysis

2.4.1. Polarographic determination of ascorbic acid
The method used was in accordance to Barba, Cortés, Esteve,

and Frígola (2012). Beverage (5 mL) was diluted to 25 mL with
the extraction solution (1% w/v oxalic acid, 2% w/v trichloroacetic
acid and 1% w/v sodium sulphate). After vigorous shaking, the
solution was filtered through a folded filter (Whatman No. 1). 1%

J.M. Carbonell-Capella et al. / Food Chemistry 184 (2015) 122–130 123



(w/v) oxalic acid (9.5 mL) and 2 mL of 2 M acetic acid/sodium acet-
ate buffer (pH = 4.8) were added to an aliquot of 0.5 mL of filtrate
and the solution was transferred to the polarographic cell. A
Metrohm 746 VA Trace Analyzer (Herisau, Switzerland) equipped
with a Metrohm 747 VA stand was used for the polarographic
determination. The working electrode was a Metrohm multi-mode
electrode operated in the dropping mercury mode. A platinumwire
counter electrode and a saturated calomel reference electrode
were used. The following instrumental conditions were applied:
DP50, mode DME, drop size 2, drop time 1 s, scan rate 10 mV/s, ini-
tial potential �0.10 V. Determinations were carried out by using
the peak heights and standard additions method.

2.4.2. Total carotenoids
Extraction of total carotenoid was carried out in accordance

with Barba et al. (2012). An aliquot of sample (2 mL) was homoge-
nised with 5 mL of extracting solvent (hexane/acetone/ethanol,
50:25:25, v/v) and centrifuged for 5 min at 4000 rpm at 5 �C. The
top layer of hexane containing the colour was recovered and trans-
ferred to a 25-mL volumetric flask. The volume of recovered hex-
ane was then adjusted to 25 mL with hexane. Total carotenoid
determination was carried out on an aliquot of the hexane extract
by measuring the absorbance at 450 nm. Total carotenoids were
calculated using an extinction coefficient of b-carotene, E1% = 2505.

2.4.3. Total phenolic compounds
Total phenols were determined according to the method

reported by Georgé, Brat, Alter, and Amiot (2005), with some mod-
ifications. Briefly, 10 mL of sample were homogenised with 50 mL
of a mixture of acetone/water (7/3, v/v) for 30 min. Mixture super-
natants were then recovered by filtration (Whatman No. 2,
England) and constituted the raw extracts (REs). REs (2 mL) were
settled on an Oasis cartridge (Waters). Interfering water-soluble
components (reducing sugars, ascorbic acid) were recovered with
2 � 2 mL of distilled water. The recovered volume of the washing
extract (WE) was carefully measured. In order to eliminate vitamin
C, heating was carried out on the washing extract (3 mL) for 2 h at
85 �C and led to the heated washing extract (HWE). All extracts
(RE, WE, and HWE) were submitted to the Folin–Ciocalteu method,
adapted, and optimised (Barba et al., 2012): 2% (w/v) sodium car-
bonate solution (3 mL) and 100 lL of Folin–Ciocalteu reagent were
added to an aliquot of 100 lL of sample. The mixture was incu-
bated for 1 h at room temperature. Absorbance was measured at
765 nm.

2.4.4. Total anthocyanins
Total anthocyanins were determined using a modified method

of Mazza, Fukumoto, Delaquis, Girard, and Ewert (1999). A 10-fold
diluted sample of 100 lL was mixed with 1700 lL of distilled
water and 200 lL of 5% (v/v) HCl. The sample was hold at room
temperature for 20 min before measuring the absorbance at
520 nm in a 10 mm cuvette. Calculations of total anthocyanins
were based on cyanidin-3-glucoside (molar absorptivity 25,740).
All spectrophotometric analyses were performed using a UV–visi-
ble spectrophotometer Lambda 20 (Perkin–Elmer, Überlingen,
Germany).

2.4.5. Total antioxidant capacity
2.4.5.1. Trolox equivalent antioxidant capacity (TEAC) assay. The tro-
lox equivalent antioxidant capacity (TEAC) test was determined
according to the method reported by Barba et al. (2012), based
on the capacity of antioxidants to inhibit the radical cation 2,2-
azino-bis(3-ethylbenzothiazoline-6-sulphonate) (ABTS), which
has a characteristic long-wavelength absorption spectrum,

showing a maximal peak at 734 nm. The ABTS radical cation is
formed by the interaction of ABTS (7 mM) with K2S2O8 (2.45 mM).

2.4.5.2. Oxygen radical absorbance capacity (ORAC) assay. The oxy-
gen radical absorbance capacity (ORAC) assay used, with fluores-
cein as the ‘‘fluorescent probe’’, was that described by Barba
et al. (2012). The automated ORAC assay was carried out on a
Wallac 1420 VICTOR2 multilabel counter (Perkin–Elmer, USA) with
fluorescence filters, for an excitation wavelength of 485 nm and an
emission wavelength of 535 nm. The measurements were made in
plates with 96 white flat bottom wells (Sero-Wel, BibbySterilin
Ltd., Stone, UK). The reaction was performed at 37 �C, as the reac-
tion was started by thermal decomposition of AAPH in 75 mM
phosphate buffer (pH 7.0).

2.4.5.3. DPPH assay. The value of DPPH (millimolar Trolox equiva-
lents, mMTE) measures the antioxidant capacity of a given sub-
stance, as compared to the standard (Trolox). The method used
was as described by Brand-Williams, Cuvelier, and Berset (1995).
The reaction was begun by adding 50 lL of a suitable dilution of
sample to 1.45 mL of DPPH coloured radical. The sample was incu-
bated for 30 min at room temperature (20 �C). Absorbance, A, was
measured at the wavelength of 515 nm.

2.5. Liquid chromatographic analysis of steviol glycosides

The method of Joint FAO/WHO Expert Committee on Food
Additives (JECFA) (2010) with various modifications was used.
Samples were filtered through a Sep-Pak� cartridge (a reverse-
phase C-18 cartridge; Millipore, MA, USA) which retains steviol
glycosides. The cartridges were previously activated with 10 mL
of methanol (MeOH) and 10 mL of water. Every 10 mL of sample
was eluted with 2 mL of MeOH, and all methanolic fractions were
collected, filtered through a 0.45 lm membrane filter Millex-HV13
(Millipore) and then analysed by liquid chromatography using a
Kromasil 100 C18 precolumn (guard column) and Kromasil 100
C18 column (5 lm, 250 � 4.6 mm) (Scharlab, Barcelona, Spain).
The mobile phase consisted of two solvents: Solvent A, acetonitrile
and Solvent B, 10 mmol/L sodium phosphate buffer (pH = 2.6)
(32:68, v/v). Steviol glycosides were eluted under 1 mL/min flow
rate and the temperature was set at 40 �C. Chromatograms were
recorded at 210 nm. The identification of steviol glycosides were
obtained out by using standards and by comparing the retention
times, while quantification was performed by external calibration
with standards.

2.6. Statistical analysis

All determinations were performed in triplicate. An analysis of
variance (ANOVA) was applied to the results obtained in order to
verify whether there were significant differences in the parameters
studied in relation to sample analysed, and to ascertain possible
interactions between factors (differences at p < 0.05 were consid-
ered significant). Where there were differences, an LSD test was
applied to indicate the samples in which differences were
observed. A multiple regression analysis was performed to study
the influence of bioactive compounds to antioxidant capacity
(the results are shown in the significant cases, p < 0.05). Finally, a
study was conducted with the aim of determining whether there
were correlations between a pair of variables (Pearson’s test). All
statistical analyses were performed using Statgraphics�

Centurion XVI (Statpoint Technologies Inc., USA).
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3. Results and discussion

3.1. Bioactive compounds

3.1.1. Ascorbic acid
The effect of gastrointestinal digestion on the ascorbic acid

recovery was distinct and affected by different SR content in the
exotic fruit-oat beverages (Fig. 1). The three nondigested beverages
(0%, 1.25% and 2.5% SR) had similar ascorbic acid values (28–
33 mg/100 mL). Although Kim et al. (2011) detected ascorbic acid
in stevia leaves and callus, differences in these results and those
found in the present research could be attributed to the prepara-
tion of the SR water extract (weight and temperature submitted).
Ascorbic acid diminished just over 5–13% (corrected by the varying
volumes of digesta) in the salivary phase, as pH is not substantially
changed and duration is of only 10 min. Zulueta, Esteve, Frasquet,
and Frígola (2007) found out that pH had a significant influence
and correlated negatively with the ascorbic acid concentrations,
as acid media contribute to the stability of the vitamin. This
explains why the ascorbic acid did not diminish significantly
(p > 0.05) during the gastric digestion (pH 2.20 ± 0.01) of the three
beverages (14–19%). These results are in agreement with previous
findings, which proved that in vitro gastric conditions (pH 2 or 3)
had very little effect on ascorbic acid stability. Only a slight loss
(6.7%) was observed by Vallejo, Gil-Izquierdo, Pérez-Vicente, and
García-Viguera (2004) in broccoli inflorescences after pepsin diges-
tion. Rodríguez-Roque et al. (2013) also demonstrated that gastric
digestion had little effect on ascorbic acid stability, recovering 83%
of this bioactive compound in a blended fruit juice containing
orange, pineapple and kiwi. However, neither of these authors sub-
mitted their sample to a salivary step before the gastric digestion,
so bioaccessibility might be overestimated.

Nevertheless, after in vitro intestinal digestion, there were sig-
nificant decreases in ascorbic acid concentration in the non-dial-
ysed fraction (54.8% and 76.1% in the 0% and 1.25% SR beverage
respectively) with regard to gastric digesta due to the low stability
of this compound at high pH, and in the 2.5% SR beverage, ascorbic
acid was not detected. In the dialysed fraction, an increase in the
ascorbic acid content was obtained (8.3% and 10.2% in the 0% and
1.25% SR beverage, respectively) with regard to the non-dialysed
fraction. These results are in agreement with previous results for
broccoli inflorescences (91% loss) (Vallejo et al., 2004), pomegra-
nate juice (80%) (Pérez-Vicente, Gil-Izquierdo, & García-Viguera,
2002) and for orange, pineapple and kiwi blended fruit juice
(75%) (Rodríguez-Roque et al., 2013). Differences in the com-
position of the samples and the use of dialysis membrane instead
of solubility assays to obtain the bioaccessible fraction, could
explain the differences found in comparison with our study.
However, in an in vivo study, Davey et al. (2000) obtained values
of bioavailability of ascorbic acid between 80 and 100% at doses
normally ingested (6180 mg). Aside from the passive transport
mechanism which in humans is only predominant at high intake

levels, ascorbic acid is also absorbed by an active transport system
located in the gut (Stahl et al., 2002), which must be taken into
account.

When evaluating the effect of SR addition on ascorbic acid
bioaccessibility, it is noteworthy that this compound remained
undetected in the dialysed fraction of the 2.5% SR beverage. In
the intestinal phase, SR may exert a negative effect over the ascor-
bic acid stability. This can be due to interferences between the ste-
viol glycosides with the ascorbic acid structure at basic conditions,
as in previous steps no significant differences were detected with
respect to the formulation involved. No study has been published
up to date showing these possible interferences. Interaction
between stevioside and ascorbic acid was investigated by Kroyer
(2010), but he observed a protective effect of stevioside on the
degradation of ascorbic acid. However, the pH used in his study
is not specified. Interestingly, Šic Žlabur et al. (2013) obtained a
decrease in the ascorbic acid content when apple purees were
sweetened with stevia and pasteurised. However, they attribute
this loss to the heat treatment and not to the stevia addition.

According to Vallejo et al. (2004), ascorbic acid was the metabo-
lite that showed the greater decrease (91% loss) after intestinal
digestion. As ascorbic acid is a thermosensitive compound, in fruit
and vegetables it has been used as an indicator of the loss of other
vitamins (Zulueta et al., 2007). Consequently, the decrease in
bioaccessibility observed for this bioactive compound may also
be observed in other similarly alike thermosensitive vitamins, such
as vitamin B group, although further studies are necessary.

3.1.2. Total carotenoids
The amounts of bioaccessible carotenoids after simulated gas-

trointestinal digestion expressed as lg/100 mL are presented in
Table 1. As carotenoids are highly hydrophobic compounds, a
micellisation step is needed in order to evaluate their bioaccessibil-
ity. With this purpose, digested samples were centrifuged during
20 min at 4000 rpm and 20 �C (Courraud, Berger, Cristol, &
Avallone, 2013), but no statistical differences were found after
the centrifugation step (data not shown). A statistically significant
(p < 0.05) decrease of 94–99.4% in the dialysed fraction with
respect to the initial carotenoids in the original fruit-oat beverage
was found. Although carotenoids are considered to be absorbed in
a relatively non-specific way by passive diffusion of the micelles in
the mucosa cells (Stahl et al., 2002), this low bioaccessibility of car-
otenoids is mainly caused by their limited solubilisation to the
aqueous phase, which hinders their ability to be taken up by the
intestines. Other authors have included the use of human pancre-
atic lipase, cholesterol esterase, phospholipase A2 and taurocholate
salts in order to reproduce more physiological conditions, as these
enzymes may hydrolyse ester forms and provide optimum condi-
tions for carotenoid hydrolysis and micellisation (Granado-
Lorencio et al., 2007).

The highest carotenoid recovery (6%) was achieved in the
formulation with 2.5% SR, showing a positive correlation between
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Fig. 1. Ascorbic acid content of 0%, 1.25% and 2.5% (w/v) Stevia rebaudiana (SR) beverage during in vitro gastrointestinal digestion, expressed as percentage. 1: Non-digested
sample, 2: salivary digesta, 3: gastric digesta, 4: non-dialysed intestinal fraction, 5: dialysed intestinal fraction.
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the content of SR and the bioaccessibility of total carotenoids.
Results suggest that the addition of the natural sweetener SR
may enhance somehow dialysability of carotenoids through the
semipermeable membrane. Amongst the factors that affect carote-
noid bioaccessibility, other authors have shown that the matrix in
which carotenoids are embedded can play a significant role on
bioaccessibility, along with effectors of absorption and bioconver-
sion (West & Castenmiller, 1998). However, the use of a dialysis
membrane does not take into account active transport via mem-
brane transporters through which carotenoids are absorbed
(Reboul & Borel, 2011), leading to an underestimation of the real
bioaccessibility of carotenoids.

Regarding the different steps through which the beverages pass
in the digestion process, salivary addition enhances the release of
carotenoids independently of the SR concentration. However, gas-
tric and intestinal digestions lead to a decrease in the carotenoid
content of around 15% and 21% respectively with regard to the
undigested sample, without significant differences between the
three formulations. Indeed, carotenoids are more sensitive to acidic
than alkaline conditions (Rodríguez-Amaya, 2010). This is why the
decrease was higher during the gastric phase. This was also
confirmed by Wright, Pietrangelo, and MacNaughton (2008), who
showed increased b-carotene transfer to the aqueous phase under
higher pH conditions.

Similar results were reported by Courraud et al. (2013) in carrot,
but Granado-Lorencio et al. (2007) reported a higher carotenoid
stability of about 70% in the final digesta of loquat, orange and
broccoli. As mentioned before, these authors included the use of
human pancreatic lipase, cholesterol esterase, phospholipase A2

and taurocholate salts during the intestinal digestion and also a
previous homogenisation to simulate mastication and did not
include a semipermeable membrane. In a different study,
Granado et al. (2006) concluded that behaviour of carotenoids
under in vitro gastrointestinal conditions does not fully explain
changes observed in vivo, limiting the use of in vitro models for
screening relative bioaccessibility of carotenoids.

3.1.3. Phenolic compounds
Absorption of polyphenolics from fruit beverages follows simi-

lar multistep pathways to other bioactive compounds that gener-
ally require (a) release of the specific phenolic from the beverage
matrix, (b) solubilisation in the gut lumen, (c) stability of the poly-
phenolic to digestive conditions, (d) uptake by small intestinal
absorptive epithelial cells and (d) potential for intracellular meta-
bolism and secretion into blood stream. Nevertheless, phenolic

compounds can also be metabolised by colonic microflora to sim-
ple phenolic, organic acids and several other products which are
subsequently absorbed and distributed to tissues (Ferruzzi,
2010). However, for the purpose of this paper, only small intestinal
absorption will be discussed.

Total phenolic contents of the formulated beverages before and
after in vitro simulated gastrointestinal digestion is shown in
Table 1. Total soluble phenolic compounds of the three beverages
before digestion ranged from 876 to 4896 mg/L, measured as gallic
acid equivalents. Recoveries of total polyphenols in the dialysed
fraction were 30–33% compared to their non-digested counter-
parts. These results compare well with those reported of recoveries
of total phenolic compounds from 29% to 62% in pomegranate juice
(29%) (Pérez-Vicente et al., 2002) and apples (Bouayed, Hoffmann,
& Bohn, 2011) (44–62%).

The effect of SR upon the soluble extractable phenolic content of
exotic fruit-oat beverages before and after digestion is depicted in
Table 1. Prior to digestion, the 2.5% SR beverage exhibited the high-
est total phenolic content, indicating that S. rebaudiana could be
useful as a potential source of natural polyphenols. After digestion,
the 2.5% SR beverage still had six times more total soluble extrac-
table polyphenols than the 0% SR beverage, confirming that the
addition of SR extracts in formulated beverages is a way of enhanc-
ing the consumption of these beneficial components.

An increase in the total extractable phenolic content was
observed (6–8%) after the salivary step, possibly by enhancement
of solubilisation of phenolic compounds, as high molecular weight
phenols may be insoluble and the enzyme activity or agitation con-
ditions could facilitate the breakage of large molecules. After the
gastric digestion, there was a slight loss in the total phenolic con-
tents, although this decrease was not significant (p > 0.05) and
recoveries continued to be higher than their non-digested counter-
parts, possibly because the low pH reached may reduce oxidised
species back to the native compounds (Stahl et al., 2002).
Similarly, Pérez-Vicente et al. (2002) did not obtain differences in
total phenolics content before and after pepsin digestion.
However, the mild alkaline conditions reached during the
intestinal digestion, along with possible interactions between
polyphenols and other components such as enzymes, could explain
the significant decrease (p < 0.05) observed during the intestinal
digestion. Polyphenol concentration decreased during dialysis
through the semipermeable cellulose membrane, although all
polyphenols found in the intestinal medium were also found to
be dialyzable, which could be regarded as indicative of passive dif-
fusion, one of the most important mechanisms for cellular

Table 1
Total carotenoids, total phenolic compounds and total anthocyanins of a beverage mixture of exotic fruit juices with oat beverage and sweetened with 0%, 1.25% and 2.5% (w/v)
Stevia rebaudiana (SR) during in vitro gastrointestinal digestion.

SR (%) Total carotenoids Total phenolic compounds Total anthocyanins

(lg/100 mL) % (mg GAE/L) % (mg cyanidin-3-glucoside/L) %

0 1 1629.2 ± 10.6 876.1 ± 53.9 40.4 ± 1.1
2 1778.4 ± 10.9 109.2 930.2 ± 11.9 106.2 28.6 ± 1.9 70.7
3 1386.0 ± 66.0 85.1 919.7 ± 8.9 105.0 25.4 ± 1.4 63.0
4 1262.0 ± 38.8 77.5 522.4 ± 3.0 59.6 14.9 ± 1.0 36.8
5 10.0 ± 1.4 0.6 262.9 ± 4.5 30.0 0.1 ± 0.1 0.2

1.25 1 1719.0 ± 24.7 2994.7 ± 12.9 44.5 ± 0.8
2 1901.9 ± 50.5 110.6 3227.1 ± 11.9 107.8 39.6 ± 1.1 89.1
3 1501.2 ± 42.7 87.3 3160.0 ± 11.9 105.5 38.9 ± 1.1 87.3
4 1420.3 ± 9.7 82.6 1818.4 ± 29.6 60.7 14.3 ± 1.0 32.1
5 34.3 ± 9.7 2.0 942.7 ± 22.2 31.5 2.1 ± 1.4 4.8

2.5 1 1671.7 ± 7.1 4896.3 ± 26.4 49.3 ± 1.1
2 1841.6 ± 27.2 110.2 5293.8 ± 53.3 108.1 45.3 ± 0.8 91.7
3 1388.7 ± 46.6 83.1 5205.7 ± 94.9 106.3 45.1 ± 1.6 91.3
4 1317.4 ± 97.0 78.8 3070.8 ± 22.2 62.7 14.0 ± 1.4 28.3
5 99.5 ± 14.6 6.0 1608.2 ± 29.6 32.8 4.7 ± 0.8 9.4

1: Non-digested beverage, 2: salivary digestion, 3: gastric digestion, 4: non-dialysed intestinal fraction, 5: dialysed intestinal fraction. GAE: gallic acid equivalents.
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polyphenol uptake, at least for aglycones. A large portion of the
phenolic compounds found in the non-dialysed fraction is likely
to reach the colonic lumen where they can be metabolised by
the microflora and hydrolysed (Ferruzzi, 2010). In this line,
Saura-Calixto, Serrano, and Goñi (2007) estimated that about 48%
of total phenolics are bioaccessible in the small intestine, whereas
42% become bioaccessible in the large intestine. Interestingly,
Coates et al. (2013) demonstrated that polyphenols likely to reach
the colon are capable of inhibiting several important stages in
colon carcinogenesis in vitro. Furthermore, when Brown et al.
(2014) compared in vivo and in vitro digestion in lingonberries,
they observed notable differences in the phenolic composition
between the in vitro digested extract and the ileal fluid, reinforcing
the need of bioactivity studies when investigating dietary
phytochemicals.

The impact of gastrointestinal digestion on total anthocyanins is
shown in Table 1. In general, the recovery of total anthocyanins
diminished stepwise from salivary to dialysed digesta for all three
beverages. Amounts of total anthocyanins detected after the sali-
vary and intestinal phase were significantly lower than those
determined in the non-digested 0% SR beverage. In general, no sig-
nificant differences (p < 0.05) were observed in the total antho-
cyanins recovery after gastric digestion. Similar results were
obtained by Bouayed et al. (2011) with a 91.2% of total antho-
cyanins gastric recovery in Jonaprinz apples. In the dialysed frac-
tions, total anthocyanins were poorly recovered, with similar
patterns obtained by Pérez-Vicente et al. (2002) (2.4%) in pomegra-
nate juice and Gil-Izquierdo, Zafrilla, and Tomás-Barberán (2002)
(2.3–3.8%) in strawberries. Bouayed et al. (2011) however, did
not detect anthocyanins following intestinal digestion. At this
stage of the digestion, part of the anthocyanins could be metabo-
lised to some non-coloured forms, oxidised or degraded into other
chemicals, escaping this way from the detection under present
conditions. According to numerous studies, low bioaccessibility
of anthocyanins can be attributed to their low stability in the alka-
line conditions of small intestine, as it is generally accepted that
anthocyanins are stable at low pH values (between 1 and 3)
(Kosinska-Cagnazz, Diering, Prim, & Andlauer, 2014). However,
although in vitro studies suggest the degradation of anthocyanins
in the intestinal phase, under in vivo conditions direct absorption
may take place in the stomach (Manach, Williamson, Morand,
Scalbert, & Remesy, 2005). Furthermore, the addition of SR led to
a significant increase in the bioaccessibility of total anthocyanins,
suggesting a higher harnessing of these bioactive compounds
when SR is present in the digestive tract.

3.2. Antioxidant capacity

Due to the complex mechanism of antioxidant compounds,
there is not an official method to determine total antioxidant
capacity (TAC), so trolox equivalent antioxidant capacity (TEAC),
DPPH (a,a-diphenyl-b-picrylhydrazyl) scavenging activity and
oxygen radical antioxidant capacity (ORAC) were used in the
determination of total antioxidant capacity (TAC) after the simu-
lated gastrointestinal procedure of the fruit juice beverages. TAC
values of undigested samples without SR were 11.4 ± 0.9,
11.1 ± 1.6 and 10.5 ± 0.1 mM TE (Trolox Equivalent) for TEAC,
DPPH and ORAC methods, respectively (Table 2). The ANOVA
analysis confirmed an increase in TEAC, DPPH and ORAC values
when SR concentration was increased, independently of the diges-
tion step analysed. These results are in agreement with previous
studies carried out by different authors who have shown a high
antioxidant capacity of SR products (Šic Žlabur et al., 2013).
Furthermore, no significant differences (p > 0.05) were observed
between TEAC and DPPH values, albeit TAC values measured with
ORAC assay were significantly higher (p < 0.05) for samples with SR

at 1.25% (24.1 ± 0.2 mM TE) and 2.5% (35.5 ± 0.6 mM TE) than those
obtained with TEAC (22.0 ± 2.1 and 32.2 ± 1.9 mM TE for 1.25% and
2.5% SR beverages, respectively) and DPPH method (21.1 ± 1.1 and
30.0 ± 0.8 mM TE for the beverages with 1.25% and 2.5% SR, respec-
tively). Differences may be explained because ORAC assay is based
on the transfer of H atoms, whereas TEAC and DPPH assays are
based on a redox reaction.

A multivariate regression analysis test was effectuated in order
to study the contribution of the different bioactive compounds to
the TEAC, DDPH and ORAC values (Eqs. (1)–(3)). Coefficients of
the equations were R2 = 0.939, p < 0.05, standard error = 0.836,
R2 = 0.921, p < 0.05, standard error = 2.578 and R2 = 0.996,
p < 0.05, standard error = 0.807 for TEAC, DPPH and ORAC methods,
respectively. For TEAC and DPPH methods, only water-soluble
components contributed to the total antioxidant capacity.
Zulueta, Esteve, and Frígola (2009) compared the TEAC and ORAC
methods, noting that the TEAC method had greater specificity for
water-soluble antioxidants.

TEAC ¼ 0:818145þ 0:010975� ðTPCÞ ð1Þ

DPPH ¼ 2:36701þ 0:121547� ðAAÞ þ 0:00470771� ðTPCÞ ð2Þ

ORAC ¼ 2:34997þ 0:003246� ðTCÞ � 0:074694� ðAAÞ
þ 0:006221� ðTPCÞ ð3Þ

High correlation coefficients were found between the total phe-
nolic content and TEAC, DDPH and ORAC assay (r = 0.9804,
r = 0.9471 and r = 0.9896, respectively). Kim et al. (2011) also
reported total phenolics to be responsible for the antioxidant
activities of S. rebaudiana water extracts.

Moreover, a strong correlation was found between total antioxi-
dant capacity measured by TEAC and DPPH (r = 0.9656, p < 0.05),
TEAC and ORAC (r = 0.9743, p < 0.05), and by DPPH and ORAC
method (r = 0.9398, p < 0.05). Zulueta et al. (2009) also obtained
good correlations for ORAC and TEAC assays in orange juice
(r = 0.955, p < 0.05).

3.3. Steviol glycosides

Using high-performance liquid chromatography (HPLC), four
different steviol glycosides were identified as rebaudioside A (reb

Table 2
Antioxidant capacity values of a of a beverage mixture of exotic fruit juices with oat
beverage and sweetened with 0%, 1.25% and 2.5% (w/v) Stevia rebaudiana (SR) during
in vitro gastrointestinal digestion.

SR (%) TEAC DPPH ORAC

(mM TE) % (mM TE) % (mM TE) %

0 1 11.4 ± 0.9 11.1 ± 1.6 10.5 ± 0.1
2 10.7 ± 1.1 94.3 10.4 ± 1.3 94.0 11.5 ± 0.1 109.6
3 10.6 ± 1.2 93.2 10.2 ± 2.2 92.1 11.1 ± 0.2 106.2
4 6.1 ± 0.4 53.4 5.6 ± 1..5 50.8 7.9 ± 0.2 75.8
5 3.9 ± 0.4 34.7 3.7 ± 1.5 33.7 3.5 ± 0.4 33.6

1.25 1 22.0 ± 2.1 21.1 ± 1.1 24.1 ± 0.2
2 21.5 ± 0.1 97.7 20.1 ± 1.6 95.3 26.3 ± 0.9 109.0
3 21.2 ± 0.5 96.2 19.9 ± 0.8 94.2 25.7 ± 0.6 106.8
4 12.0 ± 0.4 54.3 11.5 ± 1.7 54.7 18.4 ± 0.6 76.4
5 7.9 ± 0.6 36.0 7.5 ± 1.1 35.7 8.5 ± 0.5 35.5

2.5 1 32.2 ± 1.9 30.0 ± 0.8 35.5 ± 0.6
2 31.6 ± 0.9 98.2 29.5 ± 4.8 98.5 39.0 ± 1.0 109.7
3 31.3 ± 0.6 97.3 29.2 ± 4.8 97.4 37.4 ± 0.5 105.3
4 17.9 ± 1.5 55.7 16.5 ± 3.5 55.1 26.5 ± 0.4 74.7
5 12.2 ± 0.6 38.0 11.3 ± 1.5 37.7 11.3 ± 0.3 31.8

SR: Stevia rebaudiana, TEAC: trolox equivalent antioxidant capacity, DPPH: a,a-
diphenyl-b-picrylhydrazyl, ORAC: oxygen radical antioxidant capacity, TE: trolox
equivalent. 1: Non-digested sample, 2: salivary digesta, 3: gastric digesta, 4: non-
dialysed intestinal fraction, 5: dialysed intestinal fraction.
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A), stevioside (ste), rebaudioside F (reb F) and rebaudioside C (reb
C) (Table 3 and Figs. 2 and 3), albeit the actual JECFA analytical
method ((JECFA), 2010) lists nine different steviol glycosides.

Reb A content in the non-digested beverage sweetened with
1.25% and 2.5% (v/v) of SR was 46.5 ± 0.1 and 85.1 ± 0.6 mg/
100 mL, respectively. The stevioside concentration was 38.7 ± 0.8
and 73.7 ± 1.6 mg/100 mL in the 1.25% and 2.5% SR beverage,
respectively. These two glycosides (reb A and ste), which are pre-
sent in the highest concentration, show the highest sweetness
activity and minor toxicity (Montoro et al., 2013). Followingly,
reb C content in the original 1.25% and 2.5% SR beverage was
6.5 ± 0.1 and 13.4 ± 0.5 mg/100 mL, respectively. Finally, reb F
was present in a lower concentration of 1.6 ± 0.1 and 3.5 ±
0.1 mg/100 mL in the beverage sweetened with 1.25% and 2.5%
(v/v) of SR, respectively. No significant influence in the stevioside
content was observed by Kroyer (2010) when stevioside was
mixed with coffee or tea beverage, although minimal losses could
be noticed after 4 h at high temperature. The contents of reb A, ste,
reb F and reb C recorded in the present study are in agreement
with and sometimes higher than those reported in literature
(Montoro et al., 2013), notwithstanding that as is the case of most

secondary metabolites, glycosides profiles of stevia are subjected
to considerable variability according to geographic area, state of
plant maturity, environment, harvesting and processing
conditions.

The analysis of variance indicated an increase (4–15%) in reb A,
ste, reb F and reb C values after salivary digestion, independently of
the SR percentage used. Steviol glycosides have glycosidic bonds
which may be possible sites of action of a-amylase enzyme, and
thus result in an increase of these compounds. Additionally, gastric
digestion increased the reb A, ste, reb F and reb C content in about
9–35% with respect to salivary digesta, with independence of the
SR percentage. These compounds are diterpenoid glycosides and
thus pepsin is not able to attack them. Therefore, the increase at
this stage of digestion may be due to interactions at acidic pH.
Our results differ from previous studies found in published litera-
ture. Hutapea, Toskulkao, Buddhasukh, Wilairat, and Glinsukon
(1997) obtained no significant changes after in vitro digestion of
stevioside with saliva, a-amylase, pepsin and pancreatin. By
contrast, Kroyer (2010) detected a significant decrease in the
stevioside concentration under strong acidic conditions (pH 1),
but not at our gastric pH 2, where stevioside was remarkable
stable.

After intestinal digestion, reb A, ste, and reb C concentration
diminished significantly (p < 0.05). Reb F however, became highly
bioaccessible. This could be attributed to important changes occur-
ring during in vivo and in vitro metabolism of steviol glycosides.
Ceunen and Geuns (2013) suggest a spatial separation of glycosi-
dases from the steviol glycosides. Consequently, after cell disrup-
tion by enzymatic degradation, further metabolism might take
place, reflecting a complex and dynamic process not yet fully
understood, despite the known biosynthetic relationship between
individual steviol glycosides. Dialysed fraction of reb A, ste and
reb C was of 24–29% with respect to their undigested counterparts,
suggesting an important loss of these compounds during digestion
and dialysis process. Surprisingly, bioaccessibility of reb F was of
172.9% and 160.3% with regard to the undigested 1.25% and 2.5%
SR beverages, respectively, showing the complex metabolism of
steviol glycosides. Ceunen and Geuns (2013) explain that although
stevioside and rebaudioside A are the most common steviol glyco-
sides, they may not be the final product of the pathway, as further
glycosilations are likely to take place, and although biosynthesis of
rebaudioside F is not completely elucidated, it is believed that the
enzymes UGT76G1 and UGT74G1 might be involved in it, explain-
ing the high bioaccessibility of rebaudioside F. However, this
hypothesis has not yet been characterised in vitro nor in vivo.
Koyama et al. (2003) observed in an in vivo study that stevia mix-
ture components were first degraded and then absorbed as steviol
in the rat intestine. Geuns, Augustijns, Mols, Buyse, and Bert (2003)

Table 3
Steviol glycosides of a beverage mixture of exotic fruit juices with oat beverage and sweetened with 0%, 1.25% and 2.5% (w/v) Stevia rebaudiana (SR) during in vitro gastrointestinal
digestion.

SR (%) Reb A Ste Reb F Reb C

(mg/100 mL) % (mg/100 mL) % (mg/100 mL) % (mg/100 mL) %

1.25 1 46.5 ± 0.1 38.7 ± 0.8 1.6 ± 0.1 6.5 ± 0.1
2 51.4 ± 0.3 110.5 40.3 ± 0.3 104.3 1.7 ± 0.1 110.8 7.4 ± 0.2 114.1
3 55.7 ± 0.6 119.8 44.8 ± 1.3 115.8 2.2 ± 0.2 139.7 9.4 ± 0.1 145.6
4 42.5 ± 1.1 91.4 34.5 ± 2.8 89.3 4.5 ± 0.2 289.0 5.9 ± 0.1 90.5
5 11.1 ± 0.2 23.9 10.3 ± 0.2 26.7 2.7 ± 0.5 172.9 1.9 ± 0.3 29.0

2.5 1 85.1 ± 0.6 73.7 ± 1.6 3.5 ± 0.1 13.4 ± 0.5
2 93.9 ± 0.4 110.4 78.7 ± 0.3 106.8 3.9 ± 0.3 111.5 15.4 ± 0.2 115.0
3 122.9 ± 4.6 144.5 104.3 ± 2.4 141.5 5.1 ± 0.1 146.4 20.1 ± 2.4 149.5
4 79.8 ± 2.3 93.7 66.8 ± 1.3 90.6 7.3 ± 0.2 209.5 12.3 ± 0.1 91.5
5 21.0 ± 1.6 24.6 19.8 ± 2.6 26.9 5.6 ± 0.1 160.3 3.8 ± 0.3 28.0

Reb A: rebaudioside A, Ste: stevioside, Reb F: rebaudioside F, Reb C: rebaudioside C. 1: Non-digested sample, 2: salivary digesta, 3: gastric digesta, 4: non-dialysed intestinal
fraction, 5: dialysed intestinal fraction.

Compound name R1 R2
Stevioside β-Glc β-Glc- β-Glc(2 1)
Rebaudioside A β-Glc β-Glc- β-Glc(2 1)

β-Glc(3 1)
Rebaudioside C β-Glc β-Glc- α-Rha(2 1)

β-Glc(3 1)
Rebaudioside F β-Glc β-Glc- β-Xyl(2 1)

β-Glc(3 1)

Fig. 2. Steviol glycoside structures found in the beverage mixtures of exotic fruit
juice and oat sweetened with Stevia rebaudiana water extracts.
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obtained a minor fraction of ste and reb A transported through
Caco-2 cell layers, suggesting a carrier-mediated transport.
However, they could not detect stevioside or steviol in the blood
of pigs, probably because in the Caco-2 study, steviol is applied
as a solution facilitating the uptake, whereas in the colon, steviol
is probably adsorbed to other compounds. Further studies have
found out that ste and reb A are completely hydrolysed to the agly-
con steviol when incubated with intestinal bacteria (Renwick &
Tarka, 2008).

There appears to be a positive correlation (p < 0.05) between the
amounts of reb A, ste and reb C and the total antioxidant capacity
measured by TEAC, DPPH and ORAC assay. This correlation was
stronger when the ORAC method was employed. However, a nega-
tive correlation was obtained between antioxidant capacity mea-
sured with TEAC and DPPH method and reb F content, suggesting
that reb F could be the result of the degradation of any other steviol
glycoside with potential antioxidant capacity. Previous studies
have suggest that although phenolic compounds are the major
responsible of the antioxidant capacity shown by stevia extracts,
steviol glycosides are known to be potent ROS (reactive oxygen
species) scavengers (Geuns et al., 2012). Toward hydroxyl radicals,
they observed that stevioside and rebaudioside A had similar
scavenging activities indicating that their antioxidant activity is
mostly related to their common diterpene skeleton, but stevioside
demonstrated a stronger scavenger activity than rebaudioside A for
superoxide radicals.

4. Conclusions

The addition of 1.25% and 2.5% of SR in an exotic fruit-orange-
oat beverage contributes to increase the concentration and bioac-
cessibility of total carotenoids, total phenolic compounds, total
anthocyanins and total antioxidant capacity of the beverage.
Nevertheless, ascorbic acid was not detected after the in vitro
simulated digestion when SR was found in a 2.5% (w/v).

Investigation of the specific interactions between ascorbic acid
and SR extracts will be critical for understanding how the for-
mulation can be used to optimise circulating and tissue levels of
these phytochemical constituents. Despite these results, in vitro
limitations should be taken into account, as these methods enable
an approach, but will not absolutely predict how much of a specific
bioactive compound a human will absorb and utilise. In vivo assays
of beverages sweetened with SR must be carried out in order to
verify the relevance of the increase in the bioaccessibility of bioac-
tive compounds in blood.
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