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Abstract
After discussing the OZI suppression of one light meson exchange in the interaction of D∗D̄∗ with

isospin I=1, we study the contribution of two pion exchange to the interaction and the exchange

of a heavy vectors, J/ψ for diagonal transitions D∗D̄∗ and D∗ for transitions of D∗D̄∗ to J/ψ ρ.

We find these latter mechanisms weak, but enough to barely bind the system in J=2 with a mass

around 4000 MeV, while the effect of the two pion exchange is a net attraction but weaker than

that from heavy vector exchange. We discuss this state and try to relate it to the Zc(4025) state,

above the D∗D̄∗ threshold, claimed in an experiment at BES from an enhancement of the D∗D̄∗

distribution close to threshold. Together with the results from a recent reanalysis of the BES

experiment showing that it is compatible with a J=2 state below threshold around 3990 MeV, we

conclude that the BES experiment could be showing the existence of the state that we find in our

approach.

PACS numbers: 11.80.Gw, 12.38.Gc, 12.39.Fe, 13.75.Lb
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I. INTRODUCTION

The charmonium spectrum of cc̄ states has been enriched with a plethora of new states
called X,Y ,Z states, which do not fit in the expected spectrum of ordinary cc̄ quark states
[1–4]. The theory has followed trend with also a rich offer of possible interpretations, like
tetraquarks, or molecular states, and more exotic states [5]. One of the last surprises has
been the finding of Z states with isospin I = 1. In the hidden charm sector a state around
4020 MeV, called Zc(4020) and a width of about 8 MeV has been reported in [6], in the
e+e− → π+π−hc reaction, looking at the invariant mass of π±hc. Another BES experiment
has found a peak in the (D∗D̄∗)± spectrum close to threshold, which was interpreted in terms
of a new resonance with mass around 4025 MeV and width about 25 MeV [7]. It is unclear
whether these two states can be the same, and the quantum numbers are in any case not
well determined. The peak seen in the (D∗D̄∗)± spectrum is appealing since in [8] the study
of the D∗D̄∗ interaction gave rise to a state with I = 1 in spin J = 2. The state appeared
around 3920 MeV, with uncertainties. Actually, we will claim here that it should be much
less bound, but that most probably it is related to the peak seen in the (D∗D̄∗)± in [7]. The
threshold for (D∗D̄∗)± is 4017 MeV, so a bound state of D∗D̄∗ should have a smaller energy,
while the energy of the state is claimed at 4025 MeV in [7]. Yet, the interpretation of peaks
around threshold is always problematic and a source of confusion. Indeed, most often an
enhancement of the invariant mass at threshold is an indication of a bound state or resonance
below threshold. There are multiple examples of it. In a similar reaction, e+e → J/ψDD̄
[9], a bump close to the threshold in the DD̄ invariant mass distribution was reported by the
Belle collaboration, which was tentatively interpreted as a new resonance. This peak was,
however, interpreted in Ref. [10] in terms of a bound DD̄ molecular state, called X(3700),
which had been predicted in Ref. [11] and later on has also been reported in other works
[12–17]. In a similar way, in Ref. [18], a peak seen in the φω threshold in the J/ψ → γφω
reaction [19] was better interpreted as a manifestation of the f0(1710) resonance, below the
φω threshold, which couples strongly to φω [20]. More recently a bump close to threshold
in the K0K̄0 invariant mass distribution, seen in the J/ψ → ηK0K̄0 decay in Ref. [21], is
interpreted in [22] as a signal of the formation of an h1 resonance, predicted in Ref. [20],
which couples mostly to the K∗K̄∗.

In the same direction as in the previous works, in [23] the experiment of [7] was reanalyzed
and the enhancement in the D∗D̄∗ invariant mass distribution was found compatible with
a state with J = 2, mass around 3990 MeV and width around 160 MeV, although fits
with other solutions were also found acceptable. Yet, resonances with mass bigger than
the D∗D̄∗ mass were discouraged based on the difficulty to have single channel resonances
with energy above threshold. Indeed, it was shown in [24] that an energy independent
potential, smooth in momentum space, could not generate a resonance above the mass of
the interacting particles. In this sense, any energy below threshold is preferred, and the
J = 2 solution with mass around 3990 was proposed as a good candidate to explain the
experimental peak. Another reason in favour of this interpretation was that if the state were
a JP = 1+ produced in S-wave, as assumed in the experimental work [7], it can easily decay
into πJ/ψ. This decay channel is the same of the Zc(3900) [25]. However, while a peak
is clearly visible in the πJ/ψ invariant mass distribution for the Zc(3900), no peak is seen
around 4025 MeV (see Fig. 4 of Ref. [25]).

In the present work we go back to [8] and perform some corrections to update the results
of the local hidden gauge to the results of the heavy quark spin symmetry [26]. On the
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other hand we also show how for I = 1, the exchange of light qq̄ states is OZI forbidden,
which makes the exchange of light vectors and pseudoscalars cancel when equal masses are
taken for them separately, and, because of that, gives a small contribution when real masses
are used. In view of this we explore the exchange of two pions, both with and without
interaction. The exchange of vector mesons is reduced to the exchange of J/ψ in the D∗D̄∗

diagonal terms, or D∗ in the D∗D̄∗ → J/ψ ρ transition, which makes the potential small,
in spite of which we still find it bigger than that of the two pion exchange. Altogether we
find a state of the D∗D̄∗ in I = 1, J = 2, close to threshold, which, together with the
findings of [23], offers a natural interpretation for the peak observed in [7]. This molecular
interpretation would also be supported by QCD sum rules calculations, [27], [28], [29],[30],
although the uncertainties between ±105 MeV and ±280 MeV in the binding of these works
offers only a weak support to our more precise determination of the mass. At the same time,
QCD sum rules disfavor the interpretation of the Zc(4025) as a possible diquark-antidiquark
type vector tetraquark states [31]. A molecular interpretation for this state is also assumed
in [32], where the coupling to the D∗D̄∗ components is evaluated by means of the Weinberg
compositeness condition [33] and this picture is used to evaluate various strong decays widths
of the resonance. The growing information around the claimed Zc(4025), together with the
present work, comes to support a D∗D̄∗ molecular state below threshold as an interpretation
of the (D∗D̄∗)± peak seen in [7].

In the present paper we do a thorough investigation of sources of interaction for D∗D̄∗,
beginning with the vector exchange, which involves the exchange of heavy vectors. Then we
evaluate the interaction from one meson exchange (π, η, η′) , followed by two pion exchange
by a different source of interaction, also involving the π, η, η′ mesons. We show that these
mechanisms are OZI suppressed and because of this we proceed to evaluate contributions
from two pion exchange which are not OZI forbidden. Then we evaluate the crossed two
pion exchange and also the exchange of two pions which interact among themselves giving
rise to a “σ” exchange. We show that even if small, the vector exchange is still the leading
source of interaction and obtain a barely bound D∗D̄∗ state close to threshold. We discuss
uncertainties in the results and the relationship of the result obtained with the peak observed
in [7].

II. FORMALISM

We want to study states of I = 1. The first consideration is that one light meson exchange
is OZI forbidden. To realize that, we look at the D∗+D̄∗0 interaction diagram in Fig. 1 and
we see that a dd̄ state exchange is forced to be converted into a uū state. In terms of physical
mesons, that would mean that the ρ, ω cancel if we take equal masses (as it is indeed the
case in the hidden gauge approach [8]) and π, η, η′ also cancel if equal masses are taken
or for large momenta bigger than the mass of the mesons. We shall show this in detail in
subsection II B.

In view of this cancellation, we will evaluate the contribution of two pion exchange in the
next sections, where the OZI restriction no longer holds. Yet we begin by evaluating the
contribution of vector exchange that will be the largest one at the end.
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FIG. 1. Diagrammatic representation of D∗+D̄∗0 interaction exchanging a qq̄ and showing the OZI

suppression.

A. Vector exchange

We follow the approach of Ref. [8], a study of the vector-vector interaction in the frame-
work of hidden gauge formalism for the channels with quantum numbers C = 0 and S = 0.
In this paper possible vector-vector states are investigated using a unitary approach in cou-
pled channels.

The starting point is a Lagrangian coming from the hidden gauge formalism describing
the interaction of vector mesons among themselves,

L = −1

4
〈VµνV µν〉 , (1)

where the symbol 〈 〉 stands for the trace of SU(4), Vµν is defined as

Vµν = ∂µVν − ∂νVµ − ig[Vµ, Vν ] (2)

and Vµ is given by

Vµ =


ω√
2

+ ρ0√
2

ρ+ K∗+ D̄∗0

ρ− ω√
2
− ρ0√

2
K∗0 D∗−

K∗− K̄∗0 φ D∗−s
D∗0 D∗+ D∗+s J/ψ


µ

. (3)

The coupling constant is g = MV /2fπ, with fπ = 93 MeV the pion decay constant and
MV ' 800 MeV.

From the Lagrangian in Eq. (1), two different types of interaction can be derived: a
contact interaction, coming from the [Vµ, Vν ] term,

L(c) =
g2

2
〈VµVνV µV ν − VνVµV µV ν〉 , (4)

and the three-vector vertex

L(3V ) = ig〈(∂µVν − ∂νVµ)V µV ν〉 . (5)

The Lagrangian L(3V ) produces the V V → V V interaction by means of the exchange of one
vector meson.

The channels we are interested in are the ones with quantum numbers I = 1, charm C = 0
and strangeness S = 0, which are D∗D̄∗, K∗K̄∗, ρρ, ρω, ρJ/ψ, ρφ. From the Lagrangians in
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Eqs. (4) and (5), the amplitudes that will be used as the kernel to solve the Bethe-Salpeter
equation can be evaluated. The reader can find all the details of the calculation in Ref. [8].

Here, we will only consider the case with J = 2 since this is the only spin channel where
the interaction gives an attractive potential for D∗D̄∗ → D∗D̄∗. In [8], in addition to the
ρJ/ψ channel, which is the most important after the D∗D̄∗, the ρρ, ρω, ρφ light vector
channels were also considered. However, the thresholds of these channels are situated at
energies much smaller than the mass of the state we are looking for, such that the results
would be only slightly affected by their inclusion.

The ρJ/ψ channel plays an important role in this problem. Indeed, the transition po-
tential of D∗D̄∗ → ρJ/ψ has a strength almost four times bigger than the D∗D̄∗ → D∗D̄∗

transition.
The expressions of these potentials are reported in the following equations, including both

the contact and the vector-exchange term:

tD∗D̄∗→D∗D̄∗ = −g2
D + g2

D

(2m2
ωm

2
ρ +m2

J/ψ(−m2
ω +m2

ρ))(4m
2
D∗ − 3s)

4m2
J/ψm

2
ωm

2
ρ

, (6)

tD∗D̄∗→ρJ/ψ = −2ggD + ggD
2m2

D∗ +m2
J/ψ +m2

ρ − 3s

m2
D∗

, (7)

where mρ, mω and mJ/ψ are the masses of the ρ, ω and J/ψ mesons respectively. The
constant gD = mD∗/(2fD), which was used in [8], is analogous to the coupling g for light
mesons, with fD = 206/

√
2 = 145.66 MeV. However, as we discuss below, we can use

constrains of heavy quark spin symmetry to provide a more accurate coupling.
The exercise to relate the D∗Dπ vertex to the K∗Kπ in [34] is repeated in that work

for the Weinberg-Tomozawa term that we are considering now, based on the exchange of
vector mesons. The D∗D̄∗ → D∗D̄∗ is now mediated by J/ψ exchange (cc̄) in analogy to
the φ exchange in K∗K̄∗ → K∗K̄∗. The rules of heavy quark spin symmetry, HQSS [26],
can be obtained from the impulse approximation at the quark level assuming the s and c as
spectators. Then, given the (2ω)−1/2 normalization factors of the fields at the meson level,
there is a factor ωD∗/ωK∗ between the D∗D∗J/ψ and the K∗K∗φ vertices. Since the K∗K∗φ
vertex is proportional to ωK∗ , the D∗D∗J/ψ will have the same proportionality coefficient
multiplied by ωD∗ , which is what the straight application of SU(4) provides in this case.
Note that the vector exchange term in Eq. (6) at the D∗D̄∗ threshold, for simplicity, gives,

with mω = mρ, g
2
D
m2
D∗

m2
J/ψ

. There we see explicitly the energy of the mD∗ from the two vertices

and m2
J/ψ from the J/ψ propagator. According with the previous argument this should be

g2 m
2
D∗

m2
J/ψ

. We, thus, use here the normal g coupling which is in agreement with the heavy

quark spin symmetry . For consistency, we also take g2 in the contact term, which is smaller
than the J/ψ exchange one, and in the transition potential of Eq. (7). The use of the new
coupling will have as a consequence the reduction of the binding of the I = 1 state with
respect to the one found in [8].

The two potentials are plotted in Fig. 2 as functions of the centre of mass energy
√
s.

The expressions of Eqs. (6) and (7) provide the potential V that must be used to solve the
Bethe-Salpeter equation in coupled channels

T = (1− V G)−1V , (8)
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FIG. 2. Potentials tD∗D̄∗→D∗D̄∗ (a) and tD∗D̄∗→ρJ/ψ (b) as functions of the center of mass energy√
s.

where V is a 2 × 2 matrix with elements V11 = tD∗D̄∗→D∗D̄∗ , V12 = V21 = tD∗D̄∗→ρJ/ψ, and
V22 = 0. The matrix G is the 2× 2 diagonal loop function matrix whose elements are given
by

Gi = i

∫
d4q

(2π)4

1

q2 −m2
1 + iε

1

(q − P )2 −m2
2 + iε

, (9)

with m1 and m2 the masses of the two mesons involved in the loop in the channel i and P
the total four-momentum of the mesons.

After the integration in dq0, Eq. (9) becomes

Gi =

∫
d3q

(2π)3

ω1 + ω2

2ω1ω2

1

(P 0)2 − (ω1 + ω2)2 + iε
, (10)

which is regularized by means of a cutoff in the three-momentum qmax.
The function Gi can be also written in dimensional regularization as

Gi =
1

16π2
(αi + log

m2
1

µ2
+
m2

2 −m2
1 + s

2s
log

m2
2

m2
1

+
p√
s

(log
s−m2

2 +m2
1 + 2p

√
s

−s+m2
2 −m2

1 + 2p
√
s

+ log
s+m2

2 −m2
1 + 2p

√
s

−s−m2
2 +m2

1 + 2p
√
s

)) ,

(11)

where p is the three-momentum of the mesons in the centre of mass

p =

√
(s− (m1 +m2)2)(s− (m1 −m2)2)

2
√
s

. (12)

B. The D∗D̄∗ interaction via light pseudoscalar exchange

The pseudoscalar exchange between vector mesons, shown in Fig. 3, proceeds via the
anomalous vector-vector-pseudoscalar (V V P ) coupling,

L =
G√

2
εµναβ〈∂µVν∂αVβP 〉 , (13)
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D∗+ D̄∗0

D̄∗0D∗+

π, η, η′

FIG. 3. Diagrammatic representation of D∗D̄∗ interaction via light pseudoscalar exchange.

where G = 3M2
V /16π2f 3

π , with MV ' 800 MeV, fπ = 93 MeV. The matrix V is given by Eq.
(3), while P contains the 15-plet of the pseudoscalar mesons written in the physical basis in
which η, η′ mixing is considered [35],

P =


η√
3

+ η′√
6

+ π0
√

2
π+ K+ D̄0

π− η√
3

+ η′√
6
− π0
√

2
K0 D−

K− K̄0 − η√
3

+
√

2
3
η′ D−s

D0 D+ D+
s ηc

 . (14)

It is easy to evaluate the contribution of the pseudoscalar exchange and, close to D∗D̄∗

threshold, we find

t ' −G
2

2
m2
D∗ ~q · (~ε1 × ~ε3) ~q · (~ε2 × ~ε4)

(
− 1

2

1

q2 −m2
π

+
1

3

1

q2 −m2
η

+
1

6

1

q2 −m2
η′

)
, (15)

where ~ε1, ~ε2 stand for the initial polarizations of the vector mesons, ~ε1, ~ε3 for the final ones
and ~q is the momentum transfer.

Note again that t in Eq. (15) is already proportional to ω2
D∗ (m2

D∗ at threshold) and the
factor proportional to ω∗D in each vertex demanded in HQSS is automatically included in
Eq. (15) as it was also the case in the Weinberg-Tomozawa terms.

Since we are concerned in s-waves, we can take ~qi~qj → 1
3
~q 2δij, which leads to the spin

structure
(~ε1 × ~ε3)(~ε2 × ~ε4) = εiεiεjεj − εiεjεjεi , (16)

where the order of the polarization vectors in the right-hand side of Eq. (16) is 1, 2, 3 and
4. By recalling the form of the spin projector operators [36],

P(0) =
1

3
εiεiεjεj ,

P(1) =
1

2
(εiεjεiεj − εiεjεjεi) ,

P(2) =
1

2
(εiεjεiεj + εiεjεjεi)−

1

3
εiεiεjεj ,

(17)
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we see that
(~ε1 × ~ε3)(~ε2 × ~ε4) = 2P(0) + P(1) − P(2) . (18)

We are interested in the spin J = 2 component and thus we have

t(2) ' G2

2
m2
D∗ ~q

2
(1

2

1

~q 2 +m2
π

− 1

3

1

~q 2 +m2
η

− 1

6

1

~q 2 +m2
η′

)( Λ2

Λ2 + ~q 2

)
, (19)

where we have taken into account that q0 = 0 and we have introduced a customary conver-
gence form factor Λ2

Λ2+~q 2 , with Λ = 1000 MeV [37].

In Eq. (19) we observe the explicit cancellation of the exchange of π, η, η′ in the limit
of equal masses. In Fig. 4 we plot t(2) as a function of ~q in order to compare it with the
vector exchange potential for the D∗D̄∗ → ρJ/ψ transition, shown in Fig. 5. In Fig. 4 we
can see explicitly the cancellation between π, η and η′. On the other hand, the amplitude
is proportional to ~q 2 and this is a very small quantity around threshold, where the states
reported here are found. But this argument is only relevant for the tree level amplitude and
in the solution of the Bethe-Salpeter equation we shall have loops which involve larger ~q.
The small values of t(2) at small ~q, where one pion exchange is clearly dominant, and the
cancellations at large values of ~q, render this term small in all the range of ~q. The results of
Fig. 4 are shown for an energy of D∗D̄∗ at threshold and do not change appreciably in the
range of energies where we are concerned.

According to [38] the vector exchange potential, together with the cutoff in G, can be
reinterpreted as a separable potential of the type V (~p, ~p ′) = V θ(pmax − |~p |)θ(pmax − |~p ′|).
Although this is not a function of ~q = ~p− ~p ′, as in Eq. (19), if we take ~p = 0 and vary ~p ′

in a loop, then ~p ′ behaves as ~q and this allows a fair comparison Figs. 4 and 5.
We can see that the strength of the D∗D̄∗ → ρ J/ψ transition due to the vector exchange

is much larger than the one pion exchange potential in all the range of q. If we integrate∫
d3qV (q) up to q = 1000 MeV in both cases, we find the integral ten times larger in the

D∗D̄∗ → ρ J/ψ transition case, and we neglect the contribution of one meson exchange in
our calculation.

500 1000 1500 2000
q@MeVD0

10

20

30

40

t

FIG. 4. Potential t(2) for the exchange of one light meson (π plus η plus η′, thick line), one pion

(dashed line) and π plus η (thin line) as a function of the momentum transferred in the process.
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FIG. 5. tD∗D̄∗→ρJ/ψ as a function of the momentum transferred in the process ~q (with ~p = 0).

C. Iterated two meson exchange

D∗+

D∗+

D+

π, η, η′

π, η, η′

D̄∗0

D̄∗0

D̄0

FIG. 6. Iterated pseudocalar exchange with intermediate DD̄ states.

In the former section we saw that the exchange of π, η, η′ between the vectors gave rise to
strong cancellations and was small compared to the typical contribution of vector exchange.

Here we show that there is a different kind of vector exchange involving this time the
V PP vertex, instead of the anomalous V V P one that we have studied before. However, the
V V → V V transition needs a box diagram to accommodate the intermediate PP states.
This is depicted in Fig. 6.
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One needs now the V PP Lagrangian given by

LPPV = −ig 〈V µ[P, ∂µP ]〉 , (20)

where the constant g is the strong coupling of the D∗ meson to Dπ. With the vector at
rest, as we consider for the evaluation, Eq. (20) provides vertices of the type g~ε · ~p (since
ε0 = 0). We use for g the theoretical value obtained within the heavy quark spin symmetry
approach, which is given by the SU(3) value of g = mV

2f
, multiplied by mD∗/mK∗ [34]. Note

that in this case the vertex is not proportional to ωD∗ and hence the factor ωD∗/ωK∗ (equal
to mD∗/mK∗ at threshold) remains. This gives the effective value of g̃ = 9.40. With this
value, we obtain 71 KeV for the width of D∗+ → D0π+ compared to the experimental value
(65± 15) KeV of [39].

The amplitude for the box diagram of Fig. 6 is given by

t = ig̃4

∫
d4p

(2π)4
~ε1 · 2~p~ε2 · 2~p~ε3 · 2~p~ε4 · 2~p

(
− 1

2

1

~p 2 −m2
π + iε

+
1

3

1

~p 2 −m2
η + iε

+
1

6

1

~p 2 −m2
η′ + iε

)2 1

(2ED(~p ))2

1

mD∗ − p0 − ED(~p ) + iε

1

mD∗ − p0 − ED(~p ) + iε
,(21)

where ED(~p ) =
√
~p 2 +m2

D is the energy of the D meson.
By symmetry reasons we can substitute

pipjpkpm →
1

15
(δijδkm + δikδjm + δimδjk) ~p

4 , (22)

which renders the spin combination into

1

15
(ε1iε2iε3mε4m + ε1iε2jε3iε4i + ε1iε2jε3jε4i) . (23)

Taking into account the spin projections of Eqs. (17), the combination of spin that we have
in Eq. (23) is

1

15
(5P(0) + 2P(2)) . (24)

Then, performing analytically the p0 integration in Eq. (21), we obtain

t̃ =
1

4
tππ +

1

9
tηη +

1

36
tη′η′ −

1

3
tπη −

1

6
tπη′ +

1

9
tηη′ , (25)

where

t12 = g̃4SJ

∫
d3p

(2π)3
~p 4
( Λ2

Λ2 + ~p 2

)4 1

mD∗ + ω1 − ED(~p)± iε
1

mD∗ + ω2 − ED(~p)± iε

× 1

(ED(~p ))2

( 1

2ω1ω2

1

ω1 + ω2

Num

mD∗ − ω1 − ED(~p ) + iε

1

mD∗ − ω2 − ED(~p ) + iε

+
1

ED(~p )−mD∗ + ω1 + iε

1

ED(~p )−mD∗ + ω2 + iε

1

2mD∗ − 2ED(~p ) + iε

)
, (26)

where the subscript 12 stands for the two light mesons exchanged, ω1 and ω2 are their
energies,

SJ =


4
3

J = 0

8
15

J = 2 ,

(27)
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and

Num = −(ω2
1 + ω2

2 + ω1ω2) + (mD∗ − ED(~p ))2 . (28)

The former calculation has been done at threshold. The momentum transfer dependence
on ~q can be obtained easily from Eq. (26) by taking for the initial and final states four-
momenta p1 = (p0

1, ~q/2), p2 = (p0
2,−~q/2), p3 = (p0

3,−~q/2) and p4 = (p0
4, ~q/2).

In Fig. 7 we show the results, for J = 2, of t̃ compared with tππ
4

and tππ
4

+ tηη
9
− tπη

3
. There

is a cancellation between π, η and η′ as in the anomalous exchange, which is exact in the
limit of equal masses for the mesons. Once again, we can see that the contribution is much
smaller than the typical term due to vector exchange.

500 1000 1500 2000
q@MeVD

-1.0

-0.5

0.0

0.5

t

FIG. 7. Amplitudes t̃ (thick line), accounting for π plus η plus η′ exchange, tππ
4 (dashed line),

accounting for only pion exchange, and tππ
4 +

tηη
9 −

tπη
3 (thin line), accounting for π plus η exchange

as functions of the transferred momentum.

D. The D∗D̄∗ interaction by means of σ exchange

The nucleon-nucleon interaction calls for an intermediate range attraction which was
traditionally taken into account by means of “σ” exchange. With ups and downs the σ
resonance appears now in the PDG [40] as the f0(500). This resonance appears unavoidably
in a study of the ππ interaction with a unitary approach using as input the kernel from
the chiral Lagrangians [41–43]. The analysis of ππ data with Roy equations allows one to
establish the mass and width of this resonance with some precision [44, 45], compatible with
the prediction of the chiral unitary approach, with mass around 460 MeV and half width
around 280 MeV. From this point of view it was interesting to provide a microscopic picture
for σ exchange, based on the nature of the σ resonance stemming from the interaction of two
pions. This job was done in [37] considering the exchange of two correlated (interacting)
pions for the NN interaction. In this section we extend these ideas to the interaction of
D∗D̄∗.

We have four diagrams contributing to this process and they are shown in Fig. 8. Each
one of them contains four PPV vertices involving a D∗ (D̄∗) vector meson and the two
pseudoscalar, the pion and the D (D̄) meson. Their evaluation is easily done with the local
hidden gauge Lagrangians [46–50], which are very useful when dealing with vector mesons.
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The grey circle in the crossing of the pion lines indicates that we have there the ππ scattering
amplitude.
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FIG. 8. Lowest order ππ interaction in the I = 1 channel for D∗D̄∗ → D∗D̄∗.

The Lagrangian we need in order to evaluate the amplitudes of the diagrams in Fig. 8 is
the one in Eq. 20. Using it we can write the vertices as

− itPPV = −ig C(pD + pπ)µε
µ
V , (29)

where pD and pπ are the four-momenta of the D meson and of the pion, respectively, and
εV is the polarization vector of the D∗ meson in the vertex.

The amplitude of the process can be written as

− itσ = −i V 2(
1

4
tπ0π0→π0π0 +

1

2
tπ0π0→π+π− +

1

2
tπ+π−→π0π0 + tπ+π−→π+π−) , (30)

where the factor V is the contribution to the diagram of the triangular loops, which we shall
evaluate later. Note that, in order to write the amplitude, we must assume two initial pions
and two final pions all pointing to the right in the diagrams of Fig. 8, hence providing the
amplitude of Eq. (30).

Considering the unitary normalization of the ππ states [41],

|ππ, I = 0〉 = − 1√
6
|π0π0 + π+π− + π−π+〉 , (31)

and writing explicitly the isoscalar amplitude

tI=0
ππ→ππ =

1

6
(tπ0π0→π0π0 + 2tπ0π0→π+π− + 2tπ+π−→π0π0 + 4tπ+π−→π+π−) , (32)

we can rewrite Eq. (30) as

− itσ = −i V 2 3

2
tI=0
ππ→ππ . (33)
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Since the pions in the diagrams in Fig 8 are off-shell, we need to use the off shell t-matrix
obtained from the lowest order meson-meson Lagrangian [41]

tI=0
ππ→ππ = − 1

9f 2

(
9s+

15m2
π

2
− 3

∑
i

p2
i

)
, (34)

with s the Mandelstam variable and mπ and pi the mass and momenta of the pions, respec-
tively. As done in Ref. [37], we can obtain the on-shell amplitude simply putting p2

i = m2
π

and this allow us to rewrite Eq. (34) as

tI=0
ππ→ππ = tI=0,OS

ππ→ππ +
1

3f 2

∑
i

(p2
i −m2

π) , (35)

where

tI=0,OS
ππ→ππ = − 1

f 2
(s− m2

π

2
) . (36)

Following the approach of Ref. [37], it can be shown that the off-shell part cancels exactly
with other diagrams at the same order in the chiral counting. Thus, at lowest order, we can
write

tσ = V 2 3

2

1

f 2
(s− m2

π

2
) . (37)

In order to apply the unitary Bethe-Salpeter approach to the scalar mesons amplitude, we
need to sum the set of diagrams in Fig. 9. This is easily done substituting the on-shell
meson-meson amplitude of Eq. (36) by [41]

tI=0
ππ→ππ = − 1

f 2

s− m2
π

2

1 + 1
f2

(s− m2
π

2
)G(s)

, (38)

where G(s) is the two pions loop function, conveniently regularized [37],

G(s) = i

∫
d4q

(2π)4

1

q2 −m2
π + iε

1

(P − q)2 −m2
π + iε

, (39)

with P the total momentum of the two pion system and P 2 = s.
We need, now, to evaluate the factor V that appears in Eq. (37), related, as already

mentioned, to the triangular loop, which is shown in Fig. 10. For simplicity, we use the
Breit reference frame. This means that

p1 ≡ (p0
1, ~q/2) ,

p′1 ≡ (p′ 0
1 ,−~q/2) ,

p ≡ (p0, ~p ) ,

(40)

where ~q is the three-momentum transferred in the process. Since there is no energy exchange,
s = −~q 2. It is also useful to define the variable q ≡ (0, ~q ).

Thus, by means of Eq. (29) and keeping in mind that we already factorized outside V
the coefficients C, we can write the expression of V as

V = ig̃2

∫
d4p

(2π)4
εµ(2p− p1)µε′ν(2p− p′1)ν

1

p2 −m2
D + iε

× 1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

,

(41)
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+ + + ...

FIG. 9. DD̄∗ interaction when the ππ scattering matrix is summed up to all orders in the unitary

approach.

p′1

p

p1

p− p′1

p− p1

FIG. 10. Two pion exchange triangle vertex.

with mD the mass of the D meson. Note that, as in section II C, we are using the coupling
g̃ that accounts for the factor mD∗/mK∗ of the HQSS.

The integral in Eq. (41) is logarithmically divergent. As in Ref. [37], the regularization
is accomplished by means of a cutoff in the space of intermediate states (pmax = 2 GeV)
and a form factor. In order to keep the integration in p0 simple, we use the product of static
form factors

F = F1(~p+
~q

2
)F2(~p− ~q

2
) =

Λ2

Λ2 + (~p+ ~q
2
)2

Λ2

Λ2 + (~p− ~q
2
)2
, (42)

with Λ = 1 GeV.
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Since εµ p
µ
1 = 0 and ε′ν p

′ν
1 = 0, Eq. (41) can be rewritten as

V = 4ig̃2

∫
d4p

(2π)4
εµ p

µε′ν p
ν 1

p2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

F

(p− p′1)2 −m2
π + iε

. (43)

The integral in Eq. (43) is symmetric with respect to p1 and p′1 and this allows us to derive
the structure of the result of the integration, which will be of the type

V = εµε
′
ν(ag

µν + b(pµ1p
ν
1 + p′µ1 p

′ν
1 ) + c(pµ1p

′ν
1 + p′µ1 p

ν
1)) . (44)

In the last expression, due to the Lorentz condition, only the terms agµν and cp′µ1 p
ν
1

survive but we need the entire structure to evaluate them. This is done taking the trace of
Eq. (43) and multiplying the equation by (p1µp1ν + p′1µp

′
1ν) and (p1µp

′
1ν + p′1µp1ν), in order

to obtain a system of three equations. Solving the system, we find the expressions of the
three coefficients in Eq. (44) but, as we already said, we are only interested in

a =
−Y m2

D∗ + Z(p1p
′
1) +X(m4

D∗ − (p1p
′
1)2)

2(m4
D∗ − (p1p′1)2)

,

c =
−3Y m2

D∗(p1p
′
1) +X(m4

D∗ − (p1p
′
1)2) + Z(m4

D∗ + 2(p1p
′
1)2)

2(m4
D∗ − (p1p′1)2)2

,

(45)

where

X = 4g̃2I1 + 4g̃2m2
DI2 ,

Y = 8g̃2p0 2
1 I1 + 8g̃2I3 ,

Z = 8g̃2p0 2
1 I1 + 8g̃2I4 .

(46)

The four integrals in the equations above, I1, I2, I3 and I4, have the following expressions:

I1 =

∫
d4p

(2π)4

1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

F ,

I2 =

∫
d4p

(2π)4

1

p2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

F ,

I3 =

∫
d4p

(2π)4

(~p 2 +m2
D)p0 2

1 + (~p ~q
2
)2

p2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

F ,

I4 =

∫
d4p

(2π)4

(~p 2 +m2
D)p0 2

1 − (~p ~q
2
)2

p2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

F .

(47)

After performing the integration in dp0, which can be done analytically using Cauchy’s
theorem, we obtain

I1 =

∫
d3p

(2π)3

ω1 + ω2

2ω1ω2

1

−~q 2 − (ω1 + ω2)2
F ,

I2 =

∫
d3p

(2π)3

1

2ED

1

2ω1

1

ω2

1

ω1 + ω2

ω1 + ω2 + ED −mD∗

ED + ω1 −mD∗ − iε
1

ED + ω2 −mD∗ − iε
F ,

I3 =

∫
d3p

(2π)3

1

2ED

1

2ω1

1

ω2

1

ω1 + ω2

ω1 + ω2 + ED −mD∗

ED + ω1 −mD∗ − iε
(~p 2 +m2

D)p0 2
1 + (~p ~q

2
)2

ED + ω2 −mD∗ − iε
F ,

I4 =

∫
d3p

(2π)3

1

2ED

1

2ω1

1

ω2

1

ω1 + ω2

ω1 + ω2 + ED −mD∗

ED + ω1 −mD∗ − iε
(~p 2 +m2

D)p0 2
1 − (~p ~q

2
)2

ED + ω2 −mD∗ − iε
F ,

(48)
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where ω1 =
√

(~p+ ~q/2)2 +m2
π, ω2 =

√
(~p− ~q/2)2 +m2

π and ED =
√
~p 2 +m2

D are the
energies of the two pions and of the D meson involved in the loop, respectively, and mD∗

is the mass of the D̄∗ meson. Since the mass of the D meson is so large, we have taken
the positive energy component of the propagator [(p0 − ED)2ED]−1, which simplifies the
integration.

We can now go back to the D∗D̄∗ potential in momentum space, whose final expression,
according to Eqs. (33) and (38), is given by

tσ(~q) = V 2 3

2

1

f 2

~q 2 + m2
π

2

1−G(−~q 2) 1
f2

(~q 2 + m2
π

2
)
, (49)

with
V = εµε

′
ν(ag

µν + cp′µ1 p
ν
1) (50)

and a and c derived using Eqs. (45), (46) and (48).
Since we assume small initial momenta ~p1 and ~p1

′ of the vectors compared to the vector
mass, we can take ε0 ≡ 0 and only the aεε′ combination remains. The other vertex will
provide a similar structure. Hence, we have the combination

ε
(1)
i ε

(2)
j ε

(3)
i ε

(4)
j , (51)

with 1 + 2→ 3 + 4.
ε

(1)
i ε

(2)
j ε

(3)
i ε

(4)
j ≡ P(0) + P(1) + P(2) . (52)

The strength of tσ(~q ), removing gµνεµεν , gives already the strength of the two pion exchange
potential in J = 2. The potential tσ as a function of the transferred momentum ~q is plotted
in Fig. 11. Once again we see that this contribution is negligible compared to the vector
exchange of Fig. 5.
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FIG. 11. Potential tσ as a function of the momentum transferred in the process.

E. Uncorrelated crossed two pion exchange

Now we want to study theD∗D̄∗ interaction when the pions exchanged are not interacting.
In this case, only the diagrams a) and d) of Fig. 8 contribute to the process. This means

16



that the isospin factor, given by the different vertices involved, will be 5
4
, and we do not

have the ππ amplitude (see Eq. (34)). Note that we take only the crossed diagrams. The
iterated one π exchange (together with η and η′), which we saw was OZI suppressed, was
already evaluated in section II C and we do not consider it.

Recalling the expression of the vertices given in Eq. (29), and choosing the momenta
assignment as shown in Fig. 12, we can directly write the amplitude of the process as

t =
5

4
ig̃4

∫
d4p

(2π)4
εµ(2p− p1)µεν(2p− p′1)νεα(2p− 2p′1 + p2)αεβ(2p− p′1 − p1 + p2)β

× F 2 1

p2 −m2
D + iε

1

(p− p′1 + p2)2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

× 1

(p− p′1)2 −m2
π + iε

.

(53)

p1

p′1

p

p− p′1

p− p1

p′2

p2

p− p′1 + p2

FIG. 12. Momenta assignment in the two pion exchange in DD̄∗ → DD̄∗.

Since the momenta of the particles in the loop are small, we can use the non-relativistic
approximation. The consequence is that only the spatial components of the polarization
vectors survive and we can rewrite the amplitude of Eq. (53) as

t =
5

4
ig̃4

∫
d4p

(2π)4
εi(2p− p1)iεj(2p− p′1)jεl(2p− 2p′1 + p2)lεm(2p− p′1 − p1 + p2)m

× F 2 1

p2 −m2
D + iε

1

(p− p′1 + p2)2 −m2
D + iε

1

(p− p1)2 +m2
π + iε

× 1

(p− p′1)2 +m2
π + iε

.

(54)

We also assume that 4~p 2 � ~q 2/4, such that the dominant term in Eq. (54) is the one
with the form pipjplpm. This means that the amplitude in Eq. (54) will have the same
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structure as in the case of Section II C:

1

15
(δijδlm + δilδjm + δimδjl) . (55)

Thus, we can write

t =
5

4
ig̃4 1

15

∫
d4p

(2π)4
(4~p 2 − ~q 2

4
)2 (εiεlεiεl + εiεiεlεl + εiεlεlεi)F

2 1

p2 −m2
D + iε

× 1

(p− p′1 + p2)2 −m2
D + iε

1

(p− p1)2 +m2
π + iε

1

(p− p′1)2 +m2
π + iε

,

(56)

that, performing the analytical integration in dp0, becomes

t =
5

4
g̃4 1

15

∫
d3p

(2π)3
(4~p 2 − ~q 2

4
)2 (εiεlεiεl + εiεiεlεl + εiεlεlεi)F

2 1

ω1 + ω2

1

2ω1ω2

× 1

E2
D

(
1 +

ED + ω1 + ω2 − p0
1

p0
1 − ω1 − ED + iε

+
ED + ω1 + ω2 − p0

1

p0
1 − ω2 − ED + iε

)
1

p0
1 − ω1 − ED + iε

× 1

p0
1 − ω2 − ED + iε

.

(57)

The combination of polarization vectors appearing in Eq. (57) can be rewritten in terms
of the spin projector operators [36] as

εiεlεiεl + εiεiεlεl + εiεlεlεi = 5P(0) + 2P(2) . (58)

Thus, the final expression of the amplitude reads

t =
5

4
g̃4 A

15

∫
d3p

(2π)3
(4~p 2 − ~q 2

4
)2 F 2 1

ω1 + ω2

1

2ω1ω2

1

4E2
D

1

p0
1 − ω1 − ED + iε

× 1

p0
1 − ω2 − ED + iε

(
1 +

ED + ω1 + ω2 − p0
1

p0
1 − ω1 − ED + iε

+
ED + ω1 + ω2 − p0

1

p0
1 − ω2 − ED + iε

)
,

(59)

where A = 5 for the J = 0 case and A = 2 for the J = 2 case. The amplitude t in the two
cases is shown in Fig. 13. We can see that for J = 2 the contribution is small compared with
the one of vector exchange in Fig. 5. Furthermore, we observe some cancellation between
the repulsive one meson exchange of Fig. 4 and the present contribution of Fig. 13(b), and
altogether we neglect all the terms coming from pseudoscalar exchange.

III. RESULTS

In the former section we evaluated the contribution due to vector exchange and pseu-
doscalar exchange. We could see that the latter was small, of the order of 10% or smaller
than the other. In view of this, we should take this as an indicator that the strength of the
vector exchange term can be changed by about 10% when we evaluate uncertainties in our
results.

We want to study the T matrix for the two channels for values of
√
s around 4000 MeV.

We study the shape of |T |2. Fig. 14 shows |T11|2, where the subscript 11 means that we are
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FIG. 13. Potential t for non-interacting pion exchange in the case of J = 0 (a) and J = 2 (b).

considering the transition from the channel D∗D̄∗ to itself, as a function of the centre of mass
energy. We use the dimensional regularization for the G function (Eq. (11)), choosing as the
subtraction constants α1 = −2.3 and α2 = −2.6, while µ = 1000 MeV. This is equivalent
to using a cutoff qmax = 960 MeV. With this choice of the parameters we obtain a clear
peak around

√
s = 3998 MeV, with a width Γ ' 90 MeV. This is about 19 MeV below the

D∗D̄∗ threshold. The binding is smaller than found in [8] because we use g for the coupling
instead of gD, which we justified from the findings of [34].
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FIG. 14. |T11|2 as a function of
√
s.

This result is very interesting. Indeed, as mentioned in the Introduction, in [7] a peak
was seen in the (D∗D̄0)± invariant mass spectrum close to the (D∗D̄0)± threshold, which
was interpreted in [7] as a signal of a J = 0 resonance at 4025 MeV. However in [23] it was
found that the spectrum could be equally reproduced assuming a J = 2 resonance below
threshold, with a mass around 3990 MeV and a width of 160 MeV. A fit with about 8 MeV
less binding and smaller width is also acceptable by looking at the different options discussed
in [23]. Our choice of the parameters is motivated to get a binding similar to that suggested
in [23] but we discuss below our uncertainties. The finding of the present paper would give
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support to the interpretation of the results of [7] as a consequence of an I = 1 resonance
coming from the D∗D̄∗ interaction, with the option suggested in [23] of a bound D∗D̄∗ state
with relatively large width.

We have also evaluated the uncertainties in the results due to the possible contribution
of the two pion exchange in the interaction and the pseudoscalar one meson exchange (π,
η, η′). As we already mentioned in the beginning of this section, this contribution is small
and attractive at small ~q. In order to take it into account, we increase the magnitude of
the vector exchange potential for D∗D̄∗ → D∗D̄∗ of Eq. (6) and see how the position of the
peak changes. We find that, with an increase in the magnitude of the potential of 50%, the
energy of the peak decreases by about 5 MeV. Then we did the same thing, but adjusting
the cutoff used in Eq. (11) in order to maintain fixed at 3998 MeV the position of the peak.
The results obtained are shown in Fig. 15. Increasing the magnitude of tD∗D̄∗→D∗D̄∗ , the
peak in |T11|2 is maintained in the same position using a lower cutoff. In the case of an
increase of 20% (the thin, continuous line in Fig. 15), we need a cutoff of qmax ' 940 MeV,
while in the case of 50% (the dashed line in Fig. 15), qmax ' 930 MeV. The shape of |T11|2
is slightly changed when going to higher magnitudes, giving a narrower peak and a higher
strength.
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FIG. 15. |T11|2 as a function of
√
s for the vector exchange potentials of Eq. (6) and (7) (thick

line), for an increase of 20% in the vector exchange potential (thin line) and for an increase of 50%

(dashed line), for a peak at 3998 MeV.

We have taken natural values for αi, or the cutoff, guided by the results of the analysis of
[23]. Yet, it is interesting to see what happens if we reduce the cutoff. In Fig. 16 we show
|T11|2 for different values of the cutoff. We can see that as qmax decreases, the peak of |T11|2
is moving closer to the threshold and its strength decreases. At qmax = 700 MeV we already
have a clear cusp and, for lower values of qmax, the cusp remains but the strength of |T11|2
at the peak is very weak and we would no longer be able to produce an enhancement of the
D∗D̄∗ invariant mass distribution as seen in the experiment of [7]. It is also interesting to
see that even for values of qmax ' 800 MeV as in [51, 52], we still find a state bound by a
few MeV. On the other hand, bigger values of qmax would produce a too large binding that
would contradict the results of the analysis of [23]. Hence, considering uncertainties in our
model, we can say that we are obtaining a bound D∗D̄∗ state or barely bound or even a
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virtual state (decaying to J/ψρ) within 3990− 4000 MeV, with a width of about 100 MeV.
Note that, even when the pole in the bound region gets close to threshold and disappears,
it can get converted into a virtual state with a clearly visible cusp that can be translated
into a peak close to threshold in an experimental analysis.

As already mentioned in Section II A, in [8] also the ρρ, ρω, ρφ light vector channels were
considered and the ρω and ρφ also give some contribution to the width. A slight increase in
the value of Γ ' 100 MeV, would be in agreement with the analysis of [23] where Γ = 160
MeV.
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FIG. 16. |T11|2 as a function of
√
s, for different values of the cutoff qmax. From up down,

qmax = 960, 900, 850, 800, 750, 700, 650, 600, 550, 500 MeV.

IV. CONCLUSIONS

We have studied the interaction of D∗D̄∗ in I = 1 from the perspective of the local hidden
gauge approach, extrapolating the model to account for the exchange of heavy vectors. This
is necessary here once we prove that the exchange of light vectors is OZI forbidden in
I = 1. The interaction is then weaker than for I = 0, where the exchange of light vectors is
allowed, but still strong enough to weakly bind the system. We have also taken into account
the coupled channel J/ψρ, which is open for decay and is responsible for a width of the state
of the order of 100 MeV. We also mention that the exchange of light qq̄ is OZI forbidden,
which implies that the sum of the exchange of light pseudoscalar mesons also vanishes if the
masses of these mesons are taken degenerate. Because of that, we study the effect of two
pion exchange, with and without interaction, but we find that this contribution is smaller
than the exchange of heavy vectors. The study conducted here complements the one of [23]
where the peak seen in the D∗D̄∗ spectrum in the e+e− → (D∗D̄∗)±π± reaction, that led
the experimental team to claim a JP = 1+ Zc(4025), was reinterpreted as a possible 2+

bound state of D∗D̄∗ with I = 1. Both the mass and width that we obtain are compatible
with the results obtained in [23] from a fit to the experimental data, from where we would
conclude that the state that we find in our approach can provide a natural explanation of
the experimental results of [7] and one could claim a resonance from this experiment but
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with a different energy, width (M = 3990−4000 MeV, Γ ' 100 MeV) and quantum numbers
(IG = 1−, JPC = 2++).
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