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Abstract

Background: The Notch signalling pathway plays an essential role in mucosal regeneration, which
constitutes a key goal of Crohn’s disease (CD) treatment. Macrophages coordinate tissue repair
and several phenotypes have been reported which differ in the expression of surface proteins,
cytokines and hypoxia-inducible factors (HIFs). We analysed the role of HIFs in the expression of
Notch ligands in macrophages and the relevance of this pathway in mucosal regeneration. AQ1
Methods: Human monocytes and U937-derived macrophages were polarized towards the M1
and M2 phenotypes and the expression levels of HIF-1a, HIF-2a, jagged 1 (Jag1) and delta-like 4

(DIl14) were evaluated. The effects of macrophages on the expression of HES1 (the main target of AQ2
Notch signalling) and IAP (enterocyte marker) in epithelial cells in co-culture were also analysed.
Phenotype macrophage markers and Notch signalling were evaluated in the mucosa of CD patients. AQ3

Results: M1 macrophages were associated with HIF-1-dependent induction of Jag1 and DIl4,
which increased HES1 protein levels and IAP activity in co-cultured epithelial cells. In the mucosa
of CD patients a high percentage of M1 macrophages expressed both HIF-1a and Jag1 while M2
macrophages mainly expressed HIF-20. and we detected a good correlation between the ratio of
M1/M2 macrophages and both HES1 and IAP protein levels.

Conclusion: M1, but not M2, macrophages are associated with HIF-1-dependent induction of Notch
ligands and activation of epithelial Notch signalling pathway. In the mucosa of chronic CD patients,
the prevalence of M2 macrophages is associated with diminution of Notch signalling and impaired
enterocyte differentiation.

Key Words: Macrophages; Crohn’s disease; mucosal healing; Notch signalling

1. Introduction of remission and halt the destructive and progressive course of the

Crohn’s disease (CD) is a chronic relapsing inflammatory disorder disease. In recent years mucosal healing has been established as a key

. . . . treatment goal in CD that predicts sustained clinical remission and
of the gastrointestinal tract characterized by transmural inflamma-

. . . . . . resection-free survival of patients.>® This process is highly depend-
tion, architectural distortion and thickening of all the layers of the P ; P . } & v P )
ent on the adequate reconstruction of the intestinal epithelium,
which depends on proliferation and differentiation of the progenitor

cells located at the base of the crypts. The coordination of several

bowel wall, which leads to intestinal fibrosis and stricture develop-
ment.! The aim of current clinical management is to prolong periods
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signalling pathways, including Wnt and Notch, plays an essential
role in epithelial regeneration.*!°

The Notch signalling pathway is mediated by Notch proteins,
which act as receptors for the transmembrane ligands Jagged
(Jag) and Delta-like (DIl) proteins. Upon binding to their ligands,
Notch receptors are cleaved by y-secretase and the Notch intracel-
lular domain translocates to the nucleus, where it up-regulates the
expression of specific target genes, such as HES1. This gene, in turn,
represses the expression of Math1, a master regulator of secretory cell
lineage differentiation.®’ It was initially reported that deletion of the
HEST1 gene resulted in the generation of an excessive number of secre-
tory cells.!" Later studies demonstrated that inactivation of Notch
signalling results in conversion of proliferating progenitors into
post-mitotic goblet cells,'> which led to the assumption that Notch
signalling plays an essential role in regulating cell-fate decisions in
intestinal homeostasis. However, there is still controversy regard-
ing the regulation of Notch signalling in CD. An increase in Math1
mRNA expression has been reported in the damaged mucosa of CD
patients'® while increased cleavage of Notch-1, which is the upstream
signal regulating HES1 expression, has also been described.™

Macrophages constitute one of the central components of the
inflamed mucosa, where local hypoxia and inflammatory mediators
modulate their gene expression through the activity of hypoxia-induc-
ible factors (HIFs).!>!¢ Several macrophage phenotypes have been
characterized, and differ in the expression of surface proteins and the
production of cytokines.!” The M1 or pro-inflammatory phenotype
mediates the defence of the host from microorganisms and contrib-
utes to inflammatory injury. There is evidence in the literature of a role
for the transcription factor HIF-1 in M1 polarization,' and several
studies report the up-regulation of Notch receptors and Notch signal-
ling in classical macrophage differentiation.’”' The M2 macrophage
phenotype expresses high levels of anti-inflammatory cytokines and
coordinates tissue repair.*>* It has recently been reported that inhibi-
tion of Notch signalling enhances M2 polarization.?’ In the present
study we analysed the role of HIF in the expression of Notch ligands
in macrophages. In addition, taking into account the strategic posi-
tion of macrophages in maintaining communication with epithelial
cells, we explored the relevance of macrophages in the regulation of
Notch signalling and regeneration of the mucosa of CD patients.

2. Materials and methods

2.1. Intestinal mucosal samples

Colonic surgical resections were obtained from the damaged mucosa
of CD patients and from the healthy mucosa of patients with colo-
rectal cancer (as controls) (Table 1). The study was approved by the
Institutional Review Board of The Hospital of Manises (Valencia).
Written informed consent was obtained from all participating patients.

2.2. Isolation of colonic crypts
Human intestinal crypts were isolated from the mucosa of surgical resec-
tions obtained from control and CD patients, as described previously.>*

2.3. Isolation of macrophages from human intestine
Macrophages were isolated from the mucosa of surgical resections
obtained from control and CD patients as described previously.?*

2.4. Cell culture

Caco-2 cells (American Type Culture Collection, VA) were cultured
in MEM medium (Sigma-Aldrich) supplemented with 20% inacti-
vated foetal bovine serum (FBS) with 100 Um/L penicillin, 100 mg/

Table 1. Patient characteristics.

Patient group and characteristic n
Crohn’s disease 16
Age (y)
17-40 6
>40 10
Gender
Male 9
Female 7
Concomitant medication
Azathioprine 3
Anti-tumour necrosis factor 16
Mesalazine 2
Control 11
Age (y)
17-40 0
>40 11
Gender
Male 7
Female 4

mL streptomycin, 2mM l-glutamine (Lonza), 100 mM sodium pyru-
vate (Lonza) and 1% non-essential amino acids (Lonza).

HT29 cells (American Type Culture Collection, VA, USA) were
cultured in McCoy’s Medium Modified (Sigma-Aldrich) supple-
mented with 10% inactivated FBS, 100 U/mL penicillin, 100 pg/mL
streptomycin and 2mM I-glutamine.

Human monocytes (U937, European Collection of Cell Culture,
Salisbury, UK) were cultured in RPMI medium with 10% inacti-
vated FBS with 100 U/mL penicillin and 100 pg/mL streptomycin.
Monocytes were differentiated into macrophages by culturing them
in the presence of phorbol myristate acetate (PMA) for 48 h.? U937-
derived macrophages were stimulated with lipopolysaccharide (LPS;
0.1 pg/mL; E. coli 0111:B4) and interferon vy (IFN-y; 20 ng/mL) or
with interleukin 4 (IL-4; 20 ng/mL) in order to polarize them towards
M1 or M2 phenotypes, respectively, as previously reported.?

Hypoxia (3% O,) was established by incubating macrophages
in a CO,/O, incubator (Invivo2 400, Ruskinn Technology Ltd,
Pencoed, UK) with a blend of 5% CO, and the appropriate per-
centages of O, and N, to a total of 100%. Normoxic controls were
obtained by incubating the cells at 21% O,.

2.5. Isolation of mononuclear cells

Human peripheral blood mononuclear cells were isolated from both
healthy donors and CD patients by Ficoll density-gradient centrifu-
gation at 400g for 40 minutes. Monocyte-derived macrophages were
obtained from monocytes seeded in 12-well tissue culture plates and
differentiated into macrophages by culture in X-Vivo 15 medium
(Lonza) supplemented with 1% human serum, 100 U/mL penicillin,
100 pg/mL streptomycin and 20 ng/mL recombinant human mac-
rophage colony-stimulating factor (M-CSF, Peprotech, London, UK)
at 37°Cin 5% CO, for 6 days.

2.6. Co-culture

U937-derived macrophages were seeded and differentiated as above.
Afterwards the epithelial cells were placed in the same wells at a
ratio 1:1 and were maintained in co-culture for 24 hours.

2.7. Alkaline phosphatase activity
Following 24 hours of co-culture with macrophages, cells were
washed with cold phosphate-buffered saline (PBS) and lysed in
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150 pL of 0.5% Triton X-100, 10 mM Tris-HCI (pH 8) and 150 mM
NaCl. Each sample was mixed with a p-nitrophenyl phosphate solu-
tion (Sigma-Aldrich). Thirty minutes later, absorbance at 405nm
was measured. Protein content was quantified using the Bradford
assay (Bio-Rad Laboratories, Madrid, Spain). Alkaline phosphatase
activity was also determined in macrophages cultured alone.

2.8. Immunohistochemistry, immunofluorescence

and goblet cell count

Immunohistochemistry for HES1, CD68, CD86 and CD206 cells
was performed in 5 pm sections of paraffin-embedded tissues
(Table 2). A horse anti-mouse/rabbit biotinylated antibody (Vector
Laboratories, CA, USA, 1:200) was used as a secondary antibody as
previously described.?® An area of 0.3 mm? was selected for quantita-
tive analysis.

Goblet cells were counted following standard periodic acid—Schiff
staining of the sections adjacent to those used for immunostaining.
We counted the number of goblet cells (by counting the vacuoles) in at
least three crypts per sample and results were normalized to the total
number of epithelial cells (by counting the nuclei) in the same crypt.

2.9. Static cytometry

Macrophages isolated from the mucosa of surgical resections
obtained from control and CD patients were fixed with 2% para-
formaldehyde, permeabilized with 0.1% Triton-X100 and double-
stained (Jagl/CD86, Jagl/CD206, HIF1a/CD86, HIF1a/CD206,
HIF20/CD86, HIF20/CD206, CD86/CD68, CD206/CD68, arginase
I/CD68, iNOs/CD68) with specific monoclonal antibodies (Table 2)
as previously described.?* Fluorescence-labelled (TR and FITC) goat
anti-mouse or goat anti-rabbit (1:100, Santa Cruz Biotechnology)
was used as the secondary antibody, and Hoechst 33342 was added
to stain the nuclei.

U937 macrophages co-cultured with epithelial cells were incu-
bated overnight at 4°C with monoclonal antibodies against HES1
or Muc2 combined with an antibody against CD18 to identify
and exclude macrophages from the cytometric analysis (Table 2).
Fluorescence-labelled (TR and FITC) goat anti-mouse or goat anti-
rabbit (1:100, Santa Cruz Biotechnology) were used as the secondary
antibodies, and Hoechst 33342 was added to stain the nuclei. In
all cases the fluorescent signal (16 images per well) was quantified
using the static cytometer software Scan® version 2.03.2 (Olympus,
Barcelona, Spain).

2.10. RNA interference and cellular transfection

U937 cells were transfected with a vector targeting human HIF-
lo. (miHIF-1a, described previously?’) or a non-targeting con-
trol vector (mock), as described previously.”” In addition, we
have now designed vectors targeting human Jagl (mifagl;
28.82+15.70% of reduction vs mock, based on the targeting
sequence 5’-CCTAAGCATGGGTCTTGCAAA-3’; GenBank acces-
sion number NM_000214.2) and DIll4 (miDIl4; 27.74+13.39%
of reduction vs mock, based on the targeting sequence
§5-TCCAACTGCCCTTCAATTTCA-3’; GenBank accession number
NM_019074.3). Lipofectamine-2000 (Invitrogen Life Technologies,
Carlsbad, CA) was employed as a transfection reagent according to
the manufacturer’s instructions. Twenty-four hours post-transfec-
tion, cells were incubated for 8 h in normoxic or hypoxic conditions,
as described above. M1 macrophages were transfected with miHIF-
1a, miJagl, miDIl4 or a mock vector before M1 polarization.

2.11. Protein extraction and Western blot analysis

Equal amounts of protein from macrophages, HT29 cells, Caco-2
cells or colonic tissue?® were loaded onto sodium dodecyl sulphate/
polyacrylamide gel electrophoresis gels and analysed by Western blot
as described previously (Table 2). Protein expression was quantified
by means of densitometry using Image Gauge Version 4.0 software
(Fujifilm). Data were normalized to B-actin.

2.12. RNA extraction and quantitative reverse
transcription—-polymerase chain reaction (qRT-PCR)
analysis

Total RNA and ¢DNA from macrophages or colonic tissue was
obtained as described previously.”’ Real-time PCR was performed
with the PrimeScript Reagent Kit Perfect Real Time (Takara) in a
thermocycler (LightCycler, Roche Diagnostics). Specific oligonucleo-
tides were designed according to the sequences shown in Table 3.

2.13. Chromatin immunoprecipitation (ChlIP) assay

A ChIP assay was carried out in U937-derived macrophages,
incubated under hypoxia or normoxia for 5h, as previously
described.” Immunoprecipitation was performed with anti-
HIF1la antibody (BD, Madrid, Spain) or control IgG antibody.
After reverse crosslinking, DNA fragments were purified with a
Montage PCR Kit (Millipore, Germany). PCR was performed

Table 2. Specific antibodies used for immunohistochemistry, immunofluorescence studies and Western blot analysis.

Antibody Immunofluorescence Immunohistochemistry Western blot
Antibody dilution Antigen retrieval Antibody dilution

IAP (Santa Cruz Biotechnology) 1:1000

HEST1 (Santa Cruz Biotechnology) 1:100 Sodium citrate buffer pH 6°C, 20 min, 1:200 1:500

Jag1 (Santa Cruz Biotechnology) 1:100 Sodium citrate buffer pH 9°C, 20 min, 1:200

CD18 (BD, Barcelona Spain) 1:100

CD638 (Biolegend, Madrid, Spain) 1:100 a-Chymotrypsin 37°C, 20 min, 1:100

CD86 (Epitomics, Burlingame, CA, USA) 1:100 a-Chymotrypsin 37°C, 20 min, 1:200

CD206 (Novus Biologicals, Cambridge, UK) 1:100 Sodium citrate buffer pH 9°C, 20 min, 1:200

Arginase I (Santa Cruz Biotechnology) 1:100

iNOs (Santa Cruz Biotechnology) 1:100

HIF-1a (Novus Biologicals) 1:100 1:500

HIF-2a (Santa Cruz Biotechnology) 1:100

Muc2 (Santa Cruz Biotechnology) 1:100

[-actin (Sigma-Aldrich) 1:10000
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Table 3. Primer sequences of specific PCR products for each gene analysed.

Human gene Sense Antisense Length (bp)
Jagl 5’-gaacacgggcgttgeccact-37 5’-gtggacgcatcecgggtgtg-3” 304
Dll4 §’-gtgeagegtacaccggeact-3” §7- tetgttegegacgecgettt-3 223
HES1 S’-aaaattcctegteeceggtg-3” 57-tttgt tatcegtteg-3” 64
Muc2 57-getggeegeeggcetattace-37 S’-accceggceegteatecatca-3’ 79
Math1 §’-ccgeccagtatttgetacat-3” §’-cattcacctgtttgetggaa-3” 234
B-actin 5’-ggacttcgagcaagagatgg-3’ S’-agcactgtgttggegtacag-3’ 67

using PCR Master (Roche Diagnostics, Mannheim, Germany)
with the primers 5-TGTCCACCCTTCAAAGGAAGTC-3’ and
5’-CAAATCCGAGTCTGCGGAGC-3, detecting the region -1646
to -1166 in the Jagl promoter, or 5-CCCTGAGCATCCCGCTG-3’
and 5-CCGGCTCTAATATACTCCGCC-3’, detecting the region
-638 to =106 in the Jagl promoter, as shown in Figure 1c. The PCR
products were separated by electrophoresis in 2% agarose gel.

2.14. Statistical analysis

Data were expressed as mean + SEM and compared by one-way
analysis of variance (ANOVA) with Newman-Keuls post hoc cor-
rection for multiple comparisons or a t-test when appropriate. A p
value <0.05 was considered to be statistically significant. Clinical
correlations were analysed in the human samples using Pearson’s
correlation coefficient.

3. Results

3.1. HIF-1 mediates the expression of Notch ligands

in M1 macrophages

Hypoxia induced a time-dependent increase in HIF-1a stabilization
in macrophages, which peaked at 8 hours and then progressively
decreased. In parallel, hypoxia induced a time-dependent increase in
the mRNA expression of Jagl and D/[4 compared with the expres-
sion detected in cells in normoxia (Figure 1a). To evaluate the role of
HIF-1 in gene expression, we used an miRNA approach to selectively
knockdown this transcription factor in U937-derived macrophages.
As shown in Figure 1b, up-regulation of the mRNA expression of
both DII4 and Jag1 induced by hypoxia was significantly reduced in
cells transfected with miHIF1a, showing that HIF-1 is involved in
the induction of these ligands in hypoxia.

Analysis of the Jagl gene promoter identified potential HIF-1
binding sites (HRE sequence). To examine the binding of HIF-1a
to the promoter region of Jagl, we performed ChIP assays using
an affinity-purified antibody directed against HIF-1a. and primers
specific for two Jagl promoter regions containing HIF-1 binding
sites (Figure 1c). Our data revealed HIF-1a binding to the proxi-
mal promoter region of the Jagl gene in hypoxia through the HRE
sequences located between positions -106 and -638 (Figure 1c)
from the start codon.

Polarization of U937 macrophages towards an M1 phenotype?®
following treatment with LPS + IFN induced HIF-1a stabilization
within the first 24 hours and failed to induce HIF-2a stabilization
significantly at any time analysed (Figure 2a). In contrast, polari-
zation towards an M2 phenotype? as a result of treatment with
IL-4 induced HIF-20. stabilization but not HIF-la stabilization
(Figure 2a). Analysis of the expression of HIF-1 target genes revealed
a significant increase (fold induction) in the mRNA expression of
LDHA (2.2+0.4) and iNOS (6.0+1.7) by M1 macrophages com-
pared with both non-polarized (1.0+0.2 and 0.9 0.1, respectively)

and M2 (1.2+0.3 and 2.4 = 1.3, respectively) macrophages. In addi-
tion, the expression of an HIF-2 target gene, Argl, was increased in
M2 macrophages (2.7 =0.7) compared with non-polarized (1.0 =0.1)
and M1 (0.8 +0.1) cells. Analysis of the expression of Notch ligands
revealed a significant increase in mRNA expression of DI//4 and
mRNA expression and protein levels of Jagl in M1 macrophages
but not in M2 cells (Figure 2b). These effects were also observed in
macrophages derived from primary monocytes obtained from both
healthy donors and CD patients (Figure 2¢). The up-regulation of the
mRNA expression of both D/[4 and Jag1 that was detected in U-937
macrophages polarized towards an M1 phenotype was significantly
reduced in cells transfected with miHIF1a (Figure 2d), demonstrat-
ing that HIF-1 is involved in the induction of Notch ligands in M1
macrophages.

3.2. HIF-1-dependent induction of Notch ligands
mediates the increase in HES1 expression and IAP
activity induced by M1 macrophages

Next we analysed whether macrophages modulate the Notch signal-
ling pathway and markers of differentiation in co-cultured epithelial
cells. First, we determined the expression of HES1 and IAP (a marker
of enterocyte differentiation) protein levels in two epithelial cell lines,
HT29 and Caco-2, at sub-confluence and at different times after
reaching cell confluence. Our data show a time-dependent increase
in protein levels of both HES1 and IAP as well as IAP enzymatic
activity in both HT29 and Caco-2 cells by culturing post-confluence
(Supplementary Figure 1).

In the co-culture experiments, M1 macrophages increased pro-
tein levels of HES1 and TAP enzymatic activity with no effect on
Muc2 expression in either HT29 or Caco-2 cells (Figure 3a-d).
The effects induced by M1 macrophages on epithelial protein lev-
els of HES1 were significantly reduced in macrophages treated with
miHIF1, miDLL4 and miJagl, suggesting that the HIF-1-dependent
induction of Notch ligands mediates the activation of Notch signal-
ling in epithelial cells (Figure 3a, c). In contrast, M2 macrophages
did not significantly modify HES1 protein levels but induced a sig-
nificant reduction in IAP activity in both HT29 and Caco-2 cells
(Figure 3a-d). No IAP activity was detected in macrophages.

3.3. M1 macrophages express HIF-1a and Notch
ligands while M2 macrophages express HIF-2a in

the mucosa of CD patients

Next we performed a comparative study of control and CD patients
to characterize the macrophage phenotype present in the mucosa
of CD patients and the expression of HIF and Notch ligands in
these cells.

Immunohistochemical experiments revealed macrophages in an
adjacent position to epithelial cells (Figure 4a) and a quantitative
analysis showed that the numbers of CD68+ cells and CD206+ cells
were significantly higher in the mucosa of chronic CD patients than
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in that of control patients. In contrast, no significant differences
were observed in the number of CD86+ cells (Figure 4b). Double
immunofluorescence experiments in macrophages isolated from the
mucosa revealed that the percentage of CD68-positive cells that
expressed M1 markers CD86 and iNOS was similar in CD and con-
trol patients. In contrast, the percentage of CD68-positive cells that
expressed M2 markers CD206 and Argl was significantly higher in
macrophages isolated from the mucosa of CD patients (Figure 4c).

We also detected a high percentage of CD86+ cells expressing
HIF-1a in macrophages isolated from both control and CD patients,
while a very low percentage of CD206+ cells expressed HIF-1a
(Figure 5b). In contrast, a large percentage of CD206+ cells from
the mucosa of both control and CD patients expressed HIF-20. while
a low percentage of CD86+ cells expressed HIF-2a (Figure Sc).
Finally, the percentage of cells expressing the Notch ligand Jagl in
the population of CD86+ cells was higher than that recorded in cells
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Figure 2. HIF-1 mediates the expression of Notch ligands associated with M1 macrophages. U937-derived macrophages (n = 6) were either treated with
lipopolysaccharide (LPS) and interferon-y (IFN-y) and polarized towards M1 macrophages or treated with interleukin 4 (IL-4) and polarized towards M2
macrophages; some cells were treated with the vehicle (non-polarized macrophages). (a) Representative Western blots and graph showing HIF-1a or HIF-2a
protein levels at different time points. Points in the graphs represent mean + SEM (n> 3). *p < 0.05 vs time 0 h. (b) Graphs show relative mRNA expression levels
of DIl4 and Jag1in macrophages and protein levels of Jag1 in M1 macrophages at different time points. Bars represent mean + SEM. *p < 0.05 vs the respective
value in non-polarized macrophages and M2 macrophages. (c). Graphs showing relative mRNA expression levels of DIl4 and Jag1 in macrophages derived
from primary monocytes (healthy donors, n = 6; Crohn’s disease patients, n = 6). Bars represent mean + SEM. *p < 0.05 vs the respective value in non-polarized
macrophages and M2 macrophages. (d) Representative Western blots and graphs showing protein levels of HIF-1a. and mRNA expression of D/l4 and Jag1 in
U937-derived macrophages transfected with mock or miHIF-10. and polarized towards M1. Bars represent mean + SEM. *p < 0.05 vs mock M1 macrophages.

expressing CD206 (Figure 5a) and these values were similar between
macrophages obtained from control and CD patients (Figure 5a).

3.4. Macrophages modulate Notch signalling and
markers of differentiation in human intestine in a
phenotype-dependent manner

To determine whether macrophages in the mucosa modulate Notch
signalling in epithelial cells, we analysed this pathway specifically in
crypts isolated from the mucosa of control and CD patients. Results
revealed low HES1 immunostaining and decreased mRNA and pro-
tein HES1 expression in the mucosa of CD patients compared with
controls (Figure 6a). In addition, we also detected enhanced Math1
mRNA expression, increased Muc2 mRNA expression, a higher
percentage of goblet cells per crypt and decreased IAP protein lev-
els in the mucosa of chronic CD patients compared with control
mucosa, suggesting a diminution of the Notch signalling pathway
and impaired differentiation associated with CD. To study a possi-
ble regulatory link between M1 macrophages and Notch signalling,
the relationship between HES1 protein levels detected by western
blot and the proportion of CD86+/CD68+ macrophages was ana-
lysed and a positive correlation coefficient (r = 0.4631, p = 0.045)
(Figure 5d) was obtained. A detailed analysis revealed a different
distribution of points marked by the presence of CD, and when
data were analysed separately the correlation coefficient was closer
for both controls (r = 0.89, p = 0.001) and CD patients (r = 0.79,
p = 0.001). This suggests that other factors were regulating HES1 in
the mucosa (Figure 5d). Interestingly, a better correlation coefficient
(r=0.804,p < 0.001) was obtained between HES1 protein levels and

the ratio of CD86+ (M1) to CD206+ (M2) macrophages (Figure 6e).
The M1/M2 ratio also exhibited a positive and significant correla-
tion with IAP protein levels (r = 0.66, p = 0.002) (Figure 6e), which
suggests that both M1 and M2 macrophages regulate Notch signal-
ling in the mucosa.

4. Discussion

The present study demonstrates that M1 macrophages, but not M2
macrophages, are associated with HIF-1-dependent induction of
Jag1 and DII4, which increases HES1 protein levels and IAP activity
in co-cultured epithelial cells. In the mucosa of chronic CD patients,
the M1/M2 macrophage ratio closely correlates with Notch signal-
ling and markers of enterocyte differentiation, suggesting that mac-
rophages play a role in the diminished Notch signalling and impaired
enterocyte differentiation observed.

Our data show that HIF-1, a transcription factor induced by
hypoxia and inflammatory conditions, mediates the expression of
Dll4 and Jag1 in hypoxic macrophages. A previous study reported
activation of the DIl4 promoter by HIF-1 in endothelial cells.? We
demonstrate for the first time the activation of the Jagl promoter
by HIF-1 and provide further evidence that HIF-1 regulates the
expression of Notch ligands. Emerging evidence suggests that the
functional phenotype of macrophages is regulated by transcription
factors that define alternative activation.'® We found HIF-1a stabili-
zation in human macrophages polarized towards an M1 phenotype
and HIF-2a stabilization in those that had been polarized towards
an M2 phenotype. Of interest, our data associate for the first time
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Figure 3. M1 macrophages activate HES1 expression and markers of
differentiation in epithelial cells. HT29 cells (a) or Caco-2 cells (b) at pre-
confluence were co-cultured (24h) with M1 or M2 macrophages (stained
with CD18 and fluorescein isothiocyanate). In some cases macrophages
were transfected with mock, miHIF1a, miDIl4 or miJag1 vectors previous M1
polarization. Levels of HES1 staining (TR) or Muc2 staining (TR) in epithelial
cells were determined by static cytometry (n = 6). Graphs show a significant
increase in the expression of epithelial HES1 induced by M1 but not M2
macrophages compared with that detected in epithelial cells cultured alone.
M1- miHIF1a, M1- miDIl4, M1- miJag1 macrophages significantly reduced
HES1 expression in either HT29 or Caco-2 cells. M1 or M2 macrophages
failed to significantly modify the expression of Muc2 in either HT29 or Caco-2
cells. AP enzymatic activity in epithelial cells was significantly increased
by M1 macrophages and significantly reduced by M2 macrophages. In ars
represent mean + SEM. *p < 0.05 and **p < 0.01 vs epithelial cells; p < 0.05
and *##p < 0.001 vs epithelial cells co-cultured with M1-mock macrophages.

M1, but not M2, macrophages with HIF-1-dependent increases in
the mRNA expression of DIl4 and Jagl, which suggests that this
transcription factor mediates the selective Notch ligand expression
that characterizes the macrophage phenotype. These effects have
also been observed in macrophages derived from primary mono-
cytes obtained from both healthy subjects and CD patients properly
polarized, supporting the idea of preferential expression of Notch
ligands by the M1 phenotype. The pattern of Notch ligand expres-
sion is functionally relevant since M1, and not M2, macrophages
increased the expression of the main target gene of the canonical
Notch signalling, HES1, in epithelial cells in co-culture through an
action mediated by the HIF-1-dependent induction of Jag1 and DIl4.
This was observed in two epithelial cell lines capable of expressing
differentiation features characteristic of mature intestinal cells, such
as enterocytes or mucus cells.’®3! In line with this, the increase in
HES1 induced by M1 macrophages was paralleled by an increase
in IAP activity, a well-known marker of enterocyte differentiation,*
with no changes in Muc2 expression. Considering that our results
show that spontaneous differentiation of these cells is associated
with a time-dependent increase in both IAP activity and HES1 pro-
tein level, our results strongly suggest that M1 macrophages pro-
mote enterocyte differentiation in epithelial cells. Previous studies
have shown that Jagl up-regulates alkaline phosphatase in stem
cells,®® which leads us to propose that M1 macrophages activate the
Notch signalling pathway and enterocyte differentiation in epithelial
cells through the expression of D114 and Jagl.

We analysed the pathophysiological relevance of these observa-
tions in the mucosa of CD patients, in which we found an increased
number of macrophages compared with that of control patients. The
expression of both M1 and M2 markers was detected but, in a simi-
lar manner to that previously reported in the mucosa of ulcerative
colitis patients,* the number of M2 macrophages was higher than
the number of M1 macrophages. Of interest, a high percentage of
M1 macrophages were positive for HIF-1a and Jagl, reinforcing
the observations reported in vitro and suggesting that the expres-
sion of Notch ligands by M1 macrophages in human intestine is
also associated with HIF-1. Of particular interest, macrophages were
frequently detected in an adjacent position to epithelial cells and we
observed a positive and significant correlation between CD86+ cells
and HES1 protein levels in crypts isolated from the mucosa, which
strongly supports the idea that M1 macrophages activate Notch sig-
nalling pathways in epithelial cells. A detailed analysis of this cor-
relation revealed differences in the distribution of data marked by
the presence or absence of CDj a higher number of macrophages and
lower protein levels of epithelial HES1 were detected in the mucosa
of CD patients compared with control patients. These observations
led us to suggest that, in addition to M1 macrophages, HES1 expres-
sion was modulated by other factors present in the inflamed mucosa.
Considering our data showing that M2 macrophages prevail in the
mucosa of CD patients and that most of them express HIF-2a, which
has been related to Notch signalling inhibition,** the results suggest

that M2 macrophages may also be modulating the Notch pathway.
Reinforcing this observation, we have previously demonstrated that
M2 macrophages activate Wnt signalling in epithelial cells,?® and this
pathway has been widely associated with inhibition of Notch signal-
ling.?>=7 In line with this, our data show a very good correlation
between HES1 protein levels and the ratio of M1/M2 macrophages,
and we propose that M2 macrophages act in an opposite manner to
M1 cells in the modulation of Notch signalling.

The Notch pathway governs the intestinal binary cell-fate deci-
sion between the secretory and absorptive cell lineages **. Our
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Figure 4. Characterization of the macrophage phenotype in the mucosa of Crohn's disease (CD) patients. (a) Representative images showing CD68
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from the mucosa and the graph shows the percentages of CD86+ and CD206+ cells that expressed Jag1, HIF-1a or HIF-2a.. Bars represent mean + SEM. *p < 0.05

vs CD206+ cells expressing the respective marker in the same group of patients.

results reveal diminished HES1 expression in crypts isolated from
the mucosa of CD patients in parallel with enhanced expression of
Math1, a transcription factor that is repressed by HES1, strongly
suggesting that the Notch signalling pathway was impaired.'® It has
been reported that the up-regulation of Math 1 directs epithelial cell
fate towards secretory lineage cells, including goblet cells.”** Our
data demonstrate increased mRNA expression of Muc2, a marker of

goblet cells, and a higher number of goblet cells per crypt, in paral-
lel with decreased IAP protein levels in the mucosa of CD patients
compared with controls, suggesting that enterocyte differentiation is
specifically impaired. Previous studies have reported diminished IAP
mRNA and protein expression*** in the intestinal mucosa of adults
and children with CD. We extend these observations and show
that these diminished IAP protein levels correlate with diminished
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HES1 protein levels, which leads us to propose that enterocyte dif-
ferentiation is impaired in CD as a consequence of an undermined
Notch signalling pathway. This hypothesis is backed by the fact
that macrophages, which were closely correlated with HES1 pro-
tein levels, were also correlated with the expression of the enterocyte
marker TAP.

As a whole, our results provide evidence of HIF-1 dependent
induction of Notch ligands associated with M1 macrophages. In
contrast to M2 macrophages, M1 cells activate the Notch signal-
ling pathway in epithelial cells. The prevalence of M2 over M1 mac-
rophages in the mucosa of chronic CD patients may mediate the
diminished enterocyte differentiation and impaired mucosal regen-
eration observed in these patients. A better understanding of the
reciprocal regulation of macrophage phenotype and mucosal repair
following intestinal damage will help to establish new approaches
to CD therapy.
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