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ABSTRACT

An experiment measuring the 2s-2p
separation in the ion (U4He)+ is in progress at
CERN. Comparison of the outcome of this experi-
ment with the prediction of the quantum electro-
dynamics requires the knowledge of the hadronic
correction due to the two-photon exchange mecha-
nism. Therefore, we have calculated the correct-
ion to the energy levels of the ion (M4He)+ due
to this mechanism. The hadronic contribution to
the ©2s-2p separation is found to be ~16 2 which
is about three times larger than the expected

experimental uncertainty.
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INTRODUCTION

A beautiful and precise measurement of the wavelength of the radiation
. . . + . . . .1
2S=-2P in the 1onic system (u*He) 1is in its phase of data analysis ). The com-—
parison of the result of this experiment with the theory of QED is sensitive to

2)

the finite size effect calculated by Campani ’, and the polarizability correction

due to the virtual inelastic excitations of "He. If the field created by the

)

. . . . . 3
muon is treated as static, the corresponding energy shift is expected to be

2
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with Oe the electric polarizability of “He. With a = 0.07 fm® which is the value
found from forward dispersion relations using the sum rules of Quaratiu), and an
effective cut-off for the S-state of the order R 2 fm, we obtain an estimate for
the polarizability correction to the 25-2P energy difference AE v =6 x 1073 ev,
which in the usual units in the literature corresponds to Vv 0.04 a? Ry. This is
nearly a magnitude larger than the expected precision of the experiment. It is

therefore necessary to study this correction carefully.

In a recent study by the authorss), it was shown that the classical approxi-
mation for the muons, while giving the correct order of magnitude, is not accurate
enough for a quantitative comparison with experiment in S-states. Furthermore,
the effective cut-off parameter R is a fictitious quantity and does not appear in
a "rigorous" formulation of the problem. In this paper we deal with this polariza-
bility correction, corresponding to the two-photon exchange contribution with

virtual inelastic excitations of “He.

In Section 2, the expression for the energy shift is derived for a hydrogen-
like atom. We find that the scattering approximation in which the momentum of the
lepton in the atomic orbit is neglected as compared to its mass, is sufficiently
good for our purposes. This gives rise to an effective short-range (compared to
one-photon exchange) interaction, and therefore the square of the wave function at
the origin appears naturally as a factor in the expression for the energy shift.
Specializing to helium, the energy shift involves structure functions occurring in
the forward virtual Compton scattering on “He. In Section 3, from dispersion
relations for these structure functions, we can express the energy shift in terms

of quantities measurable in inelastic electron scattering on “‘He.

In Section 4, the input used in our calculation is discussed and compared with
the available experimental data. We find that the data is too scant to allow an
experimental determination of the structure functions. Fortunately, the region of
low (-q2) dominates (q? is the mass of the virtual photon squared). In this

region the structure functions can be extrapolated from the point -q%2 =0
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corresponding to real photons. For large —-q® (i.e. -q®> 2 3 fm~2) the structure
functions are those of the quasi-elastic scattering. In the region in between,

the structure functions are hard to determine because of binding energy and ex-
clusion effects. Fortunately, we find that the model-dependent structure functions
determined by us give an "effective" q2 distribution consistent with that of a
natural smooth interpolation between the regions of small and large -q%. Our
results and conclusions are given in Section 5. The main outcome of this study is
that the polarizability contribution to the Lamb shift of the muonic helium is
significant and must be included in quantitative comparisons. For the ordinary

helium ion (eHe)+, however, the effect is completely negligible.

TWO-PHOTON EXCHANGE CONTRIBUTION

In this section, the formalism for calculating the polarizability contribution

to the energy levels of a hydrogen-like atom, especially (u“He)+, is given.

We begin by considering the process of elastié scattering of a muon (or
electron) by “He. The relevant two-photon exchange diagrams are shown in Fig. 1,
where p(p’) is the four momentum of the initial (final) lepton and P(P') is that
of the nucleus. We denote the T-matrix element corresponding to these diagrams by
TZY(p,p',P,P'). The expression for this quantity involves a four-dimensional
integration over the real part of the amplitudes occurring in the virtual Compton
scattering on “He multiplied by propagators and kinematical factors. Going over
to atomic physics, the lepton and the nucleus are bound by the wave function.
Therefore the correction to the energy levels, apart from some over—-all normali-
zation factors, is obtained by multiplying the scattering T-matrix element
™2Y(p,p’',P,P') by appropriate initial and final wave functions in the momentum
space and summing over all momenta. However, as is very often the case in atomic
physics, the formalism can be considerably simplified by taking into account the
fact that the nucleus is heavy and can be treated as if it were at rest (the cor-
rection due to the motion of the nucleus can be treated by itself). Furthermore,
the velocity of the lepton in the étom is typically of the order Zo, o = 1/137.
Therefore, for low Z, it 1s a very good approximation to neglect in 12Y the three—
momenta p and p’' as compared to the lepton mass. These approximations have two
essential consequences, namely (i) the modulus squared of the wave function at the
origin Ian(O)I2 appears as a factor in the expression for the energy shift, and

(1i) the aforementioned virtual Compton amplitude gets replaced by the forward

virtual amplitude which has by far simpler structure.

The appearance of Ian(O)l2 implies that the two-photon exchange mechanism
(as compared to one-photon exchange) is a short-range interaction. Intuitively,
this conclusion is reasonable since, classically, the longest range potential per-—

taining to this mechanism behaves as r ". In order to estimate the magnitude of
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the error possibly introduced, we calculate {r~*) for the 2S atomic orbit and find
that it is within 107 of the result obtained by factorizing |wn2(0)|2. Other
effective potentials are of shorter range and therefore for them the approximation

above gets better.

These approximations give the following expression for the energy shift AEnl

br
AE;Q = :ijiL S f L (2)
2mM

(am)t (?1)’-(?, zmy)

Here m(M) is the mass of the lepton (nucleus) and ¥ ,(0) denotes the wave function
nfl

LHP

at the origin. is the leptonic tensor given by

r
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where vV = qo and p]rl = (m,g). The hadronic tensor TUO’ coming from the lower part
of the diagrams in Fig. 1, is the spin averaged forward virtual Compton amplitude

for scattering on the nucleus (in our case "He).

We write the usual invariant decomposition of this tensor in the form

T == (G- )T )4 - Mg Yo tn g ) T0or)

2
M (4)

" the four momentum of the nucleus. Further, we introduce the longitudinal

with P
amplitude defined by

2

T, (v,4%) = (1- %}—,)'Izmz) - T (,3"). (5)

In terms of T,(v,q?) and TL(v,qz), the expression for AEnQ’ Eq. (2) can be written

in the form

1o\ 2 "
AE = 16 m_ a) J 2)12(1—%1) Iz—(?'*i)i,) ,,_ .
" (o M (3 (?Q)z_ Yrmly 2 (6)

To proceed further, we write unsubtracted dispersion relations for the amplitudes
T, (v,q%) and TL(v,qz). This is reasonable in the nuclear case if we restrict our-
selves to quasi-elastic excitations. Note, however, that the amplitude T;(v,q?)
needs a subtraction independently of the convergence of the dispersion integral

because it must give the correct Thomson limit.
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Introducing Wi(v,qz) = 1/21 Im Ti(v,qz), i =1, 2, and L, and using the pro-

perty wi(v,qz) = -wi(-v,qz), we have for fixed q2

=)

/ /.2 P
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'T;.(v,?,a): Hfdv’ Z)’_,Vé_(_";'_zt_)_ =T, (v,32)+77_ w1
e - (8)

where T? and Tg refer to the pole and continuum contributions, respectively. For
“He, continuum starts at v = vth(qz), vth(qz) = B - q?/2M where B is the difference

of binding energies of “He and °*H.

The subtracted dispersion relation for Tl(v,qz) reads

Wi(v/4%)

oy
/
1, 42 2 dv
Iy %) =Tio,4%)+ 4y ,YT’_ 7 2
o v ioy 9

= Ty 0,4Y) + T, Fer,40 + T, (2 1%)-

APPLICATION TO “He

We consider the pole contributions occurring in the above expression. For a

spin-zero target, as in our case, WE(v,qz) vanishes identically. We find

’-",’P(V,?z)=0 N (10)
—or el 2

Ty = <00 g2yt .
(9%) 2 ym2?

P a2y —8H2E} 2102} §
T v4t)= 8L 27 [FpY) (1—;?711),

(,2,_)2_ ,_,szz (12)

where F(q?) is the electromagnetic form factor of “He. Using these relations and

the definitions of TS the subtraction constant is found to be

oo K
T @AY= 22 Fay '+ 4| . %(Wv,'f)*{? DL
Yo lt)
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In the limit —-g2 » 0 the integral does not contribute and we find

Liin T (0, 3") = -2 Ef‘
oo

which, in our normalization, is the Thomson limit.

(14)

Next we consider the Born contribution to the amplitudes Ti(v,qz) the reason
being that such a contribution with point-like form factor is already included in
the iteration of the effective potential when pure quantum electrodynamical
effects are calculated. Here, the diagrams with “He exchange, shown in Fig. 2a
and 2b, are not gauge invariant. Adding the contact term (Fig. 2c), the total
"Born contribution" becomes gauge invariant. Moreover, we find that the Born and
pole contributions are identical. This result is due to spin of *He being zero,

5)

i.e. T?(v,qz) = 0. It does not hold for spin-% targets .

From tensorial decomposition of Tup we find
2 e .
‘Zm _)_’____E(i;}—z— = Lo 'T; (v, ?1) ) (15)
—?240 —? 'QQ——)O

Taking now vV = 0 on both sides we have

bon O VTROS) 52 oy (dﬂc";{gﬂa)
Y0 —‘zz—>o -42 eyrr

(16)

where Oy + B is the total polarizability of “He in real Compton scattering

(see below). It is interesting to note that the Thomson limit is reproduced inde-
pendent of the order in which we let -q and V go to zero, a result which is not
valid for 'a spin-% target due to the presence of the anomalous magnetic moment.
Furthermore, we find that the electric polarizability of the target is related to

the longitudinal amplitude. Specifically, it is proportional to the finite quan-

tity
. ¢
b A T3
-12—90 2M ._?2

Our formula for AE, expressed in terms of W, and WL’ reads

AE = —;:6 (a)} jd‘é 5&; Vit J'vd» *

, Lt 423) W — 25 2ei- £3%) wil
(245t ) (Eleymist)

(17)
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where wi = wi(\)',-t), t = -q°. In obtaining Eq. (17) we have performed a Wick

rotation, the details of which are given in Ref. 5. Furthermore, as mentioned

above we must subtract the point-like pole contribution to W's

The integration over & can be easily performed, we find

AE= -2 (q: * ’q’l{"w’ J-J{' f flng W(v,"") + (18)
+ C, W, (v, ,-t)}

G =C (Vf =-9- .‘!ﬂ———-[f’ ymt _
L=CLtvt) eI (-, \/H—._{_.

—(1_ le -j
(1 2-_1_:)\/1-%%72 )

Lyt
C;:Cz(v,,*)ﬂg%*i-+Z—/-l-'—"'—————-[f(*qm») m?
Um? "t 42 g2 i VH%— (18b).

oy
2
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We examine the integral in Eq. (18) in the limit t - O and find

(18a)

G WL(V;' 1)+, wa.(“;, )= ﬁl“.%—t Wy, (v,'—-l') -
vl
(19)

S35 )4 BHNE).
4y'2

From Eq. (19) is seen that in the limit t = —-q®> + O the dominant term [O(l//E)]
in the integrand of Eq. (18) is proportional to the electric polarizability (OLHe)
of “He, and the next order term (order constant) is proportional to the sum of
the electric and magnetic (BHe) polarizabilities as measured in real Compton scat-

tering on “He where

de &2l [ do W0 1) 209
yr M __22_’0 ) vy -21 )
-
drf= & 2 Lo f dv w1y
"M '22—90 2 v —-%2 (208)

Fortunately, therefore, the leading terms in Eq. (18) are determined by the global

. N . . ‘0) << - 3
properties of ‘He. For this nucleus one finds BHe Oye and %o 0.07 fm°.
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INELASTIC STRUCTURE FUNCTIONS

The structure functions Wz(v,qz) and WL(v,qz) are quantities measurable in
inelastic electron scattering on “‘He, for which the differential cross—section is

given by the usual formula

2 ./
46; - E g 0 W42 + zm;z_g_ w,(v,zz)},
dig)dy e (3Y o1
2
WJW“)-’“'”{’.)WHVA?J—WL(VI%Q);

where E(E') is the energy of the incoming (outgoing) electron and 6 is the scatter-
ing angle. Further v = E - E', o = 1/137, and q® = -4EE’ sin? 6/2; the electron

mass has been neglected.

Experiments have been performed by Frosch et al.e) at different incoming
energies and scattering angles. In Fig. 3 we show the region of the v - q2 plane
covered in these experiments. In this figure, the lines "He and p + °H correspond
to the elastic scattering and the threshold for e(*He, p’H)e respectively. Data
were taken along the lines designated by the scattering angle (in degrees) and the

incoming energy (in MeV).

In order to separate W, (V,q2) and WL(v,qz) a point in this plane should be
touched by two or more lines. As is seen from this figure this is not the case

and the data do not permit the separation of the structure functions.

In Ref. 6 an analysis of the electrodisintegration spectrum was made under
the assumption that it is nearly symmetric in shape and achieves its maximum value
in v at a position approximately 20 MeV above that of a free nucleon elastic peak.
An estimate was made of the total disintegration cross-section do/df? and the re-

duction factor f, defined by

%‘f{:z%’?*'z%ln‘i (22)

was determined. Here dO/dQ'P , are the differential cross-sections for scattering
b

on protons and neutrons.

From these facts we shall take the v distribution, at q? fixed, to be peaked

around V =S + (—q2/2Mn), where S = 20 MeV and Mn the nucleon mass. We define

qel
W, (g2) and wL(qz) using

V/t.(v,?z): S(D—S-l- 2?: )”’ W‘!.(@z)) l'=2’L (23)
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and they will be determined from the closure sum rules for quasi-elastic scatter-
ing. In that approach, binding energy effects are represented kinematically by the
location of the peak (shown in Fig. 3 by the broken line) and dynamically by the
Fermi motion of the internal nucleon, which contributes as an effective operator

in the matrix element of the function W, (q2). This is not surprising because it

is due to this effect that photodisintegration exists in this description and we
know that it is the function wz(v,qz)ﬂfqﬁ which survives in the limit of real
photons. The exclusion principle effects are represented by the correlation func-
tions which appear in the expectation values of two-body operators when closure is
used (see, for example, Ref. 7). The calcu%ation of Wi(qz) has been performed

8
using the method worked out by Czyz et al. “. The radial matrix elements have

been obtained using harmonic oscillator wave functions.

From Eqs. (20) and (23) the relevant quantities, for -q% > 0, are

. 2
O(-l»ﬁ = ,5_2_ 2 ﬁlr;y w’*(?'__z)
ye S ~450 -4 (24)

o= e _%_ J/. WL(Q”')

TS —q%0 ":{{'

and thus we adjust the parameters appearing in wi(qz), when‘applied to small values
of -q%, to reproduce o + B and o in Eqs. (24). However, if -q% 2 M 8 = 1 fm 2,
the effects of the binding energy are expected to be negligible and the scattering
is taken to be quasi-elastic only modified by the exclusion effects. Then o and B
play)no role and we take the oscillator parameter as determined in elastic scatter-

. 6 - . . .
ing . If -q2 2 3 fm~?, nuclear structure effects disappear and the scattering 1s

completely quasi-elastic.

We compare the reduction factor f obtained by us, following the prescriptions
indicated above, with the "experimental estimate" of Ref. 6. The results are given
in Table 1, where v and —q2 are the values of these variables at the quasi-elastic
peak for a given incoming energy and scattering angle. We consider that the agree-
ment for the values of f is sufficient, in view of the small sensitivity of the

precise values of W and W, in that region for our polarizability correction. This

L
will be manifest immediately below.

RESULTS AND CONCLUSIONS

We substitute our results above in the expression for the energy shift,
Eq. (19). 1In order to see clearly the important region of integration, it is
suitable to introduce the variable v = vt/ ¢y + Y/t), Y = m/2, m being again the

lepton mass and t = -q%. We find

2 2 !
AE»I = 12_ %)_t- O(He ,rq)ng(O), qmjdv F(v), (2%
o
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s
um a3 a3 m (26)
- = — = 2
Here C, Ci(\)qel,t), Vel = 8 €/2M_, and W, = W, (q*) [see Eqs. (18a), (18b),

and (23)]. The function F(v) is shown in Fig. 4. We can distinguish between
three different regions. The zone from v = 0 up to the first vertical arrow
corresponds to the region in which the extrapolation from the real photons [see
Eq. (19)] is very good. Here the

Lin Forye dm 21—,

N0 v o (1—«:)
i.e. if we extrapolate only the most dominant term corresponding to the first term
in the right-hand side of Eq. (19), the result diverges badly. The inclusion of
the second term in this equation removes this divergence and gives the shape de-
picted in Fig. 4. In the region beyond the second vertical arrow the scattering
is completely quasi-elastic. The "critical" region, in which the structure effects
are important, is situated between the two arrows and, as can be seen, we obtain a

smooth distribution between these arrows.

Performing a numerical integration we find {1 dv F(v) = 1.5 which substituted
above gives AEZS = -3.1 x 107% e¥+ Clearly AEZP = 0. The separation of the levels
2P-2S is therefore increased by an amount IAEI = 0.021 0?2 Ry. This corresponds to

a correction to the theoretical wavelength A by the amount

[4]
A% "’)‘z lAE_’_ =-1¢ A'
2y

As compared to the expected experimental accuracy (v 5 R) our correction is signi-

ficant.

Comparing our result with that of classical estimate [see after Eq. (1)], we
see that our correction is about half as large in magnitude. It is knownlo) that
for electrons the classical approximation overestimates the polarizability correc-
tion by about two orders of magnitude. For muons, in the case of lepton-neutron
scattering, we founds) the classical estimate to be about twice as large in magni-
tude as the relativistic result which is quite similar to the result obtained here.
Also, an earlier semiclassical calculationll) gives AEZS = -1.7 x 10° MHz which is

again about twice as large in magnitude as our result.

The solid lines in Fig. 5 give the dependence of the wavelength on the
(L‘Z)I/2 of (u“He)+ as obtained by Campaniz). The most accurate value of (rz)%, as
measuredg) in electron scattering is 0.63 * 0.04 fm. 1In this figure the ordinate
to the right (left) is relevant to 281/2 - 2P3/2(281/2 - ZPVE) transition. 1Including

polarizability correction we obtain the dashed lines.
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It is interesting to note that generally the comparison between theory and
experiments in quantum electrodynamics (see, for example, Ref. 12) does not, in
the present precision level, involve the hadronic corrections. However, for
muonic and exotic atoms hadronic effects may become relevant. In the case con-

sidered by us clearly this is the case.
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Table 1

: : R
(MeV) (degrees) (MeV) fm™2

169 - 39.7 26 0.29 14 16
199 45.0 30 0.50 7.8 12
199 60.0 37 0.83 4. 4.9
199 75.0 44 1.2 3. 3.9
199 90.0 51 1.5 1.4 1.6
399 45.0 62 2.0 1. 1.5
399 50.0 70 2.4 1.2 1.2
399 60.0 86 3.2 1. 1.1
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Figure captions

Fig. la, 1b : Two-photon exchange diagrams for lepton-helium scattering.
Fig. 2a, 2b : Two-photon exchange 'Born contribution".
Fig. 3 : The region of q?-v plane covered by experiment in Ref. 6

(see Section 4).
Fig. 4 : The function F(v) introduced in Section 5.

Fig. 5 : The theoretical wavelength of the ZSV _ZPV and ZSV -ZPV
separations as a function of (r2>2 of "He. The solid (dashed)
lines correspond to the prediction without (with) the polariza-

bility contribution.
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