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ABRSTRACQCT

The long range spin and velocity independent
forces of electromagnetic origin which act between any two
systems are siudied for those cases in which no forces of this
type exist to crder  e2, It is shown that they are uniquely
determined by the charge, magunetic moment and polarizabilities
of both systems mnot only %o the dominant crder r=I but also
to the next cne r-(n+1), These potentials provide the link
between Compton scattering polarizabilities (response to real
photons) and classically defined polarizabilities (response to
static electromagnetic field). The two definitions are shown
to be equivalent for neutral spinless systems ; the problems
arising for a neutral particle with magnetic moment sre studied
in detail. The x-{n+l terms have no classical counter part,
since they are due 3o the relativistic quantum propagation of
the system which carries charge or magnetic moment.

The results are of general wvalidity with analy-
ticity, crossing, unitarity and gauge invariance as only inputs.
The most general conclusion is that the polarizabllities repre-
sent electromagnetic properties of a system at order e2, as
the charge and magnetic moment do at order e. Thus they give
the strength of the response to electric and magnetic fields,
independently of the specific characieristics of the electro-
magnetic agent.
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1. = INTRODUCTIOW

Tnis paper is devoted to the study of the longest range effective
potentials which dominate, at large distances, the electromagnetic interacticn
between two systems, one of which at least is neutral. We were led to this
problem when asking such a simple guestion as the following. The experimental
study of low energy neutron-nuclear scattering 1) is used to obtaln the
electric polarizability of the neutron, defined as the coefficient.of a r_4
potential acting between these two systems. Is this coefficient exactly the
same parameter as the one which enters the Compton amplitude for the neutron,
through low energy theorems 7 Lt is well known that the Compton =amplitude,
up tc second order in the photon energy, is determined by two parameters, the
so-callied electric and magnetié polarizabilities (apart from the mass, charge
and magnhetic moment). These structure constants may be interpreted as the
ones which give the scattering contribution produced by slowly-varying induced
electric and magnetic dipoles driven by the electric and magnetic field of the
photon. The aim here is to obtain the spin and velocity independent electro-
magnetic interaction beiween any two systems, when they are far apart, and to

took for the connection with these low energy Compton scattering parsmeters.

Classical electrodynsmics says that an electric field induces an
electric dipole in a piece of matter proportional to the applied electric
field ; the proportionality comstant {or tensor for non-isotropic matter)
of the linear term is called the electric polarizability. The longest range
potential which represents the interaction of neutral isotropic matter with

2 Coulomb field is then
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where (e2/4n) is the fine structure constant and o 1is the electric polar-
izability. The next order term, proporticnal %o r“6, would come from the
part of the induced dipole which is guadratic in the applied eleciric field.
If we study the electromagnetic interaction between any two systems, we must
reproduce thie classical limit (1) when one of the systems is charged and in-

finitely heavy, and the other is neutral and spinless.



The electric polarizability o also appears in the low energy
Compton amplitude for this scalar target. In the laboratory system, and in
the Coulomb gauge, the amplitude for a spinless particle of mass m and
charge 2 is *)
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where , k and e are the energy, the direction of the momentum and the
polarization vector of the incoming photon, and the primed quantities cor-
respond to the outgoing photon. The contribution o the scattering due to

the magnetic field of the photon is determined by the magnetic polarizabi-
lity pB. Similar to «, the constant B should be precisely the one of

the magnetic dipole induced by a magnetic fleld in iscotropic matter and linear
in the field. The potential which represents the interaction of the induced
magnetic dipole with a stzatic one J (which creates the magnetic field)

would be
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A particle with spin has an intrinsic maghetic moment E pro-
portional tc its spin. With | the quantum mechapical magnetic moment,

in natural units, (3) becomes

Wl =3 (F) ) F o)

The potential (4) thus corresponds to the longest range velocity and spin
independent forces between a neutral infinitely heavy particle with magnetic
moment p (but p/M finite) and a neutra) spinless particle, due 1o the

magnetic moment .

At this level, one already realizes that the knowledge of the
Compton amplitude (2) for a neutral spinless system determines the response
of that system to an external electric or magnetic field. Quantum-mechinic-

ally, the counter part of this problem may be studied by considering the

*
) The amplitude (2) is the laboratory version of the invariant T matrix.
Our normalization conventions correspond to write for the cross-section
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intersction of that neutral spinless system with a charged spinless particle
or a neutral spin + particle, respectively. One question comes to mind imme-
diately. When this last particle (the one which "creates" the field) is not
infinitely heavy, what are the quantum modifications to the potential (1) or
(4) 2 1In particular, we would like %o know which are the terms of the long

range potentials which are determined by the two parameters o and B of

(2).

We see that, in order to obtain the generalization of the poten-
tial (4), we are led to the study of the interaction between two neutral
objects. In this situation, there may be a superposition with Van der Waals
forces, the ones generated by induced dipoles on both systems. For two spin-
less particles [in which case, (4) does not exisgj, London 2) found a T
petential at long distances, using second order perturbation thecry with
unretarded electric dipole transitions. However, the problem was taken up
again by Casimir and Polder 3), whose aim was o include retardation effects.
Working within field theory, but only including electrostatic interactions,

they found
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where @, is the electric polarizability of particle i. Finally, Feinberg
and Sucher 4) gave the answer to this particular problem by using, as only
input, analyticity. This allowed them to obtain, through a dispersion rela-
tion technique, the following long-range potential between two- neutral

spinless systems
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where Bi ig the magnetic pclarizability of particle 1. It 1s clear from
{6) that electric and magnetic fields come in on the same footing and, there-
fore, the full electromagnetic interaction, and not its electrostatic limit,
skould be used. The expression (6) turnms out to be true alsc for particles

5)

with spin as leng as only the spin independent pctential is considered and
as long as no static electric and magnetic multipcles are taken into account,
o =znd B Dbeing the average of the diagonal elements of the polarizability

tensors. In this context, we shall study the general long range potential



between two neutral systems, one spinless and the other with spin ¥, in
order to see whether the generalization of (4) might contain a r~' term

which would be present in addition to (6),

From the preceding discussion we conclude that the complete
answer is only known for the case of two neutral spinless particles and it
corresponds tc the potential (6). Our objective, in this work, is to study
those cases in which at least one particle is neutral and at least one par-
ticle is spinless, because those are the situations for which there is no
velocity independent long range (charge-charge or magnetic moment-magnetic
moment) interaction of order e2. For the szke of clarity, let us specify

the spin and charge assignments we shall therefere deal with.

a) Two spinless particles, one charged and one neutral.

The aim is to obtain the generalization of the potential (1) for the
case of two systems with finite mass. Is there any quantum effect to the
r_4 term ? Is there a r-5 term, also completely determined by the polaw
rizabilities 7 When studying this case a), we shall prove that the terms
of the potential which are determined by the knowledge of the low energy
Compton amplitude are not changed if we allow the charged particle to have
spin.

b) Twc neutral particles, one of spin 4+ and one spiniess.

Here the aim is to obtain the generaliszstion of (4), associated with
the magnetic moment of the spin 3 system. Apart from that contribution,
there will be a term identical %o (6)., We may ask here similar gquestions

to the ones already posed in a).

c) A spinless charged and a spin 4 neutral particle.

This case can be considered as the generalization of a), by including
the static multipole moments of the neutral system and not only the incuced
ones. It is interesting to point out that some modification is expected,
when compared with a). The low energy spin averaged Compton scattering

1

amplitude, for a spin 4 particle of mass m, charge Z anéd anomalous ma-

gnetic moment p, is given by
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with TO given by the same expression
shall put a subscript =

and ©

on «
case),
defining o and Bs
we have followed the widespread use of
called Born contribution {(in the sense
particle pole and on-shell vertices).

which the analysis of the experimental
is made in order to extract the values
zabilities. From Eq. (7), we see that
with anomalous magnetic moment
contains a term proportional to pg,

bility o_. The study of case c) will

is the laboratory frame scaitering angle.

(2} as for the spinless case (we

and B for distincticn from the spinless
Furthermore, in
for spin 4, some convention is needed. In Eq. (7)

separating out explicitly the so-
of Peynmen diagrams, with the single
This is, in particular, the way in

angular distribution )+7)

for protons
of the electric and magnetic polari-

the response of a neutral particle

to the electric field of the photon

in addition to the electric polariza-

allow us %o derive the precise form

of the long range neutron-nuclear potential, in terms of the relevant para-

meters.

It will thus provide a tool for the extractiom of the value of the

electric pelarizability of the neutron from low energy neutron-nuclear

scattering.

There ars several points in the connections we wish to establish

which should be emphasized.

as we shall see, that the knowledge of

The main ides underlying the basic approach is,

the low energy real Compton amplitude

controls the long range interaction between any two particles, due to the

exchange of virtual photons. The fact

that the forward longitudinal ampli-

tude, for virtual photons, has to do with the parameters of real photon

scattering was zlready stressed in Ref. 8), where the rfle of the electric

polarizability o

for this kind of connections was discussed.

In our

opinion, all this is but a manifestation of the fact that, like the charge

and the magnetic moment, the electromagnetic polarizabilities are fundamental

structure constants of the system describing the response to any eleciro-

magnetic agent.

real Compton amplitude.

an unambiguous and precise definition of the parasmeters remains.

They are not simply a way of parametrizing the low energy

But, besides this physical concept, the problem of

To us, for

the present approach, it seems more adequate to start from the definitions

associated with the real Compton amplitude and then establish the possible

connections.

The classical definitions of the structure constants as co-

efficients of the longest range term of the potential are unambiguous for

spinless neutral particles, but become

electromagnetic mutipoles.

are not in the limit of a static field,

blurred when the particle has static

On the other hand, we shall see that, when we

the same parameters determine not

only the leading order term but also the next order term in the potential.,
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The paper is organized as follows. 1In Section 2, we define the
effective potential in ferms of the centre-of-mass spin averaged scattering
amplitude. We show that the long range behaviour is controlled by the
absorptive part of that amplitude near =0 (t z 0) and fixed 5y which
igs determined from two-photon exchange contributions. Section % discusses
the Compton scattering tensors for scalar and spin %-objects, with the expli-
cit separation of the single pariticle poles and the polarizabilities in the
cérresponding anplitudes. The expressions for the long range potentials are
cbtained in Section 4, for the three cases discussed above., We shall show
that an electric-magnetic symmetry for the results is preserved when the
polarizabilities for spin % particles are defined in terms of the continuum
contributions of the spin averaged amplitudes. Finally, Section 5 gives a

recapitulation of the main results and the conclusions obtained from this

study.

2. - THE LONG RANGE POTENTIAL

This section is devoted to the kinemstics and to the dispersion
relation technique which will be used to obtain the long range effective po-
tentiais which we are interested in. By definition, long range potentials
will be those which behave like an inverse power of r at large distances,
In our study, at least cone particle is neutral and at least one particle is
spinless, 80 no velocity independent forces of the type we consider can
appear in the one-phoion exchange approximation. Therefore, the relevant
diagram will be the cne in which twe photons are exchanged between the two
objects of masses m and M. This is shown, together with the kinematics,

in the Pigure. The following auxiliary momenta will be used

Pzz_{//’*/”/ ; K=Z—/-/r»r’/

{0 ) ,
K= 5 [k k) ;Hf-/,;r_,_-é’-é (8)

/

and the Mandelstam variables are defined as

(L R)T bt gt , as(R-2)°
R a / (9)
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As the particles are on the mass shell, the following relation-

ships for the scalar products hold

4

Py-Ry=0 ; Lem-Lopopenf

. / d Z
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The physical & channel region is defined by

Sz S, < (Hem)°

2ntint) -5 - L2l <oy (1)

FAa

end the physical % channel region by

t 2t s Ymax (110, 7¢)

Msnt- Z/—’[—
< Nrm Zi 2 fE /ff/f’_ < 0 "

Let us dencte by 7(s,t) the invariant amplitude which corres-
ponds to the spin averaged part of the disgram of the Figure. The effective
potential must reproduce it in the Born approximation. Inm order to obialn
the potential from T(s,t) we need to know the dependence of the amplitude
with the momentum transfer squared +. The use of dispersion relations will
allow us tc obtain the explicit dependence on  t. We shall assume that the
amplitude T(s,t) setisfies maximum analyticity of the first kind, that
means, that all singularities correspond to physical intermediate states
and are therefore determined by unitarity. We write the following fixed

s digpersion relation

. Hem)-s ,
T(s t)- ¥ 1 Abs T[s,1) 1 :’f’ Abs T (s, 7]
R -t i o f (13)

Possible subtractions in (13) have not been considered for the moment. The
lowest mass intermediate state of the wu channel [Ehe second term in (131]
has been suppcsed to be the one given by elastic unitarity. The effective
potential is defined as the Fourler transform, in the cenire-of-mass system
for the s channel, of T(s,t). We are interested in that part which 1s

independent of s, that is
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where T(%) is the s independent part of T{(s,%). As it will be shown

below, for the long range part of the potential we are allowed to forget the

left-hand cut (in t) dispersive integral, so that we can write

et )4 1 /7 - /7
V{r/:/ﬁ/ Hm 7 Zdz‘ Abs 11} e (15)

In obtairing Eq. (15), the Fourier and the dispersive integrations, in {14)
and (13), have been exchanged, which is allowed as the denominztor is never
negative, thersfore the integral converges absolutely. Equation (15) is

the one which defines the long range, spin and velocity independent effective
potential we are interested in. I+t is worth noting that it gives inverse

power behaved potentials only because the dispersive integration starts at

=03 4if it started at a positive value of + the result would be g
superposition of Yukawa type potentials, and therefore, by definition, of
short range. This is precisely the kind of argunentation which allows us
to forget the left-hand cut in (13). We cannot exchange the Fourier and
the dispersive integrations there, as the denominator goes through a zero
changing sign., One c¢an, however, define a Majorana exchange potentizl
corresponding tc the Fourier transform of the amplitude with respeect to

qexch:=5‘+-5 ingstead of E::E'-—E. The left-hand cut dispersive integral

can be exchanged with the E integration, giving finally an expression
e g ’

xch
similer to Eq. (15), but with the essential difference that the integration

region starts at 4Mm instesd of at zero. Therefore, no long range Majorana

exchange potentials are obtained. The essential feature of a long range po-

tential is that the associated amplitude cannot be expanded in natural powers
of %, for low values of the momentum transfer +t. Prom Eq. (13) we see
that for |4| < 4mM, +he left-hand cut contribution to T{s,t) can be

expanded in s power series in ty, =50 it will not be considered here.

It is 2lso not difficult to convince oneself that even if sub-
tractions are required in the dispersion relation, the result {(15) for the
long range potential is still valid, as may be seen by dispersing T(s,t)}/
/(%+c), ¢ being any constant. We thus conclude that the long range po-
tentials will be uniquely given by the low + behaviour of the t channel



absorptive part of the scattering amplitude and therefore determined by

the two-photon exchange cut. It is to its study that we turn now.

The amplitude T(s,t) associated with the diagram of the Figure

is given by

PR N
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where A(s,t,P.K,R.K,q.K,Kg) can be written in terms cf the virtual Cocmpion

scattering tensors of the two particles, of masses m and M, as

Als b, 05, RE, g5, /) < T/f'ff (£4,5) TE(R g, k) )

The sbscrptive part of the amplitude (16) corresponding to the two-photon
intermediate state cut can be calculated, from unitarity, as an integral

cver real intermediate two-photon states in the following way

T/ 4 it Jq/f TR , e 1 723
Abs Tls) = - 5 T SIKISIF) a4 6/x) Al s, b K, R, ;,/r,“/g

With the conditions specified in Eq. (18), the fcllowing identities hold

_ ¢ 4
?ll/ z 0 / f‘f - —L/—— (19)

Choosing the <+ channel centre-of-mass system, for which ¢ E(ng,o,o,o),
the absorptive part of the invariant amplitude may be finally written, for

t >0, as

Abs T (s 1)< -

/ “ A A A ‘
/ZJ’/TC 6//1/ fq/.f,f .,'/f/ /?/r/ (20)

where the integration is performed over the angles of the vector f.
The prcblem we are faced with now is the following. Equation

(20) for the absorptive part of the amplitude T{s,t) is well defined in

the physical % channel region (12), as there the vectors T end E are
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real, On the other hand, we need to know in (15) the behaviour of this
absorptive part at > 0. If the calculation of {20) were performed in
the physical ¢ channel region we would have to continue the result ana-
lytically to the region which interests us. Furthermore, this approach
would require the lmowledge of the explicit dependence of the integrand of
(20) ir 2.2 and R.8, and it would force us to write new dispersion re-
lations for the Compton amplitudes in these variables, Instead, we shall
calculate the integral (20) directly in the region of momentum transfer

t > 0, going to zero from positive values, as required in (15). In crder
to keep the angular variables of integration in Eq. (20) within the limits
-1 <28, RR <1, we must also have -1 < B.R < 1. In the region 0 < % <

. 2.2 . = = .
< 4 min{N°,m ), the meduli of P and R are imaginary, and

s-f-nt , L
A4 é (/ As Sd .Sl_So
PR - ~ g, , 5%
A 2 F e L f>0 S &fim
ﬂ/";f }/’I’f 7 s ~ 5,

(21)

With the above conditions, the variables must satisfy

/‘l*m-:f: Z/ﬂ // -ﬁ

< Mo _ ¢ ZV/7~ /,,,“ (22)

This includes the phy31cal threshold value S, only when +t=90. As dis-
cussed before, we are interested in the velocity independent part of the
long range potential, and thus we shall keep in the amplitude the contri-

bution which is independent of s - Sge As the calculation is strietly wvalid

only for the region (22) in s, one makes an analytic continuation intc the
8=8, limiting peint. Nowhere, when one goes from the physical + channel
region to O < t < 4 min(Mz,mg) keeping -1 < B.R < 1, +the integration
of Eq. (20) encounters any singularities. Therefore sbsolute convergence

is satisfied.

When we calculate Eq. (20) the advantage of the t > 0 region
is that the Compton smplitudes can be expanded around +=0. This also
means around P.K=R.K=0. The values of the amplitudes at that point are
krown from physical Compton scattering. Further the explicit dependence

in ﬁ.ﬁ and R.KE is known from the form of the Compton scattering tensors,
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which is imposed by the symmetries of the problem. ZBecause of that expan-
sion in t, we see in Eq. (21) that one cannot go, a priori, to the limit
s=8, befoie caleulating (20), since then P.R > 1. The approximation of
putting P.R=1, used in Ref. 4) for the calculation of the Van der Waals
forces, is valid only if neither ©(t) nor O0(s- so) terms of P.,R contri-
bute to the lesding terms, in t, of Abs T(s,t). This is not necessarily
the case for the problems we are going %o study, as the existence cf propaga-
tors (for the single particle contributions to the Compton smplitudes) could
force us to include O(t) terms of P.R. In that situation, it is crucial
to keep track of which is a t dependent fterm, and which is a (s— so)
dependent term. The first one contiributes to the potential in Eq. {(15),

wherezs the second one should be forgotten, once the expression for

Abs T(s,t) has been obtained after the integrations in Eg. (20).

Let us conclude this section by staiting the recipe we shall
follow for that integration in {(20). The externsl four-vectors P  and

R* are chosen as
f d / 0.' 01 6’, (/—F/
£’ [_‘,‘:: (0,0, JJek-(e47, (A ) (23)

so that, taking dﬁx:d(cosO)dﬁ, the expressions for P,K and R.K become

Wi

(M

(24)
. A . JE ,
Rl = - (= PR w6 - L Vrp? iok) s

which will be used in the actual calculations, All guantities entering

Eqs. (24), P2, 32 and F.R, are given in (10} in terms of s and t.
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3. - COMPTON SCATTERING TENSORS

In the last section we wrote the effective potential which we
are interested in, in terms of the absorptive part of the amplitude T(s,t)
on the t channel two-photon cut. This quantity, Eq. (20), is determined
by the contracticn of the Compten scattering tenscrs for both systems. As
said bhefore, we ask for the spin averaged amplitude, so that we will only
need to discuss the form of the scatiering matrix for a sealar system. If

this is denoted by T“v, satisfying the gauge conditions

1’- 7—/( = 7‘/ zﬁ, = 0 (25)

it is possible to expand the spin averaged tensor, associated with the

process k+r=k'+r', din the fomm

¥ :
,_/1» . )Z/ E,’ /?;,‘ 'f/‘// D(I/“ (26)

where 1 iv are the following gauge invariant tenscrs

&

0(,,“): ,é,{//j Fad 4/%/ |
L7 WHRE - RA(RIH o WK 5 [RAS 47
b h [ RUS KERY) ~ RK (4147« 4747
f”i k/d4“ |

3\
k3
|

(27)

and the amplitudes Bi(qz,R.K) have definite crossing symmetry. Indeed,

B1,2,4
LR
sign of R.K. 1In writing (27} we have used that photons are massless,

are symmetric, while 33 is antisymmetric under the change of

lacey kgzk‘E:O Eaee (‘]8)], but not necessarily transverse. HNever-
theless, as we shall have the contracted product of two such tensors, the
use of {25) says that only the amplitudes B1,2 will contribute to our
problem, as it happens in the case of the true physical amplitude. These

physical invariant amplitudes B1 o ‘correspond to the ones suggested by
)

Bardeen and Tung 9) and they are free from kinematical singularities and
*

)

constraints .

o o o (o o . S T Y T P PP i RS W0 e e b i e e e i e e e o o e o e e . P ek

=
) This 1s, apart from the zero im R.K= C due to crossing, also true for
Bz butzﬁot for B4, which has the kinematical zero B4(O,O)= 0 [éee
Ref. 10)].
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Following the notation of the last section, the relevant quantity
A dn (17), contraction of the two itensors T(m) and T<M), can be written

A= F [ 24,05 06) B, (55 1) |
RALg EHI B (44, RE) + LA, 33 06) B 3% £4)]
t[2lek)RK) - f(/ PURKIE S KNS+ F168)

*0gt1eR)ILRIIRK)] A, 35 LK) B (3 R47) (z8)

where Ai and Bj are the invariant amplitudes associated with the particles
of mass m and M, respectively, and all the invariants appearing in (28)
can be written in terms of s, q2 and the two angles of the K integration

of Eq. (20).

We are interested in the knowledge of these invariant amplitudes
for scalar and spin + systems. The single particle pole contribution may be
caleulated explicitly. In a dispersive approach, their residues can be de-
duced by comparison with the Compton scattering Feynman diagrams. Once these
pole terms have been separated out, the remaining contribution to the ampli-
tude, the continuum contribution, is finite in q2=:R.K==O and may therefore
be Me Laurin expanded. In the following we will discuss this program expli-
citly. Wi

3+17« = BSpin 0 system

For scaslar particles, and after due consideration of a contact

term, the pcle contributicn reads

TH pele] < 5[ 126 4) 1265 4)" ),
KAL) D, - gt ] (29)
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where =z 1s the charge of the particle and

e~/ ¢ -7
[2R K - E'Z/ ; [-CRY - ;Z ) (30)

correspond to the single particle exchanges in the s and wu channels (of
the photon-particle system), respectively. By comparison of the tensor (26)
with (29) we find the following pole contributions teo the amplitudes

Jg,f/;?, £ K] = AV WA
Bllgekn) < £2°0: 0, e

The remasining coniribution to the amplitudes is finite in the 1imi% qg,
R.K— 0, and the associated structure constants are the so-called electric,

o, and magnetic, B, polarizabilities. 1In precise terms, we define

these constants by 1)

‘XEZM 7///3 ﬁﬁ/
'ﬁi_?_{f—/‘/ﬂ/

where the superscript means the limiting value (at q =R.KE=0) of the

(32)

continuum condributions. The knowledge of the analytic properties of the
invariant amplitudes implies that, beyond (31) and (32}, next order terms

of these amplitudes go at least like q2 or like (R.K)2

For resl Compton scattering, the contraction of {26) with the
polarization vectors of the photons leads to the result given in (2), thus
providing a tool to measure the structure constants o and B from the
Compton scattering differential cross-section at low enough energies. In
our problem, the knowledge of (31) and (32) allows us to determine the
relevant quantity A in (28) up to a certain order in q2, PJK and R.K
(which is that order depends on the system being considered, charged or

not).
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1

3.2 = Spin = system

At first sight, the introduction of spin seems to complicate
the rather simple consgiderations of the previcus subsection. In fact, the

1

Compton scattering matrix on = spin 7 particle consists of six different

gauge invariant tensors for transverse photons. The six amplitudes given

2) are free from kinematical problems, and their single

by Bardeen and Tung
particle poles are unambiguously identified in terms of the charge 2 and
the anomalous magneitic moment p  of the particle. To second order in the
photon energy, it is enough to consider the continuum contributions ¢f only
two ampiitudes, and the correspending structure constants define the eleciro-

magnetie polarizabilities of the particle, o and BS

However, when only the spin independent part of the Compton
scattering matrix is considered, the tensor may be taken to be the one of
s spinless particle and the expamsions (26) and (27) may be used. The
associated spin averaged amplitudes B1,2(q2,R.K) are related to the ones

defined by Bardeen and Tung through

My 'M” [//f/‘f///ﬂ/ T’W/ (33)

where Y=r Y” ahd y“ are the Dirac matrices. With the electromagnetic

polarizabilities defined as said before, we cbiain 1)

o= g (] (48T
s -ﬁs = gjrfif /f//// /F//Zﬁf /((34)

with the ssme meaning for the superscript as in the previous subsection;
Apart from the term containing the anomalous magnetic moment, which has
its origin in the spin of the particle, the result (34) reproduces the
one obtained for scalar particles (32). An alternative way of defining
2

the polarizabilities of a spin % particle is to pursue further the analogy

1

with spin 0 and %o use 1ts definition (%22) also for spin % particles. These

polarizabilities, which we will denote by o and B, are therefore given

only in terms of the continuum conitributions of the spin averaged amplitudes.

They are related to the previous ones as follows
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R
i

As r /2‘2 Fﬂ}/?;_/
B p - ﬂ/zéz’/‘//[/ /

This freedom in the definition of the polarizabiiities of a spin + particle

(35)

is due to the fact that the pole contributions tc the amplitudes of the
complete spin % Compton scattering matrix generate both pole and continuum

contributions to the spin averaged amplitudes.

The residues at the pole of the single particle exchaenge contri-
butions are obtained by spin averaging, Eq. (33), the corresponding Feynman

graphs., The result is

_g,f = /J/Z(-zfﬂ//ﬂs ' &a/
BB -plezep)lts +0,) 85N 4, (36)

where Ds and Du have been given in (30). It is straighitforward to
reproduce the spin independent Compton ampliftude given in the Introduction,

*)

(7), from the preceding expressions. The relation is

- , _ I "
Is (spn aweraged | - -,;{/%:6/’//&1’/ » (4, 1) (37)

where ev(k,h) 1s the polarization vector of = photon of four-momentum k%
. k3

and helicity A and similarly for e (ktyat). T N is given by (26) and

the relevant contributions to the amplitudes by (36) and (34).

It should be roticed that it is precisely o the structure
constant which gives the strength of the response of a spin % particle to
an electric field, zs may be immediately seen from (7)., In this sense, i.e.,

using Compton scattering amplitudes in order to define the polarizabilities,

S T T T T T T TR W P = = e . o T W o et o e (o o o o [ o o o e o o o o Y e e s o (o o e d Ul o o o e o e e o e oy o e o e YR Y o

*
) The reason for the factor JEE/M is that it allows us to obilain cross-
' sections from Tg with the same conventions as for a spinless particle.
In fact, it could have been absorbed by (33), but spoiling then the si-
milarit% of the definitions of the spin 0 and ¥ polarizabilities, (32)
and (34).
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o appears to be the generalization to include spin (and therefore magnetic
moment) of the spinless electric polarizability o. However, the combina-
fion of invariant amplitudes appearing in ocur problem, Eq. (28), is a priori
different. It i1s therefore not clear if the generalization of the potential
(1) will also give & as extension of the spinless electric polarizability
o to include magnetic mament. In fact, as we will see, the interpretation
of the result in terms of the polarizabilities, in the potential approach,

is more delicate.

4. - CALCULATION AND RESULTS

With the integrand of Eq. (20), given in Eg. (28), in terms of
Compton amplitudes, we are now able to carry out the integrations. In that
way, we obtain the absorptive part of the amplitude, Abs T{s,%), in the
region % > 0. Since we are interested in velocity independent potentials,
the analytic continuation to s= S, of the relevant part of Abs T(s,t)
is trivially performed by maintaining only the S- 8 independent terms.
They are then integrated according to Eq. (15} %o give the sought long range
potentials. This will be the content of the present section. We shall
present the results separately for the three cases mentioned in the Intro-

duction.

We would like to mention here that two alternative approaches
have been followed in the cases in which a spin + particle is considered.
The difference between the itwo approaches lies in the way in which the spin
independent part of the Compton amplitude is obtained. This part may be
defined by spin-averaging in a convariant way, as done in Eg. (33}, and
which méans that the axes of quantization of the spins of the in and out-
going particles are related by the boost which transforms their four-moments
into each cther, leaving invarilant any four vector orthogonszl to these. The
alternative definition is obtained by spin-averaging over the non-relativistic
spin, that is, by keeping the spin (Pauli matrices) independent part of the
complete scattering matrix 9 , once the non-relativistic reduction of the
amplitude has been performed. Since hoth approaches reproduce the low energy
Compton amplitude given in Eq. {7), we expect them %o give the same resulis
for the potential up to the order in which it is determined by the polariza-
bilities, We will present the absorpiive part of the ampiitude in both fashions,

thus shedding light on different aspects of the problem.



- 18 -

4.1. =« Two spinless particles, one of them neutrsl, the other charged

The integrand of Eq. (20) is cbtained from Eq. (28) substituting
the amplitudes of the charged particle (whose mass will be dencted by M) by
i%s pole contribution (31), and the amplitudes of the neutral particle (of
mass m and polarizabilities o and B) by its polarizability contribution
{32). The angular integration isg easily performed and the result at s-= 5,

and expanded around q2::0 is

Ads 7_/){2/= 7/// /V/—q/ 6/1'" ///v( ,&ﬁ// ﬂ/j"/—/

(38)

Z heing the charge of the charged partiecle. The potential is trivially
obtained from (38) by integration of qz, Eg. (15), and reads

/)[4« L ML) 1/
WT/: ‘2/‘//7/[ ¢ Y qr Mrs Fel (39)

The following conclusions may be drawn from (39). The first

term does not depend on the masses of the two particles and therefore coin-
cides with the classical result {1) even without taking the static field
1imit M- ® . The seccnd term is a "quantum effect", its origin being
found in the propagation of the charged particle. It vanishes in the
static field limit, not only because 1t does not have a classical counter-
part but also because it is sensitive to the magnetic field of the photons
(as it depends on 8), which is rnot present in a static electric field.

It is completely determined by the polarizabilities.

We will postpone the discussion of the higher order terms,
which cannct be obtained in terms of the polarizabilities, tc the end of
this séction, gince it applies also tc the other two cases we still want

to study.

Before passing to the next case, we would like to remark that
the potential (39) is unchanged if we allow the charged pariicle to have
épin, in our case spin %, since the terms proportional to Zy or to
are at least of oxder q%ng in the absorptive part of the amplitude. - This
may easily be seen from Eq. (56) and repeating the steps which led to Eq. (38)
or, for the part proportional to pg [énd therefore for Zu, as they go

together, Eq. (37[}, going over 1o the next subsection.
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4.2. - Iwo neutral particles, one of them spinless, the cther with spin =

The essential difference with respect to the previous case is
that here both the pole and the polarizability contributions have to be
taken into account for the spin % particle. This is so because the domi-
nant contribution from the polarizabilities i1s of the same order as the
noen-dominant, but still unigquely determined, contribution from the magnetic
moment u. Let us denote by M, & and f the mass and polarizabilties of
the spin 3 particle and by m, ¢ and B the corresponding magnitudes for
the spinless particle. Using Egs. (28), (32) and (36) to obtain the inte-
grand of Bg. (20), the result of the angular integration at s=s_ and

expanded around q2::0 ig

Db //ﬁj -z /’M//f/”mﬁ{g/ﬁ J—% [~ a’%

- [ L g (23w ] - 23S Y - Oyl

(40)

It 1is at this point instructive to write down the same absorptive
amplitude as cobtained in the non-relativistic approach to spin independence.

Written in terms of the polarizabilities o and BS, it reads

Ads /—(}qz/ T /f_//%/ﬁﬂf/f—/ﬁ M /7/5”"//
i (2] tag' (5 0ens + ) - 2nfi ) 6’///;/

Using the connection (35) it is seen that both results (40) and (41) are
identical. However, comparing Egs. (4C) and {(41) to Eq. {38), the advantage
of the covariant procedure, or, more precisely, of the definition of the
polarizabilities suggested by the covariant approach to spin independence

(i.e., of using a and £ instead of @, and ﬁs) becomes conspicuous.
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It is enough to remark the eléctric-magnetic symmetry of the first part of
Eq. (4C) with respect to Eq. (38), since we go from one expression to the
other simply by making the substitutions %(p/EM)qu::ZE and ozpf. We
therefore choose to obtain the potential from Eq. (40), getting, after a

trivial integration,

-5l o
/

—"?%:;;[23/4';#/6’;/_ }2/47(/5__" ’Fﬂ//" 0/;%

Similarly to the previcus subsectiion, the following comments

(42)

apply to the result.

The first term does not depend on the masses and therefore
coincides with the classical result (4) even without taking the static
field limit M~@ (but p/M fixed).

The second term is, as in the previous case, a "quantum effect"
and all the comments made there apply also here simply substituting "electric™
by "magnetic" and vice versa, The particular combination (Se+ 118) which
is the coefficient of this term, depends on the definition chosen for the
polarizabilities of the spin % particle, which has been o arnd B, as
shown in the last term, which is nothing else than the Van der Waals poten-

tial of Eq. (6).

4.3, - A spinless charged and a spin + neutral particle

As in the previous case we can distinguish two contributions,
one due to the magnetic moment {pole) and the other due %o the polarizabi-
lities (continuum) of the spin + particle. The difference with respect
to the previous subsection is that now the other, spinless particle is
charged and not neutral as there, and therefore also contributes with a
pole to the integrand of (20). A consequence of the presence of at least
one pole in the integrand (28) is that both afore-mentioned contributions
overlap already in the dominant long range term and not only in the second

one as in (42).
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We take the spinless particle to have mess M and charge 2

1

and the spin 3 cne to have mass m and magnetic moment p. Using again

the results of Secticn 3 one can perform the integrstions, which, due to
the existence of double poles are more involved in this case. Keeping only

the s -5, independent part and expanding around q2= Q0 we o¢obtain
Abs Tlq¢) - E —,L/
f a" c’m /7— HrmeJ

F (G IF[ E 05 ) ay)

Again, and following the alternative approach, one finds

#bs Tlg - /M//’—/ZM me @/
1800 (- 158 o

which again turns out %o be equivalent to Eq. {43) through the relations
(35). We choose to calculate the potential from Eq. (43) and not from

Eq. (44), since this emphasizes the symmetry in the masses of both systems.
The result is

(45)
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This result will answer scme of the questions we asked in the Introduction.
Pirst, by comparison with Eq. (39), and defining the electric polarizability
in the classical way as coefficient of the potential (1), we concliude that

the inclusicn of spin, and therefore magnetic moment, leads to fthe substi-

/'/Hﬂ
X —> o( + // ////;” (46)

This, of course, canncot be considered a constant, characterizing a physical

tution

property of the particle of mass m as also the mass of the charged particle,
M, appears in (46). However, the nice feature of the decomposition shown

in (46) is that the second term depends only on the reduced mass of the
system, whereas this would not have been the case if we had chosen (44) and

therefore the polarizability o_ for writing the potential {45).

In the classical limit of a static electric field acting on a

particle of mass m and magnetic moment p, Eg. (46) gives

« = T (3] (%) )

which is neither & nor o ! As in gll previous cases it is seen in (45)

=4 Llerm is left in this 1imis.

that only the dominant =
We would like to end this section with some general comments
which apply to all cbtained potentials and to their calculation. The appro-
ximation menticned in Seetion 2, P.RE= 1, could have been used in all cases,
except in the only cne in which 1t would really simplify the integrations :
when a double pole is present (subsection 4.%), Its use there trensforms,
through the relation s_ -8 ® (so/4mM)t implied by Eg. (21), a velocity
dependent term into a momentum transfer dependent one. This would contri-

bute to the longest range term giving therefore a wrong result.

The other comment refers to those higher order terms in all
obtained potentials which cannot be determined in terms of the pclariza-
bilities alone. This is due to the fact that alsc higher order terms in
the MeLaurin expansion of the continuum contributions of the Compton
amplitudes enter intoc them, whereas only the first term of these expansions

corresponds t0 the polarizabilities. The scale of these expansions may be
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taken to be a typical excitatilon energy E¥ of the corresponding particle.
Thus all obtained potentials dominate over the unknown higher order contri-
butions only for E¥r > 1. On the other hand, a different and avoldable
expansion in q2 has been done in writing the absorptive part of the ampli-
tude T(s,t), since we wanted to present the potentials as powers of .

In this expansion the scale is given by the mass M of the particle which
has charge or magnetic moment and therefore pole contributicns to its Compton
amplitudes. This limits further the region of validity of the potentials to
the region where Mr >> 1 is satisfied. It should not be forgotten that in
the cases in which this limitation is stronger than the first one (M < E¥)
it may be useful to aveid it by presenting the results without having per-

formed the expansion in q2 which is its origin.

5. - CONCLUSIONS

In this work the spin and velocity independent long range poten-
tials between two systems, of which one at least is neutral and one spinless,
have been obtained. The main ouitcome is that their two longest range terms
are cumpletely determined by the mass, charge, magnetic moment and electro-
magnetic polarizabilities of both cbjects. Thus, the physical parameters
entering the electromagnetic interaction between two systems, when they are
far apart, are the same as the ones appearing in the description of low
energy Compion scattering on each system. It is the knowledge of the ana-
lytic behaviour of the Compicn scattering ampliitudes that allows us to de-
termine the twc leading order terms of the potentials in ferms of only the
limiting value, at threshold, of these amplitudes, i.e., in terms of the
polarizabilities. The first term is classical and it survives without moe
dification in the limit of a static slectric or magnetic field acting on
the neutral system, reproducing Egs. (1) or (4), respectively. However,
the next tc the leading order term is of the ferm #/Mer times a term of
the type of the leading one, M being the mass of the particle creating
the field. Therefore, this second term is a relativistic gquantum effect
generated by a charged particle [%-5 in Eg. (39z] or by a neutral one
with spin [%_7 in Eq. {42)] due to its magnetic moment. It disappears,
however, in the static field limit M—® . We thus may conclude that the
polarizabilities represent general elecitromagnetic properties of the system,

gince they give its complete gquantum electro&ynamic behaviour (together with
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the static electromagnetic multipoles) to order e2 2t low energies or
long distances, similarly to what the charge and magnetic moment do to

crder e.

For the case of particles with spin, we have seen that the defi~
nition of the polarizebilities & sand B in terms of the continuum contri-
bution of the spin averaged amplitudes for Compton scattering produces more
symmetric results, in the long range poteniials, than their usual definition
o and ﬁs in terms of what is missing once the complete Born contribution
(in the sense of Feynman graphs) has been separated out. In particular, the
interaction of a neutral particle with spin with a charged one is given, to
leading order in r, by & plus a term which only depends on the reduced
mass of the system {and the magnetic moment of the particle with spin).
However, in the limit of a static electric field acting on this neutral par-
ticle with magnetic moment, the coefficient of the r_4 potential which
survives is given by (47), and it is neither @, nor ®. This coefficient
is therefore the quantity which is measured in the scattering of neutrons

by heavy nucleil at low enough energies, when one looks for a linear ferm

in. the momentum transfer fal in the amplitude 1).

We have discussed, at the end of Section 4, the region of vali-
dity of the inverse power expansion of ithe potentials. Apart from the con-
dition E*r >> 1, which comes from the expansion of the continuvum contri-
bution to the Compton amplitudes in order to single out the polarizabilities,
an additional expansion in q2 of the absorptive part of the total amplitude
has been made in order to present the potentials as inverse powers of r,
implying the condition MNr >> 1, with M the mass of the charged or spin-
ning particle, This provides a simple explanation of why the two-photon

exchange contribution to the neutron eleciron amplitude 12), although con-

13),14)

trolled by the neutron polarizability, is not given by the classical

potential r_4.~ In fact, this potential would be meaningful only for dis-
tances larger than the Compton wave length of the electron. With this
example irn mind, 1t could be interesting to obtain the form of the potential

with the only limitation r >> (E‘*)“1 (Nm;1 for the neutron), irrespective

of whether the separation r is larger or smaller than M;1. This would,
however, spoll the inverse power expansion in r of the potential, which

allowed us to compare with the classical limits,
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FIGURE CAPTICN

Two-photon exchange contribution to the elastic scattering

amplitude for two particles of masses m and M.
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