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Abstract

The LHCb measurement of the lifetime ratio of the Λ0
b baryon to the B0 meson is

updated using data corresponding to an integrated luminosity of 3.0 fb−1 collected
using 7 and 8 TeV centre-of-mass energy pp collisions at the LHC. The decay
modes used are Λ0

b → J/ψpK− and B0 → J/ψπ+K−, where the π+K− mass is
consistent with that of the K∗0(892) meson. The lifetime ratio is determined with
unprecedented precision to be 0.974 ± 0.006 ± 0.004, where the first uncertainty
is statistical and the second systematic. This result is in agreement with original
theoretical predictions based on the heavy quark expansion. Using the current world
average of the B0 lifetime, the Λ0

b lifetime is found to be 1.479± 0.009± 0.010 ps.
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1 Introduction

The heavy quark expansion (HQE) is a powerful theoretical technique in the description of
decays of hadrons containing heavy quarks. This model describes inclusive decays and has
been used extensively in the analysis of beauty and charm hadron decays, for example in
the extraction of Cabibbo-Kobayashi-Maskawa matrix elements, such as |Vcb| and |Vub| [1].
The basics of the theory were derived in the late 1980’s [2]. For b-flavoured hadrons, the
expansion of the total decay width in terms of powers of 1/mb, where mb is the b quark
mass, was derived a few years later [3]. These developments are summarized in Ref. [4]. It
was found that there were no terms of O(1/mb), that the O(1/m2

b) terms were tiny, and
initial estimates of O(1/m3

b) [5,6] effects were small. Thus differences of only a few percent
were expected between the Λ0

b and B0 total decay widths, and hence their lifetimes [5,7,8].
In the early part of the past decade, measurements of the ratio of Λ0

b to B0 lifetimes,
τΛ0

b
/τB0 , gave results considerably smaller than this expectation. In 2003 one experimental

average gave 0.798 ± 0.052 [9], while another was 0.786 ± 0.034 [10]. Some authors
sought to explain the small value of the ratio by including additional operators or other
modifications [11], while others thought that the HQE could be pushed to provide a
ratio of about 0.9 [12], but not so low as the measured value. Recent measurements
have obtained higher values [13]. In fact, the most precise previous measurement from
LHCb, 0.976± 0.012± 0.006 [14], based on 1.0 fb−1 of data, agreed with the early HQE
expectations.

In this paper we present an updated result for τΛ0
b
/τB0 using data from 3.0 fb−1 of

integrated luminosity collected with the LHCb detector from pp collisions at the LHC.
Here we add the 2.0 fb−1 data sample from the 8 TeV data to our previous 1.0 fb−1 7 TeV
sample [14]. The data are combined and analyzed together. Larger simulation samples are
used than in our previous publication, and uncertainties are significantly reduced.

The Λ0
b baryon is detected in the J/ψpK− decay mode, discovered by LHCb [14], while

the B0 meson is reconstructed in J/ψK∗0(892) decays, with K∗0(892)→ π+K−.2 These
modes have the same topology into four charged tracks, thus facilitating cancellation of
systematic uncertainties in the lifetime ratio.

The LHCb detector [15] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system consisting of a silicon-strip vertex
detector surrounding the pp interaction region, a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of about 4 Tm, and three stations
of silicon-strip detectors and straw drift tubes [16] placed downstream. The combined
tracking system provides a momentum measurement with relative uncertainty that varies
from 0.4% at 5 GeV to 0.6% at 100 GeV, and impact parameter resolution of 20µm for
tracks with large transverse momentum, pT.3 Different types of charged hadrons are
distinguished using information from two ring-imaging Cherenkov (RICH) detectors [17].
Photon, electron and hadron candidates are identified by a calorimeter system consisting of

2Charge-conjugate modes are implicitly included throughout this Letter.
3We use natural units with ~ = c = 1.
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scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic
calorimeter. Muons are identified by a system composed of alternating layers of iron and
multiwire proportional chambers [18]. The trigger [19] consists of a hardware stage, based
on information from the calorimeter and muon systems, followed by a software stage,
which applies a full event reconstruction.

2 Event selection and b hadron reconstruction

Events selected for this analysis are triggered by a J/ψ → µ+µ− decay, where the J/ψ is
required at the software level to be consistent with coming from the decay of a b hadron
by use of either impact parameter (IP) requirements or detachment of the reconstructed
J/ψ decay position from the associated primary vertex.

Events are required to pass a cut-based preselection and then are further filtered using
a multivariate discriminator based on the boosted decision tree (BDT) technique [20].
To satisfy the preselection requirements the muon candidates must have pT larger than
550 MeV, while the hadron candidates are required to have pT larger than 250 MeV. Each
muon is required to have χ2

IP > 4, where χ2
IP is defined as the difference in χ2 of the

primary vertex reconstructed with and without the considered track. Events must have
a µ+µ− pair that forms a common vertex with χ2 < 16 and that has an invariant mass
between −48 and +43 MeV of the known J/ψ mass [1]. Candidate µ+µ− pairs are then
constrained to the J/ψ mass to improve the determination of the J/ψ momentum. The two
charged final state hadrons must have a vector summed pT of more than 1 GeV, and form
a vertex with χ2/ndf < 10, where ndf is the number of degrees of freedom, and a common
vertex with the J/ψ candidate with χ2/ndf < 16. Particle identification requirements are
different for the two modes. Using information from the RICH detectors, a likelihood is
formed for each hadron hypothesis. The difference in the logarithms of the likelihoods,
DLL(h1−h2), is used to distinguish between the two hypotheses, h1 and h2 [17]. In the Λ0

b

decay the kaon candidate must have DLL(K − π) > 4 and DLL(K − p) > −3, while the
proton candidate must have DLL(p− π) > 10 and DLL(p−K) > −3. For the B0 decay,
the requirements on the pion candidate are DLL(π − µ) > −10 and DLL(π −K) > −10,
while DLL(K − π) > 0 is required for the kaon.

The BDT selection uses the smaller value of the DLL(µ−π) of the µ+ and µ− candidates,
the pT of each of the two charged hadrons, and their sum, the Λ0

b pT, the Λ0
b vertex χ2,

and the χ2
IP of the Λ0

b candidate with respect to the primary vertex. The choice of these
variables is motivated by minimizing the dependence of the selection efficiency on decay
time; for example, we do not use the χ2

IP of the proton, the kaon, the flight distance, or
the pointing angle of Λ0

b to the primary vertex. To train and test the BDT we use a
simulated sample of Λ0

b → J/ψpK−events for signal and a background data sample from
the mass sidebands in the region 100− 200 MeV below the Λ0

b signal peak. Half of these
events are used for training, while the other half are used for testing. The BDT selection
is chosen to maximize S2/(S +B), where S and B are the signal and background yields,
respectively. This optimization includes the requirement that the Λ0

b candidate decay time
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Figure 1: BDT classifier output for the signal and background. Both training and test samples
are shown; their definitions are given in the text.

be greater than 0.4 ps. The same BDT selection is used for B0 → J/ψπ−K+ decays. The
distributions of the BDT classifier output for signal and background are shown in Fig. 1.
The final selection requires that the BDT output variable be greater than 0.04.

The resulting Λ0
b and B0 candidate invariant mass distributions are shown in Fig. 2.

For B0 candidates we also require that the invariant π+K− mass be within ±100 MeV of
the K∗0(892) mass. In order to measure the number of signal events we need to ascertain
the backgrounds. The background is dominated by random track combinations at masses
around the signal peaks, and their shape is assumed to be exponential in invariant mass.
Specific backgrounds arising from incorrect particle identification, called “reflections,” are
also considered. In the case of the Λ0

b decay, these are B0
s → J/ψK+K− decays where a

kaon is misidentified as a proton and B0 → J/ψK∗0(892) decays with K∗0(892)→ π+K−

where the pion is misidentified as a proton. There is also a double misidentification
background caused by swapping the kaon and proton identifications.

To study these backgrounds, we examine the mass combinations in the sideband regions
from 60− 200 MeV on either side of the Λ0

b mass peak. Specifically for each candidate
in the J/ψpK− sideband regions we reassign to the proton track the kaon or pion mass
hypothesis respectively, and plot them separately. The resulting distributions are shown in
Fig. 3. The m(J/ψK+K−) invariant mass distribution shows a large peak at the B0

s mass.
There is also a small contribution from the B0 final state where the π+ is misidentified
as a p. The m(J/ψπ+K−) distribution, on the other hand, shows a peak at the B0 mass

3
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Figure 2: Fits to the invariant mass spectrum of (a) J/ψpK− and (b) J/ψπ+K− combinations.
The Λ0

b and B0 signals are shown by the (magenta) solid curves. The (black) dotted lines
are the combinatorial backgrounds, and the (blue) solid curves show the totals. In (a) the
B0
s → J/ψK+K− and B0 → J/ψπ+K− reflections, caused by particle misidentification, are

shown with the (brown) dot-dot-dashed and (red) dot-dashed shapes, respectively, and the
(green) dashed shape represents the doubly misidentified J/ψK+p final state, where the kaon
and proton masses are swapped. In (b) the B0

s → J/ψπ+K− mode is shown by the (red) dashed
curve and the (green) dot-dashed shape represents the Λ0

b → J/ψpK− reflection.

with a large contribution from B0
s decays where the K+ is misidentified as a p. For both

distributions the shapes of the different contributions are determined using simulation.
Fitting both distributions we find 19 327±309 B0

s, and 5613±285 B0 events in the Λ0
b

sideband.
Samples of simulated B0

s → J/ψK+K− and B0 → J/ψK−π+ events are used to find
the shapes of these reflected backgrounds in the J/ψpK− mass spectrum. Using the event
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Figure 3: Invariant mass distributions of J/ψpK− data candidates in the sideband regions 60−200
MeV on either side of the Λ0

b mass peak, reinterpreted as misidentified (a) B0
s → J/ψK+K− and

(b) B0 → J/ψπ+K− combinations through appropriate mass reassignments. The (red) dashed
curves show the B0 contributions and the (green) dot-dashed curves show B0

s contributions. The
(black) dotted curves represent the polynomial background and the (blue) solid curves the total.
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yields found in data and the simulation shapes, we estimate 5603± 90 B0
s → J/ψK+K−

and 1150 ± 59 B0 → J/ψπ+K− reflection candidates within ±20 MeV of the Λ0
b peak.

These numbers are used as Gaussian constraints in the mass fit described below with the
central values as the Gaussian means and the uncertainties as the widths. Following a
similar procedure we find 1138 ± 48 doubly-misidentified Λ0

b decays under the Λ0
b peak.

This number is also used as a Gaussian constraint in the mass fit.
To determine the number of Λ0

b signal candidates we perform an unbinned maximum
likelihood fit to the candidate J/ψpK− invariant mass spectrum shown in Fig. 2(a).
The fit function is the sum of the Λ0

b signal component, combinatorial background, the
contributions from the B0

s → J/ψK+K− and B0 → J/ψπ+K− reflections and the doubly-

misidentified Λ0
b → J/ψK+p decays. The signal is modeled by a triple-Gaussian function

with common means. The fraction and the width ratio for the second and third Gaussians
are fixed to the values obtained in the fit to B0 → J/ψK∗0(892) decays, shown in Fig. 2(b).
The effective r.m.s. width is 4.7 MeV. The combinatorial background is described by an
exponential function. The shapes of reflections and doubly-misidentified contributions are
described by histograms imported from the simulations. The mass fit gives 50 233± 331
signal and 15 842± 104 combinatorial background candidates, 5642± 88 B0

s → J/ψK+K−

and 1167± 58 B0 → J/ψπ+K− reflection candidates, and 1140± 48 doubly-misidentified
Λ0
b candidates within ±20 MeV of the Λ0

b mass peak. The pK− mass spectrum is consistent
with that found previously [14], with a distinct peak near 1520 MeV, together with the
other broad resonant and non-resonant structures that cover the entire kinematic region.

The B0 candidate mass distribution can be polluted by the reflection from Λ0
b →

J/ψpK− and B0
s → J/ψK+K− decays. Following a similar procedure as for the analysis

of the Λ0
b mass spectra, we take into account the reflection under the B0 peak. Figure 2(b)

shows the fit to the J/ψπ+K− mass distribution. There are signal peaks at both B0 and B0
s

masses on top of the background. A triple-Gaussian function with common means is used
to fit each signal. The shape of the B0

s → J/ψπ+K− mass distribution is taken to be the
same as that of the signal B0 decay. The effective r.m.s. width is 6.5 MeV. An exponential
function is used to fit the combinatorial background. The shape of the Λ0

b → J/ψpK−

reflection is taken from simulation, the yield being Gaussian constrained in the global fit
to the expected value. The mass fit gives 340 256± 893 signal and 11 978± 153 background
candidates along with a negligible 573 ± 27 contribution of Λ0

b → J/ψpK− reflection
candidates within ±20 MeV of the B0 mass peak. All other reflection contributions are
found to be negligible.

3 Measurement of the Λ0
b to B0 lifetime ratio

The decay time, t, is calculated as

t = m
~d · ~p
|~p|2

, (1)

where m is the reconstructed invariant mass, ~p the momentum and ~d the flight distance
vector of the particle between the production and decay vertices. The b hadron is
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constrained to come from the primary vertex. To avoid systematic biases due to shifts in
the measured decay time, we do not constrain the two muons to the J/ψ mass.

The decay time distribution of the Λ0
b → J/ψpK− signal can be described by an

exponential function convolved with a resolution function, G(t− t′, σΛ0
b
), where t′ is the

true decay time, multiplied by an acceptance function, AΛ0
b
(t):

FΛ0
b
(t) = AΛ0

b
(t)× [e

−t′/τ
Λ0
b ⊗G(t− t′, σΛ0

b
)]. (2)

The ratio of the decay time distributions of Λ0
b → J/ψpK− and B0 → J/ψK∗0(892) is

given by

R(t) =
AΛ0

b
(t)× [e

−t′/τ
Λ0
b ⊗G(t− t′, σΛ0

b
)]

AB0(t)× [e−t
′/τB0 ⊗G(t− t′, σB0)]

. (3)

The advantage of measuring the lifetime through the ratio is that the decay time acceptances
introduced by the trigger requirements, selection and reconstruction almost cancel in the
ratio of the decay time distributions. The decay time resolutions are 40 fs for the Λ0

b decay
and 37 fs for the B0 decay [14]. They are both small enough in absolute scale, and similar
enough for differences in resolutions between the two modes not to affect the final result.
Thus,

R(t) = R(0)e
−t(1/τ

Λ0
b
−1/τB0 )

= R(0)e−t∆ΛB , (4)

where ∆ΛB ≡ 1/τΛ0
b
− 1/τB0 is the width difference and R(0) is the normalization. Since

the acceptances are not quite equal, a correction is implemented to first order by modifying
Eq. (4) with a linear function

R(t) = R(0)[1 + at]e−t∆ΛB , (5)

where a represents the slope of the acceptance ratio as a function of decay time.
The decay time acceptance is the ratio between the reconstructed decay time distribution

for selected events and the generated decay time distribution convolved with the triple-
Gaussian decay time resolutions obtained from the simulations. In order to ensure
that the p and pT distributions of the generated b hadrons are correct, we weight the
simulated samples to match the data distributions. The simulations do not model the
hadron identification efficiencies with sufficient accuracy for our purposes. Therefore we
further weight the samples according to the hadron identification efficiencies obtained
from D∗+ → π+D0, D0 → K−π+ events for pions and kaons, and Λ→ pπ− for protons.
The Λ0

b → J/ψpK− sample is also weighted using signal yields in bins of m (pK−).
The decay time acceptances obtained from the weighted simulations are shown in

Fig. 4(a). The individual acceptances in both cases exhibit the same behaviour. The
ratio of the decay time acceptances is shown in Fig. 4(b). For decay times greater than
7 ps, the acceptance is poorly determined, while below 0.4 ps the individual acceptances
decrease quickly. Thus, we consider decay times in the range 0.4− 7.0 ps. A χ2 fit to the
acceptance ratio with a function of the form C(1 + at) between 0.4 and 7 ps, gives a slope
a = 0.0066± 0.0023 ps−1 and an intercept of C = 0.996± 0.005. The χ2/ndf of the fit is
65/64.
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Figure 4: (a) Decay time acceptances (arbitrary scale) from simulation for (green) circles
Λ0
b → J/ψpK−, and (red) open-boxes B0 → J/ψK∗0(892) decays. (b) Ratio of the decay time

acceptances between Λ0
b → J/ψpK− and B0 → J/ψK∗0(892) decays obtained from simulation.

The (blue) line shows the result of the linear fit.

In order to determine the ratio of Λ0
b to B0 lifetimes, we determine the yield of b

hadrons for both decay modes using unbinned maximum likelihood fits described in Sec. 2
to the b hadron mass distributions in 22 bins of decay time of equal width between 0.4 and
7 ps. We use the parameters found from the time integrated fits fixed in each time bin, with
the signal and background yields allowed to vary, except for the double misidentification
background fraction that is fixed.

The resulting signal yields as a function of decay time are shown in Fig. 5. The
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J/ψK∗0(892) shown as (green) squares. For most entries the error bars are smaller than the
points.

subsequent decay time ratio distribution fitted with the function given in Eq. 5 is shown in
Fig. 6. A χ2 fit is used with the slope a = 0.0066 ps−1 fixed, and both the normalization
parameter R(0), and ∆ΛB allowed to vary. The fitted value of the reciprocal lifetime
difference is

∆ΛB = 17.9± 4.3± 3.1 ns−1.

Whenever two uncertainties are quoted, the first is statistical and second systematic. The
latter will be discussed in Sec. 4. The χ2/ndf of the fit is 20.3/20. The resulting ratio of
lifetimes is

τΛ0
b

τB0

=
1

1 + τB0∆ΛB

= 0.974± 0.006± 0.004,

where we use the world average value 1.519± 0.007 ps for τB0 [1]. This result is consistent
with and more precise than our previously measured value of 0.976± 0.012± 0.006 [14].
Multiplying the lifetime ratio by τB0 , the Λ0

b baryon lifetime is

τΛ0
b

= 1.479± 0.009± 0.010 ps.
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Table 1: Systematic uncertainties on the ∆ΛB, the lifetimes ratio τΛ0
b
/τB0 and the Λ0

b lifetime.

The systematic uncertainty associated with ∆ΛB is independent of the B0 lifetime.

Source ∆ΛB (ns−1) τΛ0
b
/τB0 τΛ0

b
(ps)

Signal shape 1.5 0.0021 0.0032

Background model 0.7 0.0010 0.0015

Double misidentification 1.3 0.0019 0.0029

Acceptance slope 2.2 0.0032 0.0049

Acceptance function 0.2 0.0003 0.0004

Decay time fit range 0.3 0.0004 0.0006

pK helicity 0.3 0.0004 0.0006

B0 lifetime - 0.0001 0.0068

Total 3.1 0.0044 0.0096

4 Systematic uncertainties

Sources of the systematic uncertainties on ∆ΛB, τΛ0
b
/τB0 and the Λ0

b lifetime are summarized
in Table 1. The systematic uncertainty due to the signal model is estimated by comparing
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the results between the default fit with a triple-Gaussian function and a fit with a double-
Gaussian function. We find a change of ∆ΛB = 1.5 ns−1, which we assign as the uncertainty.
Letting the signal shape parameters free in every time bin results in a change of 0.4 ns−1.
The larger of these two variations is taken as the systematic uncertainty on the signal
shape.

The uncertainties due to the background are estimated by comparing the default result
to that obtained when we allow the exponential background parameter to float in each
time bin. We also replace the exponential background function with a linear function; the
resulting difference is smaller than the assigned uncertainty due to floating the background
shape. The systematic uncertainty due to the normalization of the double misidentification
background is evaluated by allowing the fraction to change in each time bin.

The systematic uncertainties due to the acceptance slope are estimated by varying
the slope, a, according to its statistical uncertainty from the simulation. An alternative
choice of the acceptance function, where a second-order polynomial is used to parametrize
the acceptance ratio between Λ0

b → J/ψpK− and B0 → J/ψK∗0(892), results in a smaller
uncertainty. There is also an uncertainty due to the decay time range used because of the
possible change of the acceptance ratio at short decay times. This uncertainty is ascertained
by changing the fit range to be 0.7− 7.0 ps and using the difference with the baseline fit.
This uncertainty is greatly reduced with respect to our previous publication [14] due to
the larger fit range, finer decay time bins, and larger signal sample.

In order to correctly model the acceptance, which can depend on the kinematics of the
decay, the Λ0

b → J/ψpK− simulation is weighted according to the m(pK−) distribution
observed in data. As a cross-check, we weight the simulation according to the two-
dimensional distribution of m(pK−) and pK− helicity angle and assign the difference
as a systematic uncertainty. In addition, the PDG value for the B0 lifetime, τB0 =
1.519 ± 0.007 ps [1], is used to calculate the Λ0

b lifetime; the errors contribute to the
systematic uncertainty. The total systematic uncertainty is obtained by adding all of the
contributions in quadrature.

5 Conclusions

We determine the ratio of lifetimes of the Λ0
b baryon and B0 meson to be

τΛ0
b

τB0

= 0.974± 0.006± 0.004.

This is the most precise measurement to date and supersedes our previously published
result [14]. It demonstrates that the Λ0

b lifetime is shorter than the B0 lifetime by
−(2.6 ± 0.7)%, consistent with the original predictions of the HQE [2, 4, 5, 21, 22], thus
providing validation for the theory. Using the world average measured value for the B0

lifetime [1], we determine

τΛ0
b

= 1.479± 0.009± 0.010 ps,
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which is the most precise measurement to date.
LHCb has also made a measurement of τΛ0

b
using the J/ψΛ final state obtaining

1.415± 0.027± 0.006 ps [23]. The two LHCb measurements have systematic uncertainties
that are only weakly correlated, and we quote an average of the two measurements of
1.468± 0.009± 0.008 ps.
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