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Abstract
We apply an extension of the Weinberg compositeness condition on partial waves of L = 1 and

resonant states to determine the weight of meson-baryon component in the ∆(1232) resonance and

the other members of the JP = 3
2

+
baryon decuplet. We obtain an appreciable weight of πN

in the ∆(1232) wave function, of the order of 60 %, which looks more natural when one recalls

that experiments on deep inelastic and Drell Yan give a fraction of πN component of 34 % for the

nucleon. We also show that, as we go to higher energies in the members of the decuplet, the weights

of meson-baryon component decrease and they already show a dominant part for a genuine, non

meson-baryon, component in the wave function. We write a section to interpret the meaning of

the Weinberg sum-rule when it is extended to complex energies and another one for the case of an

energy dependent potential.
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I. INTRODUCTION

The investigation of the structure of the different hadronic states is one of the most impor-
tant topics in hadron spectroscopy. In order to describe the rich spectrum of excited hadrons
quoted in the PDG [1], the traditional concept that mesons and baryons are composed, re-
spectively, of two or three quarks, has been replaced by more complex interpretations, like
the ones involving more quarks [2, 3].

A remarkable success in describing hadron structure has been obtained by chiral per-
turbation theory (χPT ) [4, 5], an effective field theory in which the building blocks are
the ground state mesons and baryons. The low energy processes are well described in this
framework, but its limited energy range of convergence makes it unsuitable to deal with
higher energies.

Combining unitarity constraints in coupled channels of mesons and baryons with the
use of chiral Lagrangians, an extension of the theory to higher energies was made possible.
The resulting theory, usually referred to as chiral unitary approach [6–18], allows to explain
many mesons and baryons in terms of the meson-meson and meson-baryon interactions
provided by chiral Lagrangians, interpreting them as composite states of hadrons. This
kind of resonances are commonly known as “dynamically generated”.

An interesting challenge in the study of the hadron spectrum, is understanding whether
a resonance can be considered as a composite state of other hadrons or else a “genuine”
state. An early attempt to answer this question was made by Weinberg in a time honored
work [19], in which it was determined that the deuteron was a composite state of a proton
and a neutron. Other works on this issue are [20–22]. However, the analysis was made in
the case of s-waves and for small binding energies. An extension to larger binding energies,
using also coupled channels and in the case of bound states, was done in [23], while in [24]
also resonances are considered.

In a recent paper, the work was generalized to higher partial waves [25] and the results
obtained were used to justify the commonly accepted idea that the ρ meson is not a ππ
composite state but a genuine one. The same method was also successfully used in [26] to
evaluate the weight of composite Kπ state in the K∗ wave function. However, no attempt
was done to apply the method to baryonic resonances. We use it here to investigate the
nature of the baryons of the JP = 3

2

+
decuplet.

The paper proceeds as follows. In Section II we make a brief summary of the formalism.
In Section III we address the problem of πN scattering in the ∆(1232) region. In Section IV
we extend the test to all the particles of the decuplet while Section V is devoted to discussing
and interpreting the meaning of the Weinberg sum-rule when extended to complex energies.
Finally, we make some conclusions in Section VII.

II. OVERVIEW OF THE FORMALISM

The creation of a resonance from the interaction of many channels at a certain energy,
takes place from the collision of two particles in a channel which is open.
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The process is described by the set of coupled Schrödinger equations,

|Ψ〉 = |Φ〉+
1

E −H0

V |Ψ〉

= |Φ〉+
1

E −Mi − ~p 2

2µi

V |Ψ〉 ,
(1)

where

|Ψ〉 =


|Ψ1〉
|Ψ2〉

...
|ΨN〉

 , |Φ〉 =


|Φ1〉

0
...
0

 , (2)

H0 is the free Hamiltonian and µi is the reduced mass of the system of total mass Mi =
m1i+m2i. The state |Φ1〉 is an asymptotic scattering state which is used to create a resonance
which will decay into other channels.

Since we shall use this in the discussion later on, it is worth stressing that the wave
function is defined up to a global phase, the same for |Ψ〉 and |Φ〉, as one can see in Eq.(1).

However, the standard prescription is to take for Φ the ei
~k~r plane wave function, which then

determines the phase of Ψ. We shall come back to the question of phases when we use wave
functions in the following.

Following [25], we take as the potential V

〈~p|V |~p ′〉 ≡ (2l + 1) v Θ(Λ− p)Θ(Λ− p′)|~p |l|~p ′|lPl(cos θ) , (3)

where Λ is a cutoff in the momentum space and v is a N ×N matrix, with N the number of
channels. The form of the potential is such that the generic l-wave character of the process
is contained in the two factors |~p |l and |~p ′|l, and in the Legendre polynomial Pl(cos θ), so
that v can be considered as a constant matrix.

The N ×N scattering matrix, such that TΦ = VΨ, can be written as

T = (2l + 1)Pl(p̂, p̂
′)Θ(Λ− p)Θ(Λ− p′)|~p |l|~p ′|lt , (4)

and the Schrödinger equation leads to the Lippmann-Schwinger equation for T (T = V +
V GT ), by means of which one obtains

t =
v

(1− vG)
=

1

v−1 −G
. (5)

The matrix G in Eq. (5) is the loop function diagonal matrix for the two hadrons in the
intermediate state (see Eq. (6)). Note that the definition TΦ = VΨ makes T independent
of the phase convention on the wave function.

The derivation in [25] leads to a t matrix which does not contain the factor |~p |l, since
now the potential v is a constant. Differently from other approaches for p-waves, like the
one of [27, 28], which factorize on shell |~p |l and associate it to the potential v, this factor is
now absorbed in a new loop function

Gii =

∫
|~p |<Λ

d3p
|~p |2l

E −m1i −m2i − ~p 2

2µi

, (6)
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which is different from the one normally used in the chiral unitary approach [29].
This choice is necessary for the generalization of the sum-rule for the couplings, found in

[23] for the case of s-waves, to any partial wave. Indeed, as shown in [25], for a resonance or
bound state dynamically generated by the interaction in coupled channels of two hadrons,
the following relationship holds (see an alternative derivation in [30])

∑
i

g2
i

[
dGi

dE

]
E=ER

= −1 , (7)

where ER is the position of the complex pole representing the resonance and gi is the coupling
to the channel i defined as

gigj = lim
E→ER

(E − ER)tij . (8)

Note that this definition leads to complex couplings and the sum rule that we derive is
obtained in terms of them.

In Section V we shall rewrite Eq. (7) for complex energies and discuss the meaning of
each term. We anticipate here that each term represents the integral of the wave function
squared (not the modulus squared) of each component, but this occurs only in a certain
phase convention for the wave function that we shall then discuss. The terms of Eq. (7) are
complex, which means that the imaginary parts cancel and then one has

∑
i

Re

(
g2
i

[
dGi

dE

]
E=ER

)
= −1 , (9)

and knowing the meaning of these terms, we can consider each one of them as a measure
of the relevance or the weight of a channel in the wave function of the state, but not a
probability, which for open channels is not a useful concept since it will diverge.

Sometimes, our knowledge of all needed coupled channels will be incomplete and we shall
only have information on hadron-hadron scattering. There can be a genuine component
different to the hadron-hadron one that we study. In order to take into account the weight
of this genuine component, Eq. (7) can be rewritten as

−
∑
i

Re

(
g2
i

[
dGi

dE

]
E=ER

)
= 1− Z , Z = Re

∫
d3p (Ψβ(p))2 , (10)

where Ψβ(p) is the genuine component in the wave function of the state, when it is omitted
from the coupled channels.

Note that the fixing of a phase in the wave function of one channel will determine the
phase of the other wave functions in a coupled set of Lippman-Schwinger equations (see Eqs.
(1) and (2)).

The left-hand side of Eq. (10) is the measure of this weight of hadron-hadron compo-
nent, while its diversion from unity measures the weight of something different in the wave
function.

The interpretation of Z as a probability for the non meson-baryon component is rigorous
for bound states. For poles in the complex plane we have to reinterpret these numbers, as
we have mentioned and will be amply discussed in Section V.
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III. πN SCATTERING AND THE ∆(1232) RESONANCE

As already mentioned in the Introduction, the sum-rule of Eq. (10) has been successfully
applied to the ρ and K∗ mesons in [25] and [26], respectively. We use it for the first time to
investigate the nature of a baryonic resonance, the ∆(1232), in order to quantify the weight
of πN in this state.

We first use a model based on chiral unitary theory, and then, we perform a phenomeno-
logical test which makes use only of πN scattering data.

A. The model dependent test

Following the approach of [25, 26] we use a potential of the type

v = −α
(

1 +
β

sR − s

)
, (11)

where
√
sR is the bare mass of the ∆ resonance and α and β are two constant factors. Note

that we are putting explicitly a CDD pole in v in order to accommodate a possible genuine
component of the ∆(1232) in its wave function [31]. In order to account for the p-wave
character of the process, the potential v is not dependent on the momenta of the particles.

Now, we fit the πN data for the phase shifts using

t =
1

v−1 −G
. (12)

Since the pion is relativistic in the decay of the ∆(1232), we generalize the equations as
already done for the case of ρ → ππ in [25]. We take only the positive energy part of the
relativistic generalization of the loop function, modified to contain the |~q |2 factor (see Eq.
(6) and [25] for more details),

G(s) =

∫
d3q

(2π)3

1

2ω(q)

MN

EN(q)

q2

√
s− ω(q)− EN(q) + iε

, (13)

with MN the mass of the nucleon, mπ the mass of the pion, EN(q) =
√
q2 +M2

N and

ω(q) =
√
q2 +m2

π. The loop function in Eq. (13) is regularized by the cutoff θ(Λ − |~q |) of
the potential (see Eq. (3)), hence Λ plays the role of qmax in the integral of Eq. (13).

To be more in agreement with a propagator which has a denominator linear in the energy,
we slightly modify Eq. (11) as

v = − α

M4
∆

(
1 +

β
√
sR −

√
s

)
, (14)

where the factor 1/M4
∆ is introduced in order to have both parameters, α and β, in units of

MeV .
The πN phase shift is given by the formula [32]

T = p2t =
−4π
√
s

MN

1

p cot δ(p)− ip
, (15)
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with p the momentum of the particles in the center of mass reference frame.
From the best fit to the πN data we obtain the following values of the four parameters:

α = 698.0 · 103 MeV , β = 112.5 MeV ,
√
sR = 1313.8 MeV , qmax = 452.6 MeV .

(16)

The results of the fit are shown in Fig. 1.
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FIG. 1. The solid curve represents the πN scattering p-wave phase shifts obtained with the new

approach. The data are taken from [33].

Now we want to apply the sum-rule of Eq. (10) to our case. We need to extrapolate the
amplitude to the complex plane and look for the complex pole

√
s0 in the second Riemann

sheet. This is done by changing G to GII in Eq. (12), to obtain tII . The function GII is the
analytic continuation of the loop function in the second Riemann sheet and is defined as

GII(s) = GI +
i

2π

MN√
s
p3 , Im(p) > 0 , (17)

with GI and GII the loop functions in the first and second Riemann sheet, and GI given by
Eq. (13).

We are now able to obtain the coupling g̃∆ as the residue in the pole of the amplitude

g̃2
∆ = lim√

s→√s0
(
√
s−
√
s0)tII , (18)
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and to apply the sum-rule of Eq. (10) to evaluate the πN contribution to the ∆ resonance

−Re

[
g̃2

∆

[
dGII(s)

d
√
s

]
√
s=
√
s0

]
= 1− Z , (19)

with Z the weight of something different from a πN state in the ∆.
The value of the pole that we get for the best fit is

√
s0 = (1204.6 + i44.37) MeV , (20)

while for the coupling we find

g̃∆ = (8.53 + i1.85) · 10−3 MeV −1 . (21)

From these values we finally obtain

− g̃2
∆

[
dGII(s)

d
√
s

]
√
s=
√
s0

= (0.62− i0.41) , (22)

and
1− Z = 0.62 , (23)

which indicates a sizeable weight of πN in the resonance.

B. The phenomenological test

Now we want to evaluate the same quantity using a more phenomenological approach.
We repeat the analysis of [25, 26] to test the sum-rule by means only of the experimental
data.

The ∆ amplitude in a relativistic form is given by

t∆ =
g2

∆

√
s−M∆ + iΓon

2

(
p
pon

)3 , (24)

where

p =
λ1/2(s,M2

N ,m
2
π)

2
√
s

(25)

is the three-momentum of the particles in the center of mass reference frame,

pon = p(
√
s = M∆), (26)

and

g2
∆ =

2πM∆Γon
p3
onMN

. (27)

The values of M∆ and Γon are known from the experiment.
Defining

√
s = a+ ib and making the substitution p→ −p in the width term, we obtain

the amplitude t∆ in the second Riemann sheet. Then, we proceed as before to get the pole
and the coupling.
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qmax [GeV ] −g2 dGII

d
√
s

1− Z

0.4 0.47− i0.38 0.47

0.5 0.57− i0.29 0.57

0.6 0.65− i0.22 0.65

TABLE I. Values of −g2 dGII

d
√
s

and 1− Z for different cutoffs qmax.

The values we obtain for the pole and the coupling,

√
s0 = (1208.00 + i40.91) MeV ,

g∆ = (7.78 + i1.86) · 10−3 MeV −1 ,
(28)

are very similar to those obtained with the procedure of the former subsection.
In this case we do not know the size of the cutoff qmax needed to regularize the loop

function, but the derivative of GII in Eq. (19) is logarithmically divergent in the case of
p-waves. Then, using natural values for the cutoff, as done in [25, 26], we can establish the
stability of the results in a certain range of qmax.

The values of 1 − Z for three different values of qmax are shown in Table I. They are
rather stable and consistent with the result obtained in the previous section.

IV. APPLICATION TO OTHER RESONANCES

Now we extend the study of the hadron-hadron content of resonances to the whole JP =
3
2

+
baryons decuplet.
We proceed as in the case of the ∆(1232), applying the phenomenological test of Sec.

III B to the other particles of the decuplet, Σ(1385), Ξ(1535) and Ω−.
We first investigate the πΛ and πΣ content of the Σ(1385) wave function. It is known

from the PDG [1] that it couples to these two channels with different branching ratios: 87%
and 11.7% , respectively. In order to evaluate the couplings of the resonance to the single
channel, the branching ratios must be taken into account, modifying Eq. (27) as follows:

g2
Σ∗,i =

2πMΣ∗Γon
p3

(i)onMi

·BR(i) , (29)

where BR(i) is the branching ratio to the channel i, with i = πΛ, πΣ and

p(i)
on = p(i)(

√
s = MΣ∗) , (30)

where

p(i) =
λ1/2(s,M2

i ,m
2
π)

2
√
s

. (31)

On the other hand, the case of the Ξ(1535) is completely analogous to the one of the
∆(1232), since, according to the PDG [1] it couples to the πΞ channel with a branching ratio
of 100%. Hence, the coupling gΞ∗,πΞ is simply given by Eq. (27), doing the substitutions
M∆ →MΞ∗ and MN →MΞ .

8



Channel
√
s0 [MeV ] g [MeV ]−1 −g2 ∂GII

∂E 1− Z

Σ(1385)
πΛ

πΣ

1380.36 + i17.29

1377.35 + i16.02

(5.11 + i0.60) · 10−3

(3.63 + i0.81) · 10−3

(0.16− i0.18)

(9.62− i1.16) · 10−2

0.16

0.10

Ξ(1535) πΞ 1532.92 + i4.68 (4.36 + i0.23) · 10−3 0.11− 0.09 0.11

Ω− K̄Ξ 1672.45 (1.56 + i0.37) · 10−2 0.26 0.26

TABLE II. Values of poles, couplings, −g2 dGII

d
√
s

and 1 − Z for the three baryons of the decuplet

JP = 3
2

+
, Σ(1385), Ξ(1535) and Ω−, for a cutoff qmax = 450 MeV .

Channel qmax [GeV] −g2 ∂GII

∂E 1− Z

Σ(1385) πΛ

0.4

0.5

0.6

(0.13− i0.19)

(0.19− i0.17)

(0.24− i0.16)

0.13

0.19

0.24

Σ(1385) πΣ

0.4

0.5

0.6

(8.71− i1.17) · 10−2

(0.10− i6.42 · 10−3)

(0.12− i3.37 · 10−3)

0.09

0.10

0.12

Ξ(1535) πΞ

0.4

0.5

0.6

(0.09− i0.09)

(0.12− i0.09)

(0.15− i0.09)

0.09

0.12

0.15

Ω− K̄Ξ

0.4

0.5

0.6

0.18

0.34

0.53

0.18

0.34

0.53

TABLE III. Values of −g2 dGII

d
√
s

and 1 − Z for different cutoffs qmax for the three baryons of the

decuplet JP = 3
2

+
, Σ(1385), Ξ(1535) and Ω−.

The case of the Ω− is different since this resonance is stable to strong decays. This means
that the on shell amplitude Γon is zero and this prevents us from evaluating the coupling
of the resonance to the K̄Ξ channel using Eq. (27). However, from SU(3) symmetry
considerations we can relate the gΩ−,K̄Ξ coupling to g∆,πN , since their ratios are simply
ratios of Clebsch-Gordon coefficients.

We find that

g2
Ω−,K̄Ξ0 = 2g2

∆,πN . (32)

The amplitude in relativistic form is again given by Eq. (24) and, in the case of the
Σ(1385) and Ξ(1535), it is extrapolated to the second Riemann sheet in order to evaluate
the pole and the new couplings. Since, as already said, the Ω− does not decay through
strong interaction, the pole of the amplitude is found on the real axis, with no need to
go to the second Riemann sheet. It is then possible to apply the sum-rule, evaluating the
derivative of the G function in the position of the pole. To do it we use a cutoff of the same
order of magnitude of the one found doing the best fit for the ∆(1232), qmax ' 450 MeV .
The results obtained for the three resonances are shown in Table II. We also show the cutoff
dependence of 1− Z, analogous to Table I, in III.
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V. INTERPRETATION OF THE SUM-RULE FOR RESONANCES

As we could see, we have obtained values of −g2 dGII

d
√
s

which are complex, and, thus,

cannot literally be interpreted as a probability. In this Section we clarify the meaning of the
sum-rule in Eq. (9) and of the value of 1− Z obtained.

Before we give a general formulation of the sum-rule for complex energies based on the
results of [23–25], let us visualize it in a particular case with two channels, one of them
closed and the other one open. Let us also assume, for simplicity, that the interaction in
the closed channel is strong and attractive and let us neglect the diagonal interaction in the
open channel (the results are the same without this restriction, only the formulation is a
little longer). Thus, we have a potential like in Eq. (3) but now

v =

(
v11 v12

v12 0

)
. (33)

The results that we get are general, and including v22 is straightforward but does not add
to the discussion. We shall also assume for simplicity that |v12| � |v11| only to relate the
imaginary part of the pole position to the width.

The t matrix is given by Eq. (5), and we find

t =

(
v11 + v2

12G2 v12

v12 v2
12G1

)
· 1

1− v11G1 − v2
12G1G2

. (34)

Let us now assume that we have a pole in the bound region of channel 1 and open region
of channel 2. Then, the denominator of t in Eq. (34) will be zero

1− v11G1 − v2
12G1G2 = 0 , (35)

but G2 is complex in the first Riemann sheet with

ImGI
2 = −i4π2µ2 k

3
2 (36)

in the non-relativistic formulation, and

ImGI
2 = −i 1

4π

MN√
s
k3

2 (37)

in the relativistic one of Section III, with ki =
√

2µi(E −m1i −m2i) or ki =
λ1/2(s,m2

1i,m
2
2i)

2
√
s

respectively, for i = 2.
Let us assume that the attractive v11 interaction is strong enough to produce a bound

state in channel 1 with energy E1, when only this channel is considered. Then, we would
have

1− v11G1(E1) = 0 . (38)

The addition of the interaction v12 will change this energy and Eq. (35) can be rewritten,
taking Eq. (38) into account, as (assume vij independent of energy)

− v11
∂G1

∂E
(ER − E1)− v2

12G1G2 = 0 , (39)

10



where ER will be the new energy of the system.
Since v11 < 0 and ∂G1

∂E
< 0 in the bound region

ER − E1 = −α v2
12G1G2 , α > 0 , G1 < 0 . (40)

The complex value of G2, see Eqs. (36) and (37), was obtained for an energy E + iε. We
gradually continue along the complex plane making the iε finite, iΓ

2
, and Eq. (40) gives

ẼR + i
Γ

2
= −α v2

12G1G2 , (41)

Γ

2
' −α v2

12G1ImG2 , (42)

which is impossible to fulfill in the first Riemann sheet since G1 < 0, α > 0 and ImGI
2,

given by Eqs. (36)-(37), is negative. This gives us a perspective of why one has to go to
the second Riemann sheet, where k2 → −k2 in G2, in which case one finds a solution, with
ẼR = E1 −m1i −m2i (i = 2) and

Γ = 2
v2

12G1

−v11
∂G1

∂E

ImGII
2 . (43)

Next, let us calculate the couplings gi, where gigj is the residue of the tij matrix element
at the pole. Applying l’Hôpital rule, we have

g2
1 = lim(E − ER)t11 =

v11 + v2
12G2

−v11
∂G1

∂E
− v2

12
∂G1

∂E
G2 − v2

12
∂G2

∂E
G1

,

g2
2 = lim(E − ER)t22 =

v2
12G1

−v11
∂G1

∂E
− v2

12
∂G1

∂E
G2 − v2

12
∂G2

∂E
G1

.

(44)

Let us now see that the sum-rule of Eq. (9) is exactly fulfilled, since we have

g2
1

∂G1

∂E
+ g2

2

∂G2

∂E
=

(v11 + v2
12G2)∂G1

∂E
+ v2

12G1
∂G2

∂E

−v11
∂G1

∂E
− v2

12
∂G1

∂E
G2 − v2

12
∂G2

∂E
G1

= −1 . (45)

However, this occurs only at the complex pole ẼR + iΓ
2

using GII
2 , since we have made use of

the fact that the denominator in g2
1 and g2

2 of Eqs. (44) vanishes for E = ẼR + iΓ
2

to apply
l’Hôpital rule, which only occurs in the second Riemann sheet.

Note that the sum-rule has appeared with the definition of the couplings of Eq. (8). The
explicit form obtained for the couplings in Eqs. (44) shows clearly that they are complex,
since both G1 and G2 are now complex.

Now that we have obtained the couplings, let us rewrite Γ of Eq. (43), derived assuming
|v12| � |v11| and neglecting again v12 versus v11, as

g2
2 '

v2
12G1

−v11
∂G1

∂E

, (46)

from which follows

Γ = 2g2
2

M

4π
√
s
p3 , (47)
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where we have used the relativistic formula for ImG2 of Eq. (37) and Eq. (17). As we can
see, we reproduce the formula for the width given by Eq. (27).

Now we want to interpret the meaning of the sum-rule. Eq. (45) is a generalization to
complex energies of the sum-rule obtained in Eq. (119) of [23] and Eq. (101) of [25] for
real energies. There it was interpreted as a consequence of the sum of probabilities of each
channel to be unity. For complex values of the energies this interpretation is not possible and
this is related to the fact that the eigenstates of a complex Hamiltonian are not generally
orthogonal1.

Formally the problem is solved using, in this case, a biorthogonal basis. Indeed, let λn
be a complex eigenvalue of H and |λn〉 the corresponding eigenvector. It satisfies

det(H − λnI) = 0 . (48)

Then
det(H† − λ∗nI) = 0 , (49)

which means that λ∗n is an eigenvalue of H†. Let now |λ̄n〉 be the eigenvector of H† associated
to λ∗n. The eigenvectors |λn〉 and |λ̄n〉 are not equal, but we can see that

〈λ̄n|H|λm〉 = λm〈λ̄n|λm〉 = λn〈λ̄n|λm〉 , (50)

where to get the last term we have applied H as H† to the bra state. Thus

(λn − λm)〈λ̄n|λm〉 = 0 , (51)

which means that |λm〉 and |λ̄n〉 are orthogonal for n 6= m. For the case of n = m, 〈λ̄n|λn〉 6= 0
and we can choose a normalization and a phase for |λ̄n〉 and |λn〉 such that 〈λ̄n|λn〉 = 1.

The resolution of the identity is now given by
∑

n |λn〉〈λ̄n|. Furthermore, if we have a
symmetric but not hermitian Hamiltonian, as it is our case, then it is trivial to see that
|λ̄n〉 = |λ∗n〉 for its wave function.

Then, the relationship

〈Ψi|Ψi〉 =
∑
i

∫
d3p|Ψi(p)|2 = 1 (52)

used to derive the sum-rule in [23, 25], must be substituted by

〈Ψ̄i|Ψi〉 =
∑
i

∫
d3p (Ψ̄i(p))

∗Ψi(p) =

∫
d3pΨ2

i (p) = 1 . (53)

Hence, for complex values, the modulus squared of the wave function has to be substituted
by its square. The integral of Eq. (53) depends on the prescription used for the phase of Ψi.
Below we show that with the standard phase convention used in [25], Eq. (53) is fulfilled.

Recalling that the wave function for us is given by (omitting the spherical harmonics)
[25]2

Ψi(p) = gi
Θ(Λ− |~p |)p

E −m1i −m2i − p2/2µi
, (54)

1 Although our Hamiltonian was given in terms of vij in coupled channels, only for formal purposes one

could think of a complex Hamiltonian whose eigenvalues would be these complex energies.
2 This wave function is for a decaying channel of the resonance (it does not have the |Φ〉 term in the wave

function in Eq. (2)). One can assume that in the formalism of [24, 25] (see Eqs. (46) and (47) in [24])

the asymptotic scattering state used to create the resonance couples extremely weakly to it, such that one

only has to worry for the sum-rule about the bound state and the relevant decaying states which have the

wave function of Eq. (54).
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we can write∫
d3p (Ψ(p))2 = g2

i

∫
|~p |<Λ

d3p
p2

(E −m1i −m2i − p2/2µi)2
= −g2

i

∂GII
i

∂E
, (55)

but we saw in Eq. (45) that ∑
i

g2
i

∂GII
i

∂E
= −1 , (56)

and, hence, we conclude that ∫
d3pΨ2

i (p) = 1 , (57)

with the phase and normalization chosen for the wave function in Eq. (54).
Note that for the case of bound states we can use the same formulation and the prescrip-

tion taken for the phase is the one where the wave function is real. In general gi can be
complex and Ψi(p) will be complex, but the prescription for the interpretation given is to
take the phase convention with the wave function in momentum space given by Eq. (54).

This clarifies the meaning of the sum-rule. It is the demanded extrapolation to complex
energies of the sum of probabilities equal unity for real energies. The modulus square of the
wave function is substituted by the square of the wave function with a given prescription for
the phase, which in the case of bound states would be having the wave function real. Thus

we should interpret −g2
i
∂GII

i

∂E
as the extrapolation of a probability into the complex plane,

but it is not a probability. Yet, once we have interpreted it as the integrated strength of
the wave function squared, we still can think of it as a magnitude providing the weight, or
relevance of one given channel in the wave function of a state.

As we can see, the integral
∫
d3p (Ψ(p))2, given in terms of the coupling gi and

∂GII
i

∂E
, is a

finite but complex quantity.
Since the two terms in Eq. (45) will now be complex, the sum of the imaginary parts will

vanish and the sum of real parts will be equal to −1. Thus we have

Re(g2
1

∂GII
1

∂E
) +Re(g2

2

∂GII
2

∂E
) = −1 (58)

and the sum-rule is fulfilled for the real part of the squared of the wave functions.
The evaluation of the integral of (Ψi(p))

2 is most easily done in momentum space and
concretely in terms of GII . Yet, one would like to have a feeling of what happens in terms
of wave functions in coordinate space, even if the integration of (Ψi(r))

2 in coordinate space
requires extra work and is not convenient. We calculate the wave function in coordinate
space in Appendix A and we recall only the basic results that we use here for qualitative
purposes.

For r →∞ one obtains for the open channel, in the non relativistic formulation of Section
II and in the first Riemann sheet

Ψ2(r) ∼ eikr

r
, k =

√
2µ2(ẼR + i

Γ

2
) . (59)

Defining kR =

√
2µ2ẼR and kI =

√
2µ2ẼR

Γ
4ẼR

, we can write

Ψ2(r) ∼ 1

r
eikRre−kIr . (60)
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In the second Riemann sheet, we would substitute k by −k and then

ΨII
2 (r) ∼ 1

r
e−ikRrekIr . (61)

Hence the wave function in coordinate space in the second Riemann sheet would even blow
up, such that a probability would be infinite. This is actually also the case even if kI = 0.
Thus the concept of probability is not useful once we have open channels.

Yet,

(ΨII
2 (r))2 ∼ 1

r2
e−2ikRre2kIr , (62)

and it has an oscillatory behavior that makes the integral for large values of r vanish in the
sense of a distribution, like

∫
d3r ei~p~r for p 6= 0. Of course, the finiteness of the integral is

better seen integrating in the space of momenta, as we have seen.

VI. INTERPRETATION OF THE SUM-RULE FOR ENERGY DEPENDENT PO-

TENTIALS

We have been using a potential that has a CDD pole as Eq. (11) and have interpreted
−g2 ∂G

∂E
as the probability, in the case of bound states, of having a certain state. The sum-rule

of Eq. (7) holds for states that are generated in coupled channels with potentials which are
independent of the energy. Yet, in the case on an energy dependent potential, like the one of
Eq. (11), we still would associate −g2 ∂G

∂E
to the possibility of finding channel 1 in a certain

state (for bound states). This requires a justification. One can in principle go back to the
work done in [23] and rederive the formulas with an energy dependent potential. However,
this meets with serious problems, because the eigenstates of the Hamiltonian are now not
orthogonal and

∑
|α〉〈α| is not the resolution of the identity. These problems and possible

solutions are studied in [34, 35].
A suggestion to interpret the results of the sum-rule in the case of an energy dependent

potential is given in [36] in Section 4.2. For a state generated with an energy dependent
potential in coupled channels, one has a sum-rule

−
∑
i,j

gigj

[
∂GII

i (E)

∂E
δij +GII

i (E)
∂Vij(E)

∂E
GII
j (E)

]
E→ER

= 1 , (63)

with Vij(E) the interaction kernel, and then the compositeness (the probability of the state
to be in either of the channels considered, for the case of bound states) is defined as

X = −
∑
i

g2
i

[
∂GII

i (E)

∂E

]
E→ER

, (64)

while the elementariness (the part of the state that does not belong to the considered chan-
nels) is then

Z = −
∑
ij

[
giG

II
i (E)

∂Vij(E)

∂E
GII
j (E)gj

]
E→ER

. (65)

We take advantage here to justify this in the case that we have discussed above with two
channels, and we study the problem with a single channel and an effective energy dependent

14



single channel potential. The effective potential method is also discussed in [36] in Section
3.2, using the Feshbach projection method [37]. Here we follow a different approach.

The idea is the following: we start with a two channel case with an energy independent
potential that generates a certain bound state, and evaluate Tij. Then we use just channel 1
with an effective potential, such that T11 is the same in both approaches. As a consequence,
and for bound states, −g2

1
∂G1

∂E
, which is the same in both approaches, gives the probability

to find channel 1 in the state that we study, which is smaller than one. The difference from
unity of this quantity, in our approach, is Z, which gives the probability that the state that

we find is not in channel 1. This latter probability is related to
∂Veff
∂E

as we see below.
Indeed, using the simplified case of Eq. (33) in two channels we have

T11 =
v11 + v2

12G2

1− (v11 + v2
12G2)G1

, (66)

while in one channel with Veff , we will have

Teff =
Veff

1− VeffG1

. (67)

It is clear that taking
Veff = v11 + v2

12G2 (68)

the two amplitudes T11 and Teff are identical and the residue at the pole, g2
1, will also be

the same as g2
eff .

On the other hand, we have from Eq. (8)

g2
eff = lim

(E − E0)Veff
1− VeffG1

=
Veff

−∂Veff
∂E

G1 − Veff ∂G1

∂E

, (69)

which, using the pole condition 1− VeffG1 = 0, can be rewritten as

g2
eff =

1

−G2
1
∂Veff
∂E
− ∂G1

∂E

. (70)

Hence,

− g2
effG

2
1

∂Veff
∂E

− g2
eff

∂G1

∂E
= 1 . (71)

Since

X ≡ −g2
eff

∂G1

∂E
= −g2

1

∂G1

∂E
(72)

is the probability to find the state in channel 1 (for bound states), then

− g2
effG

2
1

∂Veff
∂E

≡ Z (73)

gives the probability to find the state somewhere else (originally channel 2). This is the
result of [36] which we wrote in Eq. (65).

Note that to study the possibility to have a genuine (non πN) state in the resonance that
we study, we have used a CDD pole term in the potential. We can use this also to account
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for missing channels. Coming back to our example, if we have (we change a bit the notation
for convenience)

Veff = a+
b

E − ER
(74)

we should equate it to the potential of Eq. (68), which is not possible in all the range of
energies. But the minimum requirement is that they are the same at the pole and give the

same residue, for which it suffices to equate the two values of
∂Veff
∂E

. Thus,

a+
b

E0 − ER
= v11 + v2

12G2(E0) ,

− b

(E0 − ER)2
= v2

12

[
∂G2

∂E

]
E=E0

.
(75)

This is always possible and shall leave us still one parameter to make a fit for an optimal
agreement of the two expressions in a certain range of energies around the pole.

Finally, let us make a small remark in the sense that, indeed, the use of the CDD pole
is a suited way to take into account the genuine states in a problem. For this, we take just
the CDD pole term in Veff with a small coupling b to channel 1. We then should expect to
get Z ' 1, which is just the case. Indeed,

Teff =
1

E−ER

b
−G1

,

g2
eff =

1
1
b
− ∂G1

∂E

,
(76)

and when b→ 0 then g2
eff ' b. Hence

X = −g2
eff

∂G1

∂E
→ 0 ,

Z = −g2
effG

2
1

∂Veff
∂E

→ −bG2
1(E0)

−b
(E0 − E)2

=

(
b

E0 − ER
G1

)2

= 1 ,

(77)

the last equation holding because of the pole in the denominator of Teff , Eq. (76).

VII. DISCUSSION AND CONCLUSIONS

We have applied the generalized compositeness condition to the decuplet of the ∆(1232)
to see the weight of meson-baryon cloud and genuine (presumably three quark) components.
It is interesting to see that we find the pole position for the ∆(1232), Eq. (20), in very good
agreement with the PDG [1] values.

We clarified here the meaning of the extension of the Weinberg sum-rule for the case of
resonances and found that −g2 ∂GII

∂E
measures

∫
d3p 〈~p |Ψ〉2 and not

∫
d3p |〈~p |Ψ〉|2. We found

that the integral of the real part of the square of the wave function is the natural quantity
to provide a measure of the relevance of an open channel in the wave function, since the
integral of the modulus squared diverges, even more in the second Riemann sheet. On the
other hand,

∫
d3p 〈~p |Ψ〉2 is finite and the sum of these quantities for the different coupled
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channels is unity, within a certain phase convention, as shown by the generalization of the
Weinberg sum-rule. As to the weight of the πN component in the ∆(1232) wave function,
we find values which are relatively high, of the order of 60 %. This number could sound a bit
large when one thinks of the ∆(1232) as just a spin flip on the quark spins of the nucleon.
Yet, the result is less surprising when one recalls that from Drell Yan and deep inelastic
scattering one induces a probability of about 34 % for the πN component in the nucleon
[38, 39]. When one realizes this, then it also looks less surprising that, unlike the case of
the ρ, where the analysis in terms of just the ππ component requires large counterterms
beyond the lowest order contribution from the chiral Lagrangians [10, 27], in the case of the
πN scattering in the ∆(1232) region a description was possible with moderate size of the
counterterms [40, 41].

We extended the compositeness test to the other members of the decuplet and found a
decreasing size of the meson-baryon components when we go to the Σ(1385) and Ξ(1535),
indicating that the higher energy members of the decuplet are better represented by a
genuine (in principle three quark) component. For the Σ(1385) and Ξ(1535) there are also
bound components of K̄N and K̄Λ, K̄Σ, respectively, which we estimate small compared to
the open ones in the limited space allowed due to the decay into the open components. In
the case of the Ω−, where only the bound component K̄Ξ is present, we estimate the weight
of the meson-baryon component to be small, of the order of 25 %.

The large pion nucleon cloud in the ∆(1232) indicates that realistic calculations of its
properties should take this cloud into account. Even before the present test was done to
estimate the weight of πN component in the ∆(1232) wave function, the importance of the
meson cloud has been often advocated and one example of it can be seen in the early works
on the cloudy bag model [42] or chiral quark model [43]. The work presented here offers a
new perspective on this interesting subject and the possibility to become more quantitative
than in early works.

We have also taken advantage to find an interpretation of the extension of the Weinberg
sum-rule for complex values of the energy. We found that the concept of probability is then
changed to the squared of the wave function, within a certain phase convention, which, upon
integration, leads to finite values that we present as a measure of the weight of a channel
in the wave function, while the modulus squared of the wave function is divergent for open
channels.

We have also given an interpretation of the terms of the sum-rule for the case of an energy
dependent potential. In the case that we have a complete set of coupled channels that
generates a certain bound state, we can truncate the space and define an energy dependent
potential in a space of lower dimension. The sum-rule is now rewritten and a physical
interpretation is given to the different terms. The probability Z that the state overlaps with
the eliminated part of the space is related to the derivative of the potential with respect to
the energy.

Appendix A: Wave functions in coordinate space

The wave function in momentum space is given by (let us take also a spherical harmonic
Y10(p̂) for simplicity)

Ψ(~p ) = g
θ(Λ− p) p
E − p2/2µ

Y10(p̂) ≡ Ψ̃(~p )Y10(p̂) . (A1)
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In coordinate space we can write

Ψ(~r ) =

∫
d3p

(2π)3/2
ei~p~rΨ(~p) . (A2)

Integrating over the coordinate space we have∫
d3r (Ψ(~r))2 =

∫
d3r

∫
d3p

(2π)3/2
ei~p~rΨ(~p)

∫
d3p ′

(2π)3/2
ei~p
′~rΨ(~p ′)

=

∫
d3p

∫
d3p ′Ψ(~p)Ψ(~p ′)δ(~p+ ~p ′) .

(A3)

Then, since

Ψ(~p ′) = Ψ(−~p ) = (−1)lΨ(~p ) (A4)

with l = 1, we get ∫
d3r (Ψ(~r ))2 = −

∫
d3p (Ψ(~p ))2 . (A5)

In Eq. (39) of [25] we found that, in this case

Ψ(~r ) = Ψ̃(~r )Y10(r̂ ) (A6)

and

Ψ̃(~r ) = g

∫
p<Λ

d3p

(2π)3/2
i j1(pr)

p

E − p2/2µ
. (A7)

If we remove the factor i in Ψ̃(~r ) and call

Ψ̄(~r ) = g

∫
p<Λ

d3p

(2π)3/2
j1(pr)

p

E − p2/2µ
, (A8)

then we see that ∫
d3p (Ψ̃(~p ))2 = −

∫
d3p (Ψ̄(~p ))2 . (A9)

By using explicitly that

j1(x) =
sinx

x2
− cosx

x
(A10)

and using the symmetry of the integral in Eq. (A8), we can write

Ψ̄(~r ) = −2µg
1

2i

4π

(2π)3/2

1

r2

∫ Λ

−Λ

dp
p

p2 − 2µE
eipr + 2µg

1

2

4π

(2π)3/2

1

r

∫ Λ

−Λ

dp
p2

p2 − 2µE
eipr .

(A11)
We can perform the integration in p by integrating over the circuit in the complex plane

of Fig. 2, and thus ∫ Λ

−Λ

dp ... = 2πiRes(p =
√

2µE)−
∫
C
dp ... . (A12)
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Im p 

. 

−
. Λ- Λ Re p 

C

2μE  

2μE  

FIG. 2. Integration path in the complex p plane for the wave function.

The circuit picks up the pole at p =
√

2µE and for the first Riemann sheet we find the result

Ψ̄(~r ) =− µg 4π2

(2π)3/2

1

r2
ei
√

2µE r + µgi
4π2

(2π)3/2

1

r

√
2µEei

√
2µE r

+ µg
4π

(2π)3/2

1

r2

∫ π

0

dθ
Λ2 e2iθ

Λ2 e2iθ − 2µE
eiΛr cos θe−Λr sin θ

− µg 4π

(2π)3/2

i

r

∫ π

0

dθ
Λ3 e3iθ

Λ2 e2iθ − 2µE
eiΛr cos θe−Λr sin θ .

(A13)

In the second Riemann sheet we change
√

2µE to −
√

2µE. As we can see, for large values
of r the integrals over the half circle in Fig. 2 are strongly suppressed by the factor e−Λr sin θ

(θ ∈ [0, π]), which makes these integrals vanish when r →∞.
Then, the dominant term for r →∞ is given by

Ψ̄II(~r ) ' −i1
r

√
2µE e−i

√
2µE r , (A14)

which has been used in the discussion in Section V.
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