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Abstract

Mergers of compact objects are among the most interesting events of relativistic
astrophysics, being, in particular, the prime target for gravitational wave astron-
omy. In this thesis, we investigate the possible end-states of black hole-neutron
star and binary neutron star mergers: thick accretion tori around spinning
Kerr black holes. These black hole-torus systems are believed to be the en-
gines of the brightest events in the Universe, so-called gamma-ray bursts. Our
understanding of the evolution and stability of these systems relies crucially
on accurate numerical relativity simulations of their dynamics, evolving both
spacetime and matter fields. The main work in this thesis are such numerical
relativity simulations of black hole-torus systems. We use equilibrium models of
self-gravitating discs around black holes as initial data, which represent idealised
(vet relevant) models of the actual post-merger discs found in self-consistent
numerical relativity merger simulations. Traditionally, numerical simulations of
these systems have been carried out under the assumption that the black hole
spin and disc angular momentum are aligned. There are arguments, however,
that many black hole-torus systems should be tilted instead, which means that
the equatorial plane of the disc is no longer parallel to that of the black hole.
These tilted black hole-torus systems form indeed self-consistently in numerical
relativity simulations of misaligned black hole-neutron star mergers. In these
tilted systems, the dynamics of the torus and black hole change completely as
compared to the untilted case due to general relativistic effects arising from the
structure of the Kerr spacetime. Specifically, due to differential Lense-Thirring
precession, the disc may become twisted and warped. To capture the correct
dynamical response of these effects on the disc evolution, it is therefore necessary
to evolve the systems in general relativistic hydrodynamics simulations. Pio-
neering work in this field has been carried out by Fragile and collaborators, who
performed the first relativistic simulations of tilted black hole-torus systems in
the test-fluid approximation, which means that the spacetime was held fixed in

time and the self-gravity of the disc ignored. Building on this seminal work, we



viii

have performed in this thesis the first systematic study of tilted black hole-torus
systems with a fully evolved spacetime. We observe many of the disc morpholog-
ical features described in the test-fluid simulations of Fragile and collaborators.
Additionally, we observe significant black hole precession and nutation as a result
of the tilted disc evolution for all disc-to-black hole mass ratios considered in
this thesis. The black hole spin direction is measured using a standard method
in numerical relativity, which, as we show in this thesis, can be derived from
Weinberg’s pseudotensor. The black hole precession is seen to arise from the
torque the disc exerts as it starts to precess due to the Lense-Thirring torque of
the central black hole. When considering a non-rotating black hole, some of our
initial models were known to be prone to develop the global, non-axisymmetric
hydrodynamic Papaloizou-Pringle instability. We study these models in the
tilted case in order to gauge the effect the black hole tilt has on the development
of the instability. Our results show that the instability is a very robust feature
of this physical system in the sense that it indeed develops for all initial black
hole spin magnitudes and tilt angles we investigate. The contrary is also true,
namely that a stable initial model remains so for the entire parameter space of
the study. We investigate the precise mechanism of the instability and show that
it manifests itself in a spiral density wave of constant pattern speed traveling
through the differentially rotating disc. The density wave facilitates the outward
transport of angular momentum from the inner region of the torus, where it has
negative angular momentum with respect to the fluid, as it couples to the fluid
via dissipation when its amplitude becomes non-linear and mild shocks develop.
Our three-dimensional simulations show the presence of quasi-periodic oscilla-
tions in the instantaneous accretion rate, with frequencies in a range compatible
with those observed in low mass X-ray binaries with either a black hole or a
neutron star component. The frequency ratio of the dominant low frequency
peak and the first overtone is o1/ f ~ 1.9, a frequency ratio not attainable when
modelling the quasi-periodic oscillations as p-mode oscillations in axisymmetric

tori.



Resumen

Las fusiones de objetos compactos se encuentran entre los eventos mas intere-
santes de la astrofisica relativista, siendo, en particular, el principal objetivo de
la astronomia de ondas gravitatorias. En esta tesis investigamos los posibles
estados finales de la fusiéon de sistemas binarios formados por agujero negro-
estrella de neutrones o por dos estrellas de neutrones: discos gruesos (o toros)
de acrecimiento alrededor de agujeros negros en rotacién tipo Kerr. Estos sis-
temas agujero negro-toro se cree que constituyen el motor central de los eventos
mas luminosos del Universo: los llamados estallidos de rayos gamma. Nuestro
conocimiento sobre la evolucién y la estabilidad de estos sistemas depende cru-
cialmente de la realizacién de simulaciones numéricas precisas de su dinamica,
en el contexto de la relatividad numérica, es decir, tanto el espacio-tiempo como
la materia. El principal trabajo de esta tesis es llevar a cabo tales simulaciones
en relatividad numérica de sistemas agujero negro-toro. Para ello utilizamos
modelos de equilibrio de discos auto-gravitantes alrededor de agujeros negros
como datos iniciales, los cuales representan modelos idealizados (aunque apropi-
ados) de los discos post-fusién reales obtenidos de manera auto-consistente en
simulaciones de fusién de binarias compactas en relatividad numérica. Tradi-
cionalmente, la simulacién numérica de estos sistemas se ha realizado bajo la
hipotesis de que el espin del agujero negro y el momento angular del disco estan
alineados. Sin embargo, existen razones para creer que muchos de estos sistemas
deberian estar inclinados, lo cual significa que el plano ecuatorial del disco ya
no es paralelo al del agujero negro. Ciertamente, sistemas agujero negro-toro
inclinados se han obtenido auto-consistentemente en simulaciones de relatividad
numérica de la fusién de un agujero negro y una estrella de neutrones con los
momentos angulares no alineados. En tales sistemas inclinados, la dindmica del
sistema agujero negro-toro cambia completamente con respecto al caso alineado,
debido a los efectos de relatividad general que surgen de la estructura del espacio
tiempo de la métrica de Kerr. Especialmente, debido a la precesion diferencial

de Lense-Thirring, el disco puede | legar a estar trenzado y combado. Para



capturar la respuesta dindmica correcta de estos efectos en la evolucién del disco
es necesario evolucionar los sistemas mediante simulaciones hidrodindmicas en
relatividad general. El trabajo pionero en este campo fue llevado a cabo por
Fragile y colaboradores, quienes realizaron las primeras simulaciones relativistas
de sistemas agujero negro-toro inclinados en la aproximacién fluido de prueba,
es decir, asumiendo que el espacio-tiempo se mantiene inalterado en el tiempo e
ignorando la auto-gravedad del disco. Basandonos en este influyente trabajo,
hemos realizado en esta tesis el primer estudio numérico sistematico de sistemas
agujero negro-toro inclinados en un espacio-tiempo totalmente evolucionado.
Nuestro trabajo confirma la mayoria de las caracteristicas morfolégicas del disco
descritas en las simulaciones con fluidos prueba de Fragile y colaboradores.
Ademsds, nuestros resultados muestran precesién y nutacién significativas en
el agujero negro como consecuencia de la evoluciéon del disco inclinado para
todas las proporciones entre las masas del disco y del agujero negro consideradas
en esta tesis. La direccién del espin del agujero negro se mide utilizando un
método estandar en relatividad numérica que, como se demuestra en la tesis,
puede ser derivado a partir del pseudotensor de Weinberg. Hemos visto que la
precesion del agujero negro surge del par de fuerzas que el disco ejerce cuando se
inicia su movimiento de precesiéon debida al par de fuerzas tipo Lense-Thirring
del agujero negro central. Por otro lado, simulaciones previas han mostrado
que modelos iniciales que involucran agujeros negros sin rotacién y sistemas
alineados son propensos a desarrollar la inestabilidad global hidrodindmica no
axisimétrica de Papaloizou-Pringle. En este trabajo estudiamos estos modelos
en el caso inclinado para estimar el efecto que la inclinacién del agujero negro
tiene sobre el desarrollo de tal inestabilidad. Nuestros resultados muestran
que la inestabilidad de Papaloizou-Pringle es una caracteristica muy robusta
de nuestro sistema fisico puesto que, de hecho, se desarrolla para todas las
magnitudes de espin y angulos de inclinacién iniciales investigados. Lo contrario
también es cierto, es decir, un modelo inicialmente estable permanece estable
para todo el espacio de parametros considerados en nuestro estudio. En esta tesis
investigamos en detalle el mecanismo de la inestabilidad y mostramos que ésta
se manifiesta en la forma de una onda de densidad espiral, con una velocidad de
patrén constante, que viaja a través del disco que gira con rotacién diferencial.
Esta onda de densidad facilita el transporte de momento angular hacia afuera
desde las regiones internas del toro, donde tiene momento angular negativo con
respeto al fluido, acopldndose al fluido mediante disipaciéon una vez su amplitud
se vuelve no-lineal y desarrollando choques moderados. Nuestras simulaciones

tridimensionales muestran la presencia de oscilaciones cuasi-periédicas en la



tasa de acrecion instantdnea, con frecuencias en un rango compatible con las
observadas en binarias de rayos X de baja masa con la componente compacta
siendo o bien una estrella de neutrones o bien un agujero negro. La razén de
frecuencias entre el pico de baja frecuencia dominante y el primer arménico
es 01/f ~ 1.9, una razén no reproducible cuando se modelan las oscilaciones

cuasi-periédicas como modos p de oscilacién de toros axisimétricos.
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Introduction






Chapter 1

Astrophysical background

1.1 The detection of gravitational waves: a new

window to the universe

On September 14, 2015 at 09:50:45 UTC, the two advanced Laser Interferometer
Gravitational-Wave Observatories (LIGO) detected a transient gravitational
wave (GW) signal produced by the merger of two black holes (BHs) [Abbott et al.
2016]. The event was named GW150914. This landmark detection confirmed
the existence of GW by their direct observation for the first time. GWs had
been predicted by Einstein [1918] as a direct consequence of his theory of general
relativity (GR) [Einstein 1915, Einstein 1916]. Previous to the event GW150914,
there was only an indirect confirmation of the existence of GWs by the discovery
of the binary pulsar PSR B1913+16 [Hulse and Taylor 1975] and its energy loss
via GW [Taylor and Weisberg 1982]. While the detection has confirmed yet
another prediction of GR, it has also, even more importantly, opened a new
window to the observation of the universe, allowing us to study cosmological and
astrophysical systems via the GW they emit. Contrary to the electromagnetic
messengers that have let us observe the universe so far, there is no opacity
for GWs, as they propagate as perturbations of spacetime itself. Among the
astrophysical systems to be observed by means of GW are binary BH (BBH)
mergers such as the observed event GW150914, as well as BH-neutron star
(BHNS) mergers, binary neutron star (BNS) mergers, accretion tori around BH

and NS, and core-collapse supernovae, to name but a few.



Astrophysical background

To estimate parameters from detected signals, it is necessary to model the
astrophysical sources and their emission of GW as accurately as possible in
order to build large catalogs of waveforms for wide ranges of system parameters.
For instance, the dynamics of a BBH coalescence can be divided in three
distinct phases: the early inspiral, the actual merger phase and the subsequent
ringdown of the remnant to a Kerr BH [Flanagan and Hughes 1998]. While the
gravitational waveforms of the inspiral and ringdown can be accurately modelled
using the Post-Newtonian formalism and BH perturbation theory, respectively, it
is necessary to solve the nonlinear field equations of GR numerically to produce
the waveforms of the actual merger phase [Berti, Cardoso, and Will 2006]. In
matter spacetimes, such as BNS or BHNS mergers, the calculation of waveforms

furthermore depends crucially on the physics used to model the matter.

1.2 Mergers of compact objects and BH—torus

systems

Shortly after the first numerical relativity (NR) simulations of a complete BBH
orbit presented in Briigmann, Tichy, and Jansen [2004], the first successful
multiple orbit NR simulations of the actual merger of a BBH system were
achieved in Pretorius [2005a], Campanelli et al. [2006], and Baker et al. [2006].
Since then, ever-growing computational resources and advances in the numerical
methods used to simulate these systems have made the exploration of the vast
initial parameter space possible (see e.g. Hinder [2010] and references therein for
a recent overview of the status of BBH simulations). The initial parameters of
BBH simulations are the BH mass ratio and the six components of their initial
spin vectors. The investigation of these initial parameters has led to significant
discoveries, as the occurrence of the orbital hang-up [Campanelli, Lousto, and
Zlochower 2006] and the presence of the so-called super-kicks, where the final BH
is displaced from the orbital plane after its formation with a higher speed than
predicted by Post-Newtonian estimates. This happens for initial configurations
with anti-aligned BH spins that lie in the orbital plane (see Briigmann et al.
[2008] and references therein).

Stellar mass BH-torus systems are believed to be the end states of BNS or
BHNS mergers, as well as of the rotational gravitational collapse of massive

stars’. BNS mergers can also form an intermediate, transient structure known

1We note that there are more types of mergers that might lead to the formation of post-
merger accretion tori, such as BH—white dwarf, NS—white dwarf, and binary white dwarf
mergers (see, for instance Fryer et al. [1999], Paschalidis et al. [2011], and Raskin et al. [2012]).
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as a hypermassive NS after the merger, whose large differential rotation leads
to a delayed collapse to a BH (see, e.g. Shibata et al. [2006]), or to a magnetar
(a NS with a extremely strong magnetic field) surrounded by an accretion disc
(see, e.g. Giacomazzo and Perna [2013]. Our theoretical understanding of the
formation of BH-torus systems and their evolution relies strongly on numerical
work. The first BNS mergers in full GR (albeit for simplified matter models) were
performed by Shibata and Uryu [2000], and following the BBH breakthrough in
2005, Shibata and Uryu [2006] performed the first NR BHNS mergers. If the NS
does not plunge into the BH during the final merger phase of a BHNS binary, but
is rather tidally disrupted by the BH, a thick accretion torus can form around
the remnant Kerr BH (see Shibata and Taniguchi [2011] and references therein).
Thick accretion tori also form in unequal mass BNS mergers (see Faber and
Rasio [2012] and references therein). The formation of a thick, massive accretion
torus in these systems is of particular interest as the remnant BH-torus system is
believed to be a possible gamma-ray burst (GRB) engine [Woosley 1993, Janka
et al. 1999, Aloy, Janka, and Miiller 2005]. In particular, the BH-torus systems
resulting from BNS and BHNS mergers are believed to be the birthplaces of
short GRBs (SGRB), as the expected lifetime of the accretion torus is of the
order of the duration of SGRBs, while long GRBs are more likely to be produced
by “failed” Type Ib supernovae [Woosley 1993]. BH-torus systems emit GWs,
which may eventually provide the direct means to study their actual formation
and evolution. Observing these GWs will help to prove whether the hypothesis
that these systems form the central engine of GRBs is correct, as due to their
intrinsic high density and temperature electromagnetic observations are out of
reach. Furthermore, once observed, the detected gravitational waveforms of
the actual inspiral and coalescence in BNS and BHNS mergers will enhance
our understanding of the actual equation of state (EOS) of NS [Read et al.
2009], thus providing valuable insights about the behaviour of matter at nuclear
densities. For an overview of the event rate estimates of BNS and BHNS mergers
that are observable with initial and advanced LIGO see e.g. Abadie et al. [2010],
Dominik et al. [2013], and Dominik et al. [2015].

In recent years a significant number of NR simulations have shown the feasi-
bility of the formation of such systems from generic initial data (see e.g. Rezzolla
et al. [2010], Kyutoku et al. [2011], Hotokezaka et al. [2013b], Hotokezaka et al.
[2013a], and Kastaun and Galeazzi [2015] for recent progress). In particular,
the 3D simulations of Rezzolla et al. [2010] (see also references therein) have
shown that unequal-mass BNS mergers lead to the self-consistent formation of

massive accretion tori (or thick discs) around spinning BHs, thus meeting the
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necessary requirements of the GRB’s central engine hypothesis. However, if
the energy released in a SGRB comes from the accretion torus, the BH-torus
system has to survive for up to a few seconds [Rees and Meszaros 1994]. Any
instability which might disrupt the system on shorter timescales, such as the
runaway instability [Abramowicz, Calvani, and Nobili 1983] or the Papaloizou-
Pringle instability (PPI) [Papaloizou and Pringle 1984], could pose a severe
problem for the prevailing GRB models. Additionally, post-merger discs should
be highly magnetised, due to efficient magnetic field amplification mechanisms
active in BNS mergers [Kiuchi et al. 2015a]. Large accretion rates facilitated
by the magneto-rotational instability (MRI), which might be active in accre-
tion discs [Balbus and Hawley 1991], could further shorten the lifetime of the

accretion torus.

The majority of compact merger simulations to date have led to the produc-
tion of BH—-torus systems in which the central BH spin and the torus angular
momentum vector are aligned. This is the expected outcome for BNS mergers,
where the direction of the remnant BH spin is perpendicular to the original
orbital plane of the binary. For BHNS mergers, an aligned BH-torus system is
produced if the BH has zero spin initially or if the BH spin is initially aligned
with the orbital plane of the binary system. However, if the BH spin is initially
misaligned with the orbital plane of the binary, tilted BH-torus systems have
been shown to form self-consistently in full NR simulations [Foucart et al. 2011,
Foucart et al. 2013, Kawaguchi et al. 2015]. Another possible scenario for the
formation of tilted BH—torus systems is by means of asymmetric supernova
explosions in binary systems [Fragos et al. 2010]. In fact, it is believed that most
BH-torus systems should be tilted (see Fragile, Mathews, and Wilson [2001],
Maccarone [2002], and Fragile et al. [2007] for arguments).

As shown in Foucart [2012], the disc mass in BHNS mergers increases with
a larger initial BH spin and decreases with a larger initial BH mass. This is
due to the size of the innermost circular stable orbit (ISCO) of the BH in the
merger. The ISCO grows with BH mass and decreases with the spin magnitude
of the BH. If the ISCO is large enough, the NS will be “swallowed” entirely
by the BH before being tidally disrupted, leaving no accretion torus behind.
Another factor in determining the tidal disruption of the NS is its compactness
(the ratio of the NS mass and its radius). As seen in Foucart [2012], the larger
the NS, the more favoured are massive post-merger discs. In order to estimate
disc masses resulting from BHNS mergers, one needs thus an estimate for the
initial BH masses in these system. One such method, via population synthesis

considerations, favour larger BH masses [Belczynski et al. 2008, Belczynski et al.
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2010, Fryer et al. 2012], with a peak around 8 M and a mass gap between
the lightest expected BHs and NS masses. This means that these massive BHs
would need very large initial spins in order to be able to form massive remnant
discs after the BHNS merger. However, the prediction of accurate remnant BH
masses via population synthesis is difficult, as the BH mass crucially depends
on the detailed supernova explosion mechanism [Kreidberg et al. 2012] which in
turn is very model dependent on the actual presupernova evolution of rotating

massive stars [Heger, Langer, and Woosley 2000].

1.3 Dynamics of tilted BH—torus systems

In a tilted BH-torus system, the dynamics of the system is fundamentally different
from the aligned case due to general relativistic effects affecting inclined particle
orbits in the Kerr spacetime, such as the Lense-Thirring (LT) effect [Lense and
Thirring 1918]. The torque caused by the LT effect has a strong radial (r=3)
dependence and causes the disc to start precessing differentially, as a result of
which it might become twisted and warped, affecting its dynamical behaviour
(see Nelson and Papaloizou [2000] or Section 4.4.1 below for a definition of twist
and warp). The inner regions of a thin disc might also be forced to move into the
equatorial plane of the BH due to viscosity, via the so-called Bardeen-Petterson
effect [Bardeen and Petterson 1975].

As the driving force of the tilted disc evolution are GR effects, one is guaran-
teed to include all relevant effects by evolving these systems in GR. Both general
relativistic hydrodynamics (GRHD) and general relativistic magnetohydrody-
namic (GRMHD) simulations of tilted thick accretion discs around Kerr BHs
have been performed by Fragile and collaborators within the so-called Cowling
(fixed spacetime, test—fluid) approximation (see e.g. Fragile and Anninos [2005]
and Fragile et al. [2007]). In those seminal works, the authors carried out
simulations to study both the dynamics and observational signatures of thick
accretion tori around tilted Kerr BHs.

In thick, tilted discs around Kerr BHs, the evolution and propagation of
warps can be described by bending waves rather than diffusion [Lubow, Ogilvie,
and Pringle 2002] (see also the model of Foucart and Lai [2014] describing the
linear warp evolution in tilted discs). In particular, in these systems the tilt angle
does not approach zero in the vicinity of the central BH, as one would expect
if the viscous Bardeen-Petterson effect would be at play [Ivanov and Illarionov
1997, Demianski and Ivanov 1997, Lubow, Ogilvie, and Pringle 2002]. This

behaviour of the radial tilt profile in the inner region of thick, tilted accretion
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discs has been observed in the inviscid GRHD simulations of Fragile and Anninos
[2005]. Incorporating GR effects in the simulations of these systems is crucial to
obtain correct disc evolutions; see for instance, the simulations of Nealon et al.
[2016], where omitting or accounting for general relativistic apsidal precession
completely changes the evolution of the tilt angle in the vicinity of the central
BH. The response of the disc to the differential torque depends on the size
and properties of the disc. Notably, if the sound crossing time in the disc is
small compared to the timescale of the LT precession, which is the case for
geometrically thick and radially slender discs, the response of the disc to the LT
torque of the central BH is solid body precession [Fragile and Anninos 2005].
The precessing disc is exerting an equal and opposite torque on the central Kerr
BH [King et al. 2005], which should therefore start to precess as well, at least
in those systems in which the disc mass is not negligible and the spacetime
therefore cannot be assumed to be a fixed background. As described in King
et al. [2005], the LT torque alone does not act in a direction that results in
disc alignment. However, there have been early arguments that the central BH
should eventually align with the disc angular momentum [Rees 1978, Scheuer
and Feiler 1996]. In particular, King et al. [2005] argued that the total torque
cannot have a component in the direction of the BH spin, but can be broken
down to a contribution that induces precession and a second, dissipative torque
that tends to align the BH and the accretion disc.

The response of the BH to the torque exerted by the precessing disc can
only be self-consistently analysed in GRHD simulations with a fully dynamical
spacetime evolution. For discs with negligible mass compared to the central
BH, the fixed-spacetime approximation in the seminal simulations of Fragile and
collaborators is perfectly justified. However, for BHNS mergers with an initially
low mass BH, the post-merger accretion disc can have a non-negligible mass
compared to the remnant central BH, making the inclusion of the disc self-gravity
necessary. To investigate these systems, and to extend the earlier works into
the fully dynamical spacetime regime, we present here the first comprehensive
study of tilted BH-torus systems with a fully evolved spacetime via 3D GRHD
simulations. All simulations reported in the thesis have been carried out using
the publicly available Einstein Toolkit (ET). In order to be able to monitor
the disc evolution during our simulations, we have implemented a module for

the ET performing the usual measure of the twist and tilt in the disc.

In order to quantify the response of the BH to the torque exerted by the
disc, we need an accurate measure of the direction of the BH spin. One of the

standard methods in NR to measure the magnitude of the angular momentum
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of the BH horizon is described in Dreyer et al. [2003]. This method is based
on the so-called isolated horizon formalism [Ashtekar, Beetle, and Fairhurst
1999] and its generalisation to dynamical horizons [Ashtekar and Krishnan 2003].
This method does not, however, give the direction of the BH spin in the 3D
Cartesian reference frame of the computational grid of a NR simulation. One
of the ways to measure the BH spin direction is via the so-called flat space
rotational Killing vector method presented in Campanelli et al. [2007], where
the authors showed that the method (while being coordinate based) reproduces
the spin magnitude and direction on initial slices very well. The authors remark,
however, that the method is not guaranteed to yield an accurate evaluation
for generic gauges (such as the ones attained during NR simulations). For the
simulations presented in this thesis we are in the need for an accurate measure
of the BH spin direction for many orbits of the disc evolution in order to have
an accurate description of the BH response to the disc torque. To achieve this
goal we present below results showing that the method can be derived from
Weinberg’s pseudotensor [Weinberg 1972] and is equal, for an axisymmetric
horizon, to computing the Komar angular momentum [Komar 1959], when the

latter is expressed in a foliation adapted to axisymmetry.

1.4 Stability of accretion discs

Using perturbation theory, Papaloizou and Pringle [1984] found that tori with
constant specific angular momentum (I) are unstable to non-axisymmetric global
modes. Such modes have a co-rotation radius within the torus, located in a
narrow region where waves cannot propagate. Waves can still tunnel through the
co-rotation zone and interact with waves outside that region. The transmitted
modes are amplified by reflections at the boundaries at the inner and outer edges
of the torus.

In early simulations of the PPI in the non-linear regime, Hawley [1987]
showed the formation of m counterrotating over-density lumps, where m is
the azimuthal mode number. These over-density lumps were dubbed “plan-
ets”. Goodman, Narayan, and Goldreich [1987] elucidated the precise mechanism
of the instability and showed that the planets found in Hawley [1987] could be a
new equilibrium configuration of the fluid after the saturation of the instability.
The counterrotating over-density lumps manifest themselves as trailing spiral
density waves of constant pattern speed. In a differentially rotating disc, this
means that there is a region, namely at the co-rotation radius, where the spiral

density wave is traveling with the same angular velocity as the fluid. Inside
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the co-rotation radius, the wave travels slower, which means that it has nega-
tive angular momentum with respect to the fluid in that region. In the linear
regime, the wave does not interact with the fluid, but once the wave amplitude
becomes non-linear, mild shocks are formed and the wave can couple to the
fluid of the disc via dissipation [Papaloizou and Lin 1995, Goodman and Rafikov
2001, Heinemann and Papaloizou 2012]. As it couples to the fluid, it removes
angular momentum from the fluid in the region within the co-rotation radius

and transports it outwards, thereby facilitating accretion.

Non-axisymmetric modes with an azimuthal mode number of m = 1 are
special, as their appearance causes the centre of mass of the disc to no longer
coincide with the centre of mass of the system. This results in a perturbed
gravitational potential that causes a drift of the central compact object away
from the centre of mass of the system [Adams, Ruden, and Shu 1989, Heemskerk,
Papaloizou, and Savonije 1992]. The induced movement of the central mass can
also enhance the strength of the m = 1 mode significantly [Adams, Ruden, and
Shu 1989, Christodoulou and Narayan 1992]. This enhanced mode growth when
the central BH is allowed to move provides another reason why simulations of
BH-torus systems have to be evolved in fully dynamical spacetimes when the
disc mass is not negligible, as the central BH remains fixed by definition in the

Cowling approximation.

Korobkin et al. [2011] have studied non-axisymmetric instabilities in self-
gravitating discs around BHs using three-dimensional hydrodynamical simula-
tions in full GR. Their models incorporate both moderately slender and slender
discs with disc-to-BH mass ratios ranging from 0.11 to 0.24. They observed the
growth of unstable non-axisymmetric modes and also observed the movement of
the central BH as a result of the growth of a m = 1 non-axisymmetric mode. Also
employing NR simulations of both constant and non-constant [ discs, Kiuchi et al.
[2011] showed that the m = 1 mode survives for a long time after saturation in
non-constant ! discs, making the BH-torus system an emitter of large-amplitude,
quasi-periodic GW that are potentially observable. In our comprehensive study
of tilted accretion discs presented in this thesis, some of our initial disc models
have been specifically chosen because they were known to be PP-unstable when
the central BH was non-spinning. This allowed us to investigate what kind of
effect the disc surrounding tilted Kerr BH will have on its stability.

BH-torus systems are characterised by the presence of a cusp-like inner disc
edge where mass transfer driven by the radial pressure gradient is possible. If
the cusp moves deeper inside the disc due to accretion, the mass transfer speeds

up leading to a runaway process that destroys the disc on a dynamical timescale
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(see Font and Daigne [2002] and Daigne and Font [2004] for test-fluid simulations
in general relativity of the occurrence of this instability and Montero, Font, and
Shibata [2010] for axisymmetric simulations where the self-gravity of the disc
was first taken into account). In most recent NR simulations [Rezzolla et al.
2010, Hotokezaka et al. 2013b, Neilsen et al. 2014, Kastaun and Galeazzi 2015]
the BH—torus systems under consideration did not manifest signs of runaway
instabilities on dynamical timescales, because the non-constant [ profiles of the
massive discs that form self-consistently in the simulations seem to make them
stable against the development of the runaway instability. This is because the
disc is stabilised against the runaway instability when [ is not constant [Daigne
and Mochkovitch 1997], which was also observed numerically in Daigne and Font
[2004]. Recently Korobkin et al. [2013] observed that by a suitable choice of
model parameters, namely constant angular momentum tori exactly filling or
slightly overflowing their Roche lobe, a rapid mass accretion episode with the
characteristics of a runaway instability sets in. The astrophysical significance
of such fine-tuned models is uncertain as they do not seem to be favoured
as the end-product of self-consistent NR simulations of binary neutron star
mergers [Rezzolla et al. 2010, Hotokezaka et al. 2013b, Kastaun and Galeazzi
2015, Sekiguchi et al. 2015].

In a follow up paper to their seminal work in 1984, Papaloizou and Pringle
[1985] showed that the dynamical instabilities of constant ! profile tori were
still present in tori with non-constant [ profiles, which, as indicated above,
are more realistic outcomes of BNS and BHNS mergers. Furthermore, Zurek
and Benz [1986] observed that discs with a larger exponent in the power-law
distribution of [, [ ~ [9 than the critical value given in Papaloizou and Pringle
[1985], ¢ > qpp = 2 — V3, were still unstable, although angular momentum
transport was slower in those cases. This means that global non-axisymmetric
modes can indeed affect the disc evolution of post-merger BH-torus systems.
For instance, in the recent GRHD simulations of Kawaguchi et al. [2015], the
authors observe significant BH—disc alignment in one of the tilted post-merger
BH-torus system they studied. These authors assume that angular momentum
transport facilitated by a non-axisymmetric shock wave in the disc could provide
the dissipation needed for the BH—disc alignment. Another example for the
importance of non-axisymmetric instabilities is provided by the recent GRHD
simulations of Paschalidis et al. [2015], where the authors observe the formation
of a one-armed (m = 1) spiral arm instability in the hypermassive NS formed
following a BNS merger.
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Due to the importance of global non-axisymmetric modes in BH—-torus
systems, we investigate in this thesis the effects of the disc self-gravity around
tilted BHs. Some of the initial models we have built were known to be unstable
against the PPI in the untilted case [Korobkin et al. 2011]. Therefore, we
investigate in particular the effects the BH tilt has on the development of these
instabilities in the torus.

We end this introduction with a word on the initial disc models (see Section 6.1
below for full details). All the simulations reported in this thesis are performed
using initial data constructed as equilibrium models of thick accretion discs
around a Schwarzschild BH, using a construction described in Stergioulas [2011].
In order to obtain initial data that model a tilted BH-torus system, we replace the
spacetime consisting of the non-rotating BH and self-gravitating disc spacetime
by a Kerr spacetime with its symmetry axis tilted with respect to the disc angular
momentum. We note that there is currently no known method of constructing
tilted self-gravitating discs around Kerr BH, as such a tilted BH-torus system is
not stationary by definition. Currently, the only way of self-consistently arriving
at self-gravitating tilted BH-torus initial data is therefore via NR, simulations
of tilted BHNS mergers, such as the ones reported in Foucart et al. [2011],
Foucart et al. [2013], and Kawaguchi et al. [2015]. While performing the mergers
and investigating the subsequent post-merger disc evolution would have been
possible using the ET, it would have rendered the study prohibitively expensive
computationally and was therefore out of the scope of this work. We are not
aware of publicly available tilted BH-torus data from self-consistent NR merger

simulations either that we could have used as initial data.
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1.5 Organisation of the thesis

The rest of the thesis is organised in three parts:

In Part II, we give a brief introduction to the field of NR, describing the
spacetime evolution formalism in Chapter 2, GRHD in Chapter 3, and finally
giving an overview of the computational framework in Chapter 4. This chapter
briefly describes the ET, the numerical code which we use for all simulations
presented in this thesis.

We present our results in three chapters in Part III. In Chapter 5, we present
results regarding the measurement of BH spin direction in NR simulations. Our
comprehensive parameter study of different accretion disc models around tilted
Kerr BHs is presented in Chapter 6. In the final Chapter 7 of Part III, we
analyse one of the models of Chapter 6 in more detail, using fluid tracer particles
as a new means of analysing the disc evolution.

The discussion of the results and our outlook are presented in Part IV.

Finally, Part V contains two appendices. Appendix A contains a brief
overview of hyperbolic partial differential equations (PDEs) and in Appendix B
we give details on the actual implementation of the disc analysis thorn we have

written.

1.6 Conventions

Where physical quantities are given without explicit units, we use units in which
¢ = G = Mg = 1 throughout the thesis, where ¢, G and Mg are the speed of
light, the gravitational constant and the solar mass, respectively. Specifically,
this means that units of length and time are given by [L] = Mg ~ 1.477km and
[T] = Mg ~ 4.92673 x 1075 s. A notable exception are frequencies, which we will
give in units of Hz. We adopt a spacelike signature of the metric (—, 4+, +, +).

Lower case Latin indices run from 1 to 3, Greek indices run from 0 to 3 and

upper case Latin indices indicate the number of equations in a hyperbolic system.

We adopt the standard Einstein summation convention for the summation of
repeated indices. Vector and tensor variables are indicated in boldface. Indices
of objects living in three-dimensional hypersurfaces are raised and lowered with

the spatial three-metric of the respective hypersurface.
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One hundred years have passed since Albert Einstein formulated GR [Einstein
1915, Einstein 1916], deriving the equations of motion of the gravitational field.
The field equations are a set of non-linear partial differential equations (PDEs)
for the spacetime metric. The non-linearity is a consequence of the fact that
the gravitational field itself carries energy and momentum. Obtaining exact
solutions to the field equations is notoriously difficult. The most famous are the
vacuum solutions of Schwarzschild [1916] and Kerr [1963]. The Schwarzschild
solution is a spherically symmetric, static spacetime, describing the vacuum
gravitational field around a non-rotating, uncharged mass. The Kerr spacetime
is an axisymmetric, stationary solution, giving the vacuum gravitational field
around a rotating mass. For an excellent introduction to the Kerr spacetime,
see Visser [2007]. For an overview of exact solutions to the Einstein equations,
see Kramer and Schmutzer [1980].

As noted in the introduction, ground based GW detectors have opened a
new window to the observation of the universe. While the investigation of
exact solutions to the field equations is an important field in itself, most exact
solutions are stationary/static and as such do not emit GWs. It is therefore
necessary to numerically solve the full non-linear field equations in order to
model gravitational waveforms emitted in dynamical scenarios. This chapter
gives an introduction to the methods and techniques developed in order to
numerically integrate the field equations of GR.

The field of NR has come a long way from the first reformulation of the
Einstein equations in a 3 + 1 split by Darmois [1927] to the groundbreaking
vacuum BBH simulations of Pretorius [2005a], Campanelli et al. [2006], and Baker
et al. [2006]. For matter spacetimes, the first BNS mergers by Shibata and Uryu
[2000] and BHNS mergers by Shibata and Uryu [2006] were equally important
breakthroughs. As we can only give an overview of the field and the necessary
techniques to solve the Einstein equations numerically, we refer the reader to
the lectures notes of Gourgoulhon [2012] and the books by Alcubierre [2008]
and Baumgarte and Shapiro [2010] for a general introduction to NR, as well as the
Living Review articles on numerical hydrodynamics and magnetohydrodynamics
in general relativity by Font [2008], on BNS mergers by Faber and Rasio [2012],
as well as on BHNS mergers by Shibata and Taniguchi [2011].

This part of the manuscript is split in chapters describing the spacetime
evolution, the evolution of GRHD and the computational framework that is used
for the numerical simulations presented in this work.






Chapter 2
Spacetime Evolution

GR abandons the notion of a global flat space and a universal time in which the
dynamics of matter take place, as is the case in Newtonian dynamics. Instead,
the dynamics take place in a 4-dimensional spacetime consisting of events, which
are 4-dimensional labels of 3 spatial and one temporal coordinate. Notably,
space and time are brought on an equal footing. The mathematical structure of
spacetime is that of a 4 dimensional pseudo-Riemannian manifold M equipped
with a bilinear, symmetric form, the spacetime metric g, together forming the

set (M, g).

The equation of motion for the gravitational field is the following tensorial
equation:
G=8nT, (2.1)

where G is the Einstein tensor and T the stress-energy tensor of the matter
contained in the spacetime. A guiding principle in the development of the theory
has been general covariance, as the laws of physics should not depend on the
coordinates used in calculations. This is reflected in the fact that the equation of
motion of the gravitational field is a tensorial equation. The Einstein equations
determine the curvature of the manifold M for a given matter distribution
described by the stress-energy tensor T', while the curvature in turn determines
the gravitational field felt by the matter distribution. This, as Zeidler [2011]
remarks, can be formulated as a guiding principle of modern theoretical physics,

namely as the realisation that force equals curvature.

Introducing the coordinates z* in M, the line element (which measures

distances and times between points in the manifold) is given in terms of the



20

Spacetime Evolution

spacetime metric as:
ds? = g, datdz”. (2.2)

The Christoffel symbols of the Levi-Civita connection, which is torsion-free, are
defined as

1
Flﬁ = i(aozgﬁ,u + 859041 - augaﬁ)guva (23)
where we have introduced the shorthand notation 9, := % and g"¥ is the

inverse of the spacetime metric g, in the sense that
gauguﬂ = 6ﬁa7 (24)

with 67, being the Kronecker delta. As usual, indices are raised and lowered
with the spacetime metric g,,,. The curvature of M is completely determined
by the Riemann tensor R’ B~ given by
é o s s 5 T b
R’apy = 00 Ty, — 055, + FWF’M - I, T

ay

(2.5)

"
ay*
From the Riemann tensor, we can construct the Ricci tensor R, of the spacetime,

which is obtained by contracting the Riemann tensor once
Rog = R5a55, (2.6)

and contracting the Ricci tensor once more gives the Ricci scalar or scalar
curvature

WR = ¢g*PRup. (2.7)

As the Ricci scalar does not carry indices by definition, we use the notation (YR
to indicate that it is a four-dimensional object of the manifold M, distinguishing
it from the 3-dimensional Ricci scalar R. Using the Ricci tensor and scalar
curvature, we can express the Einstein tensor in the coordinates z* as follows
1
59 R, (2.8)
which gives the Einstein equations in coordinates

Gu =Ry —

1
R, — qul,(4)R =87T,,. (2.9)
Contracting Eq. (2.9) with g, leads to
WR = 87T, (2.10)

which means that the scalar curvature of the spacetime is directly related to the
energy-momentum of the matter via the trace of T),,. Substituting Eq. (2.10)

back into Eq. (2.9), we are led to the following equivalent form of the Einstein
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equations:
1
Ry =87 (T, — §gWT)‘>\). (2.11)

From this form of the Einstein equations, we see immediately that a vacuum

spacetime (T}, = 0) has a vanishing Ricci tensor.

The symmetric Einstein tensor G\, has ten independent components, so that
Eq. (2.9) is a set of 10 algebraically independent equations. However, as a result
of the Bianchi identities (see, e.g. Weinberg [1972]), the components of G,,, are
related by four differential identities,

GHypy = 0, (2.12)

where ,, denotes the covariant derivative with respect to the metric g,,,. We are
therefore left with 10 — 6 independent equations for the spacetime metric, which
means there are 4 degrees of freedom. These represent the gauge invariance of

the theory, namely the diffeomorphisms of the 4 dimensional spacetime.

We note that by virtue of the Einstein equation (2.9), the local conservation
of the Einstein tensor, Eq. (2.12), directly implies that the stress-energy tensor
is locally conserved as well:

T, =0. (2.13)

The fact that time and space are combined into events in GR, as well as the
4 dimensional gauge invariance make the numerical integration of the equations
of motion of the gravitational field a daunting task. For dynamical vacuum
spacetimes, we do not know the future end states of the system in order to be
able to properly formulate boundary conditions. Furthermore, the presence of
matter complicates the evolution of the system further, as the matter might
be subject to the other forces of nature (the electromagnetic, electroweak and
strong force) as well. Additionally, we know that there is an arrow of time, given
by the second law of thermodynamics, namely that the entropy of an isolated
system cannot decrease in time. We would therefore like to rewrite the field
equations (2.9) in a way that enables us to integrate them forward in time, as
we are required to integrate the internal evolution of the matter forward in time
as well. We are thus led to consider if we can solve the Einstein equations as a
Cauchy initial value problem (IVP):

Given the metric g, and its “velocity” dyg,., at a single point in time 29 = ¢,
everywhere in space, can we integrate the field equations coupled to the matter

evolution equations forward along 297
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Figure 2.1 Diagram showing the 3+1 splitting of spacetime in a foliation adapted to the
coordinates x* of the spacelike hypersurface ¥;. See main text for details.

2.1 The 3 + 1 formalism of GR

By slicing the 4 dimensional spacetime as a family of non-intersecting 3-dimensional
spacelike hypersurfaces Y;, one can reformulate finding the solution to the Ein-
stein equations as the Cauchy IVP sought above. This is based on the works
of Darmois [1927], Lichnerowicz [1944] and Choquet-Bruhat [1952]. In the
description of the 3 + 1 formalism below, we largely follow the derivations given
in Gourgoulhon [2012], to which we refer the reader for full details.

In the 3 + 1 formalism, the 4 dimensional spacetime manifold M is foliated
by a set of non-intersecting spacelike hypersurfaces ¥;, where ¢ is a parameter
indicating the elapsed time between neighbouring hypersurfaces. In the following
we choose to foliate M in a manner that is adapted to the coordinates z*,
expressing the tensorial equations in those coordinates, as we are ultimately
interested in rewriting the field equations as PDEs in order to numerically
integrate them. We denote the normal vector to the hypersurface as n, and
the tangent vector to the coordinate lines of x! = const as 8; (called the
time vector [Gourgoulhon 2012]). The three central quantities in expressing
the spacetime metric g, in the 3 4+ 1 formalism are then: The spatial 3-
metric v;;, which determines the intrinsic geometry of ¥, the lapse function
a, which is a measure of the temporal distance along the normal n between
¥; and the neighbouring ¥, s;, and the shift vector 3%, which measures the



2.1 The 3 + 1 formalism of GR

23

shift of the coordinates between the normal n and the time vector 9;. Fig. 2.1
displays a diagram illustrating the resulting foliation. Indices of objects living
on the hypersurface 3, are raised and lowered with the spatial metric 7;;. The
normal vector n* and the covariant normal vector n, are given by the following

expressions in the coordinates x*
= (1, _5"’) , (2.14)
n, = (—a,0), (2.15)
while the time vector is given by
9: = an + . (2.16)
From this, we see that the normal vector n is given by:
n = i(at—ﬁ). (2.17)

In this 3+1 split, the 4 dimensional spacetime metric takes the following form:

G = < —a? + BB | vi B’ ) ’ (2.18)

Vi B’ ‘ Vij
and its inverse is given by
_ a2 ‘ B a2

g/LV — ( 6ja72 ‘ ,y” _ﬁiﬁja72 ) , (219)

where v% is the inverse of 3-metric ~vi;. While the spatial metric 7;; defines the

intrinsic geometry of X, it gives no information on how ¥; is embedded in the
four dimensional manifold M. This information is provided by the extrinsic
curvature K;;, which measures the evolution of the spatial metric between
neighbouring hypersurfaces. The extrinsic curvature is a spatial tensor of ¥,
and is given by the Lie derivative of the spatial metric v;; along the direction of

the normal n:

1
K=——(Ls, — L 2.20
(Lo, — L5) (220)
where Lo, v and Lg v are expressed in coordinates as follows:
Lo, v = 0t vij, (2.21)
Eﬁ"y = DZB] + Djﬁi7 (222)

where D; is the covariant derivative associated with the spatial metric 7;;. In

component notation, the extrinsic curvature is therefore given by:

Ki; = O0¢vij — DiBBj + DjBs), (2.23)

1
_%(
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showing that the extrinsic curvature is closely related to the time derivative of
the spatial metric. In fact, this gives us an evolution equation for 7;; stemming
purely from the geometry of the foliation. Having defined the spacetime metric
guv in terms of the set {a, 5°,7;;}, the embedding of ¥; in M with the help of
the extrinsic curvature K;; has therefore given us the first evolution equation of
the 3 4 1 field equations:

(at — £f)) Yi; = —204Kij. (2.24)

To proceed, we need to define how to project the four dimensional tensors living
in M onto the hypersurface ¥; in order to be able to project the field equations
onto the hypersurface. We can project four dimensional tensors in various ways;
namely projecting along the tangents of the hypersurface using the orthogonal
projector v g:

7 = 0% +n%ng, (2.25)

or a projection along the normal to 3; using n*, or as a mix of the two projections.
We first project the stress-energy tensor 7),, onto the hypersurface, which gives

rise to the following quantities related to the matter content of the spacetime:

1
E=n*n" T;“, =— (T()O - QBGTOa + 5a6bTab) ) (226)
[0
1
Si=—An" Ty, = —E(Tm - Tia %), (2.27)
Sij =7"i7" 5 Tw = Tiy, (228)
S =~Y8;;. (2.29)

These quantities are respectively, the matter energy density F, the matter

momentum density S;, the matter stress tensor S;;, and the trace of the matter

stress tensor S. Contracting the Einstein equations in the form of Eq. (2.11)

twice with the orthogonal projector leads to

(at—ﬁﬁ) Kij = —DZ-Dja—&—a (R” + KKZJ — 2KiaKaj + 471'((5 - E)’}/Z] - 25”))
(2.30)

Projecting Eq. (2.11) twice with the normal to the hypersurface results in:

R+ K? - K;;K" = 167E, (2.31)

which is the so-called Hamiltonian constraint. Finally, performing a mixed

projection of Eq. (2.11) leads to the following equation:
D;K; — D;K = 8rS,, (2.32)
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which is the so-called momentum constraint. To arrive to these equations,
one needs to make use of the Gauss, Codazzi, and Ricci equations. We refer the
reader to Gourgoulhon [2012] for the full details of the derivation.

Egs. (2.24) and (2.30) constitute the evolution equations of the 3+1 formalism,
while Eqgs. (2.31) and (2.32) are constraint equations that need to be fulfilled at
every spatial hypersurface ¥;. These four equations, written in the 341 formalism

are equivalent to the original four dimensional Einstein equations (2.11).

For completeness (see Gourgoulhon [2012]), we explicitly give the various
terms in the above equations by expressing the covariant derivative D; associated
with the spatial metric v;; in terms of partial derivatives using the Christoffel

symbols associated with the connection of ~y;;, I'“.:

[ = %’Yab(aﬂbj + 95%ib — Oij)- (2.33)
Then
D;iDjo = 0;0j00 — '35 04 v, (2.34)
DK% = 04K + T K — T K%, (2.35)
DK = 9,;K. (2.36)

Furthermore, the Lie derivatives with respect to the shift vector, Lg, are given
by

Lgvi; =08 + 0:8; — 2I'; Ba, (2.37)
Lp Kij = % 0aKij + Kaj 05" + Kiq 0;5%. (2.38)
The Ricci tensor R;; and the spatial scalar curvature R are given by
Rij = 0,0%; — 0,1 %4 + T%; T%0 — T, T%;, (2.39)
R =~"R,;. (2.40)

The evolution and constraint equations constitute a set of second-order non-
linear PDEs for the set of variables {v;;, K;j, . 8%, E, S;, Si;}. We note that
there are no time derivatives in the Hamiltonian and Momentum constraint
equations. They are rather restrictions on the initial data on the initial spacelike
hypersurface ¥;—g. Loosely speaking, this means that the initial data needs to be
a solution to the field equations in order to be able to obtain a meaningful time
evolution. Due to the Bianchi identities, we are guaranteed that the constraints
are identically fulfilled during the time evolution. However, this is only true
in the continuum limit, while numerical systems tend to drift away from the

constraint surface due to the accumulation of truncation errors.
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In order to gain some insight into the meaning of the constraints, and in
particular into the role played by the lapse and the shift, we will now briefly
describe a Hamiltonian formulation of GR. Utilising the 3 + 1 split, Dirac
[1949] and Arnowitt, Deser and Misner (ADM) [1961] (republished in Arnowitt,
Deser, and Misner [2008]), derived a Hamiltonian formulation of GR, where,
in close analogy to quantum mechanics, the generator of time evolution is the
Hamiltonian of the system. The starting point is the Hilbert action of GR

1

SGR[Q;W] = ﬁ " (4)R\/ —g d41'7 (2'41)

where g is the determinant of g,,. The action is a functional of the metric.
In the 3 + 1 formalism, we want to express the action Sgr[gu,] in terms of
the set {7;7, @, B'}. The spatial metric ;; will play the role of the generalised
coordinates ¢, and we denote by p“ the canonically conjugate momentum to
7i;j. We restrict ourselves to the vacuum case below, but the inclusion of matter

proceeds analogously. The action in terms of the set {v;;, a, B} is then given
by:

. 1 .
Sg+1[’yij, a, 51] = — / p”'yij Bz — H, — Hﬁi dt, (2.42)
167T R bR
where H,, and Hpg: are obtained by “smearing” the gravitational super-Hamiltonian
1 ij p2
H=—(pijp” — =) — VIR, (2.43)

NG 2

where v = det(7;;), and super-momentum
H; = —2D;p’;, (2.44)
with the Lagrangian multipliers lapse
H, = / aHdz, (2.45)
DI
and shift [Kucha and Torre 1991]
Hg = | B'H;dx. (2.46)
¢
As the variations of the action with respect to the lapse and shift need to vanish
in order for the action to be extremal, and no term in the action explicitly

depends on either a or 3%, apart from their use as Lagrangian multipliers, H,

and Hg: must be identically zero:

553+1 1 i p2
_— = H — 17 ' ) 24
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These are precisely the Hamiltonian and momentum constraints. The varia-

=0 = H;=-2D;p’; =0. (2.48)

tion of the action with respect to v;; and p* leads to the Hamiltonian equations
of motion for the spatial metric and the conjugate momentum in terms of the

following Poisson brackets:

Yij = {Vij, Ha + Hp: }, (2.49)
P = {p", Ho + Hg:}. (2.50)

As Kucha and Torre [1991] remark, the Einstein equations remain valid when
introducing coordinate conditions after the variation, which the ADM reformu-
lation allows us to do. The coordinate conditions only prescribe the passage
from one hypersurface ¥; to another ;4. For reference, we give the relation
between the extrinsic curvature K;; and the canonically conjugate momentum

P = VA AT = K1), (2.51)

After having obtained the Einstein equations as PDEs in coordinates adapted
to the coordinates introduced in the 3 4 1 split of the spacetime, we could in
principle go ahead and numerically integrate them, after having specified a set of
initial data {vi;, K;;, E, S;, Si;} that satisfies the constraints. As we have seen,
the lapse and shift are Lagrangian multipliers of the Hamiltonian reformulation
and therefore not dynamic variables, the freedom to choose them freely reflects
the original diffeomorphism invariance of the 4 dimensional theory. There are,
however, various caveats:

Firstly, although we should in principle be able to freely choose the gauge in
free evolution schemes, choosing the correct gauge for the numerical integration
is crucial for the long-term stability of simulations. We will return to this issue
in section 2.3 below.

Secondly, although the Bianchi identities guarantee that the constraints are
fulfilled during the entire evolution, this is only strictly true in the continuum
limit, and performing the numerical integration of the field equations with finite
resolution will in general not preserve the constraints. When the constraints are
not satisfied, we are no longer solving the Einstein equations. There exist there-
fore two different approaches to the numerical integration of the field equations:
the so-called free evolution schemes, in which the level of constraint violations
is only monitored during the evolution, and the so-called constrained evolution

schemes, where the constraints are actively enforced during the evolution. Both
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approaches have advantages and disadvantages. In free evolution schemes, the
resulting nonlinear PDEs are hyperbolic, and therefore much easier and compu-
tationally cheaper to solve than the nonlinear mixed elliptic-hyperbolic PDEs
arising in constraint evolution schemes. However, as said above, the constraints
are only fulfilled in the continuum limit and numerical errors result in solutions
that are not true solutions of the Einstein equations as the simulation proceeds.
We use a free evolution scheme in this work, and will therefore not describe
constrained evolution schemes further. For examples of constrained schemes for
the numerical integration of the Einstein equations see Bonazzola et al. [2004]

and Cordero-Carrion et al. [2009] and references therein.

Finally, when performing a free evolution using the discretised 3+ 1 evolution
equations (2.24) and (2.30) directly, the evolution is not stable. The reason is
that the equations are only weakly hyperbolic and as such mathematically not
well posed. The root of the problem is the appearance of the spatial Ricci tensor
in these equations [Friedrich 1996], due to the fact that it contains mixed partial
derivatives of the spatial metric. We will discuss this further in Appendix A,
where we define the notion of hyperbolicity for first order systems of PDEs and
provide a heuristic argument showing how indeed the mixed partial derivatives

of the Ricci tensor influence the hyperbolicity of the 3 + 1 evolution equations.

One way to eliminate these mixed derivatives is the conformal-traceless
reformulation of the 3 4+ 1 evolution equations, first presented by Nakamura,
Oohara, and Kojima [1987]. The introduction of auxiliary variables removes the
troublesome mixed partial derivatives in the Ricci tensor, and additionally, the
trace of the extrinsic curvature, K, is evolved separately. One of the resulting,
and arguably most widely used, free evolution scheme based on the conformal-
traceless reformulation of the 3 4+ 1 evolution equations is the so-called BSSN
formulation [Baumgarte and Shapiro 1999, Shibata and Nakamura 1995]%. As we
exclusively use the BSSN formulation for all simulations in this work, we restrict

ourselves to its description only, which we present in the following section.

As a final remark, we note that there exist other formulations of the Einstein
equations not based on the 3 + 1 formalism, such as the characteristic initial
value problem (for a review see Winicour [2012]) or the generalised harmonic

decomposition by Pretorius [2005b].

INote that it is sometimes called BSSNOK, because it is based on the strategy of Nakamura,
Oohara, and Kojima [1987] to simplify the spatial Ricci tensor.
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2.2 The BSSN equations

The starting point of the conformal-traceless reformulation is a conformal de-
composition of the spatial metric v;;, an idea dating back to Lichnerowicz [1944],

by introducing a conformal factor ¢ and the conformal spatial metric
Yij = e 5, (2.52)
in a way that the determinant of the conformal metric, 4, is unity and the

conformal factor is given by ¢ = In(vy)/12. Defining the traceless part of the

extrinsic curvature as 1

the conformally related traceless part of the extrinsic curvature is given by
Ajj=e Ay (2.54)
By taking the trace of the 3 + 1 evolution equation for the spatial metric (2.24)
one obtains an evolution equation for the trace of v;;:
odn(v%) = —2a K +2D;3". (2.55)
The evolution of the conformal factor ¢ is given by

1 . 1 )
8t¢ = —EOZK + B’@i(b + éaiﬁz. (256)

In a similar fashion, by taking the trace of the evolution equation (2.30) of the
extrinsic curvature and combining it with the Hamiltonian constraint (2.31),
one obtains an evolution equation for the trace of the extrinsic curvature:

L . ... K2 )
8tK = —’y” Dj Dz o+ o (AijAU + 3) —|— 47TC¥(E + S) + 5161K (257)

Finally, combining the evolution equations for the trace of the extrinsic cur-
vature (2.56) and the conformal factor (2.57) with the 3 + 1 evolution equa-
tions (2.24) and (2.30), one arrives at the evolution equations for the conformal

metric and the conformally related traceless extrinsic curvature:

~ 1 a ~ ~ a Iy a 2 a
0Vij = —2aAij + B 0aVij + Yia 058 + Va;0: 8% — g%‘jaaﬁ ) (2.58)
~ 1 1
&gAij = 4 [a(RZ—j - g’}/ij R) —8r« (S” - g’}/@'jS)
— (DZ‘D]'OL — é’yijDaDaOé)] + « (K Aij - QAiQAaj)

_ _ _ 9
+ B0, Aij + Ai 058 + Ayj0; 8% — §Aijaa/6a- (2.59)
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Note that the Ricci tensor still appears unaltered in the above equation for the
time evolution of Aij, and specifically, the mixed derivatives of the metric have
not yet been eliminated. To do so, one proceeds by splitting the Ricci tensor
into two parts:

Rij = R?J + Rij, (260)

where Rfj is given by
R;@ = —QD,qub — Z’YijDaDaﬁb + 4D1¢D]¢ — 4’)/ijDa¢Da¢, (261)

and bi is the covariant derivative associated with the conformal metric. Intro-
ducing the conformal connection functions T [Baumgarte and Shapiro 1999],
defined as

I = 5T, = —0,5", (2.62)

where the fiab are Christoffel symbols of the connection associated with the

conformal metric 7;;, the conformal Ricci tensor R;; can be expressed as:

>, 1~a ~ ~ Ha HaT ~a re T e T
Rij = i’y baab"yij +’ya(j8j)1‘ +T F(ij)a + b(2 Fa(irj)d’ + Fibrcaj)~ (2.63)

The only second derivatives of the metric left in the definition of RU is the
Laplace operator 7% b¥ij- The rest of the second derivatives have been recast
in terms of the conformal connection functions I'!, which was the aim of the
reformulation of the original 341 evolution equations. The conformal connection
functions are now considered as independent variables and need to be evolved.
The evolution equation is obtained by performing a permutation of space and

time derivatives in the definition (2.62):

~ . ~. -~ 2 . . o
Tt = — 249,00 + 2 (T, AP — gwaak — 8778, + 6A10,¢)
. 9. 1, ,
+ B9, I =T, 5" + gl”aaﬁ“ + §~’”aab5a + 3200 5. (2.64)
Thus, in the BSSN reformulation of the 3 + 1 evolution equations, the evolution
variables are now the set:
{0, %5, K, Aij, T }. (2.65)

The aim of the reformulation of the original 3 + 1 equations was to obtain
a mathematically well-posed system. To this end, the removal of the mixed
derivatives in the Ricci tensor has been achieved with a conformal-traceless
reformulation and the introduction of new auxiliary evolution variables. We
should therefore be able to numerically integrate constraint-satisfying initial

data forward in time using the BSSN equations. However, we have not yet
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specified the gauge. As we show next, our choice of gauge is based on both

physical and numerical reasons.

2.3 Choosing the gauge

The search for a suitable gauge has been guided by the following requirements:
On physical grounds, the coordinate evolution should be singularity avoiding,
while numerically, the BSSN system supplemented with evolution equations for
the lapse and shift should be strongly hyperbolic. Choosing a suitable foliation
as well as suitable evolution of the spatial coordinates will be equally important
to guarantee long-term stable simulations. For a geometric interpretation of the
lapse and shift, see for instance Fischer and Marsden [1972].

Let us start by analysing the gauge freedom with the simplest choice, the
so-called Gaussian coordinates, which are defined by choosing the following
constant lapse and shift: o = 1, f° = 0. Foliations with a = 1 are also
known as geodesic slicing. In this gauge, the lines 2° = const are orthogonal to
the hypersurface (see Fig.2.1), and the time elapsed between hypersurfaces is
the proper time measured by Eulerian observers. In this gauge, the geodesics
emanating from a hypersurface ¥; are orthogonal to the hypersurface, and
furthermore irrotational [Senovilla 1998]. While the 3 4 1 evolution equations
simplify tremendously when using Gaussian coordinates, they are not useful in
the numerical integration, as they are not singularity avoiding when the initial
data contains singularities, as is the case for BHs (see Smarr and York [1978]).
But even in spacetimes initially not containing singularities, the solution to the
field equations necessarily develops coordinate singularities in finite time [Komar
1956] when using Gaussian coordinates.

There have been several attempts to remedy the inability of geodesic slicing
to avoid singularities, such as maximal slicing, which amounts to choosing a
lapse that corresponds to a vanishing trace of the extrinsic curvature (K = 0).
This leads to an elliptic equation for the lapse (D;D'a = a K;; K% in vacuum).
An alternative is the harmonic slicing condition [Choquet-Bruhat and Ruggeri
1983], corresponding to the following evolution equation for the lapse:

(0r — Lg)a = —K o?. (2.66)
A generalisation of the harmonic slicing condition (2.66) was given in Bona et al.

[1995]:
0y — Lg)a = —K o? f(a), (2.67)
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where f(a) is an arbitrary function. Note that f(a) = 1 recovers the original

harmonic slicing condition. Choosing f(«) = 2/« leads to
(O —Lg)a=—-2Kq, (2.68)
which admits the following solution (for 3% = 0):
a=1+In(y). (2.69)

This slicing is therefore known as 1+log slicing. It is singularity avoiding [Bona
et al. 1995] and has become (with various variations) one of the standard choices
for NR simulations. Notably, two of the three breakthrough BBH simulations,
the ones of Campanelli et al. [2006] and Baker et al. [2006], have used variations
of the 1+log slicing.

The role of the shift is more elusive, and in early works it has been routinely
set to zero. When dealing with spacetimes containing BHs, however, this has
the unwanted effect of producing large stretching of the coordinates near the
BH, with the coordinates falling into the BH as the simulation proceeds, causing
the horizon to continuously grow. In axisymmetric spacetimes of rotating BHs,
there is further complication since a vanishing shift produces large shears close
to the BH due to frame dragging [Alcubierre 2008].

One successful cure to the fall-in of the spatial coordinates has been the
so-called T-freezing of Alcubierre and Briigmann [2001], which amounts to *freeze’
the evolution of the conformal connection functions I in the sense that their
time derivative is vanishing, i.e. 8,I' = 0. This prescription leads to an elliptic
evolution equation for the shift. To avoid solving a computationally expensive
elliptic equation, Alcubierre et al. [2003] introduced the so-called hyperbolic
[-driver condition:

026" = koL — (n — On(k)) 8,5, (2.70)

where k and 7 are positive functions, the latter playing the role of a damping term.
This results in a hyperbolic evolution equation for the shift. By introducing
the auxiliary variable B?, one can write the I-driver as a set of two first-order

evolution equations:
08" =k B, (2.71)
oB' = o,T" —n B'. (2.72)
The damping parameter 7 is a free parameter (see van Meter et al. [2006] for

results using different values of 7). In practice, when using mesh-refinement, the

7 parameter introduces a step size limit for the time step, as noted in Schnetter
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[2010], where damping 7 as a function of the coordinate radius r is presented as
a simple and effective solution to this problem.

We have therefore almost reached the goal of having rewritten the 3 + 1
evolution equations in a form that is well-posed, as well as having found suitable
gauge conditions that allow the long-term evolution of constraint-satisfying initial
data. There is one last missing ingredient, however: If we start with a spacetime
containing a true singularity, such as the centre of a BH, or a spacetime that will
develop a true singularity, for instance through the gravitational collapse of a

NS, we need a prescription to deal with the singular geometry at the location of

the singularity. One way is to excise a certain volume containing the singularity.

Specifically, one can “remove” the entire volume enclosed by the surface of the
BH from the computational domain, which was first performed in Seidel and
Suen [1992]. This method effectively cured the problems of numerically evolving
spacetimes containing singularities, but has two apparent deficits: First, when
using Cartesian grids, one needs to construct a so-called “Lego-sphere” [Cook
et al. 1993] which only approximates the axisymmetric EH, and second, one needs
to find appropriate boundary conditions for moving excision regions [Szilagyi
et al. 2007] when the BHs are moving in the computational grid.

The alternative to singularity excision is the so-called moving puncture

method, which is the standard choice for most groups.

2.4 The moving puncture

In Brandt and Briigmann [1997], the authors described a novel construction of
multiple BH initial data where the spatial metric 7;; on the initial hypersurface
is defined as

Yij = (¥)* 85, (2.73)

where the conformal factor ¢ is split in two parts, ¢ = U, + u. ¥py, is the
Brill-Lindquist conformal factor [Brill and Lindquist 1963] and u is an everywhere
regular function that represents the non-singular part of the solution at the
centre of the BHs, the “punctures”, namely

N

=gy +u, Up,=Y
i=1

m;
P 2.74
2lr — 1y (2.74)
where m; is the mass of the i-th puncture and N is the total number of BHs on
the grid. Using this split, one can solve for u (using the Hamiltonian constraint)
without imposing special boundary conditions at the punctures. In this approach,

the punctures remain fixed on the computational grid. This means that for
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BBHs in orbital motion, the punctures are fixed in a co-rotating frame, so that
the coordinates themselves need to evolve in such a way as to represent the
orbital motion of the BHs. In Campanelli et al. [2006] and Baker et al. [2006]
the authors discovered a way of evolving the puncture initial data without the
need for keeping the punctures fixed, but allowing them to move freely on the
grid. The singular part of the conformal factor can be evolved together with the
regular part, using the following modification of the T-driver condition which

amounts to adding a shift advection term [Baker et al. 2006]:

9,8 = Z a B, (2.75)
O B" = 9,1 — B'9,I'* — n B'. (2.76)

The geometry and regularity of moving punctures was analysed by Hannam
et al. [2007] and their equivalence to moving BHs established in Thornburg et al.
[2007].

With these ingredients, namely the conformal-traceless reformulation of
the 341 evolution system, the 1+log slicing, the I-driver coordinate evolution
(for the well-posedness of the BSSN system with a dynamical evolution of the
lapse and shift see Beyer and Sarbach [2004] and Gundlach and Martin-Garcia
[2006]) and the moving puncture method, it is possible to long-term evolve

constraint-satisfying initial data.

2.5 GW extraction

One of the most important outcomes of NR simulations is the calculation of
gravitational waveforms. Indeed, the estimates for the initial BH masses of
the recently discovered BBH merger GW150914, as well as the estimate of the
final BH mass and its spin have been possible by comparing the measured GW
signal with a large catalog of GW signals obtained from GR [Abbott et al.
2016]. While the early inspiral phase is very accurately described in the post-
Newtonian formalism (see, for instance Blanchet et al. [1996]), and the predicted
waveforms agree well with the results from NR up until about the last orbit of
the merger [Baker et al. 2007], the use of NR simulations is indispensable for an
accurate modelling of the GW signal produced by the actual merger of compact

objects.

Einstein [1918] predicted the existence of GW by obtaining wave-like solutions

to the linearised field equations in the weak-field regime. We can split the
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spacetime metric g,,, as Minkowski space 7, plus a non-flat metric h,,:
Juv = Npuw + hm/- (277)

In the weak-field limit, we assume that |h,,| < 1. We adopt the convention
that indices are raised and lowered with 7,, when working to first-order in
hy [Weinberg 1972]

" hgy = h*,. (2.78)
The first-order Ricci tensor RSV) then becomes
1
R() = 5 (Ohyy — 020uh™, — NG R+ 0,007y (2.79)

where [ is the d’Alembert operator. The Einstein field equations then read
A A A 1 A
Ohpy — 020 h™, — ONOL R, + 0,000 = 16T (T}, — 3 DT 2). (2.80)
Choosing a harmonic coordinate system, which is defined as
gATHn =0, (2.81)

we have to first order )
N~ 5 Dl y, (2.82)

which reduces the field equation to
1
Oy, = =167 (T, — 5 N T, (2.83)

which is precisely a wave equation for the weak-field perturbation h,,. One

solution is given by the retarded potential

Syt ‘:B y| y)
h v t;x —4/d3 " . 9 2.84

where .
Suv = (T = 5 N T 3). (2.85)

As seen from the wave equation for h,, (2.83) and also from the form of the
time argument in S, (t — |& — y|,y), GWs travel with a speed equal to 1, i.e.
the speed of light.

We now turn to the extraction of GWs from numerical simulations. There
are three main approaches to the extraction of gravitational waveforms from
numerical data: Using gauge invariant perturbations of the Schwarzschild metric,
also called the Moncrief [1974] formalism (for a review, see Nagar and Rezzolla
[2005]), the Newman-Penrose formalism [Newman and Penrose 1962] and the
Cauchy-characteristic extraction [Babiuc et al. 2005] (for an implementation
see Reisswig et al. [2009]).
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We will restrict ourselves to the description of the Newman-Penrose formalism,
as this is the method we use to extract GWs in our simulations. In this formalism
the extraction is performed using one of the so called Newman-Penrose scalars
or Weyl scalars, ¥4. The Weyl scalars are the 10 independent components of

B which is defined as follows:
1

(4)004,@;1,1/ = (4)Raﬁul/ - (goz[,u(4)Ru]B — 98[u (4)Ru]a) + 3 Jalu9v)p (4)R7 (286)

where square brackets around indices refer to the antisymmetric part of the

the four dimensional Weyl tensor @We

tensor. The Weyl tensor has the same symmetries as the Riemann tensor, and
in addition it is traceless, (YC aBav = 0. The Weyl tensor of a conformal metric
Guv = ¥ guv is equal to the Weyl tensor of the original metric g,,,. In particular,
this means that a conformally flat spacetime has a vanishing Weyl tensor.

The Weyl scalars are formed by contracting the Weyl tensor of the spacetime
with a complex null tetrad. This means choosing a tetrad of four vectors
{I*, k* m* mt} such that:

", = k'k, =m"m, = mtm, = 0. (2.87)

If one further imposes that —{*k, = 1 = m/m,,, one has constructed a so-called
Newman-Penrose null tetrad. One way to construct such a null tetrad is by
choosing I* and k* to be two real vectors that are radially outgoing and ingoing
null vectors, respectively. We then construct two complex spatial vectors, m*
and m* that are orthogonal to [* and k*. Using the null tetrad, we can then
contract it with the Weyl tensor to obtain the Weyl scalars. As noted above,
for the extraction of GWs we are interested in the Weyl scalar ¥, only, as
one can show that it corresponds to outgoing gravitational radiation (see for
instance Baumgarte and Shapiro [2010]). In terms of the Weyl tensor and the

constructed null tetrad, ¥y is given by
Uy = WO s k& P kHm?. (2.88)
In particular, the gravitational strain is related to ¥4 via:
Uy =hy —ihy, (2.89)

where hy and hy are the plus and cross polarisation of the GW, respectively,
and the double dot symbol indicates the second time derivative. In order to
calculate the Weyl scalar ¥, from the 3 + 1 numerical data of a simulation one
needs to express (VC apuv in terms of the 3+ 1 variables and construct a suitable
tetrad. We first note that the Weyl tensor is equal to the Riemann tensor in

vacuum, so both tensors can be interchanged in vacuum. This means we can use
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the Gauss, Codazzi and Ricci equations to express the four-dimensional Riemann
tensor (4)Ra5,“, in terms of the 3 + 1 variables. Following Baker, Campanelli,

and Lousto [2002], the relevant components are given by:

R = Riji +2 K Ky, (2.90)
WRojim = 20, Ky; + 2 KD, (2.91)
(4)R0j0[ = le - KjaKal + KKjl. (2.92)

Finally, to construct a suitable null tetrad, one may proceed as described in Baker,
Campanelli, and Lousto [2002].

2.6 BH mass and spin

BH belong to the most interesting objects in the universe, yet they are char-
acterised by just one or two parameters, for Schwarzschild and Kerr BHs,
respectively. The defining property of a Schwarzschild BH is its mass M, while
a Kerr BH is completely defined by its mass M and angular momentum J, with
the Kerr parameter a being a = J/M. When monitoring BHs in numerical
simulations, one would therefore like to measure these quantities with great
accuracy. In the case of a single vacuum BH, we could just measure the total
mass of the spacetime in order to infer the BH mass, but as soon as we have
multiple BHs in our computational domain, or BHs surrounded by matter, we
need to measure the mass and angular momentum of the BH using its intrinsic
properties. One such possibility would be the calculation of the mass and angular
momentum using the surface of the BH, the so called event horizon (EH). The
defining property of the EH is that it causally disconnects the interior of the BH
from the outside, as no light rays emitted from within the EH can reach infinity
but rather fall back to the singularity, while light rays emitted from the outside
can reach infinity [Hawking and Ellis 1975]. In this sense, the EH is a global
property of the 4 dimensional space, and one needs the entire time evolution of
the spacetime to locate it. While it is possible to use the numerical data of a
simulation to integrate geodesics backward in time to obtain the EH [Anninos
et al. 1995, Libson et al. 1996], it would be desirable to obtain information about
the mass and angular momentum that can be calculated on every spacelike
hypersurface as the simulation proceeds.

There is an additional way to define a horizon for a BH, the so-called
apparent horizon (AH). The AH can be computed locally in time, that is on each
hypersurface ;. (See Thornburg [2007] and references therein for definitions
and implementations of EH and AH finders.) To define the AH, one begins
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with the definition of a marginally trapped surface (MTS), which may be defined
as a closed spacelike 2-surface in ¥; with the property that its future-pointing
outgoing null geodesics have zero expansion ©. In terms of the 3 + 1 variables,
the expansion is defined as [York 1989]:

O =Din' +Kijn'n! — K =0, (2.93)

where n’ is the unit normal to the surface. The AH is then defined as the
outermost MTS in ¥;. Given a spacetime containing an AH, Hawking and Ellis
[1975] have shown that its existence necessarily implies the existence of an EH,
and therefore the existence of a BH. Finding an AH during a simulation therefore
means that the spacetime contains a BH. Note, however, that the converse is not
true: The existence of an EH does not guarantee the existence of an AH, this
can be seen from the absence of an AH in certain slicings of the Schwarzschild
spacetime [Wald and Iyer 1991]. When found, the AH is also always contained

within the EH, and coincides with the latter for a stationary spacetime.

Once we have located an AH, we want to obtain its quasi-local mass and
angular momentum. The precise definitions are provided in the so-called isolated
and dynamical horizon formalism [Ashtekar, Beetle, and Fairhurst 1999, Ashtekar
and Krishnan 2003] (see Ashtekar and Krishnan [2004] for a review of the
formalisms, and for the application of the isolated and dynamical horizon
formalism to NR see Dreyer et al. [2003] and Schnetter, Krishnan, and Beyer
[2006]).

The BH spin is calculated by performing the following surface integral on
the AH of the BH

1
Jan = — / (V"R Kp) dS, (2.94)
8 S

where 1® is an approximate rotational Killing vector on the horizon that has to
be determined numerically (see Dreyer et al. [2003]), R® is the outward pointing
unit vector normal to the horizon, K is the extrinsic curvature on the horizon

surface and dS is the surface element.

Once the spin is known, we can calculate the horizon mass May:

1
My = ——— /Ry + 424, (2.95)
2 Ran

where Rag = (Aan/(47))/? is the areal radius of the AH. In the case of a Kerr

spacetime, the mass of the AH coincides with the Christodoulou mass [Christodoulou

1970, Smarr 1973]. Moreover, the irreducible mass of the horizon is

| Aam
My =/ 2. (2.96)
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As the area of the AH cannot decrease, the conservation of the irreducible

mass provides a very good check for the accuracy of the simulation.

2.7 Total energy of the system

After having discussed the quasi-local mass of individual BHs in the previous
section, we now turn to a definition of the total mass or energy contained in a
hypersurface ;. If the spacetime is asymptotically flat (for details see Jaramillo
and Gourgoulhon [2011]), one can define the total energy contained in the
hypersurface X; as the following surface integral, called the ADM energy:

Eapym = — lim // ivi; — 0ijj)m s, (2.97)

167r r—00

where n' is the outward normal to the surface and the integration has to be
carried out in Cartesian-like coordinates. Numerically, especially when using
large domains and mesh refinement, calculating the ADM energy using (2.97)
using a large surface might not be very accurate, as the resolution is reduced near
the outer boundaries of the domain. It would therefore be preferable to evaluate
the ADM energy as a volume integral. Following the derivation in O Murchadha
and York [1974], we can also calculate the total energy in ¥; as the following
volume integral:

1 g
Expm = Tom )y al (a\fWWzJWkl(Wik,j —Yij)) dx. (2.98)

In Yo, Baumgarte, and Shaplro [2002], the authors derive an equivalent volume

integral for the total energy using the BSSN variables.






Chapter 3

General relativistic

hydrodynamics

After having discussed the evolution of the spacetime, whose curvature represents
the gravitational force felt by the matter fields, we now turn to the description
of the intrinsic matter evolution. Most matter fields in astrophysical scenarios
can be modelled as a fluid, including stars, neutron stars, and accretion discs.
Therefore, we need a GRHD formalism describing the matter evolution which
will be coupled to the evolution of the spacetime via the Einstein field equations.
We incorporate all non-gravitational interactions of the matter fields in the stress-
energy tensor T}, when coupling the matter to the evolution of the gravitational
field. In this work, we have restricted those non-gravitational interactions to be
those of the evolution of the fluid only, neglecting other possible contributions
such as electromagnetic fields or radiation transport. Neglecting these is a highly
idealised assumption, as we know that accretion tori are likely to be highly
magnetised (as already indicated in the Introduction) and that neutrino cooling
will play a significant role in the thermal properties of the torus due to the very
high densities and temperatures found in these systems (see Foucart et al. [2014]

for BHNS merger simulations with neutrino cooling).

In ordinary fluid dynamics, the fluid evolution is described by the Navier-
Stokes equations. We will model the matter as a perfect fluid, which corresponds
to the assumption that the fluid has no viscosity, and that there is no heat conduc-

tion in the fluid. Under these assumptions, the Navier-Stokes equations reduce
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to the so-called Fuler equations. We first describe the classical Euler equations

and then proceed to the general relativistic form of the Euler equations’.

In classical fluid dynamics, a perfect fluid is subject to the following three

conservation laws: The conservation of mass, given by the continuity equation:
Op + 0u(pv®) =0, (3.1)

where p is the fluid density, and v its velocity, the conservation of momentum,

expressed in the momentum (Euler) equation:
9(pvi) + Oalpuviv® +pd%;) =0, (3.2)
where p is the fluid pressure, and the conservation of the total energy:
OE + 0,(v*(E +p)) =0, (3.3)

where E is the total energy of the fluid, which can be written as:
1
E:ipvavaere, (3.4)

where € is the specific internal energy of the fluid. The conservation of the total

energy therefore reads

1 1
O (2pvava+pe>+8a (v“ (vaava+pe+p>> =0. (3.5)

We define the 5 dimensional state vector w as

p
w = P Ui ) (36)
(%p VeV +p e)
and similarly define the 5 x 3 fluz matriz F, which is a function of (w), as
pv ot 4
F(w) = (pv; v® +pd%)6ia , (3.7)
(2pva v+ pe+p)v6°,4

where we adopt the convention that upper case Latin indices run from 1 to
n, where n is the dimension of w. The 6”5 therefore selects the rows of the
flux matrix, which correspond to the equations of the system. Using the state
vector and flux matrix as defined above, the classical Euler equations can then

be written as the following system of first-order hyperbolic PDEs
Orwy4 + (9aFaA(w) =0. (3.8)

n magnetised discs, the MRI is likely to provide an effective viscosity [Balbus and Hawley
1991]. Foucart et al. [2014] estimate the viscous timescale in their post-merger accretion tori
to be ~ 0.1s, which is significantly longer than the simulations presented in this thesis.
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A set of PDEs written in the above form is called a system of conservation laws.
In the next section, we describe how the Euler equations (3.8) can be rewritten
in a general relativistic manner in the 3 + 1 formalism. We follow the derivation
laid out in Banyuls et al. [1997] (for further details and information on additional
approaches see Font [2008]).

3.1 The general relativistic Euler equations in
the 3 + 1 formalism

The starting point of the derivation of the general relativistic Euler equations are,
analogously to their Newtonian version, the conservation of rest-mass density
(the continuity equation) and the conservation of the fluid energy-momentum.
A general relativistic perfect fluid has a rest-mass current J# and stress-energy

tensor T}, given by
JH = put, (3.9)
™ = phu’u” + pgh, (3.10)
where p is the fluid rest-mass density, u, the fluid four-velocity, P the fluid

pressure and h the fluid enthalpy

h=1+e+Z. (3.11)
p

The general relativistic continuity equation and the conservation of energy-

momentum are then given by
JH., =0, (3.12)
™., =0. (3.13)
As the system is underdetermined, we need to close it with an equation of
state (EOS) that relates the fluid rest-mass density, pressure and internal energy,
p=p(pe).
The three-velocity of the fluid as measured by observers at rest in the spatial

hypersurface ¥; (so-called Eulerian observers) is

. ui Bz
= —, 3.14
VT aud + a (3.14)
and the corresponding Lorentz factor of the fluid, W, is defined as
1
W=au’ = (3.15)

V1 = vijvivd
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The set of variables {p, v, €} describing the fluid is called the set of primitive
variables. This set does not correspond to the fluid properties as measured
by Eulerian observers in ¥;, which are described by the so-called conserved
variables: the conserved baryon number D, the conserved momentum density in
the i-th direction S? and the total energy E. In terms of the primitive variables,

these are given by the following definitions:

D=pW, (3.16)
St = ph W20t (3.17)
E=phW?-P, (3.18)

Defining the state vector U(w) as

D
Uw)= |5, (3.19)

T

the 5 x 3 flux matrix F(w) and source vector S(w) are given by
D6ty
F(w) = |(S;0° + Pdt) &, |, (3.20)
(19" + Pv')d°4

0

S(w) = | T (Ougui —Th,on) | (3.21)
(T8, (Inar) — THT9,)

where 7 = F — D and ¢ = v' — 8'/a. Therefore, it is possible to write

the conservation laws of energy-momentum and the continuity equation as a

conservation law by means of the conserved variables, resulting in the following

first-order, flux-conservative hyperbolic system of equations [Banyuls et al. 1997]:
1 A

Wer [00(v/7Ua) +0i(v/=g Fy)] = Sa, (3.22)

where g = det(gu,) = /7. This constitutes the general relativistic version of

ﬁ

the Euler equations in the 3 4+ 1 formalism, which is known as the so-called

Valencia formulation.

3.2 High-resolution shock-capturing methods

Systems of nonlinear hyperbolic PDEs such as the Euler equations or the GRHD

equations (3.22) are characterised by the fact that smooth initial data can develop
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discontinuities in the variables in finite time?. The reason the GRHD equations
in the Valencia formulation were written in conservative form is that, in such
a form, a numerical scheme that converges guarantees the correct Rankine-
Hugoniot conditions across discontinuities, which is called the shock-capturing
property. This property is at the heart of high-resolution shock-capturing (HRSC)
methods that guarantee that the physics of the flow will be correctly modelled
by the numerical scheme in the presence of discontinuities in the fluid variables.
Moreover, finite difference schemes written in conservation form guarantee that
the convergence of the solution (if it exists) will be to one of the weak solutions of
the system of PDEs [Lax and Wendroff 1960]. Weak solutions are characterised
by being solutions to the integral form of the conservation system. The set
of all weak solutions is too large to be of practical use, as many (numerically)
admissible weak solutions will not represent physically relevant solutions. Thus
there is need for an additional (thermodynamic) condition, the so-called entropy
condition (namely that the entropy of a fluid element must increase when crossing
a discontinuity) to guarantee that the numerical scheme will converge to the
physical solution. The convergence of the numerical scheme is closely related
to its stability, and one useful measure is the total-variation (TV) stability (see

e.g. LeVeque [1992] for a detailed discussion).

Additionally, numerical schemes written in conservation form guarantee that
the conserved quantities of the system are numerically conserved in the absence
of sources or sinks. This means that the change of the state vector U4 in time in
a domain V that does not contain sources or sinks will be given by the fluxes F?
through the boundaries of the domain 9V, a three dimensional surface which is
defined as the standard-oriented hyper-parallelepiped consisting of two spacelike
surfaces {0, Y01 a0} and the timelike surfaces {X,i, X iy} joining the

two temporal slices together. System (3.22) is thus expressed in integral form

/ Bo(yAUA)dV + / 0i(v—=g F})dV = / Sadv,  (3.23)

2While it is known that physical shocks (discontinuities in the spacetime) do not exist in
GR, there is nevertheless the possibility of the formation of gauge shocks when the kinematical
variables (lapse and shift) are evolved as hyperbolic equations, such as the 1+ log slicing (2.67)
and the [-driver (2.70) described in Section 2.3 above. Alcubierre [2003] has investigated the
formation of shocks for the family of 1 4 log slicing conditions and found a member that is
shock avoiding. Additionally, it appears as if the formation of shocks in the evolution of the
lapse is suppressed due to under-resolution caused by the shift in the puncture method in 3D
simulations [Garfinkle, Gundlach, and Hilditch 2008]. When performing the shift evolution via
the D-driver, it seems that T" acts as an effective “shock-absorber” [van Meter et al. 2006], as
this shift evolution equation have proven to be very stable.
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where dV = /—gd*z. This is the starting point to devise HRSC schemes to
solve it. Specifically, the flux integrals in (3.23) are given by

1 )
/ ——0i(V—gFy)dV = V=g Fi da? dz’® — V=g F} da® da?,
yv~—9 Zoliagl o

x
+ /
Y0202

+ V—g F3 dz' da? —/ V—g F3 dz' da®.
213

Zm3+Am3

V=g F3%dz* do? —/ V=g F3%dx' da?,

32

(3.24)

This means that the time integration of the conserved variables is given by the
interface fluxes of matter and energy-momentum of the fluid, as well as the
(cell-centred) sources. One can therefore approximate those numerical fluxes
(which depend on the solution at the cell interfaces) as the time-averaged fluxes
across cell interfaces during a timestep as

n+1
1 t

Py~ 57 [, FalUaa™ha). (325)

In general, the approximation to the real solution on a grid with finite resolution
will be a piecewise continuous function, which means that the fluxes can be
obtained by solving local Riemann problems at cell interfaces, an idea first
described in Godunov [1959).

Riemann problems are IVPs with discontinuities in the solution. During
the evolution, a discontinuity in the fluid variables decays into shock waves,
rarefaction waves and contact discontinuities. Shock waves move from the
higher to lower density regions, while rarefaction waves move in the opposite
direction. Contact discontinuities are characterised by a discontinuity in the
density, while both pressure and velocity are constant across them. In order to
solve the Riemann problem, we need to obtain the spectrum (eigenvalues and
eigenvectors) of the first-order system. As explained in Appendix A, we need to

bring system (3.22) into the following quasi-linear form
OUA +mP 4 (U)0,Up + S4(U) =0, (3.26)

in order to compute the spectrum and eigenvectors of the matrix m®? 4 (U). Once
obtained, the Riemann problem is solved analytically to obtain the numerical
fluxes. In order to rewrite the system in quasi-linear form, one obtains the
Jacobian of the system by taking partial derivatives of the flux matrix with

respect to the state vector. The resulting three (one for each spatial dimension)
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5 x 5 Jacobian matrices are then combined into the block matrix m®? 4(U)
m'P,(U) = ady, F*B(U), (3.27)

which has real (but degenerate) eigenvalues and a complete set of eigenvec-
tors [Banyuls et al. 1997] (the Jacobian m*B 4(U) is therefore diagonizable and
system (3.22) is therefore strongly hyperbolic). The features of the solution
travel at characteristic speeds given by the eigenvalues of the Jacobian mZ 4(U).

Specifically, for a fluid moving in the z-direction, the eigenvalues are given
by

Ao = av® — 3% (triple), (3.28)
A= =g (70 - D ke /T (- ) — (1 - 2)))

- B, (3.29)

where v? = v,,v%? and ¢, is the sound speed in the fluid, whose square is given

by

C

*= 9E|, " h 7 o

2_Op| _1(0p|  pOp
dp|, p* Oe

) . (3.30)

Note that the Newtonian limit of the eigenvalues (in which o — 1, 8" — 0,0% <
1) is correctly recovered (Mg = v®, AL = v* £ ¢;).

In practice, obtaining the numerical fluxes using the analytical solution of
the Riemann problem is often not feasible, in particular in multidimensional
simulations. One avoids finding the exact solution and uses linearised (approxi-
mate) Riemann solvers instead, which still make use of the spectrum and the
eigenvectors of the first-order system. Examples of approximate Riemann solvers
are the Harten-Lax-van Leer-Einfeldt (HLLE) solver [Harten, Lax, and Leer
1983, Einfeldt 1988], the approximate solver of Roe [1981] and the Marquina
flux formula [Donat and Marquina 1996, Aloy et al. 1999].

The fluid data at the cell interfaces needed to obtain the numerical fluxes
via the solution of local Riemann problems could simply be obtained as the
average of the data at neighbouring cell centres (which only yields overall first-
order methods). A wide variety of higher order cell-reconstruction methods
are available in the literature (see e.g. Toro [2013]). Examples of higher order
reconstruction schemes are the piecewise-parabolic method (PPM) [Colella and
Woodward 1984] and essentially non-oscillatory (ENO) methods [Harten et al.
1987]. Regardless of their spatial order for smooth solutions, these reconstruction
techniques always reduce to first-order in the presence of physical shocks and local

extrema of the fluid variables (such as the central density of a NS, for instance).
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While the choice of variables is crucial to obtain the GRHD evolution equations
in conservative form, it is usually the primitive variables that are reconstructed
at the cell interfaces. To do this, one needs a conservative-to-primitive scheme
which inverts Egs. (3.16)-(3.18), involving numerical root-finding. Once we have
obtained the numerical fluxes via the solution of local Riemann problems, we
update the solution of the conserved variables by one timestep with the numerical
fluxes and the sources. This is usually done employing high-order, conservative
Runge-Kutta schemes [Shu and Osher 1988].

We finish this chapter with a summary of the steps necessary to advance the
solution by a timestep in a numerical GRHD scheme coupled to the spacetime

evolution:
¢ Advance spacetime evolution in time
o Calculate the source vector S4(U) at all grid points

e Reconstruct primitive variables at cell interfaces using high-order recon-

struction methods

e Set up local Riemann problems using the reconstructed primitive variables
at cell interfaces as initial data

o Calculate the numerical fluxes at cell interfaces by solving the local Rie-

mann problems using approximate Riemann solvers

e Advance the solution of the conserved variables in time by using the

obtained numerical fluxes and sources
e Recover primitive variables
» Update the stress energy-tensor 7}, with the new matter field configuration

o Update spacetime variables in time using the new matter field configuration

as source
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The simulations reported in this thesis are performed using the publicly avail-
able [Einstein Toolkit n.d.] code (described in detail in Loffler et al. [2012],
to which we refer the reader for a complete overview of the components of the
ET). In the following, we provide a brief summary of the main components of
the toolkit we use in our simulations.

The ET is a code for relativistic astrophysics simulations, which is based on
the modular [Cactus Computational Toolkit n.d.] [Goodale et al. 2003, Allen
et al. 2011]. Cactus provides a very small core of base functionalities (the so-
called “flesh”) coupled to general modules commonly called “thorns”. Simulations
of astrophysical systems often span a very wide range of distance scales, making
large domains with high resolutions necessary. In the BH-torus systems we are
investigating in this thesis, we need very high resolution to capture the correct
dynamics of the system, while GW extraction needs to be performed in the
“wave zone”, that is, far away from the sources of the gravitational field. In 3D
simulations, large domains with high resolution quickly become prohibitively
expensive in terms of both memory and computational power requirements.
We are therefore in need of mesh refinement, where the resolution is gradually
decreased away from the origin. Adaptive mesh refinement (AMR) in the ET
is provided by the [Carpet n.d.] driver [Schnetter, Hawley, and Hawke 2004,
Schnetter et al. 2006], which employs the Berger-Oliger algorithm [Berger and
Oliger 1984] with subcycling in time. Using AMR is crucial when the resolution
in the domain needs to be dynamically adapted to the system (for instance
to add finer mesh refinement levels during the late stages of a NS collapse or
to follow the BHs with the finest meshes in a BBH simulations as they move

through the computational domain). In our simulations, we need to follow the
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central BH of the BH-torus system as it starts moving due to the development
of the PPI in the disc.

The ET provides numerical solvers that use the infrastructure of Cactus and
Carpet to numerically evolve the Einstein equations (2.9). The main ingredients
are methods to evolve the Einstein equations based on the 3 + 1 formalism
described in Chapter 2 coupled to methods to solve the GRHD equations in the
Valencia formulation described in Chapter 3. These tasks are performed by the
McLachlan and GRHydro codes, respectively. In addition, there are numerous
thorns performing diagnostics during simulations. We will describe these thorns
below and describe in detail a new thorn for the ET that was written as part
of this thesis with the aim of analysing the disc evolution of the simulations
reported in this thesis. We follow the description of the disc analysis thorn by
a short introduction to the fluid tracer particles that we have employed in the

simulations of Chapter 7.

4.1 McLachlan

The left hand side of the Einstein field equations (2.9) is evolved using the
McLachlan code [Brown et al. 2009, Reisswig et al. 2011], solving the BSSN
equations. The McLachlan code is generated automatically from tensorial equa-
tions using the Kranc code [Husa, Hinder, and Lechner 2006].

Using McLachlan, we evolve the BSSN evolution equations using a fourth-
order accurate, centred finite-differencing operator, while the advection terms
for the shift vector are evolved with a fourth-order upwind stencil. We apply
fifth-order Kreiss-Oliger dissipation to all spacetime variables to achieve overall
fourth-order accuracy for the spacetime evolution. Using the BSSN evolution
system together with the 1 + log and T-driver gauge evolution conditions, the
McLachlan code can evolve stably a single puncture for several light crossing
times, see e.g. Loffler et al. [2012].

The specific evolution equations used in McLachlan are the following:

Opox = _a2 f<a7 (ba ,Z'IL)(K - KO(J:H)) ’ <41)
o . 1 i
0K = —"D; Dja+ a(AY Aj; + §K2) +dm(E 4+~ Si;), (4.2)
0B’ = a® Gla, d,a") B, (43)
aOBi = 6_4¢ H(Oé, ¢a xﬂ) aofl - 772 (Bl’ «, xli) ’ (44)
1
Do =~ (a K —a.6%) , (4.5)
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- ~ - 2 .
Aoy = —2a Ayj + 29,05 B — 3 Vi 0", (4.6)
~ . _ . \TF
80Aij = e*4¢ (Oz Rij + OZRZ — DiDjOt)
+ OzK/L‘j - 2041211% 121’3 + QAk(iaj)Bk
2 -
— gAij Of* —8mae ¢ S};F , (4.7)
aofi = -2 Aij 8ja
L o 9
+20 (le A 46 A 95 — 25 K,j)
Siapi 2win ai 4 L ik pi ~ ik i
OB+ 108 + 277 By + 77" Bk
—167ay* S, (4.8)

where f, Ky, G, H and 1 are functions controlling the gauge evolution, the TV
superscript denotes the trace-free part of an expression and we have used the
following shorthand notation, 9y = d; — 37 9;. The coupling to the stress-energy
tensor T#" is done via the projections (2.26)-(2.29). This system constitutes the
so-called ¢-variant of the BSSN formulation (see Pollney et al. [2011] for other
possible variations).

The 1+log slicing (2.67) for the evolution of the lapse corresponds to the
following choice of f and Kj

flavsaty =2, (4.9
Ko(z") =0, (4.10)

and the D-driver shift condition (2.70) for the evolution of the shift is achieved
by choosing

Gla,¢,z") = a2 (4.11)
H(a,¢,z") =e 12, (4.12)
n'(B', o, 2") =n B'q(r), (4.13)

where ¢(r) is a function that attenuates the I-driver depending on the ra-
dius [Schnetter 2010] and 7 is a damping parameter. The strong hyperbolicity of
the BSSN system implemented in MacLachlan has been discussed in Brown et al.
[2009]. For the simulations reported in Chapter 6 we use a dynamically evolved
damping parameter n using the formulation of Alic et al. [2010], adapted to a
single puncture. The simulations of Chapter 7, however, are performed using
the standard T-driver evolution of the shift, with a fixed and radially damped 7.
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The change in the gauge evolution is motivated by greater compatibility with
the standard McLachlan code and also serves as an important check to quantify

the influence of the gauge evolution on the physics of the BH-torus system.

We apply Sommerfeld outgoing boundary conditions for all BSSN evolution
variables with an extrapolation to include the part of the boundary conditions
that does not behave like a simple outgoing wave [Alcubierre et al. 2000],
implemented in the NewRad thorn. The boundary condition assumes a radial
outgoing wave with wave speed vg, so that any tensor component of the evolution
variables A can be modelled as

A:Ao—&—w, (4.14)
where Aq is the value at infinity and u a spherically symmetric perturbation.
The value at infinity and wave speed depend on each variable and have to be
specified (for example, ag = 1 and 3%y = 0). Assuming this behaviour of the

fields implies the following differential equation:

OA = fvox?AfvoA_rAO. (4.15)

To account for contributions to the boundary that do not behave as pure waves,
it is necessary to incorporate extra parts decaying with a certain power of the
radius, defining a corrected source term (9, A)* as follows:

(9,A)* = (9, A) + <T >p n'9; (9, A), (4.16)

— nio;r
where n’ is the unit normal to the respective boundary face. As stated in LofHer
et al. [2012], using p = 2 usually works well in practice, which is the value we
use for all simulations reported in this thesis. This type of boundary condition
gives stable evolutions if applied far enough from the sources of the gravitational
field. The outer boundaries produce errors traveling inwards, hence the need
to place the outer boundaries sufficiently far away to causally disconnect them
from the central regions of the domain.

4.2 GRHydro

The evolution of the hydrodynamics is performed by GRHydro [Baiotti et al. 2005,
Loffler et al. 2012, Mosta et al. 2014], a code that solves the GRHD equations
in flux-conservative form, in the so-called Valencia formulation [Banyuls et al.
1997, Font 2008], using HRSC methods.
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We use the PPM [Colella and Woodward 1984] to reconstruct the primitive
variables at the cell interfaces and Marquina’s flux formula [Donat and Marquina
1996, Aloy et al. 1999] to compute the numerical fluxes. Differently from the
original implementation [Baiotti, Hawke, and Rezzolla 2007], we reconstruct
the quantities Wo' instead of the three-velocities v?. This guarantees that the
velocities reconstructed at the cell boundaries remain subluminal even under
extreme conditions like those encountered near the AH of the BH [Galeazzi
et al. 2013]. We have found this measure to be crucial in guaranteeing long-term
stable evolutions of the fluid near the AH.

The corresponding first-order flux-conservative hyperbolic evolution system
evolved in GRHydro is:

% + O;i =5, (4.17)
with the vector of conserved quantities
U=[D,S;], (4.18)
and the vector of fluxes
F'=[Do,S;9" +6ip, o' +po] , (4.19)

with 9 = av’ — B%. In GRHydro, the components of the vector of sources are
calculated using the extrinsic curvature in order to remove all time derivatives

that are present in (3.21), resulting in

0
S = | 25"y + Sp0i* — (14 D) 0, | . (4.20)
OtSlekl - SjajOé
As necessary in GRHD computations, the primitive variables are calculated from

the conserved quantities at each time step of the evolution using a root-finding
procedure (see Mosta et al. [2014] and references therein for details).

In our simulations the torus is initially described by a polytropic EOS
p=Kp", (4.21)

where K is the polytropic constant and I' the adiabatic exponent. The polytropic
EOS describes a cold, degenerate gas of (noninteracting) fermions in both the
non-relativistic and ultra-relativistic limit [Shapiro and Teukolsky 1986] and the
polytropic EOS can be used to model NS as non-ideal Fermi gases [Alcubierre
2008]. While this EOS is only a poor approximation to the real EOS describing
matter at near nuclear densities, there are still large theoretical uncertainties

concerning the real EOS of NS and very dense matter as encountered in our



54

Computational framework

discs. NS are therefore still often modelled by polytropic EOS (see, e.g. Faber
and Rasio [2012]) and the initial data have been built with these considerations
in mind as well. During the evolution we allow for non-isotropic changes in the
fluid flow such as shocks and for this reason we use an ideal gas EOS,

p=(T—1)pe, (4.22)

where T" is the same adiabatic index as in (4.21). As indicated in Tables 6.1
and 6.2, we use I' = 4/3 for the evolution of all our models. A Gamma-law EOS
with T' = 4/3 is commonly adopted to describe a single-component perfect gas in
the relativistic regime. Our work focuses in particular on the comparison with
previous work on tilted accretion discs by Fragile and Anninos [2005], as well as
the works of Korobkin et al. [2011] and Kiuchi et al. [2011] where this value of T’
was also adopted.

As a grid-based code GRHydro cannot evolve regions without matter content
as the determinant of the Jacobian (3.27) becomes zero in those regions. As
is customary, a low density atmosphere (typically several orders of magnitude
below the maximum density of the initial data) fills those grid points that should
belong to vacuum regions. In all our simulations we set the density of the
atmosphere to 1078 times the initial maximum rest-mass density in the torus.
Although fully evolved, the dynamical effects of the atmosphere regions can be
neglected.

The set of complex time-dependent PDEs of the GRHD evolution coupled to
the BSSN equations is integrated using the method of lines (MoL) [Hyman 1976]
using a 4 : 2 multi-rate Runge-Kutta (RK) algorithm that evolves the spacetime
using a fourth-order RK and the fluid using a second-order RK.

4.3 Diagnostics

We measure the BH mass during the evolution using the AHFinderDirect
thorn which implements the AH finder described in Thornburg [2003]. The
BH spin magnitude and direction are measured using the QuasiLocalMeasures
thorn [Dreyer et al. 2003, Schnetter, Krishnan, and Beyer 2006] (see also the
review of quasi-local methods in Szabados [2009]). We measure the spin direction
using the so-called flat-space rotational Killing vector method of Campanelli
et al. [2007], which can be derived using Weinberg’s pseudotensor in Gaussian
coordinates and is equal to the Komar angular momentum integral when the
latter is expressed in a foliation adapted to the axisymmetry of spacetime [Mewes,
Font, and Montero 2015], see Chapter 5. To track the time-dependent location
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of the puncture during the evolution, we use the PunctureTracker thorn. GWs
are extracted using a multipole expansion of the Weyl scalar W, at different, user
specified radii. The thorns Multipole and WeylScald compute the respective
quantities. The accuracy of the Wey1Scal4 thorn is described in Hinder, Wardell,
and Bentivegna [2011], recovering correctly the radial fall-off rates for the Weyl

scalars predicted by the peeling theorem. We calculate the mass accretion rate

M as the instantaneous flow of matter through the AH, using the Outflow thorn.

We monitor the error in our simulations using the Hamiltonian and momentum
constraint, calculated in the thorn ML_ADMConstraints. The two constraints
are calculated directly from Eqgs. (2.31) and (2.32) using finite-differencing.

It is difficult to judge how large the constraint violations may become during a
simulation before one can no longer trust the results. In some works, normalised
Hamiltonian and momentum constraints are used to monitor the error evolution
(see, e.g. Etienne et al. [2008]) where the Hamiltonian and momentum constraint
are divided by the Euclidean norm of all terms entering their calculation. We
note that when using mesh refinement levels and large computational domains,
this normalisation is not useful, as some terms in Egs. (2.31) and (2.32) are
being calculated directly using finite differences of v;; or Kj;;. These quantities
are therefore computed with a different accuracy in different mesh refinement
domains while the rest of the terms is simply being read off the grid. As a result,
normalising the constraints by the Euclidean norm of all the terms included
in the computation causes them to approach one away from the origin, as
the resolution becomes coarser with each refinement level. In practice, one is

therefore concerned with the growth of constraint violations rather than their

absolute values, which, for the reasons indicated above, are not a useful measure.

Rapidly growing constraint violations usually indicate that a crash is soon to

happen in the simulation.

4.4 The disc analysis thorn

One of the main tasks of this work has been the development of a thorn for
the ET to analyse the disc evolution during the simulations we performed. The
thorn and its capacities have grown during the duration of this work and we
will therefore describe its latest version.

The following global quantities are calculated: The total disc rest mass My,
the total disc gravitational mass M, the total disc angular momentum Jpjgc, the
total rotational kinetic energy T of the disc, and the total internal energy of the

disc Ein. These quantities are defined as follows (see, for instanceBaumgarte
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and Shapiro [2010]):

MO:/Dﬁd?’x, (4.23)

M= / (=2T°% +T",) a\/yd’z, (4.24)

JIDisc = / T0¢ o ﬁd%c, (425)
1 u? 0 3

T = iﬁT sa/yd’x, (4.26)

Fin = / eD\yd’z. (4.27)

To quantify the growth of non-axisymmetric modes in the disc, we compute
3D Fourier integrals of the density, as described in Baiotti et al. [2007]. The
amplitude of the m-th mode is given by:

D, = / pe M Sy dPx. (4.28)

The mode calculation in Eq. (4.28) implicitly assumes the total disc angular
momentum to be aligned with the z-axis. For arbitrary orientations of the disc,
this leads to wrong results in the calculation of the modes. We therefore also
calculate the amplitude of the non-axisymmetric modes using the total disc

angular momentum vector as our reference axis.

When using computational domains that are very large, the total mass
of the atmosphere can be a non-negligible fraction of the total rest-mass of
the torus. We therefore have to ignore cells corresponding to the atmosphere
when integrating the global quantities above and in the calculations of the

non-axisymmetric modes in the disc.

4.4.1 Twist and tilt

In order to keep track of the response of the tilted accretion disc and to check for
LT precession and the occurrence of the Bardeen-Patterson effect, we measure
two angles, the twist (precession) and tilt (inclination) of the disc [Nelson and
Papaloizou 2000]. We closely follow the description of the angles given by Fragile
and Anninos [2005], with a modification in the calculation of the twist, and

furthermore adapt the way they are calculated.

The main idea is to split the disc up into a series of annuli and calculate the

angular momentum vector of the matter, Jpis.(r), for each individual annulus.
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Figure 4.1 The figure visualises the various vectors and projections we use to calculate the
twist and tilt in the disc. Note that all vectors in the figure have been scaled to unity for
better visualisation.

Using this vector, we define two angles, the twist o(r)

o(r) = Z(Ssu X Sxy—90, P(Jpisc(7), SBH)) (4.29)
and the tilt v(r)
v(r) = Z(Sgu, Jpisc(r)) , (4.30)
where
P(a,n) =a— % n, (4.31)

is the projection of vector a onto the plane with normal n.

The vector Spu X Sxy—go is constructed in the following way: We project the
BH spin Sgy onto the xy-plane, Sxy = P(Sgn, z) and then rotate the resulting
vector Sy by 7/2 about the z-axis. The cross product of Sgy and Syy_go then
lies in the equatorial plane of the BH (the plane orthogonal to the BH spin)
and the twist o(r) at ¢ = 0 is 0 throughout the disc. A sketch showing the

construction of these vectors and twist and tilt angles is provided in Fig. 4.1.

The reference coordinate system for the actual calculations is centred about the
BH origin.

The twist o(r) is then a measure of how much the angular momentum vector
of each annulus has precessed in the (dynamically changing) equatorial plane of
the BH, while the tilt v(r) gives the angle between the BH spin and the angular
momentum vectors for each annulus. The disc is said to be twisted if the twist
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becomes a function of radius, 0 = o(r), and is said to be warped if the tilt
becomes a function of radius, v = v(r).

The angular momentum vector for each annulus is calculated following the
procedure outlined in the section on spin in [Weinberg 1972] (pages 46f.). We

calculate Jpjs(r) from the anti-symmetric angular momentum tensor
L = / (T — 2V TH0) (4.32)
in the following way:
J.=L% J, =L and J, = L'?. (4.33)

The relevant components of the stress-energy tensor TH" are
) w?2 . W . @
T =ph (vl—ﬁl>+P2. (4.34)
@ @ «a

We note that our procedure differs slightly from that given in Fragile and
Anninos [2005], where the components of the disc shell angular momentum
vectors were computed using the intrinsic spin as follows:

1
So = 5 €y J U, (4.35)

where €,4+4 is the 4-dimensional Levi-Civita symbol and U® = p°/(—pgp”® )% is
the total 4-velocity of the system, with p® being the 4-momentum.

Using the intrinsic spin, the contribution to the total angular momentum
stemming from choosing a reference point is accounted for in the linear mo-
mentum of the centre of mass of the system. We choose to use the angular
momentum tensor L*¥, calculated about the centre of the BH instead, using
Eq. (4.32) in the calculation of o(r) and v(r). We therefore pick a reference
frame centred on the BH, as it is moving around the grid and we are interested
in the total angular momentum of the disc shell about the BH centre. We note
that the calculation of the twist and tilt angles is in fact gauge dependent. We
have checked the impact of the gauge choice on the twist and tilt angles by
measuring the angles for the initial data with different lapse and shift profiles
to find that the angles are calculated correctly (as the initial tilt and twist
profiles are parameters of our initial data), which also serves as an important
consistency check for the correct measure of the initial angles. We also compute
the instantaneous precession and nutation rates for both the BH spin vector
S and the total disc angular momentum vector Jpsc (which we calculate by
summing the components of all shells). For the BH, we compute its precession
and nutation about the z-axis, while the total precession and nutation of the

disc angular momentum vector Jp;sc is calculated about the BH spin axis.
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We refer the reader to Appendix B for details on the actual implementation

of the disc analysis thorn.

4.5 Fluid tracer particles

In the simulations reported in Chapter 7, we use fluid tracers particles placed
in the disc at the beginning of the simulation that are advected with the flow.
Employing tracers provides an additional valuable means to analyse the disc
evolution. In order to compute the evolution of the tracer particles in our system
we adopt a simple test particle approximation to convert from the Eulerian
representation of the fluid flow, in which the hydrodynamics variables are evolved
on the computational grid, into the the Lagrangian one needed to compute the
velocity of the particles. This method is often use in the context of core-collapse
supernovae simulation to describe the evolution of the unbound material subject
to r-process nucleosynthesis (see Travaglio et al. [2004] and Nakamura et al.
[2015]). These passively advected particles allow us to record their velocity,
internal energy and pressure by interpolating the corresponding quantities from
the underlying grid. We adopt a linear interpolation to project the physical
quantities computed on the grid onto the tracer particles.
Using the local 3-velocity of the fluid, v, lapse «, and shift vector 8 we can
evolve the position of the particle by simply integrating
dx
dt
where © = av — B is the advection speed with respect to the coordinates [Foucart

et al. 2014]. For the time evolution of the tracers, we use a second-order accurate
in time Adams-Bashforth explicit integrator which requires two previous time
steps, t"~! and ", to compute the position vector, x, of the particles at ¢"*1.

As a result, we can express the evolution equation for the position as
3
"t ="+ At (" —o" 1)) , (4.37)

where At represent the time step relative to the finest mesh refinement where
the tracer particle is located.

Using this prescription, the tracers are then advected with the fluid flow
during the evolution of the disc. The tracers are output in hdf5 snapshots at
user-specified time intervals during the evolution, which allows one to perform
the disc analysis as a post-processing step rather than during the simulation. The
analysis of the disc via the tracer particles performs very well in the bulk regions

of the disc and accurately reflect the total mass, energy and angular momentum
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of the disc during the evolution. For the analysis of complicated flow details
in low density regions (such as the accretion streams observed in Fragile and
Anninos [2005] and Chapter 6), however, the disc analysis thorn of Section 4.4
performs much more accurate as it analyses the disc morphology using the full
3D data during the evolution. Due to the much larger output files resulting from
the output of the 3D spacetime and hydrodynamics variables, the disc analysis
has to be performed during the simulation rather than as a post-processing
step. Depending on the number of tracers, it might be computationally cheaper
to advect the tracer particles with the flow and later analyse them rather
than performing the complicated disc analysis during the simulation. This
might significantly reduce the runtime of the evolution simulations. Due to the
manageable file sizes of the tracer output, the tracers are furthermore a very
powerful tool for the visualisation of the disc evolution.
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Chapter 5

Measuring the BH spin
direction in 3D Cartesian

NR simulations

The results of this chapter have been originally published in:
V. Mewes, J. A. Font and P. J. Montero
Phys. Rev. D 91, 124043 (2015).

The direction of the BH spin in NR is commonly measured by the approach
suggested by Campanelli et al. [2007]. In this approach the BH spin direction is
simply defined as the Euclidean unit vector tangent to the coordinate line joining
the two poles on the horizon (i.e. the two points where the axially symmetric
vector ¥® given in Eq. (2.94) vanishes). The approximate Killing vector field
1® on the horizon is obtained numerically using spherical-polar coordinates and
the accuracy in the spin direction is typically about a few angular grid zones.
This definition of the spin vector reproduces the Bowen-York spin parameter
on the initial slice and gives satisfactory results as long as the BH horizon does
not become too distorted. Moreover, Campanelli et al. [2007] present another
method for finding the spin magnitude and direction, using flat-space coordinate
rotational Killing vectors to calculate the Cartesian components of the BH
spin and its magnitude from the Euclidean norm of the resulting vector. The
flat-space Killing vector method has the practical advantage that the vector ®
used in the surface integral (2.94) is given analytically and is constant, therefore

it does not have to be found numerically on each timeslice.
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We show below how the flat-space Killing vector method can be derived
by performing a surface integral of Weinberg’s energy-momentum pseudoten-
sor [Weinberg 1972]*. By using the 3+1 split of spacetime and Gaussian coordi-
nates, it is possible to express the angular momentum of a given volume using
Weinberg’s energy-momentum pseudotensor in a simple form that allows for a
straightforward calculation of the spin vector of the BH horizon. Weinberg’s
energy-momentum pseudotensor is a symmetric pseudotensor derived by writing
Einstein’s equations using a coordinate system that is quasi-Minkowskian, which
means that the four-dimensional metric g, is approaching the Minkowski metric
Nuv at infinity. Although it is not generally covariant, the pseudotensor is Lorentz
covariant, and with the appropriate choice of coordinates it provides a measure

of the total angular momentum of the system.

5.1 Angular momentum with Weinberg’s pseu-

dotensor

Weinberg’s energy-momentum pseudotensor is obtained by writing the Einstein
equations in a coordinate system that is quasi-Minkowskian in Cartesian co-
ordinates, so that the metric g,, approaches the Cartesian Minkowski metric

N = diag(—1,1,1,1) at infinity as follows
Guv = NMpv + h’lﬂ/ ) (5.1)

where h,, does not necessarily have to be small everywhere. By writing the
Einstein equations in parts linear in h,, (one is usually interested in evaluating
integrals containing the pseudotensor as surface integrals far from the sources of
the gravitational field), one arrives at an energy-momentum pseudotensor 7+,
which is the total energy-momentum “tensor” of the matter fields, T, and of

the gravitational field, ¢y,

1 0
T = P [T+ ] = o5 QM (5.2)
where Q7" is the superpotential given by
QO’;LV _ 1 ah§ ov 8hi Ny ahAM ov
~ 2\ 0z, 0z, o> !

1In GR, pseudotensors are objects akin to the stress-energy tensor T“Y which contain
the energy-momentum contribution of the gravitational field itself. They are therefore non-
covariant objects, as the gravitational field can be made to vanish at any point in space by
choosing a freely falling reference frame.
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! + 0z, oz,

and indices of linearised quantities are raised and lowered with 7, .

OhAe oh*”  Oh°"
) (53)

Using the pseudotensor, the volume integrals giving the total four-momentum

(of matter sources and gravitational field) of the volume V are given by

Pt = / gty =~ L[ (997 s, (5.4)
v 8w v ort

Furthermore, the pseudotensor 7+ defined by Eq. (5.2) is symmetric, which

allows one to use it to calculate the total angular momentum in a volume V

using the following volume integral:

JH = / (m“TO” - x”To“) >z
1%

i0v 0
1 (x“ 9Q — v 96 ) dx

87 ot . o't

(5.5)

As Weinberg remarks, the physically interesting Cartesian components of

the angular momentum contained in the volume are

J.=JB, J,=J% J =% (5.6)

Using the divergence theorem, the volume integral can be transformed to

the following surface integral over the bounding surface:

aho- Oho; Ok
g o _ = J . J
7 167r//( e Ty

ahz
_ atk =+ }L()J(Sk2 hmékj)nde, (57)

where n! is the unit normal to the surface of integration and dS the surface

element.

The convergence of the four-momentum volume integrals (5.4) involving
the pseudotensor 7" critically depends on the rate at which the metric g,
approaches the Minkowski reference metric at large distances. Given the following

behaviour of h,, as r — oo,

hyw = (9(7*1), (5.8)
My
O _ O(r=?), (5.10)

0x° OxP
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where 7 = (2% + % + 22)%, it can be shown that the energy-momentum “tensor”

of the gravitational field, ¢,,, behaves at large distances as
tu = 0™, (5.11)

which in turn shows that the four-momentum volume integral (5.4) converges.
The convergence of the total angular momentum volume integral (5.5) and of the
corresponding surface integral (5.7) is more problematic, due to the appearance
of z* in the volume integral. This is also observed in the convergence properties
of the integrals of the ADM quantities [Arnowitt, Deser, and Misner 2008],
where the surface integrals for the ADM mass and linear momentum converge
when imposing fall-off conditions like those of Eq. (5.8), while the calculation
of the ADM angular momentum generally requires stronger asymptotic fall-off
conditions autociteJaramillo2011. We shall return to the issue of the convergence
of Eq. (5.7) after we have expressed it in terms of the 3+1 variables and in

Gaussian normal coordinates in the next section.

5.2 The angular momentum pseudotensor inte-

gral in Gaussian coordinates

We can express the total angular momentum given by Eq. (5.7) in Gaussian
normal coordinates (also called synchronous coordinates), which represent free-
falling observers. By using the 3+1 decomposition of the four-dimensional
metric g, in Eq. (2.18) and from the requirement that the metric g,,, approaches
Cartesian Minkowski space at infinity (5.1), we see that in the 3+1 decomposition

h, - (2 HBB L] b (5.12)
! Yig B ‘ Yij — 0ij

hyuw is given by

If we now express the angular momentum surface integral, Eq. (5.7), in terms of
the 3+1 variables we find that J% can be written as

07 1 a(V’Wﬁm) 8(7im6m)
o . J .
7 167 / /5 ( T gk T gk

Ok — Gjk) O(vik — dik)
MY T

+YjmB " Oki — %mﬂmcskj) nkds. (5.13)

Moreover, using the definition of Gaussian coordinates in terms of the 3+1

variables, we see that in these coordinates hgy = hg; = h;o = 0. In this gauge,
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Eq. (5.13) considerably simplifies to

JU:_167r //( Dk _ jagzk)nkds. (5.14)

We can now use the definition of the extrinsic curvature K;,

- 1 (Q)’yij
iy = =g (52~ o). (5.15)

where Lg is the Lie derivative with respect to the shift vector 3¢, to see that the

time derivative of the spatial metric 0v;;/0t in Gaussian coordinates is simply

a’)’ij
ot
Substituting Eq. (5.16) in Eq. (5.14), we find that

JY = —// (i K — o Zk)n ds. (5.17)

Finally, using Eq. (5.6), the three components of the Cartesian angular momen-

= 2K,;. (5.16)

tum vector of a volume are given by

1
J,=J¥ = o // (yKsp — 2Kop,) nkdS, (5.18)
S
1
J, =J% = = //S (K1), — xKs3)n™dS, (5.19)
1
J, =J2 = = / / (xKop — yK1x) n*dS . (5.20)
S

Introducing the components of the three Cartesian Killing vectors of the rota-

tional symmetry of Minkowski space

& = (2,0,—x) (5.22)
£ =(~y,,0) (5.23)

we can rewrite the surface integrals of the three Cartesian components of the
angular momentum in the following way:

_ 8%//5 Kj(&)in*ds . (5.24)

Thus, Weinberg’s identification of the (2,3), (3,1) and (1,2) components as being
the physically interesting ones is now clearly seen from Eq. (5.24), as it is the
rotational Killing vectors of Minkowski space that enter in the calculation of the

Cartesian components of the total angular momentum of the volume.
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Note that this form of the angular momentum is remarkably similar to that
of the ADM angular momentum [Jaramillo and Gourgoulhon 2011]:

J; = — lim // K, — Kvji) (&) n*dS . (5.25)

87r r—00

If the integration is done over a sphere, the components of the surface normal

n* are given by

ni = (f,g,f), (5.26)

rr.r

so that (¢;)7 and n* are orthogonal vectors,
(&)Y n" = (&) =0 Vi (5.27)

Therefore, the part of the integral containing the trace of K;; in Eq. (5.25)
vanishes for spherical surfaces and therefore equations (5.24) and (5.25) are
identical. We have thus shown that by using Weinberg’s pseudotensor in Gaussian
coordinates we obtain the total ADM angular momentum evaluated at spatial
infinity, when the integration surface is a sphere. We might still need to
impose a stricter asymptotic behaviour than the asymptotic Euclidean flatness
described in Jaramillo and Gourgoulhon [2011] (for instance the quasi-isotropic
or asymptotic maximal gauge), but as Gourgoulhon [2012] noted, the K (&;)7n*
part of Eq. (5.25) converges in practice. We are, however, interested in evaluating
Eq. (5.24) quasi-locally, that is, associated with finite 2-surfaces (in our actual
applications, these will be apparent horizons of black holes [Mewes et al. 2016]).

For an axisymmetric spacetime, the angular momentum can be calculated
via the so-called Komar angular momentum [Komar 1959], which is defined

s (following again the notation of Jaramillo and Gourgoulhon [2011] and

Gourgoulhon [2012]):
1
—— [ wrer
16%//3 ¢"dSp, (5.28)

where ¢ is the axial Killing vector. Note the extra factor of 2 in the denominator,
known as Komar’s anomalous factor [Katz 1985]. The Komar angular momentum
integral does not have to be evaluated at spatial infinity, but is valid for every
surface. In Jaramillo and Gourgoulhon [2011] and Gourgoulhon [2012] it is shown
that using a slicing adapted to the axisymmetry of the spacetime, and expressing
Eq. (5.28) in terms of the 341 variables, the Komar angular momentum becomes

- iﬂ//s K;;¢'n"ds. (5.29)

In Gourgoulhon [2012] the above integral is evaluated for a Kerr BH in spher-

ical Boyer-Lindquist coordinates, and the angular momentum is found to be
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Jx = Ma, as expected, where M and a are the BH mass and spin parameter,
respectively. As the two integrals (5.24) and (5.29) have exactly the same struc-
ture, and the latter is coordinate (but not foliation) invariant, we arrive at the
conclusion that the introduction of Gaussian coordinates has led to a coordi-
nate invariant expression for the angular momentum derived from Weinberg’s
pseudotensor, namely the Komar angular momentum?. Note the absence of the
anomalous factor of 2 in our final expression (5.24). It therefore seems that it is
possible to relax the restriction of using Cartesian coordinates in calculations

involving Weinberg’s pseudotensor.

5.3 Measuring the angular momentum in NR

simulations

It is easy to check that not only the choice of Gaussian coordinates simplifies the
calculation of the total angular momentum via Weinberg’s pseudotensor, but also
that it makes straightforward the implementation of the above expressions in a
NR 3D Cartesian code based on the 341 decomposition. For instance, if using the
widely adopted BSSN formulation [Nakamura, Oohara, and Kojima 1987, Shibata
and Nakamura 1995, Baumgarte and Shapiro 1999], the extrinsic curvature K,
of the spatial slices is closely related to one of the evolved variables, namely the
traceless part of the conformally related extrinsic curvature. We note that in
present-day NR simulations one does not typically use Gaussian coordinates for
the actual numerical evolutions. This has to do with the fact that Gaussian
coordinates can only be used in the close vicinity of a spatial hypersurface, as
the geodesics emanating from the hypersurfaces will eventually cross and form
caustics in a finite time [Gourgoulhon 2012]. Furthermore the foliation is not
singularity-avoiding, which means Gaussian coordinates are unsuitable for the
numerical evolution of spacetimes containing curvature singularities. Instead,
the gauge conditions most commonly employed today in NR belong to the family
of the so-called moving puncture gauges, which consist of the “1+log” condition
for the lapse function [Bona et al. 1995] and the Gamma driver condition for the
shift vector [Alcubierre et al. 2003]. However, one can use the numerical solution

2Integrals over all space containing the pseudotensor have to be evaluated in Cartesian-like
coordinates in order to give finite results. Specifically, when using spherical coordinates, the
integrals (5.4) and (5.5) might diverge. See the discussion on the integration of the Ricci scalar
R in Gourgoulhon and Bonazzola [1994] for a detailed discussion of this issue and strategies to
allow the use of non-Cartesian coordinates in these type of integrals.
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for the extrinsic curvature K;; in Eq. (5.24) due to the freedom to choose any
gauge for calculations done on each timeslice.

In addition, Eq. (5.24) is actually equivalent to the method proposed by Cam-
panelli et al. [2007] for the calculation of the angular momentum of a volume
using flat-space coordinate rotational Killing vectors (cf. Eq. (5.21)). To see
this, consider the definition of the Killing vectors in Cartesian coordinates given
in Campanelli et al. [2007]:

Vg =10, —(2 — 2e), (¥ — ¥e)], (5.30)
Yy = [(2 = 20),0, —(z — 2.)], (5.31)
1/@ = [_(y - yc)7 (LL' - xc)> 0]7 (532)

where (¢, Y., 2z¢) is the coordinate centroid of the AH, which has to be subtracted
to avoid including contributions from a possible orbital angular momentum of
the BH about the centre of the computational grid in the calculation of its
spin. Upon substituting their flat-space coordinate rotational Killing vectors
into Eq. (2.94), we find that

1

g =L / / (yKsy — 2Koy) nbdS | (5.33)
87T S
1

Jy = — / / (2K, — 2 Ks3p,) nbdS (5.34)
871' S
1

J, = — / / (2K — yK1p) nbdS, (5.35)
871' S

where we have set z. = y. = z. = 0 for simplicity. We see that the two sets of
expressions for the Cartesian components of the angular momentum vector of
the AH, those from Weinberg’s pseudotensor evaluated in Gaussian coordinates
and those from the flat space rotational Killing vector method, are equivalent

and equal to the Komar angular momentum in an axisymmetric spacetime.



Chapter 6

NR simulations of tilted

BH-torus systems

The results of this chapter have been originally published in:
V. Mewes, J. A. Font, F. Galeazzi, P. J. Montero and N. Stergioulas
Phys. Rev. D 93, 064055 (2016).

6.1 Initial data and setup

The initial setup for the simulations presented in this chapter is a thick, self-
gravitating axisymmetric accretion disc in equilibrium around a rotating BH.
Such a system is built following the approach laid out in Stergioulas [2011] that
we briefly describe below. The solver to build the initial data (ID) first computes
models of self-gravitating, massive tori around non-rotating BHs. For BH-torus
initial data, the accuracy is usually evaluated by the deviations of the constraints
rather than some Virial-like expressions as the ones derived in Gourgoulhon and
Bonazzola [1994] and Bonazzola and Gourgoulhon [1994], though it might be
interesting to derive explicit forms of the GR Virial theorem for the BH-torus
initial data in the future. For our simulations of tilted discs around rotating
BHs we retain the hydrodynamical content of a model and replace the spacetime
by a tilted Kerr spacetime in quasi-isotropic coordinates. The generated 1D
is then interpolated onto Cartesian coordinates and evolved with the ET. We

are not aware of a method to generate self-consistent data for self-gravitating
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Figure 6.1 Innermost region of the initial rest-mass density profile along the z-axis for model
C1Ba0b0. The disc ends at 3.03 and the AH is initially located at * = 0.46.

tilted discs around Kerr BHs and therefore resort to this method!. In order to
keep the constraint violations as low as possible, we use disc models with rest
masses of only a few percent of the BH mass and with small to moderate BH
spins. When replacing the original spacetime of the ID with the tilted Kerr
spacetime in the computational domain, both the torus rest-mass M, and the
torus gravitational mass Mt will change somewhat, due to the fact that the
volume element of the spacetime, as well as the lapse, have changed. In order
to assess the difference in My and Mt due to the replacement of the spacetime
we calculate both quantities using Eqs. (4.23) and (4.24). We find the largest
difference in My and Mt in model C1Ba03b30 (see a list of models in Table 6.1
below), where we obtain the following fractional differences: A My ~ —3% and
A MT ~ *3%

6.1.1 Self-gravitating accretion discs

Our ID are self-gravitating discs around a Schwarzschild BH in quasi-isotropic
(QI) coordinates [Stergioulas 2011]. The ID is fully described by the four metric
potentials A(r,0), B(r,8), a(r,0) and w(r,d) that characterise the metric of a

stationary, axisymmetric spacetime in spherical polar QI coordinates,

B2
ds® = —e>dt?* + **(di* + 7°d¢?) + —-7sin*0(d¢ — wdt)? (6.1)
€

LA possible attempt to construct these initial models might be to solve the constraint
equations with a matter source representing a warped disc in steady-state.
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where the isotropic radius 7 is given in terms of the areal radius r by
1
in(r—M+\/r2—2Mr) , (6.2)
where M is the mass of the BH. The ID also provides the pressure p and orbital
angular velocity 2 = u®/u’, measured by an observer at infinity at rest. The
evolution time is measured in terms of the initial orbital period at the radius of

the initial maximum of the rest-mass density, p.. These two quantities, together

with the EOS, are sufficient to obtain the remaining hydrodynamical quantities.

The ID is constructed using the polytropic EOS given by (4.21). The value
of the constant K (see Table 6.1) in the polytropic EOS essentially fixes the

central density in the construction of our ID, leading to values expected in

post-merger accretion tori (see, e.g. the values reported in Rezzolla et al. [2010]).

The components of the 3-velocity in Cartesian coordinates are given by

CED D e

where « is the lapse function. The Lorentz factor is calculated directly from the

3-velocity
1 1

Vi—uet 1 w- 02 B 2+ )

(6.4)

The matter content of the ID only fills the computational domain up to the
event horizon of the BH. In our simulations we do not excise the BH but rather
treat it as a puncture. We noticed that when evolving the BH as a puncture
with matter content without excision, the simulations were not long-term stable
and failed at early stages of the evolution due to errors in the matter evolution
at the location of the puncture. The reason is a very rapid pile up of matter at
this location, which leads to non-physical values of the hydrodynamical variables
at the puncture. These lead to failures in the GRHydro evolution code during
the conversion from conserved to primitive variables. In Faber et al. [2007] a
successful method to evolve hydrodynamics in the presence of punctures was
presented. This method checks for unphysical values of the hydrodynamical
variables at the immediate vicinity of the puncture and resets them to physical
values. In practice it checks for the positivity of the conserved energy (7 > 0)
and an upper bound for |S|?:

’}/ijSiSj S T(T + 2p) (65)

In our simulations, we use a similar treatment inside the BH horizon, namely
we specify a fraction of the volume of the AH in which we reset the matter

fields to atmosphere values and the stress-energy tensor T"" to zero, which is
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essentially the same technique as described in Reisswig et al. [2013]. In this way,
we avoid using a moving excision boundary for the hydrodynamical variables as
in Loffler, Rezzolla, and Ansorg [2006]. From the point of view of the evolution
it is safe to do this, as the evolution of the hydrodynamics inside the horizon
cannot influence the evolution outside the horizon. In fact, we checked that the
fraction of the AH in which we apply such atmosphere resetting has no effect on
the evolution, as expected. We checked this by applying the atmosphere reset
for different fractions of the AH. In all cases, the evolution outside the AH was
unaffected, confirming that the region inside the AH is causally disconnected.
This has been employed for instance in the so-called “turduckening” of initial
BH data [Brown et al. 2009]. For the practical implementation of this approach
we use a spherical surface that contains the shape of the AH and apply the
atmosphere method in a fraction of the minimum radius of that surface. Our
procedure is illustrated in Fig. 6.1 where we plot the initial density profile along
the z-axis for model C1BaObO of our sample (see Tables 6.1 and 6.2). The AH
is initially located at z = 0.46 and there exists a smooth density profile across
the horizon. The remaining hydrodynamical quantities are treated in the same
way. By using this approach we are able to evolve matter fields in the presence
of punctures for very long times without the need for moving hydrodynamical

excision zones.

6.1.2 Tilted Kerr spacetime in improved quasi-isotropic
coordinates

We set up a Kerr BH tilted about the z-axis by an angle 8y in the improved
quasi-isotropic coordinates proposed by Liu, Etienne, and Shapiro [2009]. In
those coordinates, the radius of the horizon does not shrink to zero in the extreme
Kerr limit, but approaches r = M/4 > 0. The initial mass M of the Kerr BH is
chosen to be equal to the value used in the ID calculation of the self-gravitating
torus. The spin parameter a varies for different runs. The list of 21 models we
use in our investigation is summarised in Tables 6.1 and 6.2.

We perform the rotation of the BH about the z-axis in the following way:

we first rotate by an angle 3y the coordinates x,y, z to the tilted coordinates,

z 1 0 0 T
=Rz = [§| =10 cosBy —sinfBy yl - (6.6)
2 0 sinfBy cosfy z

We then calculate the spatial metric «;; and extrinsic curvature K;; by performing

coordinate transformations of the respective expressions given in Liu, Etienne,
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Table 6.1 Main characteristics of our initial models. From left to right the columns indicate
the name of the model, the BH mass Mgy, the disc-to-BH mass ratio ¢, defined as the ratio
of the total gravitational mass of the torus of the original ID and the irreducible mass of the
Schwarzschild BH, the inner and outer disc radii ri, and 7out, the maximum rest-mass density
pc and the polytropic constant of the EOS K. All models are evolved with a I'-law ideal
fluid EOS with I' = 4/3. Models indicated with a * were simulated using half the canonical
resolution of Az = 0.02. See main text for details.

Name Mgy q Tin  Tout Pec K
(x107°)

D2a01b0 1.0002 0.044 3.42 30.1 1.05 0.323

D2a01b5 1.0002 0.044 3.42 30.1 1.05 0.323

D2a01b15 1.0002 0.044 3.42 30.1 1.05 0.323
D2a01b30 1.0002 0.044 3.42 30.1 1.05 0.323
D2a05bb 1.0002 0.044 342 30.1 1.05 0.323
D2a05b15 1.0002 0.044 342 30.1 1.05 0.323
D2a05b30 1.0002 0.044 3.42 30.1 1.05 0.323
C1Ba0bOo 0.9569 0.160 3.03 22.7 5.91 0.180
C1Ba01b5 0.9569 0.160 3.03 22.7 5.91 0.180
C1Ba0O1b15  0.9569 0.160 3.03 22.7 5.91 0.180
C1Ba01b30  0.9569 0.160 3.03 22.7 5.91 0.180
C1Ba03bb* 0.9569 0.160 3.03 22.7 5.91 0.180
C1Ba03b15* 0.9569 0.160 3.03 22.7 5.91 0.180
C1Ba03b30* 0.9569 0.160 3.03 22.7 5.91 0.180
NC1a0b0* 0.9775 0.110 3.60 33.5 1.69 0.170
NC1a01bb* 0.9775 0.110 3.60 33.5 1.69 0.170
NC1aO1b15* 0.9775 0.110 3.60 33.5 1.69 0.170
NC1a01b30* 0.9775 0.110 3.60 33.5 1.69 0.170
NC1a03b5* 0.9775 0.110 3.60 33.5 1.69 0.170
NC1a03b1b5x 0.9775 0.110 3.60 33.5 1.69 0.170
NC1a03b30* 0.9775 0.110 3.60 33.5 1.69 0.170

and Shapiro [2009] (in spherical polar coordinates) to our tilted Cartesian
coordinates £¢. We set the initial shift 3 to 0 and choose the following initial

lapse profile:
2

= — . 6~7
CTirat oy (67)

We find that this initial lapse profile greatly helps with the conservation of

irreducible mass and spin during the initial gauge transition the system undergoes.

The bigger the difference between the initially chosen lapse profile and the profile
the system attains after the transition to the puncture coordinates, the larger
the errors in irreducible mass and spin. As all quantities have been set up in the

tilted coordinates &?, we also need to apply rotations to vectors and tensors, in
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Table 6.2 Main characteristics of our initial models (continued). From left to right the columns
indicate the name of the model, the orbital period Py}, in code units and (milliseconds) and
orbital frequency fo;1, at the radius of the initial pc, the specific angular momentum profile in
the equatorial plane of the disc | = —uy/ug (in terms of the Schwarzschild radial coordinate
R), the BH spin parameter a, and the initial tilt angle 9. All models are evolved with a
I-law ideal fluid EOS with I’ = 4/3. Models indicated with a * were simulated using half the
canonical resolution of Az = 0.02. See main text for details.

Name Py forb [-profile a Bo

(Hz) (deg)
D2a01b0 150 (0.74) 1360 3.75 (const) 0.1 0
D2a01b5 150 (0.74) 1360 3.75 (const) 0.1 5
D2a01b15 150 (0.74) 1360 3.75 (const) 0.1 15
D2a01b30 150 (0.74) 1360 3.75 (const) 0.1 30
D2a05b5 150 (0.74) 1360 3.75 (const) 0.5 5
D2a05b15 150 (0.74) 1360 3.75 (const) 0.5 15
D2a05b30 150 (0.74) 1360 3.75 (const) 0.5 30
C1Ba0bo 157 (0.77) 1300 3.67 (comnst) 0.0 0
C1Ba01b5 157 (0.77) 1300 3.67 (const) 0.1 5
C1Ba01b15 157 (0.77) 1300 3.67 (const) 0.1 15
C1Ba01b30 157 (0.77) 1300 3.67 (const) 0.1 30
C1Ba03b5* 157 (0.77) 1300 3.67 (const) 0.3 5
C1Ba03b15* 157 (0.77) 1300 3.67 (const) 0.3 15
C1Ba03b30* 157 (0.77) 1300 3.67 (const) 0.3 30
NC1a0bOx* 242 (1.19) 843  3.04 R®* 0.0 0
NC1a0O1b5* 242 (1.19) 843  3.04 R 01 5
NC1a01b15* 242 (1.19) 843  3.04 R 0.1 15
NC1a01b30* 242 (1.19) 843  3.04 R%! 0.1 30
NC1a03b5* 242 (1.19) 843  3.04 R®* 03 5
NC1a03bi5* 242 (1.19) 843  3.04 R®' 03 15
NC1a03b30* 242 (1.19) 843  3.04 RO 03 30

order to obtain the correct components of the shift, spatial metric and extrinsic
curvature in the original z° coordinate system that is going to be used in the
simulations. We obtain the components of the shift vector with

B=RA, (6.8)

and the components of the spatial metric and extrinsic curvature with
~=RART, (6.9)
K=RKR', (6.10)

where R is the rotation matrix from Z* to z°.
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Our choice of the initial BH spin magnitude is currently limited by our
computational method and is therefore somewhat smaller than spins expected
in certain astrophysical scenarios. For example, as the simulations of misaligned
BHNS mergers of Foucart et al. [2011], Foucart et al. [2013], and Kawaguchi
et al. [2015] have shown, accretion discs form in these systems only for relatively
high (> 0.7) initial BH spins; see also Foucart [2012] for disc mass predictions
from BHNS mergers. These initial spins in astrophysical merger scenarios are
larger than the spins investigated in our study a € [0, 0.5]. However, the smaller
the BH mass, the smaller the BH spins that are necessary to tidally disrupt the
NS during the BHNS merger. The BHs in our study have all masses close to the
solar mass. The reasons for our choice of smaller spins are the very demanding
resolution requirements when evolving highly spinning BHs (see, e.g. Lousto
et al. [2012]). Furthermore, spin conservation seems to be affected non-linearly
with higher spin magnitude [Marronetti et al. 2008], which we have also observed
in Mewes et al. [2015]. The choice of astrophysically more realistic BH spin
magnitudes would have been prohibitively expensive (see, e.g. Lousto et al. [2012]
for details) and is beyond the scope of our study of self-gravitating accretion
discs around tilted Kerr BHs. Nevertheless, our results with dimensionless spin
values of 0.5 should provide a first qualitative understanding of what may happen

at dimensionless spin values of 0.7.

It is believed that there is a mass gap between the heaviest remnant NS and
lightest remnant BH in supernova explosions (see, for instance, the recent super-
novae simulations spanning a large parameter space of progenitors in Ugliano
et al. [2012] and Ertl et al. [2016]). Specifically, the mass gap found in Ugliano
et al. [2012] is between ~ 1.8Mg and ~ 6.5Mg. However, we note that the
existence of this mass gap in BH masses has been questioned in Kreidberg et al.
[2012]. While the peak of BH masses in these considerations is still around
8 Mg, very small BH masses in mergers are at least not ruled out as in previous
studies. Furthermore, the BH mass predictions population synthesis models
are based on assumptions about the exact details of the supernova explosion
mechanism (see for instance Belczynski et al. [2012], where no mass gap is found
using a delayed supernova explosion model assuming a 100-150 ms instability
growth time). As we explained in the introduction, the smaller the BH mass,
the smaller the BH spin needs to be in order to tidally disrupt the NS during
the merger in order to leave a thick accretion torus around the BH. It therefore
seems that some of the combination of BH spins and mass-ratios studied in this
work (while having been primarily motivated on computational grounds) are
a possible (although maybe not the most likely) outcome from BHNS mergers.
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Figure 6.2 Contour plot in the zz plane of the initial rest-mass density profile in the disc for
model C1BaOb0. The innermost contour (blue line) corresponds to a density of 2.1 x 10~
while the outermost contour (red line) corresponds to 5.9 x 1071 (code units). The AMR
grid structure, showing the 6 innermost mesh refinement levels (out of 13), is shown as well
in the figure. The box is 46 units of length across. See main text for details on the actual
resolution of the different grids.

Based on these considerations, model D2, the lightest in our study, is the most
astrophysically relevant model of the three models studied.

We remark that our models are idealised approximations to the BH-torus
systems formed in BHNS and BNS mergers. The biggest differences are the
final BH mass resulting from BHNS mergers and the rotation profile of the
accretion disc formed in these mergers. Two of our discs have constant specific
angular momentum profiles, which are unlikely to be found in real astrophysical
discs. See for instance the evolution of the specific angular momentum profiles
in the post-merger torus NR simulations of BNS in Rezzolla et al. [2010], where
non-axisymmetric structures redistribute angular momentum in the very early
stages of the torus evolution (see also Section 6.2.8 below). The chosen mass
ratios in our ID are attainable for BNS post-merger discs, but, as explained
above, probably not viable models for tilted BH-torus systems.

We choose the initial tilt angle 8y € [5°,30°]. In the simulations of tilted
BHNS mergers of Foucart et al. [2011], the authors found that for initial inclina-

tions < 40°, the mass of the resulting accretion disc would be around 10 — 15%
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of the initial NS mass, whereas higher initial inclinations produced a sharp drop
in the mass of the resulting disc. For those pre-merger inclinations < 40°, the
resulting tilt of the post-merger disc was around 10°. In the recent simulations of
tilted BHNS mergers of Kawaguchi et al. [2015], the authors report a post-merger
disc with a tilt &= 20 — 30°, for an initial tilt of ~ 60°. These findings seem to
be in accordance with the probability distributions of post-merger tilt angles for
BH-NS mergers obtained in Stone, Loeb, and Berger [2013], which show a sharp
cut-off in the probability distribution for post-merger tilt angles > 50°.

The two initial disc models D2 and NC1 are inside the Roche lobe, while model
C1B overfills the Roche lobe slightly initially. We have not seen any indication
for the occurrence of the runaway instability in any of the simulations presented

in this work.

6.1.3 Numerical setup

The use of mesh-refinement techniques is of fundamental importance in our
simulations where different physical scales need to be accurately resolved. For
this reason, we use the Carpet driver that implements a vertex-centred AMR
scheme adopting nested grids [Schnetter, Hawley, and Hawke 2004]. Figure 6.2
shows isocontours of the initial rest-mass density profile for a representative disc
model (C1Ba0ObO) in a vertical cut (zz-plane) together with the initial innermost
AMR grid structure. In our simulations, we use 13 levels of mesh refinement, with
the outer boundary placed at 4096. In computational grids that are not radially
compactified and are therefore of finite size, the location of the outer boundary
determines the maximum time of evolution before the system might be affected
by possible junk radiation propagating inwards from the outer boundary. For
disc models C1B and D2, our computational domain is large enough to causally
disconnect the outer boundary from the BH-torus system. For model NC1, which
has a larger orbital period at the pressure maximum, the simulation time is
larger than the light-crossing time of the domain. However, we have checked that
there is no growth of the constraints associated with the arrival of junk radiation
from the outer boundary. We perform a comprehensive series of simulations

using two different resolutions, high resolution runs with a highest resolution

of Axz = 0.02 and simulations with half this resolution, see Tables 6.1 and 6.2.

Every refinement level except the innermost one is half the size of the preceding
level. The innermost refinement level, as can be seen in Fig. 6.2, is more than
half the size of the next refinement level. All simulations have been performed

using a CFL factor of 0.25. In the outermost 6 refinement levels, we use the
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Figure 6.3 Convergence properties: Top panel: dependence on grid resolution for the L2-norm
of the Hamiltonian constraint. Bottom panel: corresponding order of convergence. Model
C1Ba01b30 has been used for this figure.

same time step as in level 7, in order to prevent instabilities in the spatially
varying damping parameter 7. Using the same (smaller) time step in the outer
levels is necessary, even though the spatially varying n parameter of Alic et al.
[2010] takes into account the time step limitation of the n parameter described
in Schnetter [2010]. In the following section, we provide details of the accuracy

and convergence properties of our simulations using this numerical setup.

6.1.4 Accuracy and convergence

In Fig. 6.3 we plot the time evolution of the L2-norm of the Hamiltonian
constraint (top panel) and the convergence order of this quantity (bottom panel)
for the first four orbits of model C1Ba01b30. The plot shows the results obtained
by using both the canonical (finest grid resolution Az = 0.02) and two lower
(Az = 0.04 and Az = 0.08) resolutions. We follow Galeazzi et al. [2013] and
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Figure 6.4 Dependence of the irreducible mass of the BH on grid resolution for model C1Ba01b30
plotted for the first 4 orbits.

define the convergence order ¢ as

1 Y — [EfRed )
q= log 2 e , (6.11)
log(f) <||H||2 d_||H| 5|

where f is the refinement factor f = Aziow/AZmed = AZmed/AThigh = 2. From
Fig. 6.3 we see that the order of convergence shows some variability between a
minimum of ~ 1 and a maximum of about 3. The spacetime evolution is fourth
order, while the evolution of the hydrodynamics is only second order accurate
and reduces to first order in the presence of shocks. We observe higher than
second order convergence in the L2-norm of the Hamiltonian constraint. This
could be ascribed to the spacetime evolution which, due to the small disc-to-BH
mass ratio and to the inconsistent ID setup, could dominate the error budget in
our simulations. Furthermore, it is difficult to assess the order of convergence
of our simulations at later times once the PPI sets in, since the truncation
error of the different resolutions could excite the exponential growth of the
non-axisymmetric modes at different times causing the study of convergence to

be difficult, as one would compare different physical systems.

The fractional change in the irreducible mass of the BH for model C1Ba01b30
is plotted in Fig. 6.4. The most striking feature of this figure is the absence of an
initial drop of the irreducible mass due to the inconsistent choice of ID, contrary
to the behaviour found in the simulations of Korobkin et al. [2011]. The initial
drop found by Korobkin et al. [2011] (which is about 8-10%) happened in the first
orbit and was due to their metric blending technique in the ID setup. After that

significant initial drop, the irreducible mass in Korobkin et al. [2011] increases
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Figure 6.5 Evolution of the fractional error in the irreducible mass of a vacuum Kerr BH with
the same mass as that of model C1B and a Kerr parameter of a = 0.3. Results are shown for
two different resolutions.

again to remain at around 97.5% of its initial value during the evolution. Such
a precise control of the irreducible mass conservation may be related to the use
of a (quasi) spherical grid. In contrast, in our setup without AH excision, there
is no oscillatory behaviour in the evolution of the irreducible mass at the early
stages of the evolution, as the ID in quasi-isotropic coordinates dynamically
adapts to the puncture gauge?. Nevertheless, the irreducible mass is seen to
start decreasing in a smooth fashion from 0.5¢,,1, onwards. By the total time
of 4 orbital periods shown in Fig. 6.4, the irreducible mass has decreased to
a minimum of about 92% of its initial value, to subsequently increase as the
simulation proceeds as matter and angular momentum accrete onto the BH.
Moreover, Fig. 6.4 shows that this (unphysical) drop in the irreducible mass
does not converge away with resolution.

In order to investigate this issue, we have performed two additional vacuum
(T" = 0) simulations of a BH with the same mass as of that of the C1B
models and with an initial Kerr parameter of a = 0.3. In Fig. 6.5 we plot
the corresponding fractional error in the irreducible mass for two (finest grid)
resolutions, Az = 0.04 and 0.08, for a total time of 20 orbits. Similar to our
results for the BH-torus setup, we observe no convergence in the unphysical
drop of the irreducible mass during the first ~ 10 orbits, while the irreducible
mass decreases slower for the higher resolution run in the later stages of the
evolution, as expected. We note, however, that the magnitude of the fractional

2In order to avoid the initial gauge transition, one could try to use the trumpet slices for a
Kerr BH described in Dennison, Baumgarte, and Montero [2014] as initial data.
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Figure 6.6 Initial radial profile of the Hamiltonian constraint for a vacuum Kerr BH and for
model C1Ba03b30 along the z-axis from the AH outwards.

error in the vacuum tests is much smaller (about two orders of magnitude) than

that observed in our BH-torus runs.

Unphysical loss of irreducible mass for constraint-violating ID has been
reported before in the literature (see, e.g. Mundim et al. [2011], Reifenberger and
Tichy [2012], and Okawa, Witek, and Cardoso [2014]). It has been interpreted
as if the effect of the constraint violations were equivalent to the presence of a
negative mass in the system. The absorption of the violations by the BH causes
the area of the AH, and therefore also the irreducible mass, to decrease. As
stated in Section 6.1, our ID is manifestly constraint-violating and, furthermore,
the constraint violations do not converge away with resolution. In Fig. 6.6 we
plot the initial profile of the Hamiltonian constraint for the vacuum BH run with
Az = 0.04 and for the corresponding BH-torus C1Ba03b30 model. We clearly see
a large constraint violation (compared to the vacuum case) in the region where
the disc initially resides. By interpreting the loss of irreducible mass as caused by
the absorption of constraint violations, the lack of convergence in the irreducible
mass drop in our BH-torus systems can be explained. As we have also seen
in the vacuum tests, this transient feature connected to the initial constraint
violations (much smaller in this case) is very long lived. In our BH-torus models
the loss of irreducible mass only flattens out once enough matter has been
accreted. Such large fractional errors are not reported in simulations where the
BH-torus system forms after the evolution of a binary BHNS or BNS merger,
which highlights the undesired effect of employing constraint-violating ID.
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6.2 Results

6.2.1 Surface plots

We start describing the morphology and dynamics of a representative model of
our sample. The evolution of model C1Ba01b30 is shown in Fig. 6.7. This figure
displays surface plots of the logarithm of the rest-mass density at six different
stages of the evolution. The final panel shows the morphology of the system
after the disc has completed 20 orbits around the BH. The interpolation of the
ID from QI spherical polar coordinates to Cartesian coordinates, along with
the inclusion of a moderate BH spin in the originally non-rotating BH, results
in a significant perturbation of the equilibrium model that triggers a phase of
oscillations of the torus around its equilibrium. These oscillations are present
throughout the simulation and, as the disc is initially filling its Roche lobe, they
induce a small accretion process of matter through the cusp towards the BH.
This does not reduce significantly the total rest-mass of the torus as we show
below. The oscillations are damped due to numerical viscosity and also by the
formation of shocks developing in density waves that propagate inside the disc
and convert kinetic energy into thermal energy. These oscillations therefore only
trigger nonphysical accretion during the very early times of the simulation. The
outward-propagating shocks, also found in the simulations of Korobkin et al.
[2011], are produced by in-falling material along the funnel walls which reaches
inner high-density regions and bounces back. One such shock wave can be clearly
seen on the right portion of the disc in the 12 orbits panel of Fig. 6.7. The initial
tilt of the BH spin (8 = 30°) twists and warps the innermost parts of the disc
closer to the BH. This gradual effect becomes evident on the time series shown
in Fig. 6.7 and by the final 20 orbits the disc is significantly misaligned with the
(horizontal) y-axis.

In Fig. 6.8 we show surface plots of the rest-mass density for the models
C1B, NC1 and D2 for the lower spin simulations (¢ = 0.1) at the final time of the
evolution t/to, = 20. The effects of the initial BH tilt on the morphology of
the disc at the final time are more clearly pronounced for the heavier models
C1B (top row) and NC1 (middle row). Although the spin of the BH is very
small and the spacetime is therefore nearly spherically symmetric, the initial
tilt angle nevertheless causes a different evolution. In contrast, the significantly
lighter model D2 is seen to be hardly affected by the initial tilt by the end of the
evolution for these low spin simulations.

Similarly, in Fig. 6.9, we plot the same rest-mass density surface plots as in

Fig. 6.8 for all our models with higher initial spin. Comparing the evolution of
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Figure 6.7 Surface plots of the logarithm of the rest-mass density for model C1Ba01b30 at
six different snapshots of the evolution, ¢/t = 0,4,8,12,16 and 20. The domain shown in
all panels is 60 across the y-axis and 45 across the z-axis, which also indicates the upward
direction in the plots. The surface of the disc is set at a density of 10~%p. and half the disc
is removed for visualisation purposes. The BH lies at the cutting plane of each panel. The
evolution shows the development of two accretion streams on to the BH as the disc inclination
increases during the evolution with respect to the initial equatorial plane.

the disc morphology with the lower initial spin figure, we see that there are now
significant changes in the morphology when increasing the initial tilt angle S
for all models. The effects of evolving the disc in the tilted Kerr spacetime are
now more pronounced, as the higher spin causes a significant deviation from
spherical symmetry in the spacetime. In particular, the disc model D2 is now also
clearly affected by the BH spin. As it represents the lightest disc in our study,
its evolution is most similar to the evolutions observed in Fragile and Anninos
[2005], which were performed using BHs of significantly higher spins than in the
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Figure 6.8 Surface plots of the (normalised) rest-mass density at the final time of the evolution
t/torb = 20 for models C1B with a = 0.1 (top row), NC1 with a = 0.1 (middle row), and D2
with a = 0.1 (bottom row). From left to right the columns correspond to initial tilt angles
Bo = 5°,15°, and 30°, respectively. The domain shown in all panels is 20 across the y-axis
and 15 across the z-axis, which also indicates the upward direction in the plots. The color
palette and corresponding normalised density used are the same as in Fig. 6.7.

simulations presented here. Low mass discs therefore do exhibit twisting and
warping, but not at very low spins. The growth of non-axisymmetric modes
associated with the PPI (see below) in the two more massive models C1B and
NC1 causes an alignment of the overall disc angular momentum vector with the
BH spin. This interesting effect will be discussed in Section 6.2.6 below, where

we comment on the BH precession and nutation properties.

In Figures 6.10 and 6.11 we plot linearly spaced isocontours and the loga-
rithm of the rest-mass density in the plane perpendicular to the total angular
momentum vector of the disc. This kind of “equatorial” plots allows for a better
visualisation of the possible growth of non-axisymmetric structures in the disc.
We note that due to the twisting and warping of the disc as a result of the
initial BH tilt, the choice of the plane on to which project the isocontours for an
adequate visualisation is not straightforward and careless choices (as e.g. the
simple choice of the equatorial zy-plane) may hide important pieces of informa-
tion on the dynamics and morphology. The top row of Fig. 6.10 corresponds
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C1Ba03

NC1a03

Figure 6.9 Surface plots of the (normalised) rest-mass density at the final time of the evolution
t/torb = 20 for models C1B with a = 0.3 (top row), NC1 with a = 0.3 (middle row), and D2
with a = 0.5 (bottom row). From left to right the columns correspond to initial tilt angles
Bo = 5°,15°, and 30°, respectively. The domain shown in all panels is 20 across the y-axis
and 15 across the z-axis, which also indicates the upward direction in the plots. The color
palette and corresponding normalised density used are the same as in Fig. 6.7.

to models C1Ba01b5 (left), C1Ba01b15 (middle), and C1Ba01b30 (right), and all
of them are displayed at the time at which the growth of the fastest growing
non-axisymmetric structure in the disc saturates (see Fig. 6.15 in Section 6.2.4
below where we discuss the mode growth of the PPI for the different models
of our sample). The middle row of Fig. 6.10 corresponds to models NC1a01b5
(left), NC1a01b15 (middle), and NC1a01b30 (right), also shown at the time the
fastest growing mode has maximum amplitude, while the bottom row shows
models D2a01b5 (left), D2a01b15 (middle), and D2a01b30 (right), which are
displayed at the final time of the evolution (¢ = 20ts,,) when the amplitudes of
the corresponding PPI modes (if present) are largest. Correspondingly Fig. 6.11
shows the same type of isocontour plots as Fig. 6.10 but for the models with
higher initial spin. The top row of Fig. 6.11 corresponds to models C1Ba03b5
(left), C1Ba03b15 (middle), and C1Ba03b30 (right), the middle row of Fig. 6.10
corresponds to models NC1a03b5 (left), NC1a03b15 (middle), and NC1a03b30
(right) and the bottom row shows models D2a05b5 (left), D2a05b15 (middle),
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Figure 6.10 Linearly spaced isocontours in plots showing the logarithm of the rest-mass density
in the plane perpendicular to the total angular momentum vector of the disc. From left to
right the rows show models C1Ba01b5, C1Ba01b15 and C1Ba01b30 (top), NC1a01b5, NC1a01b15
and NC1a01b30 (middle), and D2a01b5, D2a01b15, and D2a01b30 (bottom). The color palette
and corresponding normalised density used are the same as in Fig. 6.7. The morphological
structures shown in the different panels reflect the dominant PPI mode at the time of maximum
non-axisymmetric mode amplitude. See main text for further details.

and D2a05b30 (right). As in Fig. 6.10, the times shown are at either saturation
of the fastest growing non-axisymmetric structure or when the maximum mode
amplitudes are largest.

The inspection of the different panels displayed in Figs. 6.10 and 6.11 shows
noticeable differences in the flow morphology. On the one hand all six models
C1B (top rows in both figures), corresponding to initial BH spins of a = 0.1 and
a = 0.3, respectively, exhibit a very prominent spiral density wave once the
stationary accretion phase is reached. This structure, which is visible for all
three tilt angles considered, 5 = 5°,15° and 30°, is associated with the growth of
the m = 1 non-axisymmetric PPI mode, which is the fastest-growing mode and
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Figure 6.11 Linearly spaced isocontours in plots showing the logarithm of the rest-mass density
in the plane perpendicular to the total angular momentum vector of the disc. From left to
right the rows show models C1Ba03b5, C1Ba03b15 and C1Ba03b30 (top), NC1a03b5, NC1a03b15
and NC1a03b30 (middle), and D2a05b5, D2a05b15, and D2a05b30 (bottom). The color palette
and corresponding normalised density used are the same as in Fig. 6.7. The morphological
structures shown in the different panels reflect the dominant PPI mode at the time of maximum
non-axisymmetric mode amplitude. See main text for further details.

has the largest amplitude (see also Fig. 6.14). The middle rows, corresponding
to the six models NC1, show the development of a spiral arm as well, however not
as clearly pronounced as in the case of C1B. On the other hand the isodensity
contours of all three models D2 displayed in the bottom row of Fig. 6.10 for
a BH spin a = 0.1 barely show any morphological deviation from the initial
axisymmetry. Only the innermost regions closest to the BH show some slight
non-axisymmetric structure, particularly for the model with the largest tilt angle
(8 = 30°) shown on the right panel. The disc of model D2 is considerable lighter
than that of model C1B, and model NC1 has an initial non-constant specific

angular momentum profile and according to Kiuchi et al. [2011] more massive
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tori with [ = const profiles favour the appearance of the PPI with respect to
less massive tori (see in particular Figs. 2 and 3(a) of Kiuchi et al. [2011] for
their model C1 which has very similar properties regarding size and BH-to-disc
mass ratio to our model C1B). Our results seem to only partially confirm those
previous findings as there seems to be some weak dependence of a moderate
m = 2 PPI growth with increasing tilt angles. A possible origin of the m = 2
mode growth in these models might be connected to our Cartesian grid. However,
the dependence of the growth on initial tilt angle seems to indicate that this is
a physical effect. To gauge the effect of the Cartesian grid, one would have to
compare the disc evolutions of our models with new simulations performed in
spherical grids.

The dependence on the BH spin seems however to be more significant for
the light model D2, as shown in the panels at the bottom row of Figures 6.10
and 6.11. For the higher spin runs shown in Fig. 6.11, all three panels show
non-axisymmetric morphological features. All three snapshots correspond to
the same final time of the evolution (¢t = 20t.,1,) and the dynamical differences
between the three models are only due to the initial BH tilt angle. For g = 5°
(left panel) the m = 1 spiral structure is visible and dominant but, at the same
time, the m = 2 mode seems to have reached an almost similar amplitude (see
the bottom panel of Fig. 6.14). Such m = 2 feature becomes clearly dominant
the larger the BH inclination becomes, as depicted in the central regions of the

middle and right panels.

6.2.2 Maximum rest-mass density evolution

We next show the evolution of the maximum rest-mass density in the discs in
Fig. 6.12, normalised to the corresponding initial central density of each model
(see Tables 6.1 and 6.2). For model D2 (bottom panel), the effect of tilting the
BH has very little effect on the evolution of py.x for a BH spin of a = 0.1.
However, for a = 0.5, the evolution of py.x differs for the different initial tilt
angles. Model D2a05b5 exhibits an upward drift from 10 orbits onwards to
bring pmmqe to the level of the lower spin runs towards the end of the simulation.
This might be connected to the growth of the m=1 non-axisymmetric mode
in this model, as discussed in the previous section. In the initial stages of the
evolution, p,q. is higher for larger tilt angles, a dependence that is also observed
in the accretion rate (see Section 6.2.3). The maximum rest-mass density stays
below its initial value for almost the entire evolution for both models D2 and

NC1 (middle panel). This is very different in model C1B (top panel) where the
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Figure 6.12 Evolution of the maximum rest-mass density, normalised by its initial value, for
models C1B (top), NC1 (middle) and D2 (bottom). The dashed curves correspond to the high
spin models of our sample.
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occurrence and saturation of the PPI has a drastic effect on the evolution of
Pmaz- When the PPI starts growing, a situation which is accompanied by an
exponential growth of the accretion rate, p,q, grows to up to twice its initial
value, reaching the highest value for the untilted model C1Ba00. It subsequently
settles to a value that is very similar for all initial spins and tilt angles, but
the time of growth and the shape of the “lump” in the density evolution are
different for the different spins and initial tilt angles. Model NC1 shows features
from both models D2 and C1B described above. Similarly to model D2, pqz
stays below its initial value for almost the entire evolution, with model NC1a00
being an exception where it grows above the initial value briefly. There is, as in
models C1B, a rapid growth in the central density, albeit somewhat smaller for
the non-constant angular momentum discs, associated with the growth of the
PPI in all the models. The magnitudes at which the mode growth saturates are
similar, while the time at which the growth sets in depends on the initial spin
and tilt angle.

6.2.3 Evolution of the accretion rate

Fig. 6.13 shows the time evolution of the mass accretion rate for all models of
our sample, in units of Mg /s. The colours used for the different models as well
as the line style follow the same convention as in the rest-mass density evolution
figure (Fig. 6.12). The top panel displays the mass flux for models C1B, the
middle panel for models NC1, and the bottom panel for models D2. The mass
flux is computed as the instantaneous flux of matter across the AH surface which
is parameterised in spherical coordinates by the polar angle § and azimuthal
angle ¢ and is given by:

2 ™
M= 271'7’2/ / D" sinfdgdf, (6.12)
0 0

where r is the radius of the AH and v" is the radial velocity of the fluid crossing
the sphere. In the actual implementation in the Outflow thorn, the relevant
quantities are interpolated onto the respective spherical surface (the AH in our
case) and the integration is performed as a two dimensional surface integral in
spherical coordinates (see the thorn documentation at the Einstein Toolkit
[n.d.] website for details). All three panels of Fig. 6.13 show that after a transient
initial phase the mass accretion rate is seen to tend asymptotically to a fairly
constant value.

In the previous fixed spacetime simulations of Fragile and Anninos [2005] it

was found that the tilt and the twist of the discs are not strongly responsive to M.
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Figure 6.13 Evolution of the accretion rate in Mg /s for models C1B (top), NC1 (middle) and
D2 (bottom).

Our results for a dynamical spacetime validate those earlier findings, as the final

dispersion found in M once this quantity reaches steady-state values is relatively
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small irrespective of the BH spin and inclination angles (M [Mg/s] € [0.2,1.5]
for models C1B and NC1, and [0.06,0.2] for model D2). However, the transition
to the steady-state does seem to show a clear dependence on the BH spin. We
find that the initial M values are consistently smaller the larger the BH spin,
about 2 orders of magnitude for models D2 after ~1 orbit and about half that
value for the more massive discs C1B and NC1. Another trend, which is most
clearly seen in model D2, is the initial dependence of the accretion rate on the
tilt angle as well. We find that the higher the initial tilt angle, the higher the
accretion rate in the early stages of the evolution. This is because the innermost
stable circular orbit (ISCO) of a rotating Kerr BH has an ellipsoidal shape,
attaining the smallest size at the equatorial plane of the BH. For prograde
orbits such as those considered in our work, the specific angular momentum at
the ISCO decreases with higher BH spin. Matter is accreted when its specific
angular momentum is lower than that at the ISCO, which means that higher
BH spins present larger centrifugal barriers for the matter to be accreted. For
inclined orbits, the specific angular momentum at the respective ISCO for a
given inclination angle increases with larger inclination (up to its maximum
value at the pole of the BH) and the accretion rate becomes therefore higher for
larger inclinations. While the transition stage is physically not relevant (as real
post-merger discs would not show such an episode) it is nevertheless reassuring

that we observe the correct physics during the transition.

A common feature present in the mass-flux plots of the simulations of Fragile
and Anninos [2005] was a late-time “bump” which the authors attributed to
the reflection of an outgoing wave within the disc at the outer edge. That
feature does not seem to be so apparent in our models apart from maybe model
C1B which shows a bump around t ~ 10t,., somewhat similar to that reported
by Fragile and Anninos [2005]. However, in our interpretation, the phase of
rapid growth in M in less than about 5 orbits seems to have a different origin.
This conclusion is reached by comparing the time at which the growth of the
PPI saturates (discussed in Figs. 6.14 and 6.15 in the following section) with the
saturation time of the accretion rate for model C1B, which yields a significant
close agreement. We note that this peak in the accretion rate is the highest
of all our models, ~ 30Mg /s, lasting for less than about 1 ms. Therefore, we
identify the exponential growth and subsequent saturation of the mass accretion

rate with the growth and saturation of the PPI in our models.

The total rest mass accreted during the evolution ranges within M,.. €
[0.022,0.033], [0.005,0.013] and [0.0006,0.002] for models C1B, NC1 and D2,

respectively. The accretion is facilitated by the outward transport of angular
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momentum, which we describe in section 6.2.8 below. The growth of the PPI, to
which we attribute the high peak accretion rates, is very effective in transporting
angular momentum outwards. While we have performed our study without
considering magnetic fields, it is known that magnetic fields are very effective at
transporting angular momentum in accretion discs [Balbus and Hawley 1991],
via the development of the MRI [Velikhov 1959, Chandrasekhar 1960]. Not
taking into account the effects of magnetic fields in accretion discs seems to
underestimate the accretion rate [Gold et al. 2014], see also recent GRMHD
simulations of BHNS mergers in Paschalidis, Ruiz, and Shapiro [2015] and Kiuchi
et al. [2015b] and the accretion rates reported therein. The accretion rates we
observe are well above the Eddington limit and in a range compatible with that
needed to power GRBs [Popham, Woosley, and Fryer 1999].

6.2.4 PPI growth in the disc and BH motion

In their seminal paper on the PPI, Papaloizou and Pringle [1984] showed that
vertically thick, radially slender tori with constant specific angular momentum

profiles are unstable against the development of global non-axisymmetric modes.

Two of our models, C1B and D2, have constant specific angular momentum profiles,
while model NC1 has a radial dependence of | ~ R?, where g = 0.11. Zurek and
Benz [1986] showed that tori with non-constant angular momentum profiles
might become PP-unstable as well. In order to check for the onset and the
growth of non-axisymmetric instabilities, we monitor the mode amplitudes
computed using Eq. (4.28), which is basically a Fourier decomposition of the
azimuthal distribution of the density in the disc [Zurek and Benz 1986]. In
simulations of accretion tori susceptible to the development of the PPI performed
on spherical grids, it is customary to induce the instability with small initial
non-axisymmetric density or velocity perturbations. Any non-axisymmetric
perturbation will trigger the growth of the instability provided the torus is not
stable against it. We do not actively seed the PPI in any of our models. Instead,
there are two main sources of perturbations in our simulations, both connected to
the fact that we evolve the BH-disc system in a Cartesian grid. First, the exact
axisymmetry of the ID is lost when we interpolate the ID onto the Cartesian
grid of the evolution, introducing small, non-axisymmetric perturbations in

all interpolated quantities. This is due to the fact that in Cartesian grids

neighbouring cells lie on concentric shells only in the limit of infinite resolution.

The second source of perturbation is the so-called junk-radiation leaving the

BH while the gauge evolves from the values specified by the ID to the puncture
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Figure 6.14 Evolution of the first four non-axisymmetric (PPI) modes scaled by the total rest-
mass density (Dg) for models C1Ba01b30 (top), NC1a01b30 (middle) and D2a01b30 (bottom).
The inset shows the evolution of the m = 1 mode and the polar distance of the centre of the
BH from the origin, both having been rescaled with their respective maximum values attained
during the evolution.
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gauge attained during the evolution. Here, we need to distinguish between
models evolved around Schwarzschild BHs and the models evolved around tilted
Kerr BHs. For the former, the junk-radiation leaving the BH initially should be
axisymmetric. Indeed, when analysing this initial burst of radiation with the
Weyl scalar U, we find that the amplitudes of the \I/i’o multipoles (which are
axisymmetric) are the largest. Nevertheless, the initial junk-radiation has also
non-vanishing amplitudes in the other \I/fl’m multipoles. Again, the reason for
the presence of these non-axisymmetric \I/fl’m multipoles seems to be connected
to the evolution in the Cartesian grid, and specifically to the existence of mesh
refinement boundaries, which are not axisymmetric even in the continuum limit
(see Zlochower, Ponce, and Lousto [2012] for interference patterns produced
by the radiation crossing mesh refinement boundaries). Finally, in the case of
the disc being around a tilted Kerr BH, the junk-radiation reaching the disc is
now truly non-axisymmetric even without taking into account the effects of the
Cartesian grid and the mesh refinement boundaries, as the axis of rotation is
tilted with respect to the z = 0 plane.

We show in Fig. 6.14 the evolution of the amplitude of the first four non-
axisymmetric modes D,,, (m = 1 —4) in the disc for models C1Ba01b30 (top),
NC1a01b30 (middle) and D2a01b30 (bottom). Those amplitudes are computed
using Eq. (4.28). In addition, in the inset of all three plots we also show as a
black solid curve the evolution of the polar distance of the centre of the BH
from the origin of the computational grid, which we label pgy. We note that
the m = 4 mode is dominant in the very early stages of the evolution for all
models. This is due to the Cartesian grid. At the later stages, the (physical)
m =1 and m = 2 (for models D2) become dominant, as expected.

Model C1Ba01b30 is the one that most clearly is found to develop the PPI,
as signalled by the exponential growth of the m = 1 mode. Modes m =2 — 4
also show a phase of exponential growth lasting for about 2 orbital periods
(between ¢ ~ 8 — 10¢4y1,) but the saturation amplitudes reached are 1 to 2 orders
of magnitude smaller than for m = 1. As mentioned in the previous section,
the growth of the PPI is accompanied by an exponential growth of the mass
accretion rate (see Fig. 6.13). For this model the PPI clearly saturates at around
t ~ 10to1, when the amplitude of the m = 1 mode quickly drops by an order of
magnitude. After that, the amplitude of all the modes we have analysed remains
rather constant. The strength of the m = 2 — 4 modes becomes similar at late
times while the m = 1 mode still retains a significantly larger amplitude.

The polar distance of the BH from the origin for model C1Ba01b30 closely

follows the behaviour of the m = 1 fastest growing PPI mode. This distance is
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found to grow at the same actual rate as the m = 1 mode, because the circular
motion of the m = 1 over-density hump (well visible in the top-rightmost panel
of Fig. 6.10) causes the BH to start moving in a spiral trajectory. After mode
saturation the polar distance of the BH from the origin remains almost constant,
reflecting a similar trend in the m = 1 evolution. This spiral motion of the
BH as a result of the development of the PPI has also been observed in the
simulations of Korobkin et al. [2011].

For the non-constant angular momentum model NC1a01b30 (middle panel)
the growth rate of the m = 1 mode is smaller, although it is still the dominant
mode, as in model C1Ba01b30. The growth of the mode saturates somewhat
later at around ¢t ~ 12.5¢,,1, but, contrary to the evolution of C1Ba01b30, it
does not drop significantly after saturation, remaining fairly constant thereafter.
Furthermore, it remains the dominant mode at late times while the three
remaining modes attain similar amplitudes. The evolution of the polar distance
of the BH from the origin shows a small secular drift after the saturation of the
PPI.

On the other hand, model D2a01b30 (bottom panel) shows a very distinct
behaviour. The amplitude of all four modes and the polar distance of the BH
remain below the values attained in models C1Ba01b30 and NC1a01b30, typically
in the range between 1 to 2 orders of magnitude. Furthermore, the m =1 and
m = 2 modes grow at approximately the same rate and to similar final values
during the evolution. The growth rate of ppy is very similar to the growth rate
of the modes m = 1 and m = 2. We also note that at early times the m = 4
mode shows the largest amplitude (purple line; not so clearly noticeable in the
previous two models), perhaps an artefact of the Cartesian grid we use in our
simulations. Nevertheless, the amplitude of this mode at late times is sufficiently
smaller than the dominant amplitudes (mostly that of the m = 1 mode) to
safely consider its effect on the dynamics negligible. From the mode analysis,
we can therefore say that model D2 is essentially PP-stable. We will return to
this point in section 6.2.8, where we analyse the angular momentum transport

in the models.

The results we have just described connect the exponential growth and
saturation of the mass accretion rate with the growth and saturation of the PPI
in the models where it has unambiguously taken place. To further justify this,
we plot in Fig. 6.15 the evolution of the m = 1 mode for all models considered
in our sample. Focusing on the evolution of the models C1B displayed in this
figure (top panel) we can clearly see that the temporal order of the saturation

of the mode growth closely coincides with the various peaks present in the mass
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Figure 6.16 Position of the BH centre on the zy plane for models C1Ba01b30 (left), NC1a01b30
(middle) and D2a01b30 (right). For models C1Ba01b30 and NC1a01b30, the red dot indicates
the point in the trajectory when the PPI saturates. Note that the scale ratio is not preserved
in the figures for clarity in the visualisation and that the length scale is significantly different
in every panel.

accretion rate evolutions shown in Fig. 6.13 (compare curves of the same color).
The comparison among the three types of models also shows that the saturation
mode growth for models C1B is only slightly larger than for models NC1, their
late-time values being fairly similar, but about 2 orders of magnitude larger
than in models D2. The slope of the mode growth is also steeper in models
C1B, while the behaviour of the mode evolution in the case of the light tori D2
almost seems to indicate that the development of non-axisymmetric instabilities
is only marginal for such models. A striking feature worth highlighting from the

middle panel of Fig. 6.15 is the non-existing dependence of the late time m =1
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mode amplitude on the BH spin and tilt angle for the non-constant angular

momentum tori NC1.

To demonstrate the connection between the growth of non-axisymmetric
modes in the disc with the motion of the BH, we plot in Fig. 6.16 the position of
the BH centre on the zy plane for models C1Ba01b30 (top), NC1a01b30 (middle)
and D2a01b30 (bottom). This figure shows several interesting features connected
to the growth of the modes in the tori. The motion of the BH is caused by the
formation of a “quasi-binary system” between the BH and the m = 1 over-density
lump, which was also observed in Korobkin et al. [2011]. Note that the motion of
the BH is well within the initial inner disc radius (see Table 6.1). It is the binary
motion that causes the long-term emission of GWs reported in Kiuchi et al. [2011].
We will return to this in the discussion of the GW emission connected to the PPI
in section 6.2.9. For model C1Ba01b30, the development of the dominant m =1
structure in the disc exerts a small kick in the BH. As a result the BH starts
moving in a spiral trajectory until the PPI saturates and the mode amplitude
drops, at which point the BH is roughly located at (x,y) = (—0.3,—0.5). After
saturation, the xy position of the BH is a combination of linear and circular
motion. In model NC1a01b30, the linear motion is stronger from the beginning,
causing a linear shift in the growing spiral motion. Upon saturation of the
PPI, the circular motion continues with a smaller radius, in accordance to the
evolution of the m = 1 mode which remains at a rather f value after saturation
and up until the end of the evolution. Finally, for model D2a01b30 we have
a superposition of circular and linear motion again, as the modes m = 1 and
m = 2 are of almost equal magnitude during the evolution. Here, the overall
distance covered by the BH is significantly smaller than for the heavier models
C1Ba01b30 and NC1a01b30, as the mode amplitudes are much smaller for D2
and the disc is also lighter. From our simulations, we see that more massive
discs favour the development of the PPI. This might be in connection with
the enhanced m = 1 mode strength due to the motion of the BH described
above. We will investigate the effect of the BH motion on the mode growth
rate and maximum amplitude in more detail in Chapter 7. The strength of
the m = 1 mode growth will affect almost every diagnostic that we investigate
in the subsequent sections. The growth of the PPI has therefore far reaching

consequences on the disc evolutions.

We argue that the non-axisymmetric instability we observe in our models
is indeed the PPI based on the azimuthal mode evolution in the disc and the
development of the m = 1 over-density lump. However, we do not claim to

have presented a direct, undeniable proof that the instability observed in our
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Figure 6.17 Full 3D trajectory of the BH along with its spin vectors for model C1Ba01b30. The
curved arrow indicates the direction of the BH’s motion. The magnitude of the spin vectors
has been rescaled with a constant factor for visualisation purposes.

simulations is the analytical PPI studied in Papaloizou and Pringle [1984].
To do so, we should have compared the predicted growth rates of the PPI
for our models in the linear regime to those observed in our simulations, and
should have checked for the occurrence of the so-called non-axisymmetric I-modes
(see Christodoulou and Narayan [1992] and Korobkin et al. [2011]) during the disc
evolution. We also note that there exist other instabilities in self-gravitating discs
which display spiral arm formation in the disc or even disc fragmentation, such as
the axisymmetric local Toomre instability (a gravitational instability) [Toomre
1964]. Although Christodoulou and Narayan [1992] have shown that the Toomre
instability is unlikely to affect radially slender accretion tori such as the ones
considered in our study, we will analyse the gravitational stability of our discs
in the following. A disc will be gravitationally unstable if the so-called Toomre

parameter () becomes less that unity, where @ is defined as

KCg
Q=" (6.13)

where k is the epicyclic frequency, cs the local sound speed in the disc, and X
the surface density of the disc. For thick accretion tori, this measure of the
disc stability against its self-gravity might not be adequate. Hachisu, Tohline,
and Eriguchi [1987] derived a different criterion for gravitational stability, valid
for both thick and thin discs, x%/(mp) < 1. As outlined in Christodoulou
and Narayan [1992], we should choose €2 (the orbital velocity at the pressure
maximum) as the epicyclic frequency k, and not the usual definition (k? =

(1/r3)dI?/dr), as we are interested in the development of non-axisymmetric
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modes. Defining the Jeans (gravitational) angular velocity at the pressure
maximum as Q% = 4mp, Christodoulou and Narayan [1992] showed that the disc
< 2.4. Using Qg as the epicyclic frequency,

~

is gravitationally stable if ;/Qq
the stability criterion of Hachisu, Tohline, and Eriguchi [1987] corresponds to
05/ < 2. Evaluating 5/ for our initial models, we find the following values:
Q3/Q0 = 0.274, 0.681, and 0.561 for disc models D2, C1B and NC1, respectively.
We therefore conclude that out initial models are stable against their self-gravity.
The discs remain gravitationally stable during the duration of the simulations,

as we have not seen any evidence for gravitational fragmentation.

6.2.5 PPI saturation and BH kick

The complete 3D trajectory of the BH and its spin vector is plotted for model
C1Ba01b30 in Fig. 6.17. In this plot each small sphere with an attached arrow
corresponds to the position of the BH and the magnitude (scaled for better
visualisation) and direction of its spin vector. The positions are plotted at equal
time intervals, so we see that the BH is moving much faster during the final
stages of the PPI than before its occurrence or after its saturation. We can also
see that there is a motion in the vertical direction, which is caused by the fact
that the “binary” motion of the BH and m = 1 over-density lump does not lie in
the equatorial plane anymore due to the initial tilt. While the PPI is growing,
the BH-torus system therefore moves up and down in an oscillatory fashion.
As we have seen in the m = 1 mode plots for models C1B (see the top panel of
Fig. 6.15), the saturation of the PPI is very fast. The rapid saturation of the PPI
(and the corresponding destruction of the m = 1 over-density lump) result in a
mild vertical kick of the BH+torus system. To see that this is indeed connected
to the saturation of the PPI, we plot in Fig. 6.18 the linear momentum radiated
away by gravitational waves in the z-direction for models C1Ba0O1. From the
plot, we can clearly see that the time of maximum emission of linear momentum
corresponds exactly to the time the PPI saturates for each model. The radiated
linear momentum has been calculated with the pyGWAnalysis package of the
ET [Reisswig and Pollney 2011].

6.2.6 BH precession and nutation

Contrary to the test-fluid simulations of Fragile and Anninos [2005] and Fragile
et al. [2007], as we are evolving the full spacetime, we can monitor the response
of the BH to the evolution of the disc in the initially tilted configuration. In

particular we can measure the total precession of the BH spin about the z-axis



104

NR simulations of tilted BH-torus systems

0
—4 | — C1Ba01b05 i
— (C1Ba01bl5
5[ — C1Ba01b30 7]
—6 | | | | | | |
2 4 6 8 10 12 14 16

(t - rdet)/torb

Figure 6.18 Radiated linear momentum in the z-direction for models C1BaO1.

(oBH = Z(y — axis, Sxy)) and its rate, as well as the inclination of the spin with
respect to the z-axis vgy = Z(z — axis, Sgy) and the corresponding nutation.

In Fig. 6.19 we plot the evolution of the precession rate 6y of the BH
about the z-axis for models C1B (top), NC1 (middle) and D2 (bottom panel)
in radians per orbital period. The first thing to mention is that the constant
angular momentum discs D2 and C1B show a clear dependence of the precession
rate with the initial BH spin magnitude. Namely, for models D2 and C1B, the
larger the spin the smaller the precession rate. However, for the non-constant
angular momentum torus NC1 the precession rate is very similar irrespective of
the spin magnitude, particularly at the early stages (¢ < 10to). In models
D2 the evolution of oy is very smooth, and changes sign for the higher spin
runs after about 17 orbits, whereas it remains fairly constant for the lower spin
simulations.

A fact worth emphasising is that there is essentially no dependence of the
precession rate on the tilt angle for constant angular momentum tori. This is
particularly true for models D2 but also models C1B show this lack of dependence
up until the growth of the PPI. In all models C1B we observe a prominent
modulation of the precession rate when the PPI enters the final stages of its
growth and then saturates, as well as the change in sign for the higher spin runs.
The magnitude of the precession rate is about an order of magnitude higher
compared to models D2, which we attribute to the higher disc-to-BH mass ratio
models C1B possess. The evolution of the BH precession rate for models NC1
seems to fit in between the two other models. The magnitude of the precession

rate is similar for the two BH spins considered in models NC1. We also note from
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Figure 6.19 Evolution of the precession rate of the BH spin about the z-axis for models C1B

(top), NC1 (middle) and D2 (bottom) in units of radians/¢o,p.

Fig. 6.19 that models C1Ba01 and D2a01 attain a fairly constant precession rate
by the end of our simulations, namely ~ 20 Hz and ~ 6 Hz for models C1Ba01
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Figure 6.20 Total precession of the BH spin about the z-axis for models C1B (top), NC1 (middle)
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Figure 6.21 Evolution of the nutation rate of the BH spin about the z-axis for models C1B

(top), NC1 (middle) and D2 (bottom) in units of radians/¢o,p.

The total precession of the BH spin about the z-axis is shown in Fig. 6.20.
The lower spin models C1Ba01, that show the highest BH precession rate, have
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completed a quarter of a full precession cycle by the end of our simulations at
t = 20to,. Given that the precession rate for those models appears to settle to
a rather constant value (see Fig. 6.19) we would need a prohibitively expensive
evolution of about 80 orbital periods for a full precession cycle of the BH for
those models. If we assume that the precessing Kerr BH radiates GW as a freely
precessing rigid body, it will radiate at égy and 26py in the l =2, m = 1,2
multipole modes [Zimmermann and Szedenits 1979]. This means we would have
to evolve the BH-torus system for at least one full BH precession cycle in order
to see the slow modulation of the GW signal caused by the BH precession. It
remains an interesting open issue to see if the upcoming advanced GW detectors

will be able to measure these GWs in the low tens of Hz.

The imprint of the growth of non-axisymmetric instabilities in the disc on
the BH response can be seen even clearer in Fig. 6.21. This figure shows the
evolution of the nutation rate for all models, that is, the evolution of the temporal
variation of the tilt angle of the BH with the z-axis, vgy. For models C1B (top
panel) there is a clear period of alignment of the BH spin with the z-axis around
the time when the PPI starts to grow. This is signalled by the rapid fall and rise
of the nutation rate around the 10¢,1, mark for the slow spin (a = 0.1) BHs, but
it is also (less) visible in the more rapidly rotating BHs (dashed lines). Upon
saturation of the instability the nutation rate becomes almost constant and
fairly close to being again zero for the a = 0.1 BH models (see solid lines). This
behaviour is consistent with the evolution of the BH tilt angle itself displayed in
Fig. 6.22, which, for the case of models C1B with small spins, shows two distinct
zones of constant spin inclination, particularly for models with 8y = 5° and 15°
(model with By = 30° still shows a negative slope at late times). The transition
to zero nutation rate in the a = 0.3 C1B models after PPI saturation seems to
take a longer time than that displayed in Fig. 6.21.

In addition Fig. 6.21 also shows that the maximum nutation rate attained
increases with increasing initial tilt angle. This is very clearly seen in models C1B
but it is also visible in most of the models D2 and NC1. In particular the evolution
of gy for the non-constant angular momentum models NC1 with a = 0.3 (dashed
curves) does not seem to reach a local maximum, at least during the timescales
we can afford to simulate. This is despite these models are also affected by the
PPI. This might be explained by the fact that the non-axisymmetric m = 1
mode does not drop as sharply after the saturation of the PPI in the models
NC1 as it does in the C1B models (see Fig. 6.15). The growth of the mode in the
disc seems to cause an alignment of the BH spin with the z-axis. Furthermore,

the nutation rate is much larger for the C1B models. Finally, in the absence of
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Figure 6.22 Evolution of the tilt angle of the BH spin with respect to the z-axis for models
C1B (top), NC1 (middle) and D2 (bottom) in units of radians.
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any strong growth of PPI modes, models D2 do not show strong modulation of
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the nutation rate, which is therefore closely connected to the existence of m =1
non-axisymmetric modes in the disc.

The corresponding evolution of the inclination of the BH spin away from the
z-axis is seen in Fig. 6.22. The panels show that a significant realignment of
the BH spin with the z-axis takes place by the end of the simulations in models
C1B, i.e. in those models that develop the PPI most significantly. For all models
we see that the final inclination is smaller the bigger the initial tilt angle is, for
equal spin magnitudes. This trend also seems to be more pronounced the higher

the initial spin magnitude is.

6.2.7 Disc twist and tilt

We turn now to describe in this section the response of the discs as they evolve
in the tilted spacetime, using the diagnostics we have introduced in Section 4.4.
In Figures 6.23 and 6.24, we plot the evolution of the tilt and precession of the
total angular momentum vector of the disc Jpise.. This vector is the sum of the
angular momentum vectors of each shell, as described in Section 4.4. We will
refer to these as the global disc tilt and global disc precession around the BH
spin, in order to distinguish them from the twist o(r) and tilt v(r) angles in the
individual disc shells.

The evolution of the global disc tilt, shown in Fig. 6.23, shows resemblances
with the evolution of the tilt of the BH spin (see Fig. 6.22). For models C1B
(top panel) we see that the development of the PPI not only causes a partial
realignment of the BH spin with the z-axis, but also a realignment of the BH
spin and disc angular momentum. This alignment seems to become constant
towards the end of the simulation than the alignment of BH spin and the z-axis.
We also note that the amount of realignment is reversed for the global disc tilt
for models C1B. Here the higher initial spin magnitude leads to less alignment,
in contrast with the evolution of the BH tilt. On the other hand, the alignment
between BH spin and total disc angular momentum for models NC1 (middle
panel) is less pronounced as the realignment of the BH spin with the z-axis.
As in the case of models C1B, the trend of more alignment with higher spin for
the BH tilt is inverted for the evolution of the global disc tilt. There are also
oscillations in the evolution of the global disc tilt for models NC1, which are not
visible in the other two set of models. These oscillations seem to be caused by
the persistent m = 1 non-axisymmetric mode in models NC1. Finally, for models
D2 (bottom panel), neither the initial spin magnitude nor the initial tilt angle

seem to affect the evolution of the global disc tilt, which is furthermore hardly
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Figure 6.23 Evolution of the tilt angle vpis. between then BH spin and the total disc angular
momentum Jpjs. for models C1B (top), NC1 (middle) and D2 (bottom) in units of radians.

changed during the entire evolution for all initial spins. The development of the

PPI therefore seems to cause an alignment of the BH spin with the total disc
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angular momentum, which is larger for smaller initial spins. We will analyse the
role played by the PPI in the BH-disc alignment more carefully in Chapter 7. As
both vgy and vpis. decrease during the growth of the PPI, it is clear that both
the BH spin and disc angular momentum are modulated during the alignment
period.

In Fig. 6.24 we plot the global precession of the total disc angular momentum
vector about the BH spin axis for models C1B (top), NC1 (middle) and D2 (bottom
panel). For all models, the higher the spin (dashed curves), the larger the global
precession, as expected. The initial tilt angle does not seem to influence strongly
the evolution for models C1B and D2, while the evolution for NC1 shows oscillations
towards the end of the evolution. Note that these oscillations are superimposed
on the slow growth of the precession, which is always growing, as expected. The
oscillations are caused by the wobbling and smaller precession cycles about the
direction of the global vector. These oscillations are then visible in the projection
of the disc angular momentum vector onto the equatorial plane of the BH. The
amplitude of the oscillations is larger the smaller the initial tilt angle. The
non-axisymmetric modes that survive much longer in the case of models NC1

could be causing these oscillations in the global disc tilt and precession.

In Fig. 6.25 we show spacetime (¢t — r) diagrams of the radial disc tilt profile
for the entire time evolution for all tilted models in order to see whether and
which disc models become warped during their evolution. The initial radial tilt
profile is flat and the panels cover the initial radial extent of each model. For
models C1B (top two rows) we see that by the end of the simulations the radial
tilt for larger radii is significantly lowered compared to the initial tilt angle.
Furthermore, there is a clear distinction in the radial tilt profile before and after
the saturation of the PPI for the lower spin models (a = 0.1), in accordance with
what we have observed for the global disc angular momentum tilt (see Fig. 6.23).
For the higher spin models (a = 0.3) the tilt profile evolution is broken up into
two regions as well. In these cases, the peak close to the origin reemerges after
the saturation of the PPI. Likewise, models NC1 (two middle rows) also show
a peak close to the origin, but contrary to the previous set of models, the late
time tilt profiles are oscillating in the regions closest to the BH. The oscillations
are stronger for both, radii closer to the origin and smaller initial BH spin. As
described before, we believe that these oscillations are a consequence of the
long-lasting non-axisymmetric m = 1 mode in the disc.

The oscillations of the tilt angle close to the origin in models NC1 will be
investigated in detail in Chapter 7. To complete the analysis of Fig. 6.25, we

note that models D2 (two bottom rows) become clearly warped, with all models
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Figure 6.24 Evolution of the total precession of the total disc angular momentum Jp;s. around
the BH spin for models C1B (top), NC1 (middle) and D2 (bottom) in units of radians.

showing a peak near the origin. The profiles of the low spin models D2a01

are very similar in shape for the three initial tilt angles. The peak in models
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Figure 6.25 Spacetime ¢ — r diagrams of the radial disc tilt profile v(r) for models C1Ba01,
C1Ba03 (top two panels), NC1a01, NC1a03 (middle two panels), and D2a01 and D2a05 (bottom
two panels). From left to right the panels show the initial tilt angles 8o of 5°, 15° and 30°.
Each panel shows the radial profile of the disc tilt for the entire time evolution.

D2a05 is seen to oscillate stronger the smaller the initial tilt angle. Note that
for none of the models we see an alignment of the inner region of the disc with
the equatorial plane of the BH (this would mean v(r) = 0 there). We therefore
find no occurrence of the Bardeen-Petterson effect in our simulations, at least
in the timescales considered. This is in agreement with the results found in

the fixed-spacetime inviscid simulations with no angular momentum transport
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of Fragile and Anninos [2005] and also with the GRMHD simulations of Fragile
et al. [2007] that included angular momentum transport driven by the MRI.
The observed profile and evolution of the disc warp seems to be in qualitative
agreement with the analytic work on warp propagation as bending-waves in tilted
thick accretion discs (see, for instance, the analytic tilt profiles in Ivanov and
Illarionov [1997], Demianski and Ivanov [1997], and Lubow, Ogilvie, and Pringle
[2002], the analytic model of linear warp evolution of Foucart and Lai [2014]
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and the application of the linear warp evolution model in Franchini, Lodato,
and Facchini [2016]). In these models, the tilt profile is non-zero near the BH
with a hilltop profile. Our discs are in the bending-wave regime as they are
thick and we do not take the fluid viscosity into account. We note that while
the Bardeen-Petterson effect is not manifest in our models, we nevertheless
do observe a global partial realignment of the BH spin with the disc angular
momentum, caused by the growth of the PPI. This alignment of the disc angular
momentum with the BH spin has also been observed in the post-merger evolution
of a tilted accretion disc in Kawaguchi et al. [2015]. The authors conclude that
the transport of angular momentum by non-axisymmetric shock waves in the
disc might be responsible for such a Bardeen-Petterson-like effect. We will come
back to this issue in Chapter 7 below. Finally, to check for Lense-Thirring
precession, we plot the evolution of the inner region disc twist o(r) from t = 3
orbits onwards for all our tilted models in Fig. 6.26. We see that all models
become twisted (as o(r) varies with r) in the regions for radii up to 5. The
plots further indicate solid precession of the discs, as the radial profile of o(r)
is increasing smoothly in time almost independently of the radius in the outer
regions of the disc and does not remain 0 for large radii. This is consistent with
the solid-body precession found in the fixed spacetime simulations of Fragile and
Anninos [2005]. Models D2 actually show a slightly growing twist for larger radii.
In this trend, the higher initial spin models show flatter profiles, while there is
some radial modulation of the profiles for the lower spin simulations. A striking
feature of the plots is the smaller difference in accumulated twist for large radii
between different initial spin magnitude for models NC1. In models C1B and D2
the higher spin models show a much higher twist at large radii than their low
spin counterparts (see also Fig. 6.24, where this is seen in the evolution of global
twist of the disc angular momentum vector as well). As the long survival of
the m = 1 mode in the NC1 models seems to have an effect on the evolution of
the twist, we plot this evolution only up to the saturation of the PPI for these

models in order to properly visualise the solid body precession of the disc.

6.2.8 Angular momentum transport

In this section we investigate the transport of angular momentum in the discs.
To illustrate the transport of angular momentum during the evolution of our
models, we plot spacetime t — r diagrams showing the magnitude of the angular
momentum in radial shells, computed using Eq. (4.33). Such diagrams are

displayed in Fig. 6.27. The magnitude of the angular momentum in each shell,
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[I.7(r)]], has been rescaled to the global maximum value attained in any shell
during the evolution. Fig. 6.27 shows the evolution of ||J(r)|| for the three
untilted models C1BaOb0 (top panel), NC1a0ObO (middle panel) and D2a01b0
(bottom panel). This figure reveals that compared to the latter two models,
model C1Ba0b0 shows a radical redistribution of angular momentum in the
radial direction. This drastic difference is due to the development of the PPI in
model C1Ba0b0. Following the initial perturbation we see that the contours of
[[J(r)]| start growing in a wave-like manner, transporting angular momentum
outwards. This happens up until the saturation of the PPI at about 10 orbital
periods. As noted by Balbus [2003] during the growth phase the PPI is thought
to be an effective mechanism for angular momentum transport in thick accretion
discs, where a right combination of rotation and pressure at the boundaries
of the disc allows the growing non-axisymmetric modes to transport angular
momentum outwards. Zurek and Benz [1986] showed as well that the development
of non-axisymmetric instabilities is closely connected to the transport of angular
momentum. After saturation, the new distribution of angular momentum seems

PP-stable and does not exhibit drastic changes for the rest of the evolution.

We can compare the evolution of ||J(r)|| to the development of the m = 1
non-axisymmetric mode in the disc, which drops to a value of around 1% of
its maximum value after saturation (see top panel of Fig. 6.15). As described
in Balbus [2003], the development of the PPI crucially relies on the properties
of both the inner and outer boundaries of the disc. Blaes [1987] showed that
a small amount of accretion (which modifies the inner boundary of the disc)
was sufficient to saturate the growing PPI. Furthermore, wider tori are known
to be less violently unstable than slender tori [Hawley 1991]. In subsections
6.2.3 and 6.2.4 we already showed that the accretion rate and the growth of the
m = 1 non-axisymmetric mode saturate at the same time, but the ¢ — r diagram
of Fig. 6.27 also shows that the angular momentum isocontours in the outer
regions of the disc are being pushed outwards with growing amplitude as well.
It therefore seems that both mechanisms are saturating the PPI simultaneously
in model C1Ba00.

Model NC1a0b0, displayed in the middle panel of Fig. 6.27, has a non-constant
specific angular momentum distribution, and shows a very different evolution
of ||J(r)||. The inner region of the disc shows a gentle reduction of angular
momentum during the entire evolution and no sudden and drastic redistribution
is found as the one that occurred in model C1Ba0Ob0. The outer contour grows
to encompass the entire outer domain shown in the plot. Another difference

is the almost complete absence of variability of the inner region of the disc,
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Figure 6.27 Spacetime t — r diagram showing the time evolution of the radial profile of
the angular momentum magnitude ||J(r)|| for untilted models C1Ba0bO (top panel), NC1a0bO
(middle panel) and D2a01b0 (bottom panel).
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which is in contrast to model C1Ba0b0, where oscillatory behaviour is seen in
the inner boundary of the disc too. The specific angular momentum profile
of model NC1a0b0 is between constant and Keplerian, with Keplerian discs
being essentially PP-stable. Model NC1a0bO still develops the PPI, albeit in a
milder manner than model C1BaOb0, with the torus of model NC1a0b0 being
initially wider. Finally, model D2a01b0 (bottom panel), the lightest of our
models, is PP-stable as already shown in subsection 6.2.4. The corresponding
spacetime diagram of ||J(r)|| shows no pronounced outward transport of angular
momentum as the evolution proceeds, the profile remaining very similar to its
initial configuration. The inner region with a high angular momentum magnitude
is thinned out slightly, and the profile spreads a bit overall, but the changes are
nowhere nearly as pronounced as for models C1Ba0Ob0 and NC1aOb0. As we have
seen in the analysis of the modes, the amplitude of the m = 1 mode drops sharply
upon the saturation of the PPI in the C1Ba00 model. The subsequent evolution
of the angular momentum profile remains constant, similar to what we observe
for the entire evolution of the PP-stable model D2a01b0. There is a clear split
between the stages of the evolution: the first during which the PPI develops and
saturates, and the subsequent evolution of an essentially PP-stable torus. Model
NC1a00, on the other hand, shows a very different behaviour: as already seen in
the mode analysis, the m = 1 mode amplitude remains roughly at its saturation
value for the rest of the evolution, which is lower than the values attained
by models C1B. The persistent m = 1 mode is seen to continuously transport
angular momentum outwards till the end of the simulation. The restructuring
of the disc by the transport of angular momentum is more long-lived, compared
to the drastic change the saturation of the PPI brings about in model C1Ba00.
These findings seem to confirm those found in Zurek and Benz [1986]. Using the
same kind of spacetime diagrams we have also checked the dependence of the
angular momentum transport on the BH spin a and on the initial tilt angle 5
for all models of our sample. We find that the angular momentum transport
shows weak dependence with the tilt angle (the higher the tilt angle the slowest
the transport) and shows essentially no dependence with the spin, at least for
the moderate values of the BH spin we could afford in our study. This is a
remarkable result, as it demonstrates that models C1B and NC1 are PP-unstable

for a wide range of initial BH spin magnitudes and tilt angles.

We note that our GRHD simulations are underestimating the real angular
momentum transport likely to occur in astrophysical accretion discs due to
our lack of accounting for viscosity (for instance via the MRI). The sources of

viscosity in our discs are due to the developing non-axisymmetric modes and
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numerical viscosity. The latter seems to play only a minor role, as can be seen
from the accretion rates reported for models C1Ba00, NC1a00 and D1a01b00,
which is about an order of magnitude lower for the PP-stable model D1a01b00
than for the other two. The timescale at which the viscosity provided by the MRI
operates is difficult to estimate. In Foucart et al. [2014], the authors estimate
a viscous timescale of ~ 0.1 s in their BHNS post-merger torus. This would
correspond to about 130t.., for disc model C1B. We should take the evolution
of magnetic fields into account for longer simulations in our discs (to complete a

full BH spin precession cycle, for instance).

6.2.9 Gravitational waves

In this section, we explicitly report frequencies and times in SI units. Note that
the results presented here have been obtained using the BH masses listed in
Table 6.1. None of the results have been rescaled for different BH masses.

The recent numerical simulations of Kiuchi et al. [2011] have shown that
the growth and saturation of the PPI makes BH—torus systems emitters of
large amplitude, quasi-periodic GW, potentially detectable by forthcoming
ground-based and spacecraft detectors. It was found in particular that the
m = 1 non-axisymmetric structure survives with an appreciable amplitude
after saturation of the PPI, which leads to the emission of quasi-periodic GWs
with a large amplitude®. In this section we turn our attention to analyse the
implications of the PPI in our tilted BH-torus systems regarding the emission
of GWs, namely the dependence of the resulting gravitational waveforms and
spectra on the BH spin magnitude and initial tilt angle.

In Fig. 6.28 we plot the real part of the (I,m) = (2,2) mode of the outgoing
part of the complex Weyl scalar ¥, for models C1Ba01 and NC1a01 and for all
initial tilt angles By. This quantity has been computed at an extraction radius
r = 640 (945 km). Fig. 6.28 shows that, in agreement with Kiuchi et al. [2011],
all models display strong emission of gravitational waves and that the emission
persists for many dynamical timescales well after the saturation of the PPI. The
peak amplitude for models C1Ba01 is about an order of magnitude higher than
for models NC1a01.

We recall that model C1B has a slightly higher initial disc-to-BH mass ratio
than model NC1 (¢ = 0.16 and 0.11, respectively) and that the development of the

3First estimates through full GRHD simulations of the GW detectability by the PPI
instability in self-gravitating BH—torus systems were obtained in Korobkin et al. [2011] where
the nonlinear saturation phase was almost reached. See also van Putten [2001] for earlier
proposals and alternative estimates of the gravitational waves emitted by non-axisymmetric
instabilities in such systems.
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Figure 6.28 Time evolution of the | = m = 2 mode of the real part of the Weyl scalar W4

multiplied by the extraction radius (r = 640). The top panel shows models C1Ba01 and the
bottom panel models NC1a01.

PPI in models C1B is more pronounced than in the non-constant specific angular
momentum models NC1 (see Fig. 6.10). These two features are responsible for
the difference in the peak amplitudes between the two initial models. We also
note that the peak amplitude in the C1Ba01 models, reached at PPI saturation,
is much higher than the amplitude of the remaining signal, whereas in models
NC1a01 the variations are not so pronounced. As we showed in Fig. 6.15, upon
PPI saturation the dominant m = 1 PPI mode drops to about 1% of its peak

value in models C1B, while it remains at a similar strength for models NC1.

Fig. 6.28 also shows that the GW signal depends weakly on the initial tilt
angle, particularly for the non-constant specific angular momentum models NC1.

The smallest peak amplitudes are attained for the most tilted BH spacetime
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Figure 6.29 Spectrum of the effective strain for models C1B, showing the | = 2,m = 1 modes
(top) and I = m = 2 modes (bottom) for the source located at 1 Mpc.

(Bo = 30°). In any event, the differences found in the values spanned by the
peak amplitudes with regard to Sy are not too significant.

We use the fixed frequency integration (FFI) described in Reisswig and
Pollney [2011] in the integration of the ¥, data to obtain the GW strain. In
Figs. 6.29-6.31 we plot the effective strain hog/Mpc as a function of frequency
for all models, placing the sources at 1 Mpc, in order to see any possible imprint
of the initial spin magnitude and tilt angle on the GW spectrum. As described
above, we use the same timestep for the time integration of the spacetime and
GRHD evolution equations in the 7 outermost refinement levels (which means
that in those outer refinement levels At = 1.58 x 107% s and 3.16 x 1076 s for
higher and lower resolution runs, respectively). At our extraction radius, the

timestep in the respective mesh refinement level is therefore sufficiently small to
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sample the GW multipole signal with a §t of 6.32 x 1076 s (1.26 x 1075 s) for the
higher (lower) resolution runs, respectively, where dt is the output timestep of
the GW data from the simulation. Due to the Nyquist criterion, we can therefore
resolve the GW spectra up to ~ 80 (40) kHz*. The top panels of Figs. 6.29
and 6.30 correspond to the (I,m) = (2,1) mode and the bottom panels to the
(I,m) = (2,2) mode. The highest power is usually found at a frequency of about
1kHz. For the effective strain of the (I,m) = (2,1) mode for models C1B shown
in the top panel of Fig. 6.29, we can clearly identify two trends. On the one
hand there is a difference at high frequencies between the models with either
no or low (a = 0.1) initial BH spin (models C1Ba00 and C1Ba01) and the high
spin models (a = 0.3). The spectra for these two groups show a different slope
from f ~ 2kHz onwards. On the other hand, for models C1Ba00 and C1Ba01, an
increase in the initial tilt angle leads to an increase in the power for frequencies
f > 2kHz. This also seems to be present at lower frequencies although it is
somewhat less clear. Correspondingly, the power spectra of the (I,m) = (2,2)
mode shown in the bottom panel of Fig. 6.29 neatly splits the models into three
groups, according to the initial spin magnitude of the BH. We find that the
slope of the spectra becomes steeper from f ~ 2kHz onwards the higher the
BH spin. In all cases, the slope of the effective strain with the frequency shows
essentially no dependence with the initial tilt angle for the various groups of
models characterised by the same BH spin. The power in model C1Ba00 is at
least an order of magnitude larger for all frequencies than that of the tilted
models. This is because the spiralling motion in the equatorial plane of both
the BH and the m = 1 over-density PPI “planet” emits GWs predominantly
in the | = m = 2 mode which is emitted in the direction perpendicular to the
equatorial plane. This is an optimal situation for the model with aligned BH
and disc spins, as the coordinate system in which we perform the multipole
expansion of the GW is aligned with the z-axis. However for the tilted models

the “orbit” of the BH and of the over-density lump in the disc is not confined to

4We note that this analysis serves to establish that we would be able to resolve the GW
spectra up to ~ 80 (40) kHz using the timestep at the extraction radius. Physically, there is
no reason to expect such high frequencies in the spectra of the GW signals of our BH-torus
systems. To analyse the maximum expected frequencies, we assume the maximum fluid orbital
frequency in our systems to be the orbital frequency at the ISCO, visco, which, for the
BH masses indicated in Table 6.1, is between vigco ~ 2.2 kHz for a non-spinning BH and
visco ~ 16 kHz for a maximally spinning Kerr BH [Remillard and McClintock 2006]. For
our initial models with a maximum initial Kerr parameter of a = 0.5, we therefore expect
the maximum orbital frequency to be ~ 4 kHz. The emitted GW will have a frequency twice
as large, so we would thus expect to obtain GW frequencies of up to 8 kHz. In order to
concentrate on the lower-frequency properties of the spectrum (namely the radiation at the
orbital frequency at the initial pressure maximum and the frequency of the PPI pattern speed),
we plot the GW spectra for frequencies up to 5 kHz.
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Figure 6.30 Spectrum of the effective strain for models NC1, showing the | = 2,m = 1 modes
(top) and I = m = 2 modes (bottom) for the source located at 1 Mpc.

the equatorial plane anymore because of the reaction of the disc to the tilted
BH spin. This results in a decrease in the GW power. In order to have a fair
comparison of the GW power emitted in the untilted and tilted systems, one
would need to extract the waves in a (time-changing) coordinate system adapted

with its z-axis aligned with the total angular momentum of the system.

The spectra of the non-constant specific angular momentum models NC1
displayed in Fig. 6.30 are markedly different to those of constant specific angular
momentum tori. Namely, their dependence on the frequency is similar for all
modes (same slope) irrespective of the initial tilt angle and of the BH spin. No
split in two or three families is found according to the BH spin. The effective
strain of the (I,m) = (2,1) mode for models NC1 shows a plateau in the low
frequency part (up to ~ 0.5kHz) for models NC1a03b15 and NC1a03b30. The



6.2 Results 125

spectra show a prominent peak around 0.6kHz for all models but these two. The
height of the peak drops with growing initial spin and initial inclination angle,
which might as well be an artefact due the multipole expansion in the untilted
coordinate system. For the | = m = 2 mode we find that the curve for the
untilted model NC1a00 lies more than an order of magnitude above the curves
corresponding to the initially tilted discs, as seen also for the C1Ba00 model in

the previous figure.

Finally, in Fig. 6.31 we show the effective strains of the (I,m) = (2,1) mode
(top panel), (2,2) mode (middle panel) and (3,1) mode (bottom panel) for models
D2. In the spectra of the (I,m) = (2,1) mode there is a clear variation with the
initial tilt and BH spin magnitude, with both increasing the power of the mode
for all frequencies shown. The fact that the power increases with growing tilt
angle seems to indicate that this behaviour is really a physical consequence of
the tilted disc evolution. Contrary to model C1B and similar to model NC1, we
find now that model D2 does not show the grouping of models depending on the
BH spin, and the associated frequency dependence (i.e. steeper slopes for higher
spins). As this model is PP-stable and has an initially constant distribution
of specific angular momentum, its dynamics is somewhat between that of the
other two models. The spectra of the | = m = 2 mode (middle panel) show in
particular a very different behaviour to those shown for models C1B and NC1,
namely that the model with zero initial inclination does not show significantly
larger power than the models with ¢ = 0.1 and a = 0.5. Since models D2 do not
develop the PPI, there is no strong emission of GW in the [ = m = 2 mode due
to the absence of the spiral motion of both BH and over-density ‘planet’ that is
present for the other two initial models.

Therefore, the power spectrum of the untilted model D2a01b0 does not exceed
that of the rest of the other tilted D2 models. The two models D2a05b15 and
D2a05b30 both show two peaks in the low frequency part of the spectrum.

The absence of the PPI in the D2 models results in a GW emission where the
I = m = 2 mode is not the dominant mode. To show this, we plot the effective
strain of the (I,m) = (3,1) mode in the bottom panel of Fig. 6.31. The power
is comparable with that of the (I,m) = (2,1) and | = m = 2 modes, which is
not the case for models C1B and NC1 that both develop the PPI. The plot of the
effective strain of the (I,m) = (3,1) mode shows that same trend as that of the
(I,m) = (2,1) mode, i.e. the power density increases with spin magnitude and
initial tilt angle. Furthermore, we can see clear quasi-periodic oscillations in the
low frequency part of the spectrum for models D2a05. These oscillations might

be the result of two non-axisymmetric modes being present in disc models D2, as
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Figure 6.32 Plot showing the peak amplitudes of the effective strain, inferred from the accretion
timescale, for the three different initial models. The sensitivity curve for advanced LIGO with
zero-detuning and high-power configuration is shown in black. The small bump at ~ 500
Hz in the sensitivity curve is the fundamental vibrational mode of the test mass suspension
fibres [LIGO Scientific Collaboration et al. 2015].

the m = 1 and m = 2 mode are of roughly equal strength (see Fig. 6.14). The
spectra of all models shown are not very smooth and show small peaks. To check
if these are due to numerical effects or actual imprints of the fluid evolution
would probably require much higher resolution simulations than those presented
in this work.

In order to estimate the detectability of the GWs emitted by these systems,
we follow the analysis in Kiuchi et al. [2011]. We assume that the BH-torus
system of models NC1 will radiate GWs for the entire accretion timescale t,cc
(which is the time needed for the entire disc to accrete). This is because in
these models, the m = 1 over-density lump and the BH form a long-lasting
quasi-binary system. Assuming that the accretion rate will remain at the level
it attained by the end of the simulations (see Fig. 6.13), a lower limit for the
accretion timescale for models NC1 is t,.. &~ 0.1 s. Note that this is only about
four times longer than the duration of the simulations reported here. It also
coincides with the viscous timescale reported in Foucart et al. [2014], which
means that additional physics such as the MRI are likely to shorten this timescale
in real accretion discs.

From the timescale, we can estimate the number of GW oscillations at the

peak frequency, which yields ~ 100 cycles® as a lower limit for models NC1.

5The peak frequency for models NC1 is around 1 kHz, which means that the source should
emit ~ 100 wave cycles at the peak frequency during the accretion timescale.
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The peak amplitude of the GW strain will then be amplified by \/m ~ 10,
while we assume no such amplification neither for models C1B (where the PPI is
rapidly damped after saturation) nor for models D2 (which are PP-stable). We
note that these estimates are in very good agreement with the corresponding
findings reported in Kiuchi et al. [2011]. The corresponding peak amplitudes
for the BH—torus systems located at a distance of 50 Mpc, together with the
advanced LIGO (aLIGO) sensitivity curve, are plotted in Fig. 6.32, showing
that the GWs emitted by models NC1 could be detectable due to the long-lasting
emission of GWs due to the persistent m = 1 mode. We also note that the
planned factor-of-3 upgrade of alL.IGO [Hild 2012, Adhikari 2014, Miller et al.
2015] will further improve the detectability in the future.

To put the occurrence of BH-torus systems resulting from BHNS mergers
into perspective, we note that the current, realistic merger rate of BHNS up
to a distance of 50 Mpc is about 3.75 x 1073 yr~! (see Abadie et al. [2010]
and references therein). The actual number of BHNS mergers that result in
BH-torus systems is likely to be lower than this, as not all BHs in these mergers
will have sufficiently low masses and/or sufficiently high spins to tidally disrupt
the NS during inspiral, therefore leaving no torus behind.



Chapter 7

Analysing the tilted
BH-torus dynamics with

fluid tracers

The results of this chapter have been originally published in:
V. Mewes, F. Galeazzi, J. A. Font, P. J. Montero and N. Stergioulas
Accepted for publication in MNRAS

In this chapter, we investigate the dynamics of one titled BH-torus model of
Chapter 6 (NC1a03b05) in more detail using fluid tracer particles as an additional

means to analyse the disc evolution.

7.1 Initial data and setup

Model NC1a03b05 has a non-constant [-profile and was shown to exhibit the
development of a long-lasting non-axisymmetric m = 1 mode in Chapter 6. The
parameters of this model are given in Tables 6.1 and 6.2. In the simulations
presented in this chapter, we evolve the model for up to 32 orbital periods
(significantly longer than we did in the simulations reported in Chapter 6) in
two different ways to gauge the influence of the self-gravity of the fluid in the
evolution of this model. The first evolution takes into account the solution
of the coupled system of Einstein equations and GRHD equations, and thus
corresponds to a fully dynamical spacetime evolution. For the second evolution

we assume the test-fluid (Cowling) approximation in which the spacetime is



130

Analysing the tilted BH-torus dynamics with fluid tracers

0.02

0.01

0.00

—0.01

—0.02
003l — S, — Sy from Ty |
— Sy — - Syfrom Tir
70.04 l l l l l l
0 5 10 15 20 25 30
t/torb

Figure 7.1 Evolution of the z and y components of the BH spin S and the evolution of the
spin components resulting from the LT torque exerted by the disc.

fixed and only the GRHD equations are solved. As initial data for this second
simulation we use the data of the fully evolved spacetime run that has been
checkpointed at t = 1.5t4,. This is to ensure that we are evolving the same
system once the gauge perturbations have left the region where the torus resides,
and in particular to provide the same perturbation that triggers the growth of
the non-axisymmetric instability in both runs.

Initially we place 250000 tracers at random locations in the accretion disc,
where the probability distribution is weighted according to the underlying rest-
mass density distribution. This results in all tracer particles being of equal mass
(3.97 x 1077) initially and during the evolution. The bulk motion of the tracers
is able to capture accurately the motion of the underlying fluid flow especially

when it is not turbulent and strong shocks are not present.

7.2 BH precession from Lense-Thirring torque

The main driver of the tilted disc evolution is the LT precession. At the lowest
post-Newtonian order of spin-orbit interactions, a particle in an inclined orbit
around a central Kerr BH will be subject to the following torque [Kidder 1995,

Merritt and Vasiliev 2012]:
SxJ

3

Tip =2 (7.1)

)

where S is the BH spin, J is the angular momentum vector of the particle, and r

is the distance of the particle from the BH centre. This is the LT torque exerted
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Figure 7.2 Evolution of the x and y components of the BH spin S and total disc angular
momentum J gisc-

by the central BH on the particle. As a result of this torque, the orbital angular
momentum of the particle will start to precess around the BH spin. As there is
a strong radial dependence on the magnitude of the torque, the inner regions of
a tilted accretion disc will become twisted, i.e. they will differentially precess
around the central BH. However, as shown in the results of Fragile and Anninos
[2005] and in Chapter 6, the sound crossing time in the disc is shorter than the
LT timescale, which results in a global disc response to the LT torque produced
by the Kerr BH, leading to solid body precession of the disc. By Newton’s third
law, the disc exerts a torque of equal magnitude and opposite direction on the

BH, causing it to precess as well.

To check whether the precession of the BH we observe in our simulations has

a physical origin, we compare the time evolution of the z and y components of
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the BH spin, S,, Sy, with the evolution of the BH spin that would have resulted
from summing up the cumulative spin change resulting from the LT torque of

the disc at each timestep:

Srr(t) ZS(O)+/O Tyrdt. (7.2)

As the disc is approximately precessing as a solid body, we calculate the
torque coming from the disc total angular momentum vector, Jgisc, and choose
the radius in Eq. (7.1) to be that of the location of the initial density maximum,
r = 10.2. The results are shown in Figure 7.1. This figure shows that the
time evolution of the BH spin components agree well with the torque exerted
on the BH by the disc. In Fig. 7.2 we show the time evolution of the x and
y components of S and Jgijsc. Clearly, the sum of the spin components and
disc angular momentum components along the two directions is seen to be
approximately constant for the evolution, in agreement with the fact that the

LT torque is the main driver for both disc and BH precession.

7.3 m =1 non-axisymmetric instability

7.3.1 Spiral density wave

Two of the three models we studied in Chapter 6 were found to develop a global
non-axisymmetric instability with m = 1 being the dominant azimuthal mode.
One such instability is the instability of tori with constant specific angular
momentum profiles, the Papaloizou-Pringle instability [Papaloizou and Pringle
1984]. Early numerical investigations of Hawley [1987] showed that the non-
linear regime of the PPI resulted in the formation of counterrotating over-density
lumps. The precise mechanism of the instability was elucidated in Goodman,
Narayan, and Goldreich [1987], where the authors showed that the planets found
in Hawley [1987] might be a new equilibrium configuration of the fluid. The
instability was subsequently investigated numerically by Hawley [1991] as well
as in the recent, fully general relativistic simulations of Kiuchi et al. [2011],
Korobkin et al. [2011], and Mewes et al. [2016].

In this section we show that the growth of the m = 1 mode in the disc results
in the formation of a spiral density wave with a constant global pattern speed
Qp. As the disc is differentially rotating this means that there is a location in
the disc, the so-called corotation radius r.,, where the spiral density wave has
the same orbital velocity as the fluid in the disc. Inside r., the wave travels

slower than the fluid, which means that it has negative angular momentum with
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Figure 7.3 Fractional change in the rest mass density Ap/p between two timesteps, shown at 9
different snapshots of the evolution, t/tob = 1,4, 8,12, 16, 20, 24,28, and 32 (from the top-left
panel). The domain shown in all panels is 100 across both x-axis and y-axis. The grey circles
show the tracers at the location of the corotation radius r¢,. The formation of a spiral density
wave from the growth of the m = 1 mode is noticeable.

respect to the fluid. While the wave amplitude is linear, it does not interact with
the fluid, but once non-linear amplitude effects come into play, the spiral density
wave can couple to the fluid via dissipation [Papaloizou and Lin 1995, Goodman
and Rafikov 2001, Heinemann and Papaloizou 2012]. When this happens, the
wave begins to transport angular momentum outwards as the fluid loses angular
momentum to the wave inside the corotation radius. The development and
persistence of the spiral density wave is shown in Figure 7.3. The figure shows
the fractional change in density between two successive snapshots of the tracer
particles Ap/p at 9 different times of the disc evolution, as well as the tracer
particles that are located at 1, (grey circles). The location of the corotation
radius is defined as the radius where the m = 1 pattern speed and the fluid
orbital velocity are equal. As usual, the non-axisymmetric modes in the disc are
analysed by means of an azimuthal Fourier transform of the rest-mass density
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Figure 7.4 Fractional change in the fluid entropy s between two timesteps, for tracers with
Ap/p > 0.1, shown at t/torp = 32.

p [Zurek and Benz 1986, Heemskerk, Papaloizou, and Savonije 1992]:

Dm:/aﬁpe_imd’d?’m, (7.3)

Similarly, the mode analysis performed using the tracers is performed by means

of the following sum
N

D, = Z mje tme, (7.4)
J
where m; is the mass of each tracer particle. From the mode amplitudes, the
pattern speed of an azimuthal mode with mode number m is defined as (see, for
instance Heemskerk, Papaloizou, and Savonije [1992])

_ 1dom
p=Lom, (7.5)
where the phase angle ¢,, is given by
1 {(Im(—D,,)
_ 1 m
¢m = tan <—Re(Dm) ) . (7.6)

For our simulation, we obtain an orbital period of the m = 1 pattern of Pp ~ 1.96
ms, which is slightly shorter than twice the initial orbital period of the disc at the

location of the density maximum (see Table 6.2). We note that we have chosen
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the same range of the fractional change in the rest-mass density in all snapshots
shown, which corresponds to the interval [—0.1,0.1]. At these wave amplitudes,
non-linear effects are negligible compared to the linear effects [Masset and Tagger
1997]. This plot range has however been chosen for visualisation purposes and
the wave amplitudes are actually much larger than 0.1 after the saturation of the
m = 1 growth, reaching almost unity. At these wave amplitudes non-linear effects
are important and the spiral density wave can couple to the fluid via dissipation.
To show the development of weak shocks, we plot the fractional change in the
entropy s = p/p" for tracers with Ap/p > 0.1 in Figure 7.4. From this plot,
we clearly see an increase in the fluid entropy in the inner and outer regions of
the spiral density wave. We note that the mesh refinement boundaries of our
computational grid also produce entropy changes due to dissipation. However,
these changes are about an order of magnitude smaller than the physical increase

of entropy due to the development of shocks in the spiral density wave.

7.3.2 Gravitational torque and motion of the central BH

We next turn to the interaction of the non-axisymmetric m = 1 mode and
the central BH. The moving over-density planet in the disc represents a time-
changing non-axisymmetric gravitational potential. Following Roedig et al.
[2012], we estimate the total gravitational torque on the BH exerted by the
tracer particles in the following way:

N

X . —
T — Z Y — rBH X (r; — TBH)
1

|ri — reul?

(7.7)

where the sum runs over all tracer particles.

The resulting components of the gravitational torque T'¢ and the time
derivative of the components of the BH orbital angular momentum LBH, are
shown in Figure 7.5. This figure clearly shows that the orbital angular momentum
of the BH is caused by the gravitational torque of the non-axisymmetric matter
distribution in the disc. The orbital angular momentum components of the
BH are calculated using the flat space coordinate rotational Killing vectors on
the AH [Campanelli et al. 2007] (which gives the Komar angular momentum
in axisymmetry [Mewes, Font, and Montero 2015]) without the subtraction of
the position of the BH centre and the subsequent subtraction of the intrinsic
spin of the AH. While this is by no means a gauge invariant measure of the

orbital angular momentum of the BH, it agrees very well with the Newtonian



136 Analysing the tilted BH-torus dynamics with fluid tracers

x107°

_9 ! ! ! !
10 15 20 25 30

t/torb

Figure 7.5 Time derivative of the components of the BH orbital angular momentum vector
Lpy and the components of the gravitational torque computed from the non-axisymmetric
matter distribution T'g.
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Figure 7.6 Evolution of the m = 1 mode for the dynamical spacetime simulation (black line)
and the fixed spacetime simulation (red curve), calculated with the tracer particles. We note
that we are using a linear scale for the vertical axis in this plot, contrary to the mode plots
shown in Chapter 6.

calculation of the BH orbital angular momentum as
LBH = MBH TBH X UBH- (78)

The disc acquires some bulk orbital angular momentum (equal and opposite
to that of the BH) as a result of the growth and the longevity of the m =1
mode as well. During the later stages of the evolution, after the saturation

of the m = 1 mode growth, this bulk orbital angular momentum of the disc

becomes comparable to the fluid angular momentum in the x and y direction.

We note that it is precisely the evolution of the bulk orbital angular momentum

that we mistakenly identified as tilt and twist oscillations in Mewes et al. [2016].

This was due to an error in the reading of the location of the BH centre in the
disc analysis code described in Section 4.4, which ultimately resulted in the
calculation of the disc angular momentum about the origin rather than about
the BH centre.

As a result of this error in the disc analysis used for the results presented
in Mewes et al. [2016], we speculated that the observed global oscillations in the
tilt and twist might be due to the development of the Kozai-Lidov (KL) [Kozai
1962, Lidov 1962] effect. This effect results in the periodic exchange of the
inclination and eccentricity of a particle orbit around a central mass that is
itself in an orbit with a third mass (called the perturber). The effect is a
direct consequence of the conservation of the total angular momentum of the

system. As the KL effect has recently been observed to operate in inclined
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Figure 7.7 Spacetime diagram of the radial profile of the tilt angle v(r). The tilt angle is
shown in degrees.

hydrodynamical discs around a central mass which is in a binary with another
mass [Martin et al. 2014], we assumed in Mewes et al. [2016] that the KL effect
might also be in operation in our discs as the long-lasting m = 1 mode forces
the central BH to move in a quasi-binary orbit with the over-density planet
in the disc. To demonstrate the operation of the KL effect and to explain the
oscillations in more detail has been one of the main motivations for carrying out
new simulations and employing the tracer particles as a new tool for the analysis
of the disc. As explained above, we have clarified the origin of the global tilt
and twist oscillations as being connected to the bulk orbital angular momentum
the disc acquires when forming the quasi-binary system with the BH. The KL
effect is therefore not seen to be in operation in our discs.

The effect of the motion of the central BH on the strength of the m = 1 mode
is shown in Figure 7.6. This figure displays the time evolution of the normalised
magnitude of the D; mode for our two simulations. While growth rates of the
m = 1 mode strength are very similar for the two runs, the maximum mode
amplitude is about two times higher in the fully dynamical spacetime simulation
(where the BH is allowed to move). We note that the growth rate and maximum
m = 1 mode amplitude in the simulation presented here is smaller than the
one reported in Chapter 6 for the same model. The difference arises from the
use of a constant damping parameter in the standard I'-driver shift condition,
which is known to be less accurate than dynamical damping parameters for large
mass-ratio BBH simulations (see for instance Gold and Briigmann [2013]). The

dynamics of the high mass-ratio quasi-binary system composed of the central BH
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Figure 7.8 Time evolution of the tilt angle of the disc, vgjsc, shown in degrees.

and the moving over-density planet in the disc should therefore be described with

better accuracy using the dynamical damping parameter employed in Chapter 6.

It seems that the fixed damping parameter restricts the BH motion, resulting
in a smaller mode power. We note, however, that the actual development of
the instability and the overall properties of the disc after its saturation remain
unaffected by the choice of gauge, as they should.

7.3.3 Disc alignment

As shown in King et al. [2005], the direction of the torque responsible for disc
(and therefore also BH) precession does not act in the direction to align the disc
angular momentum with the central BH. The alignment torque ultimately results
from the inclusion of the effects of viscosity or dissipation, and its magnitude
depends, as King et al. [2005] remark, on the actual disc properties. As our fluid

evolution does not explicitly account for viscosity, viscous and dissipative effects

might therefore only arise due to numerical viscosity and dissipation in shocks.

As we have seen in Section 7.3.1, the spiral density wave that results from the
development of the m = 1 mode provides dissipation that is stronger than the
one arising from the numerics. Another factor working towards alignment of
the BH spin and the disc is the accretion of angular momentum, which is a
negligible effect in our simulations due to the very low amount of total mass
accreted during the evolution.

In Figure 7.7, we plot a spacetime diagram showing the evolution of the

tilt angle profile v(r) obtained from the tracers. Similar to the disc analysis
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Figure 7.9 Evolution of the sum of disc eccentricity e1 and disc ellipticity ez and the rest mass
accretion rate M in units of M /s. The accretion rate has been shifted by 0.65 ¢ in time
for a better visualisation of the correlation between its modulation and e.

explained in Nelson and Papaloizou [2000] and Fragile and Anninos [2005] and
employed in Chapter 6, we split the domain in radial shells and calculate the
components of the total angular momentum of all tracers within a given shell to
obtain the tilt profile. We clearly see the expected, non-zero oscillating tilt profile
predicted by the warp propagation as bending waves during the early stages
of the simulation. The tilt amplitude close to the central BH is significantly
reduced from about 15t,,;, onwards. This could be connected to the time when
the developing spiral density wave becomes non-linear for the first time, coupling
to the fluid inside the corotation radius and lowering the tilt amplitude. We
do not see a complete global alignment as observed in Kawaguchi et al. [2015]
during the time of the evolution. However, as Figure 7.8 shows, there is a clear
monotonic drop in the global tilt angle vgisc from t = 2¢4,, onwards, which
is when the m = 1 non-axisymmetric mode starts growing. Kawaguchi et al.
[2015] noted that the alignment timescale was comparable or shorter than the
precession timescale of the disc. We note that our disc is precessing slower than
the ones studied in Kawaguchi et al. [2015], as our initial BH spin is much smaller
than that of the central BH they obtain in their BHNS merger simulations. In
our dynamical spacetime simulation, both the disc angular momentum and
BH spin have completed half a precession cycle within 32t,,1,, while the global
tilt angle vgisc has not dropped by half within the same period. A difference
between our disc evolution and the ones described in Kawaguchi et al. [2015]

is the accretion timescale, which in their case is comparable to the precession
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Figure 7.10 Power spectrum density of e, the rest mass accretion rate M and the radial BH
velocity vy

timescale and, therefore, to the alignment timescale. We do not observe this
behaviour in our simulations, as the total rest mass accreted during the evolution

(2.6 x 1073) is very small compared to the initial disc rest mass (1.02 x 1071).

Assuming that the accretion rate remains constant for the lifetime of the disc,
the accretion timescale would be = 10 times larger than the precession timescale
of the disc.

7.4 QPOs in the accretion rate

As already observed in Chapter 6, the growth of the m = 1 non-axisymmetric
mode in the disc strongly influences the instantaneous accretion rate. As the
accretion rate can be assumed to be a measure of X-ray luminosity (see, for
instance van Paradijs, Penninx, and Lewin [1988] and Méndez et al. [1999]),
finding QPOs in the accretion rate and correlating them with the disc evolution
might serve as a model to explain the QPOs observed in LMXBs (see e.g. van
der Klis [2006] and references therein). The origin of these QPOs is still not fully
understood, and there are various models trying to explain the observed X-ray
variability in these sources (see Lai and Tsang [2009] for a detailed summary of
the proposed models, Belloni and Stella [2014] for a recent review of QPOs in
LMXBs and Mishra et al. [2015] and Mazur et al. [2016] for recent models). As
matter accretion implies the development of a radial flow, we follow MacFadyen

and Milosavljevi¢ [2008] and calculate the eccentricity e; and ellipticity es of
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Figure 7.11 Trajectory of BH projected onto xy-plane. The colorbar indicates the time in to,p
along the trajectory.

the tracer particles as
I myuren?|

5 mjv?

where v" and v? are the radial and azimuthal components of the 3-velocity,

€n

: (7.9)

respectively. We denote the sum of disc eccentricity and ellipticity by
e=ej + es. (7.10)

The evolution of e together with the mass accretion rate M is plotted in
Figure 7.9. As in Chapter 6, we calculate the accretion rate as the following
surface integral at the AH:

2w
M = 27Tr2/ / D" sinfde¢do . (7.11)
o Jo

The mass accretion rate in Fig. 7.9 has been shifted by 0.65¢.,1, to better illustrate
that the accretion rate is clearly modulated by e and shows distinct QPOs. As
expected, the applied shift is backwards in time, as the evolution of M trails
the evolution of e. The power spectral densities (PSD) of e, M and the radial
velocity of the BH are shown in Figure 7.10. The PSD show a clear dominant
peak at ~ 260 Hz with a first overtone at ~ 490 Hz for e and M. The frequency
ratio of the dominant low frequency peak and the overtone is o1/f ~ 1.9. The
double peak in the PSD arises from the modulation of the strength of the m =1
mode (see Fig. 7.6). The modulation causes changes in the eccentricity of the
orbital motion of the BH as well, which is displayed in Fig. 7.11.
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Periodicity in the accretion rate due to the inner region of a circumbinary
accretion disc becoming eccentric has also been observed in Farris et al. [2014],
as well as in the MHD simulations of Machida and Matsumoto [2008], where
the authors attribute the QPOs in the accretion rate to the development of a
m = 1 non-axisymmetric mode. We note that the QPO frequencies extracted
from our simulation are for a fiducial model with a central BH mass of ~ 1 M,
(see Table 6.1). The observed frequencies in these systems usually scale as M1,
where M is the mass of the central compact object, as in the p-mode torus
oscillation model of Rezzolla et al. [2003]. Assuming the M1 frequency scaling
to be universal (see for instance Abramowicz et al. [2004] and Zhou et al. [2015]
for arguments and observational support), this would mean that the QPOs we
observe in the accretion rate would be at ~ 26 Hz and ~ 49 Hz if we rescale
our results for a 10 My BH. These frequencies are compatible with the results
of Machida and Matsumoto [2008], who found 10 Hz QPOs for a 10 M BH.
Therefore, the QPOs we observe resulting from the modulation of the m =1
mode strength could help explain the low-frequency QPO sector of the fast X-ray
variability seen in LMXBs.

On the other hand, if we assume the accretor to be a NS, after rescaling
our results for typical NS masses, the QPOs in the accretion rate would also
have frequency peaks in a range compatible with those observed in LMXBs.
Note that models based on the p-mode oscillations of axisymmetric tori cannot
explain the observed twin QPOs in LMXBs with a NS as an accretor, with
a fundamental frequency smaller than 500 Hz, since the fundamental mode
frequency decreases as the size of the disc increases or as the distribution of
the disc specific angular momentum approaches the Keplerian profile [Montero
and Zanotti 2012]. Therefore, the o1/ f frequency ratio in axisymmetric models
shows a tendency to concentrate towards the 3 : 2 ratio line as the fundamental
mode frequency tends to zero. However, deviations from axisymmetry may relax
this constraint, and there exist several works where the idea that the QPOs
in accretion discs might be connected to non-axisymmetric modes has been
put forward (see for instance Li, Goodman, and Narayan [2003], Tagger and
Varniere [2006], Machida and Matsumoto [2008], Lai and Tsang [2009], and
Henisey, Blaes, and Fragile [2012]). By rescaling our results for a 1.4 Mg NS,
the fundamental mode would lie at ~ 185 Hz while the first overtone would be
at ~ 350 Hz. Such values, extracted from the modulation in the accretion rate
triggered by the development of a non-axisymmetric m = 1 instability, lie thus
within the range needed to explain, for instance, the observed QPOs in sources
like Cir X-1 or XTE J1807-294.
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Chapter 8

Discussion

In the sections below, we provide a detailed, individual discussion of our results

presented in the three chapters of Part III.

8.1 Measuring the BH spin direction in 3D Carte-

sian NR simulations

As we have shown in Chapter 5, the flat-space rotational Killing vector method
of Campanelli et al. [2007] can be derived from Weinberg’s pseudotensor when
using Gaussian coordinates. These coordinates have two interesting properties
that make them particularly useful for the evaluation of the angular momentum
pseudotensor integral, Eq. (5.7). First, the complicated integral (5.7) reduces
to the much simpler expressions given by Eq. (5.24) and this final expression is
equal to the Komar angular momentum integral in a foliation adapted to the
axisymmetry of the system. As a result, one does not need the knowledge of the
shift vector and of its spatial derivatives on the surface of integration, which in
practice would involve more quantities that one would need to interpolate onto
the horizon surface for the calculation of the spin, thus also avoiding the numerical
error associated with the computation of the finite difference approximation
to those spatial derivatives. Second, Gaussian coordinates trivially satisfy the
necessary falloff conditions for the lapse and shift. Moreover, by using Gaussian
coordinates we recover the ADM angular momentum evaluated at spatial infinity,
provided we use a spherical surface of integration.

It is generally known that the various energy-momentum pseudotensors pro-

posed in the literature are not covariant and care has to be taken when evaluating
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them in different coordinate systems and gauges (see Szabados [2009] for a review
on quasi-local mass and angular momentum in GR, where the problems arising
when using pseudotensors for the calculation of mass and angular momentum
are also discussed). The derivation of Weinberg’s pseudotensor relies crucially
on the reference space being Cartesian Minkowski. In his textbook, Weinberg
[1972] states that a spherical polar coordinate system would lead to a gravi-
tational energy density concentrated at infinity. This is ultimately due to the
non-covariance of the pseudotensor. Additionally, the choice of gauge is also
crucial to obtain meaningful results. Gaussian coordinates guarantee the correct
asymptotic behaviour of the lapse and shift, irrespective of the asymptotic
behaviour the numerically evolved lapse and shift may posses, which are, as
previously stated, not explicitly used in the calculation of the AH spin on the
respective timeslice. Furthermore, we have shown that Gaussian coordinates
transform the pseudotensor angular momentum surface integral (5.13) to the
Komar angular momentum integral (5.29) which is coordinate independent. The
use of Gaussian coordinates (as an explicit gauge-fixing) seems to therefore

remove the coordinate restrictions of the pseudotensor.

When Campanelli et al. [2007] introduced the flat-space rotational Killing
vectors for the calculation of the BH spin direction, the authors stated that
they could not guarantee the correct results for all times because the method is
not gauge invariant. However, as we have shown in Chapter 5, the method can
actually be derived from the integration of Weinberg’s total angular momentum
pseudotensor over the AH surface when using Gaussian normal coordinates
in the integration. As a result, the method does not depend on the evolving
lapse and shift, as the gauge is fixed to the Gaussian normal coordinates on
the respective timeslice. We stress that the evolution of the lapse and shift
during the free evolution of the spacetime does not enter the calculation, given
the coordinates evolve in such a way that an AH is found at all times during
the evolution, which is usually the case in puncture evolutions with the BSSN
system. There is a dependence on the gauge evolution via the extrinsic curvature
K;; that is interpolated onto the AH for the calculation of the spin direction,

but the same is true for the expression of the spin magnitude in Eq. (2.94).

Schnetter, Krishnan, and Beyer [2006] showed that Eq. (2.94) gives the
spin magnitude provided an approximate Killing vector can be found on the
horizon and is gauge independent on the respective time-slice if the approximate
Killing vector field ¥® is divergence-free. In Chapter 5 we have shown that both
methods (i.e. either via Weinberg’s pseudotensor in Gaussian coordinates or via

flat-space rotational Killing vectors) yield the Komar angular momentum when
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the latter is expressed in a foliation adapted to the axisymmetry. We note that
the restriction to axisymmetry turns out in practice not to be a major weakness,
as NR simulations have repeatedly shown that the remnants of BBH mergers
and perturbed Kerr BHs typically settle down to the axisymmetric Kerr solution
quickly [Schnetter, Krishnan, and Beyer 2006, Owen 2009]. Moreover, both
methods provide a measure of the BH spin magnitude and direction that is not
explicitly dependent on the lapse and the shift on the respective time-slice. As
both methods use the fixed rotational Killing vectors of Minkowski space, they
measure the spin contribution from the axisymmetry of the AH, which is the
only meaningful way to measure its angular momentum as it is not clear how

non-axisymmetric perturbations of the AH influence the actual spin value.

8.2 NR simulations of tilted BH-torus systems

In Chapter 6 we have presented the results of an extended set of NR simulations
of massive accretion discs around tilted Kerr BHs. We considered three different
thick accretion discs of varying mass and specific angular momentum magnitude
and distribution, along with different BH configurations with two spin magnitudes
a and four initial tilt angles By. On the one hand, the motivation for this work has
been to extend the investigations of Fragile and Anninos [2005] and Fragile et al.
[2007] performed in the test-fluid approximation to full GR, thereby analysing
the influence of the self-gravity of the disc on the BH-torus dynamics. On the
other hand, our work has also served to enlarge the parameter space of the
existing NR simulations of thick accretion tori around BHs [Korobkin et al. 2011,
Kiuchi et al. 2011] by accounting for tilted BH-torus systems for the first time.

For the models with disc-to-BH mass ratios of 0.044 — 0.16 we studied, we
find that the assumption of using a fixed background spacetime is not justified.
We observed significant precession and nutation of the tilted BH, which means
that the tilted BH-torus evolution cannot be accounted for in fixed spacetime
simulations. For some of our models the precession rate attained a fairly constant
value by the end of the simulation. The BH nutation rate was also seen to be
strongly modulated for those models that develop the PPI, showing that the
development of non-axisymmetric modes in the disc exerts a torque on the BH.

Our simulations revealed that the development of the PPI is universal for
the range of initial spin magnitudes and tilt angles investigated. Models C1B
and NC1, both PP-unstable when the central BH is non-rotating or untilted,
remained PP-unstable when the BH was rotating or tilted, for all initial spin

magnitudes and tilt angles investigated. The reverse also seems to be true:
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model D2, which is PP-stable for an untilted, non-rotating central BH remained
PP-stable for the entire parameter space of initial spins and tilt angles considered
in our study. As we mentioned before, model D2, having the smallest mass ratio
in our study, is the most likely outcome of BHNS mergers based on astrophysical
considerations. Thus, our findings are relevant to gauge the importance of the
PPI in thick post-merger accretion discs around black holes. In agreement with
the NR simulations of Kiuchi et al. [2011], the growth of the m = 1 PPI mode
manifested itself in the formation of a counter-rotating over-density lump that
formed a “quasi-binary” with the BH during its existence. This caused the BH
to move in a spiral trajectory for as long as the “planet” existed. For models C1B,
the “planet” dispersed quickly upon the saturation of the PPI, while in models
NC1 the over-density structure persisted much longer, with the m = 1 mode
amplitude remaining at its level of saturation till the end of the simulations.
When the PPI develops around a tilted Kerr BH, the binary motion of BH and
“planet” is not restricted to the zy-plane but also shows some vertical motion.
For models C1B in particular, the rapid destruction of the non-axisymmetric
structure caused a mild kick to the BH-torus system in the vertical direction
which was also imprinted in the time evolution of the linear momentum radiated

away by gravitational waves in the opposite direction.

The evolution of the disc around the tilted BH can cause a significant twisting
(differential precession) and warping (spatially varying tilt) in the disc. We
monitored the evolution of the twist o(r) and tilt v(r) of radial shells during
the simulations, using an analysis thorn we developed for the ET. For models
C1B (NC1) we found a phase of rapid (mild) realignment of the total angular
momentum vector of the disc, Jpisc, and the BH spin, Jpy, during the growth
of the PPI. We attribute this alignment to the development of the m = 1
structure in the disc. In their recent NR simulations of tilted BHNS mergers
and the corresponding post-merger disc evolution, Kawaguchi et al. [2015] also
observed significant alignment of the tilted accretion disc and the central BH, in
a timescale comparable to the accretion timescale of the system. While there
was no mode analysis presented, the authors argued that angular momentum
transport caused by a non-axisymmetric shock wave in the disc should work
in favour of disc-BH alignment. Our simulations also confirmed the presence
of significant differential disc twisting due to LT precession. For all models,
the cumulative twist is higher for higher initial BH spins, as expected, and the
outer regions of the discs precess as a solid body. This solid body precession
was also observed in Fragile and Anninos [2005] and is a consequence of the

sound crossing time in the disc being small compared to the timescale of the
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LT precession, which is the case for the geometrically thick and radially slender
discs we studied in this thesis. The evolution of the tilt profiles of models D2 was
similar to what Fragile and Anninos [2005] observed, with the development of a
peak in the innermost region of the disc. This behaviour is in agreement with
the evolution and propagation of warps being described by bending waves rather
than diffusion [Lubow, Ogilvie, and Pringle 2002]. For models C1B, the PPI
caused a drastic change in the tilt profile upon saturation. We did not observe
the Bardeen-Petterson effect in any of our models, as the tilt angle v(r) # 0
in the inner region of the discs, in agreement with the model of Ivanov and
Hlarionov [1997], Demianski and Ivanov [1997], and Lubow, Ogilvie, and Pringle
[2002].

The PPI is thought to activate the outward transport of angular momentum.
This is indeed the case in our simulations, as the evolution of the angular
momentum profiles shows. For model C1Ba0b0, angular momentum profile
contour lines in the the outer parts of the disc were seen to start moving
outwards in a wave-like manner up until the sudden saturation of the PPI.
After saturation there was no more transport of angular momentum and the
evolution resembled that of the PP-stable model D2a01b0. For model NC1a0bO
the persistence of the m = 1 structure in the disc caused a continuous transport

of angular momentum outwards for the entire simulation of the disc.

As Kiuchi et al. [2011] showed, the development of the PPI and the corre-
sponding over-density m = 1 lump in the disc cause the long-term radiation of
GWs, predominantly in the [ = m = 2 multipole mode, as expected from the
radiation emitted by a binary system. Our simulations confirmed these results,
showing that models C1B and NC1 do indeed radiate mainly in that particular
mode. The rapid destruction of the m = 1 structure in models C1B caused the
amplitude of the emitted GW signal to drop significantly after the PPI saturated,
while the peak amplitude was closely correlated with the time of saturation.
Models NC1 on the other hand, continued to emit at an amplitude similar to
that attained at saturation, as the m = 1 structure survived until the end of the
simulations. We also calculated the effective strains of the GW signals. While
models C1B showed different spectra for different initial spin magnitudes and tilt
angles, there seemed to be no such trend for models NC1. For those two set of
models, the GW emission was predominantly in the | = m = 2 mode while in
models D2 we also found also significant power in the [ = 3, m = 1 mode. In
addition, the strain spectra of models D2 showed a clear trend to higher values
with increasing initial spin and tilt angle. We follow the analysis of Kiuchi et al.

[2011] and assume that if the m = 1 structure survives for the entire accretion
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timescale, the peak strain of the GW signal will be amplified by the square root
of the number of GW cycles emitted at the peak frequency. The GWs emitted
by models NC1 could currently be detectable for BH-torus systems located at
distances up to 50 Mpc. Finally, we briefly touched on the issue of the possible
modulation of the GW signal caused by the BH precession. For the fastest
precessing models of our sample, models C1Ba01, we showed that in order to
see such an effect, we would need to perform a simulation lasting for about 80
orbits to obtain a complete BH precession cycle, assuming the precession rate

remains constant beyond the 20 orbit mark we could afford in our simulations.

8.3 Analysing the tilted BH—torus dynamics with

fluid tracers

In Chapter 7 we have investigated in detail the BH-torus dynamics of model
NC1a03b05. We employed fluid tracer particles as a powerful new tool to analyse
the disc dynamics. The tracers provide a complementary tool to the existing
disc analysis thorn described in Section 4.4.

Using the tracers, which accurately describe the bulk morphology of the fluid
in the disc, we showed that the BH precession we reported in Chapter 6 was
indeed caused by a torque resulting from the disc precessing as a solid body,
which in turn resulted from the LT torque the BH exerts on the disc. This
is expected, as the disc should exert an equal and opposite torque on the BH.
For sufficiently high disc-to-BH mass ratios, tilted BH-torus systems should
therefore contain precessing central BHs, and the BHs should precess for at least
the accretion timescale of the disc.

The main characteristic of model NC1 is its non-constant [ profile. As already
observed in the NR simulations of Kiuchi et al. [2011] and also in Chapter 6
these models form a long-lived over-density “planet” as the result of the growth
of the PPI. Using the tracers, we showed that the growth of the m = 1 non-
axisymmetric instability manifests itself as a spiral density wave of constant
pattern speed in the differentially rotating disc. The pattern period was shown
to be slightly smaller than the initial fluid period at the location of the maximum
rest-mass density of the disc. While the spiral wave remains of small amplitude, it
travels through the fluid without interaction. Once the wave amplitude becomes
large enough for non-linear effects to become important (in some regions the
fractional change in rest-mass density became as high as 0.9), the wave couples

to the fluid via the formation of mild shocks, which can be seen clearly as an
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increase in the fluid entropy. As the disc is differentially rotating, the spiral
density wave has negative angular momentum w.r.t. the fluid inside the region
that is smaller than the so-called co-rotation radius; therefore the wave can
transport fluid angular momentum outwards and becomes the main driver for
accretion.

The density wave also represents a time-changing non-axisymmetric grav-
itational potential. As observed in Korobkin et al. [2011] and Chapter 6 this
gravitational potential causes the BH to move along a spiral trajectory. Using
the tracers, we calculated the total gravitational pull exerted by the disc on the
BH and showed that the resulting torque agrees very well with the observed
motion of the BH. This is an important confirmation that the BH movement is of
physical origin, and not caused by numerical effects or the evolution of the gauge
variables lapse and shift. BH-disc alignment within the accretion timescale was
observed in the NR simulations of tilted post-merger discs in Kawaguchi et al.
[2015]. Correspondingly, in the simulations reported in Chapters 6 and 7 we
also saw partial realignment of the BH—torus system. In all cases, there was
no explicit viscosity in the fluid evolution. As the torque acting to align the
BH spin with the disc must be of dissipative nature, the only way to achieve
BH-torus alignment is via numerical dissipation or dissipation via shocks in the
fluid. The spiral density wave that results from the growth of the m = 1 mode
provides such a channel, and Kawaguchi et al. [2015] speculated that shocks in
non-axisymmetric waves might be responsible for the observed alignment of the
BH-torus system in their simulations. This is a strong argument to carefully
check for non-axisymmetric structures in post-merger disks, as they seem to

influence the evolution of the system profoundly.

Our simulations also revealed the presence of distinct QPOs in the evolution of
the accretion rate, in a frequency range compatible with that of X-ray luminosity
QPOs in LMXBs. When rescaling the frequency of the observed QPOs in
our simulation for a 10M BH, the extracted frequencies are compatible with
the range of low-frequency QPOs in those systems. Furthermore, the same
rescaling for typical NS masses also gives QPOs with frequencies compatible
with those observed in sources like Cir X-1 or XTE J1807-294. The frequency
ratio of the dominant low frequency peak and the first overtone found in our
three-dimensional simulations was ol/f ~ 1.9, a frequency ratio not attainable
when modelling the QPOs as p-mode oscillations in axisymmetric tori. As the
flow needs to develop a non-zero radial velocity component in order to accrete,
we have also analysed the sum of disc eccentricity and ellipticity using the tracers

and showed that its evolution exhibits the same QPO structure at exactly the
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same frequencies. While the origin of the variability of the eccentricity (which
was also exhibited in the radial motion of the BH) is still unclear, the fact that
the accretion rate is so clearly modulated could be the starting point to devise a
new model to explain the observed QPOs in LMXBs.



Chapter 9

Outlook

There are numerous direct extensions to the work presented in this thesis on
NR simulations of tilted BH—torus systems. We plan on performing long-term
simulations in the future in order to, firstly, obtain the complex GW signal
from the kind of precessing BH—torus systems we have started to explore here
(namely, the imprint of BH precession on the waveform), and, secondly, to
obtain clearer PSD of the accretion rate, which might help to shed some light
onto the origin of HFQPOs in LMXRBs. As explained in the manuscript, we
have restricted ourselves in this study to modelling the matter in the torus
using GRHD and the ideal fluid EOS. For thick discs formed following BNS
or BHNS mergers, this EOS is a poor approximation. We are planning on
extending our work to more realistic EOSs (including the effects of composition
and pressure from trapped neutrinos) such as the one described in Paschalidis
et al. [2011]. Furthermore, it is most likely that post-merger discs should be
highly magnetised, as there are efficient magnetic flied amplification mechanisms
in BNS mergers [Kiuchi et al. 2015a]. In this regard, Fragile et al. [2007] have
already performed GRMHD simulations of tilted, magnetised BH-torus systems
in the Cowling approximation. Moving into the regime of GRMHD simulations
with a fully dynamical spacetime will be interesting especially in connection
with precessing jets that might naturally emerge from these systems.

The role played by magnetic fields in connection with non-axisymmetric
hydrodynamical instabilities such as the PPI is also not yet fully understood.
The interest in the PPI quickly diminished after the discovery that the MRI
is active in accretion discs [Balbus and Hawley 1991]. However, Fu and Lai
[2011] suggest that highly magnetised tori might still be unstable to global

hydrodynamic instabilities even if they are stable against the development of
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the MRI. Elucidating these global non-axisymmetric instabilities through NR
simulations of hot, magnetised accretion tori around BHs is one of the direct

and obvious extensions of the work presented in this thesis.

For these future simulations, we want to improve our ID and/or experiment
with spacetime evolution schemes that offer constraint damping, such as the
Z4 [Bona et al. 2003, Bona and Palenzuela 2004], CCZ4 [Alic et al. 2012] or f{CCZ4
systems [Sanchis-Gual et al. 2014]. Another possibility could be moving excision
simulations using the constrained evolution scheme described in Bonazzola et al.
[2004] and Cordero-Carrién et al. [2009]. This is due to our observation that
the constraint violations of our initial tilted BH—torus data (which act as a
type of negative mass) are absorbed by the BH during the evolution, causing
an unphysical loss of irreducible mass. Constraint damping schemes might help
in radiating away the constraint violations. Constructing tilted BH-torus data
is however a daunting task on the other hand, as the system is not stationary.
For small mass-ratios, it might therefore be sufficient to resolve the constraints
of the ID. A possible idea is to write a new, general purpose elliptic solver in
the ET, building on the scheduled relaxation Jacobi (SRJ) method of Yang and
Mittal [2014]. The SRJ method solves elliptic equations by using a scheduled
sequence of relaxation weights in the Jacobi iterative method. The method is
easy to implement and trivially parallelised. In Adsuara et al. [2016] we have
analytically derived the optimal set of weights for a given grid structure and
desired tolerance using Chebyshev polynomials. Of course, the ultimate goal
is to obtain tilted BH—torus ID that has been self-consistently formed via NR
simulations of tilted (magnetised) BHNS mergers (especially with small mass
ratios) and to use the tools developed in this thesis to analyse the subsequent
post-merger disc evolutions.

Obtaining better ID is the most pressing issue in this future program, as
any extension (such as GRMHD or improved microphysics described above) to
our simulations will be plagued with the same problems we encountered in this
work, related to the initial constraint violations. Even if constraint transporting
schemes could cure our problems, the need for accurate initial BH-torus data
will remain in order to perform comprehensive parameter space studies of these
systems without having to perform the actual merger beforehand. This is,
however, a very ambitious and time-consuming project which would require new
techniques (general purpose constraint solvers, steady-state tilted and warped
accretion disc hydro ID) and is aimed at the long run.

There is one more area in which we can improve our future simulations.

All simulations in this thesis have been performed on Cartesian grids, which



157

are known for being notoriously substandard when used in the evolution of
azimuthal flows, such as the ones encountered in accretion discs. Spherical polar
coordinates are be much better suited for the GRHD evolution of accretion discs
as they are adapted to the topology and symmetries of the flow. Baumgarte
et al. [2013] have recently developed an implementation of the BSSN equations
in spherical polar coordinates without any symmetry assumptions, which has
later been extended to a fully covariant and conformal formulation of the Z4
system by Sanchis-Gual et al. [2014]. For the simulations of self-gravitating
scalar fields around collapsing stars reported in Sanchis-Gual et al. [2015], T
have developed a new radial coordinate composed of two patches, a geometrical
progression in the interior and a hyperbolic cosine outside, allowing to push the
outer boundary much further out without the use of prohibitively many radial
grid points to achieve a sufficiently high resolution near the origin. We have
also experimented with the 3D version of the Nada code, having implemented
the spacetime variables boundary condition described in Section 4.1 as well as
different GW extraction routines via the Weyl scalar ¥4. We plan on comparing
the spherical Nada code and the ET in the future, focusing in particular on
obtaining gravitational waveforms of the gravitational collapse of a rapidly
rotating NS using both codes. This comparison is a short term goal, as the
codes are in place and the problem is well defined.

Last but not least, we want to add more functionality to the disc analysis
thorn (implementing some of the measures for which we have used the tracers)
and, subject to interest from the community, work on making the thorn public
to the ET.






Part V

Appendices






Appendix A

Hyperbolic partial

differential equations

In this appendix we provide a brief introduction to hyperbolic PDEs, as they
are central to our numerical integration of the Einstein field equations coupled
to the matter evolution via GRHD. We refer the reader to [Courant and Hilbert
1962, Toro 2013, LeVeque 1992] for a detailed analysis of the topic.

We start by classifying second-order PDEs. Consider a general second-order
partial differential operator L, acting on the dependent variable u(x1, za, .., Z,)

of n independent variables x,,:
Lu] = 0. (A1)

We can rewrite this as the double sum of the second-order partial differentials

plus terms of lower order partial derivatives:
Llu) = m*P840pu + terms of lower order = 0, (A.2)

where uppercase latin indices run from 1 to n. m42940pu denotes the principal
part of the PDE where mA® are the components of the principal part matrix
M. In the case that the coefficients m4? are constant and real-valued, we can
classify the PDE (A.2) depending on the properties of the eigenvalues of the
matrix M (see, for instance Courant and Hilbert [1962]):

1. The equation (A.1) is elliptic if the eigenvalues of M are real and all
positive, or all negative.
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2. The equation (A.1) is parabolic if the eigenvalues of M are real and all

positive, or all negative except one that is 0.

3. The equation (A.1) is hyperbolic if M has real eigenvalues with either
one positive eigenvalue and the rest are negative, or one negative eigenvalue

and the rest are positive.

AB are differentiable

The classification of the PDE in the general case when m
functions of the independent variables x,, is also described in Courant and Hilbert
[1962].

As an example, consider the following PDE in 2 dimensions:
atatu(x; Y, t) - amazu(x7 Y, t) - ayayu(xa Y, t) = 0> (AS)

from which we see immediately that M = diag(1l,—1,—1) with eigenvalues
An = {=1,—-1,1}. The PDE (A.3), called the wave equation, is therefore
hyperbolic. Hyperbolic PDEs have a finite speed of information propagation,
which means that disturbances will travel away from the source with finite speed
and are not immediately felt everywhere. This is in contrast to elliptic equations,

where the propagation of information is instantaneous.

A.1 Characterising hyperbolic PDEs

As we have seen in section 2.1 of this thesis, the 34 1 split has essentially allowed
us to reformulate the 4 dimensional Einstein field equations as a first-order quasi-
linear hyperbolic system and to treat the time evolution of the gravitational
field as a Cauchy initial value problem. We have also seen that the numerical
integration of the original 3 4+ 1 system is not stable, which is attributed to
the appearance of the Ricci tensor R;; in the evolution equation (2.30) of the
extrinsic curvature Kj;;. To gain some insight and understand why the evolution
equations in their original 3 4+ 1 form are not stable, we need a criterion for the
hyperbolicity of the evolution system.

In the following, we categorise the hyperbolicity of PDEs, following the
classification of the hyperbolicity outlined in Shinkai and Yoneda [2002].

Consider the following system of n first-order, (quasi-) linear PDEs:
Orup + m“BA(u)aauB + Sa(u) =0, (A.4)

where, as above, uppercase latin indices run from 1 to n, and m®Z 4 isan xn

matrix for a fixed a, where the indices a run over the spatial dimensions of
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the system (1 to 3 in our case). The vector S4(u) is a vector of sources. The
matrices m®?® 4 can be understood as block matrices along the diagonal of a

larger 3n x 3n matrix M:

m- A 0 0
M = 0 | m2By 0 (A.5)
0 0 m3BA

The classification of the hyperbolicity depends on the spectrum of the charac-

teristic matriz M in the following way:

1. The system (A.4) is weakly hyperbolic if all eigenvalues of M are real.

2. The system (A.4) is strongly hyperbolic if the matrix M is diagonizable

(M has 3n linearly independent eigenvectors).

3. The system (A.4) is symmetric hyperbolic if the matrix M is Hermitian.

Let us analyse the hyperbolicity of the wave equation (A.3). We first need
to rewrite the PDE as a system of first-order PDEs. To do this, we introduce
the following state vector:

Oz
U= |0yul, (A.6)
oiu
so that
Ozt 010z u
U =0 |Oyu| = 0r0yu , (A7)

Oru 0204 + 0y0yu

allowing us to write the first-order system of the form:

Ozu 0 0 1 Ozu 0 0O Oru
O |Oyu| = |0 0 0f 0 [Oyu| + [0 0 1|0y [Dyu], (A.8)
8,511 1 0 0 Btu 01 0 8,511
which means that the characteristic matrix of M is given by:
[0 0 1 0 0 0]
000000
10 0 0 0 O
M = , (A.9)
0 000 00O
0 00 0 01
0 0 0 0 1 0]
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which has 6 linearly independent eigenvectors and is therefore diagonizable.
Furthermore, since M = M, where M is the conjugate transpose of M, the

matrix is Hermitian and system (A.8) is therefore symmetric hyperbolic.

A.2 The hyperbolicity of the 341 evolution equa-

tions

To analyse the hyperbolicity of the original 3 4+ 1 evolution equations (2.24)
and (2.30), we follow the discussion in Gourgoulhon [2012] and express them
first in Gaussian coordinates, for which, as stated earlier, the lapse and shift
take the following form: a = 1, 8% = 0. In this gauge, Egs. (2.24) and (2.30)
reduce to:

Oyi; = —2 Ky, (A.10)

and
8th-j = Rij + KK” — 2KiaKaj, (A].l)

respectively, where we have assumed a vacuum spacetime (7),,, = 0) for simplicity.
We can therefore substitute the extrinsic curvature in Eq. (A.11) with —34;; to
arrive at the following equation:
Yij + 2Rij + %7‘”’ Yab Fis = 27*° Via Vo5 = 0. (A.12)
Remember that the Ricci tensor R;; is essentially a second-order partial differen-
tial operator acting on the metric +;; (which can be seen from its definition (2.39)),
thus Eq. (A.12) is basically a wave equation for the metric 7,5, with the addi-
tional appearance of mixed partial derivatives of the metric due to the presence
of R;;. We will not analyse the hyperbolicity of equation (A.12) directly, but
make an heuristic argument based on the investigation of the hyperbolicity of
the simple 2 dimensional wave equation (A.3) written as a first-order system
when adding a single mixed partial derivative.
To do this, we consider the following PDE where we have added a mixed
partial derivative (0,0,u(zx,y,t)) to Eq. (A.3):

6t8tu(m7 Y, t) - 6&66%“(3:7 Y, t) - ayayu(xv Y, t) - axayu(xa Y, t) =0. (A13)
As above, we define the state vector U and rewrite (A.13) as a first-order system:

Oz 0:0zu
U =0 |Oyu| = 00y , (A.14)
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so that
dul [0 0 1] [ou] [o 0 0 D
Oy |Oyu| =10 0 0|0z [Oyu| + [0 O 1|0y [Dyu
6tu _1 0 O_ _8tu_ 01 0 8tu
[0 0 0] [8.u]
+10 0 0f 9y |Oyu (A.15)
_1 0 0_ _8,5“_
The 9 x 9 characteristic matrix M of the system is:
0 010 0 0 0 0 O
0000O0OO0OO0OTU 0O
10 0000 0 00O
000 0O0OO0OO0OTU 0O
M=000001000 (A.16)
000010000
0000O0OO0OO0OT OO
000 0O0OO0OTO0OTU 0O
0 0 0000 1 0 0]

This matrix has the following set of eigenvalues: A\, {—1,-1,1,1,0,0,0,0,0},
which are all real. The characteristic matrix, has not, however, a set of 9
independent eigenvectors and therefore cannot be diagonalised. The first-order
system (A.15) is therefore only weakly hyperbolic. This shows that the
simple addition of a mixed partial derivative to the wave equation (A.3) renders
the resulting equation weakly hyperbolic. The appearance of mixed partial
derivatives of 7;; in (A.12) due to the presence of R;; therefore lies at the heart
of the problem that the original 3 4+ 1 evolution equations are not strongly
hyperbolic. Investigating the type of hyperbolicity is important, as the Cauchy
problem for a weakly hyperbolic equation is not well-posed [Kreiss and Lorenz
1989].

A.3 Conservation laws

There is a very important class of hyperbolic PDEs, called system of conservation
laws. We call a system of n hyperbolic PDEs a system of conservation laws if it

can written in the following form:

Opwa + 0, FP 4(w) =0, (A.17)
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where w4 are the components of the state vector w of conserved variables and
FB 4(w) the components of the matrix F(w) of fluzes, and uppercase latin
indices run from 1 to n. The hyperbolicity of the system (A.17) can be analysed
by investigating the spectrum of the characteristic matrix M, whose components

maB , are defined as follows:
dw 4 +mB 4 (w)d,wp + Sa(w) =0, (A.18)

which means we need to bring the system (A.17) in a form that resembles (A.18).
This is achieved by using the chain rule for partial derivatives, allowing us to
write (A.17) as:

Opwa + O, F*B(w)0ywp = 0, (A.19)

where 9,,, F*Z(w) is the Jacobian for the system, a (in three dimensions) 3n x 3n
block diagonal matrix with three n x n matrices along the diagonal. For instance,

0w, F1B(w) is given by:

oF ! oF!
owq U Ow,
1B . . .
Ow, F 7 (w) = : : : , (A.20)
oF!™ . 9F"
owq Owy,

and the full characteristic matrix of the system (A.17) is given by:
Ow , F1B (w) 0 0
M = 0 Ow , F28 (w) 0 (A.21)
0 0 Ow , F3B (w)




Appendix B

Implementation details of

the disc analysis thorn

The values of the twist o(r) and the tilt v(r) are computed for radial shells
specified by the user in the .par file of the simulation. The integrals are
performed by summing the values of the integrand for all grid points that fulfil
the following inequality:

shell_radius[i-1]<r[i,j,k]<shell_radius[i], where shell_radius[i] is
the radius of current shell.

In practice, we setup the three components of the angular momentum vector
of each computational cell J,, J, and J, as grid functions, and calculate their
value at every point on the grid across the processors of the simulation. If a grid
point does not fulfil the equality above, the values of the angular momentum
vector components are set to 0. The location of the BH is taken into account using
information from the PunctureTracker thorn, in the sense that the coordinates
in Eq. (4.32) are actually given by:

x = x - pt_loc_x and similarly for y and z.
This processor-local routine is scheduled nradii times, where nradii is the
total number of shells. The total angular momentum vector for each shell is
subsequently calculated using a global reduction across all processors. The
pseudocode of the computation is shown in the algorithm diagram 1. Note that
while the pseudocode in diagram 1 displays the calculation of the fluid angular
momentum in each shell as a single procedure, the actual implementation is split

in various functions due to the scheduling involved.
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Implementation details of the disc analysis thorn

Algorithm 1 Shell angular momentum calculation

1
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:
25:
26:
27:
28:

: procedure SHELL ANGULAR MOMENTUM

shell = nradii > shell is the counter for the specified shells
while shell # 0 do

for all i,j,k do > loop over all grid points

r =1z — BH, > setup coordinate system centred about BH
y=y—BH,
z=2z—BH,

r=+/22 4+ y? + 22 > radius at grid point
if shell radius[shell — 1] < rand r <= shell radius[shell] then
Jo(iyj, k) = A a(yT? — 2T%) > Eqs. (4.32) and (4.33)
Jy(i,5,k) = yya(zT0 — 2 T30)
J.(i,7,k) = /7y al(zT? — yT9)

else > For points outside shell, set J; to 0
Ju(i, 5, k) =
Jy(i, 5, k) =
J: (1,4, k) =
end if
end for
Julshell] =3, 0 Ju(i, 4, k) > Sum over domain to get J;(shell)
Jy[shell] = Z”k Jy (i, 4, k)
J,[shell] = Z” v J=(4,7, k)
Jz[shell] = J,[shell] AzAyAz > Multiply by the coarsest grid spac-

J,
ings to perform volume integration
Jy[shell] = J,[shell] AzAyAz
Jz[shell] = J,[shell] Az AyAz

shell = shell — 1 > Decrement shell counter
end while

29: end procedure

One we have calculated the fluid angular momentum components in each shell,

J;[shell], the values of the twist and tilt angles are computed for all spherical

shells. The main functions used in the calculation of the angles are presented in

pseudocode in the algorithm diagram 2. In the actual numerical implementation,

we do not use the inverse cosine to calculate the angles, as the function becomes

very inaccurate when the vectors become close to being parallel or anti-parallel,

instead we use the atan2 function which is free of this deficiency. The tilt v(r)

is then calculated using the following formula:

v(r) =tan"' | |Seu X Ipise(r)] , SBH - IDise(r) (B.1)
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Algorithm 2 Functions for tilt and twist angle calculations (see Fig. 4.1
for a visualisation of the various vectors involved)

1: function UNIT__VECTOR(V) > normalise vector

2: return v/norm(v)

3: end function

4: function ANGLE(v1,v2) > calculate angle between two vectors

5: v1 = unit__vector(v1l)

6: v2 = unit_ vector(v2)

7: a =norm(vl x v2)

8: b=vl-v2

9: angle = atan2(a, b)

10: return angle

11: end function

12: function SIGNED__ANGLE(v1,v2,v3) b calculate signed angle between vec-
tors v1 and v2, ranging from 0 to
2m

13: v1 = unit_ vector(vl)

14: v2 = unit_ vector(v2)

15: v3 = unit_ vector(v3)

16: a = norm(vl x v2)

17: b=vl -v2

18: angle = angle(vl, v2)
19: sign = v3 - (v1 x v2)
20: if sign < 0 then

21: angle = —angle + 27
22: end if
23: return angle

24: end function
25: function BH__EQ_ PLANE_ PROJECT(v1,n) > project vector vl onto the
BH equatorial plane

26: v = vl — (vl -n)/norm(n)*n

27: return v

28: end function

29: function TwisT(S,J[shell]) > calculate the twist angle

30: R =[[0,-1,0],[1,0,0],[0,0,1]]

31: Szy =[Sz, 5y, 0]

32: Sxy_go =R Sly

33: twist = signed angle(S x S;,_g90, BH eq_plane project(J[shell], S), S)
34: return twist

35: end function

where the hat indicates unit vectors.

For the twist o(r), we need to be more careful. In the formula above,

we implicitly assume that v(r) < 7,Vt, because Eq. (B.1) will always return
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angles < 7. Although it does not generally make much sense to consider angles
> 7 between two 3D vectors, because there is an up and down direction, we
are nevertheless interested in directional (signed) angles > 7 for the twist o.
The reason is that we want to be able to track cumulative twists larger than
7. In order to calculate the directional angle o(r) from the reference vector
SeH X Sxy—go to the target vector P(Jpisc(r), Seu) in a fixed sense of rotation,
we need a third reference vector that always lies above the plane spanned by the
two original vectors. As the plane in which both vectors live is constructed to be
the equatorial plane of the BH, we can therefore choose this vector to be Spy.
This information allows us (because the cross product contains this information

in the sign it returns) to calculate twist angles in the range [0, 27].
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