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ABSTRACT

Motivated by recent interest in neutron-electron
scattering amplitude at threshold, a detailed investigation
of the two-photon exchange contribution, commonly known as
polarizability correction, to this amplitude is made, for
general lepton mass.

The contribution is related +to the amplitudes
describing forward virtual Compton scattering on neutrons.
To calculate it, we write dispersion relations for the Compton
amplitudes and make use of the present knowledge on the
neutron structure functions as well as the scaling hypothesis.
The correction is much larger for muons than for electrons.

Further, we discuss the region of validity of
the extreme rclativistic and the classical approximations
treated in the 1literature by giving the relevant parameter
which leads naturally from one case to the other.
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INTRODUCTION

The neutron-electron spin averaged forward scattering ampli-
tude at threshold a is measured from scattering of thermal neutrons on
atoms. The most accurate determinations of a, using different experimental
techniques, give the results (-1.34 £0.03) x107° fm 1) and
(-1.56 £0.04) x 10> m 2.

In second order in gquantum electrodynamics this amplitude,

a(1 Y), is given by the siope of the electric form factor of the neutron

at zero momentum transfer
a.(“): ¥ M JGE"@")I (1)

where o is the fine structure constant (o ~1/137). M 1is the mass of
the neutron and GEn(qz) is the electric form factor of the neutron. In

terms of the Dirac and Pauli form factors

Ggqla?) = F, (9,‘)+--—- Fan (9% (2)

with F1n(0):=0 and F2n:=)4n’ where )4n:=-1.913 is the an?malous
magnetic moment of the neutron. The contribution coming from the magnetic

moment (the Foldy term 3)) gives the complete answer to a(1Y )

if we put
2
Py (0)=0. Then 65, (0) = M /4M°  and
a.m)~ o Mo _luce . Jo'sfm
- M (3)
4)

Recent careful analyses of elastic electron scattering on deuterium are

1
in accord with the above value for GEn(O). Furthermore, the gquasi-elastic

electron deuterium scattering data are not inconsistent with the para-
metrization
*) 2 =2



2 (4)
Gea(ad) = 4};2 Ge, (32)

which corresponds to the choice F1n(q2)==0 and the scaling law for the

magnetic form factor of the neutron.

In Ref. 6) a simple estimate of the fourth order electro-
magnetic contribution to a was given from polarizability contributions
by iterating the Coulomb potential. This picture reproduces the classical
limit of a r_4 potential if the electric field is considered to be

7) that, due to the smallness

static. Soon éfterwards, it was pointed out
of the electron mass, the relativistic aspects of the electron propagator
must be very important. In estimating the two-photon-exchange contribution,
the authors in Ref. 7) noted that if the neutron excitation is not taken
into account the relevant Feynman diagrams diverge logarithmically but can
be made finite by introducing a cut-off A . The correction thus obtained
is proportional to m n A/m, m being the electron mass, and is for A

of the order of the nucleon mass much smaller than in the classical

treatment 6 .

In this paper we are interested in a detailed study of this
fourth order contribution for electrons and muons. This study, in terms
of the charged lepton mass, allows us to understand clearly the relationship
between the classical and the relativistic cases and also gives us the
relevant parameter which naturally leads from the logarithmic dependence on
the cut-off (in the relativistic case) to the linear one present in the
classical case. ZFurther, the meaning and value of the cut-off A in-
troduced in Ref. 7) is somewhat obscure. We find that a general formulation
of the two-photon exchange contribution can be given without resorting to
a cut-off. If one chooses to -introduce such a cut-off, from our consi-

derations, its meaning and value are well defined.

The plan of the paper is as follows. In Section 2 we give the
general formula for the two-proton exchange contribution (Fig. 1). The
major quantity entering here is a tensor describing forward virtual
Compton scattering on neutron. The gauge invariant decomposition of this
tensor includes two structure functions Ti()),qz), i=1,2 where V

is the energy ot the virtual photon and q2 is the square of its mass.
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From the diagrams shown in Fig. 2 we calculate the Born contribution to the
two-photon exchange contribution and discuss our results in terms cf the
lepton mass. In Section 3, starting with our general formula, we perform

a Wick rotation in the ¥ complex pleme, for |q]= (l’z-qz)% fixed, and
write dispersion relations for the amplitudes Ti at q2 fixed. The
problem of the subtractions is extensively discussed. Each dispersion
integral is made up of two parts, namely, the pole and the continuum
contributions. In Section 4 the information from inelastic electron
neutron scattering data is used to calculate the continuum contribution to
the dispersion integrals. More specifically, we use the scaling hypothesis
(so far in agreement with experiment) to find the large q2 dependence

of the structure functions and we compare the behaviour of the fourth order
contribution as a function of q2 for electrons and muons. Finally, in

Section 5, we present our results and conclusions.

TWO-PHOTON EXCHANGE AMPLITUDE AND THE BORN CONTRIBUTION

The neutron-electron scattering amplitude in question, in
*
our normalization convention, is given by

- 4

A 2 (5)
gnm

where m is the electron mass and T the invariant T matrix element.

For the two-photon exchange contribution this quantity is given by

APl ok S ol (5)

o T T

— P e e—— L
n? (Q‘)z q- Imv re

o
Here V¥ =q and 'L"r is the leptonic tensor given by

L"?fr rl‘(rp_ ?P)+ r"("“-qn) + %FYM N) (7)

______________ e e m—mmm—m e mmmmm mmm———————————————
*)

A1l our formulae apply just as well for muons in which case m is the

muon nass.

8)
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S o* being the four-momentum of the electron p® = (m,0). Tpp 1is the

hadronic tensor describing the spin'averaged forward virtual Compton scat-

tering, given by '
T =i [d% e 06N <PILI N, To@T1P> (e)

*)

This tensor has the gauge invariant decomposition

- - ‘ (9)
T,o.(:‘ = (3)‘? - q’-lm;T?) Ti “'3?) N ‘:,‘z.(Pl* - %;3;‘) (f?-%%af)‘r& (9’3?')

where P,FH=(M,8), M being the neutron mass. From the crossing property

we find that Ti( D,q2) are even functions of W .

Contracting the hadronic tensor with the leptonic one and
. 2 ’
using the property Tj( p,q2) =Ti(-0,q ) we find for the two-photon

exchange contribution the general formula

cp@n eyl 4 1 [ 2 2 Yo)
v T =3 -_— | == - ig T, (v, £ Y ("
" [(3*)*[3‘--zmv +g}+zmv1 (‘* gt ) (9 )*(‘ $.)Tc. v,9%

The diagrams giving the fourth order Born contribution are

shown in Fig. 2. From these diagrams this contribution can be calculated.
[o]
According to the discussion above we take for the neutron F1(q‘) =0

and find the Born contribution to the functions. Ti( 9,92) to be given by

2
To0.q) = Ty, ) = [‘*"')r?%)‘*{?ﬁ* "
. kY A .

We substitute the Tf in our general formula, Eq. (10), and use for the
F(q2) the dipole fit F(g)- (1- 2/ 2)"2 /\2—0 71 Gev? hich
Fola’) the dipole olar)= pUi-a/Ag) s N p=0.71 GeVy  which,
as discussed before, is consistent with experiment. Calculating the

resulting Feynman integrél by standard methods 9) we find

- - - ———_— = - -~ = " — " = — - T " S o - o e o= =

*
) We shall use the same letter Ti( v,qz) for the complex functions in

Eq. (9) and for their real parts, which appear in the amplitude
aRe T [Eq. (5]].



m) ,
qun) lu'l "z m”‘ &m f (AQ,M, M) (12)

For 4m2< I\]23<4M2, which is the physically interesting case for electrons

and muons, we have

lm oV’ im2 1M 44 F?m M
.f/ 2 " /1_4 : Py 2
-l—‘-‘—'ﬂ-) L) lo.!.)u!:__"e s/ iﬁ:«_) -‘_'s.]
( /\: [{l 6 s’-+ A"' I I-‘:‘ 6( S AB" J' A:
(.}

. The behaviour of f£( A,M,m) ‘as a function'of A, for the
cases of electron and muon, is shown in Figs. 3 and 4, respectively. For
the physical value of A, A 2. A§=o.71 GeVz, we find £( AB) =13.2

for electrons and f( I\B) =2.73 for muons.

It is particulérly illuminating to examine the behaviour of
the functlon f( A ,M m) in the two extreme limits A/2m>>1 and
/\/2m< 1. '

In the limit A/2m> 1 (valid in nature for electrons
AB/Zme~84O, while - 'I\B/’Zm» ~4) we find R

u | z
A M, wm A .S Sald A A
famm v be g am M (14)

it A/2M is relatively small, as it is the case physically. This appro-
ximation is good for electrons but notAfor the muons., For electrons we
f£ind in this limit f£(A ) ~14.8 as compared to the exact value 13.2. For
muons these two numbers become 4.17 and 2.73 respectively.

1t is infei‘esting to note that in the limit of point-like
hadron, i.e., A so , this Born contribution is convergent, that is

f ig of the form
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R (15)

A

This finite result is due to the extra parameter M introduced in the

calculation when the intermediate particle in the diagram is specified.

We now consider the second extreme limit, namely A/2m< 1,
for which we expect to be able to treat the lepton as a source of a Coulomb

field. In this limit in fact we find

§ A AY-§ M- A
frgalf-di)dn i (19)

and the linear dependence on the parameter A , as expected from a classical
treatment, explicitly emerges.' From a comparison of the classical and exact
results, we conclude that the classical approximation for electrons over-
estimates the contribution by two orders of magnitude while for the muon

the classical result is only about twice as large as the exact result.

GENERAL FORMULATION IN TERMS OF NEUTRON STRUCTURE FUNCTIONS

Starting with our general formula for the two-photon exchange
contribution, Eq. (10), we perform a Wick rotation in the Vv=q° plane,

with IEI fixed, This procedure is similar to the one used in quantum

electrodynamics when calculating Feynman integrals 9), It has also been

.applied to the probléms of nucleon self-masses 10 and polarizability cor-

rections to the hyperfine splitting in hydrogen " . After this rotation
the variable ¥ is integrated from -i ® to i® , By change of

variable v==iKo our general formula can be written in the form
_an (Caqt (T (e
sTQYajdqg ?(9,1‘) = 40‘!5[ ‘sz d Ky '3" K: f‘(ik,,g‘)
-0 0

(17)
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where we have used that 5’ is an even function of ¥ . In this way it
is seen clearly that we need to know the function 57 only for space-~like

photons.

We may now write dispersion relations for the amplitudes
Ti( v,qz). From the analysis of Harari 12) it is known that T2( u,qz)
satisfies an unsubtracted dispersion relation, whereas T ( v,q2) needs
a subtraction. Introdu01ng wi( v,q )::1/2ﬂImT (v ,q ), and using the
property W. ( V,q ).--W (-v,q%), we write for fixed mass squared q2

® ' M/ ' a2
T, qY)= T,(0,9%) + 4 9"[ 4;’2., 10,9%)
0 7

-V

(18)
Ty o 4 [ o 2 a9

LT

The absorptive parts Wi( y',q2) are the so-called neutron
structure functions measured in electron neutron scattering. The sub-
traction function T1(O,q2) is not directly accessible to experiments.

We shall return to the question of its determination later on.

We begin by separating the "pole" contribution in the dis-
persion integrals. We use this terminology to distinguish this contribution
from the Born contribution as calculated in Section 2, directl& from the
diagrams in Fig. 2. The elastic electron neutron scattering is described

by the functions

N33 = W, 0, q‘) [F (1‘)] 5(9*3-) (19)

if we put Py (q ) = as discussed in the Introduction. Thus, the pole
contribution to T, ( v,q ) [denoted by Tf ( v,qZXI is given by

P ) 2,2
T (9,3‘) = [ F,. () MY
i 2n ? ] (Q‘)"'- 4'4:”; (20)

£/
T, v,9%) < [Fa,(a?) v_2(9)
Y 1 ) [ 2q (} J (?t)"'-l,n’v
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Comparing these relations with (11) we conclude

4 c] 2
T w,ed) = Ty w,9) -2 [Fy, (9]
(21)
4 8
Ty, v,9%) = T, v,9%)
The non-equality of the Born and pole terms for Tﬂ# v,qz) is due to the

fact that this amplitude satisfies a subtracted dispersion relation.

The dispersion relations, Bq. (18), can be written then in

the form
9]
Ty lv, q‘l)g Tf("»ﬁz) + {Ti (0,22) -,3}(“8 GE:(‘}‘)}*"W“ ‘%‘:' M.‘,{v.?;) (22a)
v ' v -
| vu.‘?z)
! N (9', 2
Ty 0. 9%) = oo, q?) + 4$ dv' 2 v':- u? ) (22p)

Vi (9¥)

where U%h(qz) = )l+-(/k2—q2)/2M is the threshold value for one-pion production
and }L is the pionrmass. Substituting Egs. (22) into the right-hand side

of Eq. (17), the Ko integration can be done explicitly, and we decompose

the T 2Y) matrix element into three parts, namely, the Born, the

*
subtraction and the dispersion ) contributions. We write

T 5 (Borw) + T(sub) + T (disp)
- o —_ 2 (23a)
T = 23 HAn d q? _hm? ) _m AM" 6. (32
(Born) = « 3mziwd<; W‘ i Il [,/4 ]fGe,,s)
. 04 5 =~ ond (23Db)
k.
T(Sub):-el -b[w - {Jl- -1% +5%‘ [Jl— -4 ‘[74(041)'3}‘»1 Gsf’(qz)]

We note that T(disp) need not be identical to the continuum contri-
bution, because a priori T1(O,q2) may get contributions from the

continuum.



0 ©
T(disp)= o8 ﬁz J 49 yj w, ? l- lam -
‘ [ao ¥ et \( |
R ) 'Tz et )5
'Tﬁ%})a h )[(q‘) vz.gw( [ "5'1]"""2"1[/‘5 ‘])(23>

e ‘((:'Mm W ”"LM | et fi-3.- m

Here the function R( 0,q2> denotes the ratio of the total cross-sections

of ‘longitudinal and transverse photons on the neutran

L B

W0, «;) 2) . : ,
R b )2 (12 )b -Wygt) 0

We check easily that the Born contribution thus obtained
agrees with our previous result, Egs. (12), (13). The subtraction term,
at the first glance, seems to be infra-red divergent, but actually it is
convergent. In fact .T1(O,q2:=0) is determined from low energy theorems
in real Compton scattering. Erom the decomposition of%the;tepsor: T/‘P y

Eq. (9), we know that

T‘(uggo) Lm v Td' ?) . -2 F0) (25)
_a_'o —? 9-.0 . .

. . . : *
which reproduces the Thomson limit, F1n(0):=0. From Eq. (22a) )
;5 """"""""" et
Equation (26) is not inconsistent, as it seems at the first glance.

On the left-hand side we take  fig T ( V,a -O) as in Eq. (25),

whereas the meaning of T1(O,O) in all our expressions is 0%m T (O,q ).
-q -0
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T (v.q%:0) = T (0,0) -2 p¥ + 0 (v?) (26)

and then T1(O,O)=:2)4§. In this way the apparent divergence in Eq. (23b)

for -q -0 1is cancelled.

The determination of the two-photon exchange contribution, as
seen from Egs. (23), requires the knowledge of the three quantities
T1(O,q2), W2( 9,q2) aﬁd R( 9,q2). The last two quantities are measurable
in inelastic electron neutron scattering. However, the data being
insufficient, for their determination (see next Section) we rely on
"reasonable" or popular assumptions which are so far in agreement with the
experimental findings. The subtraction function T1(O,q2), as mentioned
before, is not directly measured. However, it can be reasonably determined

as follows. We construct the amplitude

Te (v, 9%) = (l- 3‘3-:) T, 0.9%) - (1+ Ry (3‘))1'1(»@*)
' (27) .

Rplat) 2 &wm R (v, 9%)

Vo @

In the limit VY - o, the absorptive part of TR( v,q2) tends to zero.

We assume, as discussed in Refs. 13), 14) and 15), that TR( D;qz) satisfies
*

an unsubtracted dispersion relation . With this assumption the subtraction

function T1(O,q2) is found to be

' 2 ¥
To(0,9%) - c&f..f‘ Ge: lg’) L3 o GE:(Q')

1+ By (3?) 4M* (28)
I ® dv z). ! ‘ pt R (‘}")'RU 12)
A 2V W, v, { - ’
* Jﬂ\(") 4 2 ? 1+ 1?(9,") 12 4 + Rw (2‘)

*) The assumption here is that the possible presence of fixed poles (in
our case for the neutron) does not alter this picture. In real Compton
scattering, the fixed pole seems to be given 16) by the Thompson limit
which is zero for the neutron. See also, however, Ref. 17), where the

dependence of the result on the cut used in the finite energy sum rule

is indicated.
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Using the properties W2( v,qz)fvo(qz) and R( v,qz)'~0(q2) as q2 tends

. . 2
to zero we find again '1‘1(0,0) =2 M.

The expression for T1(O,q2), Eq. (28), together with
Egs. (23) constitute our main results from which we can compute the two-
photon exchange amplitude in terms of the quantities W2(u ,q2) and

R( Q,qz) measured in inelastic electron neutron scattering.

INELASTIC ELECTRON NEUTRON_ FUNCTIONS

In this section we discuss how the functions W2( a,qz) and
R( 9,q2) can be reasonably determined. We begin by noting that precisely
the same.two amplitudes considered by us [@i(v q,2), i=1,2] also enter
in the problem of nucleon self masses. For a recent review of this problem
the reader may consult the excellent article by Zee 18). Here we only
mention that in general the expression for the electromagnetic neutron-
proton mass difference diverges quadratically. One introduces the lon-

gitudinal amplitude

2

T, (v.9?) = (l- ?-i) T&lv,q’) - Ti(v,g‘) (29)

+0

which is the special case of the amplitude TR( V,q?), Eq. (27), corres-
ponding to Ra)(qz):=0. By introducing the assumptions that R (q2) =0
and TL( v,qz) satisfies an $3subtracted dispersion relation * , the qua-
dratic divergence disappears leaving a logarithmically divergent mass
shift. Further, the logarithmic divergence is rendered finite 21) by the
extra assumption R_ ZZZG,%('qZ/‘)Z)' It is interesting to examine the

implications of these assumptions for our problem.

According to these discussions we will consider the following
two sets of assumptions: i) TIA w,qz) satisfies an unsubtracted dis-
2 2
persion relation and (@ - v2/q2)W2( v,q°) -W1( V,q°) =0 which corresponds

*
) There are models for which the fixed poles in T1( 9,q2) and T2( v,qz)
exactly cancel in the combination (29) Esee Ref. 20):_[.
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Rlvo,qt) s (0 C ) -9 (30)
o(-90) + v¥ _%hw v

This assumption is consistent with the quark light cone model where

M) WL( \),q2) scales 22) and R 1is of the form (—q2/\)2)f(w), W =2M ))/-q2
being the scaling variable. With ¢ taken to be a constant, the positivity
requirement for R gives -0.32<0< 1. The upper limit for @ 1is
rigorous and corresponds to R=0. The lower limit is given by the

maximum value of vz/q2 in the integration region. The choice @ =%
gives finite mass shift for nucleons 21). The second possibility which

we consider is ii) R (q2);éo, as suggested from a recent analysis by
Sakurai 23) using @ 0Delectroproduction data at -q2::1 GeV2 where

R( 9,q2) is found to be independent of v within the experimental errors.
In this case we shall assume that R( v,q2) is a slowly increasing function

: 2
of -q2 24) given by the simple parametrization 5)

2 (31)

R(v,9%) = R (3%) :Mz’ 73_ :
| -S'g

For the first case i) we find from Egs. (28), (30)

[~ /]
?
Ty lo ,c;t) ) /u.',& Gz:(‘;’) :3'_4& /z;f' Ge:'(g‘) + 40‘[ ‘%’ W0, gz) (32)
: Yu9)

and we write the amplitude, up to the two-photon exchange contribution, in

the form

Q= Q(‘Y)[l+§3+5e +§c] (33)

Here SB corresponds to the Born term EEq. (23a)___[, SE comes from the

first term in the right-hand side of Eq. (32) and SC is the sum of all

continuum contributions. It turns out that, in terms of ¢ , we can write
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Sclo) = ¢ 8,(624) + (1-0) §.(6=0) (34)

For the case ii) we obtain
3

” :
- L6, (g’)+ 4 Wy, ‘)}(35)
J+‘R{3‘){ zn‘ﬁ . (4D v 3

T,00,9%) - 2 p¥ G2 (e?) :

and our amplitude is of the form

a's @ 1,55 +8' . +5. ] (36)

Nl

where the meaning of the different terms are analogous to the previous
case. '

The &'s in Egs. (33) and (36) are of the form

- o n wm MY
et g R o
. , L ,

vléf %3 [ dgt Fet¥) (570)
18 nooAM ), F'e(s?)

Sc | | ‘d M ¢ | ? Fc(qz)

{ \ i z- %0 M S My J.Q'z'{ ; S (37¢)

Sc " n 4 - FG(Q‘) :

The F's can be easily found from Egs. (23), (32) and (35). The factor
Wp in Eq. (37c), whitk is related to the behaviour of the integrand as
-q%-0, is defined by
.4
v
! dv EL(—.)

2n¥ Ver(0) vy

3
"

(38)
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and has been introduced for convenience. This quantity corresponds to the
sum of electric and magnetic polarizabilities in real Compton scattering:
Qt( Y») is the total photoabsorption cross-section at photon laboratory
energy ¥ . The value of “11 has been calculated 6 from the analysis of

deuterium data 16) to be K =1.4x10 “Sem>,

For 6 ( 8'), where an explicit knowledge of W ( v,qz)
needed, it is interesting to dlscuss the behav1our of F (q ) E? (QZZ] in
three different regions of q : -q2< 4m H 4m2< -q2<)t2; -q2>p. To
this end we use real photoproduction results in the first and second regions,
and the scaling hypothesis 8 , confirmed by experimental results 26 sy in the

last one. This is presented in Table I, where the parameter

AYs 4M o f“ @ F, () (39)
¢ e 4 WY

has been introduced. From the experimental values of this integral 26),27)

we obtain A§:=0.14 GeV2. It is clear that the second region has no sense
in the muon case, and it should be omitted., DPrecisely this is the zone which
is expected to dominate the integral (370) in the electron case, But from

Table I we make two observations:

1) the'electron mass cannot be neglected because otherwise a logarithmic

infra-red divergence is introduced, and

2) we may not neglect the structure effects for (-q2)—*a>, i.e., take

Ac—»d>, since in this case an ultraviolet divergence appears.,

Further, Table I shows that our results are sensitive to the
specific assumptions i) and ii). In the second case [] +R(q2)___] -1 in
Eq. (35) is always very near to 1, and a cancellation mechanism between
the continuum contribution coming from the subtraction function and the
leading behaviour of T(disp) . [Eq. (23c)] is operating. This cancellation
is not effective in the case i) if @~0 @q. (32)3. The reason for this
marked difference between the two cases is that the determination of the
subtraction function given by Eq. (28) depends crucially on the behaviour of
R( 0,q2) in the Regge region. Clearly this behaviour is quite different
for the two cases considered here, For R=0 ( ®€=1) both results

coincide.
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As the inelastic excitations for virtual photons must be
taken into account to get convergent results, we need the knowledge of the
neutron structure function W2( v,q2) between the zones of real.photo-
production and scaling. We are going to use the duality results of
Rittenberg and Rubinstein [?efs. 28), 29), 3OI] who extend scaling to all
values of q2 in a suitable variable =(2Mv +B )/( q +A ), A and

B being constants. In terms of the scallng function Fz(aJw) we write

ij("; Q‘) = i-: OJ" F (O)w) (40)

which has explicitly the correct kinematical behaviour as -q2—»0.

For the neutron case we take the simple parametrization

compatible with present results 26)
(w) T (P
Fo (x)= (4- -'3) Fo (x) (a1)
with x=¢o)v'l1 and
) + : n .
Folltn) = Z= cp (1-%) | (42)

where the cn values and parameters A2 and B2 in the variable Oow

are taken from Ref. 29).

We have checked that this parametrization gives the correct
behaviour for large -q2 and the value of Ai in Eq. (39) is numerically
reproduced., However, the zone of real photoproduction, and the value of
%, [Ea. (38)], is overestimated by 20%. This last "enomaly" will be
taken into account in the presentation of numerical results, given in the

next Section.

In order to see in each case the important region of integration
of Egqs, (37) we have studied the integrands in terms of the variable
*

_J'a2/(y+J—ca (o<v<1), by putting

---------------------------------- - - " > " = P e S = D e e = W W ee W W W P s e

*
) Note that the functional form of F in the two sides of Eq. (43)

is not the same.
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0 oA
C de¥ F(g®) = | dv F(v
Lo ? 1 J; A ) (43)

and choosing y 2 in order to have significant numbers for F(v) in the

entire region of integration. We have found that a good choice corresponds
2 -4

to Y e = 10

zone of -q° dominating the integration.

GeV2 for electrons and Yi =m}2* for muons, indicating the

RESULTS AND DISCUSSION

We begin by discussing the behaviour of the functions F(v)
in Eq. (43) as function of v=A/TE?/(Y4n/132)} ' Figure 5 shows our results
for the Born contribution, FB(V), and FE(V) [case i) of Section 4]
and Fé(v) [éase }ii] for"glectrons. The 1§ading behaviour around v~0,5
(-qZAJY'i) is always of the form F(v)~1/v(1-v). Clearly, the parameters
mz and A;g, in the vicinity of v~0 and v~1 respectively, cut off
the logarittmic divergence and render convergent results. Thus, the
dependence 4n ( A; /mz), as discussed in Section 2 for m— 0, appears
naturally in this context. However, "in the case of muons, Fig. 6, no
trace of this logarithmic behaviour;is present. thstead, F(v)»«(1—v)—2
for -q2<$1A§, which is the expected'behaviour for a large mass m. It is
precisely in this limit that one reproduces the linear dependence of Eq. (16).
The integration of F(v) allows us to calculate SB, SE, Sy from
Egs. (37a), (37b), and the results are given on the first three lines of

Table II.

The continuum contribution for the case i) is exhibited in
Fig. 7 for electrons and in Fig. 8 for muons. Figufes 9 and 10 give the
corresponding contributions for the case ii). From these results, the
discussion given in the last paragraph can now be repeated for Fc(v).
The major difference is that the relevant parameter is now /\i, Eq. (39)
(apart from the mass) instead of /\g. Fc1(v), which corresponds to
R=0 (& =1), gives a connection between the cases i) and ii) and its
value is the rigorous lower bound of the continuum contribution. From
Eq. (37c) we obtain the values of Sc. presented on .the last three lines
of Table II. We see that with R given by Eq. (31) [in the case ii)]
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the result is very close to the lower bound. The parametrization (30) in
the case i) gives a positive Sc if @ <0.85; -with' @ ~0, 8& is of the
order of several percent for muons. For any G , Ea. (34) gives the
result easily. In particular, we find the upper bound on. Sc (corresponding
to @ attaining its minimumvvalue) to be“.ac:;6,2:x10-4 for electrons
and gc =2.6 >< 10"2 for muons.

The transition to the classical treatment for the continuum
contribution 6é!‘is govérned by the condition A¢/2m<<1, completely
similar to the discussidn given for the Born contribution (see Section 2).

For 'muons we are precisely in the transition zone. The classical description

of the polarizability contributions is given in terms of the potential 4
for static electric fields. In terms of the "éledtri?"jpolariZability'

. . . - . . E — i —1
'O‘E’ the contrlbt}tlon to éc can be written as4 Sc _-o(E(2M//*n)M R_re
where - Reff is the effective cut-off for the «r~ potential. From

comparison wit@)our expressions, we identify Reff:=2 A;1%v1 fm, and the
simple description is valid for anéff2> 1. It is interesting to point out
that our "total" polarizability corrections 80 become also positive in
the classical region. With the case i), 'Sc =-dn(2M</‘n)(1->U)R;}ff
which is only a factor 1.6 larger than the "exact" result given in

Table II for muons. In the case ii) the,value:aﬂ' Sc- depends on the
specific parametrization of R( u,q2):ER(q2). Eduation (31) replaces

(1- @) in the result given for the case i) by ( AC/M+A/E Ab)zfv0.04,
which is very small., For the rigorous lower bound, corresponding to .

R(qz) =0 ( v =1), in the classical 1imit»we obtain Sc:=0-_és expected,
because classically only longitudinal photons contribute to the polarizabi-

lity correction.

We conclude by giving a short summary of our;fesultsi . “'

1) The polarizability contribution to the neutron-lepton amplitude at
threshold is, with the present experimental accuracies, negligible for
electrons, in agreement with the estimate given in Ref: 7). It can be
of the order of several percernt and positive for muons"(see Table II).
However, for finite lepton mass, a small negative contribution is
obtained if the cross-section for longitudinal photons is practically
zero for all values of q2 and v ,. mass squared and energy of the

virtual photons.
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2) The zone of low -q2 gives the dominant contribution to the polariza-

bility correction. This zone becomes larger as the lepton mass increases

(compare Figs. 5-10 for electrons and muons).

3) The effective cut-off /\c
is given by the behaviour of the neutron structure function in Eq, (39)
and its value is /\(2:=O.14 GeVz, less than the elastic one,

A]23=0.71 GeV2, appearing in the Born contribution,

4) The transition from the extreme relativistic limit, with its charac;
teristic logarithmic dependence m,zn(vAc/m), to the classical
treatment, for which the corresponding quantity is linear in Ac

and independent of m, is governed by the value of Ac/2m.

5) The rigorous lower bound [éiven by the condition R( v,q2) =O:[ to the

Sc contribution, which is negative for finite lepton mass, goes to

describing the virtual inelastic excitations

zero in the classical region, as expected from the fact that classically

only longitudinal photons contribute. For muons (unlike electrons) the
exact results approach the classical result where cho. In the case

i) the two results differ only by a factor ~ 1,5,

6) The effective cut-off of the r'4 potential describing electric pola-
rizability contributions when the field is considered to be static is '

. -1
given by Reff=2 Ac ~1 fm,

Finally, it is interesting to extend our considerations to
the cases of bound systems of )L- and proton or light nuclei, where the
polarizability corrections, with the present experimental precision, may

be significant. Such a study is now in progress.
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2 < tn? < -2« pP -q2>)'*2
) si-®) 3 1-6 0/5 AL

Fo T T 5 (1-6 0/5) ———
5m./-a°  10m -q (-a%)

11) 4
| 2
5y -3, 4r(a%) 1 1-3R(q%) A,  1-3R(d)
L v 2
10m%  5m/ g 502 1+R(a%) | 5(a®)®  14R(a%)

TABLE I - The behaviour of the functions Fc(q2) and

Fé(qz) in Eq. (37c) under different assumptions (see

the text).
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Electrons Muons

YSB “4.8x10™° -2.1x107°

1) . +2.4 %1077 #1.1x107°

11) 5 +2.4x 1077 +1.1x107°

1) $.[F=0] + 4.5x1074 +1.9x107%

R=0 [o=1] 8.3x107° -2.9x107°

ii) 5(': 8.1 x10~° 2.3 %107
TABLE II - Two-photon exchange corrections to

the neutron-lepton amplitude at threshold. The
cases i) and ii) are discussed in Section 4 of

the text.
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FIGURE CAPTIONS

General two-photon exchange diagram contributing to the

forward neutron-lepton scattering amplitude.
Two-photon exchange Born contribution.

The function f( A,M,m) [Eq. (12)], as function of A ,
for electrons. The line A= /\B=O.84 GeV corresponds to
the physical result.

Same as Fig. 3, but for muons.

The function F(v) (see text) for electrons. The corresponding

values of (-q2) are given at the top. Born contribution

Fg5 — — — = Py in the case i) e Fl, in the case ii).
Same as Fig. 5, but for muons.

Continuum contribution Fc(v) in the case i) for electrons.
The line FC2 corresponds to O =0 in Eq. (30); Fc1
with negative sign, is for @ =1 E?:O:[.

Same as Fig. 7, but for muons.

Continuum contribution Fc(v) in the case ii) for electrons.

Fé, corresponding to R as given by Eq. (31);

_— - Fc1 is for R=0.

Same as Fig. 9, but for muons.
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