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A.1.1 El model cosmlògic estàndard . . . . . . . . . . . . . . . . 222
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A.5.2 Aplicació i resultats . . . . . . . . . . . . . . . . . . . . . 239

A.5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 241

A.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Bibliography 242

Acknowledgements 258



List of Figures

1.1 The CfA2 and Las Campanas Redhisft survey . . . . . . . . . . . 5

1.2 Abundance of light elements: theory and observations . . . . . . 7

1.3 Spectrum of the CMB radiation . . . . . . . . . . . . . . . . . . . 8

1.4 Photometric redshift accuracy . . . . . . . . . . . . . . . . . . . . 20

2.1 Footprint of accepted cells for CiC . . . . . . . . . . . . . . . . . 49

2.2 Jackknife error bars vs population variance in LasDamas . . . . . 50

2.3 fV (N) distribution for the NYU-VAGC . . . . . . . . . . . . . . 60

2.4 Counts-in-cells fittings for population 1 and radius 24h�1 Mpc . 63

2.5 Counts-in-cells fittings for population 1 and radius 12h�1 Mpc . 64

2.6 Counts-in-cells fittings for population 1 and radius 6h�1 Mpc . . 64

2.7 Counts-in-cells fittings for population 2 and radius 24h�1 Mpc . 65

2.8 Counts-in-cells fittings for population 2 and radius 12h�1 Mpc . 65

2.9 Counts-in-cells fittings for population 2 and radius 6h�1 Mpc . . 66

3.1 2-dimensional correlation function distances decomposition . . . 77

3.2 2-dimensional correlation function . . . . . . . . . . . . . . . . . 79

3.3 ALHAMBRA survey observed slice . . . . . . . . . . . . . . . . . 83

3.4 Projected correlation functions for luminosity segregated galaxy
samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5 ALHAMBRA galaxy samples in template, redshift and luminosity 86

3.6 ALHAMBRA color-magnitude diagram . . . . . . . . . . . . . . 89

3.7 ALHAMBRA fields 2 and 4 with template segregation . . . . . . 90

3.8 Quartet of galaxies in ALHAMBRA survey . . . . . . . . . . . . 93

3.9 Near Neighbor distribution . . . . . . . . . . . . . . . . . . . . . 94

3.10 HOD and projected correlation function . . . . . . . . . . . . . . 95

3.11 Projected correlation function for the full ALHAMBRA sample . 96

3.12 Power laws best fit parameters (full population) . . . . . . . . . . 100

3.13 Projected correlation function for the segregated ALHAMBRA
sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.14 Power laws best fit parameters (segregated population, small scales)104

3.15 Power laws best fit parameters (segregated populations, large scales)106

3.16 Galaxy bias b for ALHAMBRA segregated populations . . . . . . 109

4.1 Strauss process: 2-dimensional sample . . . . . . . . . . . . . . . 125

4.2 Geyer process: 2-dimensional sample . . . . . . . . . . . . . . . . 127

4.3 Fiksel process: 2-dimensional sample . . . . . . . . . . . . . . . . 129

4.4 Area Interaction process: 2- dimensional sample . . . . . . . . . . 131

ix



List of Figures x

4.5 SDSS-DR8 samples for Gibbs models testing . . . . . . . . . . . 146

4.6 LasDamas samples for Gibbs models testing . . . . . . . . . . . . 147

4.7 Data and model of a Geyer process . . . . . . . . . . . . . . . . . 149

4.8 Absolute and relative residuals of a Geyer process . . . . . . . . . 150

4.9 Model, absolute and relative residuals of SDSS samples with a
Geyer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.10 Model, absolute and relative residuals of SDSS samples with a
Fiksel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.11 Model, absolute and relative residuals of SDSS samples with a
Power Law model . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.12 Model, absolute and relative residuals of LasDamas samples with
a Geyer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.13 Model, absolute and relative residuals of LasDamas samples with
a Fiksel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.14 Model, absolute and relative residuals of LasDamas samples with
a Power Law model . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.1 3D generated toy models of dark matter halos . . . . . . . . . . . 185

5.2 MCMC parameters distribution of one cluster (Einasto’s toy model)186

5.3 Smoothed Mixture model (Einasto’s toy model) . . . . . . . . . . 188

5.4 Absolute and relative residuals (Einasto’s toy model) . . . . . . . 189

5.5 Lurking plots (Einasto’s toy model) . . . . . . . . . . . . . . . . 190

5.6 Smoothed Mixture model (Einasto’s 3 clusters toy model) . . . . 192

5.7 Absolute and relative residuals (Einasto’s 3 clusters toy model) . 193

5.8 3D generated toy models of dark matter halos with filamentary
structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.9 Smoothed Mixture model (Einasto’s toy model with filamentary
structure) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.10 Absolute and relative residuals (Einasto’s toy model with filamen-
tary structure) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.11 Smoothed Mixture model (Einasto’s 5 clusters toy model with
filamentary structure) . . . . . . . . . . . . . . . . . . . . . . . . 198

5.12 Absolute and relative residuals (Einasto’s 5 cluster toy model with
filamentary structure) . . . . . . . . . . . . . . . . . . . . . . . . 199

5.13 Relative residuals (Einasto’s overlapped toy model) . . . . . . . . 200

5.14 3D sample from MultiDark simulation . . . . . . . . . . . . . . . 201

5.15 MCMC distribution of parameters from component 2 . . . . . . . 204

5.16 Data and model of the MultiDark sample . . . . . . . . . . . . . 206

5.17 Absolute and relative residuals of a MultiDark sample . . . . . . 207

5.18 Cluster distribution and generation of a MultiDark sample (6 com-
ponents) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.19 Profile curves of components in a MultiDark sample . . . . . . . 210

5.20 Cluster distribution and generation of the MultiDark sample (10
components) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211



List of Tables

2.1 SDSS selected samples . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 LasDamas selected mock catalogs . . . . . . . . . . . . . . . . . . 47

2.3 Counts-in-Cells best fit fV (N) . . . . . . . . . . . . . . . . . . . 61

2.4 Expectancies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 Characteristics of the galaxy samples used . . . . . . . . . . . . . 88

3.2 Photometric Surveys . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3 Results of the di�erent fits to w(rp): power law and bias models 101

4.1 Fitted parameters for Gibbs models - SDSS-DR8 . . . . . . . . . 151

4.2 Fitted parameters for Gibbs models - LasDamas . . . . . . . . . 158

5.1 Einasto toy model fitting . . . . . . . . . . . . . . . . . . . . . . 187

5.2 Density field local maximum points . . . . . . . . . . . . . . . . . 202

5.3 MultiDark fitting for 6 components . . . . . . . . . . . . . . . . . 205

5.4 MultiDark fitting for 10 components . . . . . . . . . . . . . . . . 212

xi



Chapter 1

Introduction

‘I know the desire of your minds that what ye have seen should verily be, not only

in your thought, but even as ye yourselves are, and yet other. Therefore I say:

Eä! Let these things Be! And I will send forth into the Void the Flame

Imperishable, and it shall be at the heart of the World, and the World shall Be;

and those of you that will may go down into it’.

Eru Ilúvatar

This PhD dissertation proposal is an application of point process statistics to

the field of galaxy clustering in modern cosmology. Throughout this thesis work

we will introduce and explain di↵erent methodologies classifiable into three main

categories. These categories compound the three possible approximations to the

analysis of point process: summary statistics (Chapters 2 and 3), modeling (Chap-

ter 4) and data mining (Chapter 5). Main conclusions of this work can be found

in Chapter 6. For an integral summary in catalan please visit the Appendix.

The multiple algorithms used include conventional statistics as well as new meth-

ods applied in the cosmological scenario for the first time, and even original con-

tributions. Similarly, studied datasets include both known public access catalogs

and recently published galaxy surveys.

Before entering the contributions of this thesis we will introduce in this chapter

the necessary background of modern cosmology and spatial point processes.

1
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1.1 Cosmology

Humans have always felt the necessity of explaining the origin, evolution and laws

governing the known universe. Almost all cultures have engaged in this task with

the elaboration of di↵erent cosmographies, usually as part of mythical or religious

beliefs. In the construction of scientific knowledge, di↵erent philosophers of classic

cultures proposed their visions of the universe content supported with rational ar-

guments. Most notably, the greek Anaximandre (c.610 - c.546 BC), was the first

to propose a demythified theory of celestial bodies mechanics, for which he is con-

sidered the father of cosmology and astronomy (Kahn, 1994). Many followed his

work, including Aristotle, Aristarchus of Samos, Ptolemy, Hypatia or Hipparchus

in the ancient greek culture (centuries VII BD to V AD). In ancient China nu-

merous philosophers studied the cosmos, of which we could cite Gan De, Shi Shen

or Su Song (centuries IV BD to XI AD). Most of them accompanied their models

with observations, such as catalogs of stars or measurements of the movement of

celestials objects. These e↵orts were continued in middle ages with the Arab and

Persian contributions of authors like Muh. ammad ibn Musa al-Khwarizmi (c.780-

c.850) or Abu Yahya Zakariya’ ibn Muhammad al-Qazwini (1203-1283).

In Europe, astronomy played a central role in the development of sciences after the

XV century. Di↵erent authors largely contributed to a better understanding of our

universe proposing visions of the cosmos supported with new observations and solid

mathematical arguments. Authors like Nicolaus Copernicus (1473-1543), Tycho

Brahe (1546-1601), Galileo Galilei (1564-1642) and Johannes Kepler (1571-1630)

settled the basis of modern astronomy which are still fully relevant for today’s

science. But it was with Isaac Newton (1642-1726) that science went beyond

compiling and describing observations to attempt to explain and discover the rules

governing the skies. The path open by Newton lead scientists to a systematic study

of the known world for two centuries. However, with the available technology

and understanding of the physics, only the nearby universe was achievable to our

observations and understanding. But that changed in the late XIX and first years

of the XX century. The study of quantum mechanics, started with the work

of Ludwig Boltzmann (1844-1906) and Max Planck (1858-1947), and relativity

and cosmology, by Albert Einstein (1879-1955) and Henri Poincaré (1854-1912)

among others, brought the necessary tools to observe, analyze and understand

the contents of the cosmos at a greater scale (Harrison, 2000, Nussbaumer et al.,
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2009) In addition, these advances led cosmologists to ask some of the deepest

questions about the nature of our universe (Longair, 2006). It is in this moment

that cosmology was born, the science that studies the origin and evolution of all

the matter and energy, the universe.

1.1.1 The standard cosmological model

Today, the mainstream understanding of the cosmos is contained in the so called

standard model, known as ⇤ - Cold Dark Matter (⇤CDM) model (Dodelson, 2003,

Fukugita & Peebles, 2004, Lahav & Liddle, 2014). This thesis work is done under

the assumption of this framework.

The construction of the standard model was possible thanks to the advancements

made during the beginning of the XX century. On the theoretical side, Einstein’s

theory of General Relativity (Einstein, 1915) provided us with the necessary un-

derstanding of gravity and spacetime in the universe. This settled the base to

develop the first cosmological models, solutions to Einstein’s field equations. But

these solutions ought to be consistent with the large-scale matter and energy dis-

tribution in the universe. The first models came assuming the easiest configuration

of the matter in the universe, which is summarized in the Cosmological Principle:

the mass distribution of the universe is homogeneous and isotropic, i.e, viewed on a

su�ciently large scale, the properties of the universe are the same for all observers.

Homogeneity implies that the matter density is constant at large scale, and thus

doesn’t vary between distant regions of the universe, while isotropy implies that

this distribution is the same for every direction given an observer. In a classic

geometrical language we might say that the universe mass distribution is invariant

by translation and rotation.

These first insights date back to the same early decades, when Edwin Hubble mea-

sured the distance between the Milky Way and our neighbor galaxy Andromeda.

This calculation was possible due to the contribution of Henrietta Swan Leavitt

(Leavitt, 1908) with the period-luminosity relation for Cepheid stars. The result of

a distance, far larger than the estimated size of the Milky Way, clearly proved the

extragalactic character of Andromeda (Hernquist, 1990, Hubble, 1925). This put

an end to the ’Great Debate’ between Heber Curtis and Harlow Shapley (1920)

(Trimble, 1995), and started the study of a universe compound by many galaxies
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in a vastly larger space. The second major contribution of Edwin Hubble (Hubble,

1929) was the establishment of a relation between the radial velocity v of galaxies

and their distances d. The relation proposed was the linear relation

cz = Hd (1.1)

where H = H(t) is the Hubble parameter, (in this work, for the present time value

of H(t) we use H0 = 100h km s�1 Mpc�1, where h is a dimensionless constant

depending on the estimated value of H0). This relation, known as Hubble’s law,

implies a universe in expansion. Together with the Cosmological Principle and

Einstein’s general relativity, which describes how matter is driven by gravity, these

are the base elements of the Hot Big Bang model.

The last decades of the XX century brought the first observations of significant

parts of the universe, including distances far from neighbor galaxies. The Slice of

the Universe survey (CfA2, De Lapparent et al. (1986)) showed clear structures at

scales thought to be already homogeneous, and it was not until wider surveys (Las

Campanas Redshift survey, see Fig. 1.1, Shandarin & Yess (1998)) that homogene-

ity was confirmed, signifying the ‘end of greatness’, where no structures appear

to stand out above the others. Isotropy was also certified with later experiments,

like the CMB measurements (Mather et al., 1994).

The standard model describes a universe started as a very hot and dense plasma

formed by elementary particles. This is an homogeneous and isotropic universe,

with no privileged points or directions, where its content evolves under the dy-

namics of gravity. In its original state after the initial singularity, density and

energy in the universe were extraordinarily high.

The state of the universe is then drift by the thermodynamics of this expanding

volume, decreasing temperature and density with time. This quenching determines

the evolution of the contents of the universe and we can divide its timeline in

several epochs. The first relevant epoch is the so called Inflation, a short epoch of

around 10�34 seconds when the universe su↵ered a sudden and strong expansion.

Despite the existence of this epoch has not been fully confirmed it is accepted and

included in the cosmological standard model due to the reasonable explanation

it gives to three underlying problems of the model. Two of these problems, the
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Figure 1.1: Comparison between the observed galaxies by the CfA2 and
the Las Campanas Redshift survey. Image credit: Vicent Mart́ınez.

flatness problem and the horizon problem, state that the flatness, homogeneity and

isotropy found today in the universe were even more prefect in the past, a highly

unlikely event. The third problem is the monopole problem, stating the absence of

magnetic monopoles, a kind of particles predicted to be abundant otherwise.

Just after the Inflation and the creation of elementary particles, the following

relevant epoch is the photon epoch. Pressure and temperature conditions were

appropriate for the primordial nucleosynthesis to take part. In a lapse of three

minutes, the first nuclei of light elements (hydrogen, helium and lithium) formed.

This epoch lasted until radiation and matter density reach an equilibrium, moment

in which we say the matter dominant epoch started. During this new epoch

temperature keep dropping, and photons lost energy until they were not enough

energetic to prevent nuclei from capturing electrons and create the first atoms.
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Figure 1.2: The abundances of 4He, D, 3He, and 7Li as a function
of the baryon-to-photon ratio ⌘ or, equivalently, baryon density ⌦b. The
bands show the theoretical predictions with 95% confidence range, and the
boxes the measured light element abundances. Data agrees with helium
and deuterium predictions, but shows a tension with lithium. Figure from

Nakamura et al. (2010)

Light scattered through the universe, creating the Cosmic Microwave Background

(CMB) we observe today. That moment, known as decoupling, took place 380,000

years after the Big Bang when temperature in the universe was ⇠ 3000K.

Dark matter and baryonic matter were now free to interact and create more com-

plex structures drift by gravity. Galaxy structure was born and the universe shape

was conformed in a wide range of scales, from the internal distribution of galaxies

to the huge galaxy superclusters. This era lasted for 9.8 · 109 years.

The two main physical phenomena described in this timeline (nucleosynthesis and

CMB) have been confirmed through observation and vitally contribute to confirm
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the Hot Big Bang theory. Successive measurements of the light elements abun-

dances have been made in objects where very little stellar nucleosynthesis has

taken place (Peacock, 1999, Smith et al., 1993) and provide an overall satisfactory

coincidence with the predictions (see Fig. 1.2). Almost the entire baryonic mass

of the universe contributed to the formation of hydrogen nuclei (75 %) and 4He

helium (25 %). Residual quantities of deuterium (2D), 3He helium and lithium

(7Li) were also produced and detected. However, a discrepancy was found for this

later case, too scarce (Burbidge et al., 1957, Clayton, 1968, Olive et al., 2000).

Alternative theories have been proposed to explain this deviation including possi-

ble e↵ects in the measurements over metal-poor population II stars (Korn et al.,

2006, Meléndez & Ramı́rez, 2004) or the necessity of modification in the current

standard model of particle physics (Dmitriev et al., 2004, Jedamzik, 2004).

The detection of the CMB by Penzias & Wilson (1965) has been followed by sev-

eral new and more precise measurements performed with several spacial satellites:

COBE (Mather et al., 1994), WMAP (Komatsu et al., 2011) and Planck (Planck

Collaboration et al., 2015) experiments. This background radiation emitted af-

ter the matter-photon decoupling has been found to closely follow a black body

spectrum with a temperature of T = 2.73K (see Fig. 1.3). This radiation fol-

lows the expected properties, with a strong isotropy only broken by the small

anisotropies produced by small density fluctuations in the last scattering surface

from where photons were emitted. Other posterior e↵ects can produce as well

smaller anisotropies, but we will not consider them in this work. The CMB has

resulted very useful to estimate the parameters of the cosmological model (Ko-

matsu et al., 2011, Planck Collaboration et al., 2014).

The last main epoch of the universe timeline is the dark energy dominant epoch,

where the universe started an accelerated expanding epoch lasting now for 4 · 109

years. Perlmutter et al. (1999) and Riess et al. (1998) found evidence of this accel-

eration in the expansion of the Universe, which is still of unclear origin. Di↵erent

hypothesis have been presented to explain, or at least, model it. The Cosmological

constant ⇤ is a parameter used to describe this dark energy responsible for the

accelerated expansion. It is also referred as the vacuum energy density and is

a fundamental element of the current cosmological standard model ⇤CDM. The

measurement of this expansion has allowed to obtain a more accurate estimation
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Figure 1.3: Spectrum of the CMB radiation observed by the FIRAS
instrument on board of COBE (Mather et al., 1994), showing a remarkable
agreement with a black body spectrum. The points with errors are the
measurements of FIRAS, and the black solid line is the best-fit black body
spectrum. The other lines in the bottom plot show the spectra for possi-
ble deviations from the black body case: that of a body with a reflectivity
di↵erent from zero (dotted grey), and the e↵ect of hot electrons adding
an excess energy to the CMB either at z & 105 (dashed blue) or z . 105

(solid red). In all cases, the curves shown are the maximum allowed devi-
ations (at 95% confidence level) by FIRAS data. Figure by Ned Wright,

http://www.astro.ucla.edu/⇠wright/cosmolog.htm.

of the Hubble constant, which the Planck project measured in 67.3± 1.2 km s�1

Mpc�1 (Planck Collaboration et al., 2014).

The last element necessary to understand our model of the universe is the Cold

Dark Matter. Since the density of radiation in the universe dropped, ending radia-

tion dominating epoch, it is negligible compared with the matter (dark matter and

baryonic) and dark energy. Therefore, we only need to include the contribution of

the matter and the cosmological constant to properly describe the overall proper-

ties of the universe. The evolution and formation of matter structures during the

matter domination epoch mainly depend on the dark matter, which represents 85

% of the total amount. This matter might be cold or hot depending on his energy

levels after the decoupling, when the structures creation began. If dark matter
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were cold, and therefore, these particles were nonrelativistic, they would form the

kind of structures that have been observed in agreement with the modern calcu-

lations of the large scale structure estimators, like the power spectrum and the

correlation function. For this reason the hot, relativistic, particles are considered

to play a minor role in the evolution of the large scale structure of the universe.

1.1.2 The geometry of the Universe

Einstein’s General Relativity Theory and the Cosmological Principle allow us to

build a metric that satisfies Einstein’s field equations and whose parameters can be

fitted by observations. The geometrical description of our universe completes the

⇤CDMmodel, constituting a theory capable of predictions and falsifications. From

General Relativity we derive a universe where distance has to be calculated in the

4-dimensional space-time, while from the homogeneous and isotropic properties of

the universe, we derive the Friedmann-Lemâıtre-Robertson-Walker metric:

ds2 = �c2dt2 + a2(t)

"
dr2

1� kr2
+ r2d✓2 + r2 sin2 ✓d�2

#
(1.2)

where r, ✓ and � are comoving spherical coordinates and t is the cosmic time,

the four dimensions of our relativistic spacetime, and c is the speed of light. The

geometrical properties derived from the cosmological principle and the expansion

of the universe are included in the metric through the rest of the elements. The

cosmic scale factor a(t) is a dimensionless function that describes the expansion

of the universe depending on time. In a perfectly homogeneous and isotropic

universe the comoving coordinates will remain constant and Hubble’s Law can be

generalized to cz = H(t)d with H = ȧ/a. For a flat universe, in present time we

take a0 = 1.

The curvature constant k is a dimensionless number that can take three di↵erent

values: k = 0 for a spatially flat universe, k = �1 if the universe is open (hy-

perbolic) and k = 1 for a closed universe (spherical). The first two cases build

an expanding universe of infinite volume. As an analogy, a closed universe can

be imagined as a spherical surface, where one could ideally circumnavigate the

universe and reach his antipodal position by constantly travel.
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The trigonometric expression of the spherical coordinates ✓ and � ensures the

isotropy in the metric.

It is common to express this metric in an alternative shape, where the curvature

is included in the function Sk(r):

ds2 = �c2dt2 + a2(t)

"
dr2 + S2

k(r)d⌦
2

#
(1.3)

where d⌦2 = d✓2 + sin2 ✓d�2 and

Sk(r) =

8
>>><

>>>:

R(t) sin (r/R(t)), k = +1

r, k = 0

R(t) sinh (r/R(t)), k = �1

Function R(t) is the radius of curvature, with dimensions of length, and for t = t0

gives the radius of curvature of the universe at the present moment.

With this metric we can calculate how distances expand with time. For example,

the wavelength of a photon varies between its emission and observation due to this

expansion. For �e and �0 being the wavelength of this photon at emission and

observing times, we have:

�e
a(te)

=
�0

a(t0)
(1.4)

The di↵erence between wavelengths produce the variation in the observed spec-

trum

z ⌘ �0 � �e
�e

=
1

a
� 1 (1.5)

As the universe has been expanding, a(t < t0) < a0 and z > 0, which shifts

the spectrum towards redder colors. The quantity z is known as the cosmological

redshift. This observable is a key quantity in modern cosmology allowing us to

study the evolution of the universe and the distribution of its content.
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The dynamics of the universe can be described with Einstein’s equations, which

establish the connections between the geometry and the physical content. Assum-

ing the FLRW metric and a perfect fluid with density ⇢ and pressure p, we can

derive a solution, the Friedmann-Lemâıtre equations:

H2 =
8⇡G⇢

3
� kc2

a2
+

⇤

3
ä

a
= �4⇡G

3
(⇢+

3p

c2
) +

⇤

3

⇢̇ = �3(⇢+
p

c2
)
ȧ

a

(1.6)

Where G is Newton’s gravitational constant. The cosmological constant takes the

form of the dark energy if we understand it as another component of the universe

with the identification

⇢⇤ =
⇤c2

8⇡G
(1.7)

These equations have to be completed with an equation of state relating pressure

and energy density: p = p(⇢). This equation expresses the energy content of the

universe and determines the evolution of the model, how it expands or contracts.

In background conditions, the equation is.

pi = wi⇢i (1.8)

where wi is a constant dimensionless quantity depending on each substance. In

the ⇤CDM model these quantities have been deduced to be wm = 0 for matter

(baryonic o dark), wr = 1/3 for radiation and w⇤ = �1 for dark energy. So far,

we have reduced our description of the universe to the correct estimation of the

di↵erent species densities (the ⇢’s) and its curvature (k). These two quantities

are related through the critical density, ⇢c, defined as the total density in a flat

universe (k = 0). Its value is

⇢c =
3H2

0

8⇡G
(1.9)
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Therefore, for higher or lower values of this density we will have a closed or open

universe respectively. This quantity is estimated to be ⇢c = 2.775 ⇥ 1011h2 MJ

Mpc�3. For each substance we usually normalize their densities by the critical

density and operate with the values

⌦m =
⇢m,0

⇢c
,⌦r =

⇢r,0
⇢c

,⌦⇤ =
⇢⇤
⇢c

(1.10)

As observations do not demand a perfectly flat universe, we include as well the

curvature of the universe with

⌦k = � k

H2
0

(1.11)

However, we must note that this quantity is negligible in practice. Now,

⌦m + ⌦r + ⌦⇤ + ⌦k = 1 (1.12)

If we express the first of the Friedmann’s equations in 1.6 with these densities, we

can isolate the Hubble function as

H(z) = H0

p
⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦k(1 + z)2 + ⌦⇤ (1.13)

This is an interesting function that allows us to establish relations between time

and distance with redshift. Cosmological time in a given redshift z can be obtained

by integrating

t(z) =

Z 1

z

dz0

(1 + z0)H(z0)
(1.14)

While the distance-redshift relation is

r(z) = c

Z z

0

dz0

H(z0)
(1.15)

We will widely use this later equation to determine the distance to a galaxy given

its redshift value. r(z) is known as the comoving distance, and can be understood



Chapter 1. Introduction 13

as a label, a value non dependent of the expansion. However, for a more intuitive

idea of distance measurement, the separation between two objects measured with a

rigid ruler, we must specify the e↵ects of universe expansion. The expansion can be

introduced in this quantity by just multiplying it by the scale factor a(t), obtaining

the proper distance d(r) = a(t)·r(z). This is a simplification of equation 1.2, where

✓ and � are constant. This is unfortunately a non measurable distance, since we

do not have rigid rulers for galaxies.

Another distance widely used in cosmology is the luminosity distance DL. Given

the emitted and the observed light of an object, one can derive the distance be-

tween the source and the observer using the inverse square relation, which ex-

pressed as the flux-luminosity relationship is:

DL =

r
L

4⇡f
(1.16)

where f is the bolometric flux and L is the luminosity of the object. This distance

requires standard candles, objects with known absolute luminosities, such as su-

pernova of type Ia. For short distances, DL is a good approximation to the natural

notion of distance in Euclidean space. However, for non negligible redshifts, in an

expanding and non flat universe, DL greatly diverge from proper distance. We

can generalize the relation between the f and L with

f =
L

4⇡Sk(r)(1 + z)

DL = Sk(r) · (1 + z)

(1.17)

where function Sk(r) is defined as in eq. 1.3. Thus, in the expanding nearly flat

universe of ⇤CDM , curvature vanishes and Sk(r) ' r, but the expansion still

should be taken into account:

DL = r(1 + z) (1.18)

Fitting luminosity distances has been a very successful way of estimating the

cosmological model parameters. Modern galaxy surveys will extend this kind of
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analysis with a new type reference objects, the Baryonic Acoustic Oscillations

(BAO). These are structures generated before the time of recombination which

froze after decoupling and their distinctive shell-like shape and size can be still

observed. Knowing this is a constant, we can use it an standard yardstick with

the angular distance. If we know the length of an observable object, such as the

shell diameter of a BAO, we can measure as well the subtended angle �✓ of the

yardstick and obtain the angular distance DA:

DA =
l

�✓
(1.19)

Where, for very distant objects, �✓ ⌧ 1. As for the luminosity distance we can

generalize this quantity for the expanding curved universe. For a rigid distance l,

from metric 1.3 we have

l = a(te)Sk(r)�✓ =
Sk(r)�✓

1 + z
(1.20)

and the angular distance is

dA =
Sk(r)

1 + z
(1.21)

For a flat expanding universe, this relates with the previous distances as

dA =
DL

(1 + z)2
=

r

1 + z
(1.22)

The estimation of these distances for the BAO’s will significantly enhance our

fitting of the cosmological parameters and our comprehension of the universe ex-

pansion.

One of the main success of modern cosmology and ⇤CDM consist in having prop-

erly estimated the densities ⌦i. Many e↵orts have been dedicated to this aim

through the study of di↵erent observables, such as the CMB, the accurate mea-

surements of the distance-redshift relation with standard candles (such as the su-

pernovae Ia), or the observation of large galaxy scale structures such as the BAOs.

Recent measurements of these parameters can be found in Komatsu et al. (2011),
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Kowalski et al. (2008), Tegmark et al. (2006) and Planck Collaboration et al. (2014)

and the conclusions are that we live in a nearly flat universe (⌦k ' 0) with most

of the energy content in the universe belonging to dark energy (⌦⇤ ' 0.73) and

matter (⌦m ' 0.27), the radiation energy density being negligible. The Hubble

constant is estimated to be around 70km s�1Mpc�1, but in this work, as previously

indicated, we will use H0 = 100h�1km s�1Mpc�1.

1.1.3 Modern observational cosmology

The structure of the universe can be observed and studied through many di↵erent

probes. The most important ones are the Cosmic Microwave Background radiation

and the matter distribution on large scales. In this thesis work we focus on the

latter one, analyzing surveys of measured positions of galaxies in the universe. The

main appreciable feature in these catalogs is the clustering of galaxies in clusters

and other structures such as filaments, sheets and void-like structures. Modern

surveys have grown in size and depth giving a vision where the homogeneity scale

is achieved, and therefore allowing us to compare our models in quantitative detail.

The study of these surveys acquires special interest since it can be assumed that

galaxy positions trace the distribution of mass in the universe, however, this is

only just an approximation since it can be shown that there are deviations between

the galaxy and the dark matter distributions. This deviations will be measured

through the so-called galaxy bias.

In order to be used as a catalog of 3-dimensional positions, or a spatial point

process as we will introduce, a galaxy survey needs to include several quantities

for every galaxy. In equatorial coordinates the position of a galaxy in the sky is

determined by the distance and two angles, the right ascension and the declination.

These two angles are estimated very accurately in the modern galaxy redshift

surveys. It is in the estimation of the distance where most of the di�culty is

found. Di↵erent physical properties can be used to estimate distances to distant

objects, but only the distance-redshift relationship (equation 1.15) can be used for

large amounts of distant galaxies. Our first task is then to obtain reliable spectral

energy distributions (SEDs) of our galaxies, the light flux density as a function of

wavelength. We can detect the presence of emission and absorption lines in these

functions, features related to elements existing in the galaxies (or in the path
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of their light to our detectiors), whose wavelength in rest frame are well known.

Any deviation from this wavelength in the observed SED must be understood as

a shift produced by a variation in the relative velocities between the observed

galaxy and us. When this is exclusively due to the expansion of the universe,

equation 1.15 provides us the exact comoving distance to that galaxy. However,

galaxy redshifts are also contaminated by their peculiar velocities, independent

of the expansion and caused by the gravitational drift of the surrounding matter.

Peculiar velocities can greatly distort our measurements of the distances when their

direction vector is colinear to and indistinguishable from the radial direction of

the universe expansion. This is the case of galaxies infalling into clusters at a high

velocity, we will explain a few ways to deal with these phenomena in section 3.3.2.

Meanwhile, here we introduce the two known methods of estimating the shift in

the SEDs, spectroscopy and photometry. These methods give names to the galaxy

surveys employing them.

Spectroscopic surveys

These surveys take great e↵orts in reliably obtaining the complete SED of every

object in the survey. After a previous imaging of the sky area of study, objects of

interest are targeted to be observed with detail by a spectrograph. If this process

is repeated for a high number of galaxies, a high quality survey might be obtained

(despite the redshift distortions explained above) where galaxy structure is easily

identified, even with the naked eye.

Nevertheless, these kind of surveys have to cope with several di�culties that can

greatly a↵ect the final outcome. First, the observation of a high number of sources

with precise spectrographs is a demanding task both in money and time, and the

mapping of large areas of the sky might be hard to reach. In addition to this,

the observation of a galaxy requires to isolate it from other galaxies, which can

be di�cult for close galaxy pairs. Even with modern spectrographs using optical

fibers, large fractions of galaxies living in high density environments can be lost,

di�culting the study of galaxy clustering at small scales.

Most of the spectroscopic surveys today are actually mixed surveys, where both

the spectroscopic and the photometric methods are performed. It is the dedication

devoted to each method which is used to classify them. Examples of successful

surveys developed with these techniques are the several projects under the Sloan
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Digital Sky Survey (York et al., 2000), the 2dF Galaxy Redshift (Colless et al.,

2001) survey, VIPERS (Guzzo et al., 2014), the VIMOS-VLT Deep Survey (Le

Fèvre et al., 2005) and the Baryon Oscillation Spectroscopic Survey (BOSS, Daw-

son et al. (2013)). These surveys have provided the data used in abundant pub-

lications of the last 15 years and are responsible for relevant discoveries like the

detection of the Baryonic Acoustic Oscillations. The proper description of large

scale structure of the universe made by these surveys has greatly contributed to

determine the parameters of the cosmological standard model and its validity.

In the near and medium term future new spectroscopic surveys will be performed,

allowing us to perform new major advances. Some of these ongoing surveys in-

clude the EUCLID survey (Amendola et al., 2013), the Dark Energy Spectroscopic

Instrument (DESI, Schlegel et al. (2011)), WAVE (Dalton et al., 2012) and KMOS

Redshift One Spectroscopic Survey (KROSS, Stott et al. (2016)).

Photometric surveys

An alternative to the previous surveys are the photometric surveys. Instead of

obtaining the whole SED, we are only interested in learning its general shape.

After a deep study of near galaxies SEDs, we have realized that galaxies can be

categorized in few types sharing common and regular shapes aside from wavelength

shifts. Then, given the SED of a distant galaxy, even if it is on low resolution,

it can be possible to include the galaxy in one of the previous categories after

redshift correction. The amount of necessary correction is an indicative of the

redshift of the observed galaxy and therefore its distance can be estimated. An

example technique used for the estimation of photometric redshifts is the BPZ

method (Beńıtez, 2000), used in the ALHAMBRA survey (see section 3.4.1).

This SED information is obtained using images taken through several filters, each

one picturing the image of the galaxy in a di↵erent wavelength band. After a source

detection process, the images can be used to measure the luminosity in each wave-

length band and therefore, a discrete sampling of the SED values. Knowing that

each galaxy should be close to one of the pre-established templates, the redshift

estimation can be performed interpolating between di↵erent templates. The e�-

ciency of this method depends on the accuracy of the templates, the resolution of

the SED approximation and specially on the photometry precision.
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The main advantages of this procedure are its cheapness, both in terms of money

and observational time, and the acquisition of full images of the sky, where no

bright enough source is lost and high density regions can be properly studied. On

the disadvantages, as advanced, photometric redshifts may not be useful due to

its approximate measurements, which imply higher uncertainties than the spec-

troscopic redshifts.

Among the photometric surveys we can found the Cluster Lensing And Super-

nova survey with Hubble (CLASH, Postman et al. (2012)), the Advanced Large,

Homogeneous Area Medium Band Redshift Astronomical survey (ALHAMBRA,

Moles et al. (2008), Molino et al. (2014)), used in this thesis work, the Panoramic

Survey Telescope & Rapid Response System (PanStarrs, Kaiser et al. (2010)), the

Cosmological Evolution Survey (COSMOS, Ilbert et al. (2009)), the COMBO-17

Survey (Wolf et al., 2001) and the Canada-France-Hawaii Telescope Legacy Survey

(CFHTLS, Hoekstra et al. (2006)). Incoming surveys include the Dark Energy Sur-

vey (DES, Parkinson et al. (2012)), the Large-aperture Synoptic Survey Telescope

(LSST, LSST Dark Energy Science Collaboration (2012)) and the Javalambre

Physics of the Accelerating Universe Astrophysical Survey (J-PAS, Beńıtez et al.

(2015)).

This thesis work makes use mainly of the SDSS and the ALHAMBRA surveys.

For the latter, we show in Fig. 1.4 a comparison between the photometric and

spectroscopic estimated redshifts of 3826 galaxies, certifying the general reliability

of ALHAMBRA photometric redshifts.

1.2 Spatial point processes in Astrophysics

A galaxy spatial point process is a mathematical model that describes the ar-

rangement of galaxies as they are distributed in the Universe. This description

contains the geometrical and statistical information of the spatial patterns that

galaxies form in their environment, and enclose most of the laws governing the

spatial distribution of galaxies in the Universe. Gravity, and also other interaction

phenomena at small scales, are the laws that shape the distribution of galaxies,

creating the characteristic patterns of the Cosmic Web. Through the study of the
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Figure 1.4: Comparison between the ALHAMBRA photometric red-
shift zb and the spectroscopic redshift zs, along with the error distribution
�z/(1 + z) for a bright sample (mF814W < 22.5) with �z < 0.0106 and
a fraction of catastrophic outliers ⌘1 ⇠ 2.7 per cent. Figure from Molino

et al. (2014)

observable galaxy distribution we may understand how these structures have been

formed and, hopefully, understand the underlying laws that shape them.

Gravity produces a vast amount of diverse structures and patterns. Clusters, fila-

ments, sheets and voids mixed in our studied galaxy samples, and versatile statis-

tics are needed to detect, identify or model them. Through the general properties

of galaxies in their environment and spatial relations between them, such as rel-

ative distances, we can infer the properties of the phenomena that produces such

realization of points. As advanced in the beginning of this introduction, these

statistics can be classified in three main approaches following Baddeley (2007),

depending on the pursued results: summarizing, or expressing a general charac-

teristic of the data statistically, which represents a “statistical summary” extracted

from the data, such as the two-point correlation function; mining, or searching
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relevant features in the data such as clusters, voids or filaments; and modeling,

or formulating a probability model for the point pattern and fitting the model to

the observed data.

One can make use of conventional methods that naturally arise from point pro-

cess statistics, usually summary statistics, but often the most useful techniques

at understanding a point process and answering our questions are created ad hoc.

Multiple sciences make use of point processes. A non exhaustive list would include

works in biology (Illian et al., 2008, Pfeifer et al., 1992), aesthetics (Penttinen &

Ylitalo, 2015), criminology (Ang et al., 2012) or econometrics (Engle, 1982) among

many more. Astrophysics is not an exception to this list, with contributions form

Baddeley (2007) and Tempel et al. (2014). The e↵ectiveness of our algorithms

usually depends on going beyond general statistics and developing methodologies

that incorporate specific knowledge from each study fields. This is specially nec-

essary when modeling populations, since the dynamics ruling diverse phenomena

are also peculiar. Nevertheless, the construction of such models is a necessary step

to fully understand and describe a point process.

In a point process, all elements have two components: position and character-

istics, which reflect the geometrical and physical reality. In astrophysics, every

galaxy sample is embedded in a certain space. Since we are studying spatial point

processes, we are interested in galaxy samples providing their locations in the

Universe. Modern galaxy surveys usually contain the equatorial coordinates of

galaxies plus their redshift estimation. These coordinates need to be converted

into cartesian coordinates before applying the techniques. In addition, these sur-

veys provide data from di↵erent epochs of the Universe, which conditions the

distribution of our point process. As space evolves with redshift, galaxies must be

studied separately depending on their location along the Universe history. Galax-

ies must be characterized from their observables, creating an e↵ective classification

regarding their main physical properties. This segregation tries to build data sub-

sets made of elements having a certain common property or mark. This property

would be usually of physical nature, like similar luminosities or spectral types.

This classification will be specially useful when we try to decompose the over-

all galaxy pattern into the di↵erent sub patterns that coexist and constitute the

parent galaxy distribution. When we have been able to disentangle these sub pat-

terns, we also have been able to establish a correlation between the galaxy type
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and the spatial behavior or distribution.

Galaxy catalogs are the result of an observational process, with its characteristic

errors and inaccuracies. One of the major troubles is the presence of unobserved

areas of the sky. Since galaxies are observed as projected points in the celestial

sphere, we define the angular selection function as the area e↵ectively observed

by our telescopes. The rest of the sky is called in this thesis work the mask. In

this mask we include not only regions not observed but also regions where the

presence of a star or other bright objects does not allow us to properly observe

the galaxies beyond them. The distance limits are defined by the properties of

the survey and determine the closest and the furthest position observed where

a galaxy could lie. These limits are usually defined in order to guarantee basic

statistical properties of a point process, such as homogeneity. Together, angular

mask and limits define the 3-dimensional window, which can be trimmed to shape

it in more easily treatable geometries, such as a cuboid.

In this thesis we always make use of algorithms prepared to operate in three

dimensions. This sometimes requires to develop or generalize previous algorithms,

as we have done in chapters 4 and 5. This requires using 3-dimensional datasets

with populations expressed in cartesian coordinates. As said, catalogues provide

galaxies in equatorial coordinates, where the position of an object in the sky is

defined by two angles, the right ascension (↵) and the declination (�). Once

we obtain the comoving distance D between the galaxy and the observer with

equation 1.15, we convert them into Cartesian coordinates with

x = D · sin ✓ · cos'

y = D · sin ✓ · sin'

z = D · cos ✓

(1.23)

where ✓ = (�� + 90) · ⇡/180 and ' = ↵ · ⇡/180 when the catalog is provided in

degrees.
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1.2.1 Probability background

In this section we proceed to introduce and properly define the mathematical

background of the point processes. Most of it can be consulted in (Illian et al.,

2008). Further description of the used functions and objects will be given in

subsequent sections, when necessary. We will need as well to introduce some basic

definitions of Measure Theory to establish the needed probabilistic framework

where we will develop the Point Process statistics.

Observation Window

An observation window is the measure space compound by the triplet (W,B, ⌫),
where

- W 2 Rd. It can be understood as the geometrical region introduced in the

previous section and will be referred as window indistinctly.

- B is a Borel �-algebra and

- 0 < ⌫(W ) < 1 is the Lebesgue measure.

A �-algebra is a system of subsets � of some set X satisfying:

- X 2 �

- if A 2 �, then Ac 2 �

- if A1, A2, . . . 2 �, then
1S
i=1

Ai 2 �

We say that the family Bd of sets of Rd is a Borel �-algebra if it is the smallest

�-algebra on Rd that contains all the open subsets of Rd. In other words, Bd

contains all the subsets of Rd that can be constructed from the open subsets by

the basic operations and by limits.

The measure ⌫ coincides in dimensions 1, 2 and 3 with the conventional measure

of length, area and volume. Measures are crucial functions for the point processes

analysis and require deeper definition:
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The pair (X,�) is called a measurable space and A 2 � is called a measurable set.

The function f : X �! R is said to be �-measurable if for each B 2 B, the inverse
image f�1(B) = {x 2 X|f(x) 2 B} belongs to � (the �-algebra associated to X).

Measure

A measure on (X,�) is a function µ : � �! [0,1[ with the following properties

- µ(ø) = 0

- µ
⇣ 1S

i=1
Ai

⌘
=

1P
i=1

µ(Ai) for all the sets {Ai}1i=1 2 � with Ai \ Aj = ø whenever

i 6= j (�-additivity).

- if A, B 2 X and B ⇢ A, then µ(A\B) = µ(A)� µ(B)

In this work we use Radon measures, which in addition must be defined on Bd

and are locally finite, this is, finite on bounded sets. In particular, the Lebesgue

measure, which gives us the d-volume of A ⇢ Rd, ⌫d(A).

This is the appropriate topological definition of the universe where we proceed to

study the point processes, but we still need to adapt it so we can analyze them

with statistical and probabilistic techniques.

Probability space

A probability space is the points configuration space formed by the triplet (⌦,F ,P)

where

- ⌦ =
1S
i=1

Wi is the state space, and Wi is the subset of all n-tuples {w1, . . . , wi} ⇢

W .

- F is the events space: the �-algebra given by

F = �({w = {w1, . . . , wi} 2 ⌦ : n(wB) = n(w \ B) = m}) with B 2 B and

m 2 N

- P is the probability measure, a measure satisfying P(⌦) = 1 and model of our

point process.

In this universe, w 2 ⌦ is a sample of points, for instance, a fragment of a point

process or a particular realization. F 2 F is an event of our probabilistic phenom-

ena. We can define as well random variables, which are F -measurable functions
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on (⌦,F ,P). The measurability condition ensures that for any random variable

X1 it is possible to define probabilities with a Distribution function F 2:

P(X  x) = P({w 2 ⌦ : X(w)  x}) = F (x) (1.24)

1.2.2 Definition of a Point Process

Now we are in position to define

Point process

A point process is a measurable mapping in W from a probability space (S,A) in

(⌦,F). Its definitions are given by

P(X 2 F ) = P{w 2 S : X(w) 2 F} (1.25)

with F 2 F and X a random variable. The realization of a point process is a

random set of points in W . We shall sometimes identify X with P(X 2 F ) and

call them both a point process.

In a more graphical approximation, we may understand a point process as a ran-

dom configuration of points w in a observation window W . This configuration

of points is w = {w1, . . . , wn}, with n the corresponding number of points. Its

properties include a) locally finite: the number of points n(w) is finite for a finite

volume W and b) simple: wi 6= wj for i 6= j. In this work we assume W = R3 or

a compact subset.

Some geometrical properties of the point processes are specially interesting in the

cosmological case. We say that a point process X on W is

- Stationary if it has the same distribution as the translated process Xw, that is,

P({w1, . . . , wn}) = P({w1 + w, . . . , wn + w}) for any w 2 W .

1
Notice the change in the notation: when defined, X might mean a parent universe

or a random variable.

2
Again, notation can be confusing: F might be an element of the events space or a

distribution fucntion.
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- Isotropic if it has the same distribution as the rotated process rX, that is,

P({w1, . . . , wn}) = P({rw1, . . . , rwn}) for any rotation matrix r.

Now that the point process is fully defined, we can introduce the basic procedure

for characterizing it.

The point process theory establishes, sometimes as a definition and sometimes as

a theorem, that the distribution of a point process X is determined by the finite

dimensional distribution of its count function3, i.e. the joint distribution of n(B1),

. . . , n(Bm) for any B1, . . . , Bm 2 B and m 2 N . Where B includes

all the existing subsets in the X containing space. This can be understood as

follows, if we are able to know how many elements inhabit any region (in size or

shape) occupied by our sample, then we know everything that can be said about

the distribution. This leads us to the definition of the probability of finding a

region B containing N points f(N,B). This distribution is more commonly used

in its conditional shape, both fB(N) or fN (B). This will be the approach used

in section 2.2 for random regions B with ⌫(B) = V . An interesting case is when

N = 0, the so called Void function or void probability function, where we study

the probability of finding empty subregions of a given size or shape.

v(B) = P (n(B) = 0), B 2 B (1.26)

This is a complementary statement, defining the occupancies of regions is equiv-

alent to define the gaps between them. The information of the existing gaps will

be used in section 4.2.3.

This characterization is sometimes done by means of the intensity function. For an

infinitesimal region dB that contains the point x, we define the intensity function

as

�(x) = lim
⌫(dB)!0

hn(dB)i
⌫(dB)

(1.27)

where h·i denotes expected value of the random variable. Constant intensity is

equivalent to stationarity in the process.

3
We define the count function n(B) has de number of elements x 2 X inside a volume

or region B.
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1.2.3 Marked processes

As already introduced, the elements that shape a point process usually have an

attached information which is crucial to the proper understanding of the process

and its distribution. In astrophysics, this additional characteristic might be, for

example, the luminosity or the spectral type of a galaxy and are referred to as

marks. When we study the process having this into account, we call it a marked

point process. Any property of our measured elements could be determinant to

the proper understanding of its nature, and therefore, the interactions and forces

that drive their behavior and distribution. In many practical cases it has been

proven that the correct classification of a population into two or more marks has

been necessary to unveil the correlations beneath the distribution and satisfactorily

evidenced by the right statistics analysis.

In this thesis work we will make use of the following mathematical interpretation:

Let be X = {xi}Ni=1 a point process and m(xi) has de corespondent mark of the

point xi, we denote M as the marked point process

M = {[xi;m(xi)]}Ni=1 (1.28)

The mark m(xi) can adopt multiple forms, either quantitative (continuous) or

qualitative (categorial, discrete) being the most common an integer or real num-

ber describing some property. In the cosmological case, where the elements of

the process are galaxies, we can use as marks as many observable as we can ob-

tain. These will be physical quantities such as luminosities, magnitudes, masses o

information regarding their spectral distribution or morphological type.

Our approach to the mark analysis in this work is the construction of qualitative

marks derived from continuous ones. In order to properly treat the data in the

point process when applying our statistics, we select the marks of our interest

and build a marked space where each galaxy locates in a point of the space.

Notice that two di↵erent points, like two di↵erent galaxies, can share the same

marks, and therefore, occupy a common coordinate in the marked space; we call

this a multiplicity. Then, we perform a binning of the space creating two or

more populations that satisfy a certain mark criterium. When the final number

of populations is two we call it a bivariate process, or multivariate otherwise.
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In addition, this technique can be performed independently of the spatial point

process, for example when we use the luminosities in certain filters to segregate

stars from galaxies.

When we proceed this way, we assume that segregated elements belonging to the

same sample behave the same way. Elements that share some common properties

can be hence treated equally in the statistical analysis. This assumption of marked

processes is used in section 3.4.1, when we segregate galaxies depending on their

spectral type.

1.2.4 Examples of point processes

Some point processes are specially interesting. We describe here some of them.

The Binomial point process

We say a point process follows a binomial distribution when the probability of

finding in a region B 2 B a random point uniformly distributed in a window W

is, using Laplace formula,

P(x 2 B) =
⌫(B)

⌫(W )
= p (1.29)

The random variable n(B), the number of point contained in B, follows a Bernoulli

distribution with probability p. If we generalize it to n independent points dis-

tributed uniformly, we obtain

P(x1 2 B1, . . . , xn 2 Bn) = P(x1 2 B1) · . . . ·P(xn 2 Bn) =
⌫(B1) · . . . · ⌫(Bn)

⌫(W )n

(1.30)

for Borel subsets B1, . . . , Bn of W .

Similarly, now n(B) follows a binomial distribution with parameters n = n(W )

and p = ⌫(B)/⌫(W ):

P(n(B) = k) =

✓
n

k

◆
pk(1� p)n�k (1.31)
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The intensity of this process, or the mean number of points per unit volume is

⇢ =
n

⌫(W )
(1.32)

And the mean number of points in the set B is E(n(B)) = np = ⇢⌫(B). For this

process, the intensity function is constant and �̂ = ⇢.

This is used as the most basic example of process, since all its points are indepen-

dent and no structure is found on it. However, since the total amount of points in

W is known, the number of points per subset is not independent:

n(B) = m ! n(W\B) = n�m (1.33)

Poisson point process

The homogeneous Poisson point process X, following Illian et al. (2008) and Bad-

deley et al. (2015a), is characterized by three fundamental properties:

(1) Poisson distribution of point counts. The number of points of X contained in

any subregion B (n(X \B)) is a random variable with Poisson distribution.

(2) Homogeneous intensity. The expected number of points falling in B is E =

� · ⌫(B), where � is constant.

(3) Independent scattering. For disjoint k sets {Bj}, n(Bj) are independent

random variables, for arbitrary k.

(4) Conditional property. Given that n(X\B) = n, the n points are independent

and uniformly distributed in B.

The quantity �, as before, is the intensity or point density. It describes the ex-

pected number of points to be found in a unit volume. Given � we can apply

properties (1) and (2) for the 1-dimensional distribution

P(n(B) = k) =
(� · ⌫(B))k

k!
exp (�� · ⌫(B)) (1.34)
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and therefore, n(B) has a Poisson distribution with parameter �⌫(B). With prop-

erty (2) we can generalize this to the finite-dimensional distribution

P(n(B) = j1, . . . , n(B) = jk) =
�j1+···+j

k · ⌫(B1)j1 · · · ⌫(Bk)
j
k

j1! · · · jk!
exp (�

kX

i=1

�⌫(Bi))

(1.35)

We say this is a completely random process. This process satisfies stationarity

(�̂ = � = cnt) and isotropy.

The Poisson process can yet be generalized to an Inhomogeneous Poisson pro-

cess. This process has a non constant intensity function �(x) which may change

from one position to another, showing variations in density. Now, the probability

distribution of the number of points lying in a bounded region B will be given by

P(n(B) = k) =
(⇤(B))k

k!
exp (�⇤(B)) (1.36)

where ⇤(B) is the intensity measure defined as

⇤(B) =

Z

B

�(x)dx (1.37)

Finally, an interesting generalization of Inhomogeneous Poisson process must be

introduced, the Cox process (Cox & Isham, 1980). In this case, the intensity

function �(x) is itself a random function, and the intensity measure is generated

from driving a random measure distribution. In this case we say the Cox process

is two times random, since the intensity and the probability distribution of the

number of points are random variables.

1.2.5 Moment measures

In general, point processes may not be as easy to characterize with few simple

properties as the Poisson process. For this reason the moment measures might be

the appropriate mathematical techniques to describe the probability distribution

of the number of points lying in a bounded region B. Using these moments,
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interesting functions might be created to obtain a quantification of their properties.

These properties might include the level of aggregation or clustering and other

functions based on local intensity. Such functions are very useful at detecting the

presence of structure, discarding the possibility of a Poisson process.

We define the k-th order moment measure of a point process X as the measure

µ(k) defined by

Z

Rd

f(x1, . . . , xk)µ
(k)(d(x1, . . . , xk)) = E

 
X

x1,...,xk

2X

f(x1, . . . , xk)

!
(1.38)

where f(x1, . . . , xk) is any non-negative measurable function on Rd. In particular,

for the identity function

f(x1, . . . , xk) = 1{(x1, . . . , xk) 2 B1 ⇥ . . .⇥ Bk} (1.39)

we get

µ(k)(B1, . . . , Bk) = E(n(B1) · · · n(Bk)) (1.40)

and, if B1 = · · · = Bk = B,

µ(k)(Bk) = E(n(B)k) (1.41)

Thus µ(k) yields the kth moment of the real-valued random variable n(B), which is

the number of points in B. This moment is directly related to the Counts-in-Cells

distribution (see section 2.2), the probability of finding N points in a volume V .

Factorial moment measures

The k-th order moment measure ↵(k) is

Z

Rd

f(x1, . . . , xk)↵
(k)(d(x1, . . . , xk)) = E

 6=X

x1,...,xk

2X

f(x1, . . . , xk)

!
(1.42)
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where
6=P

is the sum of all k-tuples of distinct points in X including all permuta-

tions of given points. This is the di↵erence as respect to µ(k), the sum omits all

k-tuples in which 2 or more points are repeated. If B1, . . . , Bk are disjoint sets,

then

µ(k)(B1 ⇥ . . .⇥ Bk) = ↵(k)(B1 ⇥ . . .⇥ Bk) (1.43)

and, for the case k = 2, we obtain

↵(2)(B1 ⇥ B2) = µ(2)(B1 ⇥ B2)� ⇤(B1 \B2) (1.44)

with ⇤ is the intensity measure as defined in 1.37. For k > 2, the contribution of

the intersections between sets must be removed one at a time from µ(k) to keep

the disjoint parts without omissions. Hence, for B1 = · · · = Bk = B,

↵(k)(Bk) = E(n(B)(n(B)� 1) · · · (n(B)� n+ 1)) (1.45)

Product densities

A product density describes the frequency of possible configurations of n points. If

we consider the spheres b1, . . . , bk with centers x1, . . . , xk and infinitesimal volumes

dV1, . . . , dVk, then %(k)(x1, . . . , xk)dV1 ···dVk is the probability that there is a point

of X in each of the bi spheres.

If ↵(k) satisfies some continuity properties, then %(k) is the kth product density of

↵(k):

↵(k)(B1 · · · Bk) =

Z

B1

· · ·
Z

B
k

%(k)(x1, . . . , xk)dx1 · · · dxk (1.46)

and, therefore,
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Z

Rd

f(x1, . . . , xk)%
(k)(x1, . . . , xk)(d(x1, . . . , xk)) = E

 6=X

x1,...,xk

2X

f(x1, . . . , xk)

!

(1.47)

This is a more intuitive descriptor with wide applications in its first orders. For

k = 1, the product density is %(1)(x)dx = �(x)dx, the intensity function, and for

k = 2 under conditions of stationarity and isotropy we derive the pair correlation

function. We will discuss this further in section 3.2

1.3 Aim of this thesis

In this thesis we approach the study of galaxy large-scale structure distribution

from a point process point of view. The point process analysis understands prob-

abilistic events as points in a framework. As introduced in section 1.2, three

strategies can be followed depending on the used methodologies: the summary

statistics, the data mining and the modeling. We perform all this approaches

in di↵erent cases, proving that the point process approximation is an excellent

strategy for the analysis of galaxy distribution.

The main aim of our studies is, therefore, to e↵ectively map the found galaxy

patterns with statistically based methods. The methods and models used try

to highlight di↵erent properties of the galaxy distribution, which respond to our

questions and help us to increase our comprehension of the Universe. This branch

of point processes includes a wide range of di↵erent techniques and methodologies

and still produces new applications that enhance our capacity of deducing the

nature of the phenomena we study. The selection of techniques we have made use

of include some of the most well known functions in astrophysics today, mainly

summary statistics. We will use these statistics over datasets selected from some

of the most recent galaxy surveys, allowing us to obtain significant results that

increase our comprehension of galaxy distribution. For our data mining and mod-

eling analysis we proceed the opposite way, testing original point process based

methodologies over well known datasets. We include as well specific adaptations

introduced by ourselves. These algorithms could constitute relevant contributions

for the analysis of the galaxy distribution.
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The thesis is divided in 6 chapters. Chapter 1, this one, broadly introduces the

cosmological and probabilistic theoretical backgrounds. Part II contains chapters 2

and 3, which constitutes the summary statistics work. In chapter 2 we make use

of the Counts-in-Cells (CiC) algorithm, that will allow us to fit and discriminate

several probability density functions of the galaxy abundance distribution. These

distributions include newly proposed functions, based in the cosmological model.

We use data from the Sloan Digital Sky Survey and LasDamas simulations. In

chapter 3 we analyze clustering with the correlation function. The existence of

redshift distortions forces us to include modifications and use the projected corre-

lation function in our analysis. Using the recently completed ALHAMBRA survey

catalog we are able to infer the behavior of galaxy clustering at scales never ob-

served before. In chapter 4 (part II) we attempt the modeling of a galaxy sample.

The Gibbs models describe the distribution of a point process regarding the inter-

actions between points, a technique that we will apply over both the SDSS and

LasDamas simulations again. As a complete model we obtain a full parametric

description of our galaxy distribution, with a characterization of the clustering

levels. Finally, in chapter 4 (part III), a combination of modeling and data mining

is presented: the Mixture models, a statistic based on multivariate analysis and

cluster finding algorithms. Assuming models for the di↵erent structures present in

a galaxy sample, we can identify them and model the whole set of structures at the

same time. With such a model properly fitted, we can study the pattern in detail,

measuring the shapes and sizes of clusters or their interaction with other struc-

tures. A Mixture model is hence, also a data mining technique. We will use data

from the MultiDark simulation, where several clusters and structures can be iden-

tified and modeled with dark matter profiles. With the Mixture model approach

we were able to obtain an integral vision of the sample and an e↵ective segrega-

tion of each cluster from its neighbor. Both chapters 4 and 5 are finished with

a complete error analysis based in modern residual analysis for point processes.

Chapter 6 is a conclusion of the obtained results.

Altogether, in this thesis work we aim to show how the point process strategy is

an excellent choice for engaging the analysis of galaxy distribution, providing us

with powerful methodologies that reveal the nature and behaviors that constitutes

the phenomenon of galaxy clustering.





Part I

Summary Statistics for the

Galaxy Distribution

35
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‘What!’ cried Bilbo. ‘You can’t tell which parts were mine, and which were the

Dúnadan’s?’

‘It is not easy for us to tell the di↵erence between two mortals,’ said the Elf.

‘Nonsense, Lindir,’ snorted Bilbo. ‘If you can’t distinguish between a Man and a

Hobbit, your judgement is poorer than I imagined. They’re as di↵erent as peas

and apples.’

‘Maybe. To sheep other sheep no doubt appear di↵erent,’ laughed Lindir. ‘Or to

shepherds. But Mortals have not been our study. We have other business.’

Lindir and Bilbo



Chapter 2

Counts-in-Cells Distribution

Summary statistics include those data analyses that express a general trend or

property of a point process in a simplified expression, such as a value or a curve.

Basic statistics, such as the mean intensity of a process, can be included in this

category, but they are considered not enough informative to extract significant

conclusions. More complex procedures, the so called first and second order char-

acteristics, have been proved to be extremely powerful. These include the Counts-

in-Cells (CiC, this chapter), and the pair correlation function (chapter 3). The

interested researcher can also make us of higher order statistics, for more informa-

tion please read Illian et al. (2008). However, it is always important to remember

that despite their remarkable contribution to the understanding of galaxy distri-

bution they are not su�cient to fully describe a point process. Summary statistics

used in part I are widely used statistics in modern cosmology, and we will apply

them to obtain new relevant conclusions about the galaxy distribution, making

use of data from recently published galaxy surveys as well.

In this first work we introduce in detail the Counts-in-Cells methodology and

apply it over data from the NYU-VAGC galaxy survey (Blanton et al., 2005).

This statistic provides a easily interpretable and yet highly informative descriptor

of the galaxy distribution. Applying it over two populations we will describe

the evolution of clustering both in terms of redshift and magnitude limits. For a

deeper understanding, this characterization can be fitted with di↵erent distribution

functions. Some of these functions have been widely used in cosmology, such as

the Gravitational Quasi Equilibrium Distribution (Saslaw & Hamilton, 1984), the

37



Chapter 2. Counts-in-Cells Distribution 38

Negative Binomial Distribution (Fry, 1986) or the Log Normal distribution (Coles

& Jones, 1991). As an original contribution to the galaxy distribution analysis

we will make use of the Weibull distribution (Weibull, 1951). With this analysis

we expect to obtain a reliable description of the galaxy distribution as seen in the

Counts-in-Cells.

In 2.2 we explain how to properly estimate the CiC distribution, dealing with

edge correction problems. Section 2.3 presents the datasets in use, the mentioned

NYU-VAGC galaxy survey and the LasDamas simulation catalog. Uncertainties

in the estimation of our distribution are analyzed in section 2.4 using the Jackknife

method, which we will use again in section 3.3.3. After obtaining our observational

CiC distribution we proceed to fit it with several di↵erent probability distributions

introduced in 2.5 in order to obtain the best descriptor. Results are shown in

section 2.6 and conclusions are summarized in section 2.7

2.1 Introduction

One of the first statistics applied to study the galaxy clustering in the very early

galaxy catalogs (that were built on the projected celestial sphere) was the Counts-

in-Cells method. Hubble (1934) was the first to notice that the distribution of

galaxy counts in 2-dimensional cells could be well approximated by a lognormal

distribution. This technique permits to describe the spatial distribution of galaxies

in a way that its is complementary to other descriptors of the galaxy clustering

such as the correlation function or the power spectrum (Peebles, 1980, White,

1979). The counts probability distribution function fV (N) gives the probability

that a randomly placed volume in the universe will contain exactly N galaxies.

For N = 0, this function is known as the void-probability function (Maurogordato

& Lachieze-Rey, 1987) and it is of particular interest, since it is related with

higher order correlation functions (White, 1979) and provides a simple approach

to establish hierarchical scaling relations (Balian & Schae↵er, 1989, Croton et al.,

2004). Fry & Gaztanaga (1994) have shown that correlation functions can be

measured from the moments of fV (N). Despite its clear interest, as Yang &

Saslaw (2011) have pointed out, this count probability distribution function has

not received as much attention as other more commonly used descriptors of galaxy

clustering (Mart́ınez & Saar, 2002).
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The Counts-in-Cells process consists in counting the number of existing elements

of our sample lying inside cells. The cells are regions or volumes contained in our

geometry, fragments of the window. Depending on the shape, size and distribution

of these regions our counts will reflect di↵erent aspects of the studied galaxy

sample. Therefore, the CiC is itself a spatial point process where its geometry is

inherited from the original sample and the spatial locations (centers of the cells)

are defined by the user. The counts can be used as marks associated to each point,

containing the descriptive information of the distribution.

Although a first order characteristic, Counts-in-Cells is a highly informative statis-

tic, containing information from higher orders. Being able to e↵ectively describe

the CiC distribution of galaxy populations is a necessary and useful aim (Baugh

et al., 1995, Colombi, 1994, Gaztañaga et al., 2000, Ueda & Yokoyama, 1996, Yang

& Saslaw, 2011). A reliable fit of the CiC distribution allows us to infer proper-

ties of the galaxy distribution physics (Saslaw & Fang, 1996), or properly produce

galaxy mocks (Labatie et al., 2010), abundantly used in cosmology (this thesis

work, for example). Among other diverse applications, CiC can test the quality

of N-body simulations or infer properties from the galaxy distribution such as the

galaxy-dark matter bias (López-Sanjuan et al., 2015).

2.2 Estimation of the CiC distribution

For our Counts-in-Cells process we use spherical cells in 3-dimensional redshift

space with constant radius. These cells are described by their location (3 co-

ordinates) plus a radius r, and distributed uniformly in space allowing them to

intersect. The higher the number of cells used in the calculation, the most precise

will be our calculation of the Counts-in-Cells process.

Due to the irregular geometry containing the samples, the creation of the cells

catalogs starts defining a uniformly distributed population of ↵,� coordinates in

the window of the galaxy sample. These equatorial coordinates will determine

the cells location with a third distance coordinate. In order to satisfy a uniform

distribution within the redshift space, we distribute the distances following the

function
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D(⇠) = ((D3
max �D3

min) · ⇠ +D3
min)

1/3 (2.1)

where Dmin and Dmax are the distances corresponding to the redshift limits of our

population and ⇠ ⇠ U(0, 1). Galaxy surveys geometry is usually slice shaped, like

a cone with its vertex in the observer. That requires distributing the distances D

accordingly to ensure a uniform distribution along the line of sight. Once we have

our cell centers population (↵, �, D), we convert them into cartesian coordinates

with equation 1.23.

Now we can proceed to calculate the percentage of our cells not included in the

window, this is, covered by the mask. For this purpose was created the soft-

ware MANGLE (Hamilton & Tegmark, 2004, Swanson et al., 2008). MANGLE

performs several operations with complex angular windows, mapping them with

sky-projected polygons and allowing us to find the polygons containing a given

point on the sphere.

A galaxy survey window can be highly irregular, masked by stars and other objects.

This a↵ects not only the distribution of the cells but also their e↵ective volume,

since even if the center of the cell is inside the window, a significant part of the

sphere might be outside. Once the centers of the cells are determined, we estimate

the e↵ective volume of the cell contained in the window.

This can be done by Monte Carlo integration, populating a large number of Poisson

distributed points in our window and counting the number of points that lie inside

our cells. This is exactly a CiC calculation over a Poisson process. Given a window

of volume ⌫(W ) = V and a cell radius r we determine the number of necessary

random points with

N = 1/(e2 · t) (2.2)

where t = 4⇡r3/3V is the ratio between the volume of the cells and the total

volume, and e is the uncertainty level. The number of points in a non masked cell

has expectancy N · t, and only cells containing at least a 95% of this quantity will

be accepted. This percentage of cell volume into the window will be estimated

with uncertainty e.
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For accepted cells we define the relative volume of the cell as the fraction of counted

points with respect to N · t. The accepted cells in right ascension and declination

coordinates create an avoidance area keeping the centers of the cells away from

the borders of the survey and other internal big gaps, but still covering small mask

regions (see Fig. 2.1).

With our accepted cells we can proceed to perform the Counts-in-Cells. The

counting is done using the Euclidian metric and we are interested in knowing how

many galaxies are found inside every cell of radius r.

(x1 � g1)
2 + (x2 � g2)

2 + (x3 � g3)
2 < r2 (2.3)

where g = (g1, g2, g3) is the comoving position of a galaxy, and the cell is centered

in x = (x1, x2, x3).

Then we multiply the number of counts by the inverse of the relative volume

to obtain our Counts-in-Cells distribution. With this correction we estimate the

number of galaxies unseen by the masking e↵ects or redshift limits assuming a

uniform distribution of galaxies for cells dimensions.

The Counts-in-Cells distribution can be binned in a histogram of frequencies, each

bin containing the number of cells with N galaxies. If we normalize it we obtain

the probability density function fV (N) of finding N galaxies in a cell of volume V .

In our case, we will compute the CiC distribution fV (N) for our galaxy samples

using three di↵erent cell radii: 6, 12 and 24h�1 Mpc.

2.3 Data catalogs

The data analyzed in this section is a galaxy sample from the Main catalog of the

Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7, Abazajian et al. (2009)).

This catalog is provided by The New York University - Value Added Galaxy Cat-

alog (Blanton et al., 2005), presented in the next section. In addition to this, we

also make use of LasDamas simulation catalog (McBride et al., 2011) to test our

error analysis estimations.



Chapter 2. Counts-in-Cells Distribution 42

2.3.1 The SDSS - New York University - Value Added

Galaxy Catalog

The NYU-VAGC (Blanton et al., 2005) is composed by data from the Sloan Sky

Digital Survey DR7 Abazajian et al. (2009) and the 2-Micron All-Sky Survey

(2MASS) (Skrutskie et al., 1997), although we only make use of the former one.

The SDSS-DR7 mapped one quarter of the entire sky and performed a redshift

survey of galaxies, quasars and stars. It consists of a series of three interlocking

imaging and spectroscopic surveys, carried out over an eight-year period with a

dedicated 2.5m telescope located at Apache Point Observatory in Southern New

Mexico.

The NYU-VAGC survey provides us with the position and redshift of more than

550.000 galaxies with corrected extinction and K-corrected absolute magnitudes

for 8 bands, of which the u, g, r, i, and z bands come from the SDSS. In addition,

NYU-VAGC catalog also contains a survey geometry catalog, which define the win-

dow of the galaxy population and can be operated using the software MANGLE.

This survey includes carefully constructed large-scale structure samples useful for

calculating power spectra, correlation functions, etc.

In this work we have used two di↵erent samples selected in the r band, corre-

sponding to the DR72 catalogs of the SDSS (Abazajian et al., 2009) included in

NYU-VAGC with r band apparent magnitude limit of 17.6. These two samples

are located in the same angular region.

In this work we reproduce and compare our analysis with data from the Las-

Damas simulations (McBride et al., 2011), and for this reason we select compara-

ble datasets. Our first population is at low redshift, between 0.05 and 0.106. The

low redshift limit ensures that the sample is not greatly a↵ected by the peculiar

velocities, and excludes the Coma and Virgo clusters. We take as well a second

sample with redshifts between 0.075 and 0.165. To determine a suitable absolute

magnitude cut, we define a faint limit Mr where the limiting magnitude has been

reached to ensure luminosity completness. In this way, we can assure a similar

comoving number density of galaxies within the redshift limits. These limits are

Mr < �20 for the first population and Mr < �21 for the second population. The

samples are summarized in Table 2.1.
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Table 2.1: SDSS selected samples

Sample Redshift Magnitude Density n̄ Galaxies
M � 5 log(h) h3 Mpc�3

Pop1 0.05 – 0.106 Mr < �20 5.7⇥ 10�3 113483
Pop2 0.075 – 0.165 Mr < �21 1.04⇥ 10�3 76688

Regarding the cosmological parameters used, we work with ⌦m = 0.25, ⌦k = 0.0,

⌦⇤ = 0.75 and H0 = 100h km s�1Mpc�1. We calculate comoving distances

integrating the Friedmann eq. 1.15.

2.3.2 LasDamas simulations

As we will see in section 2.4, our error estimation method might be a↵ected by

the selection procedure explained in section 2.2. In order to test any possible sys-

tematic e↵ects, we will make use of the multiple realizations of the Large Suite of

Dark Matter Simulations (LasDamas) McBride et al. (2011), Swanson (Accessed:

2016-03-25), a project that ran a large suite of cosmological N-body simulations

that follow the evolution of dark matter in the universe. Results provide us with

an adequate resolution in many large boxes, rather than a single realization at high

resolution. The enormous volume of generated data is appropriate for statistical

studies of the distribution of galaxies and halos. The LasDamas simulations are

designed to model the clustering of Sloan Digital Sky Survey (SDSS) galaxies in

a wide luminosity range, with the goal of assisting in the modeling of galaxy clus-

tering measurements. Specifically, the simulations are used to construct detailed

mock galaxy catalogs by placing artificial galaxies inside dark matter halos using

the Halo Occupation Distribution (HOD) with parameters fitted to reproduce the

galaxy number density and projected correlation function of the respective SDSS

galaxy samples. The HOD describes the distribution of galaxies within the dark

matter halos. It uses three related properties of the halo model: the probability

distribution relating the mass of a dark matter halo to the number of galaxies

that form within that halo, the distribution in space of galactic matter within

a dark matter halo and the distribution of velocities of galaxies relative to the

dark matter within the halo. LasDamas is also designed to reproduce the SDSS
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DR7 geometry. Alltogether, we can see that LasDamas simulations are specially

adequate for NYU-VAGC comparison.

Simulations follow the same cosmological model assumed in this work, with ⌦m =

0.25, ⌦⇤ = 0.75 and H0/100 = 0.7 km s�1Mpc�1 as cosmological parameters.

Data used consist on two di↵erent sets of mocks with with di↵erent properties,

matched to our SDSS samples. In each case, we use 20 mock realizations. One can

see them summarized on Table 2.2. Simulation Esmeralda is started at an initial

redshift of z = 99; while Carmen is started at z = 49. Mocks are generated with

the same initial power spectrum, but a di↵erent random seed.

Table 2.2: LasDamas selected mock catalogs

Parent Redshift Magnitude Density Number of
Simulation M � 5 log(h) h3 Mpc�3 particles

Esmeralda 0.05 – 0.106 Mr < �20 6.01⇥ 10�3 121838.9
Carmen 0.075 – 0.165 Mr < �21 1.11⇥ 10�3 81733.8

Densities and number of particles are shown for the average of the used
LasDamas samples.

As explained in section 2.4, we use LasDamas simulations not only for the estima-

tion of error bars in the CiC distribution, but in addition, we test the jackknife

estimation method against LasDamas sample-to-sample variations. This will allow

us to extend these results to the jackknife analysis performed with SDSS and test

the reliability of its error estimations.

2.4 Estimation of the errors: the jackknife method

The Jackknife resampling method, together with the Bootstrap method (Efron

& Tibshirani, 1994), allows us to estimate the errors in multiple statistics. It

can be used when we make use of summary statistics, like the Counts-in-Cells or

the correlation function. With these statistics, we perform an analysis over an

entire population, shrinking its information into a single quantity, such as the first
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and second characteristics. These methods are meant to be used when the limited

volume of data in use does not allow us to compare our calculations among di↵erent

populations, and therefore, we do not have a direct way to obtain its variation.

As we only have one single galaxy population for each sample, we have to apply

an internal error estimate method over the entire population.

We chose to apply the ‘delete one jackknife’ method (Norberg et al., 2009) over

our populations. Our data consist on coordinates in a certain space contained by a

window. Dividing this window into di↵erent regions we generate Nsub subvolumes

of di↵erent disjoint areas of the sky with the same redshift limits. Each subvolume

contains a subsample of cells and deleting one of these subsamples from the parent

population we produce a new sample. Cells are included in the corresponding

subvolume using their center coordinates, no further calculation is made regarding

their volume overlapping with neighbor subsamples. These resampled data shares

its cells and galaxies with the original one but lacks one of the subsamples. We

can repeat this procedure Nsub times by systematically omitting, in turn, each of

the subsamples in which the data has been split. The resampling of the data set

consists on Nsub � 1 remaining subsamples, with volume ⌫(W )� ⌫(Vi), where Vi

is the volume occupied by the ith subvolume.

Our parent population of cells C occupies an irregular area of the sky due to

the rejection process explained in section 2.2, creating a characteristic footprint

(see Fig. 2.1). In order to ensure that all jackknife samples contain the same

amount of cells, subsamples are selected in the following way: we sort our cells by

declination and create 7 (or other desired number) subgroups of equal amount, in

such a way that the groups are also sorted by declination. Then, we perform the

same division for each subgroup with the right ascension, sorting each of them and

dividing into another 7 subgroups, 49 in total. Now we have subgroups of cells

located in di↵erently shaped rectangles but containing the same amount of cells.

The appearance of the resulting subsamples can be seen in Fig. 2.1.

Let f be the Counts-in-Cells distribution of our parent population. Once we

have generated the new subsamples from the original population, we proceed to

calculate the covariance matrix as
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Figure 2.1: Footprint of our accepted cells centers for r = 24h�1 in
Pop1. Alternating red and blue colors, the di↵erent jackknife subsamples
used for the error estimation. Footprint of the SDSS mask in grey. Right

ascension and declination (in degrees) are relocated for calculation.

⌃ij =
Nsub � 1

Nsub

N
subX

k=1

(fk(i)� f̄(i))(fk(j)� f̄(j)) (2.4)

where Nsub is the number of used subsamples, fk is the Counts-in-Cells distribu-

tion when we omit subsample k, and f̄ is the mean of distributions fk for every

subsample Nsub � k. We evaluate these functions in the values i and j corre-

sponding to all the considered values of N , this is, the values of the CiC frequency

histogram, from 0 to the maximum number of galaxies contained into a cell. We

finally calculate our standard deviations as �i =
p
⌃ii.

Once this analysis is done, it is recommendable to test the error estimation of the

Jackknife method. To do so, we can use the numerous realizations the LasDamas

simulations provides us. We apply the ‘delete one jackknife’ method over one
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of the LasDamas realizations and compare the obtained �i with the standard

deviations of many di↵erent LasDamas realizations. To generate this standard

deviations we perform the Counts-in-Cells process described in section 2.2 over 20

realizations. When we obtain the CiC distribution over 20 di↵erent realizations,

we have enough data to calculate the mean and variance of this distribution. We

compute the mean and the variance with

x̄i20 =
1

20

20X

j=1

f iV (j)

Si
20 =

vuut 1

20� 1

20X

j=1

(f iV (j)� x̄i20(j))
2 (2.5)

where f iV (j) is the ith realization distribution evaluated at N = j.

Now, we can compare the jackknife error estimates with the standard deviations

of the LasDamas simulations and check if jackknife errors are over- or underesti-

mated (Fig. 2.2).

After these results, we see that the jackknife errors for the SDSS samples are

typically larger than the errors obtained from the sample-to-sample variances in

the catalogs. This indicates that the same systematic error should be found for

the SDSS samples, with jackknife estimated error bars overestimating the real

uncertainty. This proves that the jackknife estimations are unreliable in strong

mask conditions, even after our cell rejection process. Since we assume equation 2.5

as a more robust method of variance estimation than the Jackknife method, we

will make use of the variances estimated from the LasDamas simulations when

fitting our probability functions.

2.5 Best fit to fV (N)

The Counts-in-Cells (CiC) methodologies introduced in section 2.2 have been ap-

plied over the data presented in sections 2.3.1 and 2.3.2. As previously explained
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Figure 2.2: Comparison between ‘delete one Jackknife’ method error for
fV (N) (pink) and its population variance (green) in LasDamas simulation.
X axis is number of galaxies per cell, and Y axis is the normalized found
variance. Left: Esmeralda mocks, from top to bottom, radii 24, 12 and 6
h�1 Mpc. Right: Carmen mocks, from top to bottom, cell radii 24, 12 and

6 h�1 Mpc.

this creates an observed probability density function that we will attempt to fit to

di↵erent theoretical distributions. Some of these functions have been commonly

used in the cosmological literature to fit the CiC distribution, and some are an

original contribution of this work. It is therefore of high interest to discriminate

the best fitting model and their best fitting parameter values. Despite the in-

formation contained in a CiC distribution does not fully characterize the galaxy

distribution, and it can be considered as a constraint for models or N-body sim-

ulations, if we expect them to be reliable. Now we present the used probability

density functions.
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2.5.1 Gravitational Quasi-Equilibrium Distribution

The GQED (Saslaw & Hamilton, 1984) is derived from a thermodynamical descrip-

tion of the galaxy fluid, and it can be also derived from the statistical mechanics

(Ahmad et al., 2002). One of its principal assumptions is to accept that the galaxy

accretion evolves through a sequence of quasi-equilibrium states, a basic condition

to start the thermodynamical approximation. This is possible if we assume an

infinite quantity of galaxies in the universe. With this assumption we say clusters

and large structures remain stable along large cosmological times before changing

into a new quasi-equilibrium state.

We will assume as well that galaxies are formed without dynamical interactions

with the exterior and then they interact gravitationally as punctual masses with

the rest of the universe. As the clusters dimensions are smaller than the curvature

radius of the universe and the velocities involved are much lower than the speed

of light, we can assume Newtonian gravity with potential � = r�1.

After these assumptions, the GQED can be derived as the pdf

fV (N) =
N̄(1� b)

N !
[N̄(1� b) +Nb]N�1e�[N̄(1�b)+Nb] (2.6)

which gives us the probability of finding N galaxies in a volume V where the

expected value of N is the product of the cell volume by the mean density of

the galaxies, N̄ = n̄V . This is the so-called Gravitational Quasi-Equilibrium

Distribution (GQED). Details in the deduction and properties of this distribution

can be fully consulted in Saslaw & Hamilton (1984), Sheth & Saslaw (1996) and

Sheth (1995).

Parameter b allows us to study both physical and statistical properties of this

distribution. For the limit b = 0 we have a Poisson distribution, where galax-

ies are uniformly distributed. For big scales, where fluctuations are small, the

density function becomes Gaussian. As b value can be determined from physical

magnitudes of the galaxies, we have a free parameter model of the galaxy distri-

bution. As we find in Ahmad et al. (2002), b represents a measure of the state of

aggregation and we can express it as
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b =
3/2(Gm2)3n̄T�3

1 + 3/2(Gm2)3n̄T�3 (2.7)

This expression relates b to galaxy mass m, mean density n̄, galaxies kinetic tem-

perature T and gravitational constant G. Dependence of b on V can be obtained

empirically from the variance of the number of counts in a cell of volum V . We

use our density function to calculate this variance:

h(�N)2V i =
N̄

(1� b(V ))2
(2.8)

This result allows us to describe aggregation of galaxies and, given one more step,

relate b with the volume integral of the two point correlation function

b = 1� (N̄ ⇠̄2(V ) + 1)�1/2 (2.9)

This is how b depends on the correlation function ⇠̄2(V ) (see section 3.2), which is

defined as

⇠̄2(V ) =
1

V 2

Z

V

⇠2(r1, r2)d
3r1d

3r2 (2.10)

However, in the fitting process, we will use this model as a two free parameter

function over N̄ and b.

2.5.2 Negative Binomial Distribution

The Negative Binomial Distribution (NBD) was firstly proposed in the cosmo-

logical context by Carruthers & Duong-van (1983) and derived later by Elizalde

& Gaztanaga (1992). With this model we study the probability of distributing

N galaxies in m disconnected boxes. The probability of finding a galaxy in one

of these boxes is proportional to the number of galaxies already located in the

box. Expressing the probability function in terms of galaxies per cell instead of

its conventional form, we have:
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fV (N) =
�(N + 1

g )

�(1g )N !

N̄N (1g )
1
g

(N̄ + 1
g )

N+ 1
g

(2.11)

where � is the gamma function and N̄ = n̄V , the expectation value of N . Similarly

as we had with the value b for the GQED, g is also a aggregation parameter. We

can obtain it theoretically for the NBD with

g = ⇠̄2(V ) =
h(�N)2i � N̄

N̄2
, (2.12)

as we can see, g depends on the volume of the cell. ⇠̄2(V ) is defined as in eq. 2.10.

This function is widely used in statistics and was firstly introduced in the cosmo-

logical context as a phenomenological model without physical explanation, which,

in addition, is found to violate the second law of thermodynamics (Saslaw & Fang,

1996, Yang & Saslaw, 2011). However, it provides a fair agreement with the obser-

vational distribution and it is thought to be related with the hierarchical universes

properties. A deeper study of the implications of using such distribution suggest

that the NBD assumes galaxies to be formed where there is already a galaxy clus-

ter. Hence, this model does not take infall into account, but can describe the

case where galaxies form from the merger of less massive objects. As before, this

function will be fitted over parameters N̄ and g.

2.5.3 Log Normal Distribution with bias

The Log Normal Distribution (LND), was firstly used by Hubble (1934) but it

was not formally proposed until Coles & Jones (1991). It was one of the first

fully described stochastic models used to model the distribution of matter density.

This model allows us to calculate many complex properties of the CiC distribution.

Despite being probably the most commonly used function for modeling the CiC

distribution of galaxies, it has proved to be insu�cient, and we will fit instead a

modification of this function by a galaxy bias parameter (Arnalte-Mur et al., 2016,

Dekel & Lahav, 1999).

First, we will introduce the Log Normal distribution. We will start with a Gaussian

random field X(r), where we will study the probability of finding a certain density
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from our field in a given position. Such field will have a one-point probability

density function f1(x) given by a normal distribution X ⇠ N(µ, �2):

f1(x) =
1

�
p
2⇡

exp (�(x� µ)2/2�2) (2.13)

Furthermore, all the higher order n-point pdf’s, fn(x), of field values at di↵erent

positions ri are multivariate normal:

fn(x) = (2⇡)�n/2|M|�1/2 exp
�
� 1

2

X

i,j

M�1
i,j xixj

�
(2.14)

where x = (x1, . . . , xn), xi = x(ri) and M is the covariance matrix Mij = h(Xi �
µ)(Xj � µ)i where Mii = �2. In addition, we assume the field is statistically

homogeneous, i.e., µi = µ. Mij is determined by the covariance function, ⌅(r),

which depends only on rij = |ri � rj | if the field is statistically isotropic. Thus

⌅(rij) = {[X(ri)� µ][X(rj)� µ]} = Mij (2.15)

Functions ⌅(r) and fn allows us to specify all the finite dimensional pdf’s for a

Gaussian random field and obtain exact solutions for many of the properties of

such fields. Now, we will construct a non-Gaussian field by applying a non-linear

transformation of Gaussian fields:

Y (r) = exp (X(r)) (2.16)

where the new one-point probability function in the field Y is

f1(y) =
1

�
p
2⇡

exp
�
� (log y � µ)2

2�2
�1
y

(2.17)

This is the Log Normal variable Y ⇠ ⇤(µ, �2) pdf, with the same parameters than

the original Gaussian variable. Thus, in the multivariate case we have the pdf
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fn(y1, . . . , yn) = (2⇡)�n/2|M|�1/2 ⇥ exp (�1

2

X

i,j

M�1
ij log(yi) log(yj))

nY

i=1

1

yi

(2.18)

where M is the covariance matrix of the variable X.

As the Gaussian distribution provides us with a valid description of linear and weak

density perturbation fields, the Log Normal distribution represents the same case

for the non-linear case and is one of the few non-Gaussian random fields for which

interesting properties are calculable analytically. In Coles & Jones (1991) one may

find further motivation on this model, such as agreements with observational data.

This has turned the Log Normal distribution into one of the most well known and

widely applied models (Kayo et al., 2001, Kitaura et al., 2010, Wild et al., 2005).

However, we will modify this distribution in order to improve its e�ciency as a

galaxy distribution descriptor. The introduction of the bias parameter into the Log

Normal distribution has proved useful (Arnalte-Mur et al., 2016). This method

relies on the assumption that the dark matter density fluctuations follow a local

non-linear transformation of the initial energy density perturbation. Therefore,

we model the galaxy distribution as a Cox model with the galaxy density field

� = N/N̄ , where N̄ is the mean of the CiC distribution.

That will make the Log Normal distribution a good candidate to model this field,

but it should be conveniently modified by the galaxy bias in order to model the

galaxy distribution. We expect however di�culties for small N or r, where shot

noise can be more relevant. In this case, we assume the simplest case of a scale-

independent and linear bias, so �g = b�, where �g and � are the contrasts of the

galaxy number density and the matter density, respectively. Introducing this bias

in the expression 2.17 for the matter density, we obtain (Arnalte-Mur et al., 2016)

f(�) =
1p
2⇡H0

exp (�1
2
y2

H0
)

�+ b� 1
(2.19)

where
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H0 = ln (1 + C)

y = ln
⇣p1 + C

b
(�+ b� 1)

⌘ (2.20)

and C is the variance in the matter distribution, which we expect to be roughly

C = �28 for cell radius r = 8h�1 Mpc at z = 0. After normalizing N into �, the

free parameters of this distribution are C and the bias b.

2.5.4 Weibull Distribution

The Weibull distribution was originally proposed by Weibull (1951) in the descrip-

tion of compound bodies where an event over one of its parts should be considered

an event over the entire body. Complementarily, we can say that no event had

happened over the body if, and only if, it has not happened over any of its parts.

The example used by professor Weibull in his paper in 1951 consisted in the prob-

ability of breaking a chain. We only need one single broken link to say that the

chain is broken. This distribution is also thought to model an evolving process

where series of units are aggregated into a bigger body over time. Weibull distri-

bution was found to succesfully fit the size distribution of certain particles (Rosin

& Rammler, 1933).

Weibull distribution have been successful at describing growth models which are

based on natural deterministic growth models and get their random nature by ran-

dom stopping times (Ghorbani et al., 2006). Without deeper physical motivations

for this distribution we proceed as with the Negative Binomial Distribution and

include it in our fitting analysis.

We can follow the idea of professor Weibull in order to deduce the expression of

this distribution. If pi is the probability of the ith galaxy to be the last one to be

considered a member of the cluster, and then, to complete it, and N galaxies have

been accreted before the cluster is complete, we call P the probability of having

the cluster complete when the nth galaxy is accreted. P can be calculated as
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(1� P ) =

NY

i=1

(1� pi) (2.21)

For a Weibull distribution, we consider 8i, j : pi = pj and pi constant in time,

then

(1� P ) = (1� p)N (2.22)

where, 1 � P is the probability of having a non complete cluster after N galaxy

accretions and 1� p is the probability of non completing the cluster with a single

accretion.

Weibull propose an generalized exponential distribution function for p random

variable, where events (galaxy arrivals to the cluster) are independent in time:

F (x) = 1� e��(x) (2.23)

for a certain �(x) function. If we consider p = 1� e��(x) then, P = 1� e�N�(x).

Now we have to specify the function �(x). The only necessary general condition

this function has to satisfy is to be a positive, nondecreasing function, vanishing

at a certain value. The most simple function satisfying this condition is

�(x) = (
x� ✓

�
)k (2.24)

thus,

F (x) = 1� e�(x�✓

�

)k (2.25)

And, di↵erentiating, the Weibull probability density function is

f(x) =
k

�
(
x� ✓

�
)k�1e�(x�✓

�

)k (2.26)
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Parameter � > 0 is the scale parameter and in our case it is related with the number

of galaxies per cell, the galaxy density. Parameter k > 0 is the shape parameter

and determines the pattern of the distribution. k is dimensionless, related with the

shape, not the size, which make the Weibull distribution interesting for describing

galaxy large scale structures, due to its self-similar morphology. As we can only

find nonnegative numbers of galaxies per cells, we will take ✓ as 0. The use of this

function in cosmology is an original contribution of this work.

2.6 Results

Calculation tasks of Counts-in-Cells involve long times and heavy calculations. To

achieve an appropriate reliability in our data, it is necessary to use at least as many

cells as galaxies in our populations. In addition, nearly 50% of cells are rejected by

mask e↵ects, so we have to double the number of tested cells. In Table 2.3 one can

find the numbers of used cells for each SDSS sample and LasDamas realizations.

In Fig. 2.3 we show the Counts-in-Cells probability density function fV (N) for

populations 1 and 2 in the three used radii: 6, 12 and 24h�1 Mpc. The curves

show the expected probabilities for these samples and radii (Yang & Saslaw, 2011),

with higher values of N̂ (the average of the CiC distribution) for bigger cells. Used

binning for galaxy abundance are the natural numbers with frequencies centered

between the bins.

The CiC distribution of cells with radius 24h�1 Mpc show no void function, with

all of its cells occupied by more than one galaxy. The opposite is found for the min-

imum cell radius considered, 6h�1 Mpc, where the CiC distribution is dominated

by the void function. We may consider an intermediate case. From a di↵erential

point of view, we can think in a pdf starting with fV (0) > 0 and dfV (N)/dN = 0

for N = 0. The required cell size to obtain such distribution is an indicative of

the maximum void size. We seem to be close to it in Pop2 with cell radius 12h�1

Mpc.
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Figure 2.3: Counts-in-cells probability distribution of populations 1 and
2 (left to right) for cells of radii 24, 12 and 6 h�1 Mpc (top to bottom) with
bins of width 1. Error bars obtained from variances of the corresponding

LasDamas realizations.

2.6.1 Fitting the results to a distribution function

In this section we proceed to fit the probability distribution functions defined in

section 2.5 to our Counts-in-Cells observed distributions. We calculate the �2 of

the fit

�2 =

N
maxX

N=0

(fobsV (N)� fV (N, ✓))2

�2N
(2.27)
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between the observed distribution and the theoretical distribution as a qualitative

measure of goodness of fit where Nmax is the largest number of galaxies in a cell.

The fitting will make use of the diagonal values �2, ignoring correlations between

bins. The vector ✓ contains the parameters of the theoretical distribution. Values

with fV (N) = 0 are excluded from the fitting.

We summarize the found ✓ and �2 values in Table 2.3. For samples Pop1 and

Pop2 and radii 6, 12 and 24h�1 Mpc, we present the number of used cells and

the distributions best fit parameters with 1� error bars obtained from the �2

distribution. The estimation of the �2 distribution neglecting correlations between

di↵erent bins of the observed pdf might have underestimated the obtained best fit

�2 values and the parameters 1� error bars.

Table 2.3: Counts-in-Cells best fit fV (N)

Sample GQED NBD
Population Cells r N̄ b �2 N̄ g �2

Pop1 200167 24 361.7± 0.8 0.8768±0.0017
0.0008 588.574 357.8±2

1.4 0.1785±0.002
0.0014 278.181

151661 12 45.8±0.8
0.7 0.8171± 0.0018 623.136 44.87±0.2

0.1 0.611±0.005
0.007 501.702

191365 6 5.72±0.19
0.09 0.708±0.005

0.009 364.385 5.64±0.05
0.09 1.69±0.06

0.03 400.83
Pop2 134136 24 65.8±0.4

0.3 0.7588± 0.003 141.303 65±0.14
0.3 0.249± 0.003 141.743

116718 12 8.18±0.3
0.18 0.647±0.004

0.009 31.6512 8.18±0.11
0.13 0.83±0.03

0.02 28.1752
203882 6 0.991±0.011

0.009 0.472±0.002
0.003 83.6695 1.018± 0.009 2.37±0.03

0.04 43.5573
Weibull Log Normal + bias

k � �2 C b �2

Pop1 200167 24 2.74±0.05
0.06 397±4

5 973.033 0.083± 0.003 1.48± 0.03 274.117
151661 12 1.28±0.02

0.03 48.3±0.8
1 740.859 0.375±0.013

0.012 1.35±0.03
0.02 296.922

191365 6 0.769± 0.01 5.22±0.13
0.1 211.718 1.12± 0.015 1.362± 0.008 329.396

Pop2 134136 24 2.21±0.06
0.07 71.6± 1.9 929.812 0.171±0.006

0.004 1.25±0.04
0.02 122.3

116718 12 1.08±0.017
0.02 8.9±0.18

0.2 39.6672 0.436±0.015
0.014 1.48± 0.05 23.1451

203882 6 0.752± 0.003 1.177± 0.009 347.899 1.27± 0.04 1.38± 0.017 1264.05

The number of used bins for the �2 fittings are: for Pop1, Nmax = 1046, 357 and
114 for cell radii 24, 12 and 6h�1 Mpc respectively, and for Pop2, Nmax = 257,

91 and 28 for cell radii 24, 12 and 6h�1 Mpc respectively.

We use the �2 values to discriminate the best fitting distribution. These values can

be compared with results in Figs. 2.4 to 2.9. Top box shows the observational and

best fit distributions. In the bottom box we can see the residuals, the di↵erence

between the best-fit distributions and the observed one (X axis). As expected,

curves outside the error bars have higher values for �2.
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For radii 12 and 24 h�1 Mpc, we appreciate that the Log Normal distribution

with bias perform the best fit, with lower �2 values and residuals inside the error

bars, except for small N . The results found for the NBD are close in goodness of

fit, although always slightly away from observations. For r = 6h�1 Mpc, the Log

Normal is unable to perform the best fit, being overcome by the other distributions.

As we mentioned in section 2.5.3, this is expected, since shot noise is not negligible.

In the smallest radius, the Weibull distribution gives the best fit for sample Pop1

(lower redshift and magnitude), while we find it with the NBD for sample Pop2

(higher redshift and magnitude).

Regarding the found parameters, the fitted N̄ are all close to the expectancies.

For comparison, we include these values in Table 2.4 left.

Table 2.4: Expectancies

Population N̄ N̂

24 12 6 24 12 6

Pop1 363.36 45.42 5.68 354.75 45.44 5.83
Pop2 66.83 8.35 1.04 65.75 8.4 1.05

Expectancies found for the samples and cells radii. N̄ = n̄V : number density of
the samples times the volume of the cell. N̂ : mean of the Counts-in-Cells

distribution.

Parameter b in the GQED is related with the correlation function as defined in

eq. 2.10, in such a way that b is smaller for higher amplitudes of ⇠̄2(V ). A mono-

tonic trend is found between b and r, indicating stronger correlations inside bigger

cells, which contain more structure. For the NBD we have g = ⇠̄2(V ), and therefore

the opposite trend is found.

As the NBD, the Weibull distribution was used without physical motivation, but

merely as a common distribution for modeling growth processes. However, it seems

that the growing process of galaxy clusters does not follow a Weibull distribution.

An exception is found for Pop1 and cell radius 6h�1 Mpc, where we have the best

fit, although the distribution is more than 1� away from the observed distribution

for a significant part of the curve.
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Figure 2.4: Counts-in-cells results for population 1 and radius 24h�1

Mpc. Top: fV (N) CiC distribution function with best fit models and
error bars. Bottom: probability distribution residuals, model minus ob-

servations.

The Log Normal distribution has been normalized by the CiC distribution mean

before being fitted. These quantities are summarized in Table 2.4, right. Pa-

rameter C, the variance of the matter distribution strongly varies with r. This

quantity is roughly related with the cosmological parameter �8, which at z = 0 is

measured �8 = 0.828 ± 0.012 (Planck Collaboration et al., 2014). Therefore, for

the case of cells of radius r=8 Mpc/h, we would expect the value of C to be close

to C8 = �28 = 0.686. Despite the strong variations of C, we can see its monotonic

evolution with the cell radius with values in agreement with �8. The same cannot

be said for the bias parameter b, with values higher than expected for Pop1, where

for the lower magnitude limit, smaller bias was expected.

2.7 Analysis of the results

In this first work of this thesis we proceeded with a blind fit of four di↵erent

probability functions. A blind fit allows us to discriminate the best model of the

observed Counts-in-Cells distribution. This work provides a very necessary tool
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Figure 2.5: Counts-in-cells results for population 1 and radius 12h�1

Mpc. Top: fV (N) CiC distribution function with best fit models and
error bars. Bottom: probability distribution residuals, model minus ob-

servations.
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Figure 2.6: Counts-in-cells results for population 1 and radius 6h�1 Mpc.
Top: fV (N) CiC distribution function with best fit models and error bars.
Bottom: probability distribution residuals, model minus observations.
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Figure 2.7: Counts-in-cells results for population 2 and radius 24h�1

Mpc. Top: fV (N) CiC distribution function with best fit models and
error bars. Bottom: probability distribution residuals, model minus ob-

servations.
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Figure 2.8: Counts-in-cells results for population 2 and radius 12h�1

Mpc. Top: fV (N) CiC distribution function with best fit models and
error bars. Bottom: probability distribution residuals, model minus ob-

servations..
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Figure 2.9: Counts-in-cells results for population 2 and radius 6h�1 Mpc.
Top: fV (N) CiC distribution function with best fit models and error bars.
Bottom: probability distribution residuals, model minus observations.

for many di↵erent applications in modern cosmology, such as the generation of

galaxy mocks or the testing of N-body simulations.

Regarding the �2 results, we can state that the Log Normal distribution with

bias is the best model for radii 12 and 24h�1 Mpc. This probability distribution

has three free parameters, despite we have normalized the CiC distribution to its

expectancy before fitting, reducing the model to two fitted parameters. This could

explain its better performance, something that we will try to analyze in detail in

a future work with the help of hypothesis tests. The estimation of parameters

C and b incorporates an interesting asset and allows its direct comparison with

other methods of bias estimation(López-Sanjuan et al. (2015), section 3.4.3.4).

Nevertheless, we might have obtained results for the bias parameter in tension

with other works (Meneux et al., 2006, Zehavi et al., 2011).

Regarding the GQED and the Negative Binomial distributions, we have obtained

similar results to Yang & Saslaw (2011), with generally good fittings (inside the

1� values). The Negative Binomial distribution obtains smaller �2 values than the

GQED despite its non physical motivation. We must take into account here that,
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nevertheless, this distribution is commonly understood as a descriptor of Counts-

in-Cells events, independently of the nature behind the point process. This could

explain the quality of the found fits.

The Weibull distribution is found to be the less capable of describing the CiC

distribution, despite the best fit found for cells of radius 6h�1 Mpc in Popula-

tion 1. A possible way of improving this distribution could be a modification

of function 2.24. Remember that this function is chosen for being the simplest

one satisfying the required conditions of a probability density function. With a

physically motivated function we might obtain di↵erent results.

We have also fitted the calculated Counts-in-Cells distribution to the standard Log

Normal distribution (eq 2.19 with b = 1), and the fits are systematically worse than

the fits obtained including the bias parameter. This is obviously expected, since

the inclusion of an extra parameter helps for fitting the counts, nevertheless, we

conclude that this is an important and original result of this chapter: the best fit

for the galaxy Counts-in-Cells distribution function is a Log Normal distribution

modified by the inclusion of the bias term.

The results presented in this section will be published as Hurtado-Gil et al. (in

prep.b).



Chapter 3

Correlation functions

3.1 Introduction

The correlation functions are among the so called ‘second-order characteristics’

and are one of the most widely used estimators for point process characterization.

It has proved to be one of the most productive statistics in cosmology since it

was firstly used (Peebles, 1980, Totsuji & Kihara, 1969). With every new pub-

lished galaxy survey, new relevant conclusions of the galaxy distribution have been

obtained with this statistic.

They are easy to perform while still very informative, and can provide relevant

information about all scales in the population. This has made them a necessary

estimator of the galaxy distribution for any galaxy survey. We have introduced the

mathematical deduction of this estimator in section 1.2.5 to properly understand

its power and situation in the point process theory.

We introduce the historical development of this function and the necessary cor-

rections in astrophysics. In sections 3.2 and 3.3 we introduce the historical de-

velopment of this function and the necessary corrections in astrophysics. These

corrections are motivated by multiple uncertainties introduced in the estimation of

the correlation function by both instrumental and physical reasons. The resulting

is the projected correlation function, widely used in astrophysics for its reliability

and its analysis capacity.

65
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In section 3.4 we introduce the ALHAMBRA survey (Moles et al., 2008, Molino

et al., 2014), a recently published galaxy survey from which we will obtain our con-

clusions of the galaxy distribution. Using the projected correlation function and

additional corrections, we are able to clearly describe the nature of galaxy clus-

tering in conditions never studied before with the ALHAMBRA detail. The high

quality photometry of the ALHAMBRA survey makes it an optimal choice for the

analysis of clustering in the small scales of galaxy distribution, while comparing

with clustering from field galaxies. This analysis is completed with the spectral

segregation of samples, which greatly helps our understanding of clusters nature.

As it is well known, di↵erent galaxies cluster at di↵erent levels, and a segregated

analysis could clarify the observed trends. With the ALHAMBRA spectral clas-

sification we can perform our analysis for ‘quiescent’ and ‘star-forming’ galaxies,

and understand variations in clustering based on spectral types. In addition to

this, we include the calculations of the galaxy bias (see section 1.1.3) for a large

number of redshift intervals with segregation.

The present chapter is divided as follows. Sections 3.2 and 3.3 introduce the pair

correlation function and how to use it, including several estimators, necessary cor-

rections and uncertainties. Section 3.4 presents the ALHAMBRA survey (Moles

et al., 2008, Molino et al., 2014), the samples used in this work, and analyse

its suitability for this work. In section 3.4.3 we perform and analyze the calcu-

lations, including the galaxy dark-matter bias. Conclusions are summarized in

section 3.4.4. Contents included in section 3.4 are published in Hurtado-Gil et al.

(2016).

This chapter includes an introduction to a future work in section 3.5, related with

the calculation of the pair correlation function with photometric surveys.

3.2 Definition

For the sake of clarity, we will reproduce the interpretation of the product densities

defined in section 1.2.5 for order k = 2. In a process of intensity �, the probability

of finding a point in a infinitesimally small sphere b(x) of volume dx centered at

x is �(x)dx. If we consider now a second point y at distance r from x, we can

calculate the probability that there is a point both in the spheres b(x) and b(y).
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As seen, this is the second-order product density %(2)(x, y)dxdy. We can normalize

these values by the intensities at locations x and y to obtain the pair correlation

function

g(x, y) =
%(2)(x, y)

%(1)(x) · %(1)(y)
=

%(2)(x, y)

�(x) · �(y) (3.1)

In the homogeneous and isotropic case, this can be simplified since intensity is

constant and our functions only depend on the distance r between x and y:

%(2)(x, y) = %(2)(r). The expression simplifies in

g(r) =
%(2)(r)

�2
(3.2)

where g(r) is the isotropic and homogeneous pair correlation function, which is

equally 1 if the distribution is Poisson.

Generally, point interactions are e↵ective below a given range of correlation rc,

and therefore, for any r > rc the distribution is approximately Poisson. This kind

of distributions are called Markov distributions, and are expected to have g(r) = 1

above this range. For r < rc the behavior of g(r) can be complex but one out

of four main trends is usually found. First, that of a Poisson process, where

g(r) = 1. Second, we say we have a cluster process when g(r) � 1. Third, the

opposite case, a regular process, where g(r)  1. Finally, if g(r) = 0 for r < rc

we have a hardcore process where no interactions are allowed bellow this range.

These four cases can coexist in the same function at di↵erent ranges, showing

di↵erent kinds of interactions depending on the scale.

However, the galaxy distribution shows a di↵erent behavior, where gravity extends

its attraction infinitely. Hence, no finite correlation range is found for the pair

correlation function, but an asymptotic approximation to an uncorrelated pattern.

For scales below 120h�1 Mpc, the correlation functions shows a clustered pattern,

with a bump around 105h�1 Mpc, corresponding to the shell radius of the BAOs

(see section 1.1.2). After this, galaxies separated by greater distances describe a

regular pattern, which tends asymptotically to 1.

As it is customary in astrophysics, the pair correlation function is redefined as
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⇠(r) = g(r)� 1 (3.3)

This is a useful way to subtract the “Poisson component”, leaving in ⇠(r) the

purely non-Poisson behavior of the distribution. It is clearly seen in the probability

density expression

%(2)(r)dr = (⇠(r) + 1) · �2dr (3.4)

3.3 Estimation of ⇠(r)

The estimation of the pair correlation function is similar to the estimation of a

Counts-in-Cells distribution, but it is estimated for a wide range of distances and

normalized by the volumes involved. The galaxy counts are performed in shells

or concentric cells centered on each galaxy. Ideally, the shells thickness would

be infinitesimally thin, but in a discreet sample, such as a galaxy population, we

require not null volumes. We are then interested in counting the number of galaxy

pairs at an interesting range of several distances.

In order to perform this calculation we will refer as separated by distance r, those

pairs whose separation distance lies between r and r + dr. Therefore, the volume

created by this shell-shaped cell is

Vsh =
4⇡

3
[(r + dr)3 � r3] (3.5)

Given a 3-dimensional region W containing N galaxies, one could estimate the

pair correlation function with

⇠̂(r) =
V (W )

N2

NX

i=1

ni(r)

Vsh
� 1 (3.6)

Where ni(r) is the number of galaxies lying inside the volume Vsh centered at the

galaxy i. This estimation can be found at Rivolo (1986).
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However, this estimator su↵ers from a severe underestimation of pairs at long

distances. If the distances we are interested in are comparable to the dimensions

of our population geometry, we will underestimate the number of real galaxy pairs

when one of our galaxies is too close to the window limits. This problem is similar

to that of the cells lying too close to the mask in the CiC calculations and its

solution appears to be similar as well: we will use as centers for counting neighbors

only galaxies lying within an inner region Win where no galaxy is closer to the

limits of W than a distance rmax. With this modification, we have the minus

estimator

⇠̂min(r) =
V (W )

N ·Nin

N
inX

i=1

ni(r)

Vsh
� 1 (3.7)

where Nin is the number of galaxies contained in the inner region.

Despite the reliability of this method and its wide applicability, it has a clear hand-

icap since a significant amount of data remains unused, which increases biases and

uncertainties. To avoid this problem we can proceed with an edge correction that

compensates the loss of information normalizing the pair counts by the volume Vi

of the intersection of Vsh and W . This edge-correction estimator can be calculated

as

⇠̂min(r) =
V (W )

N2

NX

i=1

ni(r)

Vi
� 1 (3.8)

However, this estimator requires of complex integration methods to calculate Vi

for every galaxy.

Instead, Poisson distributed samples of points in W can be used to approximate

this integral as in a Monte Carlo volume integration. Again, this procedure is

similar to the one we used for the estimation of the relative volume of cells in

the CiC analysis. Once the galaxy population and its containing geometry is

perfectly known, we can generate a Poisson distributed sample of points in the

same geometry (i.e., a Poisson point process withNR points). As said, for this kind

of population, the pair correlation function ⇠(r) is equal to 0 and any divergence

due to border e↵ects can be used to correct the same underestimation in the galaxy
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population. The function
P

ni(r) is now substituted by the total number of pairs

in the sample at separated by a distance r. This will be calculated for pairs of

galaxies (DD(r)), pairs of random points from the Poisson sample (RR(r)) and

mixed pairs formed by a galaxy and a random point (DR(r)). Di↵erent estimators

were proposed by (Davis & Peebles, 1983, Hamilton, 1993, Landy & Szalay, 1993,

Peebles & Hauser, 1974), and are given by

⇠̂PH(r) =
⇣
NR

ND

⌘2DD(r)

RR(r)
� 1

⇠̂DP (r) =
NR

ND

DD(r)

DR(r)
� 1

⇠̂HA(r) =
DD(r) ·RR(r)

(DR(r))2
� 1

⇠̂LS(r) = 1 +
⇣
NR

ND

⌘2DD(r)

RR(r)
� 2

NR

ND

DR(r)

RR(r)

where ND is the number of galaxies in the population and NR is the number of

points in the auxiliary Poisson sample. Since this is a Monte Carlo procedure,

the larger NR is, the more accurate the result. In this thesis we use NR = 20ND.

Several works compared the performance of these estimators, in terms of bias and

variance, in the cosmological scenario (Kerscher, 1999, Labatie et al., 2010, Pons-

Bordeŕıa et al., 1999). The general conclusion, as first noted by Hamilton (1993),

is that the bias is lower for ⇠̂HA(r) and ⇠̂LS(r), especially at large scales. As usual

in cosmology, we use the Landy-Szalay (LS) estimator through this thesis.

3.3.1 Correction of selection e�ects

Galaxy surveys are usually a↵ected by selection e↵ects that alter our estimations

of the true interaction between points. This selection is due to observational

di�culties that introduce inhomogeneities in the population. The first case is

explained in the previous section, when the limits of the window introduce a

border e↵ect that must be corrected. The edge correction is satisfactory even if

the window adopts very irregular shapes due to the adaptability of the Monte

Carlo volume integrations. However, other e↵ects must be taken into account to

perform a reliable estimation of ⇠(r).
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Even regions lying in the window can present di↵erent levels of completeness due

to di↵erent conditions during the observing nights or to masking objects like bright

stars that do not allow to observe the faint galaxies around them. This selection

e↵ect can only be poorly corrected aside from reducing the window area. However,

we must deal with it if we want to study the cosmic variance, the variance of

observations of the universe at extreme distances.

In addition, selection e↵ects can appear not only in the observation of the sky win-

dow of the survey, but also in the depth of the observations, aside from other more

subtile e↵ects. At large distances the faintest galaxies are di�cult to observe prop-

erly and its detection is non reliable or inexistent. That creates an inhomogeneity,

showing higher galaxy densities at closer distances. In addition, this selection is a

strong bias, since the lost galaxies are the faintest ones, which behave di↵erently to

the brighter ones in their clustering interactions (Arnalte-Mur et al., 2014). Two

corrections can be introduced to address these e↵ects. First, we must introduce

an appropriate selection in absolute magnitude and redshift to produce a “volume

limited” sample. This way we eliminate the faintest galaxies at closer distances

to reach a luminosity completeness at all distances, although, this implies losing

a large amount of valid data. And second, strong inhomogeneities of the galaxy

density in depth must be introduced in the generation of the auxiliary Poisson

population. This density of galaxies can be modeled by cubic splines or other

smoothing estimators and can be e↵ectively used to generate the right amount of

random points at each distance, producing less points where the selection function

or any observational e↵ects produce an underdensity.

An additional correction that we introduce in our calculations is the integral con-

straint correction (Peebles, 1980). There is a bias in the estimation due to the use

of a finite volume. Correlations are measured with respect to the mean density of

the selected sample (our galaxy survey) instead of with respect to the global mean

(that of the parent population). As explained in Bernardeau et al. (2002) and

Labatie et al. (2010), at first order the bias introduced by the integral constraint

is given by

⇠(r) = ⇠true(r)�K (3.9)

where,
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K =
1

V 2

Z

V

Z

V

d3r1d
3r2⇠

true(r2 � r1) (3.10)

and V is the volume occupied by the galaxy population. In practice, the estimation

ofK can be done following Roche et al. (1999), making use of the auxiliary Poisson

catalogue to compute numerically the double integral as

K '
P

iRR(ri)⇠model(ri)P
iRR(ri)

=

P
iRR(ri)⇠model(ri)

NR(NR � 1)
(3.11)

In this thesis, we use a power law as a parametric model for ⇠model, evaluated in

the same distance ranges ri where the ⇠ function is evaluated. Nevertheless, the

correction introduced by the integral constraint is generally smaller than the error

bars calculated for our estimations.

3.3.2 Correction of redshift distortions

The estimation of the pair correlation function in three dimensions demands the

3-dimensional position of each object, which, as seen in eq. 1.23, implies knowing

the right ascension ↵, declination � and distance of the galaxy with respect to us.

The position of the galaxy in the sky is easily obtained, but the distance needs a

good estimation of the cosmological redshift to be properly calculated.

As seen in eq. 1.15, when we obtain our distances from the redshift of a galaxy, it

is a↵ected by the double component of the redshift: the cosmological redshift due

to the Hubble flow, which in principle is directly linked to the position, and any

additional peculiar velocity of the object. These peculiar velocities are produced

by the infalling and other galaxy movements due to strong and close gravitational

interactions, specially in clusters. If the galaxy is moving coherently to the Hubble

flow, its redshift will appear larger, implying a larger distance, while, in the other

sense, if the galaxy is following towards us, the redshift will be smaller and the

galaxy will appear closer than it really is. Together, this makes clusters appear as

an elongated shape called Fingers-of-God. Several other redshift distortions are

found when measuring galaxy redshifts, but we will not try to introduce further

corrections in our estimations of ⇠(r)
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In addition to this natural distortion, observations can introduce new errors in

the redshift measurements that must be treated. In the spectroscopic surveys, the

redshift is measured with great accuracy (typically, �(z) ⇠ 10�4) and the derived

distances are generally reliable. However, photometric surveys generally present

greater inexactitudes due to the low resolution spectral energy distributions and

the di�culty to properly locate the emission and absorption lines. In the best

cases, when the number of used filters is large enough, this uncertainty can be

reduced to �(z) ⇠ 0.01(1 + z) (Moles et al., 2008, Molino et al., 2014).

In order to deal with this non-isotropic redshift-space galaxy distribution, Davis

& Peebles (1983) started using the 2-dimensional correlation function ⇠(r||, r?),

where the dependence on scale is split into the line of sight separation r||, and the

transverse separation r?
1. This is a decomposition of the galaxy pairs distances

into the plane that contains the galaxy pair and the observer. It can be seen in

the scheme of Fig. 3.1. Since the angle of separation of galaxies is generally small,

the parallel component is barely radial with respect to the observer, the direction

where most of the explained redshift distortions appear.

The formal definition of r? and r|| starts with the locations s1, s2 of two galaxies

in the observed redshift space. We define the separation vector, s ⌘ s2 � s1, and

the line-of-sight vector, l ⌘ s1 + s2. From these, we now define the parallel and

perpendicular distances of the pair as

r|| ⌘
|s · l|
|l| , r? ⌘

q
s · s� r2|| (3.12)

Redshift errors will influence the result in the apparent line-of-sight direction l/|l|,
and through that, the perpendicular component r?, and mainly, the parallel one

r||. These errors will grow with the redshift uncertainties and with the angular

separation of the galaxy pair.

The adaptation of the point correlation function to this decomposition substitutes

the dependence on r with a dependence on (r?, r||), allowing us to deal with the

non-isotropy of the survey in the radial dimension. The 2-dimensional correlation

function is then estimated using the Landy and Szalay estimator:

1
In the literature , the symbol ⇡ is typically used for r||, and � or rp for r?. We use

r|| and r? or rp indistinctly.
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Figure 3.1: Transversal (r?) and longitudinal (r||) decomposition of the
galaxy pairs distances into the plane. Credit: Pablo Arnalte-Mur.

⇠̂LS(r?, r||) = 1 +
�NR

ND

�2DD(r?, r||)

RR(r?, r||)
� 2

NR

ND

DR(r?, r||)

RR(r?, r||)
(3.13)

where pairs are calculated as above and every pair is decomposed in two separation

distances: the transverse [r?, r? + dr?] and the paralel [r||, r|| + dr||].

Here we can see how an aim for this decomposition is the study of the redshift

distortions (see Fig. 3.2). These redshift space distortions on the correlation func-

tion can be modeled (Hamilton, 1998, Kaiser, 1987) and used to constrain the

cosmological parameters, in particular ⌦m (Cabré & Gaztañaga, 2009, Hawkins

et al., 2003, Peacock et al., 2001).

Now, the 2-dimensional pair correlation function can be used as well to neutralize

the redshift distortions by projecting the correlation function into the transverse

direction (Davis & Peebles, 1983). This projection is done integrating along the

line-of-sight, where uncertainties are mainly found:
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Figure 3.2: 2-dimensional correlation function for the 2dFGRS survey,
showing the e↵ects of redshift space distortions. The cigar-like shape at
r? ⇠ 0 is due to random peculiar velocities in virialised groups, while the
oval-like shape at larger transverse separations is the signature of coherent

infall. Image from Peacock et al. (2001).

w(r?) ⌘ 2

Z 1

0
⇠LS(r?, r||)dr|| (3.14)

This is the projected correlation function. Assuming that the real-space distribu-

tion is isotropic, we can relate w to the real space correlation function, ⇠r, as

w(r?) = 2

Z 1

r?

⇠r(r)
rdr

(r2 � r2?)
1/2

(3.15)

This relation can be inverted obtaining ⇠r, in terms of w,s as the Abel integral:

⇠r(r) = � 1

⇡

Z 1

r

dw(r?)

dr?

dr?
(r2? � r2)1/2

(3.16)

In practice, we have to set finite upper limits in our integrals. In equation 3.15

the upper limit r||,max must be fixed instead of 1. In principle it should be large

enough to include all the correlated pairs, but if it is to large, it will introduce extra

noise in the calculation. Arnalte-Mur et al. (2014) recommend to use a value of
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r?,max = 200h�1 Mpc in the photometric ALHAMBRA survey (see section 3.4.1),

a value that depends on the typical redshift error �z. In equation 3.16 an upper

limit r?,max must be also fixed, being the maximum transverse separation allowed

by the geometry of the survey.

3.3.3 Estimation of the errors

The error bars depicted for the projected correlation function are calculated fol-

lowing the ‘delete one jackknife’ method explained in section 2.4 for the Counts-

in-Cells case. Its application to correlation functions is direct, with the minor

di↵erence of the subsample selection criterium. Our data from ALHAMBRA sur-

vey (see next section 3.4.1) contains images from 47 di↵erent CCDs, covering each

one around 0.05 deg2 of the sky. We take these areas to build the subsamples,

extending them in redshift. Therefore, each jackknife subsample contains the

galaxies of 46 CCDs.

3.4 Evolution of galaxy spectral segregation in

the

ALHAMBRA Survey

It has been well established that di↵erent types of galaxies cluster in di↵erent

ways (Davis et al., 1988, Domı́nguez-Tenreiro & Mart́ınez, 1989, Einasto, 1991,

Guzzo et al., 1997, Hamilton, 1988, Li et al., 2006, Loveday et al., 1995, Mart́ınez

et al., 2010, Phleps et al., 2006). Elliptical galaxies are preferentially located at the

cores of rich galaxy clusters, i.e, in high density environments, while spiral galaxies

are the dominant population in the field (Cucciati et al., 2006, Davis & Geller,

1976, Dressler, 1980, Giovanelli et al., 1986). This phenomenon, called galaxy

segregation, has been confirmed in the largest galaxy redshift surveys available

up to date, the 2dF Galaxy redshift survey (2dFGRS, Madgwick et al., 2003),

the Sloan Digital Sky Survey (SDSS, Abbas & Sheth, 2006, Zehavi et al., 2011)

and the Baryonic Oscillation Spectroscopic Survey (BOSS, Guo et al., 2013). The
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dependence of clustering on di↵erent galaxy properties such as stellar mass, con-

centration index, or the strength of the 4000 Å-break has been studied by Li et al.

(2006).

Since segregation is a consequence of the process of structure formation in the

universe, it is therefore very important to understand its evolution with redshift

or cosmic time. Several works have extended the analysis of segregation by colour

or spectral type to redshifts in the range z ⇠ 0.3� 1.2 using recent spectroscopic

surveys such as the VIMOS-VLT Deep Survey (VVDS, Meneux et al., 2006), the

Deep Extragalactic Evolutionary Probe 2 survey (DEEP2, Coil et al., 2008), or

the PRIsm Multi-object Survey (PRIMUS, Skibba et al., 2014). De la Torre et al.

(2011), instead, used the zCOSMOS survey to study segregation by morphological

type at z ⇠ 0.8. All these studies show that segregation by colour or spectral type

was already present at z ⇠ 1. In particular, Meneux et al. (2006), using a sample

of 6,500 VVDS galaxies covering half a square degree, have unambiguously estab-

lished that early-type galaxies are more strongly clustered than late-type galaxies

at least since redshift z ⇠ 1.2. The correlation length obtained by these authors

for late-type galaxies is r0 ⇠ 2.5h�1 Mpc at z ⇠ 0.8 and roughly twice this value

for early-type galaxies. They have also calculated the relative bias between the

two types of galaxies obtaining an approximately constant value brel ⇠ 1.3�1.6 for

0.2  z  1.2 depending on the sample. This value is slightly larger than the one

obtained by Madgwick et al. (2003) brel ⇠ 1.45±0.14 for the 2dF Galaxy Redshift

Survey with median redshift z = 0.1. The results obtained by Coil et al. (2008) for

DEEP2 reinforced those outlined above, although the measured correlation lengths

for DEEP2 galaxies are systematically slightly larger than the values reported for

the VVDS sample by Meneux et al. (2006). In addition, Coil et al. (2008) have

detected a significant rise of the correlation function at small scales rp  0.2h�1

Mpc for their brighter samples. For the zCOSMOS-Bright redshift survey, de la

Torre et al. (2011) found also that early-type galaxies exhibit stronger clustering

than late-type galaxies on scales from 0.1 to 10h�1 Mpc already at z ' 0.8, and

the relative di↵erence increases with cosmic time on small scales, but does not sig-

nificantly evolve from z = 0.8 to z = 0 on large scales. A similar result is reported

by Skibba et al. (2014). These authors show that the clustering amplitude for

the PRIMUS sample increases with color, with redder galaxies displaying stronger

clustering at scales rp  1h�1 Mpc. They have also detected a color dependence
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within the red sequence, with the reddest galaxies being more strongly correlated

than their less red counterparts. This e↵ect is absent in the blue cloud.

Several broad-band photometric surveys have extended these studies to even larger

redshift (e.g. Hartley et al., 2010, McCracken et al., 2015). Hartley et al., using

data from the UKIDSS Ultra Deep Survey, find segregation between passive and

star-forming galaxies at z . 1.5, but find consistent clustering properties for both

galaxy types at z ⇠ 2.

In the present work we use the high-quality data of the Advanced Large Homoge-

neous Area Medium-Band Redshift Astronomical survey (ALHAMBRA) (Moles

et al., 2008, Molino et al., 2014)2 to study the clustering segregation of quies-

cent and star-forming galaxies. ALHAMBRA is very well suited for the analysis

of galaxy clustering and segregation studies at very small scales. With a reli-

able calculation of the projected correlation function we find a clear steepening

of the correlation at scales between 0.03 to 0.2h�1 Mpc (Coil et al., 2008, Phleps

et al., 2006), specially for the star-forming galaxies. Moreover, its continuous se-

lection function over a large redshift range makes ALHAMBRA an ideal survey

for evolution studies (see Fig. 3.3). In Arnalte-Mur et al. (2014) (hereafter AM14)

the authors presented the results of the evolution of galaxy clustering on scales

rp < 10h�1 Mpc for samples selected in luminosity and redshift over ⇠ 5 Gyr

by means of the projected correlation function wp(rp). In this work we use the

same statistic to study the evolution of galaxy segregation by spectral type at

0.35 < z < 1.1.

Details on the samples used in this analysis are described in Section 3.4.1. In sec-

tion 3.4.2 we compare the ALHAMBRA survey with other photometric surveys and

justify its suitability for the analysis of correlations at small scales. Section 3.4.3 we

present the calculations, including the power-law modeling (section 3.4.3.1), and

the galaxy bias (section 3.4.3.4). Conclusions are summarized in section 3.4.4.

Throughout this work we use a fiducial flat ⇤CDM cosmological model with pa-

rameters ⌦M = 0.27, ⌦⇤ = 0.73, ⌦b = 0.0458 and �8 = 0.816 based on the

7-year Wilkinson Microwave Anisotropy Probe (WMAP) results (Komatsu et al.,

2011). All the distances used are comoving, and are expressed in terms of the

Hubble parameter h ⌘ H0/100 km s�1 Mpc�1. Absolute magnitudes are given as

M � 5 log10(h).

2
http://alhambrasurvey.com
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Figure 3.3: Comparison between the galaxies observed by the ALHAM-
BRA survey, SDSS and VIPERS. Axis in comoving distance, spheres in

redshift. Image credit: Vicent Mart́ınez.

3.4.1 Data samples

The ALHAMBRA survey (Moles et al., 2008, Molino et al., 2014) is a project

that has imaged seven di↵erent areas in the sky through a purposedly-built set

of 20 contiguous, non-overlapping, 310 Å-wide filters covering the whole visible

range from 3500 to 9700 Å, plus the standard near-infrared JHKs filters. The

nominal depth (5�, 300 aperture) is IAB ⇠ 24.5 and the total sky coverage after

masking is 2.381deg2. The final catalogue, described in Molino et al. (2014),

includes over 400,000 galaxies, with a photometric redshift accuracy better than

�z/(1 + z) = 0.014. Full details on how the accuracy depends on the sample

magnitude, galaxy type, and Bayesian odds selection limits are given in that work.

For the characteristics of the sample that we use in this paper the authors quote

a dispersion �NMAD < 0.014 and a catastrophic rate ⌘1 = 0.04% 3. There is

no evidence of significantly di↵erent behavior for galaxies with spectral energy

distributions corresponding to quiescent or star-forming types. Contamination

3
Where �NMAD is the normalized median absolute deviation, and ⌘2 is defined as the

proportion of objects with absolute deviation |�z|/(1 + z) > 0.2.
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by AGNs is minor (approximately 0.1% of the sources could correspond to this

class, which has not been purged from the ALHAMBRA catalogues) and should

be dominated by low-luminosity AGN, which are in many cases fit by strong

emission-line galaxies with an approximately correct redshift.

Object detection is performed over a synthetic image, created via a combination

of ALHAMBRA filters, that mimics the Hubble Space Telescope F814W filter

(hereafter denoted by I) so that the reference magnitude is directly comparable

to other surveys. Photometric redshifts were obtained using the template-fitting

code BPZ (Beńıtez, 2000), with an updated set of 11 Spectral Energy Distribution

(SED) templates, as described in Molino et al. (2014). The Bayesian approach to

photometric data has proved to be successful in the ALHAMBRA survey (Ascaso

et al., 2015). Although a full posterior probability distribution function in redshift

z and spectral type T is produced for each object, in this work we take a simpler

approach and assign to each galaxy the redshift zb and type Tb corresponding to the

best fit to its observed photometry. We have checked that the errors induced by the

redshift uncertainties, which are partly absorbed by the deprojection technique,

are under control as long as we use relatively bright galaxies with good quality

photometric redshift determinations. This makes ALHAMBRA a very well suited

catalogue: together with the high resolution photometric redshifts, the abundant

imaging allows us both a reliable color segregation, used in this work, and a high

completeness in the galaxy population at small scale separations, which will be

the specific object of a future work.

The ALHAMBRA data was already used for clustering studies by Arnalte-Mur

et al. (2014), who focused on the study of galaxy segregation by luminosity. In this

work the authors find a clear evolution of the projected correlation amplitude with

luminosity (see Fig. 3.4). These results confirmed that di↵erent types of galaxies

cluster in di↵erent ways, and we will extend this analysis to a new type of galaxy

segregation. Clustering is also dependent on redshift, showing a hint of evolution

with lower amplitudes for higher redshifts. Analogous results are found for the

galaxy bias, with dependence of luminosity and redshift, where high redshift bright

galaxies present higher values of bias than faint or low redshift galaxies.

We have drawn di↵erent samples from the ALHAMBRA survey to perform our

analysis in a similar way as was done in Arnalte-Mur et al. (2014). First, we cut

the magnitude range at I < 24, where the catalogue is photometrically complete
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Figure 3.4: Projected correlation functions for luminosity segregated
galaxy samples from Arnalte-Mur et al. (2014). The solid lines show the
corresponding best-fit power laws in the range in which the fit was done.
Dashed lines show the extrapolation of these models to larger or smaller

scales.

(Molino et al., 2014) and we do not expect any significant field-to-field variation

in depth. Second, stars are eliminated using the star-galaxy separation method

described in Molino et al. (2014). As explained in Arnalte-Mur et al. (2014), the

expected contamination by stars in the resulting samples is less than 1 per cent.

Finally, we cleanse the catalogue using the angular masks defined in Arnalte-Mur

et al. (2014), which eliminate regions with less reliable photometry around bright

stars or image defects, or very close to the image borders. The sample selected

in this way contains 174,633 galaxies over an area of 2.381 deg2, i.e., with an

approximate source density of 7.3⇥ 104 galaxies per square degree.

Given the ALHAMBRA depth, we divide our sample in 5 non-overlapping red-

shift bins. These redshift bins are [0.35, 0.5[, [0.5, 0.65[, [0.65, 0.8[, [0.8, 0.95[, and

[0.95, 1.1] 4. As in this work we focus on the galaxy spatial segregation by spectral

type we use a luminosity selection to obtain a fixed number density. In this way

we guarantee that we are comparing similar populations at di↵erent redshifts. In

4
Note that the redshift bins used here are di↵erent to those in Arnalte-Mur et al.

(2014), where overlapping bins were allowed.
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Figure 3.5: Selected samples with fixed number density in the photomet-
ric redshift vs. absolute B-band magnitude diagram. The quiescent and
star-forming galaxy samples are plotted in red and blue color, respectively.
The solid lines mark the boundaries of our selected samples described in

Table 3.1.

order to select a sample that is complete up to z = 1.1 we define a threshold

magnitude of M th
B (0)� 5 log(h) = �19.36 for the highest redshift bin. This limit

determines the galaxy number density (n̄ = 9.35 ⇥ 10�3 h3 Mpc�3) that we will

keep constant for the remaining redshift bins. This way, our results do not rely on

measurements of the luminosity function. This will allow us to study the evolution

with redshift of the galaxy spectral segregation. Fig. 3.5 shows the luminosity and

redshift selections used in this work. We should remark on the non-monotonic

evolution of the faint limit of our samples with redshift. This e↵ect is not unex-

pected, as a combination of cosmic variance in the large-scale structure and the

artificial redshift peaks that are induced by the photometric redshift methods pro-

duce density changes that are observable at the scales we are using. In any case

the e↵ect is very small, representing a variation of only 0.1 magnitudes per bin

over a monotonic evolution.

We classify our galaxies as ‘quiescent’ and ‘star-forming’ according to the best-

fitting template, Tb, obtained from the BPZ analysis. Templates 1 to 5 correspond
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to quiescent galaxies, 6 and 7 correspond to star-forming galaxies, and 8 to 11

correspond to starburst galaxies. We consider as quiescent galaxies those with a

template value smaller than 5.5, and star-forming those with a value bigger than

5.5. Therefore, we include in the star-forming category also those galaxies classified

as starbursts. Note that in the fitting process interpolation between templates is

performed.

In a previous work, Pović et al. (2013) built a morphological catalogue of 22,051

galaxies in ALHAMBRA. We cannot, however, use this catalogue as the basis for

our analysis as it includes only a small subset of the galaxies in our sample: in

its cleanest version it is limited to AB(F613W) < 22 and redshift z < 0.5 for

ellipticals. A cross-check showed that, if we identify quiescent galaxies as early-

type and star-forming galaxies as late-type, our SED-based classification agrees

with the morphological one for over 65% of the sample. Taking into account that

the nominal accuracy of the morphological catalogue is 90%, that we are actually

using only the objects close to its detection limit and that, as noted in Pović et al.

(2013), the relationship between morphological- and colour-based classifications

is far from being as direct as could näıvely be expected, we consider that these

figures prove that the classification is accurate within the expected limits.

Table 3.1: Characteristics of the galaxy samples used

Quiescent galaxies Star-forming galaxies

Sample z range V (h�3Mpc3) NQ n̄(h3Mpc�3) Mmed
B z̄ NSf n̄(h3Mpc�3) Mmed

B z̄ NQ

NQ+NSf

z0.43 0.35� 0.5 3.48⇥ 105 1650 4.74⇥ 10�3 -20.53 0.43 1605 4.61⇥ 10�3 -20.26 0.43 0.51
z0.57 0.5� 0.65 5.42⇥ 105 1818 3.35⇥ 10�3 -20.77 0.58 3258 6.01⇥ 10�3 -20.35 0.57 0.36
z0.73 0.65� 0.8 7.33⇥ 105 2291 3.12⇥ 10�3 -20.87 0.73 4570 6.23⇥ 10�3 -20.56 0.73 0.33
z0.88 0.8� 0.95 9.09⇥ 105 2509 2.75⇥ 10�3 -21.06 0.87 6002 6.6⇥ 10�3 -20.82 0.88 0.29
z1.00 0.95� 1.1 1.06⇥ 106 2182 2.05⇥ 10�3 -20.91 1.02 7768 7.30⇥ 10�3 -20.74 1.03 0.22

V is the volume covered by ALHAMBRA in each redshift bin. For each of the
samples selected by spectral type we show the number of galaxies N , the mean
number density n̄, the median B-band absolute magnitude Mmed

B and the mean
redshift z̄. The last column gives the fraction of early-type galaxies in the bin.

NW ALH-4 frame is not included.

In Fig. 3.6 we show how our classification of quiescent and star-forming galaxies

performs on a color-luminosity diagram. We plot Mr and Mu, which correspond
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Figure 3.6: Absolute rest-frame broad-band color-magnitude diagram
for galaxies with redshifts between 0.35 and 0.75. Quiescent and star-
forming galaxies (selected by their best-fit spectral type) are shown, respec-
tively, as red and blue percentile contours. We have used SDSS absolute
magnitudes derived from the ALHAMBRA photometry as described in the
text. Our classification by (photometric) spectral type closely matches the

usual broad-band colour selection.

to the absolute magnitudes in the SDSS rest-frame broad-band filters r and u,

and were estimated from ALHAMBRA data by Stefanon (2011) for galaxies with

redshift 0.35 < z < 0.75 and good quality photometric redshifts. We see how well

the ALHAMBRA spectral-type classification reproduces the expected behavior

(Bell et al., 2004): quiescent galaxies correspond to the ‘red sequence’ in the

diagram, while star-forming galaxies form the ‘blue cloud’. In addition to the

clear segregation in color, we see that quiescent galaxies show, on average, slightly

brighter luminosities than star-forming ones. This shows that our selection by

(photometric) spectral type is almost equivalent to a selection in broad-band color.

In Fig. 3.7 we show the projection of two fields, ALH-2 and ALH-4/COSMOS,
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Figure 3.7: Projection onto the sky of the z0.73 sample (0.65 < z < 0.8)
for two ALHAMBRA fields: ALH-2 (top) and ALH-4/COSMOS (bottom).
Galaxies have been colored according to their type: blue circles correspond
to star-forming and red circles to quiescent galaxies, and the size of each
circle is proportional to the luminosity of the corresponding galaxy. North
is to the top and East is to the left. The diagram shows the geometry of the
ALHAMBRA fields, with the angular mask described in the text displayed
as a light-grey background. The scale of 10 h�1 Mpc at z = 0.7 is indicated
as a vertical bar. A heavy concentration of red circles (quiescent galaxies),
corresponding to the big coherent structure described in the text, is patent

in the NW quadrant of the ALH-4/COSMOS field.
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onto the plane of the sky. The coherent superstructure in the ALH-4/COSMOS

field at 0.6 < z < 0.8 is well appreciated. The skeleton of the structures, that form

the cosmic web, is perfectly delineated by the red quiescent galaxies, while blue

star-forming ones tend to populate the field or lower density regions. A similar

trend was also visible in the redshift versus right ascension diagram of Guzzo et al.

(2014). We will further study this color-density relation (Cucciati et al., 2006) in

the following sections by means of the projected correlation function.

Finally, we remove the North-West ALH-4 frame from the analysis (the top-right

section on the bottom panel of Fig. 3.7). As seen in Arnalte-Mur et al. (2014),

there exists an anomalous clustering in the ALH-4 field, which overlaps with the

Cosmic Evolution Survey (COSMOS, Scoville et al., 2007b). It is well known that

the COSMOS survey presents higher clustering amplitude than similar surveys

(de la Torre et al., 2010, McCracken et al., 2007) due to the presence of large

overdense structures in the field (Guzzo et al., 2007, Scoville et al., 2007a). This

overdensity of structures is also observed in ALHAMBRA when comparing this

peculiar region of the ALH-4 field with the rest of the fields Ascaso et al. (2015),

Molino et al. (2014). In Arnalte-Mur et al. (2014) the authors showed that ALH-

4/COSMOS is an outlier in terms of clustering. We have seen that not only does

this region introduce anomalies in the measurement of the clustering statistics,

but it also a↵ects the error estimation of these statistics. In Arnalte-Mur et al.

(2014) the authors also identified ALH-7/ELAIS-N1 as an outlier field (although

the significance of the anomaly was smaller in this case). However, here we do not

find any significant change in our results when removing the ALH-7/ELAIS-N1

field, so we keep it in for all our calculations.

For each redshift bin we will analyze the clustering for the full selected population

and separately for quiescent and star-forming galaxies. Table 3.1 summarizes the

di↵erent samples in each redshift bin. Columns NQ and NSf are the number of

quiescent and star-forming galaxies respectively, and the last column is the fraction

of quiescent galaxies in each of the redshift subsamples.

We see that the fraction of quiescent galaxies decreases with redshift. This behav-

ior is expected qualitatively, as blue star-forming galaxies are dominant at earlier

cosmic times, while red quiescent galaxies appear late, once star formation stops.

This trend was also observed in a similar redshift range by e.g. Zucca et al. (2009)

for the zCOSMOS 10k bright sample. They found that the population of bright
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late-type galaxies becomes dominant at higher redshifts, and therefore the fraction

of early-type galaxies decreases with redshift accordingly.

3.4.2 The correlation function at the smallest scales

It has been argued that the fact that the measured two-point correlation function

has been consistent with a power law spanning a vast range of scales could be just

a cosmic coincidence (Watson et al., 2011). As already introduced in section 1.1.3

there is an intrinsic di�culty in the measurement of the small scale correlation

function in spectroscopic redshift surveys, mainly due to fiber collisions in multi-

fiber spectrographs. For example, the physical size of the fibers in the SDSS

spectrograph does not allow to take spectra of galaxies that are separated less

than 5500 in the same plate, which corresponds to about 0.5h�1 Mpc at z = 0.7.

There are methods for correcting this problem (Guo et al., 2012a), however con-

sidering the complex dissipative processes (dynamical friction, tidal interaction,

etc) involved in the clustering of galaxies at the smallest scales, it would be de-

sirable to measure the correlation function directly on samples not a↵ected by

the fiber-collision problem (in fact, the correction is based on performing a cross-

correlation between galaxies with measured spectroscopic redshift and all targets

from the image catalog, including therefore a bias from physically uncorrelated

pairs).

Due to the ALHAMBRA high quality deep photometry, we are able to obtain re-

liable redshift measurements for galaxies in the crowded central regions of clusters

and groups. Fig. 3.8 shows a small patch of the sky where we can appreciate how

very close pairs of galaxies are well represented and observed in the ALHAMBRA

survey. Three out of the four objects with marked photometric redshift lie within

the same group. Their angular separations are about ⇠ 8” which at their common

redshift of about z ⇠ 0.19 correspond to a projected distance of rp ⇠ 0.025h�1

Mpc.

The ALHAMBRA survey allows us to obtain measurements of the correlation

function at very small scales that are more reliable than those from most previous

surveys. This can be illustrated by plotting the frequency distribution of the rp-

distance to the nearest neighbor. This is the projected separation distance as

described in Fig. 3.1.
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Figure 3.8: Image from the ALHAMBRA galaxy survey. Three galaxies
lie separated by distances around 40 kpc, an example of the many close
pairs and galaxy groups observed by ALHAMBRA. Image processed by

Vicent Peris, indications added by Alberto Fernández-Soto.

We perform this calculation comparing the ALHAMBRA survey with data from

three photometric galaxy surveys: the DEEP2 survey (Newman et al., 2013), the

PRIMUS survey (Coil et al., 2011) and the COSMOS survey (Ilbert et al., 2008).

All samples have been selected as in section 3.4.1, with redshift 0.35 < z < 1.0 and

a luminosity threshold of M  �18.6�0.6 ·z for the B band in ALHAMBRA and

DEEP2, the g band from ugriz for PRIMUS and the V -subaru band for COSMOS.

The quality Q of redshifts for DEEP2 and PRIMUS is defined in Newman et al.

(2013) and Cool et al. (2013) respectively. Both use spectroscopic redshifts, but

PRIMUS quality is comparable to ALHAMBRA and COSMOS. For comparison,

we show in Table 3.2 the main features for each survey.
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Table 3.2: Photometric Surveys

ALHAMBRA DEEP2 PRIMUS COSMOS

N (in sample) 33776 8735 55901 44839
Area (deg2) 2.38 2.9 9.1 2
Depth IAB < 24 RAB < 24.15 iAB < 23.5 i+AB < 24
�z/(1 + z) ⇠ 0.014 Q > 2 Q > 2 ⇠ 0.007

Comparison between redshift surveys. For a detailed definition of value Q please
read Newman et al. (2013) for DEEP2 survey and (Cool et al., 2013) for

PRIMUS.
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Figure 3.9: Near neighbor distribution for the ALHAMBRA, DEEP2,
PRIMUS and COSMOS photometric surveys.

The near neighbor distributions are shown in Fig. 3.9. Distance to the nearest

neighbor is calculated in projected distances (rp) with ⇡max = 200h�1 Mpc and

lineal bins. While for ALHAMBRA and COSMOS, the nearest-neighbor distance

peaks at scale rp < 50h�1 kpc, for the other two samples the peak occurs at scales

⇠ 150h�1kpc.
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Figure 3.10: Halo Occupation Distribution with NFW profile and the
projected correlation function of the ALHAMBRA survey. The agreement
between both curves also at the small scales reinforces the NFW profile as

a good model for galaxy clustering.

Measurements of the projected correlation function for large scales have been per-

formed for many galaxy surveys obtaining very similar results and a general agree-

ment with models. However, it is at the small scales we are studying, where the

departures between data and models might occur. Using the Halo Occupation

Distribution (HOD, Kravtsov et al. (2004)) and the Navarro-Frenk-White profile

(NFW, Navarro et al. (1997)) one can predict the shape of the projected correla-

tion function. However, it is unclear if the NFW profile is actually able to model

the observed galaxy distribution (Merritt et al., 2006, Piscionere et al., 2014, Wat-

son et al., 2012). In Arnalte-Mur et al. (in prep.), using the presented calculations

with the ALHAMBRA survey, we expect to contribute to the solution this prob-

lem. In Fig. 3.10 we can see how the Halo Occupation Distribution together with

the NFW profiles can satisfactorily reproduce the observed values of the projected

correlation function for ALHAMBRA. For this calculation we have used a galaxy

sample with redshift 0.55 < z < 0.85 and M th
B < �18.6, containing 16979 galax-

ies, as selected in Arnalte-Mur et al. (2014). The HOD is calculated as in Coupon

et al. (2012).
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3.4.3 Results

In this section we make use of the projected correlation function wp(rp), introduced

in section 3.1. First we present the results for the di↵erent samples described in

section 3.4.1. This is done in subsection 3.4.3.1. We also present the analysis

of the bias (subsection 3.4.3.4). The calculation has been performed for scales

from 0.03 to 10.0h�1 Mpc for the projected correlation function and from 1.0 to

10.0h�1 Mpc for the bias. Fig. 3.11 shows the projected correlation function for

the full samples. The first remarkable result that deserves to be pointed out is

a clear change of the slope of the wp(rp) functions around rp ⇠ 0.2h�1 Mpc, as

already mentioned by Coil et al. (2006) and Coil et al. (2008).

In this section, we compare our results with previous works that studied the galaxy

clustering and its dependence on spectral type or color in the redshift range z 2
[0, 1], as mentioned in the introduction. Given the luminosity selection of our

sample (see section 3.4.1), in each case we use for comparison the published results

for volume-limited samples with number density closest to n = 10�2 h3Mpc�3.

The number density of the samples shown in our comparisons are within 20% of

this figure with two exceptions: the PRIMUS sample at z ' 0.4 (with number

density of n = 1.6⇥ 10�2 h3Mpc�3, Skibba et al., 2014), and the VIPERS sample

at z ' 0.6 (with number density of n = 0.33⇥10�2 h3Mpc�3, Marulli et al., 2013).

In the case of Meneux et al. (2006), they use a flux-limited sample resulting in a

evolving number density with redshift in the range n = 0.33�1.2⇥10�2 h3Mpc�3.

3.4.3.1 Power-law modeling

Power laws are simple and widely used models to describe the correlation function

of the galaxy distributions, as they provide a very good approximation over a

large range of scales with only two free parameters. The observed change of the

slope mentioned above forced us to model the projected correlation function wp

by means of two power laws, one that fits the function at small scales and the

other one at large scales. A similar treatment was done by Coil et al. (2006) in

their analysis of the clustering in the DEEP2 survey at z = 1. The departure from

power-law behavior at small scales can be explained naturally in the framework

of the halo occupation distribution (HOD) model that considers the contribution

to the correlation function of pairs within the same halo (one-halo term), which is



Chapter 3. Corrleation functions 92

100

1000

5000

0.01 0.1 1.0

γ = 2.2

w
p
 (

h
-1

 M
p

c)

rp (h-1 Mpc)

z0.43
z0.57
z0.73
z0.88

z1.0

10

100

500

0.1 1.0 10.0

γ = 1.8

w
p
 (

h
-1

 M
p

c)

rp (h-1 Mpc)

z0.43
z0.57
z0.73
z0.88

z1.0

Figure 3.11: Projected correlation function for the full population sam-
ple in each of the redshift bins (points with error bars). Top: small scales
(0.03 < rp < 0.2). Bottom: large scales (0.2 < rp < 10.0). Error bars are
calculated with the delete-one jackknife method and values at the same rp
are shifted for clarity. Solid lines with matching colors show the best-fit
power law in each case. The black segment represents the mean slope of

the curves.
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dominant at short scales, and the transition to the regime where the function is

dominated by pairs from di↵erent halos (two-halo term), at large scales. We will

present HOD fits to the ALHAMBRA data in a separate paper. Therefore, we fit

two power laws as:

ws
p(rp) = Ar�p , if rp  rs (3.17)

for the small scales, and

wl
p(rp) = Cr�p, if rp � rs (3.18)

for the large ones. We fix value rs ' 0.2h�1 Mpc. An abrupt change in the

projected correlation function has also been detected at this scale by Phleps et al.

(2006) for the blue galaxies of the COMBO-17 sample. A, �, C and � are the free

parameters. We treat each power law independently and express them in terms of

the equivalent model for the 3-dimensional correlation function ⇠.

⇠pl(r) =

✓
r

r0

◆��

. (3.19)

A and � (analogously, C and �) can be related to the parameters � (power-law

index) and r0 (correlation length) as shown in Davis & Peebles (1983):

A = r�0
�(0.5)� [0.5(� � 1)]

�(0.5�)
, � = 1� � . (3.20)

We have performed the fitting of this model to our data using a standard �2

method, by minimizing the quantity

�2(r0, �) =

N
binsX

i=1

N
binsX

j=1

(wp(ri)� wpw
p (ri)) · ⌃�1

ij · (wp(rj)� wpw
p (rj)) , (3.21)

where ⌃ is the covariance matrix. We fit this model to our data at scales 0.03 
rp  0.2h�1 Mpc and 0.2  rp  10.0h�1 Mpc for each sample using the co-

variance matrix computed from eq. 2.4, to obtain the best-fit values of r0, � and
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their uncertainties (see Table 3.3). This fitting has been performed using the

POWERFIT code developed by Matthews & Newman (2012).

We must remark that the statistical errors of the correlation function at di↵erent

separations rp are heavily correlated because a given large-scale structure adds

pairs at many di↵erent distances. The higher the values of the o↵-diagonal terms

of the covariance matrix, the stronger the correlations between the errors. When

this happens the best fit parameters r0 and � might be a↵ected as has been

illustrated by Zehavi et al. (2004) for the SDSS survey. One could ignore the error

correlations and use only the diagonal terms, but this is not justified if these terms

are dominant. The parameters of the fits are listed in Table 3.3.

3.4.3.2 Full samples

Fig. 3.11 (top panel) shows the measurements of the projected correlation function

wp(rp) for the full samples at the small scales (0.03  rp  0.2h�1 Mpc). The

bottom panel shows the same function for large scales (0.2  rp  10.0h�1 Mpc).

Looking at both diagrams, we confirm the rise of the correlation function at small

scales already detected by Coil et al. (2008) with values of � ⇠ 2.2 (for the slope of

the 3-dimensional correlation function). We can also appreciate in the top panel

of Fig. 3.11 that the correlation functions are steeper for the high-redshift samples

with values of � increasing from ⇠ 2.1 for the closest redshift bin (z ⇠ 0.4) to

⇠ 2.3 for the farthest (z ⇠ 1). The correlation length significantly decreases with

increasing redshift (see also Table 3.3).

For the large scales 0.2  rp  10.0h�1 Mpc, the slope of the correlation function

is rather constant for all samples with values around � = 1.8, while again the

correlation length decreases with redshift from r0 = 4.1 ± 0.5 for z ⇠ 0.4 to

r0 = 3.5± 0.3 for z ⇠ 1. The evolution of the amplitude indicates that the change

in clustering is mainly driven by the overall growth of structure in the matter

density field. As we use for the fits the scales 0.2 < rp < 10.0h�1 Mpc (the 2-

halo term becoming important at scales rp > 1.0h�1 Mpc) the fact that the slope

� does not significantly change also implies that the 2-halo contribution for this

population does not significantly change its profile over this redshift interval. All

these e↵ects were studied in detail in Arnalte-Mur et al. (2014) and extended to



Chapter 3. Corrleation functions 95

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

z1.00

z0.88

z0.73

z0.57

z0.43

ALHAMBRA
SS LS

γ

r0 (h−1 Mpc)

Alhambra − Full (small scales)
Alhambra − Full (large scales)

Madgwick 2003 − z0.01
Zehavi 2011 − z0.05
Skibba 2014 − z0.4
Skibba 2014 − z0.6
Marulli 2013 − z0.6

Coil 2006 − z0.9

Figure 3.12: Parameters r0, � obtained from the power-law fit to the
projected correlation functions of our full population samples. In black, the
1� confidence regions of the large scales fit (0.2 < rp < 10.0h�1 Mpc) and
in grey, the 1� confidence regions of the small scales fit (0.03 < rp < 0.2h�1

Mpc). For clarity, we show only the regions for the first and last redshift
bin. Lines link the best-fit results for each sample accross di↵erent redshift
bins. For comparison, we show as points with error bars the results of
Madgwick et al. (2003) (2dF), Zehavi et al. (2011) (SDSS), Coil et al.
(2006) (DEEP2), Marulli et al. (2013) (VIPERS) and Skibba et al. (2014)
(PRIMUS) (see the text for details). The parameters and their 1-sigma
variation have been calculated using the method described in Sect. 3.4.3.1.

samples with di↵erent luminosities (see e.g. their Fig. 7). We have seen that this

is only broken at shorter scales, where the curve presents slightly higher values.

The overall trend can be visualized in Fig. 3.12, where we show the evolution of

the best-fit parameters of the 3-dimensional correlation function ⇠(r) for small and

large scales in the full population samples. Despite the great uncertainties, the

diagram shows evolution with r0 decreasing for both scale ranges as redshift grows.

In addition, at small scales, the slope � also increases with redshift. The evolution,

at large scales, of the correlation length extrapolates well to lower redshift with

the value reported by Zehavi et al. (2011) for the SDSS and by Madgwick et al.

(2003) for the 2dF galaxy redshift survey. Zehavi et al. (2011) analyzed the SDSS

Main catalogue by means of the projected correlation function. They obtained
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Table 3.3: Results of the di↵erent fits to w(rp): power law and bias
models

Sample Full population
rs0 �s rl0 �l b

z0.43 3.1± 0.6 2.1± 0.13 4.1± 0.5 1.87± 0.12 1.21± 0.14
z0.57 2.9± 0.4 2.11± 0.1 4± 0.5 1.85± 0.1 1.23± 0.17
z0.73 2.8± 0.5 2.12± 0.12 3.7± 0.4 1.94± 0.1 1.25± 0.14
z0.88 2.5± 0.4 2.18± 0.1 3.2± 0.7 1.94± 0.15 1.2± 0.5
z1.00 2± 0.3 2.3± 0.11 3.5± 0.3 1.72± 0.06 1.3± 0.13

Quiescent galaxies
z0.43 4± 1.2 2.11± 0.17 4.9± 0.7 1.89± 0.16 1.26± 0.19
z0.57 2.3± 0.5 2.62± 0.18 5.4± 0.8 1.85± 0.11 1.8± 0.2
z0.73 3.6± 0.7 2.29± 0.14 4.3± 0.7 2.15± 0.16 1.4± 0.2
z0.88 4± 0.9 2.25± 0.13 4.2± 0.8 2.14± 0.17 1.6± 0.3
z1.00 3.5± 0.9 2.28± 0.16 4.8± 0.8 1.8± 0.13 1.9± 0.3

Star-forming galaxies
z0.43 2.4± 1.7 2± 0.5 4.3± 0.5 1.66± 0.13 1.33± 0.18
z0.57 2.2± 0.7 2.1± 0.2 3.6± 0.4 1.73± 0.12 1.21± 0.17
z0.73 2.8± 0.9 2.1± 0.2 3.5± 0.4 1.86± 0.14 1.18± 0.14
z0.88 1.8± 0.5 2.3± 0.2 3± 0.4 1.7± 0.12 1.2± 0.4
z1.00 1.7± 0.3 2.34± 0.13 3.2± 0.3 1.69± 0.09 1.25± 0.13

Results of the fits of the power law model and the bias model to the data for
each of our samples. rs0 and �s correspond to the scales 0.03 < rp < 0.2h�1 Mpc,
and rl0 and �l to the scales 0.2 < rp < 10.0h�1 Mpc. These parameters have been

calculated using the methods described in Sections 3.4.3.1 and 3.4.3.4.

values for the parameters r0 and � by the same method used here, over the scale

range 0.1 < rp < 50h�1 Mpc.

The values correspond to the galaxies selected in the luminosity bin �20 < Mr <

�19 and 0.027 < z < 0.064, with a number density (n = 10.04⇥ 10�3 h3Mpc�3)

and typical luminosity (Lmed/L? = 0.4) similar to the ALHAMBRA sample used

in this work, so this is, qualitatively, a valid comparison. As we can see in Fig. 3.12,

the slope of the correlation function for the full SSDS main sample is � = 1.78±0.02

compatible within one � with the values obtained for the ALHAMBRA survey at

higher redshift within the range of large scales analyzed here, and the correlation

length r0 = 4.89± 0.26 follows the evolutionary trend delineated by the ALHAM-

BRA higher redshift samples: r0 increases at lower redshifts. Very similar results
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have been obtained by Madgwick et al. (2003) for the 2dFGRS with � = 1.73±0.03

and r0 = 4.69 ± 0.22 within the range 0.2 < rp < 20.0h�1 Mpc in the redshift

interval 0.01 < z < 0.015. At larger redshift our results can be compared with

the ones reported by Skibba et al. (2014) for the PRIMUS survey. They have

analyzed two bins of redshift 0.2 < z < 0.5 and 0.5 < z < 1 with Mg < �19. In

Fig. 3.12 we have displayed their results for the correlation function parameters.

We also plot a point corresponding to the VIMOS Public Extragalactic Redshift

Survey (VIPERS) from Marulli et al. (2013) and another point corresponding to

the DEEP2 survey from Coil et al. (2006). All these results, for the three high

redshift surveys, show perfect agreement with our own ALHAMBRA results.

It is important to understand the correlation between parameters � and r0, as its

interpretation can be delicate. If, for instance, � grows with the redshift of the

sample, r0 will tend to reduce its value, as ⇠(r) = 1 for shorter distances, as it

can be appreciated in the top-left points (short rp scales) displayed in Fig. 3.12.

We must have this in mind for a proper understanding of our results. On the

other hand, the decrease of r0 with increasing redshift when � does not change, as

we find in bottom-right points (large scales) in Fig. 3.12, can be interpreted as a

self-similar growth of the structure at the calculated scales. This e↵ect is specially

reflected in the tilt of the confidence ellipses in Fig. 3.12, which shows the negative

correlation between r0 and �.

3.4.3.3 Segregated samples

Fig. 3.13 shows the projected correlation function wp(rp) for the quiescent and

star-forming galaxies at the five redshift bins, compared to the full population.

As expected, the full population result occupies an intermediate position at low

redshift, but evolves with redshift towards star-forming positions. This is expected

due to the higher abundance of the latter in our samples, specially at high redshift.

A visual inspection of Fig. 3.13 suggests that the projected correlation function

shows the double slope corresponding to the 1-halo and the 2-halo terms, specially

for the star-forming galaxies, due to their tendency to cluster in lower mass halos

with smaller virial radii Seljak (2000).

Quiescent galaxies show a higher clustering at every redshift bin. In order to study

the change of the clustering properties with redshift and spectral type, we fit the
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Figure 3.13: Projected correlation functions for quiescent (red) and
star-forming (blue) galaxies (points with error bars). Solid lines with
matching colors show the best-fit power law in each case. For reference, we
also show the results for the full population with the continuous black line.
From top to bottom, left to right, the five redshift bins: (0.35 < z < 0.5),
(0.5 < z < 0.65), (0.65 < z < 0.8), (0.8 < z < 0.95) and (0.95 < z < 1.1).

Error bars are calculated with the delete-one jackknife method.

projected correlation function wp(rp) of each sample with a power law model, using

the method described above.

The amplitude of their correlation functions, as well as their slope, is higher than

that for the star-forming galaxies in all cases. As for the full population we have

modeled the correlation function with two di↵erent power laws at scales larger

and smaller than rp = 0.2h�1 Mpc. Star-forming galaxies show for all redshift

bins a clear rise in their correlation function at small separations. As mentioned

in the introduction, Coil et al. (2008) found the same result for the bright blue
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Figure 3.14: Parameters r0, � obtained from the power-law fit to the
projected correlation functions of our spectral segregated samples for the
small scales (rp  0.2h�1). In red, the 1� confidence regions of the quies-
cent galaxies fit and in blue, the 1� confidence regions of the star-forming
galaxies fit. For clarity, we show only the regions for the first and last
redshift bin. Lines link the best-fit results for each sample across di↵er-
ent redshift bins. The parameters and their 1-sigma variation have been

calculated using the method described in Section 3.4.3.1

galaxies of the DEEP2 galaxy redshift survey. They found that the e↵ect is more

pronounced at higher redshift corresponding to brighter galaxies. For the quiescent

galaxies we would have fitted a single power law for the whole range, in particular

for some redshift bins. However we have proceeded in the same way for the two

galaxy types in order to simplify the analysis of the segregation. The comparison

of the best-fit model to the data in each case is shown in Fig. 3.13, and we see an

excellent agreement in all cases. The parameters obtained from the fits are listed

in Table 3.3.

As we have done for the full population, to visualize if there is any evolution of

the correlation function parameters we show the diagram of � vs. r0 in Figs. 3.14

and 3.15 for the segregated populations with the corresponding confidence regions,

separated in the two scale regimes. In both cases (short and large scales) the pa-

rameter space occupied by quiescent galaxies can be clearly distinguished from the
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space occupied by star-forming galaxies, the first ones showing larger correlation

length for both scaling ranges with the di↵erence between both types well over 3�

for small scales and about 2� for large scales.

At short scales the exponent of the correlation function � is similar for both galaxy

types with values around � ⇠ 2.2 (Fig. 3.14). The correlation length for star-

forming galaxies varies roughly in the range r0 = [2, 3]h�1 Mpc. A visual hint of

evolution could be appreciated for the star-forming galaxies, with steeper corre-

lation functions (and lower correlation lengths) for higher redshifts, nevertheless,

given the large error bars (see Table 3.3), this trend is not really significant. The

parameters of the correlation function for quiescent galaxies at small scales do not

show any evolution at all with values for � in the range [2.1, 2.3] and correlation

lengths in the range r0 = [3.5, 4.0]h�1 Mpc for all redshift bins except for the

second bin (z = 0.57), which displays a higher value of the exponent � and smaller

r0. The ALHAMBRA survey has allowed us to measure the behavior of the clus-

tering properties of the segregated samples at these very short scales. These scales

had not been previously studied with the detail that we are showing here because

other samples cannot reliably estimate the correlation function at rp < 0.1h�1

Mpc because they are not deep enough, or dense enough at these distance, due for

example to fiber collisions in the case of spectroscopic surveys Guo et al. (2012b).

Fig. 3.15 shows the same results at scales 0.2 < rp < 10.0h�1 Mpc. For this scale

range, we can compare with the results from other authors. We see again that

the regions of parameter space occupied in the diagram for quiescent and star-

forming galaxies are di↵erent. Star-forming galaxies present both lower exponent

� and lower correlation length r0 than quiescent galaxies. These di↵erences are

significant at the 2� level. The value of �, exponent of the correlation function, is

roughly constant for all redshift bins and is ⇠ 1.7. A hint of evolution can be seen

in the correlation length, since r0 decreases from r0 ⇠ 4.3 to r0 ⇠ 3h�1 Mpc with

increasing redshift, which corresponds to a ⇠ 2� change in r0. The values of the

correlation function parameters reported by other authors for di↵erent samples

at lower and similar redshift are compatible with the ALHAMBRA results shown

here.

In the diagram we see that our fits are consistent with the points corresponding

to the correlation function parameters of the active galaxies from the 2dFGRS
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Figure 3.15: Parameters r0, � obtained from the power-law fit to the
projected correlation functions of our spectral segregated samples. In red,
the 1� confidence regions of the quiescent galaxies fit and in blue, the 1�
confidence regions of the star-forming galaxies fit. For clarity, we show
only the regions for the first and last redshift bin. Lines link the best-fit
results for each sample across di↵erent redshift bins. The parameters and
their 1-sigma variation have been calculated using the method described
in Section 3.4.3.1. For comparison, we plot the results obtained by 1)
Madgwick et al. (2003) (2dF) at z ⇠ 0.01, 2) Zehavi et al. (2011) (SDSS)
at z ⇠ 0.05, 3) Coil et al. (2008) (DEEP2) at z ⇠ 0.9 and 4) Skibba et al.

(2014) (PRIMUS) at z ⇠ 0.38 and z ⇠ 0.6 (see the text for details).

(Madgwick et al., 2003) at z ⇠ 0.01, a blue subsample drawn from the SDSS-

main (Zehavi et al., 2011) at z ⇠ 0.05, a blue population of the DEEP2 redshift

survey (Coil et al., 2008) at z ⇠ 0.9, and the blue sample from the PRIMUS

survey (Skibba et al., 2014) at z ⇠ 0.4. This result also agrees with the qualitative

behavior of the evolution of the correlation length reported by Meneux et al. (2006)

from the VVDS sample where they conclude that the clustering amplitude of the

late-type star-forming galaxies remains roughly constant since z ⇠ 1.5, although

they found a slight rise of this amplitude at their larger redshift bin 1.2 < z < 2.0.

However, one should bear in mind that Meneux et al. (2006) use a flux-limited

sample, so this evolution may be a↵ected by the change in luminosity of the

samples.The values of the correlation length reported by Meneux et al. (2006) are
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slightly smaller than the values calculated here for the ALHAMBRA survey.

Quiescent galaxies show stronger clustering than late-type star-forming galaxies.

Their correlation function parameters at large scales are nearly compatible within

the errors with fixed values around r0 = 5h�1 Mpc and � = 2, but the clustering

length is smaller than the one calculated at low redshift by Madgwick et al. (2003)

for passive galaxies in the 2dFGRS and by Zehavi et al. (2011) for the red galaxies

in SDSS. Instead, the values of the amplitude of the correlation function reported

by Skibba et al. (2014) at z ⇠ 0.4 for PRIMUS, by Coil et al. (2008) at z ⇠ 0.9 for

the DEEP2 and by Meneux et al. (2006) agree with our results within the errors.

For both star-forming and passive galaxies, the only discrepant measurement in

Fig. 3.15 is that corresponding to the PRIMUS samples at z ⇠ 0.6, which show

values of r0 significantly larger than those obtained by ALHAMBRA at similar

redshifts (and also by DEEP2 at z ⇠ 0.9). This di↵erence may be due to the fact

that the PRIMUS survey includes the COSMOS field, which contains a large over-

density at this redshift a↵ecting the clustering measurements (see the discussion

in Section 3.4.1).

This segregation is generally explained by the tendency of red, quiescent or early-

type galaxies to form in dense environments, while blue, star-forming or late-type

galaxies typically form in the field or in low mass haloes (Bell et al., 2004, Dressler,

1980, Goto et al., 2003, McNaught-Roberts et al., 2014, Thomas et al., 2005, Zucca

et al., 2009).

3.4.3.4 Dependence of the bias on spectral type and redshift

In order to disentangle the evolution of the galaxy clustering of di↵erent popu-

lations from the overall growth of structure, we study the bias b of our samples

based on the projected correlation function measurements. We use a simple lin-

ear model, with a constant and scale-independent bias. In this model, the galaxy

projected correlation function is given by

wp(rp) = b2wm
p (rp) , (3.22)
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where b is the bias, and wm
p (rp) is the theoretical prediction for the projected

correlation function of the matter distribution. Our model for wm
p is based on

⇤CDM with cosmological parameters consistent with the WMAP7 results (Ko-

matsu et al., 2011), including a normalization of the power spectrum �8 = 0.816.

The matter power spectrum at the median redshift of each sample is obtained

using the Camb software (Lewis et al., 2000), including the non-linear Halofit

corrections (Smith et al., 2003). We obtain the real-space correlation function

⇠(r) by a Fourier transform of the matter power spectrum and the final projected

correlation function wp using eq. 3.15.

We fit this model to our data in the range 1.0 < rp < 10.0h�1 Mpc, correspond-

ing mainly to the two-halo term of the correlation function. The best fit value

and uncertainty of the bias is obtained by the same method as described in Sec-

tion 3.4.3.1 for the parameters of the power-law model. The results of these fits

for each of our samples are listed in Table 3.3.

We show the evolution of the bias as a function of redshift for our di↵erent pop-

ulations in the top panel of Fig. 3.16 (red and blue squares). As expected, we

also see the e↵ect of spectral segregation in this case, as the bias of early-type

quiescent galaxies is consistently larger than that of late-type star-forming galax-

ies. The bias observed for the full population, not shown, is similar to that of

the star-forming galaxies. For comparison we show, as solid lines, the bias for

dark matter haloes of a fixed mass, according to the model of Tinker et al. (2005),

and the values obtained by previous works for samples at similar redshift ranges

and number densities. The bias values in those cases were obtained by a similar

method as here, and using compatible scale ranges5.

For the star-forming galaxies, we obtain that their bias is approximately constant,

with values b ' 1.25, over the range we explore. This explains the evolution of r0

at large scales observed in Fig. 3.15. If the bias is constant, the main driver for

the evolution of the galaxy clustering amplitude is the growth factor, therefore r0

grows with cosmic time, as observed. Given the uncertainties, and the relatively

slow evolution of the halo bias, the measured bias in this case is also consistent

with the evolution of the bias of haloes with mass in the range Mh ' 1011.5 �
1012 h�1M�. As shown in Fig. 3.16, our results for the star-forming population

5
In the case of Madgwick et al. (2003), as the bias values are not given explicitly, we

derived them using their power law best fit at a scale of 5h

�1
Mpc.
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Figure 3.16: Galaxy bias of our quiescent (q) and star-forming (sf)
galaxies as function of their median redshift. Bias is estimated by a fit
to eq. (3.22), as described in Sect. 3.4.3.4. The solid lines correspond to
the bias of haloes of a fixed mass, according to the model of Tinker et al.
(2005). These lines are labelled with the corresponding halo mass in terms
of log10 [Mh/(h�1 M�)]. For comparison, we plot the results obtained by
1) Zehavi et al. (2011), 2) Coil et al. (2008), 3) Skibba et al. (2014), 4)
Madgwick et al. (2003), 5) Marulli et al. (2013), 6) Meneux et al. (2006)
and 7) de la Torre et al. (2011). Bias values from di↵erent authors have
been adapted for the assumed cosmological parameters used in this paper.

are fully consistent with those obtained for similar populations of blue galaxies in

the the DEEP2 (Coil et al., 2008) and PRIMUS (Skibba et al., 2014) surveys.

The bias of quiescent galaxies shows a clear evolution, increasing with redshift,

which is remarkably similar to the expected evolution of the bias for haloes of mass

Mh ' 1012.5 h�1M�. This clear evolution of the bias in this case compensates

the clustering evolution due to the growth factor, resulting in an approximately

constant value of r0, as shown above in Fig. 3.15. Our results for this population

are consistent with the observed bias for red galaxies in the DEEP2 and PRIMUS
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surveys. We note that the bias measurement for the PRIMUS sample at z ' 0.6

may be a↵ected by the presence of a large overdensity in the COSMOS field, as

noted above. The larger number of bins in redshift used in this ALHAMBRA

analysis allows us to see more clearly this evolutionary trend.

In the bottom panel of Fig. 3.16 we show the relative bias, defined as the ratio of

the bias of quiescent galaxies over the bias of the star-forming ones, as function of

redshift. We also show for comparison the results from previous surveys at similar

redshifts including, in addition to those shown in the top panel, the VVDS survey

(Meneux et al., 2006), and the zCOSMOS-Bright survey (de la Torre et al., 2011).

Meneux et al. (2006) used flux-limited samples with evolving galaxy density so

their absolute bias measurements are not comparable to ours. The analysis in de

la Torre et al. (2011) only provided values of the relative bias of their samples.

At z ⇠ 0 we show the results from the 2dFGRS survey (Madgwick et al., 2003)

and the SDSS Zehavi et al. (2011). We note that in the two low redshift cases, the

relative bias is calculated using a slightly di↵erent method: Madgwick et al. (2003)

calculate it using the ratio of the galaxy variances �8,gal of the samples, while we

have calculated the relative bias for SDSS as the ratio of the best-fit power laws of

the two samples at a scale r = 5h�1Mpc (see, e.g. Eq. 9 of Norberg et al. (2002)).

We obtain values of the relative bias in the range brel ' 1�1.5, consistent with all

previous results at similar redshifts. The relative bias shows a very faint evolution,

slightly increasing with redshift. However, given the errors, our results are also

consistent with being constant. A similar, faint trend is also seen for the VVDS

results of Meneux et al. (2006). However, if we include the z ⇠ 0 values, this

evolution is broken, and the best description of the results is a constant relative

bias with redshift.

Overall, our results indicate that, for samples selected by the same B-band lumi-

nosity and redshift, passive galaxies reside in haloes up to 10 times more massive

than those hosting active galaxies. When studying the evolution with redshift,

the observed bias suggests that quiescent galaxies (following a constant number

density selection) reside in haloes of constant mass, while this is not clear in the

case of star-forming galaxies. In the latter case, there seems to be an indication

that they populate slightly more massive haloes at lower redshift. We will study
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the relation between galaxies and dark matter haloes using a more detailed HOD

modeling in a future work.

3.4.4 Conclusions

The ALHAMBRA survey allows us to perform accurate clustering calculations

with di↵erent segregation criteria. Its 23-filter photometry provides reliable galaxy

parameters with good completeness out to very high redshifts (z ⇠ 1.10), opening

the possibility to analyze the galaxy clustering of di↵erent galaxy populations.

In AM14 the authors chose to select galaxy samples using di↵erent luminosity

thresholds, while in this work we made a selection by spectral type. This selection

follows the spectral classification of the ALHAMBRA photometric templates and

has been proved to match remarkably well the usual selection by broad-band color.

A rise of the correlation function at small scales is found as already noticed by

Coil et al. (2008). We have been able to show that this trend holds at smaller

scales and to characterize its redshift evolution.

Our sample allows us to measure the clustering properties of galaxy populations

segregated by spectral type and their redshift evolution in an homogeneous way.

At scales larger than 0.2h�1 Mpc, quiescent galaxies cluster with a higher ampli-

tude than star-forming ones. The di↵erence is significant at the 2� level. There

is also a significant hint of evolution (2�) in the clustering amplitude of active

galaxies, while the clustering of the passive ones remains constant. These results

are compatible with previous works in the literature, but in the present work we

have increased the redshift resolution.

Regarding the small scales (rp < 0.2h�1 Mpc) we find almost no change in the

correlation function compared with the large scales in the quiescent population.

On the other hand, the star-forming galaxies show a clear variation in the slope

between small and large scales, which is possibly decreasing towards low redshifts.

Our measurements of the bias value for the di↵erent populations show strong

segregation between them. The bias of the quiescent population clearly evolves

with redshift following the expected behavior for haloes of approximate mass

1012.5 h�1M�. The star-forming population bias remains basically constant over

our observed redshift range, but it can still be compatible with the theoretical
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evolution of lower mass haloes (Mh ⇠ 1011.5�12 h�1M�). As a consequence, the

relative bias hints at a slow evolution, which would not be completely consistent

with observations at z ⇠ 0.

These results have been published in Hurtado-Gil et al. (2016).

3.5 Future work: new correlation function esti-

mation for photometric surveys

In the next years multiple galaxy surveys will be produced, providing us with

an extremely extensive and complete dataset for cosmological research. Most

of this information will be photometric, which implies a special dedication in

terms of methodology and software development. These new methodologies must

be focused to make full use of photometric information included in the photo-

redshift distribution function (zPDZ), this is, the posterior probability function

describing the quality fit of our measurements to our galaxy templates. Generally,

catalogs only publish the best fit plus the redshift uncertainty �z/(1+z), together

with a quality flag, which vary from project to project. In addition, conventional

statistics, like the projected correlation function, are not prepared to deal with the

complete information contained in a zPDZ. This restrains our use of galaxy data,

limiting us the access to relevant science. In an attempt to correct this situation, we

present a new methodology that makes full use of the zPDZ information for galaxy

correlation calculations. This procedure follows a common philosophy with other

photometric-redshift works, e.g. López-Sanjuan et al. (2015), in the ALHAMBRA

collaboration.

The idea is, basically, to perform the calculations of functions DD(r) and DR(r)

when the redshift of the galaxy is determined by a redshift probability function p

(the posterior zPDZ) instead of using a single value. This distribution is generated

collapsing the zPDZ values over the redshift dimension, summing the values for

every possible template. The location of the galaxy is complete with the right

ascension and declination of the galaxy. Using equation 1.23 we obtain the director

vector (u, v, w) for Dist = 1.

Now, given 2 galaxies described as above, we want to know which is the prob-

ability of having them separated by a distance r. Using equation 1.15, for a
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given redshift, we know that the distance at which a galaxy is located is a value

d 2 [Dmin, Dmax], where Dmin and Dmax are the distances corresponding to the

minimum and maximum redshift in our galaxy sample. Hence, we define A as the

subset satisfying

(d1u1 � d2u2)
2 + (d1v1 � d2v2)

2 + (d1w1 � d2w2)
2 = r2 (3.23)

for pairs (d1, d2) 2 [Dmin, Dmax]2, where d1 and d2 correspond to the distances

of our two galaxies. Since Dmin and Dmax are constant quantities for the galaxy

population and r is chosen by the user, subset A is defined by the (↵, �) coordinates

of each galaxy pair. Given the redshift probability functions p1 and p2 of our

galaxies, we can compute the probability of having these galaxies in our range of

interest with

I(p1, p2) =

Z

A

p1(z
0) · p2(z00)dz0dz00 (3.24)

This integral can be numerically calculated randomizing the pi(z) distributions

with m elements, which turns the computation of DD(r) into an N2
D ·m2 calcu-

lation with four nested loops.

Notice that this can be easily adapted when, as in this thesis work, we study galaxy

clustering as a marked point process. If we are only interested in the template

types T1 for the first galaxy, and T2 for the second one, we only have to limit the

integral with

I(P1, P2;T1, T2) =

Z

T1⇥T2

Z

A

P1(z
0, t0) · P2(z

00, t00)dz0dz00dt0dt00 (3.25)

where P1 and P2 are the zPDZ distributions without collapsing.

Finally, we can obtain the number of galaxy pairs in our sample at distance r just

summing the probabilities I

DD(r) =

N
DX

i=1

N
DX

j=1;i 6=j

I(pi, pj) (3.26)
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where ND is the total number of galaxies. A template segregation version of this

equation is also direct. Similarly, the calculation of DR(r) can be deduced from

the above formulae replacing one of the pdfs by a fixed location.

With this function, we would improve the reliability our estimation of the cor-

relation function, but it will not eliminate the e↵ects due to redshift distortions,

making it necessary to adapt this zPDZ strategy to corrected estimators, such as

the projected correlation function. We expect to apply this new statistic over com-

ing galaxy surveys, such as the Javalambre-Physics of the Accelerating Universe

(Benitez et al., 2014).





Part II

Modeling the Galaxy Distribution
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‘One interaction to rule them all

and into the probability density bind them’

Paraphrasing Sauron of Mordor



Chapter 4

Finite Gibbs processes

4.1 Introduction

Well known statistics like kernel density estimators provide valuable descriptions

of the galaxy field, but might be considered excessively general, blind to the real

nature of the structures behind the galaxy distribution. Summary statistics, like

correlation functions, are capable of providing reliable and relevant information

regarding isotropic structures, as clusters and BAOs, but shrink all information,

losing the detail of particular structures.

Solving this problem implies formulating a model, a map of the process that de-

termines the abundance of points for every given region. As said in section 1.2, we

aim to build a probabilistic model, which understands this abundance as a random

variable and can be evaluated for every location in the process, point or not. This

model needs to be fitted to the observed data. This involves simplification, be-

cause a model must be tractable and comprehensible (Baddeley, 2007). Modeling

is probably the most di�cult of the three approaches of this thesis work, and yet,

a conclusive analysis of a dataset is usually possible only by modeling. This might

be a pending task in modern cosmology, to provide an e�cient probabilistic model

of galaxy distribution.

The development of point process theory in the late years has brought a whole

new branch of statistical analysis (Chiu et al., 2013, Moller & Waagepetersen,

2003, Van Lieshout, 2000). As seen in section 1.2.1, the well known methodologies

113
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appear integrated together with theorems already applied in di↵erent sciences with

success (Baddeley & Turner, 2005). However, many methodological problems still

need to be solved in order to numerically test the full capabilities of new models,

and therefore, deeper e↵orts on statistics would be needed to obtain more versatile

and adaptive algorithms.

As a first approximative step in this direction, we test several point process models

over galaxy catalogs. This work consists on making the first steps on galaxy

distribution modeling. For this reason we focus on original techniques, applied

in cosmology for the first time, while using well known data catalogs from highly

manipulated data sources. The chosen models are examples of Gibbs models,

parametric field estimators based on point interactions. Unlike kernel density

estimators, in this new functions we do not only have irregular parameters, but

also fitted parameters which provide real information of the galaxy sample.

With these models we expect to provide both a characterization of the studied

point process and a tractable expression of the points expectancy at every lo-

cation. The parameters involved in our probabilistic model adopt certain values

depending on the nature of the process, quantifying some of its most notable prop-

erties, such as being clustered or the profile of these clusters. Once the model is

properly fitted, we have solved the point process problem. As introduced in sec-

tion 1.2.2 we can say a process is modeled when we are able to predict the expected

number of points in any given region. This can be extended to these locations not

occupied by original points of the data, picturing the nature of the process beyond

the particular realization of our studied dataset and allowing us to simulate and

reproduce data-like patterns. The advantages are diverse and will be explained in

the conclusions (section 4.4.6).

The validation of a point process model is another challenging task, specially for

3-dimensional datasets. The residual analysis methodologies published in Badde-

ley et al. (2005) and other works of the same authors (Baddeley & Turner, 2005)

are the most suitable techniques to perform this validation. New code has been

developed by the author of this thesis, adapting the residual analysis algorithms

to the 3-dimensional case. With these methods we expect to detect possible dis-

agreements between data and model as well as to understand the weaknesses of

these models.
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In section 4.2 we introduce the Finite Gibbs models, probabilistic models that de-

scribe the distribution of points in a pattern based in di↵erent user defined inter-

actions. This will require a deep introduction to these models with examples and

functions used in the field (sections 4.2.1 and 4.2.2). That includes the definition

of conditional probabilities and fitting techniques (sections 4.2.3 and 4.2.4). The

analysis of residuals is also an important contribution of point process methodolo-

gies that will be used again in Chapter 5. In section 4.4 we introduce the data used

from SDSS-DR8 catalog and new samples extracted from LasDamas simulations.

Finally, in section 4.4.3 we test our models over generated toy models before using

them over the presented data sets (sections 4.4.4 and 4.4.5). Conclusions can be

found in section 4.4.6.

4.2 Definition

Finite Gibbs models are probabilistic descriptors of point processes that base their

modeling in trend or field density and point interaction. Processes described this

way include a wide variety of di↵erent patterns, although we are only going to focus

on a few of them. However, they all follow the same motivation: the detection and

characterization of interactions between points. The analysis of the interactions or

forces between points is a constant in this work and a central issue in any clustering

study. An introduction to the point process statistics of the Gibbs models can be

found in Illian et al. (2008) and, for an advanced discussion, consult Baddeley

et al. (2015b), Baddeley & Turner (2005), Baddeley et al. (2013).

The previous methods, the Counts-in-Cells and the correlation function, allow us

to characterize the intensity and nature of the interaction between points from an

independent point of view that does not require to know the forces acting in the

pattern. But with a model based on a Gibbs process, we can attempt to model

the points distributions from their interactions, directly modeling its properties

and validating it.

These kind of processes can be understood as a generalization of the independent

processes. For a Poisson process the existence or not of a point in a certain volume

of the space is independent of the distribution of the rest of the population. When

this is not the case and points interact with each other, we can model it with a
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Gibbs process. This is clearly the case of the galaxy distribution, where galaxies

interact with each other through gravity and other processes, and therefore the

probability of finding a galaxy is higher in a high density region, like a cluster, or

lower in the voids. It is through probability densities and conditional probabilities

that Gibbs processes are usually studied.

This branch of statistical analysis has already been tried satisfactory in cosmol-

ogy (Tempel et al., 2014) in the modeling of complex structures like the galaxy

filaments of the SDSS. In this work, we will only deal with the most conventional

Gibbs models already tested in other fields, like biology or particle physics, and

the battery of functions, methods and tests used to analyze and fit a point process.

4.2.1 Probability density function of a Gibbs process

Let be X = {xi}Ni=1 a spatial point process consisting of unordered location of

points in a bounded region W . The process can be defined by a multivariate prob-

ability density fn(x1, ..., xn) for x1, ..., xn 2 W , which expresses the probability of

configuration X.

Notice that this function can be evaluated for any subset of points belonging to

the region W . Generally in the construction of the patterns it is assumed that

fn is a probability density with respect to the unit rate Poisson process on W .

This can be understood with the following interpretation: generate a realization

{x1, ..., xn} from a binomial process in W with n points. Accept each point xi

with a probability proportional to fn. The accepted point pattern exactly follows

the density function fn.

However, this is a general definition di�cult to manipulate and we will progres-

sively introduce assumptions and simplifications until we define the Gibbs models

used in this work. The first basic assumption introduced to avoid degenerate cases

in our processes is the positivity condition, which states:

if f(X) > 0 and Y ⇢ X, then f(Y ) > 0

Now we can start to introduce di↵erent known processes in a Gibbs shape. An

homogeneous Poisson process probability density could be defined through the
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function f(x1, ..., xn) = ↵�n, where ↵ represents the normalizing constant and

� is the intensity of the process. We generalize this definition and define an

inhomogeneous Poisson process as

f(x1, ..., xn) = ↵

nY

i=1

b(xi) (4.1)

where b(u) is the process intensity function defined in u 2 W . This function is also

called the ‘activity’ or the ‘trend’ of the process and it might be used to model

any external influence in the distribution, containing information regarding the

density of points. In a terrestrial example, imagine a forest in a valley with a

variable soil composition that alters the growing of the trees, then this di↵erent

soil should be mapped by the trend.

However, these models do not include interactions between points. When limited

to the study of pairs of points with spatial locations, we can define the Gibbs

model for pairwise interaction points

f(x1, ..., xn) = ↵

nY

i=1

b(xi)
Y

i<j

h(xi, xj) (4.2)

where h(xi, xj) is the ‘interaction’ function determining which is the probability

for a pair of points to coexist in the locations (xi, xj), containing information

regarding the association of points.

Generally, and specially in physics, the forces that drive the interactions do not

have a limited range of action. But, as in gravity, some of these forces can be

negligible at large distances, creating a range at which we can assume no inter-

actions. This range is similar to the correlation range of the correlation function,

and it could be introduced in the Gibbs model, simplifying its use and expression.

Therefore, any Gibbs process with a range of interaction r will behave as a Poisson

process for pairs separated by a distance larger than r. When this is done we say

we have a Markov point process. This is an important property that states that the

probability of finding a set of points in a particular set of locations {xi}ni=1 2 W

depends only on the already existing points around these location. For a single

location x 2 W we can say
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f1(x|X) = f1(x|⇣ \X) (4.3)

where ⇣ is the neighborhood of the location x. This can be easily generalized

changing x by {xi}ni=1 and ⇣ by
Sn

i=1 ⇣i.

4.2.2 Examples of Gibbs models

For the sake of clarity we present some common examples of Markov point pro-

cesses with interactions. Processes defined over the relative distances between

points are called Pairwise Gibbs models. The Strauss, Geyer and BadGey models

are examples of discrete pairwise models, while the Fiksel and Power law models

are continuous pairwise models. As an example of non pairwise model we introduce

the Area interaction model.

When possible, we include examples of 2-dimensional samples of the mentioned

models generated with Metropolis-Hastings algorithm using spatstat (Baddeley &

Turner, 2005).

Strauss model

The Strauss model (Baddeley & Turner, 2000a) is a process which produces regular

patterns where pairs are prevented to appear when they are separated by a distance

closer than r with a probability �. Its interaction function is therefore,

h�(u, v) =

8
<

:
�, if ||u� v|| < r

1, otherwise

The probability density function simplifies in

f(x) = ↵�(x)�s(x|X) (4.4)

where s(x|X) = |{(x, u) : ||x�u|| < r}| is the number of points with distance to x

below r. In the extreme case, when � = 1, we have a perfect Poisson process with

intensity function �. On the other hand, if � = 0, no pairs will be allowed to exist

if they are separated by a distance smaller than r, this is called a hardcore process
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(already mentioned in section 3.1). Strauss processes can be used for example to

model tree patterns where due to competition for the soil resources it is unlikely

for a tree to grow close to another one. Due to its regular nature we will not use

this model in the cosmological scenario, but it is always interesting to introduce

it as a basic case. A 2-dimensional representation can be seen in Fig. 4.1.

Figure 4.1: Realization of a Strauss process in two dimensions with
� = 2, � = 0.2 and r = 3. Box = [0, 50]2.

Geyer model

A generalization of the Strauss model was made in order to include clustered

patterns. Geyer (1999) developed the Geyer model, which includes the possibility

of a � > 1, turning the Strauss process into a clustering process. Since in this case

the probability density is not integrable, a saturation threshold must be imposed,

and the probability density function is written as

f(x) = ↵�(x)�min(sat,s(x|X)) (4.5)

where sat is the saturation threshold chosen for our population. The value � is a

measure of the level of clustering or rejection existing on a given range r, but we

must take into account that all pairs inside this range are counted equally. If the

range is larger than the size of a structure, and therefore it includes uncorrelated
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pairs, our measure of � will be a↵ected. A graphical 3-dimensional example of this

model can be found in section 4.4.3.2. In Fig. 4.2 we present two examples in two

dimensions, showing some of the diverse structures that this model can reproduce.

Figure 4.2: Realization of a Geyer process in two dimensions. Left:
� = 1.25, � = 1.4, r = 3 and sat = 10. Right: � = 0.75, � = 1.1, r = 3

and sat = 10. Box = [0, 50]2.

This model can be as well generalized in the multiradial expression of the BadGey

model (Baddeley et al., 2015b). This generalization consists in considering sev-

eral superimposed profiles with di↵erent correlation ranges and specific saturation

thresholds for each one of them. The new interaction function is a vector of m

Geyer interaction functions. As in the Strauss model:

h�
i

(u, v) =

8
<

:
�i, if ||u� v|| < ri

1, otherwise

with i 2 {1, ...,m}. The joint probability density function is written as the product

of the m functions:

f(x) = ↵�(x)

mY

i=1

�
min(sat

i

,s
i

(x|X))
i (4.6)
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Notice how, if the radii are ordered r1 < ... < rm, any radius ri is included in

the correlation range of the following profiles with rj > ri. This implies that the

�i values are not independent. The BadGey model is specially interesting when

our structure presents an outskirt distribution, with several levels of clustering (or

rejection) growing from the center. Among the spherically symmetric structures,

this model is limited to cluster-like structures, where this monotony in the profile

can be found.

Even if it is interesting to separate the di↵erent clustering levels of a structure,

clusters present a continuous profile. For this reason continuous pairwise Gibbs

models were developed.

Fiksel model

A continuous example of interaction is the Fiksel model (Fiksel, 1984). This

model produces a clustered pattern where interactions appear concentrated in

overdensities. For a pair with separation distance ||u � v|| = d, its interaction

function is the following:

ha,(u, v) =

8
>>><

>>>:

0, if d < r0

exp (a · exp (� · d)), if r0 < d < r1

1, if r1 < d

This model counts with two interaction distances: r0 works as a hardcore distance,

not allowing any closer interaction, and r1, which works as a Markov distance,

limiting the e↵ects of the interaction. In the middle range an exponential function

evaluates higher when closer to 0, increasing the strength of the interaction for the

closer pairs. For pairwise models we need to calculate the probability for each pair

of points using equation 4.2. No simplification through functions like the s(x|X)

function in the Strauss model is available:

f(x) = ↵�(x)

NY

i=1

ha,(x, xi) (4.7)
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Parameters a and  describe the amplitude and the slope of the interaction. For

high values of a the interaction will be stronger, while for high values of , the

slope will be steeper. An example of this process is showed in Fig. 4.3.

Figure 4.3: Realization of a Fiksel process in two dimensions with
� = 2.5,  = 0.2, a = 1.6, r0 = 0.07 and r1 = 3. Box = [0, 50]2.

Power-law model

Power laws have been longly used in cosmology to fit the pair correlation function

of a galaxy distribution. Motivated by the good agreement generally found in

bibliography, we develop a model following the same profile. However, as seen

in the previous models, several requirements have to be fulfilled. Markov models

assume no correlations beyond a certain range, which implies that the profile

function h(u, v) must be equal 1 for distances d = ||u � v|| greater than the

correlation range. For this reason we will exponentiate the power law. In addition,

since decreasing power laws have a pole at d = 0, another caution must be taken:

a hardcore distance must be imposed for distances d < r0. Below this range the

interaction function will remain undefined and pairs will be ignored.
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ha,b(u, v) =

8
>>><

>>>:

0, if d < r0

exp (a · d�b), if r0 < d < r1

1, if r1 < d

with r1 being the correlation threshold as usual and b and a our free parameters.

As before, the resulting distribution is

f(x) = ↵�(x)

NY

i=1

ha,b(x, xi) (4.8)

Similarly to the Fiksel model, parameters a and b describe the amplitude and

the slope of the interaction. For high values of a the interaction will be stronger,

while for high values of �, the slope will be steeper. This model is an original

contribution of this thesis work and the PowerLaw model is not completely usable

in the spatstat code. For this reason we will not show a realization of this process

as we have done for the rest of models.

Area-interaction model

Beyond the pairwise models, when only two points participate in each interaction,

some models are able to describe higher-order interactions, were the number of

involved points is higher than two. One example is the area-interaction process,

with probability density

f(x1, ..., xn) = ↵

nY

i=1

�(xi)�
�A(x1,...,xn

) (4.9)

In this model, the same structure is followed as in the Geyer model, but the

function A(x) denotes the volume of the region obtained by drawing a sphere of

radius r centered at each point xi of the distribution, and taking the total volume

of the union of these spheres. The more regular the pattern is, the higher this

volume would be, since the sphere will overlap less.

It has an interesting di↵erence with respect to the Geyer process: as before, a

� < 1 indicates a regular processes and � = 1 a Poisson process. But this time

the clustering case of � > 1 is integrable and can be perfectly used. Despite these
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promising properties, we leave the use of this distribution for a future work. As

an example, we show in Fig. 4.4 a realization of this model.

Figure 4.4: Realization of an Area-interaction process in two dimensions
with � = 4, � = 5.6 and r = 3. Box = [0, 50]2.

4.2.3 The Papangelou conditional intensity

The above presented are only a few simple processes among the multiple used

Gibbs models in di↵erent sciences, specially biology. But for many of the Gibbs

models, the probability density function could be too complicated or di�cult to

treat. Interactions between points can be much more easily treated using con-

ditional probabilities. For this purpose the Papangelou conditional intensity was

elaborated (Baddeley et al., 2005, Papangelou, 1974), which evaluates the proba-

bility of finding a point in a given location given the rest of the distribution. For a

spatiotemporal process, this corresponds to basing the prediction of a future event

in the known past or ‘history’. In an unordered space of two or higher dimensions,

the history must be the existing pattern.

Hence, for a point process X contained in a region W , we define the Papangelou

conditional intensity �(u,X) in the location u /2 X as

�(u,X) = f({u} [X)/f(X) (4.10)
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taken 0/0 = 0. This probability can be defined as well for locations already

occupied by the pattern:

�(x,X) = f(X)/f(X \ {x}) (4.11)

This notation greatly simplifies the expressions, since most of times the di↵erence

between the numerator and the denominator is a single factor in the product and

the rest gets cancelled. In addition, the normalization constant ↵ vanishes as

well, which facilitates many numerical simulation procedures. For interaction free

models, like the Poisson process, the conditional intensity is �(u,X) = b(u), and

for pairwise interactions we have

�(u,X) = b(u)

nY

i=1

c(u, xi) (4.12)

where c(u, xi) is the corresponding interaction function h(u, x) at location u over

the whole set X. Thanks to the positivity condition it is assured that the Pa-

pangelou conditional intensity � of a finite point process uniquely determines its

probability density f and vice versa.

As we will see in the next section, these conditional intensities can be fitted in

their log-linear shape. We introduce this log-linear expression in general and for

the above introduced models. This allows us to separate the conditional intensity

into first-order and higher-order terms:

log�✓(u;X) = ⌘ · T (u) + � · V (u;X) (4.13)

The first term corresponds to the intensity or trend term, �(u) in eq 4.2, and the

second one to the interaction function. ⌘ and � are the logarithm of the parameters

that linearize with the logarithm. Real function T (u) is a non parametric statistic

describing the trend of the pattern, while V (u;X) is a vector function evaluating

the quantities needed to determine the interaction of u with X. In the case of

pairwise models, these quantities are based on relative distances of u with the rest

of points in the process. Functions T (u) and V (u;X) are usually known as the

su�cient statistics.
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The following are the expressions for the conditional intensity and its logarithm

for our models from section 4.2.2. For the Strauss model (eq. 4.4):

�(u,X) = �(u)�t(u;X), log�(u;X) = log� + (log�)t(u;X) (4.14)

where t(u;X) = s(X [ {u})� s(X) is the number of points of X that lie within a

distance r of location u. Here ⌘ = log� and � = log�. The Geyer model (eq. 4.5)

has a similar expression, with t(u;X) = min(sat, s(X [ {u})� s(X)).

For the Fiksel (eq. 4.7) and the Power-law model (eq. 4.8):

�(u,X) = �(u)

NY

i=1

ea·e
�·d

i

, log�(u;X) = log� + a ·
NX

i=1

e�·d
i (4.15)

�(u,X) = �(u)

NY

i=1

ea·d
�b

i , log�(u;X) = log� + a ·
NX

i=1

d�b
i (4.16)

where di is the distance between u and the rest of data points in the pattern. Here

⌘ = log� and � = a,  and b are not linearized.

And for the area-interaction model, the expression linearizes similarly to the

Strauss model:

�(u,X) = �(u)�B(u;X), log�(u;X) = log� + (log�)B(u;X) (4.17)

where B(u;X) = A(X [ {u})�A(X) is the area of that part of the disc of radius

r centered on u that is not covered by the discs of radius r centered at the other

points xi 2 X. The area of B(u) can be understood as the area that only belongs

to u, if � < 1 a new point will be less likely to exist in the area if it is small, and

the other way round for � > 1.

4.2.4 The pseudolikelihood

Now that we have the basics of the Gibbs processes theory that we are going to

use in this thesis work, it is time to introduce the statistics analysis machinery
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needed to estimate the parameters employed in our models. Given a model de-

scribing a spatial population, the most generally used technique for fitting the

parameters is the maximum likelihood. However, maximum likelihood is compu-

tationally intensive, and employs simulation algorithms that are specific to the

chosen model. This is specially costly for inhomogeneous and interaction patterns

due to increased parameter dimensionality and the complexity of simulation. Gen-

erally, the estimation of the normalization constant ↵ is an intractable function of

the parameters ✓, due to discontinuities in the irregular parameters (such as r).

Nevertheless, as previously said, it disappears with the Papangelou conditional

function, and we can try an estimation method based on this conditional prob-

ability. Despite a likelihood estimation is intractable due to the discontinuity of

its variables (mainly r), an alternative approximation was found by Besag (1975),

who proposed the pseudolikelihood estimator, which satisfies unbiased estimating

equations and is consistent and asymptotically normal under suitable conditions.

Originally, it was defined for a finite set of random variables X1, ..., Xn as the prod-

uct of the conditional likelihoods of each Xi given the other variables {Xj , j 6= i}.
But Besag et al. (1982) extended the pseudolikelihood to point processes, for

which it can be viewed as an infinite product of infinitesimal condition proba-

bilities. Given a point process with conditional intensity �✓(u,X) over a subset

A ✓ W , the pseudolikelihood is defined as

PLA(✓, X) =

 
Y

x
i

2A

�✓(xi, X)

!
exp

 
�
Z

A

�✓(u,X)du

!
(4.18)

If the process is Poisson, the pseudolikelihood coincides with the likelihood. For

‘weak interactions’, in the sense that �✓(u;X) can be approximated well by a

function of u only, the process is approximately Poisson and the pseudolikelihood is

a good approximation to the likelihood. Strong interactions may produce incorrect

results (Baddeley & Turner, 2000a).

PL(✓, X) =

 
NY

i=1

b✓(xi)
Y

i 6=j

h✓(xi, xj)

!
exp

 
�
Z

W

b✓(u)

NY

i=1

h✓(u, xi)du

!

(4.19)
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In practice, the pseudolikelihood requires a numerical device to compute its es-

timations. This method, the Baddeley-Turner device, can be fully consulted in

(Baddeley & Turner, 2000b):

The first step of this estimation consists in the approximation of the integral of the

conditional function, the exponentiated term in the previous expression. Let X

be a Gibbs point process with conditional intensity �✓(u;X), we can approximate

this integral with a quadrature rule

Z

W

�✓(u;X)du ⇡
mX

j=1

�✓(uj ;X) · wj (4.20)

and we can express our numerical approximation of the pseudolikelihood, here in

logarithmical shape

logPL(✓;X) ⇡
NX

i=1

log�✓(xi, X)�
mX

j=1

�✓(uj ;X) · wj (4.21)

where {uj}mj=1, are locations in W and wj > 0 quadrature weights summing up to

|W |. The {uj}mj=1 can be understood as a grid of points covering the entire region

W . This grid is used to perform a numerical integration, generally by the midpoint

law, and one can distribute it equally spaced in the region W or adaptively if we

already know the subregions where most of the intensity of � is concentrated.

This is more compactly expressed if the {uj}mj=1 set includes the N elements of

X:

logPL(✓;X) ⇡
mX

j=1

(yjlog�✓ � �✓) · wj (4.22)

where � is evaluated both in the data points xi and in the grid or dummy points

uj . We define yj = zj/wj , and

zj =

8
<

:
1, if uj is a data point, uj 2 X

0, if uj is a dummy point, uj /2 X
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where wj are the weights. These weights correspond to the cell occupied by a data

or dummy point in the window W , as is customary in the quadrature integrations.

However, when this point is close to a data point, the shape of the cell should

be a↵ected and the weight must be altered. Baddeley & Turner (2000b) propose

several ways to calculate these weights. Through this thesis work, we have opted

for the Voronoi tessellation. Once the data and the dummy points have been put

together in the quadrature scheme, a Voronoi tessellation is created in the region

W , being the volume of each tile the weight wj in the integration. If the dummy

points in the quadrature form a perfect grid, the tile of these points will be a

perfect cube if they are away of any data point, but if a data point lies close to

them the Voronoi tile will adapt its shape accordingly.

Expression 4.22 can be maximized using standard software for fitting generalized

linear models (McCullagh & Nelder, 1989) like the function glm.fit found in the

general CRAN package stats. The whole machinery for fitting Gibbs models can

be found as well in the CRAN packages spatstat (Baddeley et al., 2015b, Baddeley

& Turner, 2005), including the pseudolikelihood estimation. This latter package

is only fully implemented for 2-dimensional processes. We have developed the

necessary code generalizing it for the fitting of 3-dimensional point processes.

However, as introduced in section 4.2.3, if we want to fit the parameters of the

conditional intensity model �✓(u;X) with the pseudolikelihood, we need it to be

loglinear in the parameters ✓. We can reexpress: equation 4.13 in a more compact

way:

log �✓(u;X) = ✓ · S(u;X) (4.23)

where S(u;X) = (T (u), V (u;X)) is a real-valued (if the model has no interactions)

or vector-valued function at location u for a distribution X. Parameters ✓ = (⌘,�)

appearing in the loglinear form are called ‘regular’, while all other parameters are

‘irregular’. As seen, parameters � and � are generally regular and any parameter

involved in the functions of the � exponent is irregular, like the range of interaction

r. For example, for the Strauss model, parameters log � and log � are regular

parameters, but its range of interaction is irregular. For the Fiksel and the Power-

law model, only the parameter a is regular, while , b and the two ranges r0 and

r1 are irregular again.
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The fitting of these irregular parameters is unclear and there is not a general

method for their estimation. A possible strategy consists on fitting the regular

parameters for a grid of irregular parameters and choosing the best option, but

for high number of irregular parameters it could be highly expensive.

4.3 Point processes residuals analysis

The fitting of a model for a point process requires a su�cient battery of tests

to check the quality of our estimation. In this section we present several tests

intended to test the overall quality of the fit over the entire pattern, identifying

anomalies or departures in the fitting with respect to the model, which allows us

to analyze the quality of the test for the di↵erent structures present in the pattern.

A comparison between the quality fit of the di↵erent models is also interesting.

The main tool for the model validation is the residual, a quantity comparing the

observation with the model. Residuals can be used in di↵erent ways depending on

which aspect of the model or the process we wish to highlight.

Pearson’s �2 estimator

This statistic is not based on the analysis of residuals, but the function involved

(the estimation of the number of points in a given volume) is essentially the same

function used in the residual analysis. We decide to include this estimator here.

Once our probability density function or conditional intensity function has been

estimated, it can be normalized using the total number of points in the pattern

so it predicts the number of points in a given region of the space. Then we have

to integrate the conditional intensity function in the proper set of regions and

compare with the real number of points using a Pearson’s �2 estimator.

In Kuhn et al. (2014), the authors integrate the model in n regions with approx-

imately equal number of counts. These regions are obtained by tesselating the

window using adaptive polygonal cells. However, for this thesis work, we would

require of an advanced Voronoi programming for three dimensions and this is

beyond our scope. We just propose this goodness of fit test here for future appli-

cations.
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If Ni is the number of points for each cell {Ai}mi=1 and E(Ai) is the expected

number of points, then

X2 =

mX

i=1

(Ni � E(Ai))2

Ni
(4.24)

The estimation of the number of galaxies in a given region can be obtained by

simply integrating E(Ai) =
R
A

i

�(u)du. We calculate p-values assuming X2 is �2

distributed with m degrees of freedom.

4.3.1 Local residuals

The residuals analysis strategy in this work follows that of Baddeley et al. (2005)

and is developed in code in the CRAN package spatstat. Residuals can be defined in

multiple ways and they require appropriate plots and transformations for assessing

each component of the fitted model. This allows us to identify peculiarities in the

residual map related to the structures in the pattern. The behavior of the fit at

di↵erent locations can be also inferred from this map.

The calculation of the residuals keeps the idea behind the observation minus pre-

dicted comparison used in the Pearson’s �2 estimator. This is the natural gener-

alization of the residuals for point process in time, exactly as we generalized the

conditional intensity function � using the known points in a process as history for

the prediction of the location of a new one.

Three di↵erent kinds of residuals can be estimated for a given location u 2 W in

a point process X with N data points:

Raw residuals are defined as the absolute di↵erence between the real number of

points in a region B and our estimation for the same region. These are the residuals

used in the �2 estimator. For a model �̂✓

R✓̂(B) = n(X \B)�
Z

B

�̂✓(u;X)du (4.25)

where n(X \B) is Ni, the number of data points in the region B. These residuals

create an atomized distribution when regions B are small enough, being close to 1
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at the data points and ��̂✓(u;X) at all other locations u in W . For exact models,

the average of the raw residuals should be zero.

Following the general strategy of the point processes analysis, the residuals can be

evaluated as well at the empty location u. The absence of points at these locations

is also informative. Through this work we will only use the raw residuals, but it

is also interesting to introduce other alternatives.

Inverse residuals are based in the Stoyan-Grabarnik (Stoyan & Grabarnik, 1991)

exponential energy marks (eem), a diagnostic tool that gives the ‘mark’ mi =

1/�̂✓(u;X) to every point xi in the data pattern. These marks have the property

that, for well fitted models, the sum of all marks in a region B has expected value

equal to the area of B. Using this, we can define the inverse residuals I(B) as

I✓̂(B) =
X

x
i

2X\B

1

�̂✓(xi;X)
�
Z

B

1{�̂✓(u;X) > 0}du (4.26)

The first term is the sum over the exponential energy marks for every point in

a region B and the second term is the area of the region B where �̂✓ is defined

positive. The conditional intensity function is always non negative but, if existing,

the zero points must be avoided in the eem. These residuals can be obtained as

well dividing the raw residuals by �̂✓.

But Baddeley & Turner still propose a third kind of residuals, the Pearson resid-

uals. Now the residuals will be calculated using the square root of the conditional

intensity function

P✓̂(B) =
X

x
i

2X\B

1q
�̂✓(xi;X)

�
Z

B

1q
�̂✓(u;X)

du (4.27)

Again �̂✓(u;X) > 0 is necessary, but it can be zero at u /2 X

Smoothed residuals plots

The above defined residuals can be calculated for all u 2 W points and therefore

we can create plots to visualize the quality of our fitting. If the model is well

fitted, one expects to find an uncorrelated distribution in the residual map, with

no correlations between the values of the residuals and the locations of the data
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points. Residuals must be of low amplitude compared with the conditional surface

density function and must oscillate symmetrically around zero. This thesis work

performs all its calculations in 3-dimensional situations, and the plot of any kind

of map must be done after integrating the values of the non projected dimension

over the projected ones. Maps of this kind can be dealt as matrices with values

corresponding to the integrals of the non projected dimension and plotted assigning

an intensity color scale for the range of values present in the matrix.

However, for the proper visualization of the residual map a smoothing should be

done before the integration. As said with the raw residuals, when evaluated for a

large amount of u points in W the map may appear too atomized, showing values

close to 1 when we are close to a data point, and close to 0 for the rest. As we know

that the sum of the residuals should be approximately zero, we can proceed with

a smoothing of the map, understanding that the shape of the structures in the

pattern and its general trend are bigger than the area occupied by our numerical

integration cells.

Hence, we proceed with the smoothing of our raw residual map. A spatial distri-

bution X in W with N points can be smoothed by

�⇤(u) =

NX

i=1

!(u� xi), u 2 W (4.28)

as found in Mart́ınez & Saar (2002). The density field �⇤ is an estimation of the

local density of the distribution for every location u that involves all the existing

points xi in X. The kernel function used in this work is the Gaussian filter,

standardly used in cosmology,

!(y) =
1

(2⇡)3/2!3
exp

 
� |y|2

2!2

!
(4.29)

where ! is the smoothing radius or bandwidth. The result of the smoothing

strongly depends on the choice of this quantity. The choice of this quantity might

be a complex calculation or can be estimated by more heuristic means until the

choice reveals the desired patterns. As an orientation, a small bandwidth will

create spurious structures smaller that the real structures present in the map,
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adding noise. In the other hand, if the bandwidth is too big, it will blur the map

eliminating interesting features that we need to properly analyze the residuals.

Now we are ready to define the smooth residual map used in our thesis work. As

found in Baddeley et al. (2005):

s(u) = �⇤(u)� �†(u) (4.30)

is the smoothing map of the residuals where �†(u) is a smoothed version of the

parametric estimate of the intensity according to the fitted model,

�†(u) =

Z

W

!(u� v)�̂✓(v)dv (4.31)

This definition allows us to study our model in detail, analyzing the quality of

the fit for every desired region, checking if it has overfitted or underfitted the

model or if the shape of the conditional intensity is not adequate. Using �⇤(u)

and �†(u), new quantities can be calculated to obtain new interesting insights.

One is the relative error e(u), which tests the quality of the fit at u normalizing

by the amplitude of the model.

e(u) = s(u)/�†(u) (4.32)

For any structure properly mapped by the model, s(u) will be a small quantity

and the values of e(u) in its region will be low, but if a structure is not included

in the model, the lack of fitting will be included in s(u) and amplified by �†(u).

This function highlights regions where the content of the process is poorly modeled

with respect to the average fitting quality of the whole process. Therefore, with

function e(u) we can detect structures that our model cannot properly model. For

example, given a sample of a galaxy population with clusters and filaments, the

relative error e(u) of a model meant to describe clusters but not filaments, should

show high values at locations where the filaments are present.

Fitting a point process is not just about finding a model that produces ‘small’

residuals, but also verify that no structures, as small as they could be, are outside

the model.
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The values of functions �†, s(u) and e(u) will be usually presented in plots summed

along the dimension Z. These residual plots use a chromatic scale from dark blue

to dark red, with white for zero values. Red color indicates an underestimating,

while blue should be understood as overestimating.

The general quality of the fitting can also be tested comparing the amount of not

modeled mass with the total mass. We call this quantity the amplitude reduction

(AR), a real function that gives us the proportion of the data included in the

model. For a flat model �†(u) = 0, AR = 0, and for a perfect model �†(u) = �⇤(u),

AR = 1.

AR = 1�
R
W

|s(u)|duR
W

�⇤(u)du
(4.33)

Lurking plots

Finally, Baddeley et al. (2005) provide us with a versatile tool to detect poor fits

in user defined regions. This can be useful is we suspect that the data may depend

on a covariate not included in the model. If the covariate is properly included in

the model, the lurking plots should be uncorrelated (with values around zero), and

a significant departure should be understood as a correlation, and therefore, these

covariates still have to be included in the model. Let Z(u) be a spatial covariate

of our interest defined in W , we define the region

B(z) = {u 2 W : Z(u)  z} (4.34)

This region contains all locations u in W with values of our covariate Z smaller

or equal to z. For di↵erent ordered values of z we create several regions B(z) and

evaluate the residual map for each one. For example, for the raw residuals we have

A(z) = n(X \ B(z))�
Z

B(z)
�̂(u,X) du (4.35)

And now we can plot A(z) against z to obtain the dependence of our residuals

with the covariate Z(u). The most common lurking plot takes Z(u) as one of the

axis, for example Z(x, y, z) = x, which plot the evolution of the residuals along the

x dimension. In our works, we define sets B(z) including regions between pairs of
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consecutive z values. Therefore, the resulting quantities are the di↵erentiation of

function A(z).

This statistic will be used only in Chapter 5.

4.4 Data catalogs

Our Gibbs models will be tested in both the SDSS real catalog and LasDamas

simulation. We select several subsamples following the same criterium, making

them comparable populations.

4.4.1 Sloan Digital Sky Survey - DR8

This survey has already been used in section 2.1, and we will make use of it again

in this section.

In section 4.4.3 we apply the discussed Gibbs models over galaxy populations.

That demands a galaxy survey with certain properties. The geometry of the

survey should be extensive enough to select a comfortable sample where analysis

could be made with minimum mask e↵ects. Density population is also important

since we need to select a comparable population where all galaxies belong to the

same distribution.

For these reasons we opted to use the SDSS-DR8 data set (Aihara et al., 2011).

This catalog was used by Tempel et al. (2012) to construct a prepared dataset. This

data is a selection of the main contiguous area of the survey (the Legacy Survey).

The survey is complete up to the Petrosian magnitude mr = 17.77 (Strauss et al.,

2002), which is used as lower magnitude limit of the sample, a limit applied after

the Galactic extinction correction. Around a 6% of the galaxies in this survey are

without observed spectra due to fibre collisions (the minimum separation between

spectroscopic fibers is 55”). However, this only a↵ects to close separation pairs and

we meant to study bigger structures. The population provided by Tempel et al.

(2012) is already cleaned of duplicated entries, stars or other artifacts, creating an

appropriate sample for our point process algorithms. SDSS-DR8 is a very suitable

dataset for point process analysis of the large scale structure (Einasto et al., 2016).
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Figure 4.5: In black, samples from the SDSS-DR8 used in the Gibbs
models testing. Observer is at (0,0).

In order to ensure comparable data in our galaxy samples, we will impose a lu-

minosity threshold on our galaxies with Mr < �20 on SDSS r band. This limit

keeps completeness for redshift z < 0.1.

From this catalog we select four contiguous boxes of side size 50h�1 Mpc, occupying

the 200h�1 Mpc between redshifts 0.02 and 0.085. This allow us to test our models

in a variety of samples and compare. We named these samplesDR81, DR82, DR83

and DR84 from closest to furthest. Number of galaxies and densities per cube are

summarized in Table 4.1.

4.4.2 LasDamas Simulation catalog

For comparison with simulated datasets, we will make use of the LasDamas sim-

ulation catalog (McBride et al., 2011) presented already in section 2.3.2. The

used mock catalog was obtained from the Esmeralda simulation, contained in the

LasDamas Gamma Release, with Mr < �20.0 and spanning from z = 0.02 to
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Figure 4.6: Samples from LasDamas simulations used in the Gibbs
models testing.

z = 0.106. We have only made use of one of the multiple realizations, containing

12503 particles of mass 0.931⇥ 1010h�1M� in a box of size 640h�1 Mpc.

As with the SDSS samples, from this realization we have selected four contiguous

boxes of side size 50h�1 Mpc, occupying the 200h�1 Mpc between redshifts 0.02

and 0.085. We named the samples LD1, LD2, LD3 and LD4 from closest to

furthest. Number of particles and densities per cube are summarized in Table 4.2.

4.4.3 Testing with Toy Models

In this section, we test the techniques presented in section 4.2 over galaxy pop-

ulations. We apply the Geyer, Fiksel and Power law models over the described

populations, obtaining conclusions from the fitted parameters. The residuals anal-

ysis also provide us with a powerful mechanism for testing the results.

The simulation of point processes following a given distribution is a key procedure

in point process analysis. We start with a toy model example for the Geyer model,

where we can see the capabilities of our methods.
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4.4.3.1 Generation of samples

In order to test our models and analyze their e↵ectiveness in data modeling, we

generate several data samples following known distributions with known param-

eters. As found in Illian et al. (2008) (page 146) several Gibbs processes can be

easily generated using the Birth & Death algorithm. We start with an initial point

configuration (generally a poisson process). Then we delete one of these points at

random (death) and substitute it with a new point (birth) generated accordingly

to a conditional density function,

�(x) = exp
⇣
�

nX

j=1,j 6=k

�(||x� xj ||)
⌘

(4.36)

where x is the new point and � is our su�cient statistic (eq. 4.13), which depends

on the Gibbs model. Point x is generated uniformly in W along with an inde-

pendent uniform random number ⇠ 2 [0, 1]. However, we will only accept x as a

member of the point process after a rejection sampling, i.e., if ⇠  �(x). We have

used this algorithm for generating di↵erent patterns.

For a ��Geyer process (eq. 4.14), the non-normalized conditional density function

is

�(x) = exp
⇣
� ↵

nX

j=1,j 6=k

1(0 < ||x� xj ||  r)
⌘
= exp

⇣
↵ · t(x; r)

⌘
(4.37)

where ↵ = log �. This means that, given the process X and a candidate ele-

ment x, we accept it in the �-Geyer process if ⇠  �(x) = �min(sat,t(x,r)) where

min(sat, t(x, r)) is the minimum between the saturation value sat and t(u;X), the

number of elements from X closer to x than r (the above summation expression).

4.4.3.2 Fitting the sample

As a first test of these point process distributions, we have generated a sample fol-

lowing the Geyer method. The geometry of the process is a cubic box [0, 50]3. We

will fit the parameters of the distributions knowing the interaction radii through

a pseudo-likelihood estimation (see section 4.2.4). A few concerns must be taken
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into account. The pseudo-likelihood is a delicate estimator and no confidence in-

tervals are included in this calculation. In addition, the Birth-Death generation

method requires a high number of iterations before convergence into the desired

pattern, which makes it di�cult to generate clustered processes.

After the fitting, we can calculate over a grid of thickness h = 1, the conditional

intensity �(u,X) (and its smoothed version �†(u)), the smoothed raw residuals

s(u) and the relative errors e(u) (see section 4.3). After evaluating these functions

on our cubic grid, we project the values summing each row into a 2D map. I

present here the resulting plots when we project the dimension Z.

The generated sample includes 500 points following a Geyer point process with

� = 1.5, interaction radius r = 5 and saturation sat = 10. The fitted results

obtained by the pseudo-likelihood are � = 0.001 and � = 1.38, confirming the

clustered pattern. These parameters give us an amplitude reduction of AR = 0.83

(see eq. 4.33).

Figure 4.7: Left: �⇤(u,X), density field estimation. Right: �†(u,X),
smoothed fitted model of the generated Geyer process with pseudo-
likelihood estimation. Red dots indicate the locations of the generated
points. Dark area indicates higher density field or conditional probability
of being occupied by a point, while lighter areas are unlikely of being oc-
cupied by a point. Smoothing bandwidth is ! = 1. Values summed over

the dimension Z.
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Figure 4.8: Smoothed raw residuals s(u) (left) and relative residuals
e(u) (right) of the generated Geyer process with pseudo-likelihood estima-
tion. Black dots indicate the locations of the generated points. Smoothing

bandwidth is ! = 1. Values summed over the dimension Z.

Fig. 4.7 is a comparison between the data density field (�⇤, left) and the smoothed

fitted model (�†, right). The similar shape and amplitude of the functions indicate

a good agreement between data and model. Fig. 4.8 shows the found residuals

(s(u), left). Despite any possible correlation between the residuals and the points,

the low amplitude of these residuals compared to the amplitude of the data density

field indicates a satisfactory modeling of the process. In addition, large values of

the data or model density field are expected to have bigger absolute residuals.

This is summarized by the quantity AR = 0.83, i.e., around the 83% of the data

is correctly modeled. As expected from a good fit, average of residuals is close

to zero. Right image, e(u) shows the relative residuals. Areas with higher values

are those closer to the edges of the window, where the estimation of the model is

biased, the inner regions of the volume show no lack of fitting.

4.4.4 SDSS populations

In this section we proceed to show and explain the results obtained from the fitting

and residual analysis of SDSS samples. The models chosen for these populations

are the Geyer model, the Fiksel model and the Power Law model. These models

are used in the description of clustered processes, and are easy to implement in

three dimensions.
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As explained, we must pick values for the irregular parameters before proceed-

ing with the pseudo likelihood estimation of the regular parameters. After some

attempts and a brief analysis with the pair correlation function, we have chosen

some motivated values. As radius of interaction we will use r1 = 3h�1 Mpc, and

for the Fiksel and the Power Law model, the hardcore interaction radius will be

r0 = 0.07h�1 Mpc, small enough to guarantee that no pair of galaxies in our

samples lay closer than this distance. For the Geyer model we have decided a sat-

uration value sat = 100, big enough to avoid any possible underestimation of the

galaxy concentration. The slope parameter for the Fiksel model will be  = 0.2

and for the Power Law model b = 0.4. These values are fixed for all calcula-

tions. We present the fitted results and the amplitude reduction values (AR, see

equation 4.33) in Table 4.1.

Table 4.1: Fitted parameters for Gibbs models - SDSS-DR8

Number of Density Geyer Fiksel Power Law
Sample Particles h3Mpc�3 � � AR � a AR � a AR

DR81 841 6.73⇥ 10�3 0.003 1.47 0.55 0.003 1.71 0.56 0.003 1.59 0.55
DR82 697 5.58⇥ 10�3 0.003 1.43 0 0.004 1.65 0.12 0.004 1.55 0.07
DR83 941 7.53⇥ 10�3 0.004 1.32 0.43 0.004 1.48 0.42 0.004 1.40 0.42
DR84 1119 8.95⇥ 10�3 0.004 1.31 0.58 0.005 1.47 0.57 0.005 1.40 0.58

In Figs. 4.9 (Geyer), 4.10 (Fiksel) and 4.11 (Power law) we show in three columns

the smoothed Papangelou conditional probability (�†(u,X), eq. 4.31), the smoothed

raw residual map (s(u), eq. 4.30) and the relative errors map (e(u), eq. 4.32) for

the four samples and the Geyer model. These functions are defined at every loca-

tion in the studied window and give us di↵erent informations of interest. This is

detailed in sections 4.2.3 and 4.3. We do not consider necessary to include plots

for the data density field �⇤.

Regarding the fitted parameters, for the trend function we have assumed a con-

stant function, with � fitted around 0.004. This value fluctuates inversely to the

interaction parameter, showing a stronger trend when the interaction is weaker.

As expected for a galaxy sample, the modeling of clustered populations produces

values of � > 1, indicating an aggregation of points inside our correlation range.
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The interpretation of the continuous models are more complex. For the correct

irregular and fitted values the models are expected to transit from values above

1 to exactly 1 after distance r1, when the interaction between points is no more.

This transit should be as smooth as possible, but instead we find that both models

present values higher than 1 at distance r1, specially the Power law. This creates

a step in a continuous function, underestimating correlations for pairs separated

more than 3h�1 Mpc. This indicates us that the model should be modified in

order to include large range correlations.

Despite the absence of error bars, the estimated parameters � and a might help

us to detect di↵erences in the levels of clustering and compare the samples. We

can understand that samples obtaining higher values for these quantities present

stronger aggregations. Interestingly, all used models respond the same way to

the cosmic variance present in the four di↵erent samples. If we compare the

values obtained for � and a we can see a correlation between them, presenting

higher and lower values for the same samples. In addition, these parameters show

a correlation with distance, with higher values for closer samples, indicating a

stronger clustering in samples with lower redshift. The limited range of redshift

used and the absence of error bars in the estimated parameters do not allow

us to deduce stronger conclusions, but at least, the evolution of these clustering

amplitude parameters is in the expected direction.

Images reveal the capacity of this model to detect clustered regions. Denser re-

gions are modeled with higher values of �†(u,X). However, the residual analysis,

column two of Figs 4.9 to 4.11, clearly shows an overestimation (blue spots) of

these regions, while the rest of the sample is mostly underestimated. The model

detects the domination of these structures over the field galaxies, less clustered and

appearing in red. In this situation it can be interesting to observe the values of

the relative errors (third column). Despite the overestimation of some structures,

colors present in these plots classify the simulated galaxies in three main groups.

Red areas are usually occupied by field galaxies, where the residual error function

e(u) detects an important lack of fitting. Blue areas correspond to voids, where

the model is not able to map the extremely low density of these regions. Two dif-

ferent kind of regions appear in white, the transition between the galaxy field and

voids and the denser regions previously mentioned. This implies that, although

these structures are overestimation, the relative error is lower than the average of
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the sample. This is the capacity of the residual error function of detecting real

non-modeled structures.

A solution for this problem might consist in a reduction of the interaction radius,

allowing the model to describe finer structures, instead of focusing on the dominant

ones. A smaller radius, comparable to the thickness of the filaments, will help to

model these abundant unisotropic structures. Nevertheless, as we just previous

mentioned, these models may also need to include correlations in large distances.

This creates a double interaction range, one being strong and close and the other

weak and distant. For future works, we propose a steeper Power law model, with

higher values for small distances and a large asymptotic tail.

Is interesting to detect the odd case of DR82, where a strong concentration in the

upper part of the sample (second row in Fig. 4.9 and followings) reaches amplitude

values around 15, several times above the peaks of the rest of samples. These high

estimated model densities worsen the general performance of the model, as we can

see from the AR value of 0% and the residual values around the peak. This case

was not found for LasDamas samples. This e↵ect is a consequence of the presence

of a strong cluster located in the less dense SDSS sample. The contrast between

this structure and the rest of the sample is a challenge for our models and fails to

map the galaxy distribution. In Tempel et al. (2012) this structure is detected as

a Finger-of-God and catalogued as a cluster of 113 galaxies.

This is an example of a strong interaction process, where the pseudolikelihood is

not recommended. An improved fitting algorithm might be necessary to prevent

from such catastrophic fittings. Nevertheless, in the relative error plots (column

in the right) we can see how the performance of describing the rest of the sample

has been similar to that of the other samples. This shows how despite the bad

fitting of an identifiable structure, the model is still capable of describing the rest

of the population relatively una↵ected.

Regarding the obtained values of the AR, all models show values of an amplitude

reduction around 0.55, with the exception of DR82. This implies that more than

half of the data content is included in the model, suggesting a reasonable, though

indicative, description of the galaxy distribution. A comparison between the mid-

dle column of all three models reveals smaller fluctuations of the residual values

for the continuous models, specially the Fiksel model. This might be due to two
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di↵erent reasons. One, a higher capacity of modeling the multiscalar nature of

galaxy clustering, where the Geyer flat profile will always over- or underestimate

the real amount of clustering. And two, compared with the Power law, the Fik-

sel model has a smoother transition between the correlated and the uncorrelated

range.

4.4.5 LasDamas populations

In this section we will repeat the analysis made over the samples from the Las-

Damas simulations. We make use of the same models with the chosen values for

the irregular parameters. The fitted results with the amplitude reduction values

(AR, see equation 4.33) are presented in Table 4.2

Table 4.2: Fitted parameters for Gibbs models - LasDamas

Number of Density Geyer Fiksel Power Law
Sample Particles h3Mpc�3 � � AR � a AR � a AR

LD1 1024 8.19⇥ 10�3 0.004 1.40 0.58 0.005 1.60 0.58 0.005 1.50 0.58
LD2 751 6.01⇥ 10�3 0.003 1.45 0.5 0.003 1.68 0.49 0.003 1.56 0.48
LD3 943 7.54⇥ 10�3 0.004 1.30 0.52 0.005 1.46 0.51 0.005 1.38 0.51
LD4 932 7.47⇥ 10�3 0.003 1.49 0.58 0.004 1.74 0.59 0.004 1.61 0.59

Again, in Figs. 4.12 (Geyer), 4.13 (Fiksel) and 4.14 (Power law) we plot the results

for the functions �†(u,X), s(u) and e(u) and the four LasDamas samples.

The results obtained with the samples from the LasDamas simulations are similar

to those of the SDSS-DR8, with fitted � values indicating a clustered pattern.

Parameters ranges are coincident in both catalogs, certifying that both populations

correspond to point processes of the same nature. The previous conclusions from

SDSS-DR8 samples are generally valid for LasDamas, with a few exceptions.

No monotonic evolution of the fitted parameters is found, although the correlation

between models for the same samples is preserved. As we said in the previous

section, this trend needs deeper analysis over wider redshift ranges before being

confirmed.
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Figure 4.9: Z-projection of the evaluated functions for the four SDSS-
DR8 samples (black dots) with fitted Geyer model. Top to bottom: sample
DR81 to sample DR84. Left to right: functions �†(u,X), s(u), e(u).

Scaling in DR82 has an independent scale due to its outlier values.



Chapter 4. Finite Gibbs processes 147

Figure 4.10: Z-projection of the evaluated functions for the four SDSS-
DR8 samples (black dots) with fitted Fiksel model. Top to bottom: sample
DR81 to sample DR84. Left to right: functions �†(u,X), s(u), e(u).

Scaling in DR82 has an independent scale due to its outlier values.
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Figure 4.11: Z-projection of the evaluated functions for the four SDSS-
DR8 samples (black dots) with fitted Power Law model. Top to bottom:
sample DR81 to sample DR84. Left to right: functions �†(u,X), s(u),
e(u). Scaling in DR82 has an independent scale due to its outlier values.
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Due to the absence of strong overdensities in the LasDamas surveys, such as

the cluster found in sample DR82, we have no catastrophic fittings with AR =

0, and we should understand these events as the result of expectable stochastic

fluctuations in the galaxy density.

4.4.6 Conclusions and future work

Gibbs models introduce very useful utilities in the statistical analysis of point

processes. We can calculate the conditional probability of a galaxy to belong to

a certain process (given the rest of the galaxies). With this preliminary work we

have shown that the e↵ective calculation of this probabilistic model is an achievable

task but still demands strong improvements.

We expect interaction models to be more successful at scales where interaction

dynamics are dominant over any trend or anisotropy. These scales, where we will

focus future works, might be the inner parts of galaxy clusters, where the host

galaxy interact with their satellites, or large scale galaxy fields, where forces have

a large range of interaction and no high density structures domain the distribution.

Correct characterization of a galaxy population by means of a Gibbs model will

give us relevant and complete information of its distribution. The parametric

nature of these models summarizes the nature of the process with very precise

information of its structure and, at the same time, we can evaluate the model at

any desired location. This localized analysis is one of the most relevant advantages

of modeling the point process, since we are able to study the content for specific

structures and environments. E↵ective modeling opens the door to powerful data

mining.

Even more, if the probability of a galaxy of belonging to a certain process can be

e↵ectively estimated, this can be naturally extended to any location in the window,

allowing us to predict locations for points. This is an extremely useful ability in

cosmology, since missing data is a constant issue in the study of galaxy surveys.

With an e�cient model for galaxy populations, we would be able to recreate or

complete masked information.

The uncertainty of galaxy redshift measurements due to fiber collisions or the

masking of fragments of the sky by closer objects might be solved with a Gibbs
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Figure 4.12: Z-projection of the evaluated functions for the four Las-
Damas samples (black dots) with fitted Geyer model. Top to bottom:
sample LD1 to sample LD4. Left to right: functions �†(u,X), s(u), e(u).
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Figure 4.13: Z-projection of the evaluated functions for the four Las-
Damas samples (black dots) with fitted Fiksel model. Top to bottom:
sample LD1 to sample LD4. Left to right: functions �†(u,X), s(u), e(u).
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Figure 4.14: Z-projection of the evaluated functions for the four Las-
Damas samples (black dots) with fitted Power Law model. Top to bottom:
sample LD1 to sample LD4. Left to right: functions �†(u,X), s(u), e(u).
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based technique. Given a galaxy sample, we can fit a Gibbs model for those

galaxies whose redshift is reliably estimated. The resulting probability function

�(u,X) will serve us to correct the position of the remaining galaxies using both

their original distance estimation and the most likely positions derived from the

Gibbs model. Similarly, this information can be used as a prior for Bayesian

photometric redshift estimation or for correct cluster membership classification.

In addition, this method could be extended to the problem of inpainting, recon-

structing areas of the sky where the position of galaxies cannot be observed and

placing new galaxies accordingly to the intensity and interaction distribution of

the fitted model. Although this method does not allow us to recover the true lo-

cations of unobserved galaxies, we can reproduce a sample following the modeled

distribution, and therefore keeping its main properties.

For these future works, we plan to develop this new area of research with the

introduction of more advanced methods of parameter estimation and more com-

plex models. The limitations of pseudolikelihood can be overcome through more

advanced estimation techniques, such as the ABC method (Stoica et al., 2015) or

the Monte Carlo Maximum Likelihood. New methods will be tested as well, like

the mentioned Area Interaction method, and irregular parameters will receive a

more systematic analysis.





Part III

Mining the Galaxy Distribution
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‘The Dwarves delved deep at that time, seeking beneath Barazinbar for mithril,

the metal beyond price that was becoming yearly ever harder to win’.

The Lord of the Rings - Appendices

‘they delved too greedily and too deep,

and disturbed that from which they fled’

Gandalf the Grey



Chapter 5

Mixture models

5.1 Introduction

The point process analysis widely extends to a multitude of algorithms and method-

ologies that help us to study point patterns from very di↵erent points of view,

adapting the methods to our interests. Despite their strong potentialities, Finite

Gibbs models are a vast family of point processes that demand abundant work

to develop truly e↵ective models of the galaxy distribution. This is a necessary

task in modern cosmology if we want to fully understand the nature of the Cosmic

Web.

In this chapter, instead of modeling the galaxy distribution through the intrinsic

properties of galaxy interaction, that determines the morphology and evolution of

galaxy structures, we will model the final results, the clusters and other overdensi-

ties created by gravity. For this reason, in the present chapter we will attempt the

modeling of our galaxy population granting a di↵erentiated role for every structure

present in the sample. This has the advantage of a more versatile adaptability but

the disadvantage of a higher number of assumptions. We move from galaxy level

models to galaxy structure models.

A structure modeling technique can be used as well as a data mining technique,

where these structures are searched and extended. As we introduced in Chapter 1,

this chapter will be devoted to searching relevant features in the data such as clus-

ters, voids or filaments. Abundant work has be done in this direction in cosmology

157
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recently. Examples of these contributions can be found in Cautun et al. (2013),

Einasto et al. (2016), Forero-Romero et al. (2009), Hahn et al. (2007), Lee & Lee

(2008) and Ascaso et al. (2015). This later made use of Bayesian techniques for

the identification of groups and clusters in the ALHAMBRA survey (Moles et al.,

2008, Molino et al., 2014).

An example of a point process based data mining technique can be found in Tempel

et al. (2014), where the authors built an algorithm for filament detection, the

Bisous model. This is a precise and highly e↵ective data mining tool with a very

specific aim: the mapping of the filamentary network of a galaxy sample. The

benefits of obtaining a reliable catalog of filaments with abundant information

are remarkable and suppose a clear example of the capabilities and results that

modern point process techniques can produce.

If we are interested in studying the peculiar structures of a sample and its physical

properties in the global context of its parent survey, an interesting choice is the

cluster analysis. Cluster analysis consists on identifying and characterizing groups

of points in a dataset when represented under certain variables. If these variables

are chosen wisely, points that aggregate trend to share common properties. In our

case, points are galaxies represented by their spatial locations, and aggregation

implies gravity binding and membership to a common structure. These method-

ologies include a wide variety of statistics and their ability to describe complex

structures over modern surveys is leading us to a more detailed cosmography and

understanding of the Cosmic Web.

Many of these are non-parametric methods, like the friend-of-friends algorithm,

the k-means estimator, the kernel density estimator, etc. However, non-parametric

methods are usually strongly dependent on arbitrary choices in the analysis. In-

stead, parametric clustering solves all of these problems, as we will show. For

this work we opt for the Finite Mixture Modeling (Everitt et al., 2011). This

technique allows us to identify peculiarities in our sample and characterize them

through di↵erent kinds of models. The way Mixture models are used combines the

bump hunting task of di↵erentiating between white noise and peaked distributions

with the analysis of the multimodality of a distribution, this is, the number of dif-

ferent coexisting peaks. To this we should add the morphological characterization

of our peaks. This is therefore a double technique, both model and data mining

algorithm.
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With Mixture models we can still make use of the battery of functions introduced

in sections 4.2 and 4.3. The modeling of a point process through a probability

density function, its Papangelou conditional function and the associated residual

analysis are perfectly valid for any probabilistic approach. In addition, with Mix-

ture models we are able not only to model the distribution but to perform highly

robust and versatile data mining techniques.

The aims of this work are to test the Mixture models over a data catalog and

evaluate their capacity of describing its content. As with the Gibbs models in

section 4.2, we test the usage and potentialities of Mixture models in large scale

structure analysis for the first time. For this reason we test our new methodology

while using well known datasets.

We expect to be able to classify our data in two simultaneous ways. First, the

mining of the sample, identifying the location and characterizing the shape and

main physical properties of galaxy clusters. And second, the modeling of the pop-

ulation, assigning for each galaxy a membership in the found clusters. Altogether,

this consists in a model that allow us to obtain an original insight on the clusters

morphology while describing their interactions with neighbor structures.

This chapter is organized as follows. Section 5.2 introduces the Mixture models,

with the fitting algorithms used in this work and their main applications. In

section 5.3 we describe the modeled data sample from the MultiDark simulation

(Klypin et al., 2011). Section 5.4 describes the physics necessary to complete our

model and test it against several populations, first some generated toy models

and finally the samples extracted from the MultiDark simulation. Conclusions are

presented in section 5.5.

5.2 Definition

Mixture models are probabilistic and parametric models describing the probability

of finding a point in a given location. They are always composed by two or

more components used to map a population. These components correspond to

di↵erentiated structures and we should find the right parameters to properly adapt

each shape to the given distribution. This technique dates back to K. Pearson in

the 1890s and is commonly used with k Gaussian distributions over a multimodal
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population. We will conveniently modify it to our interest with astrophysically

motivated functions. A correct choice of our model will allow us to identify and

properly describe not only the main structures in the sample but their internal

substructures, as these components are allowed to overlap. The estimation of the

number of needed components or bumps also requires attention, since the final

result is highly dependent on this quantity.

The number of final parameters of the model is also relevant: in a 3-dimensional

situation, as ours, all bump models need three parameters to set the center of the

bump, plus other p parameters to describe the shape of the bump. In addition,

Mixture models include mixture coe�cients to establish the relative intensity of

each bump. These coe�cients work as a normalization factor that gives each bump

its right mass. If we use as well another parameter for a background component

we obtain k · (3 + p+ 1) + 1 parameters.

Due to its bump hunting motivated architecture, Mixture models can e↵ectively

detect and characterize galaxy overdensities. The discrimination of the galaxies

in di↵erent structures is softer than in other component detection algorithms like

the k-means, where objects are assigned to only one cluster, we call this a hard

classification algorithm. With Mixture models instead, we assign a membership

probability to each galaxy, describing the probability of belonging to each cluster.

This tool has been already applied by Kuhn et al. (2014) in the modeling and

identification of star clusters in 2-dimensional images. We will apply it to the

3-dimensional galaxy scenario. As in Kuhn et al. (2014) we will add as well a

background component, meant to include galaxies not belonging to any of the

bumps but in the rest of the distribution. As a final motivation, if we are able to

properly map the clusters and field galaxies of a population but not the filaments

or other more complex structures, we might expect to detect them using estimators

such as the relative error function e(u) in equation 4.32.

Now, we proceed to define our mixture model and the fitting of its parameters.

5.2.1 The surface density model

In this section we proceed to build the probability density function, or surface

density model, of our galaxy cluster population. As found in Everitt et al. (2011),
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Finite Mixture densities are a family of probability density functions of the form

f(x;↵, ✓) =

cX

i=1

↵i · gi(x; ✓) (5.1)

where x is a k-dimensional random variable, the family of gi are the component

densities parametrized by ✓ and ↵ are the nonnegative mixing proportions or

mixture coe�cients. The number of components is c.

In the spatial point process application, the model is defined over a window W

containing N points. Since this is a density model, f can be evaluated at any

location of the window, not only where a point lies.

Our implementation of the Mixture model for the galaxy clusters structure follows

the strategy of Kuhn et al. (2014). The first needed element is the profile of the

cluster component. These component can be as irregular as we are able to model

them, but since this method is generally used as a cluster classification method,

we will model two di↵erent types of components, the clusters and the background.

In this work, the cluster profile ⇢(r � r0; s) assumes spherical symmetry for our

fitted structures, and describes the density of the cluster at a given distance from

the center r0. As a bump hunting algorithm, this is a general condition that

allows us to easily locate the structures in the space. Parameters s are used to

describe the shape of the profile. These parameters are both included in the profile

parameter set ✓ = (r0, s).

The background component is treated as another cluster but no parameters are

necessary. Therefore, our background will be approximated with an homogeneous

Poisson process, i.e., ⇢b(r � r0) = 1. Galaxies located in the field outside any

cluster will be mapped by this component.

The next necessary element to build our Mixture model is the number of compo-

nents. In this case we use c�1 cluster components plus the background component.

⌃(r;↵, ✓) =

c�1X

i=1

↵i · ⇢i(r� r0; s) + ↵c · ⇢c(r) (5.2)
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It may be convenient to fix ↵1 = 1. This way we eliminate one of the fitted

parameters and express the relative mass of each component with respect to the

first one, chosen by the user. Therefore, for ↵2 = 2, the mass of the second

component will be twice that of the first component. The last necessary step to

build our Mixture model is to normalize dividing by the total mass of the model

M =

Z

W

⌃(r;↵, ✓)dr (5.3)

However, this can only be done if the profiles are integrable,
R
W

⇢(r, ✓)dr < +1
for all ✓. Finally, we define our Mixture model as

�(r;↵, ✓) =
1

M
⌃(r;↵, ✓) (5.4)

As we will see in the following sections, it may be also interesting to normalize the

model to the total number of objects N . This way, the integral of �(r) in a region

A ⇢ W is the estimated number of objects in A. And the other way round, we can

integrate only one of the fitted components over the entire volume W to estimate

the number of objects belonging to this single component. When � is defined like

this, our studied point process can be understood as an inhomogeneous Poisson

distribution with function � or as a generalization of a Neyman-Scott process

(Neyman & Scott, 1958) where the daughter points are generated accordingly to

our components profiles.

5.2.2 Density profiles

Once the Mixture Model is fitted, individualized analysis of each component may

be of interest. This allows us to segregate the contribution of each component

at every location in the window, having a clear vision of how components relates

each other.

Given a component, we already have its profile density as expressed in the surface

density model pi⇢i(r � r0; s). We can di↵erentiate this profile with respect to

distance, evaluating the component around the center of the cluster (r̂0) and

normalizing by the volume.
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⇢̄i(r� r0; s) =
↵i

M
·
R r+dr
r ⇢i(t� r0; s)dt

V (r+ dr)� V (r)
(5.5)

where V (r) is the volume of the sphere with radius ||r||. This is the 1-dimensional

profile of component i. If we now substitute ⇢ by the full mixture model, and

evaluate it as before, centered in r0, we will obtain our estimation of the density

profile of the whole sample as seen from r0, i.e. the 1-dimensional profile of the

Mixture model centered in the component i.

P̄i(r� r0; s) =
↵i

M
·
R r+dr
r ⌃(t� r0; s)dt

V (r+ dr)� V (r)
(5.6)

where r0 is the center of component i. For short distances, ⇢̄i and P̄i should have

similar values, but for distances at which our component i starts to increasingly

overlap with other components, these function will start to diverge, with P̄i depict-

ing the profile of other structures. Having the ability to segregate the contribution

of each component to the overall density profile allows us to measure the level of

interaction between structures and obtain density profiles without contamination

from close sources.

One of the advantages of models over classification methods is the ability of gen-

erating new samples equally distributed. For a density model this can be easily

done simply using rejection sampling techniques for each function ⇢i(r� r0, s) for

the estimated number of objects per component. As said, these numbers are ob-

tained integrating each component over W and normalizing by the total amount

of points.

5.2.3 Fitting the parameters

The best fit parameters will be found using the complementary approaches of

di↵erent techniques. The first one and most important in the Posterior probability

function. We start defining the maximum likelihood estimation (MLE), which

seeks the model that maximizes the likelihood of the data. Given the parameters

(↵, ✓), the log-likelihood is given by
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lnL(p, ✓;X) =

NX

i=1

log⌃(ri;p, ✓) (5.7)

Where ri are the locations of the points in X. If the model is normalized to the

total number of objects N , we have the model �(r;↵, ✓) = N
M⌃(r;↵, ✓) and its

log-likelihood can be expressed as

logL(↵, ✓;X) =

NX

i=1

log �(ri;↵, ✓)�
Z

W

�(r0;↵, ✓)dr0 (5.8)

which we will use for this work. The first term is evaluated for all the N galaxies

of the population and the integral in the second term is the expected number of

galaxies in the window.

Now we are interested in finding the highest value for the function above. We find

it using the Posterior probabilistic function as obtained by the MCMC routine

with a Bayesian approximation. Bayesian inference derives the posterior proba-

bility as a consequence of two antecedents, a prior probability and the likelihood

function 5.8. Bayesian inference computes the posterior probability according to

Bayes’ theorem:

P (H|D) =
P (D|H) · P (H)

P (D)
(5.9)

where H is the hypothesis we want to test based on the evidence or data D.

Hence, P (H) is the prior probability, the probability of H before D is observed.

This indicates one’s previous estimate of the probability that the hypothesis is

true. P (H|D) is the posterior probability, the probability of H given D. This

tells us what we want to know: the probability of a hypothesis given the observed

evidence. P (D|H) is the probability of observing D given H, this is the likelihood.

It indicates the compatibility of the hypothesis with the data. P (D) is the nor-

malizing constant, sometimes termed the marginal likelihood. This factor is the

same for all possible hypotheses being considered. This means that this factor

does not enter into determining the relative probabilities of di↵erent hypotheses,

and is usually ignored.
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This law can be used in Bayesian inference to fit a model H over a set of obser-

vations D when we already have an idea of the approximate behavior of P (H).

Substituting the data by the spatial point process X and the hypothesis by the

Mixture model, represented by its parameters ⇥ = (↵, ✓), we have

P (⇥|X) =
P (X|⇥) · P (⇥)

P (X)
(5.10)

The di�culty in the calculations of this expression resides in the term P (X),

which acts as a normalization constant. This is solved using the proportionality

between the posterior likelihood with the likelihood and the prior probability,

which expressed in a logarithmic shape is

logP (⇥|X) / logP (X|⇥) + logP (⇥) (5.11)

Where logP (X|⇥) is our log-likelihood function in 5.7. In this work we use a non

informative quasi flat prior, with P (⇥) a Gaussian distribution centered in 0 with

a large standard deviation. Then, given two sets of values ⇥0 and ⇥1, we can test

which one fits better the data calculating the correspondent posteriors.

MCMC uses this to map the overall distribution of the log-likelihood posterior

strategically evaluating di↵erent combinations of parameters. This gives us valu-

able information, mapping the region of the parametric space where the best fit

⇥ values live. To start this routine, the procedure demands an initial guess of ⇥,

somewhere to start evaluating logP (X|⇥). It is more e↵ective when this guess

is accurate and close to the areas of higher likelihood values, and for this reason

we previously estimate it. The obtained distribution contains the best fit set of

parameters, which can be found maximizing the Posterior.

The goodness of fit of any mixture model is highly dependent of the locations

of the clusters r0, only once these parameters are correctly fitted it makes sense

to fit the shape parameters or the mixture coe�cients. Hence, we evaluate the

density field of the galaxy distribution using the kernel estimator of equation 4.28

and then select the local maxima on the resulting function. These maxima are

the first candidates to become centers of clusters, as peaks of the overdensities

in the distribution. This is just an indicative result, and highly depends of the
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assumed bandwidth. The MCMC is a costly routine but necessary to obtain a

reliable map of the log-likelihood posterior function and the standard deviation

of each parameter. The software used in these calculations is included in the

CRAN package LaplacesDemon (Statisticat & LLC., 2013a,b,c,d), which provides

more than forty di↵erent MCMC algorithms. These algorithms decide the next

combination of parameters ✓ to be tested in order to correctly map the normalized

log-likelihood function 5.8. Some of these algorithms, the so called adaptive, use

the previous evaluations to choose the next ✓. These are usually more e�cient in

finding the overall distribution of the function, but we must always finish with a

long run of a non adaptive algorithm to ensure a proper convergence.

Additional algorithms can be used complementarily to the MCMC evaluations,

for example, helping us to obtain a better guess of the starting points. On the

other hand, once a good approximation of the Maximum Posterior is found, we

can polish it with additional evaluations around it.

One of these algorithms is the Laplace Method, also included in Laplace’s Demon

package. This method approximates the gradient of an unnormalized joint poste-

rior density estimating the global maximum and the variance of each parameter

involved. This is a family of asymptotic techniques used to approximate integrals

(Azevedo-Filho & Shachter, 1994).

The other one is the well known Nelder-Mead algorithm (Nelder & Mead, 1965),

which minimizes the result of a function using only its values. This algorithm

can be found in the CRAN package stats (Team, 2015) under the name optim.

This algorithm may help us to find initial values for the MCMC iterations. In

cluster analysis the locations of the clusters are generally independent from other

parameters related with shape or size. Fitting all these parameters at the same

time might be an unnecessarily costing routine. Instead, we could use the Nelder-

Mead algorithm to approach the first subset of parameter while the rest remain

frozen.

Similarly, we can use the frozen Nelder-Mead fitting algorithm to optimize the

Maximum Posterior parameters found in the MCMC routine. Is a slow but robust

method, and a good choice for final values fitting.
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In both applications, improving the best fit and approaching the initial values, we

use the optim code several times freezing each time a di↵erent set of parameters

for each model component.

Finally, we must discuss the right number of model components. The best fit

log-likelihood value of a model will always improve with a higher number of com-

ponents. However, we must identify the right number of structures that we should

model with cluster profiles. This can be done by means of the the Bayesian Infor-

mation Criterion (BIC) and the Akaike Information Criterion (AIC). These tools

are used to compare the quality of two fitted models over the same data. These

models need to be nested as well, which, in this case, means that one of them is us-

ing the same components of the other one plus extra components. These quantities

are related with the value of the log-likelihood, but incorporate as well the num-

ber of used parameters. This way, the information criteria penalize those models

where an excessive number of parameters does not imply the same improvement

in the log-likelihood. We intend to find the best fit without over populating the

galaxy distribution with spurious clusters. It is then recommendable to perform

the above fitting procedure with di↵erent numbers of clusters and test the results

with

BIC = �2 logL+ (|✓| · k + 1) logN (5.12)

AIC = �2 logL+ 2(|✓| · k + 1) (5.13)

where |✓| is the number of parameters in ✓, k is the number of clusters, N is the

number of points in the dataset, and logL is the log-likelihood for the best fit pa-

rameters ✓. These information criteria give the smaller result for the best model

configuration of k and ✓. The choice of AIC or BIC is widely debated (Burnham

& Anderson, 2002, Everitt et al., 2011, Kass & Wasserman, 1995, Konishi & Kita-

gawa, 2008, Lahiri, 2001) with arguments for both options; as it is common, we

use both.
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5.3 MultiDark simulated samples

In section 5.4 we will make use of samples from the MultiDark simulation project

(Klypin et al., 2011) in order to test the Mixture Model approach. This model will

be tried first over self-generated toy-models but a realistic galaxy-like sample is

necessary to fully calibrate the capacities of our galaxy cluster profile fitting algo-

rithm. A real galaxy sample extracted from a galaxy survey would have been the

optimal choice, but an N-body simulation o↵ers simplicity and a much higher res-

olution that allows us to easily apply our methodologies over a sample of scientific

interest.

As described by the collaboration, the Spanish MultiDark Consolider project sup-

ports a variety of e↵orts to identify and detect dark matter. As a result of the col-

laboration between the Leibniz-Institute for Astrophyics Potsdam and this project,

the MultiDark Database was created to publish cosmological simulations, which

allows scientists worldwide to explore these data for studying the large scale struc-

ture of the universe as well as the properties of dark matter halos. We focus on

the study of dark matter halos, which agreed with the assumptions made for our

model, selecting a small region of interest to devote our detailed analysis and mod-

eling. With a high density sample of these dark matter particles we simulate a

galaxy distribution.

These data are extracted from the Bolshoi simulation (from Russian “big”), a

simulation of volume (250h�1 Mpc)3 and a mass resolution of 1.35 · 108h�1 M�,

which is more than a factor of 6 better than the mass resolution of the Millennium

simulation. Its details are described in Klypin et al. (2011). The cosmological

parameters used for this simulation are ⌦m = 0.27, ⌦b = 0.0469, ⌦⇤ = 0.73 and

H0 = 100h km s�1Mpc�1. The used snapshot is at redshift z = 0 from which the

0.001% of the particles have been extracted.

Since our study is related with dark matter halos and overdensities, it is of great

interest to count with a halo catalog previously obtained from the used simulations.

This is provided by the BDM tables, which identify these halos using the Bound

Density Maximum (BDM) algorithm. The MultiDark simulation provides two

di↵erent versions: one using the standard overdensity criterion with 360 · ⇢back
(background density; BDMV) to define halos, and the other with halos cut-o↵ at
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200·⇢crit (critical density; BDMW). In addition, halos are divided into two groups:

distinct halos and subhalos. We make use of the first version.

Despite further specifications on halos and subhalos structuring, we will limit our

use of this information to the identification of bigger halos in our selected sample.

Using this halos catalog we have selected a flat cuboid containing di↵erent halos,

3 of which are among the 100 most massive ones in the full Bolshoi simulation box

plus several other halos of smaller size. The cuboid has a volume of 4375h�3 Mpc3

and contains 2081 particles. Its dimensions are 25 ⇥ 25 ⇥ 7h�1 Mpc, where the

squared face facilitates the 2-dimensional examination. The final particle density

is 0.4757h�3 Mpc3, higher than other used galaxy surveys densities from this work

but necessary to properly characterize the dark matter halos.

5.4 Mixture models for galaxy clusters

In the application of the Mixture models for galaxy cluster characterization, we

make use of di↵erent dark matter profiles to model our galaxy groups. These

functions will be tested against generated samples following the di↵erent profiles

(toy models) and against data from the MultiDark simulation.

5.4.1 Dark matter profiles

The presented models correspond to particular cases of two di↵erent families of

density profiles: the Sérsic and the Hernquist profiles. We make use of the well

known Einasto (Einasto, 1965, 1968, 1969) and Navarro-Frenk-White (Navarro

et al., 1995) profiles, as derived from these families. These models show a steep-

ening of the logarithmic slope with increasing radius, as seen with the N -body

simulations of cold dark matter (CDM) halos (Efstathiou et al., 1988, Frenk et al.,

1988, West et al., 1987). Dark Matter halos in simulations (or galaxy clusters

and groups) tend to present “universal profiles” that can be modeled with a sim-

ple function form. This well known property of clustered matter may help us to

easily model the content and structure of a data sample, such as the introduced

MultiDark sample.
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Einasto model

The Sérsic profile (Sérsic, 1963, 1968) is an empirical fitting function originally

used for describing the luminosity profiles of early-type galaxies and bulges, and

therefore, is used on projected images (Caon et al., 1993, Graham & Guzmán,

2003). It is a generalization of the R1/4 profiles of de Vaucouleurs (1948) with an

R1/n profile:

I(R) = Ie exp
⇣
� bn

h
(R/Re)

1/n � 1
i⌘

(5.14)

where n is monotonically related to how centrally concentrated a galaxy’s light

profile is, while R is the projected radius. Ie is the intensity at the projected

e↵ective radius Re. The term bn is a function of n and must satisfy that Re

encloses half of the total galaxy light (Caon et al., 1993, Ciotti, 1991). This

function can be approximated when n & 0.5 by the equation given in Prugniel &

Simien (1997):

bn ⇡ 2n� 1/3 + 0.009876/n (5.15)

However, Sérsic’s model is traditionally applied to the projected (surface) densities

of galaxies, not to 3-dimensional density. Einasto (1965, 1968, 1969) independently

developed a model for 3-dimensional density profiles that follows Sérsic’s functional

form. It is usually given as

⇢(r) = ⇢e exp
⇣
� dn

h
(r/re)

1/n � 1
i⌘

(5.16)

where r is the 3-dimensional (i.e. not projected) radius. Similarly to bn, dn is a

function of n satisfying that ⇢e is the density at the radius re that defines a volume

containing half of the total mass. Despite it can be also approximated for values

of n above 0.5, we will obtain it solving the equation �(3n) = 2�(3n, dn), where �

is the complete gamma function and � is the incomplete gamma function. Since it

mixes with the mixture coe�cients, parameter ⇢e will not be fitted. The Einasto

profile has been successfully used at modeling galaxy clusters (Aceves et al., 2006,

Graham & Guzmán, 2003, Merritt et al., 2006, Navarro et al., 2004) and references

therein.
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Navarro et al. (2004) wrote “adjusting the parameter [n] allows the profile to be

tailored to each individual halo, resulting in improved fits”. Such a breaking of

structural homology (see Graham & Colless (1997) for an analogy with projected

luminosity profiles) replaces the notion that a universal density profile may exist

(Merritt et al., 2006).

Hence, this model rejects the existence of a universal density profile, breaking the

structural homology.

In our fitting process we will need to normalize the mixture model integrating

the di↵erent cluster components. This can be done analytically as explained in

Retana-Montenegro et al. (2012). We know that the total mass enclosed by the

halo is

M = 4⇡⇢eh
3n�(3n) (5.17)

where h = re/d
n
n. If we are interested in integrating the mass contained within a

radius r, we can obtain it through the variable s = dnnr/re and

Mr = M
⇣
1� �(3n, s1/n)

�(3n)

⌘
(5.18)

Using this value is a key element to perform a satisfactory fitting of our model.

Hernquist model

The other family of models we considered is the Hernquist family (Hernquist,

1990), a generalization of the Ja↵e’s profile (Ja↵e, 1983). The shape of this model

is determined through three parameters (↵, �, �) which determine the shape and

slope of the profile. The density curve is described here by a double power-law

model with variable slopes:

⇢(r) = ⇢s2
(���)/↵

⇣
r

rs

⌘��h
1 +
⇣
r

rs

⌘↵i(���)/↵
(5.19)

where ⇢s is the density at the scale radius rs. These marks the center of the

transition region between the inner and the outer power law having slopes of ��

and ��, respectively. The parameter ↵ controls the sharpness of the transition.
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Certain works (Graham et al., 2003, Klypin et al., 2001) found degeneracies when

all five parameters are allowed to vary. Merritt et al. (2006) recommend instead

to fix ↵ = 1 and � = 3, which leaves

⇢(r) =
⇢s23��

(r/rs)�(1 + r/rs)3��
(5.20)

Depending on the values given to the � parameter we obtain a di↵erent inner

profile. For � = 1 we have the Navarro-Frenk-White (NFW) profile (Navarro

et al., 1995). This is one of the most commonly used profiles due to its e�ciency

at modeling dark matter halos and galaxy clusters (Bertone, 2010, Jing, 2000,

Klypin et al., 2002), despite its steep profile for small distances, which could be

in contradiction with the expected flat distribution (Navarro et al., 1996, Schaller

et al., 2015).

However, while the Einasto profile has a finite value at ⇢(0) and finite mass for

infinite radius, the Hernquist models do not satisfy any of these conditions. The

non integrability of the NFW profile prevents it from being used as a probability

density function, as we need in the construction of Mixture models. In addition, for

a (1, 3, �) profile, we do not have a analytic expression of the halo mass contained

within a given radius, which forces us to numerically integrate the mass under the

profile. The high computation costs greatly hinders the fitting of the model, not

allowing us to fulfill our fitting and residual analysis procedure.

For this reason, after trying a (1, 3, �) profile, we used NFW profiles (� = 1), which

still inherit the problems of the general family but provide an analytical integrable

expression for the halo mass at its virial radius (Cooray & Sheth, 2002). How-

ever, the obtained Mixture model doesn’t satisfy the residuals tests (section 4.3),

indicating a clear overestimation for the halos and an underestimation for the

background galaxies. The reason why this truncated version of the profile is not

yet satisfactory may reside in the pole around the center. The Maximum Like-

lihood estimator diverges when numerically estimating the parameters of such a

profile. In this case the obtained parameters concentrate the mass of the profile

around the pole, maximizing the likelihood function. A profile truncated around

the pole failed for similar reasons.
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Due to these problems, in this thesis work we use only models based on the Einasto

profile.

5.4.2 Toy models

We will test our fitting procedures and the whole battery of residual analysis

techniques presented in section 4.3 over several self-generated toy models before

trying real data samples. This preliminary analysis will help us to understand the

weakness of our Mixture model algorithm and prevent major uncertainties in our

results and conclusions.

In a cube of side 60 we have placed four di↵erent clusters generated following

Einasto profiles of known parameters through a rejection sampling method. The

input parameters of the samples are summarized in Table 5.1. The relative density

of the clusters is determined by the generation process and the mixture coe�cients

are derived from the number of points per cluster N , the Einasto radius re and the

Sérsic index n. We add as well a population of Poisson distributed points in the

box to be fitted by the background component. Together with this component,

our sample contains 2782 points, with number density 1.29⇥ 10�2. We show the

toy model sample generated this way in Fig. 5.1.

All calculations of this section are done in three dimensions, but we only show the

X vs Y projection to avoid prolixity.

Einasto’s box

We start our MCMC routine sampling the distribution of our parameters. Know-

ing that the sample contains four clusters, an Einasto’s model include 3 location

parameters (x0, y0, z0), plus 2 shape parameters (re,n) per cluster, plus 4 mixture

coe�cients ↵i (↵1 = 1 is fixed but we add the background free mixture parameter

↵c), there are 24 free parameters in total. We run a sampling of 50000 iterations,

enough to picture the distribution of the parametric set. As an example, the Pos-

terior probability functions of the parameters of component 2 are summarized in

Fig. 5.2.

As explained in section 5.2.3, once the MCMC sampling is complete, it provides

us the standard deviation of each parameter. The parameters values shown in
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Figure 5.1: 3D samples of four Einastos’ galaxy clusters with back-
ground.

Fig. 5.2 correspond to the mean of the MCMC distribution, and might di↵er from

the best fit values. However, it is important to su�ciently map the behavior of the

parameters in order to guarantee the robustness of the best fit and its variation.

Finally, we proceed with the optim routine as explained in section 5.2.3, freezing

di↵erent sets of non correlated values each time and improving the best fit sequen-

tially. The final results are included in Table 5.1. We show the true parameters

values used to generate the sample together with the means and standard varia-

tions obtained from the MCMC routine. We add as well the values corresponding

to the Maximum Posterior Estimation (MPE). As expected, the obtained fitted

parameters show a good agreement for the centers of the clusters, but bigger un-

certainties are found for the rest of parameters, and even tensions with the true

values. The errors associated with the estimated number of points per cluster are
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Figure 5.2: Results of the MCMC sampling for our Einasto toy model.
We show the MCMC distribution of the 6 fitted parameters of a Einasto’s
cluster. For simplicity, we show only the distributions corresponding to the
second cluster. The mixture coe�cient ↵ is showed in logarithmic scale.
The left column show the values of the evaluated MCMC chain, in the
center is the MCMC distribution of each parameter and the third column

is the autocorrelation of the chain values.
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calculated as the standard deviation of the estimation of number of points for each

MCMC evaluated parameters set.

Table 5.1: Einasto toy model fitting

True1 Mean1 MPE1 True2 Mean2 MPE2 True3 Mean3 MPE3 True4 Mean4 MPE4

x0 -5 �4.6± 0.2 �4.5 15 15.14± 0.15 15.21 -12 �12.14± 0.14 �12.17 18 18.2± 0.2 18.1
y0 -5 �4.9± 0.2 �4.8 15 15.15± 0.15 15.29 12 12.00± 0.14 12.06 -18 �18.00± 0.2 �17.95
z0 -5 �4.9± 0.2 �4.9 15 15.06± 0.15 15.06 12 12.00± 0.15 11.88 -18 �18.3± 0.2 �18.24
re 7 7.08± 0.18 7.19 5 4.81± 0.11 4.9 6 5.86± 0.1 5.87 4 4.02± 0.15 4.18
n 0.7 0.58± 0.06 0.6 0.5 0.57± 0.05 0.55 0.3 0.32± 0.03 0.32 0.6 0.59± 0.09 0.57
↵ 1 1 1 3.48 3.6± 0.4 3.6 3.24 3.3± 0.3 3.3 2.53 2.4± 0.4 2.4
N 651 647± 28 652 717 713± 28 705 950 945± 30 934 288 287± 19 305

Summary of the MCMC Posterior probability results. Columns 1 shows the true
values used for generating the sample. Columns 2 shows the mean and standard
deviation of the Posterior distribution deduced from the MCMC calculations.
Column 3 shows the MPE parameters. Each group of columns corresponds to a

component. The background component mixture coe�cient has mean
↵c = 0.007± 0.004 (same results are found for the MPE) and number of

estimated points N = 191± 15 (N = 185 for the MPE, true value was 176).

After fitting the model �(r;↵, ✓) = N
M⌃(r;↵, ✓) as explained in section 5.2.3, we

can evaluate the probability of finding a galaxy in a given point given the original

distribution. In Fig. 5.3 we show the projection of the smoothed function �†(u,X)

as introduced in equation 4.31, where we have used a smoothing bandwidth of

! = 3. We can see how regions occupied by clusters are darker than the rest of

the window, since these are the most likely locations for a galaxy to be found.

Now we can perform the di↵erent goodness of fit and residual analysis tests. The

best fit produced information criteria BIC = 16004.2 and AIC = 15861.85. The

amplitude reduction is AR = 0.91, which could be understood as a correct mod-

eling of the 91% of the total data.

The raw residuals are shown in Fig. 5.4 (left). The amplitude of the errors has been

greatly reduced and symmetrically oscillates around 0. Althugh biggest errors are

still correlated with clusters locations, they always show a bimodal pattern between

overestimated (blue) and underestimated (red) values.
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Figure 5.3: �†(u,X) smoothed probability function of the Einasto’s toy
model (in grey). In red, points from the generated halos plus background.

Projection over the Z axis. Bandwidth ! = 3.

The relative errors function e(u) shows the non modeled data (Fig. 5.4). None

of this data is inside the clusters. The biggest non modeled structures are points

from the background. It is known that a Poisson process also shows over- and

underdensities at the right scales. With a constant model, such as the background

component, shotnoise peaks and voids will appear as non modeled structures. This

is the maximum e�ciency we can expect. Once we reach this level, we can say

that no structures of interest are left to model. The di�culty resides in realizing

we have reached this level.

The lurking plots, as introduced in 4.3.1, are shown in Fig. 5.5, integrating the

raw residuals over disjoint sections of the X coordinate. The peaks that this image

is showing us coincide with the locations of the clusters, with much lower values

for regions only occupied by the background.
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Figure 5.4: Smoothed raw residuals s(u) (left, eq. 4.30) and relative
smoothed raw residuals (right, eq. 4.32) of the Einasto’s best fit parameters

for our toy model. Bandwidth ! = 3.
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Figure 5.5: Lurking plot of the Einasto’s best fit parameters for our toy
model. Bandwidth ! = 3.
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Further tests

As expected, this example is satisfactorily fitted and the best fit values are rea-

sonably close to the true values. We can enrich the study of the mixture model-

ing with variations over the original case. We know beforehand that our sample

contains four well defined clusters. However, in the cosmological scenario, de-

ciding the number of components to be included in the model is a delicate task

with decisive consequences in our results. Many di↵erent techniques can be used

to identify overdensities in populations, which indeed are non parametric cluster

finding algorithms, such as the friends-of-friends algorithm or k-means. Density

field estimators, like a Gaussian kernel function, can be used as well. However, it

might be necessary to make use of posterior confirmations.

As introduced in section 5.2.3 The Bayesian and Akaike Information Criteriums

(BIC and AIC) might be used to check the quality of a mixture model fitting

depending on the number of used components. This technique requires to fit as

many models as di↵erent numbers of components are going to be used. For this

reason we calculated these values in the previous examples and we are going to

repeat the analysis over di↵erent modified versions so we can compare. For fitting

the model in these samples we will make use of the Nelder-Mead algorithm only.

Insu�cient cluster components

If we only consider three cluster components in our sample of Einasto’s clusters,

we will obtain a mixture model where one of the clusters is unmapped. In order to

cover the extra density left by the non-existent cluster, the background component

or the closer clusters will increase their density. Since in our example clusters are

clearly separated, it is the background component which has increased its value

from ↵c = 0.007 to ↵c = 0.018, more than twice the original value, which implies

doubling the density of galaxies.

The detection of this lack of fitting due to an underestimation of the cluster com-

ponents can be done using the residuals plots, which clearly show the lack of fitting

as shown in Figs. 5.6 and 5.7. The relative errors function e(u) is specially e↵ective

to separate unmapped components from noise.
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Figure 5.6: �†(u,X) smoothed probability function of the Einasto’s toy
model (in grey). Points from the generated halos plus background in red.

Only three clusters have been used in this model. Bandwidth ! = 3.

Figure 5.7: Smoothed raw residuals s(u) (left, eq. 4.30) and relative
smoothed raw residuals (right, eq. 4.32) of the Einasto best fit parameters
for our toy model. Only three clusters have been used in this model.

Bandwidth ! = 3.
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Finally, the information criteria show worse values than in the previous example

due to a smaller likelihood value, with BIC = 18102.87 and AIC = 18209.62,

confirming that the presence of a fourth cluster component was needed. Properly

understanding this trivial example with a toy model will be of great help with

more complex cases.

Excessive cluster components

Alternatively, we can fit the data sample with an excessive number of cluster

components. In this case, unnecessary components will show parameters with

higher error bars and a much smaller mixture coe�cient compared with the rest of

components. The contribution of the extra component would be probably confused

with that of the background component, a flat and wide profile shape. The center

of this component highly dependent of the initial parameters. After trying several

tryouts, we sometimes found this component located around an equidistant point

to the rest of the clusters, and sometimes cornered against the borders of the

window.

While the BIC has a bigger value when an unnecessary component is introduced,

the AIC is slightly smaller. In principle, it should be understood that adding an

extra component was an appropriate decision, however, we know this is not the

case, which make us realize the importance of never relying on a single goodness

of fit criterium but to test instead as many tools and residual analysis we may

have. The low mass of the extra component made the visualization of functions

�†(u,X), s(u) and e(u) very similar to those of the original example with 4 clusters

and 4 components. For this reason, no images are shown for this case.

Unpredicted structures

The irregularity of galaxy samples demands a preliminary analysis of what happens

when the galaxy distribution includes structures not meant to be mapped by our

dark matter halo profiles. For example, a highly anisotropic elongated structure.

We add around 300 extra galaxies describing a scattered line crossing the window

(Fig. 5.8).

The mixture model of four components might su↵er a perturbation of the cluster

component parameters, specially those situated closer to the new structure. Again,
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Figure 5.8: 3D samples of four Einasto galaxy clusters with background
and a filamentary structure.

it is with the residual analysis that we obtain a clear vision of a lack of fitting

(Fig. 5.10).

The detection of these unmapped structures can be seen in a complementary way.

If the mixture model is properly fitted and the number of cluster components is

the right one, the residuals and the function e(u) should show only noise and non

clustered structures. If these structures are significant, they should prevail over

the noise, and therefore, detectable. This is the same strategy used to detect a

lack of cluster components, but applied on unknown structures. In this case, the

information criteria obtained values BIC = 18653.15 and AIC = 18487.15.

Just in order to see what happens when we add extra components to this sample,

we fit a mixture model of five cluster components. We located the initial values

of parameters corresponding to the new component in the center of the window,

which, after fitting, drift to an intermediate position between the clusters and over

the filamentary structure. As seen in Fig. 5.11, we see how new components are

incapable of properly describe an elongated shape and instead have to adapt its

radius and other shape parameters to the structure thickness.
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Figure 5.9: �(u,X) conditional probability function of the Einasto toy
model with a filamentary structure (in grey). Points from the generated
halos with background and a filamentary structure in red. Bandwidth

! = 3.

Figure 5.10: Smoothed raw residuals s(u) (left, eq. 4.30) and relative
smoothed raw residuals (right, eq. 4.32) of the Einasto best fit parameters
for our toy model. An elongated structure has been added to this sample.

Bandwidth ! = 3.
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Figure 5.11: �†(u,X) smoothed probability function of the Einasto toy
model (in grey). Points from the generated halos with background and a
filamentary structure in red. Five cluster components have been used in

this model. Black cross represents the center of the fifth component.

Figure 5.12: Smoothed raw residuals s(u) (left, eq. 4.30) and relative
smoothed raw residuals (right, eq. 4.32) of the Einasto best fit parameters
for our toy model. An elongated structure has been added to this sample

and five cluster components have been used in this model.
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The residual plots (Fig. 5.12) show how the errors have been reduced around the

new ‘cluster’. The BIC and AIC also showed an improvement in their values,

slightly smaller when no attempt to model the filament is done: BIC = 18470.6

and AIC = 18252.6.

However, it is clear that this kind of structures demand proper models.

Overlapping clusters

Mixture models are specially interesting when used to disentangle di↵erent dis-

tributions mixed together in the same region, where a disjoint partition of the

window (like a hard classification method) would not respect the shape of the dis-

tribution tails. In the above examples, clusters are separated enough to recognize

most of their population. However, Mixture models show the same e�ciency when

two or more clusters share a region of the window with a significant amount of

their volume distribution.

Figure 5.13: Smoothed raw residuals s(u) (eq. 4.30) of the Einasto best
fit parameters for a group of 4 overlapping clusters. Bandwidth ! = 2.
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In order to show this, we have generated four new clusters with close centers,

in such a way that they overlap in the center of the window. The fitting and

posterior residuals analysis show the expected good results. Even when it is hard

to determine to which cluster each point belongs, the volume estimation is correct

and the resulting estimated number of points per cluster is satisfactory. The

results with true values in brackets for the four clusters and the background are:

675 (660), 728 (756), 989 (959), 296 (299) and 187 (200).

In Fig. 5.13 we show the raw residuals plot.

5.4.3 MultiDark simulation

We finally are in position to apply the presented methods on a more complex

dataset. The MultiDark sample presented in section 5.3 will be deeply analyzed

in this section. It can be seen in Fig. 5.14 with abundant structure and variations

in the shape and size of its clusters.

We start with the calculation of the density field, using a Gaussian filter function,

obtaining a list of local maximum points, candidates to become the initial values

of the clusters centers (r0). With bandwidth ! = 1, our examination gives us the

values summarized in Table 5.2. We show only the 11 densest points.

We performed the fitting of a mixture model with number of cluster components

from k = 3 to k = 11, including each time less dens positions. From 3 to 10

we observed a monotonic improvement of both the Maximum Likelihood and the

Bayesian and Akaike Information Criteria. However, components 7 to 11 degen-

erated their best fit parameters n to unphysical values, probably due to the small

number or points around these positions, their proximity to the edge of the win-

dow or an irregular shape of the overdensity. For cluster sized halos, this sample,

n is expected to be below 8 (Merritt et al., 2006), however, we found how in these

low populated overdensities the Sérsic index grows far above that limit, turning

the Einasto profile into a power-law shaped curve. A power-law profile models the

existence of a few points in a small region, concentrating the mass of the compo-

nent in a single location. This does not correspond to the galaxy clusters we aim

to study and we decide to limit the index to n < 30 in our fitting process, avoid-

ing numerical degeneracies. For this reason, and even if the information criteria



Chapter 5. Mixture models 187

Figure 5.14: 3D sample of dark matter particles from the MultiDark
simulation. Units in h�1 Mpc. We use it as a simulation of a galaxy point

process.

supports a higher number of components, we have decided to perform our analysis

with 6 components. For comparison, at the end of this work, we present as well

the same results for 10 components.

The initial values of our parametric set ⇥ includes the local maximum points

of the density field, and starting values re = 1, n = 1 and ↵ = 1. This gives

us 36 parameters to be fitted. As explained in section 5.2.3, it is recommended

to perform an MCMC analysis of the parameters distribution. This allows us

to check of possible multimodalities in our parametric space indicating a lack of

components, ensures a non-pathological distribution of our parameters and gives

us an estimation of the confidence limits.

As an example, we show in Fig. 5.15 the parametric distribution of component 2

(corresponding to point 2 in Table 5.2). For 3.600.000 iterations, we found a good
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Table 5.2: Density field local maximum points

C x y z ⇢ logL BIC AIC
h�1 Mpc h�1 Mpc h�1 Mpc h3 Mpc�3

1 33.52 178.76 99.68 12.71
2 36.74 192.38 98.77 8.92
3 25.98 189.42 98.89 7.78 446.52 �793.7 �880.02
4 38.59 193.83 96.38 3.19 653.91 �1124.44 �1283.81
5 39.36 174.26 97.53 2.77 1022.55 �1815.88 �2015.1
6 20.59 192.61 100.77 1.82 1277.72 �2272.75 �2518.45
7 32.87 185.54 99.919 1.22 1427.59 �2534.27 �2771.17
8 25.21 181.97 95.41 1.06 1566.72 �2766.69 �3037.44
9 33.26 189.79 99.13 1.04 1613.93 �2815.26 �3119.86
10 33.43 172.23 100.21 0.31 1661.33 �2864.22 �3202.66
11 27.22 173.98 96.93 0.30 1673.2 �2842.12 �3214.4

Column C is the number of maxima from the density field (bandwidth ! = 1)
modeled by the Mixture model. Columns x, y and z include the local maxima
points coordinates in the density field sorted decreasingly in density ⇢. Column
logL shows the obtained log-likelihood for the best fit model with C components,
using the local maxima as initial parameters. Columns BIC and AIC are the

corresponding information criteria for the used number of components and logL.

chain mixing, despite the strong autocorrelation (column 3) in parameters re and

log10(↵). Only for log10(↵) (bottom) we reached no stationarity. This parameter

might need a higher number of iterations, since it is more strongly correlated with

the rest of components, or the problem is of a di↵erent nature.

The mean of the parameters Posterior distribution obtained by the MCMC routine

can be consulted in Table 5.3 with error bars. We also include the Maximum

Posterior Estimation.

The background component was fitted with a mixture coe�cient of ↵c = 0.008±
0.004, which means that around 442 galaxies do not belong to any cluster. How-

ever, the big uncertainty of this parameter gives us little confidence on it. After

the analysis performed with the toy models, we have decided to trust the param-

eters obtained as the average of the posterior distributions. Hereafter, all analysis

performed will make use of these values.

The amplitude reduction obtained with this parametric set is AR = 0.72, i.e. a
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Figure 5.15: Parametric distribution of component 2. From top to
bottom: x0, y0, z0, re, n and log10 ↵.
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Table 5.3: MultiDark fitting for 6 components

Mean and standard deviation
C1 C2 C3 C4 C5 C6

x0 33.46± 0.014 36.67± 0.016 26.00± 0.03 38.60± 0.04 39.47± 0.02 20.40± 0.02
y0 178.8± 0.018 192.33± 0.012 189.35± 0.03 193.88± 0.03 174.22± 0.02 192.72± 0.019
z0 99.7± 0.016 98.75± 0.015 98.87± 0.02 96.18± 0.03 97.44± 0.03 100.81± 0.018
re 1.05± 0.04 0.77± 0.05 1.11± 0.07 0.75± 0.08 0.90± 0.1 0.56± 0.08
n 2.4± 0.19 3± 0.3 2.5± 0.25 2.2± 0.4 3.2± 0.6 3.2± 0.9
↵ 1.5± 0.9 2± 1 0.75± 0.4 0.7± 0.5 0.4± 0.3 1
N 615± 22 351± 19 373± 19 100± 11 123± 12 71± 8

Maximum Posterior Estimation
x0 33.51 36.7 26.05 38.59 39.43 20.36
y0 178.81 192.33 189.34 193.86 174.24 192.71
z0 99.69 98.72 98.87 96.17 97.48 100.85
re 1.09 0.8 1.05 0.79 0.73 0.38
n 2.7 3 2.8 3.3 2.0 3.5
↵ 0.52 0.79 0.36 0.23 0.31 1
N 598 376 391 106 100 56

Best fit estimation of the 6 component Mixture model parameters for the
MultiDark sample. Component 6 has been used as the first component in the

model, and therefore ↵6 = 1. Top: Mean and standard variation of the posterior
distribution. Background component has ↵c = 0.008± 0.004, 442± 26 galaxies.
Bottom: maximum posterior estimation. Background component has ↵c = 0.008,

453 galaxies.

72% of the data is properly modeled. In Table 5.3 we see that re and n values

are around the expected physical values, with Einasto radii around 1h�1 Mpc and

Sérsic index around 3. Merritt et al. (2006) found similar values for cluster size

halos. We appreciate how the mixture coe�cients ↵i and the estimated number

of particles per cluster N are generally correlated with the densities in Table 5.2.

The radii re and the Sérsic index n, the shape parameters, are uncorrelated with

this table.

In Fig. 5.16 we compare the data density field (�⇤(u,X), left) with our smoothed

model (�†(u,X), right) where we can see a clear agreement, both in the distribu-

tion and size of the halos. The main structures are mapped and the amplitude

of the model is similar to that of the data density field. The main di↵erences

between data and model rely on the asymmetry of the real structures, di�cult to

describe with spherical halos. In addition, the data density field maps the shot

noise corresponding to the background, while our constant model can only reach
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Figure 5.16: Left: �⇤(u,X) density field estimation. Right: �†(u,X) of
the MultiDark sample with our Mixture model (6 components). Dark area
indicate higher density field or conditional probability of being occupied
by a point. Densities showed in logarithmic scale for clarity. Smoothing

bandwidth is ! = 1. Values summed over dimension Z.

this level of detail.

The residuals plot (Fig. 5.17, left) shows a significant reduction of the data ampli-

tude, satisfactorily modeling the cluster components. Errors are distributed with

mean 0, and most clusters have underfitted and overfitted regions, as analyzed in

section 5.4.2. Bad fitting happens with the biggest clusters (components 1 and 3),

which show the characteristic double (red and blue) pattern. However, this is an

indicative of a good fit, where the model has found and mapped the structures,

minimizing the errors around the component. Nevertheless, the relative errors

(Fig. 5.17, right) show a lack of fitting for those structures which count with no

component in the model to be described by, mainly the overdensities correspond-

ing to peaks 7, 8 and 10 in Table 5.2 (big red spots). As explained, we tried to

include these structures in the model but the Einasto profiles were not able to

describe them satisfactorily. The e(u) function is a very useful tool to discover

those structures that have not been described by the model.

The presence of each cluster component and their fitted radii can be clearly seen

in Fig. 5.18. This result can be reproduced using rejection sampling techniques, as

we did to generate the toy models. Using the fitted parameters, we can generate

spherical dark matter halos centered at the same place that the original halos, with
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Figure 5.17: Smoothed raw residuals s(u) (left) and relative residuals
e(u) (right) of the MultiDark sample with our Mixture Model. Smoothing

bandwidth is ! = 1. Values summed over dimension Z.

shapes following the estimated re and n and populated with the deduced numbers

of particles N . We show this in Fig. 5.18 together with the real sample (left) so

they can be compared. The overall agreement is very satisfactory, reproducing the

clusters with close shapes and sizes. It is with the background component where

we detect an excess of galaxies. The absence of peaks 7, 8 and 10 in our model

might be the cause of overpopulating the background with galaxies that do not

belong to any component.

The quality fit of each cluster can be checked using our estimations of their density

profiles. As an interesting example, we compare the profile density curves of

clusters 2 and 5. These clusters are located close of one another in the top right

corner of the image, and their profile curves rapidly overlap. The contribution of

each cluster to the profile curve of its neighbor can be easily inferred and isolated

in Figs. 5.19. As explained in section 5.2.2, given a Mixture model and one of

its components, we can calculate the fitted parametric density profile of a single

component (⇢̄i(r� r0; ✓), in green) or the same density profile when the whole

model is taken into account (P̄i(r� r0; ✓), in blue). This calculation does not

require any additional fitting.

The red line (P̄i) follows remarkably well the empiric profile, coinciding with the

green one for short distances. As can be seen, the empiric profile (black circles)

shows a bump in this density around r = 4h�1 Mpc, the distance that separates



Chapter 5. Mixture models 193

Figure 5.18: Left: Clusters and fitted Einasto radii of the MultiDark
sample with our Mixture Model. Cluster components are sorted as in Ta-
bles 5.2 and 5.3. Right: Particle sample generated with rejection sampling

method following the best fit values of Table 5.3.
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Figure 5.19: Density Profile curves of components 2 (left) and 4 (right).
Black circles represent the densities at the galaxies locations, the red line
is the density profile of the whole Mixture Model (P̄i(r� r0; ✓)) and the
green line is the density profile of each isolated component (⇢̄i(r� r0; ✓)).
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the center of components 4 and 5. This bump is the contribution of each cluster

to the other cluster density profile, and it can be separated making use of our

best fit Mixture model. The green line (p̄i) separates from the total profile P̄i

after the contribution of neighboring structures is significant. Mixture models

allow us to calculate the real profile of clusters beyond the limits of their empirical

profile. This can be used to obtain a better understanding of objects with strong

interactions with neighbors.

Regarding the initial decision of fitting a 6 or more than 6 cluster component

model, we state that this is the best option, since all fitted parameters were inside

the expected values for halos of this size. However, 10 components could be

an interesting choice as well, based on the minimum reached by the Bayesian

Information Criteria, despite the odd behavior of the Sérsic index n. In Table 5.4

and Fig. 5.20 we show the results for a 10 components Mixture model.

Table 5.4: MultiDark fitting for 10 components

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

x0 33.46 36.66 26.00 38.59 39.47 20.41 32.80 25.08 32.69 35.48
y0 178.8 192.33 189.35 193.87 174.22 192.72 185.50 181.84 189.95 174.64
z0 99.70 98.76 98.88 96.18 97.44 100.81 100.05 95.20 99.04 99.09
re 1.12 0.83 1.25 0.80 1.03 0.60 0.74 0.71 0.46 3.00
n 2.54 2.97 2.52 2.04 3.13 8.76 26.70 25.17 26.82 0.09
↵ 1.91 2.34 0.83 0.93 0.48 1 0.15 0.14 0.25 0.04
N 621 336 380 100 135 87 37 30 15 57

Best fit estimation of the 10 components mixture model parameters for the
MultiDark sample. Background component has ↵c = 0.08, 284 galaxies.

The similarity of all values for components 1 to 6 with those from Table 5.3 shows

that the new clusters do not significantly a↵ect the rest of the structures. As said,

notice the odd values for n in components 7 to 10.

The simulation of our data (Fig. 5.20, bottom right) is now much closer to the

MultiDark pattern. The 10th component (number 0 in Fig. 5.20, bottom-left) was

meant to model the concentration of points close to the bottom border. However,
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Figure 5.20: Top left: �⇤(u,X) density field estimation (same as in
Fig. 5.16). Top right: �†(u,X) of the MultiDark sample with our Mix-
ture model (10 components). Dark areas indicate higher density field or
conditional probability of being occupied by a point. Densities showed
in logarithmic scale for clarity. Middle left: smoothed raw residuals s(u).
Middle right: relative residuals e(u) (smoothing bandwidth is ! = 1, values
summed over dimension Z). Bottom left: Clusters and fitted Einasto radii
of the MultiDark sample with our 10-component Mixture model. Cluster
components are sorted as in Table 5.4. Bottom right: Particle sample
generated with rejection sampling method following the best fit values of

Table 5.4.



Chapter 5. Mixture models 196

due to its irregular shape and the proximity to the border, this component degen-

erated into an intermediate position between the group of particles and component

1, reducing its contribution to the mass of the model with a low mixture coe�cient

(↵10 = 0.22) and a wide radius (re = 0.42). That clearly states that component

10 should not be considered despite the information criteria.

5.5 Conclusions

In this chapter we have presented and tested the Mixture Modeling technique, a

modeling and data mining method capable to classify structures which are not

clearly separated. Such a tool is of major interest to the analysis of galaxy struc-

tures at a wide range of scales, where di↵erent objects mix and it is crucial to

understand their coupling. From galaxy satellites to subhalos, these structures ex-

tend their limits beyond the limits of their neighbors, deeply a↵ecting the nature

of other objects.

Hard classification methods, such as friends-of-friends and k-means are unable to

realistically classify this kind of configurations, forcing every element (particle or

galaxy) to belong to one and only one component. With Mixture modeling we

classify the points in a soft way, which means that the membership of a particle

to a given component is a probability. This opens the door to the application of

the abundant point process methodologies and results, the probabilistic analysis

of point patterns.

In this initial work we have chosen to model the galaxy clusters making use of a

high density dark matter simulation, MultiDark, which contains the perfect sam-

ples both for testing and proving that results of physical interest can be obtained.

Galaxy clusters have been modeled using the dark matter Einasto profile. This in-

troduces the parametric modeling, and therefore, a direct method of synthesizing

the relevant properties of our studied clusters.

The parametric soft classification method of Mixture models includes further ap-

plications, such as the generation of probabilistically equivalent data samples or

the isolated analysis of components, which allows us to understand the nature of

our objects in mixing environments.
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In order to continue this work, we plan to classify the distribution of galaxies in

the local universe. Reliable results require high quality data, with precise redshift

estimation and a high density of particles. We expect to find these conditions in

the recently published catalogs of the nearby universe (Tempel et al., 2016). The

study of satellite galaxy and their interaction with the central galaxy can be also

dealt by Mixture models. As an improvement of the model, we plan to include

non spherical profiles, for example with the inclusion of elongated ellipsoids (Kuhn

et al., 2014).

The results shown in this chapter will be published in Hurtado-Gil et al. (in

prep.a).





Chapter 6

Conclusions

In this thesis work we have studied the galaxy distribution using point process

analysis techniques. Making use of three possible approaches, summary statistics,

data mining and modeling, we have been able to obtain relevant conclusions about

the galaxy distribution in the universe, as well as to develop new methodologies

that allow us to analyze in detail the galaxy structures and interaction. The main

conclusions of this work are as follows.

Using data from the Sloan Digital Sky Survey (Blanton et al., 2005), we performed

a blind analysis of the best fit of the observational distribution of Counts-in-Cells

(Chapter 2). The analysis found that the modeling of such distribution has no

clear answer. For cells of radii 12 and 24h�1 Mpc, the Log Normal distribution

plus a bias parameter is the best known distribution at representing this statistic of

the galaxy distribution. The Log Normal distribution, proposed by Coles & Jones

(1991), is a non linear modification of the Gaussian distribution. However, it was

found that its fit to the galaxy distribution was inadequate, overcome by other

proposals such as the gravitational quasi-equilibrium distribution (GQED, Saslaw

& Hamilton (1984)) or the negative binomial distribution (NBD, Carruthers &

Duong-van (1983)). In the recently published work by Arnalte-Mur et al. (2016),

the authors use the Log Normal distribution for modeling the Dark Matter distri-

bution in the universe and modify it with an additional bias parameter to model

the galaxy distribution. However, for cells of radius 6h�1 Mpc, our �2 analy-

sis found no clear answer, since the best fit was obtained by the NBD and the

Weibull distribution (an original contribution of this work) depending on redshift
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and limit magnitude. In a future work we will include an hypothesis test in order

to discriminate the best fitting distribution in terms of information criteria.

The second summary statistic used in this work is the projected correlation func-

tion (Chapter 3). Using data from the ALHAMBRA survey (Moles et al., 2008,

Molino et al., 2014), we have been able to discover new aspects of the behavior

of galaxies at scales never observed before with these data quality conditions. Its

powerful photometry provides a reliable estimation of the galaxy redshift for ob-

jects occupying the inner parts of galaxy clusters and groups. The analysis of these

populations by means of the projected correlation function reveals stronger cluster-

ing at scales smaller than rp ⇠ 0.2h�1 Mpc than the expected from the power law

trend. This distance indicates a separation region, where physics from the inside

of galaxy clusters strongly a↵ects aggregation. Regarding the redshift evolution,

we have been able to state that the projected correlation function decreases its

amplitude with redshift, breaking the power law trend found at low redshift into

the two mentioned regimes at higher redshifts. Using the template classification of

the ALHAMBRA survey, we segregate our population into ‘star-forming’ and ‘qui-

escent’ galaxies, reproducing the same calculations. This showed how quiescent

galaxies present higher levels of clustering at every scale range, but it is among

the star-forming ones that the double slope trend is maintained. This is a new

indication of a di↵erent clustering behavior depending on galaxy spectral type.

The galaxy bias presents similar results, with higher values for quiescent galaxies

and increasing with redshift, while star-forming galaxies show no evolution of its

lower bias.

As a future work we expect to develop a modification of the correlation function

that could make full use of the photometric redshifts. These redshifts measure-

ments, the zPDZ, contain the posterior information of every estimated galaxy

redshift. Coming photometric galaxy surveys, such as JPAS (Benitez et al., 2014),

will allow us to extract more reliable measurements of the galaxy correlation with

this probabilistic approach.

The second and third parts of this research work deepen in the field of point pro-

cess statistics, experimenting with methodologies applied for the first time in the

cosmological scenario that are allowing us to reveal unknown features of the galaxy

distribution. We have developed the methods in more complex situations than in

previous works, such as three dimensions geometries, or created new functions of
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interest to understand the point processes underlying the galaxy structure. These

tools have been mainly tested in well known environments, such as highly reliable

galaxy surveys or galaxy simulations.

In chapter 4, the first of these new methodologies is the Gibbs models, probability

functions that describe the behavior of a point process in terms of the interactions

between its elements. Three di↵erent models have been tried: Geyer, Fiksel and

the Power Law model. These distributions create clustered patterns that can be

of interest for our galaxy populations. After applying them over samples from

the SDSS-DR8 and the LasDamas simulations, we observed how around 50% of

the data content was described by the model. Gibbs modeling describes a point

process through the intrinsic behavior of its elements, building the structures as a

consequence. In addition, the information contained in a Gibbs model is general

and local at the same time. The estimated parameters of these models provide us

with a summary of the pattern general properties, while a map of the whole process

makes the analysis of peculiar structures possible. In the future we expect to

improve this modeling technique with more advanced models and fitting algorithms

to obtain more accurate descriptions of the galaxy large-scale structure. The

development of an e�cient model for the galaxy distribution based on intrinsic

properties, such as interaction, will allow us to build realizations of the galaxy

point process. This could be used to increase our understanding of the galaxy

distribution as well as to complete masked surveys or generate simulations.

The opposite kind of modeling was attempted in chapter 5, where Mixture mod-

els used describe broad structures. These models are a combination of di↵erent

research fields in statistics and can be used for mining our data as well. They

gather the bump hunting techniques with the multivariate analysis and charac-

terization of spatial structures. Mixture models were designed to simultaneously

model di↵erent structures sharing a common environment. This alone already

implies localizing these structures, but it also implies characterizing the found

structures with parametric models. Once a Mixture models is fitted, we have a

soft classification algorithm, which assigns probabilities for every particle to belong

to a certain structure.

This is of great interest for astrophysics, where, usually, structures and datasets

interact and cannot be separated cleanly. If, in addition, we can model these

objects while classifying them, the Mixture models can be a tool of high interest.
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We tried it with success over a particle sample from the MultiDark simulation

and we have been able to identify its content and modeling the structure. Again,

modeling allows a localized analysis and separation of overlapped structures where

conventional non-parametric techniques are ine�cient. We plan to continue this

work applying it over real data from nearby universe surveys, where the redshifts

quality and completeness are favorable.

Through this thesis work, we have been able to state that point process analysis

is an excellent strategy for the analysis of the galaxy distribution. Using di↵erent

methodologies of summary statistics, modeling and data mining, we start a work

conducting to a better description and understanding of the structures formed by

galaxies.



Part IV

Appendices
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‘per açò fem aquests Mil proverbis ab que donem doctrina com hom se sapia

haver en la fi a la qual es creat’

Ramon Llull



Appendix A

Agregació de galaxies:

un procés puntual

Aquest és un resum dels continguts de la present tesi doctoral. Les referències a

taules i figures corresponen a les mostrades en el cos del text.

A.1 Introducció

La cosmologia és la ciència que estudia l’origen i la construcció de l’Univers en

el seu conjunt. Aquesta disciplina compta amb antecedents històrics remot́ıssims

que evidencien la seua profunda vessant filosòfica. La cosmologia moderna però,

situa els seus origens a principis del segle XX, gràcies a diversos avanços tècnics

i teòrics que ens han permès estudiar els objectes que constitueixen l’Univers a

grans escales.

L’elaboració dels grans cartografiats de galàxies, mapes que contenen les localitza-

cions espacials i les principals propietats observables dels astres, ens han propor-

cionat una visió de l’estructura a gran escala, o Large Scale Structure en anglès, del

contingut de l’Univers contrastable amb els models teòrics. Un dels enfocaments

més efectius a l’hora d’estudiar aquestes cartografies és l’estad́ıstic, en particular,

l’anàlisi de processos puntuals.
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Aquest procediment entén una distribució de punts äıllats en l’espai o el temps,

per exemple, galàxies en l’Univers, com la realització d’una variable aleatoria.

Poderoses ferramentes s’han desenvolupat en aquest camp, permetent obtindre una

descripció completa de molts dels fenòmens que hi tenen lloc a aquestes escales.

A.1.1 El model cosmlògic estàndard

El model cosmològic estàndard, anomenat ‘⇤- Matèria Fosca Freda’, o ⇤-CDM

en anglès, és el model que generalment s’accepta en l’actualitat per a entendre el

contingut i l’evolució de l’Univers. Aquest model s’ha anat desenvolupant al llarg

del segle XX però és apartir del 2000 quan es dóna la versió vigent.

Aquesta teoria estableix que una ‘Gran Explosió Calenta’ (o Hot Big Bang) inicial

suposà l’inici de l’Univers que coneguem, alliberant tota la matèria i energia que en

forma part. Aquesta teoria es construeix sobre tres punts: el Principi Cosmològic,

que estableix que la distribució de matèria de l’Univers és uniforme i isòtropa, la

teoria de la Relativitat General, que descriu la dinàmica gravitatoria, i per últim,

l’observada expansió de l’Univers des d’un origen més dens i calent. Aquest model

ha resistit tres evidències observacionals que li donen força: la llei de Hubble,

que relaciona la distància de les galaxies amb la seua velocitat de recessió (la

velocitat amb que s’allunyen les unes de les altres), la detecció del Fons Còsmic de

Microones, o CMB en anglès, i la mesura de les abundàncies d’elements lleugers.

Amb la teoria de la Relativitat General d’Einstein i el Principi Cosmològic es pot

construir la mètrica de Friedmann-Lemâıtre-Robertson-Walker (FLRW, equació 1.2),

una manera de calcular distàncies en l’espai-temps. Aquesta ferramenta matemàtica

ens permet modelitzar l’expansió de l’Univers a través del factor d’escala a(t), que

descriu l’expansió de l’espai amb el temps. Açò afecta com percebem les distàncies

entre els objectes o com augmenta la longitud d’ona d’un fotó. En aquest últim

cas parlem del redshift, la reducció de la freqüència d’un fotó rebut en referència

a la que tenia en el moment de ser emès.

Quan forcem aquesta geometria a ajustar-se a les observacions trobem un Univers

caracteritzat per una topologia quasi plana i amb només un ⇠ 5% de matèria

bariònica o ordinaria. El ⇠ 95% restant del contingut de l’Univers està compost

per les components fosques. Un ⇠ 70% correspon a l’‘energia fosca’, una espècie
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d’energia del buit que empeny l’Univers a expandirse acceleradament. L’altre

⇠ 25% és ‘matèria fosca’, aquesta component és necessaria per tal d’entendre el

comportament dels astres en escales superiors a les d’una galaxia, ja que sense ella

entrariem en conflicte amb les lleis de la Relativitat General.

A.1.2 La distribució de galàxies com a procés puntual

Una simple anàlisi ocular de la distribució de les galàxies en l’espai revela com

aquesta està lluny de ser uniforme fins i tot a escales de l’ordre dels 150 h�1

Mpc, quan comença a ser verificable el Principi Cosmològic. A escales menors la

gravetat actua com a principal motor de la dinàmica de les galàxies, que les agrupa

en estructures o pertorbacions. És en aquest context que fem servir l’estad́ıstica

de processos puntuals per a descriure els patrons formats.

La teoria de processos puntuals estableix que coneguem tota la informació contin-

guda en un procés puntual quan som capaços de predir el nombre de punts que

ocupen qualsevol subconjunt obert de l’espai on habiten. No obstant això, assolir

aquest grau de coneixement sobre una població pot ser quasi impossible, de man-

era que s’utilitzen multitud d’estad́ıstics que incrementen la nostra comprehensió

de les dades i els seus patrons des de diversos angles. Considerem tres possibles

aproximacions o estratègies. L’estad́ıstica de resums descriu amb generalitat la

distribució formada per les galàxies, donant-nos informació corresponent a trets

de conjunt, atribuibles a tota la població i no a un subconjunt dels punts. La

mineria de dades ens permet äıllar i identificar membres de la mostra poblacional

que satisfan unes determinades propietats, sovint una combinació de la seua dis-

tribució geomètrica o altres trets. I el modelatge, la definició d’un model que

efectivament sintetitza i justifica la localització de cada galàxia mitjançant l’ús de

funcions de probabilitat.

A.1.3 Objectius d’aquesta tesi

En aquesta tesi ens proposem aplicar diverses tècniques d’anàlisi de processos

puntuals sobre la distribució de galàxies. Farem servir mètodes corresponents a

totes tres aproximacions, alguns dels quals desenvolupats per a ser aplicats per

primera vegada en cosmologia.
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Les oportunitats que ofereixen aquestos anàlisis són abundants. La parametrització

d’aquestes quantitats ens ajuda a comparar els resultats dels estimadors que fem

servir, dibuixant universos preferibles. Aquestos resultats poden tenir implicacions

de pes en la construcció de simulacions de distribució de matèria o ajudar-nos a

realitzar prediccions sobre les estructures que trobarem amb les noves generacions

de cartografiats de galàxies. Entendre correctament i poder manipular expresions

que descriuen la distribució de galàxies és fonamental per a descobrir allò que en-

cara no hem vist. Tots els anàlisis realitzats en aquesta tesi s’han efectuat amb

metodologies adaptades a tres dimensions espacials.

En els caṕıtols 2 a 5 presentem quatre treballs integrats en els enfocaments es-

tad́ıstics abans descrits. Cada caṕıtol conté les metodologies i dades que fem servir

en la nostra recerca. En el caṕıtol 6 presentem les principals conclusions.

En el treball sobre recomptes en cel·les sobre dades del catàleg NYU-VAGC

(capitol 2) obtenim una descripció de la freqüència de galàxies per volum, un de-

scriptor bàsic però central en la teoria de processos puntuals. Tot i que el càlcul

per se d’aquest estad́ıstic ja és informatiu, es poden obtindre més conclusions a

través de l’ajust de diverses distribucions de probabilitat a les freqüències obser-

vades. Els parametres obtinguts constitueixen indicadors f́ısics de la naturalesa

del procés, i l’obtenció d’un ajust de qualitat ens pot permetre generar simulacions

de galaxies més fiables en el futur.

Una de les tècniques més emprades i més efectives en la cosmologia d’estructures

a gran escala és la funció de correlació, amb les seues diverses variants. En

la secció 3.1 farem servir la funció de correlació projectada, concebuda per a tre-

ballar sobre dades de catàlegs de galàxies on trobem problemes de distorsions

de redshift. Amb les dades del catàleg ALHAMBRA però, tenim l’oportunitat

d’estudiar l’agregació de les galàxies a escales molt menors a les estudiades amb

anterioritat, obtenint una clara imatge del seu comportament a distàncies de sep-

aració inferiors als ⇠ 0.2h�1 Mpc, quan les galaxies interaccionen f́ısicament i

no només gravitacionalment. A més, la fotometria d’ALHAMBRA ens permet

fer aquest anàlisi amb segreació espectral, analitzant les diferencies entre galàxies

amb alta i baixa formació estelar.

En la segona meitat de la tesi iniciarem l’estudi de nous mètodes per a la cos-

mologia, amb la intenció d’anar més enllà dels estad́ıstics de resum presentats fins
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ara. Són models complets de la distribució de galàxies, que permeten descriure al

complet una població. Els processos de Gibbs descriuen la distribució de punts

a partir d’una funció d’intensitat i una funció d’interacció entre punts. Aquesta

funció d’interacció descriu el comportament d’un punt o galàxia donat el seu en-

torn, cohesionant tota la població sota un mateix model. En el nostre cas, aquesta

interacció és la gravitatòria, de tipus atractiu, cosa que hauria de quedar reflectida

en l’ajust paramètric.

Finalment, amb l’ús dels models de mescla, farem servir un mètode que uneix

el modelatge i la mineria de dades. Aquestos models conceben la distribució

de les galàxies com un conjunt de components amb identitat pròpia però amb

interacció. Aquestos components corresponen a modelatges previs d’estructures de

galàxies, tals com els cúmuls de galàxies. Amb l’ajust adequat d’aquestos models,

obtenim una classificació de les galàxies en els seus cúmuls, que caracteritzem

paramètricament. Açò ens obrirà les portes a abundants aplicacions.

Amb aquestos quatre treballs demostrem que l’anàlisi de la distribució de galàxies

com a procés puntual no només és possible sinó molt efectiu, proporcionant-nos

abundant informació de rellevància.

A.2 Ajust de recomptes de galàxies per cel·les

El recompte de cel·les consisteix a contar el nombre de galàxies que es troben a

l’interior d’una cel·la definida i situada per l’usuari. Les dades que farem servir

en el nostre anàlisi corresponen al NYU-VAGC (Blanton et al. (2005), veure

secció 2.3.1), un catàleg que unifica observacions del Sloan Digital Sky Survey

(SDSS) i el 2 Micron All Sky Survey (2MASS). Aquest catàleg proporciona obser-

vacions molt fiables del redshift que permeten una bona estimació de la distància

a que es troba cada galàxia. Amb aquesta informació podem construir una repre-

sentació en tres dimensions de la distribució puntual de galàxies.

Les dos poblacions sel·leccionades cobreixen diferents rangs de redshift. La primera

inclou 113483 galaxies amb redshifts en 0.05 < z < 0.106 i magnitud absolutes

Mr < �20. La segona, 76688 galaxies amb 0.075 < z < 0.165 i Mr < �21.

Les cel·les que farem servir seran esferes de radis 6, 12 i 24 h�1 Mpc distribuides

uniformement sobre el mateix volum que ocupa el catàleg. El recompte es realitza
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senzillament calculant quantes galàxies estan a una distància del centre de la cel·la
menor que r.

Per a realitzar aquest anàlisi correctamente cal tenir en compte diversos aspectes.

Els cartografiats sovint venen acompanyats d’una finestra, una regió del cel definida

geomè- tricament on s’inclouen aquelles regions que han pogut ser observades

eficaçment, sense interferències d’estrelles brillants o problemes instrumentals, de

manera que desconeguem allò que s’hi troba a fora. Quan contem el nombre de

galàxies situades a l’interior d’una cel·la hem de tenir en compte el seu volum

efectiu dins la màscara, i modificar adecuadament el nostre resultat. Acceptarem

només aquelles cel·les que hagen perdut per efectes de finestra un màxim del 5%

del seu volum, que serà compensat multiplicant el nombre de galàxies que conté

per la inversa d’aquest volum faltant.

Una vegada corregit el recompte de galàxies pels volums efectius de les cel·les
obtenim la funció de densitat de probabilitat del recompte fV (N) normalitzant

l’histograma de freqüències.

A.2.1 Funcions de distribució

Amb els ajustos de les funcions fV (N) obtenim una caracteritizació de la dis-

tribució del recompte de cel·les que ens ajuda a entendre el seu comportament.

L’ajust es realitzarà amb la �2, minimitzant l’expressió
PN

i=1(fV (N)�f✓(N))2/�2

sobre els paràmetres ✓. Les nostres funcions de distribució són:

Distribució Gravitacional de Quasi-Equilibri (GQED)

Aquesta distribució, proposada per Saslaw & Hamilton (1984) és una descripció

termodinàmica del fluid de galàxies. Els seus paràmetres lliures són N̄ = n̄V

on n̄ és la densitat de galàxies de la mostra i V és el volum de la cel·la, i b, un
paràmetre que descriu el nivell d’agregament de la mostra. La seua funció de

densitat de probabilitat és

fV (N) =
N̄(1� b)

N !
[N̄(1� b) +Nb]N�1e�[N̄(1�b)+Nb] (A.1)
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Binomial Negativa

Aquesta funció, proposada per Carruthers & Duong-van (1983), s’utilitza comun-

ment en estad́ıstica per a descriure la distribució de punts en caixes. És per tant un

candidat natural per a descriure un recompte per cel·les, tot i que s’ha demostrat

que no és consistent amb la f́ısica de les galàxies. De manera similar a l’anterior,

els paràmetres són N̄ i g, que fa un paper similar a b.

fV (N) =
�(N + 1

g )

�(1g )N !

N̄N (1g )
1
g

(N̄ + 1
g )

N+ 1
g

(A.2)

Log Normal amb biaix

La distribució Log Normal pot utilitzar-se amb éxit per a descriure la distribució no

linial de les fluctuacions de densitat de la matèria fosca (Arnalte-Mur et al., 2016).

Per tal de descriure amb éxit la distribució de galàxies caldrà introduir el biaix

b entre aquestes dos distribucions de matèria. Normalitzant la distribució sobre

l’esperança del recompte de cel·les N̄ obtenim una distribució amb dos paràmetres,

la variància de la distribució de matèria C i el biaix b.

fV (�) =
1p
2⇡H0

exp (�1
2
y2

H0
)

�+ b� 1
(A.3)

on � = N/N̄ , H0 = ln (1 + C) i

y = ln
⇣p1 + C

b
(�+ b� 1)

⌘
(A.4)

Weibull

La distribució Weibull (Weibull, 1951) descriu fenòmens tals com l’esperança de

processos que acumulen probabilitats de mort creixent al llarg de la seua vida útil.

També s’ha utilitzat amb éxit per a distribuir el tamany de part́ıcules formades

per agregació fins a completar el seu tamany final. Nosaltres la farem servir per

primer cop en el context del recompte de cel·les. Els seus paràmetres són l’escala
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�, relacionat amb el nombre de galàxies esperat per cel·la, i la pendent k, que

determina la forma de la distribució.

fV (N) =
k

�

�N � ✓

�

�k�1
e�(N�✓

�

)k (A.5)

A.2.2 Tractaments del errors

Per tal de contrastar la qualitat del nostre ajust és necessari disposar d’una esti-

mació de l’error esperable en les nostres observacions. La variància còsmica que

podem trobar en observar diferents regions del cel corresṕon una font d’incertessa

dins la qual s’han de donar les divergències acceptables entre el nostre model i les

observacions.

Degut a la presència de la finestra farem servir simulacions adaptades a les nostres

dades, com és el cas dels catàlegs LasDamas (McBride et al., 2011). Aquestes són

simulacions de la distribució real de les galàxies però generades computacionalment

respectant les condicions cosmològiques del cartografiat. Imiten les propietats de

les dades del catàleg SDSS, amb l’avantatge que no pateixen els efectes d’una

finestra.

Les variancies trobades en el recompte de cel·les de les realitzacions de LasDamas

ens serviran com a estimació dels errors en la funció de densitat observacional

fV (N).

A.2.3 Resultats i conclusions

Després de calcular les distribucions del recompte de cel·les sobre les dos poblacions
de galàxies amb els tres radis hem procedit a ajustar les funcions anteriors. Aquest

és un ajust cec que busca el millor ajust per a la distribució observacional. Un

model emṕıric que ens done una manera senzilla de descriure la distribució de

galàxies.

El resultats poden consultar-se a la secció 2.6, on mostrem les funcions per al seu

millor ajust i el residu amb la distribució observada.
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L’ajust amb �2 obté els millors resultats per a la distribució Log Normal amb el

biaix, tret del cas de les cel·les de radi 6. Aquest resultat reforça l’interés d’aquesta
distribució per al context cosmòlogic, ja que incorpora la f́ısica pertorbativa del

camp de densitat de la matèria fosca i el biaix amb la distribució de galàxies.

A.3 Correlació de galàxies a escales curtes i seg-

regació espectral

El catàleg ALHAMBRA (Advanced Large Homogeneous Area Medium-Band Red-

shift Astronomical survey, en anglès) (Moles et al., 2008, Molino et al., 2014) és

un cartografiat fotomètric que fa servir 20 filtres de banda estreta més 3 filtres

de banda ampla en l’infrarroig. Aquesta abundant informació ens permet obtenir

imatges de tot el cel alhora que estimar amb alta fidelitat el redshift de cada font

detectada. Aquest és un avantatge considerable sobre els catàlegs espectroscòpics,

on l’estimació del redshift d’objectes angularment propers està limitada. Açò su-

posa que ALHAMBRA és un catàleg d’interés per a l’anàlisi del comportament de

les galàxies a l’interior dels cúmuls.

A més, deduida d’aquesta mateixa fotometria, podem classificar les nostres galàxies

depenent de diverses propietats f́ısiques, i estudiar com canvien les seues distribu-

cions. Quan diferents tipus de punts conviuen en una mateixa població és inter-

essant analitzar-los des l’òptica dels processos puntuals amb marques. Aquestes

marques són propietats no espacials dels punts que ens permeten segregar els

punts en aquelles categories que segueixen un mateix patró o model. És conegut

que les galàxies tendeixen a agregar-se de diferents maneres depenent de diverses

propietats, tal i com són la massa, la lluminositat o el color. Nosaltres, però, anal-

itzarem les diferencies que s’observen entre galaxies de diferents tipus espectrals,

una caracteŕıstica que ve marcada principalment per la seua composició i els seus

nivells de formació estelar.
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A.3.1 El catàleg ALHAMBRA

El projecte ALHAMBRA ha produit imatges d’una secció de 2.381graus2 del cel.

Aquest cartografiat conté de l’ordre de 400000 galàxies, amb una precisió de red-

shift superior a �z/(1 + z) = 0.014. Amb aquestes dades podem construir una

sel·lecció de galàxies que ens permetrà realitzar els anàlisis d’interès. En primer

lloc realitzem un tall en magnitud I < 24 per a garantir la completitud fotomètrica

(I representa al filtre F814W del Hubble Space Telescope) i eliminem els estels.

Una finestra ha sigut especialment dissenyada (Arnalte-Mur et al., 2014) per a

exclure objectes dubtosos. Amb les dades resultants construim 5 subconjunts,

cadascún corresponent a una banda disjunta de grossor 0.15 en redshift des de

0.35 fins a 1.1. Per tal d’assegurar que les 5 mostres són comparables definim

un tall en magnitud superior a MB = �19.36 per al fragment més llunyà i cal-

culem els talls necessaris en la resta per a igualar la densitat d’objectes. Les dades

d’ALHAMBRA contenen també una classificació dels objectes en t́ıpus espectrals,

incloent galàxies el·ĺıptiques, espirals o irregulars. Aquest paràmetre ens permet

separar-les en galàxies amb baixa formació estelar i galàxies amb alta formació

estelar. La classificació final d’objectes pot consultar-se a la Taula 3.1.

A.3.2 La funció de correlació projectada

La funció de correlació de dos punts descriu l’excés o el defecte de correlació entre

les distàncies relatives dels punts. Quan els punts formen grups o cúmuls amb

una densitat superior a la mitjana diem que estan agregats i les seues distàncies

relatives tendeixen a ser menudes. Açò provoca que, comparat amb una població

distribuida uniformement, aquestes distàncies menudes siguen molt més abun-

dants. La funció de correlació de dos punts en processos isòtrops pot definir-se

impĺıcitament com la funció ⇠(r) en l’equació 3.4.

Malauradamente, degut a les distorsions del redshift i a possibles inexactituds en

la seua estimació no podem garantir la isotropia i ens veiem forçats a introduir una

projecció. Açò consisteix en descompondre la distància de separació entre galàxies

en una component paral·lela (r||) i un altra perpendicular (r?) a la ĺınia de visió

de l’observador. Després d’estimar ⇠(r||, r?) segons l’equació 3.13 podem integrar

sobre r|| per tal d’obtenir la nostra funció de correlació projectada w(r?) (veure

equació 3.15).
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El tractament dels errors d’aquesta funció es farà seguint el procediment Jackknife,

on generem noves realitzacions de la nostra població tot eliminant per torns regions

disjuntes de la població original. Aquestes noves mostres s’utilitzaran per a estimar

la variància de les mesures.

A.3.3 Resultats

Els resultats del càlcul de la funció w(r?) sobre les nostres dades ens mostren

una profunda correlació, especialment a escales curtes (r? < 0.2h�1 Mpc), on

la pendent de la corba canvia bruscament, sobretot per a la població de major

redshift. Aquest efecte es pot comprovar adequadament mitjançant un anàlisi de

l’ajust de dues lleis de potència w(r?) = Arb? per a cada tram de la corba. Després

d’estimar el millor ajust per als paràmetres A i b comprovem com les regions de

confiança 1� són clarament independents per al trams de redshift superiors però

convergeixen als inferiors. Açò indica una evolució en la distribució de les galàxies,

des de dos règims d’agregament diferenciats cap a un amb propietats comunes

(veure Fig. 3.12).

És interessant estudiar aquesta dualitat en l’agregament a través de la segregació

de les nostres poblacions (Fig. 3.13). El primer tret que s’observa és la pronunciada

separació de les corbes. Les galàxies amb baixa formació estelar, més velles i

passives, tendeixen a ocupar regions més pròximes al centre dels halos, on tenim

un major nivell de correlació. Les galàxies amb alta formació estelar, més joves i

actives, són dominants en amples regions de baixa densitat. Aix́ı i tot, són aquestes

galàxies, als grups de galàxies blaves, les que contribueixen més intensament a crear

la dualitat d’agregació amb l’escala.

Quan ha sigut possible, hem acompanyat aquestos resultats dels valors obtesos per

altres autors, comparant-los amb els nostres i obtenint una equivalència general.

Açò ha sigut possible només per a escales superiors a 0.1h�1 Mpc, ja que no hi ha

a la bibliografia treballs comparables als nostres resultats en escales curtes.

Dependència del biaix

Un resultat interresant que es pot obtenir a partir de les corbes de la funció de

correlació projectada és la dependència del biaix entre matèria fosca i bariònica.
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S’ha comprovat una desviació entre la distribució teòrica de la matèria fosca i la

distribució observada de les galàxies. Aquest biaix b es defineix com

b =

s
wp(r?)

wm
p (r?)

(A.6)

El nostres models actuals de la distribució de matèria fosca estan basats en les

mesures de les constants cosmològiques de l’experiment WMAP7 (Komatsu et al.,

2011), i els podem generar per a diferents valors del redshift amb el codi CAMB.

Aquestos models però, només són fiables per a distàncies superiors a 1h�1 Mpc,

aix́ı que ajustarem b en el rang 1.0 < r? < 10.0h�1 Mpc. Aquestes quantitats es

mostren en la Fig. 3.16, tant per a galàxies fredes com per a galàxies amb alta

formació estelar.

El resultats mostren una clara evolució per al biaix de les galàxies fredes, creix-

ent amb el redshift de manera similar a com ho farien halos de massa Mh ⇠
1012.5h�1M�. En canvi, per a les galàxies amb alta formació estelar, és quasi

constant, el que enllaça amb l’evolució observada de r0.

Les escales més petites

Degut a l’interès que suposa la posibilitat d’estudiar les correlacions de galàxies

a escales molt petites, hem comparat ALHAMBRA amb altres cartografiats de

galàxies similars. Els projectes COSMOS (Ilbert et al., 2008), DEEP2 (Newman

et al., 2013) i PRIMUS (Coil et al., 2011) són cartografiats fotomètrics que co-

breixen diverses regions del cel. Els catàlegs produits són capaços d’estimar el

redshift d’una gran quantitat d’objectes sense els problemes de l’espectrografia,

que no permeten observar amb presició objectes molt propers angularment. A

aquesta profunditat d’imatge cal afegir la presició amb que mesurem la distància

a les galàxies, on ALHAMBRA ha demostrat ser altament satisfactori.

Tot plegat, comptem amb uns catàlegs que ens permeten estudiar com mai abans

la distribució de les galàxies en aquelles regions on es troben més aprop les unes

de les altres, és a dir, l’interior dels cúmuls de galàxies. A la Fig. 3.9 trobem una

comparació de la distribució del véı més pròxim per als esmentats catàlegs. La

conclusió que hi podem obtenir és que ALHAMBRA i COSMOS contenen dades
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especialment útils per a l’estudi de les correlacions a curta escala. Per al cas

d’ALHAMBRA, ho hem reproduit a les Figs. 3.11 i 3.13, on es recullen els valors

de la funció de correlació per a distàncies de separació inferiors als 200 kpc.

A.4 Modelització amb processos de Gibbs

Els models d’interaccions de part́ıcules són unes ferramentes estad́ıstiques que

comencen a aplicar-se per primer cop en la investigació en cosmologia. Aquestos

models, anomenats processos finits de Gibbs, descriuen un procés puntual com

una funció de probabilitat on la posició d’un element dependrà d’una funció de

densitat, que determina l’abundància de punts en una localització de l’espai, i

d’una funció d’interaccions, que determina la probabilitat de trobar un punt a

partir de la preséncia dels punts vëıns.

Aquesta propietat de determinar la preséncia d’un punt en funció de la distribució

dels voltants, i només d’allò que hi trobem dins d’una determinada àrea, s’anomena

de Markov, i fa referència a una dependència limitada en l’espai en aquells events

que s’han produit dins d’una regió finita, com per exemple una esfera de radi r

centrada en la nostra localització d’interès.

A.4.1 Models d’interacció

Tot plegat, la funció de densitat de probabilitat d’un model finit de Gibbs pren la

forma de l’equació 4.2

f(x1, ..., xn) = ↵

nY

i=1

b(xi)
Y

i<j

h(xi, xj) (A.7)

on b(x) és la funció de densitat i h(xi, xj) és la funció d’interacció, que determina

la probabilitat que se’n deriva de la parella de punts xi, xj . En aquest treball util-

itzarem distribucions que determinen les seues probabilitats a partir de la distància

relativa entre dos punts d = ||xi�xj ||. Aquesta funció h permet classificar els pro-

cessos en tres grans tipus. En primer lloc, els processos de Poisson, on h(u, v) = 1

per a tota parella u, v. Aquest procés no presenta interaccions de cap tipus, i
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els seus punts són independents. Donat que només treballarem amb processos de

Markov, assumirem que h(u, v) = 1 sempre que la distància entre els dos punts siga

major a un radi de correlació. En segon lloc, quan h(u, v) > 1 trobem que el procés

presenta una agregació de punts, i aquestos tendeixen a estar més aprop els uns

dels altres que en el cas Poisson. I en tercer lloc, quan h(u, v) < 1 trobem l’efecte

contrari, on els punts tendeixen a guardar una distància mı́nima de separació entre

ells, el que es coneix com a patró regular.

Per tal de modelitzar la distribució de galàxies hem assumit una funció de densitat

b(x) constant que no privilegie cap regió de l’espai i fins a tres funcions d’interacció

diferents:

Per a una parella de punts u i v, el model de Geyer es defineix amb la funció

h�(u, v) =

8
<

:
�, if ||u� v|| < r

1, otherwise

on � > 1 és el paràmetre d’agregació. Per tal de garantir la integrabilitat d’aquest

model cal imposar un ĺımit superior sat al nombre de parelles d’un punt deter-

minat s(x|X). El valor de la funció d’interacció per a u en el procés X serà

�min(sat,s(u|X)).

El model de Fiksel és un model continu que es regeix amb la funció

ha,(u, v) =

8
>>><

>>>:

0, si d < r0

exp (a · exp (� · d)), si r0 < d < r1

1, si r1 < d

Aquest model compta amb dos distàncies d’interacció: r0 elimina la posibilitat

de formar parelles de punts per sota d’aquesta distància i permet la integrabilitat

del model, r1 funciona com a distància de Markov. Per a distàncies intermitges,

una funció exponencial pren valors més alts quan més pròximes són les parelles de

punts. Els paràmetres a i  determinen la forma del perfil d’interacció.

Finalment, el model de Llei de potència funciona de manera similar al model de

Fiksel però amb un perfil potencial enlloc d’exponencial.
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ha,�(u, v) =

8
>>><

>>>:

0, si d < r0

exp (a · d�b), si r0 < d < r1

1, si r1 < d

amb r0 i r1 com abans i a i b els paràmetres lliures.

Per treballar amb aquestos models però, no farem servir l’expressió A.7 de la funció

de probabilitat, sinó que farem servir la funció condicional de Papangelou, que es

defineix com �(u,X) = f({u} [ X)/f(X), és a dir, la probabilitat condicional

de trobar un punt en u donat X. Aquesta expressió simplifica notablement les

funcions anteriors i elimina la necessitat de calcular la constant de normalització

↵. L’expressió resultant d’aquesta probabilitat condicional pot resumir-se en

�(u,X) = b(u)

nY

i=1

c(u, xi) (A.8)

on c(u, xi) equival a la funció d’interacció evaluada sobre el punt u respecte la

resta de punts d’X.

L’ajust d’aquestes funcions és una tasca complicada que involucra una gran quan-

titat d’evaluacions dels estad́ıstics corresponents a cada model. Malauradament,

la constant de normalització ↵ és generalment intractable, i la impossibilitat de

calcular-la eficaçment ens impossibilita ajustar els nostres models mitjançant la

funció de màxima versemblança. L’alternativa que farem servir és una funció

coneguda com pseudolikelihood (Baddeley & Turner, 2000b, Besag, 1975), una

aproximació de la funció de versemblança. Aquesta funció es pot calcular, en la

seua form logaŕıtmica, com

logPL(✓;X) ⇡
mX

j=1

(yjlog�✓ � �✓) · wj (A.9)

on � es evaluada sobre tot punt deW , tant punts de les dades com localitzacions de

l’espai. Els pesos wj corresponen a cadascún d’aquestos punts i definim yj = zj/wj

on zj = 1 si correspon a un punt de les dades o 0 en cas contrari.
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Per a l’anàlisi de la qualitat dels ajustos tampoc comptem a un mètode conven-

cional i suficient, sinó que farem servir tota una batèria de resultats que ens ajuden

a entendre, sobretot mitjançant visualitzacions dels resultats, la bondat de l’ajust.

D’entre aquestes tècniques destaquem el càlcul dels residus, una estimació de la

diferència entre el nombre de punts en una regió del volum i la seua estimació

amb el model. Quan aquest procediment es realitza sobre regions molt petites és

convenient convolucionar el resultat per un filtre que suavitze la funció resultant:

s(u) =

NX

i=1

!(u� xi)�
Z

W

!(u� v)�̂✓(v)dv (A.10)

on u és una localització de W . A partir d’aquesta funció poden obtenir-se diversos

test que ens mostren la qualitat de l’ajust des de diverses òptiques.

A.4.2 Dades i ajust

Per a comprovar les capacitats dels nostres models i les diverses metodologies que

acompanyen, els aplicarem sobre dos conjunts de dades diferents. Un serà el catàleg

SDSS que ja hem introduit anteriorment però sobre una versió més recent, el DR8

(Tempel et al., 2012) . L’altre correspon de nou a les simulacions LasDamas, que

ens serviran, com abans, per a estudiar possibles efectes sistemàtics entre totes

dues mostres.

Les dades sel·leccionades corresponen a quatre cubs de 50h�1 Mpc de costat, amb

redshifts entre 0.02 i 0.085. D’aquesta manera ens assegurem que les dades siguen

comparables.

L’ajust d’aquestes poblacions està descrit amb detall a les seccions 4.4.5 i 4.4.4.

A grans trets, el que trobem és una caracterització local de l’agregació de punts.

Açò es pot entendre com un camp de densitat paramètric, que no només ens

proporciona informació detallada de cada punt sinó que ens permet estudiar les

propietats d’aquestes poblacions mitjançant els parametres ajustats.

Els resulats indiquen, tal i com esperàvem, valors paramètrics corresponents a

processos d’agregació, amb � ⇠ 1.4 per al model de Geyer. Els parametres ajustats

de tots tres models mostren certa volatilitat entre les diverses poblacions, una
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variació que requereix un anàlisi més detallat per tal de comprovar la possible

correlació d’aquestos valors amb les estructures de les mostres.

L’anàlisi dels residus també resulta molt efectiu, proporcionant-nos una informació

detallada que ens permet identificar ràpidament aquelles estructures de les dades

que destaquen com sobredensitats de punts o buits. En particular, per a les

poblacions del catèleg SDSS, comprovem com la segona mostra presenta una major

variància en la distribució de galàxies per als tres models, amb una forta agregació

de punts molt localitzada. Aquest resultat suposa també una divergència entre

SDSS i LasDamas.

A.5 Models de mescla

Els models de mescla (o Mixture models en anglès) són una ferramenta estad́ıstica

utilitzada per primer cop per Karl Pearson l’any 1890. Amb aquest mètode es

pretén obtenir una distribució paramètrica conjunta d’una població composta per

diverses components no distribuides idènticament. D’aquesta manera ajustem

cadascuna de les components amb diverses funcions de probabilitat condicionades,

el qual ens permet äıllar i obtenir un model per a la distribució de cadascuna de

les components.

Aquesta tècnica l’hem aplicada sobre la distribució de matèria, com a part d’un

estudi sobre modelització de la distribució de galàxies. Aquest treball ens permet

desenvolupar una nova metodologia per a l’extracció de mostres d’interès en una

població de galàxies (tècniques de data mining). Fent servir dades de la simulació

MultiDark (Klypin et al., 2011) hem ajustat el perfil d’Einasto per a la matèria

fosca sobre diversos cúmuls.

A.5.1 El model de densitat de superf́ıcie

En primer lloc hem definit un model sobre la densitat de part́ıcules en la mostra.

Aquest model compta amb un perfil d’Einasto ⇢ per cada cúmul en la població

més una component plana ⇢c per a aquelles part́ıcules que no pertanyen a cap

cúmul.
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⌃(r;↵, ✓) =

c�1X

i=1

↵i · ⇢(r� r0; s) + ↵c · ⇢c(r) (A.11)

Els coeficients ↵i són parametres lliures que ens permeten normalitzar la funció.

Donat que cada component pot tenir una constant de normalització diferent cal

ajustar tants coeficients com components té el model. Com hem dit abans, aquest

model ens permet extraure cada cúmul amb la seua funció de densitat ↵i·⇢(r�r0; s)

encara que en l’espai f́ısic estiga contaminat per la presència d’altres cúmuls i no

siga fàcil la seua identificació.

Pel que fa a l’ajust del model, en aquesta ocasió el càlcul numèric de la constant de

normalització conjunta permet l’ajust dels paràmetres mitjançant la maximització

de la funció de versemblança. Hem fet servir un procediment de MCMC amb priors

quasiplans, el que ens proporciona no només el millor ajust per als nombrosos

paràmetres sinó també una estimació del seu error. La idonëıtat del model serà

testada mitjançant criteris informatius com el Bayesian i el Akaike information

criterium, que tenen en compte no només el valor de la likelihood sinó també el

nombre de paràmetres (i components) fets servir.

A.5.2 Aplicació i resultats

Abans de treballar sobre dades de la simulació MultiDark hem realitzat una serie

de proves amb models de joguet autogenerats (secció 5.4.2). Aquestos experi-

ments ens permeten obtenir una idea més completa del comportament esperable

del model en diverses situacions i detectar aix́ı posibles errors.

Sobre una mostra amb quatre cúmuls generats per reproduir un perfil conegut

d’Einasto (Einasto, 1965, 1968, 1969), realitzem l’ajust del model de mescla. Açò

ens permet obtenir una primera impressió de la qualitat dels valors recuperats.

Posteriorment, afegim nous casos, tals com ajustar un model amb un nombre

incorrecte de components o ajustar estructures que no corresponen a un perfil de

cúmul de matèria fosca, com per exemple, un filament. Aquestes són situacions

reals amb les que caldrà enfrontar-se quan tractem dades de simulacions o catàlegs

de galàxies.
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L’anàlisi de la qualitat dels ajustos la realitzem fent servir la mateixa metodologia

que hem presentat a la secció anterior per als models de Gibbs, en particular els

residus de l’ajust.

Finalment, optem per una mostra sel·leccionada de les dades deMultiDark (Klypin

et al., 2011), un ortoedre que conté 2081 part́ıcules distribuides en diversos cúmuls

de diferent tamany. El primer càlcul necessari per a l’ajust del model és el nombre

de components que conté la mostra. Aquesta és una elecció delicada que ha de

ser contrastada amb posterioritat a l’ajust del model mitjançant els criteris infor-

matius. Una bona aproximació a aquest problema consisteix a calcular el camp de

densitat de la població i prendre els màxims locals del camp com a candidats per

a centres de cada component (parametres r0). D’aquesta manera podem iniciar

el càlcul MCMC amb una estimació del nombre de cúmuls i de la meitat dels

paràmetres.

Els càlculs amb MCMC poden ser costosos, especialment per a funcions amb un

alt nombre de paràmetres lliures. Però és un cost necessari per a obtenir un ajust

robust. Aquestos resultats poden consultar-se a la Taula 5.3, on podem comprovar

que els parametres obtinguts no només reprodueixen fidelment la distribució de

les part́ıcules, sinó que són valors esperables per a aquesta classe d’estructures.

L’anàlisi de residus mostra un ajust satisfactori que aconsegueix reproduir fins al

75% de la densitat de superf́ıcie de les dades. A més, aquesta tècnica és especial-

ment últil per tal de descobrir la necessitat d’afegir noves components al nostre

model. Inicialment hem realitzat un ajust amb 6 components per raons de sentit

f́ısic, però posteriorment, després de l’anàlisi dels residus, optem per un ajust amb

10 components. Aquest exercici ens permet comprovar com certes estructures de

menor tamany degeneren els paràmetres del perfil d’Einasto cap a una funció més

similar a una llei de potències. En aquestes situacions cal optar per un criteri f́ısic

més realista i assumir el model amb 6 components.

Dos resultats adicionals poden obtindre’s de l’ajust realitzat. Un és la reproducció

dels perfils dels cúmuls més enllà de les distàncies en que comencen a interaccionar

fortament amb altres estructures. Amb aquesta tècnica aconseguim reproduir els

perfils de densitat de cada cúmul en rangs de distàncies intractables mitjançant
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altres mètodes. I en segon lloc, una vegada conegut el nostre model de mescla po-

dem reproduir fàcilment realitzacions d’aquest procés puntual i generar poblacions

independents i idènticament distribuides a la original.

A.5.3 Conclusions

Els models de mescla ens permeten descriure molt eficaçment una població de

punts (ja siguen part́ıcules de matèria fosca o galàxies) amb el detall necessari

per a deduir nombroses propietats. El coneixement de la distribució conjunta

i separable de les diverses components d’una població pot tenir aplicacions en

astrof́ısica més enllà de l’estudi dels cúmuls de galàxies, com per exemple les

interaccions de galàxies amb els seus satèl·lits.

Per a un treball futur esperem poder aplicar aquesta tècnica sobre dades de

l’univers pròxim, mostres amb major densitat d’objectes i estimacions fiables de

la distància de cada galàxia.

A.6 Conclusions

Aquesta tesi recull diversos treballs realitzats en el marc de l’anàlisi de processos

puntuals, cobrint les tres principals aproximacions de l’estudi d’aquestos objectes:

l’estad́ıstica de resums, el modelatge i la mineria de dades. Hem demostrat com

les diverses tècniques que s’enmarquen en aquestes categories són òptimes per a

l’estudi de la distribució de galàxies, obtenint resultats que suposen un avanç tant

en la comprensió de les propietats de la distribució de galàxies com en el desen-

volupament de noves tècniques especialment adaptades al context cosmològic.

D’aquestos resultats destaquem l’ajust d’una nova funció de distibució, la dis-

tribució Log Normal amb biaix, que permet descriure fidelment la distribució

del recompte per cel·les d’una mostra de galàxies. També com a exemple de

l’ús d’estad́ıstics de resum, amb la funció de correlació de dos punts, i fent servir

l’excel·lent fotometria d’ALHAMBRA, hem aconseguit obtenir les primeres mesures

d’aquesta funció per a distàncies molt inferiors als 0.2h�1 Mpc, mesures que de-

scriuen el comportament de l’interior dels cúmuls de galàxies.
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Amb els models de Gibbs hem modelat la distribució de les galàxies alhora que la

caracteritzem amb paràmetres que descriuen les interaccions. El desenvolupament

de mètodes més eficaços per a modelar una població de galàxies ens proporciona

no només una caracterització global sinó informació corresponent a cada punt del

volum.

I per últim, els models de mescla ens han permès extraure subconjunts de dades

on altres mètodes poden no ser suficients per a separar diverses estructures que

interaccionen en una mostra. Amb aquestos models podem estudiar amb més

detall la natura dels diversos objectes que trobem als cartografiats de galàxies, i

entendre aix́ı la seua morfologia.

Les coordenades i les propietats que conformen un catàleg cosmològic creen un ex-

traordinari procés puntual en termes tant d’extensió com de complexitat. La com-

prensió d’aquest fenòmen s’assolirà mitjançant l’adecuada descripció dels fenòmens

f́ısics que regeixen l’univers i la correcta translació d’aquestes lleis als models prob-

abiĺıstics.
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Molino, A., Beńıtez, N., Moles, M., et al. 2014, MNRAS, 441, 2891

Moller, J., & Waagepetersen, R. P. 2003, Statistical inference and simulation for

spatial point processes (CRC Press)

Nakamura, K., Group, P. D., et al. 2010, Journal of Physics G: Nuclear and Particle

Physics, 37, 075021

Navarro, J. F., Eke, V. R., & Frenk, C. S. 1996, MNRAS, 283, L72



Bibliography 236

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1995, MNRAS, 275, 720

—. 1997, ApJ, 490, 493

Navarro, J. F., Hayashi, E., Power, C., et al. 2004, MNRAS, 349, 1039

Nelder, J. A., & Mead, R. 1965, The computer journal, 7, 308

Newman, J. A., Cooper, M. C., Davis, M., et al. 2013, ApJS, 208, 5

Neyman, J., & Scott, E. L. 1958, Journal of the Royal Statistical Society. Series

B (Methodological), 1
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Tempel, E., Tago, E., & Liivamägi, L. J. 2012, A&A, 540, A106

Thomas, D., Maraston, C., Bender, R., & Mendes de Oliveira, C. 2005, ApJ, 621,

673

Tinker, J. L., Weinberg, D. H., Zheng, Z., & Zehavi, I. 2005, ApJ, 631, 41

Totsuji, H., & Kihara, T. 1969, PASJ, 21, 221

Trimble, V. 1995, Publications of the Astronomical Society of the Pacific, 1133

Ueda, H., & Yokoyama, J. 1996, MNRAS, 280, 754

Van Lieshout, M. 2000, Markov point processes and their applications (World

Scientific)

Watson, D. F., Berlind, A. A., McBride, C. K., Hogg, D. W., & Jiang, T. 2012,

ApJ, 749, 83

Watson, D. F., Berlind, A. A., & Zentner, A. R. 2011, ApJ, 738, 22

Weibull, W. 1951, Journal of applied mechanics, 103

West, M. J., Dekel, A., & Oemler, Jr., A. 1987, ApJ, 316, 1

White, S. D. M. 1979, MNRAS, 189, 831

Wild, V., Peacock, J. A., Lahav, O., et al. 2005, MNRAS, 356, 247

http://lss.phy.vanderbilt.edu/lasdamas/
http://lss.phy.vanderbilt.edu/lasdamas/


Bibliography 240

Wolf, C., Dye, S., Kleinheinrich, M., et al. 2001, A&A, 377, 442

Yang, A., & Saslaw, W. C. 2011, ApJ, 729, 123

York, D. G., Adelman, J., Anderson, Jr., J. E., et al. 2000, AJ, 120, 1579

Zehavi, I., Weinberg, D. H., Zheng, Z., et al. 2004, ApJ, 608, 16

Zehavi, I., Zheng, Z., Weinberg, D. H., et al. 2011, ApJ, 736, 59

Zucca, E., Bardelli, S., Bolzonella, M., et al. 2009, A&A, 508, 1217



Acknowledgements I

ALHAMBRA is based on observations collected at the German-Spanish Astronom-

ical Center at Calar Alto, which is jointly operated by the Max-Planck-Institut für

Astronomie (MPIA) and the Instituto de Astrof́ısica de Andalućıa (CSIC). This
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A Aquell qui És per haver-nos donat un objecte d’estudi, i a Clara per haver-me

donat un motiu per a estudiar-lo.


	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Cosmology
	1.1.1 The standard cosmological model
	1.1.2 The geometry of the Universe
	1.1.3 Modern observational cosmology

	1.2 Spatial point processes in Astrophysics
	1.2.1 Probability background
	1.2.2 Definition of a Point Process
	1.2.3 Marked processes
	1.2.4 Examples of point processes
	1.2.5 Moment measures

	1.3 Aim of this thesis

	I Summary statistics for the Galaxy Distribution
	2 Counts-in-Cells Distribution
	2.1 Introduction
	2.2 Estimation of the CiC distribution
	2.3 Data catalogs
	2.3.1 The SDSS - New York University - Value Added Galaxy Catalog
	2.3.2 LasDamas simulations

	2.4 Estimation of the errors: the jackknife method
	2.5 Best fit to fV(N)
	2.5.1 Gravitational Quasi-Equilibrium Distribution
	2.5.2 Negative Binomial Distribution
	2.5.3 Log Normal Distribution with bias
	2.5.4 Weibull Distribution

	2.6 Results
	2.6.1 Fitting the results to a distribution function

	2.7 Analysis of the results

	3 Correlation functions
	3.1 Introduction
	3.2 Definition
	3.3 Estimation of (r)
	3.3.1 Correction of selection effects
	3.3.2 Correction of redshift distortions
	3.3.3 Estimation of the errors

	3.4 Evolution of galaxy spectral segregation in the  ALHAMBRA Survey
	3.4.1 Data samples
	3.4.2 The correlation function at the smallest scales
	3.4.3 Results
	3.4.3.1 Power-law modeling
	3.4.3.2 Full samples
	3.4.3.3 Segregated samples
	3.4.3.4 Dependence of the bias on spectral type and redshift

	3.4.4 Conclusions

	3.5 Future work: new correlation function estimation for photometric surveys


	II Modeling the galaxy distribution
	4 Finite Gibbs processes
	4.1 Introduction
	4.2 Definition
	4.2.1 Probability density function of a Gibbs process
	4.2.2 Examples of Gibbs models
	4.2.3 The Papangelou conditional intensity
	4.2.4 The pseudolikelihood

	4.3 Point processes residuals analysis
	4.3.1 Local residuals

	4.4 Data catalogs
	4.4.1 Sloan Digital Sky Survey - DR8
	4.4.2 LasDamas Simulation catalog
	4.4.3 Testing with Toy Models
	4.4.3.1 Generation of samples
	4.4.3.2 Fitting the sample

	4.4.4 SDSS populations
	4.4.5 LasDamas populations
	4.4.6 Conclusions and future work



	III Mining the galaxy distribution
	5 Mixture models
	5.1 Introduction
	5.2 Definition
	5.2.1 The surface density model
	5.2.2 Density profiles
	5.2.3 Fitting the parameters

	5.3 MultiDark simulated samples
	5.4 Mixture models for galaxy clusters
	5.4.1 Dark matter profiles
	5.4.2 Toy models
	5.4.3 MultiDark simulation

	5.5 Conclusions

	6 Conclusions

	IV Appendices
	A Agregació de galaxies:  un procés puntual
	A.1 Introducció
	A.1.1 El model cosmlògic estàndard
	A.1.2 La distribució de galàxies com a procés puntual
	A.1.3 Objectius d'aquesta tesi

	A.2 Ajust de recomptes de galàxies per celles
	A.2.1 Funcions de distribució
	A.2.2 Tractaments del errors
	A.2.3 Resultats i conclusions

	A.3 Correlació de galàxies a escales curtes i segregació espectral
	A.3.1 El catàleg ALHAMBRA
	A.3.2 La funció de correlació projectada
	A.3.3 Resultats

	A.4 Modelització amb processos de Gibbs
	A.4.1 Models d'interacció
	A.4.2 Dades i ajust

	A.5 Models de mescla
	A.5.1 El model de densitat de superfície
	A.5.2 Aplicació i resultats
	A.5.3 Conclusions

	A.6 Conclusions

	Bibliography
	Acknowledgements


