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ABSTRACT

The leptonic sector of the electroweak theory is analyzed
for massive Majorana neutrinos. For n generations, the
Majorana mass Lagrangian is diagonalized using the pelar re-
duction to guarantee physical positive masses independently
of the CP properties or the choice of the phases of the
fields. When CP invariance hclds, the CP eigenvalues of
the definite mass neutrino fields are determined without
commitment to aparticular phase choice. For charged current
interactions, we find that the observable CP violating pha-
ses can be parametrized a la Kobayashi-Maskawa for the
vertex. Extra (n-1) relative phases of the massive neu-
trino fields are significant. The extra phases are chser-
vable only in processes mediated by "neutrino-antineutrino"
propagation and therefore proportional to neutrino masses.
We discuss the informational content of the relevant
processes.
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1. - INTRODUCTION

There is at present a big effort to look for neon-vanishing neutrino
masses l). From the peint of view of the fermion content, the most economical way
to generate neutrino masses is a la Majorana. The standard electroweak theory,
with the minimal Higgs doublet, cannct accommodate massive Majorana neutrinos. A
simple model that gives a Majorana mass to neutrinos is the standard model with a
Higgs triplet in addition to the usual deublet 2). Most of the grand unification
schemes lead to SU(2)xU(l) at intermediate energies, so it is interesting to in-
vestigate the properties of the leptonic sector of the theory within the standard
scheme, only nmodified by Majorana neutrino masses.

3)-5)

Several authors have noticed that, after the dizgonalization of

the Majorana-type mass terms, the leptonic charged current contalns mere CP
violating phases than the ones discussed by Kobayashi~Maskawa 6) for three gene-
rations in the quark sector. These additional phases are characteristic of
Mzjorana neutrinos and stem from the fact that the phase of the massive Majorana
field has been fixed to satisfy the condition v(x) = wix) ¢z GTﬂETq, i.e., a

real field in the Majorana representation., Wolfenstein 2

has pointed out, how-
ever, that in theories with CP invariance the relative signs of the CF eigenvalues
of the massive Majorana neutrinos are significant. For different CP eigenvalues,
the corresponding Cabibbo matrix for charged currents would have relative phases
/2 in the above treatments, so there will be relative imaginary couplings for
the charged current weak interactions. Instead of being a maximally CP violating
interaction, as sometimes referred to in the literature, this situation corres-
ponds tc a CP invariant theory. Therefore, with the choice v(x) = v(x)¢ one has
to analyze whether the extra phases of the charged current interaction are a true

signal of CP wviolation.

Usually, the Majorana mass matrix is diagonalized using a congruent
transformation with a unitary matrix. In this case all phases of the unitary
matrix, and therefore the phases of the physical neutrino flelds, are fixed by
the requirement that the mass eigenvalues be positive. This immediately leads to
situations, such as the one discussed by WOlfenstein, in which the phases appearing
in the couplings of the leptonic fig¢lds to w* have nothing to do with CP viclation.
In this paper we propose a different scheme which guarantees diagonal positive
masses without commitment to a particular choice of phases for the physical neu-
trinos. In Section 2, we diagonalize the Majoranaz mass matrix using the polar

reduction and a similarity transformation with a unitary matrix and we obtain
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the physical neutrinc fields in terms of the weak interaction current fields, The
phases of these massive fields are linked to the arbitrary phases of the unitary
matrix of the similarity transformation, The transformation properties of these
Majorana fields under discrete symmetries are then discussed for arbitrary phases.
Section 3 particularizes to the CP invariant case, showing that the obtained phy-
sical fields have CP eigenvalues determined univocally by the same procedure that
diagonalizes the mass matrix. We then have physical neutrinc fields with definite
positive mass and definite CP eigenvalues without using a particular choice of the
field phases. This freedom is used in Section 4 to reduce the CP vieclating phases
of the vertex for the leptonic charged current as is conventienally done in the
hadronic sector. The resulting (n-1) relative phases of the physical neutrinc
fields-are, however, observables in those processes of neutrino-antineutrino pro-
pagation mediated by the mass term in the Lagrangian, Furthermore, we explicitly
build the relevant propagators and the amplitudes associated with the rhysical
observables. In Section 5, some discussiocn and the informational content of the
corresponding processes such as (R decay, u_ > et conversion or neutrino-
antineutrine oscillations are given. Some necessary properties of matrices are

included in the Appendix.

2, -~ MASSIVE MAJORANA NEUTRINOS

The fermion ccntent of the theory is the left-handed doublet {u',z'}L
and the singlet &1. Because of CPT invariance, the corresponding conjugate field
vi* also appears. The most general mass Lagrangian which is gelf-adjoint and
invariant under proper Lorentz transformations, is

A R LR LSO S CH A A RS
(1)

where the matrix € satisfies
-4 T -4 + # T
-gYF-ﬁ =-yH , =€ =2 ¢ =-¢" =- € (2)

Without any restriction, M' can be taken as a complex symmetric matrix
M' = M'T. Assuming that M' 1is a regular matrix, we then write it, using the
polar reduction, as

t o - 1 '
M'= MU Mz VMM o)
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where M is the unique square root of the self=-adjoint positive definite matrix
M‘M'+, and U is the unitary matrix given by U = M~ !M!', In our case, the sym-
metry of M' implies (see the Appendix)

U = U7 (4)

Let us consider the positive definite matrix M, Its eigenvalues are

real and positive, and it is diagonalized by a similarity transformation

M= S$STD S (5)

where the unitary diagonalizing matrix is built as [s*jik = n(k)x(k) where
xik) is the 1

component of the eigenvector associated te the

(k) eigenvalue,
which for simplicity sake, we will assume to be non-degenerate,

Notice that the
n(k) are arbitrary phases of the diagonalizing matrix S,

once a choice of xgk)
is made, whereas U

is completely fixed when det{M'} # C.

Using this procedure, the mass Lagrangian of Eq. (1) becomes

T + [ + + : *
.0 = .;3 (vl £S"DSU V‘L(x)-é[\),_(x)] £UTSTDS [u,m]m
Let us define the physical Majorana neutrino field as

vi{x)=z S U U:_Cx) + S Yolg [.V:_(")]x

= SU IJ:_(K) - S € V:_(x)-r (7}

with the desired result

[ x)=-1 D0 D wix)

{(8)
2

As seen in Eq. (7), the phase of the massive field is linked to the
(arbitrary) phase n(k) of the diagonalizing matrix 8.

In general, v(x)
and v(x)¢ = (3vfx5T are related by

V(x) = - SUST v (9)
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We show in the Appendix that SUST is a unitary diagonal matrix of phases, so
that the n relations (9) are decoupled for each massive neutrino. Of course,
cne could adjust the phases so that the usual convention for Majorana fields is
obtained, corresponding here to the condition SU = -S¥. This is, however, un-
fortunate because the matrix S will appear in the generalized Cabibbo matrix
for charged currents {see below) and it is uncontrollable whether these phases
are genuine observable CP violating phases. We prefer to keep the Majorana field
with phases, as given by Eq. (9). In fact, it is immediate to see that the CPT

transformed field of v(x) 1s precisely

[SUSTIT: & v° ve-x)

(10}

(¢TP)v(x) (¢ P)“‘: R4 [V("x)l*

1]

where © satisfies

Z\(}* Z_J-.-.Y/“T , & = Z’J;Z-r:—é*:-'c-r (11)

Equation (10) defines the Majorana field for physical interacting neutrinos. The

phase relation between v(x) and v(x)® that we impose for the Majorana field is

the one coming out when the free field is explicitly written as

(x) = $ j“’“P Z w{*,k)a(?,l)e'sz—b wc(*,k)a.'*(",k)eipx
' @y E@) > { ¢ | pir ¢ (1.2)f

with uS(p,n) = (BGT(E,A) and we allow for arbitrary phases ¢ and wo. The
field (12) satisfies y(x) = (w¢2)w(x)c, s0 we see the meaning of the diagonal
matrix SUST appearing in Eq. (g).

We are interested in the Green's functions associated with the Majorana
neutrinc propagation., Using conventional terminclogy, the "neutrino-neutrino™

propagation is given by

S(p) = i fd'x e Pco1 T (40 Foy) oy = L2 (13)

P -m*+i €
as for Dirac particles. . The new ingredient for Majorana particles is the
"neutrino-antineutrino™ propagation given by

L d

S( jd“xe Ol TP () ¢)T) 10> = - ((pd:‘)_..._.___
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proportional to the neutrino mass m, Unlike (13), the propagation {(14) contains
the product of phases ¢ times ©¢ of the phases present in the field (12). For
our massive neutrino fields given in Eg. (7} for n generations, the set of

phases -{(®$?) are the ones of sus?.

3. = CP INVARIANCE

If we assume CP invariance, Majorana neutrinos have definite CP eigen-
values. How do they appear through the diagonalization? Which eigenvalue cor-
responds to each generation? Given the current neutrino field ui(x], we know

from CPT invariance that the CP transformed field exists and we can write

(cP) vix) (ePY? i B LY (=%, -] (15)

where B is a diagonal matrix of phases, Under the transformation (15) of the
current fields all other terms of the Lagrangian, including the interaction, are
invariant. The condition that the mass Lagrangian (1) is also CP invariant

implies that the mass matrix M' has to satisfy the hermiticity condition

(s M)T - & M (16)

The condition (16) translates equally into the unitary matrix defined by (3),
so that

(su)t = BU
{17)

Using Eq. (15), the massive neutrino fields (7) are CP transformed to

(cP) wix) P) 1 = -l y° SUBSY v, -X) (18)

Because SUBST is a unitary and hermitian matrix [%ee Eq. (17[] we are able to
prove in the Appendix that it is a real diagonal matrix of elements +1 and/or
-1. Thus the diagonalized fields <«{x) have definite CP eigenvalues given by
-suBst., In terms of these CP values, the massive neutrinc fields (7} can be

written, using (17), as

oy = (5U) VL G0 s (sUBST(SUIBY ELvLeIT
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whose meaning is immediate as a combination of one field and its CP transformed
with relative sign as given by the resulting CP eigenvalue in (SUBS+). Notice
that these CP values are independent (as it should be!) of the choice of phases
made in the diagonalizing matrix S or, equivalently, of the phases choice (p4¢?)

of the massive Majorana fields. An analysis of the phases present in the eigen-

vectors xik) (see above) shows that
($87ST);; = -8, PO @ (20
¥ TR
{1) : T + +.,T
where the n are the arbitrary phases. Consequently, S8US = (SUBS™)(SE'S")

implies the connection for each massive field

<?¢z)k - (?(u)*)z, cécp)k (21)

4, - CHARGED CURRENT INTERACTION

Let us now consider the charged current interaction for the leptonic

sector

- 3 —T-'-—-- P ' + ! ’u b
[ s =iy L () WF (x) + b () yP v x) MJ)‘(x) (22)
Assuming that the charged leptons have already been diagonalized, with all the
mixing coming from the neutrino fields, the zbove Lagrangian is now written in

terms of the definite mass neutrino fields as

[ )= 3;%”5 {960 ULy LN ) B0y (1 U500 W, 09}
(23)

(L) £ SU 1is the generalized Cabibbo mixing matrix for the n generations

(L)

where U
cf the leptonic sector., How many parameters appear? The unitary matrix U
has in general (n-1)n/2 moduli and n(n+l)/2 phases whose number is, by rede-

Finiticon of the unobservable phases of the charged lepton fields, reduced to

-L (M -'-‘) n MOJv\Lt& y _‘__ (M"‘) M PLQ-SQS (24)
2 2
Are all the remaining phases observable CP violating phases? If the phases of
the Majorana neutrino fields were all fixed by the condition —SUST = 1, the

n(k) phases of 3 would be fixed automatically with no freedom left in the
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L)

vertex matrix U( . The result would be given by Eq. (24), with a parametrization
as presented by other authors 4)'5). With this strategy, the problem which remains
is to understand whether phases different from O or 7 correspond te CP violation.

Qur equation (21) for a CP conserving situation shows that this is not the case. In

fact, if -SUST = I, whenever one has CP eigenvalues with opposite sign for the

massive neutrinos, there will be relative phases 1 among the n(k)

and they are translated into the Cabibbo matrix U{L). We prefer a different approach

already fixed

in which the phases —SUST are not fixed from the beginning to be +1, This method
will allow & clear-cut distinction between the CP invariant and CP violating

gituations.

The natural arbitrariness in our method to diagenalize the mass matrix

corresponds to the n phases n(k) of 8. They are used to absorb phases of

U(L) by an appropriate choice. In this way, the different Majorana fields have dif-
ferent phase choices, but the vertex for charged currents is given by the Kobayashi-
Maskawa description for three generations, Our parametrization in order to consider

a CP violation scenario is thus the following :

(L) (n-4) n wodu by

U —>

Lol gl

(n-2) (n-1) phases

@ .
tn-4) pkases og the N@#of@mq, §;ekd5

What distinguishes Majorana fields from Dirac fields is that the last (n-1)

{25)

phases of Eq. (25) are, a priori, observable. Notice that the "neutrino-anti-
neutrino" propagator {14) contains the phases given by‘ SUéT and they cannot
be adjusted anymore, On the other hand, the recipe (25) emphasises the fact that
the additional (n-l) phases are only observable for these processes which need
this characteristic propagator for Majoranas, the amplitudes of which all vanish

with the neutrinc mass.

Two comments are in order. First, the (n-1) relative phases of the
Majorana fields can be complex and a signal of CP violation. This implies the
possibility of having CP violation for two generations. The amplitude of a pro-
cess in which the leptcon QE converts into a charged lepton 2; is determined
from Egs. (23} and (14) to be

. ” " M
v - ¥ (g e7) ()
)((Eé_,Q;)z—Z.U:. w Y X Uk\ (26}
L3 + lo"-mf+u€ 4
so that the complete set of parameters (25) is relevant. This is in contrast with
the processes in which a charged lepton 23 finishes as a charged lepton 2;

for which the amplitude is given by



Yy — 4 " ki 2. 2. ¢ %4 (27)

(L)

5o that the parameters of U enter, but not the additional (n-1) phases of
the fields, Processes governed by Eq. (27) are the ones allowed for massive Dirac
neutrinos. The CP vioclating information contained in these neutrinco-neutrino

8)

oscillations has been discussed by Cabibbo .

Second, the set of phases (25} describes CP violation in the sense that
values different from 0O or w are not reproducible in a CP invariant theory.
It is a simple exercise, using Section 3 of this paper, to see that the choice of

phases 1'% of S that makes U'L)

a real matrix leads to phases of the
Majorana fields that are relatively real and given by their relative CP eigen-

values. Equation (26) for the Rg - QI amplitude becomes

X (1

- (L) L)

+ -

é‘ —y gt) = 2. Uki Tl CécP)_k_ U ké. (28)
. [92— W1: #L € '

only depending on the (n-1)n/2 angles of the orthogonal Cabibbo matrix U(L)

and the (n-1) relative signs of the CP eigenvalues of the Majorana neutrinos.

5. = APPLICATIONS

The conclusion of this study is that, in the presence of CP violation,
there are (n-1) additional phases in the leptonic sector for Majorana vautrinos
which are, a priori, observable. They add to the well-known Kobayashi--Maskawa
phases. Although in the observable quantities [See Eq. (26)] these additional
phases can be moved from cne place to another, we find it useful t. describe the
situation saying that the ({(n-1l) relative phases of the Majoranas filelds are
cbservable. This pecullarity is asscciated with the mass Lagrangian of the thecry
and is a consequence of the mass insertion present in the veutrino-antineutrino
propagation. Outside this phenomenon, these phases are irrelevant. Notice that
when we talk about the relative phases of Majorana fie'ds we refer to the combi-

nation {p¢?) of Eq. (12) which connects P{x) with ${x)° in each generation.

Assuming that only two of the n gereiations were coupled, parametrizing

U(L) with a Cabibbc angle 8 and putting tle relative phase o between the two

Majorana neutrinos, Eq. (26) gives



X, wst@ + e X, sin (X, - €7 X,) sin® s

3 ' . oo :
X (x, -et¥ X,) sinb cos © X,sin?6re X, sin?0
(29)

where X, £ mi/(pz-m§+ie). When the neutrino masses are neglected in the deno-
minators, with respect to the momenta, the amplitudes for these lepton number

violating processes become

-

v & .
ﬁ ﬁ - olecm-\/ : m, coszg + € mz..SunZQ

‘ of ‘
/J+*Q- conversian ! (m‘ - eb mz) sin @ ws & (30)

which, for o« = 0, 7, vreduce to the CP invariant case, It is worth noticing
that, for nearly degenerate massive neutrinos with equal CP eigenvalues, the

T et conversion tends to cancel. When there are two degenerate neutrinos

with opposite CP, they can be combined to form a Dirac neutrino for & = m/4.
Although this Dirac neutrino deoes not correspond to the ones associated with

each generation, we see that BB decay would zlso disappear in this limit.

The W = e” conversion, however, would remain as a peossible process. The same
matrix (29) of amplitudes X is responsible for the so-called neutrinc-antineutrino
oscillations described by the fellowing situation, If, at time t = 0, an "anti-
neutrino" is produced from a charged leptcn QE with definite momentum, what is
the probability that at time t > O it would behave as a neutrino capable of
producing a charged lepton RE 7 The amplitude is proporticnal to

T B ow, UU-)*.

é“ o ™ © e kg (31)
which, for two generations, reduces from the parametrizaticn (24) to the following
results, The probability that, if at time t = O it is produced by an e+, the

neutrinc is able, at time t, to produce an e, 1is given by

P (e* E—!» e-) = ™MaM2 { M cosqg + Mz sin"@
E* My ' m,

+ j.f/ st 28 cos [fE“Ez)t *‘“] f (32)

Analogously, the probability that at time ¢t the same neutrinc will be able to

produce a |~ 1s given by
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pler By ) = mamts L Sin2 36 { M, M
E? 4 ™ iy

- ¥ cos [(E, - Ea)t +°(]f
(33)

Formulas similar to the results (32) and (33) have been given by Schechter and
Valle 9)
reproduce a CP invariant theory, With the CP violating relative phase « given

y but their CP viclating phase would have to take values 0 or w/2 to

by us, the limit values O(m) correspond to equal (opposite) CP eigenvalues of
the physical interacting fields, leaving {(changing) the sign of the oscillating

function with time.

To summarize, the leptonic sector of the electroweak interactions is very
rich in new phenomena when neutrinos are massive Majorana particles., With respect
to the CP properties of the theory, the relative phases of the physical inter-
acting fields are observable when a neutrino converts into an antineutrino accom-
panied by flavour viclation, This is manifested in Eq. (10) when relating the
field to its CPT transformed., When these relative phases of the fields are taken
into account, the flavour violating vertex for charged current weak interactions
can be parametrized as for the hadronic sector of the theory. The CP invariant
limit of the theory is recovered when the relative phases of the physical fields
go to signs describing their relative CP eigenvalues,
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APPENDIX

In this Appendix we collect some properties of matrices needed to develop
Sections 2 and 3 of the paper.

1) Take M' = MU ['_Eq. (3)] with M‘T = M'. The square root matrix
M = J!Wt m't (4.1)
. 10) . . + . .
is a polynomial in M'M?! uniquely determined
RN |
M= 2 ¢y (M'M'Y) (4.2)
o

The unitary matrix UUT = I then implies

1 -4
T e, cp (M mreyxrPot (4,3)
'

If we calculate U+UT we get

I]-+ LI'T . Ca(C:g ('wl N1r+) o +r5#1

x, 6
T

when using M'" = M'. Then UT = U.

(ACQ)

2) The matrix A4 = SUST

is the one which connects {(see Section 2) the diagonalized
field v{x) with v(x)c or, equivalently, w(x} with its CPT transformed. As
UT = U, we see that A is a unitary symmetric matrix. Using the fact that 3
diagonalizes M

by a similarity transformation, we have

M'=MU = UMT =

U M* (4.5)
and
DA = DSusT = SMs*suUsST - g M'sT
AD =.SUSTD - SysTs*mM*sT =sM'sT (1.6)

so that A is a diagonal matrix, as SM'ST. This completes the proof that A is
a diagonal matrix of phases. As we see, it is the matrix DA = AD, the one obtained
by diagonalizing M' by a congruent transformation SM'ST.
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3) The CP eigenvalues of the physical neutrino fields (see Section 3} were
determined by

¢z sugst

(A.T)
which is a unitary self-adjoint matrix, because (us)¥ = UB, Apart from that, we
have

DC: SMsS*SyBSt = S M'BST
¢D = SBYytstsMst = SB8*MTsT =g M BST (4.8)

so that € is a diagonal matrix, as S(M‘B)S$.

This completes the proof that C
is a diagonal matrix cof signs.

On the cther hand, we see that the matrix DC = CD
is the one obtained by diagonalizing (M'B)

by the similarity transformation
s(M'B)s*.
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