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Abstract

First observations of the decays Λ0
b → Λ+

c D
−
(s) are reported using data corresponding

to an integrated luminosity of 3 fb−1 collected at 7 and 8 TeV center-of-mass energy
in proton-proton collisions with the LHCb detector. In addition, the most precise
measurement of the branching fraction B(B0

s → D+D−s ) is made and a search is
performed for the decays B0

(s) → Λ+
c Λ−c . The results obtained are

B(Λ0
b → Λ+

c D
−)/B(Λ0

b → Λ+
c D
−
s ) = 0.042± 0.003 (stat)± 0.003 (syst),[

B(Λ0
b → Λ+

c D
−
s )

B(B0 → D+D−s )

] / [ B(Λ0
b → Λ+

c π
−)

B(B0 → D+π−)

]
= 0.96± 0.02 (stat)± 0.06 (syst),

B(B0
s → D+D−s )/B(B0 → D+D−s ) = 0.038± 0.004 (stat)± 0.003 (syst),

B(B0 → Λ+
c Λ−c )/B(B0 → D+D−s ) < 0.0022 [95% C.L.],

B(B0
s → Λ+

c Λ−c )/B(B0
s → D+D−s ) < 0.30 [95% C.L.].

Measurement of the mass of the Λ0
b baryon relative to the B0 meson gives

M(Λ0
b)−M(B0) = 339.72± 0.24 (stat)± 0.18 (syst) MeV/c2. This result provides

the most precise measurement of the mass of the Λ0
b baryon to date.

Submitted to Physical Review Letters.
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9Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
10Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12School of Physics, University College Dublin, Dublin, Ireland
13Sezione INFN di Bari, Bari, Italy
14Sezione INFN di Bologna, Bologna, Italy
15Sezione INFN di Cagliari, Cagliari, Italy
16Sezione INFN di Ferrara, Ferrara, Italy
17Sezione INFN di Firenze, Firenze, Italy
18Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19Sezione INFN di Genova, Genova, Italy
20Sezione INFN di Milano Bicocca, Milano, Italy
21Sezione INFN di Milano, Milano, Italy
22Sezione INFN di Padova, Padova, Italy
23Sezione INFN di Pisa, Pisa, Italy

v



24Sezione INFN di Roma Tor Vergata, Roma, Italy
25Sezione INFN di Roma La Sapienza, Roma, Italy
26Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
27AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science,
Kraków, Poland
28National Center for Nuclear Research (NCBJ), Warsaw, Poland
29Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
30Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
31Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
32Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
33Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
34Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
35Institute for High Energy Physics (IHEP), Protvino, Russia
36Universitat de Barcelona, Barcelona, Spain
37Universidad de Santiago de Compostela, Santiago de Compostela, Spain
38European Organization for Nuclear Research (CERN), Geneva, Switzerland
39Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
40Physik-Institut, Universität Zürich, Zürich, Switzerland
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jUniversità di Genova, Genova, Italy
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Hadrons are systems of quarks bound by the strong interaction, described at the
fundamental level by quantum chromodynamics (QCD). Low-energy phenomena, such
as the binding of quarks and gluons within hadrons, lie in the nonperturbative regime
of QCD and are difficult to calculate. Much progress has been made in recent years in
the study of beauty mesons [1]; however, many aspects of beauty baryons are still largely
unknown. Many decays of beauty mesons into pairs of charm hadrons have branching
fractions at the percent level [2]. Decays of beauty baryons into pairs of charm hadrons
are expected to be of comparable size, yet none have been observed to date. If such decays
do have sizable branching fractions, they could be used to study beauty-baryon properties.
For example, a comparison of beauty meson and baryon branching fractions can be used
to test factorization in these decays.

Many models and techniques have been developed that attempt to reproduce the
spectrum of the measured hadron masses, such as constituent quark models or lattice
QCD calculations [3]. Precise measurements of ground-state beauty-baryon masses are
required to permit precision tests of a variety of QCD models [4–10]. The Λ0

b baryon mass
is particularly interesting in this context since several ground-state beauty-baryon masses
are measured relative to that of the Λ0

b [11].
This Letter reports the first observation of the decays Λ0

b → Λ+
c D

−
s and Λ0

b → Λ+
c D

−

made using data corresponding to an integrated luminosity of 1 and 2 fb−1 collected at
7 and 8 TeV center-of-mass energy in pp collisions, respectively, with the LHCb detector.
The former is used to make the most precise measurement to date of the mass of the Λ0

b

baryon. Improved measurements of the branching fraction B(B0
s → D+D−s ) and stringent

upper limits on B(B0
(s) → Λ+

c Λ−c ) are also reported. Charge conjugated decay modes are
implied throughout this Letter.

The LHCb detector [12] is a single-arm forward spectrometer covering the pseudo-
rapidity range 2 < η < 5, designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system consisting of a silicon-strip vertex
detector surrounding the pp interaction region, a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of
silicon-strip detectors and straw drift tubes [13] placed downstream. The combined tracking
system provides a momentum measurement with relative uncertainty that varies from 0.4%
at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter resolution of 20µm for tracks with
large transverse momentum (pT). Different types of charged hadrons are distinguished by
information from two ring-imaging Cherenkov detectors [14]. The hardware stage of the
trigger uses information from calorimeter and muon systems [15]. The calorimeter system
consists of scintillating-pad and preshower detectors, an electromagnetic calorimeter and
a hadronic calorimeter. The muon system is composed of alternating layers of iron and
multiwire proportional chambers [16]. The software stage of the trigger, which applies a
full event reconstruction, uses a boosted decision tree (BDT) [17] to identify secondary
vertices consistent with the decay of a beauty hadron [18].

Samples of simulated events are used to determine the signal selection efficiency, to
model signal event distributions and to investigate possible background contributions.
In the simulation, pp collisions are generated using Pythia [19] with a specific LHCb
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configuration [20]. Decays of hadronic particles are described by EvtGen [21], in which
final state radiation is generated using Photos [22]. The interaction of the generated
particles with the detector and its response are implemented using the Geant4 toolkit [23]
as described in Ref. [24].

In this analysis, signal beauty-hadron candidates are formed by combining charm-
hadron candidate pairs reconstructed in the following decay modes: D+ → K−π+π+,
D+
s → K−K+π+ and Λ+

c → pK−π+. The measured invariant mass of each charm-hadron
candidate, the resolution on which is about 6−8 MeV/c2, is required to be within 25 MeV/c2

of the nominal value [2]. To improve the resolution of the beauty-hadron mass, the decay
chain is fit imposing kinematic and vertex constraints [25]; this includes constraining the
charm-hadron masses to their nominal values. To suppress contributions from non-charm
decays, the reconstructed charm-hadron decay vertex is required to be downstream of and
significantly displaced from the reconstructed beauty-hadron decay vertex.

A BDT is used to select each type of charm-hadron candidate. These BDTs use five
variables for the charm hadron and 23 for each of its decay products. The variables
include kinematic quantities, track and vertex qualities, and particle identification (PID)
information. The signal and background samples used to train the BDTs are obtained
from large samples of B0 → D+π−, B0

s → D+
s π
− and Λ0

b → Λ+
c π
− decays. These data

samples are also used to validate selection efficiencies obtained from simulation. The
signal distributions are background subtracted using weights [26] obtained from fits to
the beauty-hadron invariant mass distributions. The background distributions are taken
from the charm-hadron and high-mass beauty-hadron sidebands in the same data samples.
To obtain the BDT efficiency in a given signal decay mode, the kinematical properties
and correlations between the two charm hadrons are taken from simulation. The BDT
response distributions are obtained from validation data samples of the decays used in the
BDT training, weighted to match the kinematics of the signal.

Due to the kinematic similarity of the decays D+ → K−π+π+, D+
s → K−K+π+ and

Λ+
c → pK−π+, cross-feed may occur among beauty-hadron decays into pairs of charm

hadrons. For example, cross-feed between D+ and D+
s mesons occurs when a K−h+π+

candidate is reconstructed in the D+ mass region under the h+ = π+ hypothesis and
the D+

s mass region under the h+ = K+ hypothesis. In such situations, an arbitration
is performed: if the ambiguous track (h+) can be associated to an oppositely-charged
track to form a φ(1020)→ K+K− candidate, the kaon hypothesis is taken resulting in a
D+
s assignment to the charm-hadron candidate; otherwise, stringent PID requirements

are applied to h+. The efficiency of these arbitrations is obtained using simulated signal
decays to model the kinematical properties and D∗+ → D0π+ calibration data for the PID
efficiencies.

Signal yields are determined by performing unbinned extended likelihood fits to the
beauty-hadron invariant mass spectra observed in the data. The signal distributions are
modeled using a so-called Apollonios function, which is the exponential of a hyperbola
combined with a power-law low-mass tail [27]. The peak position and resolution parameters
are allowed to vary while fitting the data, while the low-mass tail parameters are taken
from simulation and fixed in the fits. The measurements reported in this paper are not
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sensitive to the specific choice of the signal model.
Four categories of background contributions are considered: partially reconstructed

decays of beauty hadrons where at least one final-state particle is not reconstructed;
decays into a single charm hadron and three light hadrons; reflections where the cross-feed
arbitration fails to remove a misidentified particle; and combinatorial background. The
only partially reconstructed decays that contribute in the mass region studied are those
where a single pion or photon is not reconstructed; thus, only final states comprised of D∗+(s)
or Σ+

c and another charm hadron are considered (e.g., Λ0
b → Λ+

c D
∗−
s ). These background

contributions are modeled using kernel probability density functions (PDFs) [28] obtained
from simulation. Single-charm backgrounds are studied using data that are reconstructed
outside of a given charm-hadron mass region and are found to be O(1%) for decays
containing a D−s (e.g., B0 → D+K−K+π−) and negligible otherwise. The only non-
negligible reflection is found to be Λ0

b → Λ+
c D

−
s decays misidentified as Λ+

c D
− candidates.

The shape is obtained from simulation, while the normalization is fixed using simulation
and the aforementioned PID calibration sample to determine the fraction of Λ0

b → Λ+
c D

−
s

decays that are not removed by the cross-feed criteria. Reflections of B0 → D+D−s decays
misidentified as final states containing Λ+

c particles do not have a peaking structure and,
therefore, are absorbed into the combinatorial backgrounds, which are modeled using
exponential distributions.

Figure 1 shows the invariant mass spectra for the Λ0
b → Λ+

c D
−
s and Λ0

b → Λ+
c D

−

candidates. The signal yields obtained are 4633± 69 and 262± 19 for Λ0
b → Λ+

c D
−
s and

Λ0
b → Λ+

c D
−, respectively. This is the first observation of each of these decays. The ratio

of branching fractions determined using the nominal D−s [2] and D− [29] meson branching
fractions and the ratio of efficiencies is

B(Λ0
b → Λ+

c D
−)

B(Λ0
b → Λ+

c D
−
s )

= 0.042± 0.003 (stat)± 0.003 (syst).

The similarity of the final states and the shared parent particle result in many cancelations
of uncertainties in the determination of the ratio of branching fractions. The remaining
uncertainties include roughly equivalent contributions from determining the efficiency-
corrected yields and from the ratio of charm-hadron branching fractions (see Table 1). The
dominant contribution to the uncertainty of the fit PDF is due to the low-mass background
contributions, which are varied in size and shape to determine the effect on the signal yield.
The efficiencies of the cross-feed and BDT criteria are determined in a data-driven manner
that produces small uncertainties. The observed ratio is approximately the ratio of the
relevant quark-mixing factors and meson decay constants, |Vcd/Vcs|2 × (fD/fDs)

2 ≈ 0.034,
as expected assuming nonfactorizable effects are small.

The branching fraction of the decay Λ0
b → Λ+

c D
−
s is determined relative to that of the

B0 → D+D−s decay. Using D+D−s BDT criteria, optimized to maximize the expected B0

significance, 19 395± 145 B0 → D+D−s decays are observed (see Fig. 2). The measurement
of B(Λ0

b → Λ+
c D

−
s )/B(B0 → D+D−s ) is complicated by the fact that the ratio of the Λ0

b and
B0 production cross sections, σ(Λ0

b)/σ(B0), depends on the pT of the beauty hadrons [31].
Figure 3 shows the ratio of efficiency-corrected yields, N(Λ0

b → Λ+
c D

−
s )/N(B0 → D+D−s ),
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Figure 1: Invariant mass distributions for (left) Λ0
b → Λ+

c D
−
s and (right) Λ0

b → Λ+
c D
− candidates

with the fits described in the text overlaid.

Table 1: Relative systematic uncertainties on branching fraction measurements (%). The
production ratio σ(B0

s )/σ(B0) is taken from Ref. [30]. Numbers in brackets in the last column
are for the B0

s decay mode.

Source
B(Λ0

b→Λ+
c D

−)

B(Λ0
b→Λ+

c D
−
s )

[
B(Λ0

b→Λ+
c D

−
s )

B(B0→D+D−
s )

]/[ B(Λ0
b→Λ+

c π
−)

B(B0→D+π−)

]
B(B0

s→D+D−
s )

B(B0→D+D−
s )

B(B0
(s)
→Λ+

c Λ−
c )

B(B0
(s)
→D+D−

s )

Efficiency 3.5 5.2 1.0 3.9 (5.0)
Fit model 3.0 2.6 3.0 −
B(D+

(s),Λ
+
c ) 5.2 − − 8.8

σ(B0
s )/σ(B0) − − 5.8 −
Total 6.9 5.8 6.6 9.6 (10.1)

as a function of beauty-hadron pT. The ratio of branching-fraction ratios is obtained using
a fit with the shape of the pT dependence measured in B(Λ0

b → Λ+
c π
−)/B(B0 → D+π−) [32]

and found to be[
B(Λ0

b → Λ+
c D

−
s )

B(B0 → D+D−s )

] / [ B(Λ0
b → Λ+

c π
−)

B(B0 → D+π−)

]
= 0.96± 0.02 (stat)± 0.06 (syst).

This result does not depend on the absolute ratio of production cross sections or on any
charm-hadron branching fractions. The systematic uncertainties on this result are listed
in Table 1. The uncertainty in the fit model is largely due to the sizable single-charm
contributions to these modes and due to contributions from the fits described in Ref. [32].
The ratio N(Λ0

b → Λ+
c D

−
s )/N(B0 → D+D−s ) is observed to be consistent in data collected

at
√
s = 7 and 8 TeV; thus, it is assumed that the production fractions of the Λ0

b and B0

are the same for all data analyzed and no systematic uncertainty is assigned. The ratio
of branching ratios is consistent with unity as expected assuming small nonfactorizable
effects.
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Figure 2: Invariant mass distributions for D+D−s candidates selected using BDT criteria
optimized for the (left) B0 → D+D−s and (right) B0

s → D+D−s decay modes with the fits
described in the text overlaid.

The kinematic similarity of the decay modes Λ0
b → Λ+

c D
−
s and B0 → D+D−s permits

a precision measurement of the mass difference of the Λ0
b and B0 hadrons to be made.

The relatively small value of [M(Λ0
b)−M(Λ+

c )−M(D−s )]−
[
M(B0)−M(D+)−M(D−s )

]
means that the uncertainty due to momentum scale, the dominant uncertainty in absolute
mass measurements, mostly cancels; however, it is still important to determine accurately
the momenta of the final state particles. The momentum scale calibration of the spec-
trometer, which accounts for imperfect knowledge of the magnetic field and alignment, is
discussed in detail in Refs. [11, 33]. The uncertainty on the calibrated momentum scale is
estimated to be 0.03% by comparing various particle masses measured at LHCb to their
nominal values [33].

The kinematic and vertex constraints used in the fits described previously reduce the
statistical uncertainty on M(Λ0

b)−M(B0) by improving the resolution. These constraints
also increase the systematic uncertainty by introducing a dependence on the precision of
the nominal charm-hadron masses. For this reason, these constraints are not imposed in
the mass measurement. The mass difference obtained is

M(Λ0
b)−M(B0) = 339.72± 0.24 (stat)± 0.18 (syst) MeV/c2.

The dominant systematic uncertainty (see Table 2) arises due to a correlation between the
reconstructed beauty-hadron mass and charm-hadron flight distance. The large difference
in the Λ+

c and D+ hadron lifetimes [2] causes only a partial cancelation of the biases
induced by the charm-lifetime selection criteria. This effect is studied in simulation and
a 0.16 MeV/c2 uncertainty is assigned. The 0.03% uncertainty in the momentum scale
results in an uncertainty on the mass difference of 0.08 MeV/c2. Many variations in the
fit model are considered and none produce a significant shift in the mass difference. The
systematic uncertainty in the mass difference due to the uncertainty in the amount of
detector material in which charged particles lose energy is negligible [33]. Furthermore, the
uncertainty on M(Λ0

b)−M(B0) due to differences in beauty-hadron production kinematics,
as seen in Fig. 3, is also found to be negligible.
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Table 2: Systematic uncertainties for M(Λ0
b)−M(B0).

Description Value ( MeV/c2)
Λ+
c −D+ lifetime difference 0.16

Momentum scale 0.08
Fit model 0.02

Total 0.18

Using the nominal value for M(B0) [2] gives M(Λ0
b) = 5619.30± 0.34 MeV/c2, where

the uncertainty includes both statistical and systematic contributions. This is the most
precise result to date. The total uncertainty is dominated by statistics and charm-hadron
lifetime effects; thus, this result can be treated as being uncorrelated with the previous
LHCb result obtained using the Λ0

b → J/ψΛ0 decay [34]. A weighted average of the LHCb
results gives M(Λ0

b) = 5619.36± 0.26 MeV/c2. This value may then be used to improve
the precision of the Ξ−b and Ω−b baryon masses using their mass differences with respect
to the Λ0

b baryon as reported in Ref. [34].
Using BDT criteria optimized for maximizing the expected significance of B0

s → D+D−s ,
14 608± 121 B0 and 143± 14 B0

s decays are observed (see Fig. 2), from which the ratio
extracted is

B(B0
s → D+D−s )

B(B0 → D+D−s )
= 0.038± 0.004 (stat)± 0.003 (syst).

This yields the most precise measurement to date of B(B0
s → D+D−s ) and supersedes

Ref. [35]. The systematic uncertainty is dominated by the contribution from beauty-hadron
production fractions since the two decay modes share the same final state. The additional
small efficiency uncertainty is due to the uncertainty on the B0

s lifetime. The fit model
uncertainty is largely due to the size of the combinatorial background near the B0

s peak.
The ratio of branching fractions is approximately the ratio of quark-mixing factors as
expected assuming nonfactorizable effects are small.

A search is also performed for the decay modes B0
(s) → Λ+

c Λ−c . Regions centered
around the nominal beauty-meson masses with boundaries defined such that each region
contains 95% of the corresponding signal are determined using simulation. The expected
background contribution in each of these regions is obtained from the charm-hadron mass
sidebands. Applying this technique to the B0 → D+D−s and Λ0

b → Λ+
c D

−
(s) decays produces

background estimates consistent with those obtained by fitting the invariant mass spectra
for those modes. No significant excess is observed in either Λ+

c Λ−c signal region. The limits
obtained using the method of Ref. [36] and the known D−s [2], D− [29] and Λ+

c [37] hadron

6



 [MeV/c]
T

p
0 10000 20000 30000 40000

) s-
 D+

 D
→0

B
)/

N
(

s-
 D+ c

Λ 
→0 b

Λ
N

(
0

0.2

0.4

0.6

0.8

1

LHCb

Figure 3: Efficiency-corrected yield ratio of Λ0
b → Λ+

c D
−
s to B0 → D+D−s vs pT. The points are

located at the mean pT value of the Λ0
b in each bin. The curve shows the data fit with the shape
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branching fractions are

B(B0 → Λ+
c Λ−c )

B(B0 → D+D−s )
< 0.0022 [95% C.L.],

B(B0
s → Λ+

c Λ−c )

B(B0
s → D+D−s )

< 0.30 [95% C.L.].

For these results the lifetime of the light-mass B0
s eigenstate is assumed as this produces

the most conservative limits [1]. This is the best limit to date for the B0 decay mode and
the first limit for the B0

s decay mode.
In summary, first observations and relative branching fraction measurements have

been made for the decays Λ0
b → Λ+

c D
−
(s). The most precise measurement of the Λ0

b

baryon mass has been made via its mass difference relative to the B0 meson. The most
precise measurement of B(B0

s → D+D−s ) has been presented and the most stringent upper
limits have been placed on B(B0

(s) → Λ+
c Λ−c ). Using the PDG value B(B0 → D+D−s ) =

(7.2± 0.8)× 10−3 [2] and the LHCb result for B(Λ0
b → Λ+

c π
−)/B(B0 → D+π−) [32], the

absolute branching fractions obtained are

B(Λ0
b → Λ+

c D
−
s ) = (1.1± 0.1)× 10−2,

B(Λ0
b → Λ+

c D
−) = (4.7± 0.6)× 10−4,

B(B0
s → D+D−s ) = (2.7± 0.5)× 10−4,

B(B0 → Λ+
c Λ−c ) < 1.6× 10−5 [95% C.L.],

B(B0
s → Λ+

c Λ−c ) < 8.0× 10−5 [95% C.L.].

These results are all consistent with expectations that assume small nonfactorizable effects.
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