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ABSTRACT

The 5 state polarizability shifts are derived from
the virtual forward Compton scattering in the unre-
tarded dipole approximation, In the non-relativistic
limit wN/Em << 1, the shift is proportional to the
photonuclear sum rule O_3 y Wwhile in the relativistic
Limit wN/zm >>1 it is pr'opozr*tional toalogarithmically
weighted o_, sum rule, In both ca?es, the character-
istic momentum transfer is (2mwN)E, The non-local-
ity from the intermediate 1lepton propagation removes
the divergence typical of the static limit. Explicit
formulas for the shifts are given for both the rela-
tivistic and non-relativistic limits,
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1. = INTRODUCTION

In addition to the electromagnetic level shifts produced by the spread
out charge distribution of the nucleus in electronic and muonic atoms, there are
also additional level shifts associated with the virtual excitation of the nucleus 1).
The physics of these shifts is well understood for orbits of high angular momentum,
for which they simply describe the nuclear dipole response to the external electric

field at the nucleus produced by the lepton, since this has the longest range. One

gets 2)
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The nuclear polarizability « has its strength determined by the photo-nuclear
sum rule
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For atomic orbits of £ = O, the simple expression (1) is invalid and
divergent. Consequently, the usual approaches to the polarizability shift for 3
states are quite different in their formulation, even when the basic nuclear in-
gredients are very similar to those in Eq. (2}, In heavy muonic atoms, most
approaches 3) separately sum over the various nuclear multipole excitations, while
the muonic contributions are treated non-statically. The actual results are domi-
nated by dipole excitations with non-negligible additional monopole and quadrupcle
contributions. In light elements, the 28; polarizability shift for the (ﬁ“He)+

4)

system has been deduced to be =3.,1 meV * 20% using a dispersive approach and

by time-ordered perturbation theory 5). This shift is relevant to the precision
measurenent 6) of the energy difference AE{2P3 -28;} = 1527.420.9 meV. OQOur
objective in the present work is to establish Ehe dominant physical effects and
the parameters which govern the polarizability shifts in atomic S states., This
is particularly interesting and important since the S states have the largest

polarizability corrections.

A qualitative insight into the quantities which govern the polarizability
shifts in muonic atoms is obtained by considering the non-locality in the leptonic
co-crdinate for the polarizability operator, In the intermediate state the muon
will give rise to a Yukawa behaviour exp{-«|r-r'|}/|r-r'|, with a characteristic
inverse range g = (2mum)% corresponding to a nuclear excitation w. For excita-

tion of the nuclear giant dipcle resonance, this characteristic non-locality is
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K51 = 1.5 A% fm., This non-locality is small on the level of atomic scales, apart
from the heaviest elements. Consequently, the approximation (1) for & # 0 states
is a good one. For 3 states, the non=locality will provide the appropriate re-
gularization of the behavicur r-", together with finite size of the nucleus which

is of similar magnitude.

The polarizability behavicur of the electronic atom is totally different
and it is dominated by relativistic effects in the intermediate propagation. For
relative distances inside the electron Compton wavelength -m;I = 4?0 fm, the problem
must be treated fully relativistically. In the range w-1 25 A fm<r < m;I o
= 400 fm, closure in the electron variable can be made, while inside this region
the electron behaves as a free massless object. These regions are relevant for
atomic & states. For £ # 0 states, relevant atomic distances are very much
larger than these, sc the approximation (1} is a good one. In all cases, the
non-locality extends over a far wider region in space than the nuclear size, so
the dependence on the details of the nuclear shape is expected %o be very weak,

In the relativistic case, m'l provides the regularization for the inner region

-l
and me, for the outer region,

The essential difference between the relativistic and non-relativistic
limits emphasizes the great importance of the ratic of the nuclear excitation
frequency to lepton mass w/2m a3 a measure of the relativistic nature of the
system. The leptonic mass dependence of the § state polarization effects in an

atom is totally different when this quantity is larger or smaller than unity.

In the following we will investigate in detail the nature of these rela-
ticns using the unretarded dipole approximaticn for the nuclear excitations., The
results are expressed in terms of the sum rules given by the photoabsorption crosse
sections. The calculation will be made in the dispersion approach used previously
in Ref. 4), in the limit of a short-ranged interaction on the atomic scale. Since
the characteristic momenta fransferred to the nucleus are of the order q% ~ 2mw
the unretarded dipole approximation is expected to be excellent for electrons but

somewhat worse for muons.

2., = THE POLARIZABILITY SHIFT

To set a formalism valid for both electronic and muonic atoms, we follow
the relativistic dispersion approach discussed in Ref, 4), Since the interaction

range is small compared te atomic dimensions and the velocity corrections are very
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small, the wave function at the origin can be factorized as |wno(0)|2. The
remainder is proportional to the 2y contribution to the S wave scattering

length (scattering approximation)

A pzo

=0 2
A% o Y@ Ay (3)
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Therefore the problem is equivalent to the study of the forward virtual Compton
amplitude on the nucleus. The hadronic tensor is decomposed in the usual gauge
invariant way and becomes determined by two structure functions 'I‘1 2(q2,w).

?

They describe the interaction of transverse and longitudinal photons with the

nucieus,

We introduce the longitudinal amplitude and assume that the nuclear
Tz(qz,w) and TL(qz,w} functions satisfy unsubiracted dispersicn relations,
i.e., validity of second order perturbation theory in the nuclear variables,
The corresponding inelastic excitations in the nuclear response will be described

in the unretarded electric dipole approximation, in which they satisfy

e on W oo We » M Z I<NlZDzJ0>lzr5(w-°~Ju) (4)
~qz g2 W N#O

where DZ is the dipole operator. Retardation in the longitudinal component
would imply an additicnal form factor FN(qZ). In the transverse component,
there are magnetic and higher multipole contributions., We shall neglect all

of these and keep the relation (4), which guarantees the correct a2 > 0 be-
haviour, The g? -~ 0 1limit of the structure function gives the nuclear photo-

absorption cross-section, so that

G-Y (u}) = (5“;[_) .4_?1.2 -&M w b\/z (?2_"“)_.) (5)
M a2_-"0 _qz

We shall not try an explicit evaluztion of the inelastic excitation strength,

but instead connect the answer to sum rules involwving the photon c¢ross-section.
The relevance of the connections (4) and (5) to our problem depends on the im-
portant region of the virtual photon mass squared q? explored in the polari-
zability interaction. This study can answer whether the nuclear content is the
one associated with real photon physics or rather the one of inelastic electron
scattering. As we shall see below, the effective momentum transfer to the nucleus

is small {-q%) = 2my.
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We use the relativistic free lepton propagation, neglacting Coulomb dig-
tortion corrections in the intermediate state. These effects have been estimated

7]

by Friar to lower the result in muonic atoms by about 10%. With all these in-

gredients, the energy shift for S states is given by

=0 (ez)j'{lf (0){z bm wd,u; o, (W)
AEq = - '[;'“I'-L- no 3 ¥

T
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L "t‘ ‘(0 Olg ‘[t_—.—; (0% 32) (£2+ 4mz;2) {6)

For a fixed value of the nuclear excitation w, the t = -g® region of integration
Is controlled by the lepton mass and by w. One can check from Eg, {(6) that the t
integrand is invariant under a change of variable t -+ (4m2w?/t'), in such a way
that the central region to be discussed corresponds to t = 2my, which dominates
the intermediate excitations. The other parameters of the problem are 4m? and

wz, sc that one sees that the physics changes completely in going from electrons

to mucns. For nuclei other than the proton, assuming that the dominant inelastic
excitations satisfy Eme <w < 2mu, the values of t probed in each case are

4m, < t_ g w® for electrons, whereas one has the condition w? ¢ t, < émi for
muonic atoms. We explore the behaviour of the polarizability contribution under

these conditions,

Muonic atcms

In the non-relativistic approximation, the t integrand of Eq. (&) for

mions becomes

4 1
“ e | (7)
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Remarkably, thls function is azble to reprcduce the correct asymptotic limits for

t >0 and t >« given by Eq. {6). The ¢t -+ C 1limit is the cne given by the
static approximation, not relevant in our case of S states. When the t values
are not restiricted by other scales, Eq. (7) indicates that the muon intermediate
states have a kinetic energy t/2mLl ~ w. One concludes therefore that the muon

does not act as a static external field,

Inserting Eq. (7) into the energy shift, we obtain in the non-relativistic

case

@
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7 and Ericson 8) working directly with non-

This is the result cbtained by Friar
relativistic muons. The answer is given in terms of the o 3 sum rule for photons.
From our relativistic expression, we can easily make an expanszon in (w/2mu)2 to
modify the result (8)., However, we have realized that this expansionh is not appro-
priate. On the one hand, this expansion converges very slowly even for m/2mu
significantly below unity. On the cther hand, form factor effects become important
in the same region., In fact, these results were obtained by means of the unretarded
dipole approximation. As the virtual photon mass values t2 ~ (2muw)2 are not

much smaller than the inverse size of the nuclear system, cne expects deviations
from the real photon physics for muons. When the virtual photon physics is intro-
duced, form factors will cut off the t region well before ~4m?, s0 that the

#
energy weighted sum rule ¢_j; would become more and more ) like g_,-
2
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The situation changes drastically here, For te ~ (Emew}, electrons

are very relativistic, The behaviour obtained from Eq. {6} is in this region

5 me 4 (9
2wt

with a t™! effective dependence c¢f the polarizability interaction. The behaviour

(9) is regulated by the changes of regime for large t at t ~ w? and for small
L oat t ~ 4m » At t -+ o and t -+ 0 the behaviour is, respectively,

3
Ame/w . 1/t2

(Eme/m) << 1, In the extreme relativistic limit, our result is

and 2/w? « 1/¥T. It is natural to expand in the small parameter

AE'SL:O’_". _(f-,;) WM(.O)IZ 5m, :3{__.2 SUJ dw T (QJ)[PM »ZOJ 1‘7 +O(__2£m.—@')]

w 3() ™Me
(10)
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*
) When the £ dependence of Eq, (7) is modified by a factor tg/(t+t,), with

to = (3/<r2>), to approximately account for the dipole retardation, the sum
rule {8} is modified as

[+4]
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Apart from the modulation factor introduced by the logarithm, the sum rule present
in Eq, {10) is just the one associated with the polarizability as the physical pa-
rameter, This does not mean that the static limit has any relevance. On the con-
trary, as we have seen, the lepton precpagation is relativistic. What happens is
that, te ~ 2mew is still very small with respect to nuclear scale and to wz, 30
that the nuclear physics involved is that of real photons. In view of this, we
expect the result (10) to be excellent for electronic atoms. It is remarkable
that hadronic corrections to a higher QED contritution gives such a simple and

reliable theoretical answer for a relativistically propagating system.

If the polarizability shift {(6) is written as

o {2 @
AEiz oC ld}na (0) f C{UJ G}(w) F(M,QJ) (11)
Mo Jwy,

the function F(m,w) is dimensionless and only depends on the ratio (2m)/w.

Although its analytic form is so different for the two extreme situations, given

by

5 = ( 2w i‘i) A 2m 5 @
w* Lﬂ M, * 30 ? ’ w -
and {123
3/2
— <2 m o ™ I74)
Lk ( -?I; ) ;fov“ ‘EIE —

the connection between the two regimes for F(m,w} is very smooth. For the ratio
{2m/w) = 1 the exact value from Eq, (6) is 2,71. The extrapolated value using the
relativistic expression is 2.62 while the non-relativistic extrapclation gives 3.14,

i,e., they are good to -3% and +16%, respectively, at this interpolating point.

3., - RESULTS AND DISCUSSICN

Our results (8) and (10) are the answer for the energy shift in atomic
5 states due to dipole polarizability corrections, The great difference for muons
as compared to electrons comes from the regimes of lepton propagation which is
non-relativistic (but not static) for muons, whereas it is extreme relativistic
for electrens. In both cases, the relevant virtual photon mass probing the nuclear
excitation is given by t ~ 2my, where w is the nuclear excitation frequency.
This is a very small guantity for electrons, much smaller than the inverse size
squared of the nucleus. Thus, the most important nuclear ingredient is the
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dynamics for real photons. As Eq. {4) guarantees the correct low t behaviour we
expect the result (10), which used the unretarded dipcle approximation as an inter-
mediate step, to be excellent for electrons, The accuracy of the regult (8) for
muons is less conclusive. Relativistic corrections are not the problem and they

can be automatically included in our approach. But the values of & ~ 2muw

are not 3o small compared to characteristic momentum transfers for nuclear structure,
The unretarded dipole approximation result should be taken as only an estimate of

the answer. Retardation and the physics of electron scattering become relevant

in a2 more accurate discussion,

The different behaviour of the lepton propagation for muong and electrons
can be understood in configuration space, using time-ordered perturbation theory.
The Green's function for the intermediate state lepton propagation is proporticnal
to

LgAL-Y
S S I R I
E(F) E(f)+w-m E(F)+wrmM)

where i, ; are lepton co-ordinates. For distances larger than the Compton wave-
length of the lepton, the a values are non-relativistic. This is relevant to
the mucnic atom, because w < 2mu. The second term in Eq. (13) is negligible

and one has

¢, -7) o 50041 q ﬁﬁ?l?‘?{ A = m ap{-wlf-?lf
’ o (-7 w+ Py 13- 7]

(14)

‘ 1
with a Yukawa-type propagation given by « = (2mp)}2, Equation (l4) is valid for

|§-_§| >m™t,
For distances smaller than the Compton wavelength of the lepton, one can

use E{d) = q. This is relevant to the electronic atom, because w >> 2m.. Then
both terms of Eq. (13) are equally important. One gets

@© . -~ -
Glw,X-y) o< m Jdg s"“f’(;ﬂ * (15)
0 Ix-yl w+3

For w|X-y| > 1, one gets a behaviour

1

ESk

m
w
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from Eq. (15), whereas at very short relative distances |x-y| < w™! the nuclear

excitation energy is negligible with a propagation

T J
—_—m
< Zx-)/f

The difference between the Yukawa propagation of Eq. (14) and the inverse power
. AT s . .
behaviour [¥-7|72 in the relativistic case is responsible for the answers we

have obtained in muonic and electronic atoms.

We have evaluated the sum rules using Rinker's parametrization 5) of the
experimental photo-absorption cross-szection in  “He. For muons, this can be com-
pared to the realistic accepted value of -=3,1 pev (with uncertainty of about 20%)
to elucidate the relevance of the real photon sum rule (8). The absolute value
given by Eq. (8) overestimates the detailed predictions by about 50% *). Recently,
the charge radius of !2C has been determined to high precision independently by

9} : ‘o 10)

electron scattering and muonic X-ray transitions . For the interpretation
of the muonic experiment, it is imperative to include the polarizability shift,
On the basis of Eg, {8), corrected for finite size effects, we estimate it to be

about -1.8 eV.

The polarizability shift in electronic atoms is small due to the pro-
portionality to the electron mass. The logarithmic factor within the polarizabi-
lity sum rule of Eg. (10) only compensates part of the mass factor, For l+He,
we get 0128/0 - ® 5, where cigg is the sum rule appearing in Egq. {10}, It
is interesting to compare the polarizability shift in electronic atoms to the

finite size shift due to¢ the nuclear size. This is given by

{0 2T 2
= B 0) 16
aEgs = (5)2 T o Y,( I (16)
=0 2=0 -4 y + s
and we get AEpol/AEf s = Byl for the (e'He) system. The variation of

the relative polarizability shift with A is very weak throughout the pericdic
system, In heavier nuclei, we have estimated them to be about —{1-2),107"

compared to the finite size shift.

——— - - - el it e e e e ot . e S o e S R e

#)

See footnote on p. 5. With the finite size modification, the result of the sum
rule (8} would be decreased by about 40%, indicating that this effect is the
main remaining correction.
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