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Centro Mixto Universidad de Valencia-CSIC,

Institutos de Investigación de Paterna,
Aptdo. 22085, 46071 Valencia, Spain

2 Departamento de F́ısica, Universidad de Murcia, E-30100 Murcia, Spain.
(Dated: September 17, 2014)

Abstract
Recently, the Weinberg compositeness condition of a bound state was generalized to account

for resonant states and higher partial waves. We apply this extension to the case of the Λ(1520)

resonance and quantify the weight of the meson-baryon components in contrast to other possible

genuine building blocks. This resonance was theoretically obtained from a coupled channels analysis

using the s-waves πΣ∗, KΞ∗ and the d-waves K̄N and πΣ channels applying the techniques of the

chiral unitary approach. We obtain that this resonance is essentially dynamically generated from

these meson-baryon channels, leaving room for only 15% weight of other kind of components into

its wave function.

1

ar
X

iv
:1

40
4.

61
28

v2
  [

he
p-

ph
] 

 1
6 

Se
p 

20
14



I. INTRODUCTION

One of the most important issues in hadron spectroscopy is the determination of the
nature of different hadronic states, mesons and baryons, found in different facilities and
reported in the PDG [1], and the description of the spectrum of excited hadrons.

It has become clear that the traditional idea that considers mesons and baryons as pure
qq̄ and qqq quark states, respectively, has to be replaced in some cases by more complex
pictures involving more than two or three quarks. In the last years, the application of Chiral
Perturbation Theory (χPT ) to the study of the interactions of hadrons [2, 3] had remarkable
success in describing hadron structures. However, this effective field theory, in which the
ground states of mesons and baryons are considered as the relevant degrees of freedom,
is not suitable to deal with the problem of spectroscopy, due to its very limited range of
convergence.

The method has been improved constructing a non-perturbative unitary extension of the
theory, called chiral unitary approach [4–16], which allows to explain many mesons and
baryons as composite states of hadrons. This kind of resonances are commonly known as
“dynamically generated”.

One of the most challenging issues in this field is to understand whether a resonance can
be considered as composite of other hadrons or something different, eventually a genuine
resonance. The first breakthrough in the investigation of the composite nature of a system
of particles was made in 1965 by Weinberg in the well-known paper in which he determined
that the deuteron was a bound state of a proton and a neutron [17]. The same issue was
studied later in [18–20]. However, the method was only suitable for s-waves and small
binding energies.

A generalization to more heavily bound systems and using many coupled channels was
made in [21] and extended to the case of resonances in [22], while in [23] the analysis was
modified to include any partial waves. The method contained in [23] was successfully applied
to the ρ meson in that work, confirming the commonly accepted idea that it is not a ππ
composite state but a genuine resonance, and in [24] to the K∗ meson, finding a very small
weight for the Kπ component in its wave function.

This generalization to any partial waves and resonant states of the Weinberg compos-
iteness condition found in [23], was applied to baryons in [25] for the first time in order

to determine the weight of the meson-baryon component in the members of the JP = 3
2

+

baryons decuplet. An amount of 60% has been found for the πN cloud in the ∆(1232),
while the higher-energy members of the decuplet seem to be better represented by a genuine
component.

In the present work we investigate the structure of another baryonic resonance, the
Λ(1520). This resonance belongs to the negative parity JP = 3

2

−
resonances that, in the last

few years, have been interpreted as dynamically generated from the interaction of the octet
of the pseudoscalar mesons with the decuplet of the baryons [26, 27]. It has been studied
theoretically in [26, 27] and considered as generated from the interaction of the coupled
channels πΣ(1385) and KΞ(1530) in s-wave. In this picture, it couples mostly to the first
channel, qualifying as a quasi-bound state of πΣ∗, with a nominal mass of few MeV below
the πΣ∗ threshold. However, the large branching ratios to K̄N and πΣ indicate that these
two channels must play a remarkable role in the building up of the resonance in spite of the
fact that they couple in d-wave.

In [28] a coupled channels analysis of the Λ(1520) data using πΣ∗, KΞ∗, K̄N and πΣ
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has been performed. In this work, the πΣ∗ channel is still the one with the largest coupling,
but its strength is reduced with respect to the quasibound πΣ∗ picture. At the same time,
the couplings to K̄N and πΣ are remarkable, making these two channels relevant for the
interpretation of different reactions involving the Λ(1520). The model provided in [28]
has been tested in [29] through the study of the two reactions pp → pK+K−p and pp →
pK+π0π0Λ close to the Λ(1520) threshold, giving important information about the couplings
of the Λ(1520) to K̄N and πΣ∗.

In this work, by means of the extension of the Weinberg sum rule to resonant states in
any partial waves, we make an estimation of the relevance of the different channels in the
wave function of the Λ(1520), starting from the coupled channel study of Ref. [28] and [29].

II. SUMMARY OF THE FORMALISM AND MEANING OF THE SUM RULE

FOR RESONANCES

For the sake of completeness, let us first briefly summarize the approach used in Ref. [23]
to study the composite nature of a resonance in any partial waves. In order to create a
resonance from the interaction of many channels at a certain energy, two particles must
collide in a channel which is open at this energy. The process is described by the set of
coupled Schrödinger equations,

|Ψ〉 = |Φ〉+
1

E −H0

V |Ψ〉

= |Φ〉+
1

E −Mi − ~p 2

2µi

V |Ψ〉 ,
(1)

where

|Ψ〉 =


|Ψ1〉
|Ψ2〉

...
|ΨN〉

 , |Φ〉 =


|Φ1〉

0
...
0

 , (2)

H0 is the free Hamiltonian and µi is the reduced mass of the system of total mass Mi =
m1i+m2i. The state |Φ1〉 is an asymptotic scattering state used to create a resonance which
will decay into other channels.

The potential V has the form

〈~p |V |~p ′〉 ≡ (2l + 1) v Θ(Λ− p)Θ(Λ− p′)|~p |l|~p ′|lPl(cos θ) , (3)

where Λ is a cutoff in the momentum space and v is a N ×N matrix, with N the number of
channels. The form of the potential is such that the generic l-wave character of the process
is factorized in |~p |l and |~p ′|l, and in the Legendre polynomial Pl(cos θ). Thus, the matrix v
is a constant matrix.

The N ×N scattering matrix such that TΦ = VΨ, can be written as

T = (2l + 1)Pl(p̂, p̂
′)Θ(Λ− p)Θ(Λ− p′)|~p |l|~p ′|lt , (4)
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and the Schrödinger equation leads to the Lippmann-Schwinger equation for T (T = V +
V GT ), by means of which one obtains

t =
v

(1− vG)
=

1

v−1 −G
. (5)

The matrix G in Eq. (5) is a diagonal matrix accounting for the two hadron loop functions
in the intermediate state (see Eq. (6)). It is important to stress that there is no explicit
Λ(1520) pole included into the formalism, and thus the resonant shape (see Fig. 1) and pole
comes from the non-linear dynamics involved in the unitarization.

On the other hand, note that the definition TΦ = VΨ makes T independent of the phase
convention of the wave function. This derivation leads to a t matrix which does not contain
the factor |~p |l, due to the constant v matrix. Other approaches for p-waves, like the ones
in [30, 31], factorize on shell |~p |l and associate it to the potential v. In this new approach,
this factor is absorbed in a new loop function

Gii =

∫
|~p |<Λ

d3p
|~p |2l

E −m1i −m2i − ~p 2

2µi
+ iε

, (6)

which is different from the one normally used in the chiral unitary approach [32].
This choice is necessary for the generalization of the sum rule for the couplings to any

partial wave found in [23], which holds both for resonances and bound states dynamically
generated by the interaction in coupled channels of two hadrons,∑

i

g2
i

[
dGi

dE

]
E=ER

= −1 . (7)

In Eq. (7), ER is the position of the complex pole of the scattering matrix in the second
Riemann sheet (see definition below) representing the resonance and gi is the coupling to
the channel i defined as

gigj = lim
E→ER

(E − ER)tij . (8)

Note that this definition leads to complex couplings. This means that the terms of Eq. (7)
are complex, which implies that the imaginary parts cancel and one is left with

∑
i

Re

(
g2
i

[
dGi

dE

]
E=ER

)
= −1 . (9)

Each term in Eq. (7) represents the integral of the wave function squared (not the modulus
squared as it was in the case of bound states [21]) of each component,∫

d3p (Ψi(p))
2 = −g2

i

∂GII
i

∂E
, (10)

where the superindex II stands for second Riemann sheet, but this occurs only with the
phase convention in which the wave function in momentum space is given by

Ψi(p) = gi
Θ(Λ− |~p |)p l

E −m1i −m2i − p2/2µi + iε
. (11)
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This is a most appropriate choice, in which the radial wave function is real for a bound state.
We can consider each one of the terms in Eq. (9) as a measure of the relevance, or the

weight, of a channel in the wave function of the state, but not a probability, which for open
channels is not a useful concept since it will diverge, as explained in detail in [25].

Sometimes, we only have information on hadron-hadron scattering. There can be a
genuine component different to the hadron-hadron one and, in order to take into account
its weight, Eq. (9) must be rewritten as

−
∑
i

Re

(
g2
i

[
dGi

dE

]
E=ER

)
= 1− Z , Z = Re

∫
d3p (Ψβ(p))2 , (12)

where Ψβ(p) is the genuine component in the wave function of the state, when it is omitted
from the coupled channels [33].

The left-hand side of Eq. (12) is the measure of the relevance of the hadron-hadron
component, while its diversion from unity, Z, measures the weight of something different in
the wave function.

III. APPLICATION TO THE Λ(1520) RESONANCE

As mentioned in the introduction, the method of Sec. II has already been applied to
the ρ and K∗ mesons in [23] and [24] respectively, and, for the first time, the structure of
baryonic resonances has been investigated in [25], making an estimation of the meson-baryon
component in the wave function of the baryons of the decuplet of the ∆(1232).

We apply now the method to another baryonic resonance, the Λ(1520), with quantum

numbers JP = 3
2

−
.

A. The chiral unitary model for the Λ(1520)

Our starting point is the analysis of Ref. [28]. The Λ(1520) is studied in the framework
of a coupled channels formalism including the channels πΣ(1385) and KΞ(1530) in s-waves
and K̄N and πΣ in d-waves.

The matrix containing the tree-level amplitudes can be written as

V =


C11(k0

1 + k0
1) C12(k0

1 + k0
2) γ13 q

2
3 γ14 q

2
4

C21(k0
1 + k0

2) C22(k0
2 + k0

2) 0 0
γ13 q

2
3 0 γ33 q

4
3 γ34 q

2
3 q

2
4

γ14 q
2
4 0 γ34 q

2
3 q

2
4 γ44 q

4
4

 , (13)

where qi =
√

(s− (mi −Mi)2)(s− (mi +Mi)2)/2
√
s and k0

i = (s −M2
i + m2

i )/2
√
s, with

mi and Mi the masses of the meson and baryon in channel i (i = 1, 4), respectively. The s-
and d-waves character of the transitions is taken into account by means of the dependence
of the potentials on the incoming and outgoing squared momenta. The s-wave transition
elements are obtained from the lowest order chiral Lagrangian involving the interaction of
the decuplet of baryons and the octet of pseudoscalar mesons, which gives C11 = −1/f 2,
C12 = C21 = −

√
6/4f 2 and C22 = −3/4f 2, with f = 1.15 fπ and fπ = 93 MeV. The factor

1.15 in f represents the average between fπ and fK [9].
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The scattering amplitudes are then evaluated by means of the Bethe-Salpeter equation,
which reads

T = [1− V G]−1 V . (14)

As explained in detail in [23], the method summarized in Sec. II requires a potential
independent of the momenta of the particles, which is not the case of Eq. (14). For this
reason we define a new potential

V ′ =


C11(k0

1 + k0
1) C12(k0

1 + k0
2) γ13 γ14

C21(k0
1 + k0

2) C22(k0
2 + k0

2) 0 0
γ13 0 γ33 γ34

γ14 0 γ34 γ44

 (15)

independent of the q2 factors from the d-waves and, according to Sec. II, we include this
dependence in the new loop functions, that will now have the form

G
(s)
i = 2Mi

∫
d3p

(2π)3

ωi(p) + Ei(p)

2ωi(p)Ei(p)

1

P 02 − (ωi(p) + Ei(p))2 + iε
, (16)

G
(d)
i = 2Mi

∫
d3p

(2π)3

ωi(p) + Ei(p)

2ωi(p)Ei(p)

p4

P 02 − (ωi(p) + Ei(p))2 + iε
, (17)

where ωi(p) =
√
p2 +m2

i and Ei(p) =
√
p2 +M2

i are the energies of the meson and the
baryon involved in the loop, respectively. This modification concerns only the loop function

for the d-wave channels, G
(d)
i (i = 3, 4), which now contains the factor p2l = p4. Note that

we improve on Eq. (6) by taking the relativistic propagator [6].
Note that the s-wave elements of the V ′−matrix (V ′11, V ′12, V ′21 and V ′22) still contain an

energy dependence through the k0
i factors. However this dependence is very smooth and it

will play a role in the diversion from unity in the sum rule of Eq. (12), as will be further
explained in the results section.

The loop functions in Eqs. (16) and (17) are regularized by means of two different cutoffs

in momentum space, p
(s)
max and p

(d)
max for the s- and d-waves channels respectively. These two

cutoffs, together with the coefficients γ13, γ14, γ44, γ44 and γ34 of Eq. (15), constitute the set
of free parameters in the theory.

However, this procedure presents a problem due to the different dimensions of the mag-
nitudes involved. The elements of V ′ in Eq. (15) concerning the transitions involving the
d-waves channels, after removing the dependence on the momenta, will have different di-
mension with respect to the other ones. The same happens to the loop function, that now
have different dimensions in the cases of s- or d-waves.

In order to render the dimensions homogeneous and evaluate the scattering amplitudes
by means of the Bethe-Salpeter equation (Eq. (14)), which is a matrix equation, we define

Ṽ =


C11(k0

1 + k0
1) C12(k0

1 + k0
2) γ13 q

2
3(mΛ∗) γ14 q

2
4(mΛ∗)

C21(k0
1 + k0

2) C22(k0
2 + k0

2) 0 0
γ13 q

2
3(mΛ∗) 0 γ33 q

4
3(mΛ∗) γ34 q

2
3(mΛ∗) q

2
4(mΛ∗)

γ14 q
2
4(mΛ∗) 0 γ34 q

2
3(mΛ∗) q

2
4(mΛ∗) γ44 q

4
4(mΛ∗)

 ,

(18)

with qi(mΛ∗) =
√

(m2
Λ∗ − (mi −Mi)2)(m2

Λ∗ − (mi +Mi)2)/2mΛ∗ , where we choose for mΛ∗

the Λ(1520) mass. Nevertheless this specific choice is obviously irrelevant for the final results.
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Set p
(s)
max [MeV] p

(d)
max [MeV] γ13 [MeV−3] γ14 [MeV−3] γ33 [MeV−5] γ44 [MeV−5] γ34 [MeV−5]

1) 1797.960 868.265 −0.875 · 10−7 1.169 · 10−7 −0.030 · 10−11 −0.055 · 10−11 0.003 · 10−11

2) 1427.119 865.693 3.938 · 10−7 −5.028 · 10−7 −0.748 · 10−11 −1.345 · 10−11 0.966 · 10−11

3) 1324.125 904.062 −0.695 · 10−7 0.840 · 10−7 −0.025 · 10−11 −0.033 · 10−11 −.002 · 10−11

4) 1438.782 897.246 2.799 · 10−7 −3.502 · 10−7 −0.037 · 10−11 0.048 · 10−11 −0.028 · 10−11

5) 1747.956 911.004 2.248 · 10−7 −2.873 · 10−7 0.126 · 10−11 0.162 · 10−11 −0.174 · 10−11

TABLE I: Values of the parameters of the theory resulting from a sample of five best fits
to the scattering data for the K̄N and πΣ amplitudes.

Now all the elements of the matrix Ṽ have the same dimensions. Moreover, we can now
write

G̃
(d)
i = 2Mi

∫
d3p

(2π)3

ωi(p) + Ei(p)

2ωi(p)Ei(p)

p4/q4
i (mΛ∗)

P 02 − (ωi(p) + Ei(p))2 + iε
. (19)

This new loop function for the d-waves cases has the same dimension as G
(s)
i , and now the

Bethe-Salpeter equation reads

T̃ =
1

Ṽ −1 − G̃
, (20)

with

G̃ =


G

(s)
1 0 0 0

0 G
(s)
2 0 0

0 0 G̃
(d)
3 0

0 0 0 G̃
(d)
4

 . (21)

IV. RESULTS

The scattering amplitudes derived using Eq. (20) contain, as we already mentioned, seven

free parameters: p
(s)
max, p

(d)
max, γ13, γ14, γ44, γ44 and γ34. In order to obtain their values, we

fit the model to the experimental scattering amplitudes for K̄N and πΣ in d-wave and for
I = 0 [34, 35]. The relation between the experimental and the theoretical amplitudes is
given by

T expij (
√
s) = −

√
Miqi
4π
√
s

√
Mjqj
4π
√
s
Tij(
√
s) , (22)

with i and j the channels involved in the transition.
We obtain several equivalent best fits to the experimental data and, in Tab. I the values

of the parameters obtained from a sample of five sets are listed. In Fig. 1 we show the
results of the fit for the first set of Tab. I, but, in any case, the results are consistent for
all the sets. The fact that we get approximately the same solutions with different sets of
parameters indicates that there are strong correlations between them. The final results are
also very similar independently of the set of parameters chosen (see Tab. III).

At this point, we apply the sum rule of Eq. (12) to the present case. We first need to
extrapolate the amplitudes to the complex plane and to look for the complex pole

√
s0 in

7
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FIG. 1: Fit N. 1) to the experimental amplitudes for the transitions K̄N → K̄N in Figs.
a) and c), and K̄N → πΣ in Figs. b) and d).

the second Riemann sheet. This is done by changing G
(s)
i and G

(d)
i to G

II(s)
i and G

II(d)
i in

Eqs. (16) and (19), in the channels which are open. The functions G
II(s)
i and G

II(d)
i are the

analytic continuations of the loop functions in the second Riemann sheet and are defined as

G
II(s)
i (

√
s) = G

I(s)
i +

i

2π

Mi√
s
qi ,

G
II(d)
i (

√
s) = G

I(d)
i +

i

2π

Mi√
s

q5
i

q4
i (mλ∗)

, Im(qi) > 0 ,

(23)

where G
I(s)
i and G

I(d)
i are the loop functions in the first Riemann sheet given by Eqs. (16)

and (19).
The values of the poles that we get from the five sets are listed in the first column of

Tab. II.
Now we can evaluate the couplings of the resonance to the different channels as the

residues at the pole of the amplitudes,

g2
i = lim√

s→√s0
(
√
s−
√
s0)T IIii , (24)
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Set
√
s0 [MeV] gπΣ∗ gKΞ∗ gK̄N gπΣ

1) 1518.7− i6.4 0.70− i0.01 −0.40 + i0.05 0.54− i0.06 0.43− i0.05

2) 1519.1− i6.7 0.78− i0.07 −0.35 + i0.07 −0.56 + i0.05 −0.45 + i0.03

3) 1518.3− i6.5 0.73 + i0.01 −0.31 + i0.03 0.53− i0.06 0.44− i0.06

4) 1519.9− i6.5 0.74 + i0.00 −0.34 + i0.04 0.53− i0.07 0.44− i0.04

5) 1518.5− i6.4 0.63 + i0.02 −0.35 + i0.03 −0.53 + i0.07 −0.43 + i0.05

TABLE II: Pole positions and values of the couplings of the Λ(1520) to the four different
channels of the model.

Set XπΣ∗ XKΞ∗ XK̄N XπΣ 1− Z
1) 0.084 0.002 0.494 0.214 0.79

2) 0.089 0.001 0.526 0.225 0.84

3) 0.093 0.001 0.541 0.239 0.99

4) 0.093 0.001 0.518 0.237 0.87

5) 0.072 0.002 0.531 0.237 0.84

TABLE III: Values of the weights Xi of the different channels in the wave function of the
Λ(1520) and the total 1− Z =

∑
iXi

and apply the sum rule to evaluate the contribution of a single channel to the Λ(1520):

Xi = −Re

[
g2
i

[
dGII

i (s)

d
√
s

]
√
s=
√
s0

]
. (25)

The couplings that we find using Eq. (24) are shown in Tab. II. Note that there is an
ambiguity in the sign of gK̄N and gπΣ among the different sets but the product gK̄NgπΣ has
the same sign. This is because we fit the transition K̄N → πΣ which determines the relative
sign but not the overall one referred to the πΣ∗ channel.

From these values we can obtain the relevance of the different channels in the wave
function of the Λ(1520) resonance, using Eq. (25). The values of the different weights are
shown in Tab. III.

We can now estimate the composite character of the Λ(1520) resonance since, according
to Eq. (12) ∑

i

Xi = 1− Z , (26)

where Z is a measure of the presence in the state of something different from the meson-
baryon components considered, (genuine components). We obtain for 1 − Z the values
shown in the last column of Tab. III. Taking the average of the last column we have 1−Z =
0.87±0.10, which indicate an appreciable weight of meson-baryon character in the resonance
with less than 15% weight for other genuine components. It is worth noting that numerically,
the value of Z corresponds [33] to

Z = −
∑
ij

[
giG

II
i (
√
s)
∂Vij(

√
s)

∂
√
s

GII
j (
√
s)gj

]
√
s=
√
s0

. (27)
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Therefore, the diversion of
∑

iXi from unity is due to the smooth energy dependence of the
s-wave elements of the potential (see Eq. (18)). In ref. [25] it was shown that in cases where
there is an explicit CDD pole in the potential that accounts for a genuine state, or when
one channel has been eliminated introducing an equivalent effective potential, which has a
specific energy dependence, Eq. (27) indeed accounts for the probability, or weight, of the
missing channels. Yet, it is not clear that the small magnitude obtained from the smooth
energy dependence of the Weinberg Tomozawa interaction can be attributed to missing
channels. We prefer to think that this amount can be considered as an uncertainty in the
method to determine Z. In the present case we also see that this amount is of the same
order of magnitude as the statistical uncertainties. Anyway, the fact that we get a good
fit without needing to include a CDD pole is an indication of the low weight of genuine
components in the building up of the Λ(1520) resonance.

On the other hand, we can see in Tab. II that the coupling of the resonance to the πΣ∗

channel is the largest one. Yet, in terms of weight (probability of the state if it was a bound
state) it represents only about 10%. This small probability can be deceiving, because the
relevance of each channel is usually tied to the values of the wave function at the origin,
more than to the probability. This is why in each particular process one has to find out the
relevance of each channel. For instance, in the radiative decay Λ(1520) → γΛ, γΣ0 it was
found that the πΣ, πΣ∗ channels did not contribute to the γΛ decay, but in the case of γΣ0

decay channel the πΣ∗ and πΣ (d-waves) component gave the largest contribution to the
decay width [36].

We should stress that one must be careful asserting the relevance of the channels from
the weight obtained. Indeed, for the open channels, πΣ, K̄N , the value of X corresponds
to the integral of the wave function squared, which goes as e−iqr/r for large r. While the
integral of the modulus squared of the wave function diverges, this is not the case for the
wave function squared where the oscillations of the e−2iqr factor lead to large cancellations
at large r. Yet, it is clear that for the open channels one is getting contributions to X
from larger values of r than in the bound channels, πΣ∗, KΞ∗. Yet, the wave function at
large values of r will not have relevance in most processes involving short distances. In this
sense, the couplings in the normalization that we have, or the relative values of X in the
s−waves, or d−waves, channels are the magnitudes that more fairly indicate the relevance
of the different channels, but ultimately it is the specific dynamics of a given process that
will determine the relevance of the channels, as seen in [36].

V. SUMMARY AND CONCLUSIONS

We have applied the compositeness condition for resonances in higher partial waves to
the case of the Λ(1520) resonance. The aim was to quantify the weight of the meson-baryon
components (s-waves πΣ∗, KΞ∗ and d-waves K̄N , πΣ) into the Λ(1520) wave function. The
meson-baryon scattering amplitudes are obtained implementing the techniques of the chiral
unitary approach where some unknown parameters (five d-wave coefficients and two cutoffs)
are fitted to K̄N and πΣ experimental scattering data.

The momentum dependence coming from the d-wave channels are incorporated into the
loop function leaving a smooth energy dependent potential for which the techniques devel-
oped in ref. [23] can be applied. From the knowledge of the loop functions and the couplings
of the scattering amplitudes to the different channels, obtained from the residues of the
amplitudes at the pole positions, the addends in the sum rule of Eq. (7), and the total sum

10



rule itself, can be evaluated which are a measure of the weight of the different channels into
the Λ(1520) wave function.

While the largest coupling obtained is to πΣ∗ (see Tab. II), the largest weight Xi is to
K̄N (see Tab. III). This is not contradictory since they represent different concepts. The
coupling (actually the product of the coupling times the loop function, giGi) accounts for
the wave function at the origin [23] for s−waves while, as already explained, Xi = −gi ∂Gi

∂E
is a measure of the probability to find that channel.

We also explained that the large weight obtained for the open channels was a consequence
of the contribution to the integral of the wave function squared from larger values of r than
for the bound channels, and not a measure of the contribution of the channel in different
processes, most of which are sensible to short distances. The values of the couplings and
the specific dynamics of those processes are what finally determine the relevance of each of
the channels.
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