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ABSTRACT

We study muon capture rates in light nuclei and
show that one can evaluate them in a model independent
way by correcting the-Primakoff closure approximation to
the first order in the neutrino energy dependence. In
this framework the interplay between the existence of al-
lowed ‘transitions and SU(4) breaking 1is analyzed. In
the correction to the first order in the neutrino energy
dependence by a sum rule, Majorana and SU(4) breaking
potentials are taken into account. The method 1is also
applied to single multipolar transitioans, in particular
for the dipole +transitions. Geuneral considerations are
illustrated for 6Li and 12C‘ by explicit calculations.
The stability of the results varying‘the mean neutrino
energy allows to use capture rates as a very sensitive
tool to investigate the configuration mixing of the target
because we connect the corrective term to spectroscopical
information using directly the matrix elements of the ef-

fective potentials.
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INTRODUCTION

The problem of explaining the phenomenon of muon capture into the
general framework of a universal theory of weak interactions has been the
object of many theoretical works. Most of them study total and partial
mucn capture rates. One can consider total capture rates of selected
nuclei, usually lighter nuclei, where a particular model may be employed.
In general this use of model wave functions is the main source of trouble
in the interpretation of muon capture. In order to minimize these effects,
as far as total muon capture is concerned, a useful approximation is to
use closure ! which reduces the model dependence to the knowledge'of the
ground state of the nuclear target and has as a free parameter the mean
nevtrino energy V¥ « The choice of this parameter is critical because the

dependence of the result on it is very strong.
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by a first order expansion of the capture rate around v . One of the

A way out of this last problem has recently been suggested

corrective terms involves a sum rule derived from the double commutator
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which has been used in previous works in the particular case where no
exchange potentials are present in the Hamiltonian H. We stress that this
is a more restrictive requirement than that of SU(4) invariance. Indeed,

Majorana exchange potentials break the theorem 4)
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without violating SU(4) symmetry.

The results obtained in Ref. 3) allowed to conclude that the method
is successful in obtaining independence on v over a large zone of plau-
sible values. In this paper we are interested in the extension of the
study presented there in order to include the effect of the residual inter-
actions on the different terms. In Section 2 the method is revised, and its
application to single multipolar transitions is pointed out. This is

illustrated in the case of 6Li, for which we know 3) that the IS coupling
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works. The effects of the various potentials are present in the main term,
usual closure approximation, through the complicated structure describing
the ground state, such as configuration mixing. This is studied in Section
3, where the case of 12C is worked out, using the wave function resulting
from effective interactions in the 1p shell 5 . In the framework of SU(4)
symmetry higher supermultiplets are admixed to the supermultiplet to which
the ground state belongs. As a consequence, allowed axial transitions are
present. Of completely different origin are the transitions which arise

in non-scalar supermultiplets, like 6Li—+6He, even neglecting SU(4)
impurities. The corrections to the sum rule (2) are studied in Section 4,
where central, single particle spin-orbit, two-body spin-orbit and tensor
potentials are included. We show that in the limit of short range the
expected value of tlie double commutator (1) can be written in terms of the

effective potential matrix elements. The corresponding calculation in
6. 12

Li and C is presented. Finally, Section 5, gives some results and
discussion. It fturns out that the predicted capture rate is extremely

1
sensitive to the configuration mixing in 20.

ZERO ORDER AND FIRST ORDER ENERGY WEIGHTED SUM RULES

)

The usual closure approximation consists in reducing a complicated

energy weighted sum rule to a zero order energy weighted sum rule in the

hypothesis that the excited states may be approximated by a complete set.

The tool for this simplification is the assumption that the neutrino energy

V., o each channel may be approximated by <iéb3>5 V. Of course this

procedure suffers of uncertainties due to the ambiguous physical meaning

of the last parameter, so it has been suggested to expand in first order

the enersy dependence, l.e., take into acccunt zero order and first order
. )

d sum rules Cleariy this procedure may be pushed

enieryy v

further isher orders (conversing therefore to the exact result), but

gince already in tie first order independence on the specific value of the

mean neutrino enersy is obbtained, within a larre ranze of plausible values,
we malntain the expansion up to the first order. In the notation of Ref. 3)
' dAslasb) i 3
A las lo) = /\,(Qab)i + X7 \VQB-U> (3)
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Summing over final states b> assumed to form a complete set we get

(4)
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where the relation vab::m-(Eb—Ea) is used for light nuclei (m is the

muon mass) .

As is clear from (4), studying AIK V) the properties of the
ground state are involved whereas in the last term also the explicit
dependence of the Hamiltonian on Majorana and su(4) breaking potentials

are important besides the kinetic energy contribution given by the theorem

(2).

We note that the same procedure may be repeated for single multi-
polar transitions. "Also in this case one can make a closure approximation
and a correctior of the first order to it. Clearly, if a single multipole
is assumed to be resonant for some excitation energy <Eb-Ea>n: w and,
therefore < b;b>>:m— W, the corrective term which is left after the appli-
cation of the theorem (2) corresponds to shift the center of the resonant
strength due to residual interactions 6). We are going to apply the
method to study the dipole (%=1) contribution to muon capture by 6Li,
for which we assume a pure LS coupling. Then the vector and axial contri-

butions are equal, and proceeding in the same way as in Ref. 3) we need to

calculate for the main term

=1
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which in our case turns out to be

(6)
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where the radial integrals are given by

w .
Je (x) = 5\ dv +? 1?:'(1’) ae'&(vf)

@0 . (7)
I (x,y) z £ de 2 R, (¢) Wy(v) Je(")

We use for these ones the harmonic oscillator wave functions with parameter

b=1.98 fm.

For the corrective term in Eq. (4) we take only the kinetic energy
contribution, Eq. (2). By using the gradient formula we obtain from this

theorem

£ fe i)+ L)+ a o)+ 2 Jz‘f“)g

4=
In Fig. 1 the dotted line gives AIK V) 1, Eq. (6), as func-
tion of x= ¥/m, whereas the broken line is our prediction for the dipole
contribution to the muon capture rate. We see that the result is quite

independent of x, and we obtain Arz =0.208. Comparing this with the

6 :
total experimental result 7) Adf Ti) =0.27% £0.057, we conclude that the
dipole transition is dominant. The corresponding value of the average

uﬂ::j is about 90 MeV, which is not too high since the peak energy in

photo-reactions is about 15 MeV 8). Furthermore, in Section 4 we discuss

some corrections which would enhance the mean excitation energy.

CONFIGURATION MIXING EFFECTS IN THE GROUND STATE

3.1 Foldy and Walecka 9) studied the properties of the correlation

functions DS 7.1 and found that for nuclei whose ground states (L=0,
9

S=0, T=0) belong to a scalar supermultiplet of SU(4)

D, (W) = D, ) = D, (v) (8)

We now investigate in some detail the mechanism through which the previous
relation may be broken for scalar supermultiplets, which have SU(4)

impurity admixtures, emphasizing the difference between this mechanism and
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the allowed transitions present also in the SU(4) 1limit in other nuclei
whose ground state is not a scalar supermultiplet, e.g., 6Li with ground
state quantum numbers (L=0, S=1, T=0) which belongs to a (100) multi-
plet. For nuclei whose ground state is a pure scalar supermultiplet there
are only forbidden transitions, so that the presence of allowed transitions
means inequivocally the existence of impurities in the ground state, e.g.,
(110) or (200) supermultiplets are admixed to (000). Due to the goodness of
isospin we assume that only T =0 admixtures are present in the ground
state, so that only axial or pseudoscalar allowed transitions are present

as a consequence of SU(4) breaking. These transitions have as a counter-
part M1 transitions in electromagnetic interactions between isospin rotated

states (analogue states).

The most important difference between DS and DT’ DL is that

the latter get contribution from allowed transitions, i.e., in closure

approximation from

<a | ‘2} zd-" r T 0 <{'o(wr‘,-) J',,(w;))a,>

while D does not. Once these allowed transitions are subtracted other

S
differences remain as e.g., the difference between DT and DL for values
of V £0. The combination ZDT«FDL only depends on the scalar product
> =
ij 05, however, individually DT and DL can be written as proportional
to

0 o
Z e (e [ne 514, (9
td

0

o
' ;#J (-]
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The second term in (9) will give a non-vanishing contribution only if the
ground state has some component for which 5S40 and TL#0. In other words,
S=0 or L=0 dmply DTzin in closure approximation. This means that
S£Z0, L#0 in the ground state acts itself as a SU(4) breaking spin
dependent effect even if in the corrective term of (4) only the kinetic

energy contribution is taken.

On the other hand, the ground state of 6Li can be pictured as a
core of 4He plus two nucleons in L =0, S=1 state. The fact that
L=0 forces the second term in (9) to be zero so that DTz:DL. Further-
more, +the dipole contribution becomes the same for DS and DT as was

commented in Section 2, and for the allowed (ﬁ::O) contribution one can
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demonstrate the validity of (8) provided that the transition to the ground
state of 6He is subtracted. This last point is immediately clear from

the fact that the square of the matrix element of the partial transition

Y - . 2
< Pz(uo, S:O,T:l)[ Z-; Z: GL.JO (Vf;)le(L-.o' s:‘,T=0)>I

2 =
is given by 2/3 Io(p). If this quantity is subtracted from ,AI(‘V)z 0
then the vector and axial contributions become equal [éee Eq. (13) of

Ref. 3)].

We remark that in general one should not identify allowed tran-
sitions with the ground state-ground state transitions [Ehis is true in
the SU(4) limit between states within a Supermultiple{]. Indeed, let us
take e.g,, 120. The equality holds only if 120 is described in jJ
coupling without configuration mixing and the same for 12B ground state.
Then effectively the latter is the only state which contributes to closure
in the limit V -0. With configuration mixing the previous relation fails
as we shall see below.

1
3.2 For the calculation of D in 2C we use the fact that only

S,T,L
the scalar part, under O(B)><SU(2)T, “of the operators contributes. Then,
for the eight 1p nucleons the expected value of a two-body operator can be

written as

P m)u: §,d|,= (0)>=28 2 2 [p Sta) ]y 42 @) p2lo0)]
¥J1f2d1f2

X [p‘(c{)‘{; J.;(M)IPQ(DO)J < Jlaol'z («) | fn.lJ'; J:'L (M)> ve)

and, for Jj,#J, or/and j%;éjé, the antisymmetric character of the states
will be introduced by hand. The two-body coefficients of fractional parentage
are the only nuclear model dependent quantities. We are going to use the wave

function

IPS’(M» = (y lp,,f_) + Czlpg,i (40) (ac,f(lo)>+(.‘3 | m,i(ol) P‘/i(o ) »
1

+C lpsalid) Put (44)>+ Colpastoo) pyg (00))



where the amplitude values are obtained from effective interactions in the

1p shell 5).

In terms of the radial integrals Iz(x,y) defined in Eq. (7) we
obtain, after a tedious calculation, the results presented in Table I. We
see that the coefficient of Io(p)IZ(p), which is a pure tensor under
spatial rotations, is vanishing for D and 2D 4'DL’ as shown before

S T

in general. Furthermore, the 4 =1 contribution is the same for D D

SR
and DL.

If the harmonic oscillator wave functions, with parameter b=1.66 fm,

are used, the results of Table I for DS 7.1, become of the form
bl

112 2
3 L v

:DS,T,L(V): e- { ¢, *ci(% lozvz)'l-@z (-2{ szz)zg (12)

where the corresponding C! values are given in Table IT.

The allowed contribution in the limit V-0 is then
A, (v50) = (2) (8 +¢c) 0.083 (13)
(Ve = (m) (B+cC .

which is higher than the one deduced from 12C—+12B(g.s.) for which

A (s 80350 3y (84c)0.064 (14)
L2 (p) ™

This shows that the strength of the 0t > 1" +transition is also contributing
to other states in 12B different from the ground state. In Fig. 2 the
dotted line gives the value of /\r(\)) as obtained from Eq. (12) and Table
II and then the VY -0 Dbehaviour is governed by (13). The broken line is
instead AI( V) obtained when the value (14) is used for the ¥V-0

limit. In the zone of V- values in which we are interested the difference

is only of the order of 6-Th.
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The situation describea above is in contrast with the simple jJ
coupling, where all the strength is given by the ground state transition,
but its magnitude is too large by a factor 5: 0.064 becomes 0.297. In
all cases the presence of this allowed transition indicates a su(4)
breaking effect, because in this scheme 120 should be a scalar supermul-

tiplet.

FIRST ORDER ENERGY WEIGHTED SUM RULES

4.1 The problem of studying the part of the. capture rate that involves
a first order energy weighted sum over excited states |b> in Eq. (4),

involves essentially two sum rules

N .
vV Y

: 2
Z(Ep-E) kbl Zr e Yla>]
b b ) * { (/]5)

. -
;:tiy

Z_(e.,-ea}wblf- ¥ o e la>|®

b

if we neglect here a possible difference between DT and DL about which
we have commented in the last section.- We can take advantage of the following

sum rule

+ R . 2
i¢allo EH 00 ]la)> = X (Ey-Ea) [<blola>] (16)

which holds if

l<blotias* = J<blolay(® (17)

In our case

oy
- .v.‘«“d-
0 - 22 Z; € (<$')
; | 4

The plane waves do not give trouble assuming |a:> and [b3> to be eigen-
states of the parity operator, but we have to limit ourselves to T =0
nuclei in order that (17) be satisfied. Indeed for N>Z nuclei,
T::—MTzz(N—Z)/Z, ¢t~ excites only T+ 1 1levels while v excites T-1,
T, T+ 1 levels. So for N>Z nuclei we cannot use the previous sum rule

(16) but instead



callo* wlolad = Z (£,-Ea) I<blola>]’ (18)

and we note that (16) contains two-body correlations while (18) contains
also three-body correlations. One can avoid calculational problems by
connecting muon capture to the T +1 fragment of the electromagnetic

excitation, the relation is given by

- 2
leTed, Mp=-T=4 | Z ¥ 01T , M =-T >l
.

= T—.%'l [¢T+4, MT:-T[Z‘:'_ t3|-' O;IT, MT:-T>[Z

We are going to study (16) for a Hamiltonian H of the form

H:‘Z f: + Z \/(1’") +ZV3(1‘;-)P-?--
vey d ‘d i<4

% -7: «.(‘} ;4&

i) PR .\ P
Vitry) +£{V () B

=~
+ 3 0sp e i—f:-J(X*'Xch:)("’;J XE*TJ)(5Z+5§> (19)

(3

+ Z (Ve (1) 4 Vra ) BE) S
“J 4 d

where PX P

b4
137 i
operators respectively, and Sij is given by

G
and Pij are the space, isospin and spin exchange

- et - - 2 - -’
S;d' - 3 (ci‘f‘é)(%'f‘{)/ﬁj - 0';.0'4
For simplicity we give before only the results for the central potentials

and single particle spin-orbit potential. Denoting by KV the quantity
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we have that the contribution coming from central KZ

and single particle
v
spin orbit Kﬁs potentials is

--~a<a,l.§i(1 cos ¥ "a)“ tdz? )[P V(‘d) ? V(r)]la.)

(20)
v

It should be noted that the sum effectively runs over neutron-proton
couples.

Analogously, when the o 's are introduced in the operator, we
y o

have

A ;S o> = &
Kfn(u z- <al§§§. ?;.s;h&;’__v )l+:t¢(‘ “Wfd)(l oz.";)Pb'.r

\q —3- ‘J

'l"ZlZ.V(fq) _——_#(l- P d)(l+w$vr )'P

o.(d (21)
‘%Z_V”(r‘)(l~¢:.’_§d wsvn)((-t{‘c%)‘f";-
i 4 3 1 4 4
+v 2 V(s {-cosv.r -3 ‘E_’_.‘F P la
% () (- ot T (123w ) By e >
In the limit of short range 33¥ij—+0
v v
KC+K£4 =0
(22)

3,3 &
K, +Ke4~-<a.l 72:0 .S -«&Z(l 435 )(1- 4}[\1(‘4) ?;J]lq)
-
We note that the limit v - rij—+0 for (21) is equivalent to take e u°ri—+1,
so that this approximation connects the corrections to closure approximation

to allowed Gamow-Teller transitions. From the above formulae one deduces

that Wigner + Majorana potentials, which are the most important ones, do not
give any contribution if the last one has zero range, i.e., of the form

S (rij). This property holds both for T=0 and T#O nuclei since it is



- 11 -

related to the single E%I{] commutator. This depends on the fact that in
the zero range case Wigner+Majorana potentials behave effectively as a Wigner
local potential. Since the effective internucleonic potential is not so well
known in its explicit radial dependence it does not seem reasonable at the
present level of our calculation to perform detailed evaluations which

would be model dependent anyway. On the other hand, the short range limit
can be related directly to spectroscopical data (see Section 4.2). But

the limist 3’i¥ij-»o would not be a good estimafte because it would give

zero for (20) while we know from photoreactions that the sum rule is rzally
enhanced relative to the kinetic energy coutribution. This, as we know, is
mainly a dipole effect and therefore would involve an expansion 1o (V-EZJ)Z
order. Wz shall assume that due to approximate su(4) invariance these

corrections are the samne for Dg, Dy, D Possible differences would come

3 L’
essentially from taking into account the fact that the axial dipole exci-
tations have a different mean energy than the vectoxr ones. We will here
neglect systematically this effect which for 6Li, 120 should be small
according to estimates in Ref, 6). Our main difference petween vector and
axial excitations will be obtained taking only the short range limit
:7;?ij -0, 1i.e., we use (22). This is in agreement with the fact that the
main effect distinguishing DS' Trom DT and DL is due to allowed tran-

sitions. The commutators with the other potentials winere 3-0

K K
5-0’7 Te
Te refer to the two-body spin orbit and tensor potentials respectively, in

- -
the limit v 'r;j-+0 are

Ko, =0

- (23)
v

K Te =0

A Y = e L\ LA YA Y A
LA .2,(4,[.5 xfi(“« xptd)(ﬂ‘.mg\--i XZ‘%({ Z‘ZJ)(r‘J "l"J)(“'{*%)ﬁd
- - - > z > 3.3
+ Xzé] (i "Pij)("ﬁ{,‘)ﬂd‘ (4-"_‘.3_4)(4-z;z3)la.>
(24)
AL 25 V. (r.:)O.. 3,3),2 C . \C. PF 3,3
K'l'e = 2/<QI[ 3 i Te(r"é)gbd (z+zszd)+3'§;\/fe({bé)sa.4 Rd (l+zto.zd)

T 1 . .q 3,3
+ .,Z<:! vfe(r“d)g"d 'P"d (J"‘ __s.d)(l—z‘té)lﬁt>

and
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As far as tne term (20) is concerned we calculate it very simply
by a Van Vleck potential V==VO-Fap2, where the coefficient a, which is
a function of the density, is adjusted to fit photoreaction data. We note
that in our case the mass renormalization (M«»M*) due %o the momentum
dependent potential is not subject to the criticism of being spurious as
for example would be true for electrous in an atom for which we know that
the potentials are Coulombic which are perfectly local and would not give
any correction to the theoren (2). In our case instead this is a true
physical effect which is observed e.g., in photoreactions. Moreover, the
value provided by photoreactions is a good estimate also for muon capture
because in both reactions dipole traunsitions are prominent so that the weight
given by these reactions to the spatial distribution is the same. We
illustrate this point with the calculations of the sum rules for 6Li and

12 613
1.5 for Tli § consistently with

W/
¢ for which we take the ratio /M {1.6 for 120

photoreactions .

For the calculation of KA it 1s interesting to remark that in
our aporoximation we can connect very easily the spectroscopical information
contained in Cohen-Kurath matrix elements 5 expressed in IS coupling
with the correcsive term since the commutator with a certain potential
contains again the same potential in the final expression. So we can obtain
our result in terms of matrix elements'of effective potentials. Phenome-
nologically it is no%ticeable that we correct closure approximation with
the effective kinetic energy term and KA arising from the analog of
M1 trensition operators which are SU(4) generators. This shows clearly
the importance of the SU(4) structure of the ground state; indeed for

a double closed shell nucleus the last correction is exactly zero.

4.2 We now give the explicit relations between expected values of the
commutator and matrix elements of the effective potential. If in the LS

scheme we define

cp (ez)lz’.f @y [?:—s JZT,C(US s IT)¢pA LsGT)If, 5 1% L' (JT))
' L

where f is a scalar operator, we obtain for (22)

12
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KcAvI«ZJ. f[cu.o,z.o,.vo)-%cul,u;n)] e [V, - Vo>
L

+.‘§ [e(ud,1d,30)-c(Lo,L0,34)] <L l“!/c - °‘VclL>£

=~

where bTVC refers to the central poteantial for these values of 5, T.

Tor the single particle spin-orbit contribution we have

A {
Koy = g# (€iy - €3) [ 5 N3 = Nuy ] (27)

where eié are the single particle energies in the corresponding sub-

1
2

2
shell, and N are the effective number of nucleons defined by

3 1
292

ca lZ §ila>= Z Ny <yl §04>
: 5

for a scalar single particle operator.

Analogously, the two-body spin-orbit and tensor contributions are

given by
A
K. <-4 2 ¢ 3T) T TV
o3 (Li,ud, )U” L) LV L4 (3))
(28)
Al g, 37) €14 W 1L'4(
Kre =- 3 L%';_TC(H,LJ,J )””aus)l re 1L°4(3)>

It is straightforward to show that all these expressions for KA==Kﬁ—+Kis-+

+Kg_o-+K$e vanish for a double closed shell nucleus, like 160.

In the case of 6Li, with L=0, S=1 coupling, oaly Ké is
different from zero.
For 120 the coefficients C(LS, L'S!', JT) are related to the

two-body fractional parentage coefficients introduced in Eg. (10) by doing
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the change of scheme from jj to LS coupling. The matrix elements of
the effective potentials are given in Ref. 5), obtained from Spectroscopy
in the 1p shell.

A

Our results are K :=KA::2 MeV for 6Li and KA::6 MeV, KA
¢TI c Is

Ké‘ x5 MeV, K§Q3-1.6 MeV for °C. It is interesting to point out that
all these corrections tend to enhance the mean excitation energy of the
axial transitioms relative to the vector ones, with the exception of the

tensor interaction.

RESULTS AND DISCUSSION

Taking into account the corrective terms in Eq. (4), as explained

in Section 4, we can write our aanswer for the capture rate as

A
A,:{h(wv)%)i/\,(u)-év_;_‘n_*({_n)ﬂé% ¥ (29)

In Fig. 1 the dotted-dashed line is the answer for the dipole
coatribution in 6Li when the effective mass correction is included. We
obtain now u£::1::88 MeV, which is consistent with the peak energy
observed in photoreactions & . The solid line is our total result for the
capture rate; we obtain AI‘=O.280 to be compared with the experimental
result 7) /\r(6Li) =0.273+0.057. The dipole part is predicted to be
0.186, whereas the allowed contribution (which is exhausted by the ground

state transition) is of the order of 0.076.

In Fig. 2 our results for 120 are presented. The solid line gives
a result AI,=O.124 to be compared with experiment 7) /\r(120) =0.125 £0.005.
If the broken line is used for the main term AI( V), the result we obtain
from Bq. (29) is that indicated in the dotted-dashed line, which is somewhat
smaller than experiment. In Ref. 10) it was noticed that the capture rate
is extremely sensitive to the configuration mixing of 120 so that there
are wild discrepancies between experimental data and theoretical predictions
if the extreme jj coupling or the IS coupling are used. This is seen
in Table III, where the results of Ar are given in terms of the parameter

V.

~ 2 MeV,
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As one can notice from the Figures the kinetic energy correction
to closure approximation is sufficient to achieve stability of the value
AIJ over a large range of V. The effective mass correction gives as
a result that the stability region is shifted in V and is consistent
with what we know about the reaction mechanism, i.e., excitation of giant
resonance analogue states. More guantitatively, we have the result that in

the mean the transition strength is in the region of about 17 MeV in 6Li

and 25 MeV in 120. The values of the effective masses we use are obtained
fitting the integrated cross-section for photoabsorption from threshold to
140 MeV. A dependence on vV of M* could be expected if the momentum
dependent potential has terms of higher order than the second, in this
sense our formulation is a truncation to the second order. Since guadru-
pole and higher multipoles do not seem to play an important role, the
approximation M* =cte, and, taken from photoreactions, does not seem %o

be dangerous. 1t can only affect the values for very high  where the

curves in Fig. 2 decrease very rapidly.

From Table IIL it is evident that total muon capiture rates may be
used as a sensitive tool to investigate the detailed structure of the
configuration mixing in the ground state of the target. The information
coming from muon capture rates can complement very well that of M1
transitions and allowed ﬁ decays because muon capture induces transitions
to states which are the same which B decay, e.s., 120—+12B(g.s) but
also to states which cannot [3 decay or decay by M1 transitions because
they are unstable for particle emission. In the results for the total
Ar there is a variation of 10% if one takes all the strength of the allowed
axial transition to be saturated in the ground state transition, as one can
see in Fig. 2. The main ingredient in the discrepancy between the prediction
for the capture rate using Cohen-Kurath wave function and an extreme Jjj
coupling is the different strength of this allowed transition. In general
this means that the dynamics of allowed transitions, analogous to M1
electromagnetic transitions, is very important and therefore the SU(4)
group, even if broken, is very useful in analyzing them since the transition

operators are generators of the group.

In conclusion what we have done is a consistent treatment of muon
capture which seems to be in agreement with all we xnow about weak inter-
actions and nuclear structure and being free from uncertainties associated

to the mean neutrino energy in the Primakoff closure approximation.
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2 2 2 2
15(s) 1) [1y(p) I,(p)| T5(p) 17(s,p)
DS 2.0 4.0 0. 5.83 3.0
DT 2.0 3.47 -0.12 6.10 8.0
DL 2.0 3.47 0.24 6.84 8.0
Table 12C

The functions DS,T,L( V) for

in terms of the radial integrals.

o € Co
Ds 6.0 0.0 1,09
Dn 5.47 0.31 1.08
D, 5.47 0.43 1.12
Table IT Values of the C's de-
fined in Eq. (12) for the three func-

tions

s,T,L

o




- 18 -

1Y)
MeV)| g1 66 71 77 82 87

33 0.220 0.227 0.229 0.226 0.217 0.200
L-8 0.080 0.087 0.091 0.089 0.082 0.068
Cc-X 0.116 0.122 0.125 0.123 0.114 0.098

Table IIT Total capture rate Ar in the extreme

or L-S couplings and using the Cohen-Kurath wave func-

tion. The stability of the results in a zone around 75 MeV

is apparent.

The experimental result is

Ar=o.125¢0.005.




1)
2)
3)
4)
5)

7)

8)

10)

- 19 -

REFERENCES

H. Primakoff, Revs.Modern Phys. 31, 802 (1959).

G. Do Dang, Pays.Letters 38B, 397 (1972).

J. Bernabeu, Nuclear Phys. A201, 41 (1973).

7.E.0. Ericson and M.P. Tocher, Nuclear Phys. A148, 1 (1970).

S. Cohen and D. Kurath, Nuclear Phys. 73, 1 (1965).

F. Cannata, R. Leonardi and M. Rosa Clot, Phys.Letters 32B, 6 (1970).

M. Eckause, R.T. Siegel, R.E. Welsh and T.A. Filippas, Nuclear Phys. 81,
575 (1966).

E.G. Fuller, H.M. Gerstenberg, H. Vander Molen and T.C. Dunn, "Photo-
nuclear reaction data", NBS 380 (1973).

L. Foldy and J. Walecka, Nuovo Cimento 34, 1026 (1964).

J. Bernabeu and F. Cannata, CERN preprint TH.1681 (1973).



- 271 -

FIGURE __ CAPTIONS

Pigure 1 :

Reduced capture rate Ax’ for 6Li. Our prediction for
the total capture rate (solid 1ine), in agreement with
experiment, is compared to the dipole contribution with
the effective mass correction to the kinetic energy

term (dotted-dashed line) and without it (broken line).
The dotted line is the dipole contribution in the

Primakoff closure approximation.

Figure 2
Reduced capture rate Ar for '°C. The total capture
rate (solid line), in agreement with experiment, is
compared to the V- dependence in the Primakoff
closure approximation (dotted line). The dotted-dashed
and broken lines are, respectively, the corresponding
predictions when only the ground state transition for

the allowed contribution is included.
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