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ABSTRACT

It is shown that there is a simple
connection between the slope, at q2 = 0,
of the longitudinal Compton amplitude
and the electric polarizability of the
nucleon. The longitudinal subtraction
function is thus known to order q2. The
assumption of an unsubtracted dispersion
relation for the longitudinal amplitude
leads to a sum rule for the electric
polarizability. This is a model inde-
pendent test of the high-energy beha-
viour of the forward virtual Compton am-

plitude.
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In the past few years there has been new interest in the determination
of the forward virtual Compton amplitudes of the nucleon because of increas-
ing availability of experimental information on the deep inelastic electro-
production structure functions. The situation for the most spectacular [by
no means the only one 1 ] application of this information, proton-neutron

mass difference, was reviewed by Zee~2).

The purpose of the present note is to stress that the low-energy theorem
in real Compfon scattering -- up to second order in the photon energy --
imposes a restriction on the longitudinal amplitude of virtual photons. In
a precise form, we propose a model-independent test of the presehce or ab-
sence of a subtraction in writing a dispersion relation for the longitudinal
Compton amplitude. This test results in a connection between the dispersive
integral of the slope (at q2==0) of the longitudinal cross-section -- an
experimental quantity -- and the electric polarizability, a parameter which
is determined by measuring the angular distribution of low-energy real Compton

scattering.

Let us remember what the main points are in the analysis of forward vir-
tual amplitudes and where, we believe, is the weakness. Spin averaged for-
ward virtual Comgton scattering is determined by the two amplitudes T1,2(v,q2)
[usual notation ] appearing in the gauge-invariant decomposition of the
hadronic tensor. Their absorptive parts Wi(v,q2) are subject to direct
experimental measurement through electroproduction data. Experimentally,

nothing can be said about the real parts, but for the limit of real photons:

2
T, (v, 92 0) = Lo L T, (v, 2)
1 2 2 "2
9= o -9
In order to get information for them, one usually makes use of dispersion
relations. If these need a subtraction or not, is a matter of high-energy
behaviour, which is unknown in a model-independent way. However, the low-

energy theorem, in particular the Thomson limit, says

‘ L X T, (v,q?) = -2 27 (1)
V>0 2240
7Z Ybeing the charge of the target in natural units. This restriction allows
an unsubtracted dispersion relation for Tz(v,qz) whereas the dispersion
relation for T1(v,q2) needs a subtraction (this is compatible with results
from a Regge model). This introduces the unknown function T1(v==0,q2).

The Thomson value (1) only gives information at one point

g‘;ﬁro T‘ (v:O,az) = AZ//U- [-32 +/u.‘_] (2)
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u being the anomalous magnetic moment. A possible way out of this diffi-
culty has been suggested in the literature by assuming that the so-called

longitudinal amplitude
T, (v, @) = ("‘g)Tz(V»ﬁ—TM%f) (3)

does not need a subtraction. This is equivalent to say that we know how to
calculate the function T1(v==0,q2). This hope 1s based on the possible
cancellation of the dominant high-energy terms of v2T2(v,q2) and T1(v,q2),
a possibility which is perhaps suggested by a vanishing value of WL(v—*m ,q2)

if the Regge and Bjorken limits commute and W = 0. It is hardly necessary

to mention that the Thomson limit does not givi Eﬂy restrictions on the
longitudinal amplitude. What we show in this paper is that the wanted model-
independent restriction can be obtained from the next order term in the low-
energy theorem. In particular, this restriction can be formulated as an
experimental test of the presence or absence of a subtraction in the longi-

tudinal amplitude (see below).

Two comments concerning the whole idea of this work. First one refers
to the approach. Naively one could say that real photons play no role for

the longitudinal amplitude, because only %{go Tz(v,q2)/(-q2) contributes to

the physical amplitude. Nevertheless, the slope of TL(v,qg) is present in
the time-time component of the tensor, so it must be related to the general
(non-forward) amplitudes describing real Compton scattering. The second
remark refers to the result. It is surprising that the high-energy behaviour
of the virtual amplitude is, in some way, controlled by the value of a low-
energy parameter in real scattering. Let us see how the argument actually

works.

The first step is to construct a gauge invariant and Lorentz covariant
spin averaged virtual Compton scattering amplitude which satisfies crossing
and whose invariant functions are free from kinematical zeros, singularities

and constraints. We make that & la Bardeen and Tung 3)

, considering both
virtual photons with the same mass. With this tensor, we can describe dif-
ferent limiting processes. In particular, forward real scattering can be
obtained through the real photon amplitude (this introduces the polariza-
bility parameter), or through the forward virtual amplitude (which contains
the longitudinal component). We obtain
AV
TH 5 -9%q” [A, (0,0, PQ)+2(P4) Aj(0,0,P.Q)]
3 >9
q*=>0 2 (
V v 4)
+ [(P.0) 97" - (P.0) (P"g” + Pq#)] A, (0,0, P.)
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where q and q' are the incoming and outgoing phoson momenta attached to

the vertices v and , respectively, Q= (q+q')/2, and P= (p+p')/2 is
the average of the incoming and outgoing nucleon momenta. Crossing implies

for the invariant amplitudes

A; (g% 9.9, P.Q)

n

A;(az,q.q', -P.Q) N 7,
(5)

Ay (g%, 9.9, P.8)=- A (q? q.9',-P.Q)

If the usual gauge invariant decomposition of the forward virtual ten-

sor is used, in terms of Tz(v,qz) and TL(v,qz), we can identify easily

bn T8 L2 AL (0,0, mv) (62)
q{90 2

B T AL (0,0, m0) 5 m* A, 00,0,m0)+ 2w Ay (0,0,m0) (60)
ngo ﬁz
In a dispersive approach for the right-hand side of Eq. (6b), we get a
term O(v-2) from the pole contribution to the invariant amplitude A2 and
terms of order constant in v from the pole of A and continuum contribu-

3
tion of A14-m2A2. Then we obtain the relation

12..) 0 q’z .—1)-5‘ m

2
g, ReT e oz . ,M(Z:)*) + (A +P%,)5 + 0(v?) (™)

where the superscript C means the limit v~—0 of the dispersive integral
at fixed scattering angle. It has been shown 4) that this parameter
(A1-+P2A2)C, appearing in the description of real Compton scattering, is

related to the.électric polarizability of the target o by

A +P2A Y s (4n) goe - HEZep) (8)
4 ‘b ez

2 mY
in such a way that we get the relation
e T (v,q?) N Y 2
b, T Tlved) _22Y, & _(i'%)émo(+0(v) (9)
g% 0 9% | v g m?
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It is a nice exercise to check that Egs. (1) to (9), except for
*
Eq. (2) ), are also valid for a spin-zero target, using the natural pre-

scription  =0.

The remaining step is to write the dispersion relation for TL(V,qg).
In the general case, with one subtraction and the pole term separated out,

we find

2 2 2
o TR 22y, ?_sj;;iﬁﬁh figc-ﬁ(e,b)ﬁ +0(v3) (10)
§20 g O &S

where G is the Sachs' electric form factor. In the case of a spin-zero
target, Gg(qg) must be replaced by (1 - q2/4m2) F2(q2) [where F(qe) is
the charge form factor].

From a comparison of Egs. (9) and (10), it is clear that the subtraction

function Re TL(O,qz) is known to order q2

gm? p ¥ bn 2 4
Re T, (0,4%) = T, e (9) -aﬂ(—e—a)émd - ;‘;&] +0(9%) ()

Equation (11) must be understood as a knowledge of the longitudinal sub-
traction function, when q2'90, due to the low-energy theorem, in quite
the same way as the Thomson limit gives the value of T1(O,q2) at the point
q2==0, Eq. (2). The new ingredient now is the presence of the electric
polarizability parameter oo

The other way round: if the dispersion relation for TL(v,qz) is

written without a subtraction, we obtain a sum rule for o, relating experi-

mental quantities on both sides of the equation. We have

@
oo R Teln?) | 220, 4p| L | Lo W—-—fL(v"az)} £ 0 02
9:-90 3_2’ Uz/ y) V' 3'2”0 qz

th
[no subtraction]

where W, = (211)'1 Im T, and v, is the threshold inelastic excitation at
the limit of real photons vq2=:O. Identifying the right-hand side of

*) For a spin-zero target, the value of T4 at the origin v=0, q2=:0,

becomes independent of the order in which we let -g2 and v g0 to
zero, so that Eq. (2) becomes the Thomson limit (1).



Eqs. (9) and (12) we obtain finally

(4]
b2 . . g, (v 2)
& - _e_"’) e { dv b 2tV |
([“1 ZIWIS 2 n¥ uﬂ‘ a;_ro "?e/ (13)

[no subtraction]

where is the so-called longitudinal cross-section. Equation (13) is a

o
direct cinsequence of the low-energy theorem and an unsubtracted dispersion
relation for TL(v,qE). The validity or non-validity of this sum rule for

o 1s therefore a clean test of the latter assumption. This was precisely

our original motivation in looking for model-independent restrictions.

Equation (13) provides the relation.

Let us now discuss the present experimental situation, in the case of

the proton. The value of ¢ is not well known and a better determination

6) *)

me. The magnetic moment term gives a contribution of

is needed 5 . Experimentally we can say that its value is at the

level of 107>
5.4x 1072 fm>. The right-hand side of Eq. (13) must be determined from in-
elastic elcctron scattering at low-momentum transfers and all energy trans-
fers. Backward angle measurements should be welcome for giving the value of
o From Bloom's report 7 , 1t seems that the ratio R(v,qz):=cL(v,q2)/
/bT(v,q2) increases smoothly from q2:=0 up to a relative maximum value in
the q2 distribution when averaged for values of W Dbetween 2 and 4 GeV [W
is the invariant mass, i.e., W2==m2-+2mv at q2==0]. If we extract, from
these results, the value of the slope of R [at q2==O], we get a contri-
bution from that region of W, to the right-hand side of Eq. (13), which is
about ‘].5><'IO_4 fm3. In the resonance region, there is a high value of the

slope of o at the peak of the first resonance 8 . Since this fact may

imply a sizgable contribution to the integral [in fact, the most important
one if this point in W is not an isolated case], it is of extreme inter-
est to make a close experimental study of this energy transfer region. We
ask for these measurements in order to settle the question posed by Egq. (13);
We think that the main importance of this relation is not the fact that we
have here a sum rule }or the electric polarizability, but that it is a model-

independent restriction obtained from the assumption of an unsubtracted dis-

persion relation for TL(v,qz). The character of this dispersion relation

is crucial, if we hope to understand processes with virtual photons.

*) Dr. P. Baranov informed us of a new measurement in which the electric
polarizability is about five times, or more, larger than the magnetic
one. We thank Dr. P. Baranov for this information.
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In the meantime and from a Pragmatic point of view, if the unsubtracted
dispersion relation is accepted, it follows from Eq. (13) and present experi-

ments that a significant positive lower limit for the electric polarizability

of the proton is

N > 2 x 4074 {3 (10)

since the integrand is positive-definite: any new determination of the slope

of o for different values of W, adds a positive contribution to the

L’
lower 1limit (14).
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