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Abstract

A classifier based on a Feed-Forward Neural Network has been used for
separating a sample of about 123,500 selected hadronic decays of the Z°, col-
lected by DELPHI during 1991, into three classes according to the flavour
of the original quark pair: wu+dd+s5 (unresolved), ¢¢ and bb. The classifi-
cation has been used to compute the partial widths of the Z° into b and ¢
quark pairs. This gave I'z/T'x, = 0.151 £ 0.008(stat) + 0.041(sys), I'z/Tw =
0.232 & 0.005(stat) £ 0.017(sys).
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1 Introduction

The difficulties in the classification of hadronic events according to their parent quark
flavour can be overcome by utilizing multidimensional variables for the separation [1].
Among the multidimensional classifiers, Feed-Forward Neural Networks [2] appear to be
a good candidate for complicated problems such as this. Feed-Forward Neural Networks
(NN in the following) can map a set of variables calculated from the event onto a feature
space in which the different species are well separated.

The possibility of using a NN for hadronic event classification was explored in Ref.
[3], in which the problem of separating Z° decays into bb pairs was considered. The result
of this study was that, in the case of a perfect detector, a separation could be achieved
with a higher efficiency than with respect to traditional separation variables [1]. Further
studies {4] demonstrated that, also in the presence of detector effects, NNs could be a
useful tool for the classification of bb events, and preliminary results on data have been
recently presented [5). ,

In this letter, it is shown that a NN can be used to classify effectively decays of the
Z° into bb and € pairs. It has been possible to measure, from the data collected by
the DELPHI detector [6] at LEP during 1991, the rates of the hadronic decays into
bb and c¢ . The robustness of the separation against systematic uncertainties related to
model dependence of the classification has been investigated by varying a wide range of
parameters in the main Monte Carlo model used, and by comparing the results obtained
with different models. The behaviour of the NN is consistently similar on the Monte Carlo
test sample and data. Thus, the NN could be used for extracting flavour probabilities for
each event, which offers interesting prospects for subsequent physics analysis.

2 Data Selection

The sample of events used in the analysis was collected during 1991 by the DELPHI
detector at the LEP ete™ collider, operating at center-of-mass energies around the Z°
peak.

A description of the apparatus can be found in Ref. [6]. Features of the apparatus
relevant for the analysis of multi-hadronic final states (with emphasis on the detection of
charged particles) are outlined in Ref. [7]. The present analysis relied on the information
provided by the central tracking detectors: the Micro Vertex Detector (VD), the Inner
Detector (ID), the Time Projection Chamber (TPC), and the Quter Detector (OD}. For
muon identification, the Barrel and Forward Muon Chambers (MUB and MUF) were
used. S '

The central tracking system of DELPHI covers the region between 25° and 155° in
polar angle 8, with reconstruction efficiency near 1. The average momentum resolution
for the charged particles in hadronic final states is in the range Ap/p ~ 0.001p to 0.01p
(p in GeV/c), depending on which detectors are included in the track fit.

The polar angle coverage of the VD is from 42° to 138°. The intrinsic point resolution
for single tracks in the transverse plane has been measured to be 8 um. For tracks with
hits in all three layers of the VD, the uncertainty of the track extrapolation to the vertex
region 1s 24 pm for high momentum tracks.

The polar angle acceptance of the muon chambers is 9°—43°, 52°—128° and 137°—171°.
The muon identification algorithm is described in detail in Ref. [8]. The muon track
candidate must be associated with hits in the muon chambers, and the identification is
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based on a x? fit, where the x? is calculated from the difference between the extrapolated
track trajectory and the track element constructed from the hits in the muon chambers.
With these criteria, the muon identification efficiency is (78 & 2)% and background due
to misidentification is (1.0 + 0.3}% per charged hadron.

Ounly charged particles fulfilling the following criteria were used in this analysis: (a)
momentum, p, larger than 0.1 GeV/c and smaller than 50 GeV/c; (b) impact parameter
in the plane transverse to the beam direction, |r|, smaller than 5 cm, and along the beam
direction, |2], smaller than 10 cm; (¢) measured track length above 30 cm; (d) polar angle,
#, between 25° and 155°.

Hadronic events were then selected by requiring that (&) each of the two hemispheres
cos < 0 and cos# > 0 contained a total energy of the charged particles larger than
3 GeV; (B3) the total energy of the charged particles seen in both hemispheres together
exceeded 15 GeV; () there were at least 5 charged particles with momenta above 0.2
GeV/c; (8) the polar angle 6 of the sphericity axis was in the range 40° < 8 < 140°; (¢)
each of the two most energetic jets' in the event had at least four charged particles.

Quality cuts on the detector performance were made, in order to improve the reliability
of the variables used for the analysis.

A total of 123,475 events satisfying these selection criteria was used in the present
analysis. Events due to beam-gas scattering, to -y interactions and to decays into 77~
pairs have been estimated to be less than 0.3% of the sample.

For the study of NN input variables, tuning and testing of the Network, and classifi-
cation of data, events were generated by using the JETSET 7.2 Parton Shower (PS) [10}
Monte Carlo program, with the Monte Carlo parameters optimized as in Ref. [11]. The
generated events were followed through a detailed detector simulation program, DEL-
SIM [12}, and processed through the same event reconstruction as the data. A total.of
255,000 events satisfying the same selection criteria as the data was used. From this
sample, 30,000 events were separated to train the NN, and the remaining events were
used as a test sample to obtain the branching fractions {200,000 events), and to check
the NN training (100,000 events).

In addition, events were generated with JETSET 7.2 Monte Carlo program with QCD
2" order generation of the initial state at the parton level (JETSET ME) and the tuning
of [11], and simulated with the full detector simulation. This sample, containing 60,000
events, was utilized as an alternative test sample for comparison with the data.

2.1 Variables Used for the Classification

Nineteen variables were used as input for the separation. Their choice came from an
examination of flavour dependent distributions based on JETSET PS, and from previous
studies [3-5].

The list of the variables used follows*:

1. The sphericity SU} of the first jet, calculated after a boost 3 = 0.96 along its axis.
The axis of the jet was defined by the sum of the momenta of the particles belonging
to it.

T The charged particles in the event were clustered in jets according to the JADE/EQ algorithm [9], with yeu: = 0.05.
{The most energetic jet will be called “first jet”, and indicated by the superscript ( f); the second most energetic jet witl
be cailed “second jet”, and indicated by the superscript (s).




2. The directed sphericity .5'1 234 Of the four most energetic particles in the first jet. For
a set @) of particles in a jet, this variable is defined as

S Top?
© Zsz

where the p’s are the momenta in the rest frame of the set @ and the p,’s are their
components perpendicular to the original jet direction in the laboratory frame.
The directed sphericity S{3h,.
The invariant mass Ml({%,; of the four most energetic particles in the first jet.
The invariant mass M{;)s,, of the four most energetic particles in the second jet.
The products of the correspondmg directed sphericities for triplets of particles in
the first and the second jet, S( X Sfj,{ (zjk) = (123,124,134, 234), where the four
most energetic particles of the Jet are considered, ordered in decreasing energy.
10..13. The products of the corresponding invariant masses for triplets of particles in the
first and the second jet, Mz(;;) X Mig?,z.
14. The momentum of the slowest pion of the jet 1, after a boost along the jet axis
corresponding to a D* energy equal to one half of the beam energy.
15. Same as 14, for the second jet.
16. The sum over all the jets of the ratios between the momentum of the leading particle
and the momentum of the jet.
17. Sum of the absolute values of the track impact parameters, each one scaled by its
error. All accepted charged particles in the event with impact parameters less than
2 mm were included in the sum. Tracks with large impact parameters were omitted
because they are likely to come from secondary decays of strange particles.
18. Absolute momentum p of the most energetic muon (0 if no muons found with mo-
mentum greater than 3 GeV/c). Muons were identified as in Ref. [8].
19. p. of the most energetic muon with respect to the axis of the closest jet (0 if no
muons found with momentum greater than 3 GeV/c¢).

© v w

All variables were rescaled in such a way that they ranged from 0 to 1. This was done
because a NN is helped when all the input variables have numerical values of roughly the
same magnitude.

Event shape variables and invariant masses (1.-13., 16.) discriminate between heavy
and light quark events due to the high mass of the b. As an alternative to this set of shape
variables, simple kinematical variables like the three momenta of the leading particles,
could also be used. In this case, the network should recognize the relevant correlations.
Previous studies {13] have indicated that such a network could perform slightly better
than a network using shape variables, but the former takes considerably longer to train,
and its behaviour is less stable.

Variables related to the long lifetime of the b (17.), and kinematics of semileptonic
decays (18., 19.) were included as well, since they provide clean signatures of bb events.
The muon momentum spectrum is also useful for separation of events originating from
¢ quark pairs. Charm quark event classification was further reinforced by using two
variables derived from the characteristic decay of the D** meson into a D° and a charged
pion, where the pion has a low transverse momentum with respect to the parent D**

direction (14., 15.}. The data distributions of the network input variables were reasonably
reproduced by the JETSET PS with full detector simulation.



3 The Neural Network

A NN with 19 nodes in the input layer, one associated with each of the input variables
z;, was used. The input variables define the pattern space P. There were 25 nodes in the
hidden layer. The outputs of the three output nodes, forming the vector 9, belong to the
feature space F. The components of the output vector were assigned to the three quark
classes uti+dd+s3 (unresolved), ¢¢ and bb.

In principle, a single hidden layer is enough to perform any mapping of a continuous
function between pattern space P and feature space F. It was checked that by adding a
second hidden layer the performance of the network did not improve, but the time needed
to train the network increased substantially.

When the number of hidden nodes was reduced from 25 to 18 and further to 15, it was
observed that the three output nodes of the NN gave increasingly similar output values,
degrading the separation of the classes. It was also checked that by going much beyond
25 hidden nodes one begins to introduce useless nodes to the hidden layer. Therefore, the
network with 25 hidden nodes was chosen. A single network with three output nodes was
used instead of three single output networks to account automatically for correlations
between classes.

In the structure chosen, each node performs a weighted sum of the output values from
all the nodes of the previous layer. The node output is computed via a sigmoid function

1

at a “temperature” T. The output o; of the i-th node of a layer (starting from the second)
is then
0; = QT(Z wi;0;)
i

where the sum is made over the nodes of the previous layer.

The network training procedure fixes the values of the weights w;; associated with the
node interconnections. The weights can be both positive and negative. If the value of
the weight w;; is zero, then there is no connection between nodes 7z and 7. The aim is
to find a mapping of the input pattern space (z; ¢ P) to the feature space (® ¢ F), such
that a good separation of events belonging to a class A from events belonging to the
complementary class A is obtained. Each class is associated with one output node. Two
symmetric target values (1 for class A and 0 for class A) were used for each of the three
output nodes.

In the back propagation learning algorithm the output feature values for the training
input events are computed and compared with the desired target values. A squared error
function E is computed to quantify the difference between the obtained output © and

the desired target ¢,
1

E=2Y (t-6).
2&vents
This function is minimized by changing (“updating”) the weights by an amount computed
from the error function by the gradient descent method (2]. The process is controlled by
the “learning strength parameter” 7 and the “momentum” & {2]. Each updating step in
the space of weights, computed by gradient descent, is multiplied by n and added to the
previous step, multiplied by . To smooth out fluctuations, weights are updated using
the cumulative error from a number of input training events.



For the training of the system, a set of 30,000 simulated events, detailed in section 2,
was used. The number of independent events in each class was thus an order of magnitude
larger than the number of weights in the network (550 in our case). The weights were
updated every 10 events, chosen at random from the three classes uti+dd+s3 (unresolved),
¢€ and bb, in such a way that, on the average, there was an equal number of events from
each of the three classes®. In the following, this sequence of 10 events will be referred to
as “update”.

Changing the parameters n and « during the training is convenient in order to allow
for a fast movement in the space of weights in the early stage of training, and to obtain
a controlled approach to the minimum at the later stage. For this reason, the learning
and momentum parameters were decreased and increased respectively after every 3,000
updates (an “epoch”) according to a rule:

N = Th=y X (T]min/?’h-l)k"

Oy = g1 X (amaz/at—l)ka:

where Nmin and Qg are the minimum (maximum) allowed values for the parameters,
and subscript ¢t (¢ — 1) refers to the epoch number. Exponents k, and k, were set to
0.05 and 0.14, respectively. Given the finite value of the weight change, the gradient
descent method might lead to an occasional increase of the error value. In this case, the
parameters were reset to their initial values.

The architecture of the network is summarized in Table 1, together with the parameters
used in the training phase. '

Nodes in the hidden layer 25

T 2.0

a (training) 0.4-09
n (training) 0.05 - 0.0001

Table 1: Characteristics of the NN.

At each step of the learning procedure, an indication of the network performance can
be inferred from the error function. A more reliable evaluation is obtained by testing the
response of the network on a set of input events independent of the training set. The
behaviour of the error function with this new test set shows the error the network makes
in generalizing to new data. When the generalization error starts to increase, the NN has
‘overlearned’ the training sample and its ability to generalize is degraded.

The test sample consisted of about 100,000 simulated events, generated by using JET-
SET PS (see section 2). The number of events generated in each class corresponded to
the Z° hadronic branching fractions in the Standard Model. By monitoring the behaviour
of the generalization error, the training was stopped after 300,000 updates.

After the network has been trained, its performance can be judged in terms of signal
efficiency ¢, (number of events correctly classified as belonging to class q over the total
number of events in class q), and purity p (number of correctly classified events in class q
over all the events classified as belonging to class q). For example, if the event is classified
simply according to the highest output node, one obtains an efficiency for b identification
of about 55%, and a purity of about 43%. The efficiency and purity for a single quark
class can be improved with a dedicated single output network, but we have chosen to
estimate the three quark categories simultaneously. As far as inclusive analyses using
single variables are concerned, a better b quark event purity can be obtained by using
prompt leptons with a strict cut on the lepton transverse momentum with respect to

§It has been verified that equal sample sizes improve the performance of the network (4], and reduce biases.

)
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the jet axis (see for example Ref. [8]), but the efficiency is limited by the semileptonic
branching fraction. _

One can estimate to which input variables the network is most sensitive by changing
one input variable at a time and monitoring the response of the output nodes. The average
and the standard deviation of each input variable distribution were calculated from the
full data sample. In Fig. 1, the changes of the three output nodes are displayed when each
input variable, in turn, was changed by one standard deviation from its average value,
while the other inputs remained at their average values. For the muon input variables,
the test was performed only when the muon inputs were different from zero.

As expected, the separation is best for bb events. The b quark output node shows
the strongest gradient in response to the change of the input variables, whereas the light
quark output node is least sensitive. The biggest changes to b quark output node are
produced by changing the track impact parameter and muon variables, and some of the
invariant mass variables. The ¢ quark output node is less sensitive to the lepton variables.
The slowest pion of the most energetic jet shows reasonable separation for ¢g events. For
example, the sensitivity to this variable is greater than to the sphericity variables for ¢
quark classification. We emphasize that Figure 1 shows the sensitivity of the output to
Just one input variable at a time. The NN, however, is capable of taking into account
correlations between variables.

4 Results

The fraction of events, S, of each class &k (k = 1...3), corresponding to vu+dd+s3 (un-
resolved), cc, and bb respectively, were determined from the data in the following way.

For each event, the outputs of the three nodes were projected in a 2-dimensional space
(u,v), by normalizing their sum to 1, and plotting them in a Dalitz plot (the distance
from each side of an equilateral triangle was proportional to the corresponding output
node value) 1. The results of such a procedure on (a) u, d, s events from simulation, (b)
¢ events from simulation, (¢) b events from simulation, and (d) data are displayed in Fig.
2.

The fractions were then obtained by means of a x? fit in the 2 unknown parameters
B2 and 33 to the form

R(u,v) = (1 — Bz — fs)ar(u, v) + Brazx(u,v) + Baaa(u,v) -

where R(u, v) is the map of the data through the network into the feature space (Fig.
2(d)), and the ax(u,v) are the distributions for each class & in the feature space, deter-
mined in the test sample. The distributions for the PS test sample are shown in Figures
2(a)~(c). The two-dimensional Dalitz plot was divided into small square bins by overlay-
ing a square on the triangle. The side of the square was equal to the side of the Dalitz
triangle. The large square was then divided into 256 x256 bins. Bins with too few events
were combined with adjacent ones, giving typically a few thousand degrees of freedom. It
was checked that this procedure was insensitive to the lower limit on the allowed number
of events per bin, and to the way in which the bins were combined. All distributions were
normalized to unity.

The best fit with the JETSET PS sample, containing 200,000 events, gave x?/Number
of Degrees of Freedom = 1.0, and correlation coefficient C between ; and 85 was -0.6.

Vv = uds, u= (uds + 2 x )/ /3




In order to reduce the model dependence of the result, a fit was also performed with
the JETSET ME test sample containing 60,000 events. For ME, the x2/NDF of the fit
was 1.1, and correlation coefficient C = —0.4.

The branching fractions obtained are summarized in Table 2. Small corrections have
been applied for the different selection efficiencies of the three quark classes, due to the
hadronic selection criteria. The statistical errors from the corrections are negligible.

[ [1000 x [.z/T% 1000 x I';z/T4]

JETSET PS 120 £ 11 238 +5
JETSET ME 1827 226£5
[ Average | 151+8 | 232+5 ]

Table 2: Determination of the branching ratios.

The average of the two determinations was taken as the result of the measurement.
This gave

Te/Th = 0.151 = 0.008(stat) (1)
T/Th = 0.232 40.005(stat). (2)

The errors quoted are statistical only. The major contribution to the statistical error
comes from the overlap of the Monte Carlo distributions of the three classes. Even though
the PS test sample 1s larger, its statistical error is not smaller, because the distributions
of the different quark classes overlap more in PS than in ME. Had the distributions been
completely separated, the statistical error arising from the number of data events would
have been +0.0011 on the c€ fraction, and +0.0013 on the b fraction.

In the Dalitz plots (Fig. 2), a separate class of bb events appears as a concentrated
band. These originate from the events containing identified muons. The muon variables
separate bb events, and to a lesser extent ¢z events, into two classes which the network
correctly recognizes. Figure 3 shows the Dalitz plot for events which contained a muon
with a transverse momentum of at least 1 GeV/c.

Systematic uncertainties can arise from the model used to determine the distributions
ay described above. These distributions come from a Monte Carlo model, which contains
several adjustable parameters. The fine tuning of these parameters is, in general, done
by assuming that the branching fractions into each flavour are given by the Standard
Model. One potential problem is that this may cause “circularity”, i.e. our result for the
estimated quark fractions could reflect the assumed values when determining the best
tuning of the Monte Carlo.

To avoid circularity, the range of variation of relevant parameters in JETSET PS,
independent of the hadronic branching fractions, was established as follows. A set of
100,000 events was generated using the parameters of Ref. [11] {“central” simulation in
the following), retaining the charged stable particles only. For each of the parameters, an
optimization was then performed by studying the dependence of the x? of the rapidity
(with respect to the sphericity axis) and aplanarity distributions on the value of the
parameters tuned in Ref. [11], allowing free variation of I'z and T';;. The two extreme
values of the range were conservatively taken when the x? increase corresponded to at
least four standard deviations with respect to the central tuningll.

ITh common with most other estimates of the uncertainties in the Monte Carle parameters, our errorestimates are derived
from the diagonal elements of the inverse error matrix, rather than those of the error matrix itself. This underestimate is
partially compensated by the fact that we allow x? te increase by a large amount as compared with its best value.
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The relevant parameters for the parton phase of JETSET PS are the QCD parameter
A, and the cutoff parameter Qo of the parton evolution. The range of variation of A
was established to be between 0.28 and 0.32 GeV, but conservatively the parameter was
allowed to vary between 0.25 and 0.32 GeV. The value of Qp was found to be between
0.6 and 1.4 GeV. The fragmentation in JETSET PS is governed by the Lund symmetric
fragmentation function with two parameters a and b, of which essentially only one is
a free parameter. The transverse momentum of primary hadrons is parametrized by a
Gaussian of width o,. The range of variation of the a parameter was found to be between
0.14 and 0.26 (the b parameter was fixed to 0.34 GeV~?), and o, lay between 355 MeV/c
and 415 MeV/c.

Other sources of systematic uncertainty due to free parameters in JETSET PS con-
sidered were: choice of the fragmentation function, lifetime of the b quark, semileptonic
branching fraction of & and ¢ quarks, and branching fraction of D** meson into D°r%.

The systematic uncertainty from fragmentation was checked by using the Peterson
fragmentation scheme instead of the Lund symmetric fragmentation for the b and ¢
quarks. The e; parameter was allowed to vary between 0.002 and 0.009, and the e,
parameter was allowed to vary between 0.010 and 0.080. The two parameters were varied
simultaneously in the same direction. The parameters a and b were kept fixed at the
central values 0.20 and 0.34 GeV~2. For the lifetime of b, a range of variation between
1.20 ps and 1.35 ps was allowed. A range of variation between 0.090 and 0.102 was
allowed for the semileptonic branching fraction of ¢, and between 0.100 and 0.123 for
the semileptonic branching fraction of . The two fractions were varied simultaneously
in the same direction. It was checked that when the fractions were varied incoherently,
the results remained within the range estimated by varying the fractions as above. The
branching ratio, Br(D** — D% %), was varied between 0.50 and 0.65.

In the study of systematic uncertainties, to save computer time, a fast detector sunula—
tion was used. The branching fractions were obtained by considering the relevant Monte
Carlo simulation as the test sample and fitting the data R(u,v) with the distributions
obtained from this test sample. The results are summarized in Table 3. The x2 /NDF of
the fits lies between 1.0 and 1.1.

The total systematic uncertainty due to the variation of input pa.ra.rneters in the JET-
SET PS was estimated by combining, in quadrature, the individual contributions. These
were taken as the half differences between the branching fractions obtained with each pair
of extreme values allowed for the parameters, and subtracting, in quadrature, the contri-
bution expected from the statistical error due to the finite simulation statistics (£0.003
for ¢¢, £0.002 for bb). This gave

A(Tz/Th) = £0.023(sys, param) (3)
A(T/Tw) = =£0.010(sys, param). (4)



[ [1000 x A(T/T4)[1000 x A(Tyz/T1)]
A = 250-320 MeV £5.5 F5

Qo = 0.6-1.4 GeV +11 F1.5

o, = 355-415 MeV/c +18.5 +4

a = 0.14-0.26 F7.5 F6.5

e, = 0.002-0.009, e. = 0.010-0.080 +1.5 F5.5
Br(D** — D%7r%) = 0.50-0.65 F2.5 +0

7, = 1.20-1.35 ps F1.5 Fl

Br(c — {X) = 9.0-10.2 %, Br(b — £X) = 10.0-12.3 % +2.5 T3

| Total, JETSET PS i +23 | +10 B

Table 3: Summary of the systematic effects from JETSET PS.

A comparison with HERWIG [14] was also performed. The default parameters of the
version 5.4 were taken, and the fast simulation was used. The results from the fit of the
data using HERWIG as the test sample, corrected for the difference between fast and full
simulation, were: ['z/T's, = 0.134 + 0.005, I';z /T, = 0.223 £ 0.003. The x%/NDF of the
fit was 1.0.

The systematic uncertainty associated with the choice of model was estimated by
calculating the standard deviation of the branching fraction determinations obtained
with JETSET PS, JETSET ME (Table 2), and HERWIG. The obtained values were

A(Tz/Tr) = £0.033(sys, model) (5)
ATz /Th) = £0.008(sys,model). (6)

Systematic uncertainties can also emerge from imperfections in the detector simula-
tion. This was checked separately for muon identification and for the impact parameters.
By varying the muon identification efficiency, €, and the background due to misidentifica-
tion, b,, as measured in Ref. [8] (¢, = (78 £2)%, b, = (1.0 +0.3)% per charged hadron),
systematic uncertainties of 0.009 and 0.007 were obtained for the ¢¢€ and b6 hadronic
branching fractions, respectively. The muon background fraction was the major contri-
bution to the systematic uncertainty. The impact parameter sum of the bb events was
allowed to vary £10%, resulting in an uncertainty of 0 and 0.008 for the ¢ and bb hadronic
branching fractions, respectively. The systematic uncertainty was estimated in the same
way as the uncertainty due to JETSET PS parameters, i.e. the estimated statistical
error was subtracted in quadrature from the half difference between each pair of extreme
values.

By adding in quadrature the contributions due to detector modelling, systematic un-
certainties

A(T/Tn) = =£0.009(sys, det) (7)
A(Tz/Th) +0.011{sys, det) ]
were obtained. A

By using the measurements (1) and (2), and combining in quadrature the systematic
uncertainties from (3-8), the final results were

Il

Te/Th = 0.151 £ 0.008(stat) +0.041(sys) (9)
[/Te = 0.232 £ 0.005(stat) £ 0.017(sys). (10)

N
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The same NN was also used to determine the branching fractions when the muon
inputs were removed both from data and the Monte Carlo test sample. The average of
the determinations by using PS and ME models as test samples was -

Te/Th = 0.153 4 0.009(stat) £ 0.044(sys) (11)
[y/Th = 0.230 £ 0.006(stat) & 0.015(sys). (12)

The systematic uncertainty was obtained from the estimates (3,4) and (7,8) by removing
the sources of systematic uncertainties related to semileptonic decays, and including the
model dependence as the standard deviation of the results without muons, obtained from
PS, ME and HERWIG test samples.

The LEP collaborations have recently measured the product of the hadronic branch-
ing fraction of the Z° into ¢ and & quark pairs times the inclusive semileptonic branching
fraction of the hadrons produced from these quarks [15]. The average of their results is
Br(c — £X)x /'y = 0.0156 £0.0036, Br(b — £X)xT;;/Ts = 0.0233 £ 0.0008. Combin-
ing these results with the measurements (11,12), the semileptonic branching fractions of
¢ and b quarks were determined to be:

Br(c—»¢X) = (10+4)% (13)
Br(b—£X) = (10.1£0.8)%. (14)

5 Conclusions

By using a classifier based on a Feed-Forward Neural Network, the hadronic branching
fractions of the Z° into ¢ and b quark pairs have been determined to be

Iz/Tr = 0.151 £ 0.008(stat) £ 0.041(sys)
Liz/Th = 0.232 £ 0.005(stat) £ 0.017(sys) .

The results are consistent with the Standard Model, which gives in the Born approxima-
tion ['z/Ty = 0.171, T'z/T, = 0.217.

The behaviour of the Neural Network has been investigated against a wide range of
systematic uncertainties. The Neural Network has been found to be able to generalize
consistently to data, and thus, it has been demonstrated that a Neural Network could
reliably be used for assigning events with a probability of coming from the hadronization
of a bb or of a ¢ pair.
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Figure Captions

1. The change of the output value of the uT+dd+s5 output node (a), the ¢ output
node (b), and the bb output node (c), when each input variable is varied by one
standard deviation from its average value.

2. Dalitz plot (see text) of the network output, for simulated vZ+dd+s3 events (a),
cc events (b), bb events (c), and for the data (d).

3. Dalitz plot (see text) of the network output for data events with a high transverse
momentum muon (p; larger than 1 GeV/c).
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