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Abstract

Nanowires have attracted increasing interest due to their potential applications
in electronics, optics and photonics. To understand the properties of nanowires,
it is necessary to know their electronic structure. Moreover, it is important to
understand how this electronic structure depends on the nanowire composition,
crystal structure, orientation and geometry (shape and size), as well as on the
eventual presence of some built-in deformation. The aim of this Ph.D. thesis is
to develop theoretical models and computational methodologies that are realistic
enough but also e�cient to study piezoelectric, electronic and optical properties
of nanowires.

In the �rst place, we have formulated a consistent two-dimensional (2D) theo-
retical framework to solve fully-coupled piezoelectric problems with translational
symmetry. For these problems all transverse sections of the system are in iden-
tical state, and therefore the strain and piezoelectric �elds depend only on the
in-plane coordinates. With this sole input a very general procedure, able to en-
compass a wide range of in-plane geometries, compositions, loads, charges, and
boundary conditions, is developed. This framework is here called the generalized
plane piezoelectric, GPP, problem. This problem is expected to be a good appro-
ximation to three-dimensional (3D) systems with high aspect-ratio, such as the
nanowires we are interested in. We have further developed an e�cient and �exible
numerical implementation by means of the �nite element method. By means of
it, we have examined the strain and piezoelectric �elds in various cases of lattice-
mismatched core-shell nanowires. In particular, a systematic comparison of the 2D
problem with exact 3D calculations in long �nite nanowires has been presented.
The analysis shows that the behavior of the 3D solutions (strain and electric �elds)
at distances ≥ 1.25D from the end surfaces (where D is the largest size of the cross
section) is very well approximated by the predictions of the 2D generalized plane
approaches, in both non-piezoelectric and piezoelectric nanowires.

In a second research line, a theoretical model for the study of the single-particle
electronic structure and linear optical absorption in semiconductor nanowires has
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been developed. It is based on the envelope function approximation combined
with the eight-band k · p (Kane-like) Hamiltonian. If there is a strain distribu-
tion in the system, its e�ects on the electronic structure are included by using the
Bir-Pikus Hamiltonian. When the model is applied to nanowires with an axially
symmetric (e.g., cylindrical) geometry made of zincblende and wurtzite and orien-
ted along appropriate directions, it is possible to classify the electronic states in
terms of the total (envelope plus intrinsic) angular momentum, what facilitates
the computation and interpretation of the band structures. The resulting equa-
tions have been solved by means of an eigenfunction expansion methodology. The
model has been applied to the study of the electronic structure and optical ab-
sorption of free-standing (InAs, GaAs, InN, ZnO) and core-shell (AlGaAs/GaAs
and GaAs/InAs) nanowires. In each case, a detailed study has been made of the
geometry-dependence of the energies and symmetries of the conduction and valen-
ce band states, as well as the polarization-dependent optical spectra. In the case
of core-shell nanowires, we have investigated the in�uence of the shell thickness in
both lattice-matched and lattice-mismatched nanowires. The impact of an applied
uniaxial stress on ZnO nanowires has also been investigated. Various distinctive
e�ects of the con�nement have been found in all systems for the range of very
narrow nanowires.
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Chapter 1

Introduction to Nanowires

Nanostructures have attracted steadily growing interest due to their fascina-
ting properties, as well as their unique applications relative to their bulk counter-
parts [1�3]. The ability to generate such structures is now central to the advance of
many areas in modern science and technology. There are a large number of new
opportunities that could be realized by down-sizing currently existing structures
or by making new types of nanostructures. The most successful examples are in
microelectronics, where 'smaller' has always meant greater performance ever since
the invention of transistors: higher density of integration, faster response, lower
cost, and less power consumption.

In the past decades, signi�cant progress has already been made in the �eld
of zero-dimensional (0D) and two-dimensional (2D) nanostructures (i.e., quantum
dots and quantum wells, respectively). Nanoscale one-dimensional (1D) materials
also have stimulated great interest due to their importance in basic scienti�c re-
search and potential technology applications [4,5]. Other than carbon nanotubes,
1D nanostructures (nanowires or quantum wires) are ideal systems for investi-
gating the dependence of electrical transport and mechanical properties on size
and dimensionality. They are expected to play an important role as both inter-
connects and functional components in the fabrication of nanoscale electronic and
optoelectronic devices. Many unique and fascinating properties have already been
proposed or demonstrated for this class of materials, such as higher luminescence
e�ciency [6], enhancement of thermoelectric �gure of merit [7] and lowered lasing
threshold [5].

Nanowires (NWs), by de�nition, are quasi-one-dimensional materials with a
high aspect ratio (length/diameter ratio). Generally, they would have diameters of
1-200 nm and lengths up to several tens of micrometers. One immediate consequen-
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ce is the increased surface-to-volume ratio in these nanostructures with respect to
their bulk counterparts, leading to an increasingly important role of the surface
e�ects on many system properties. Their one-dimensional geometry on the nano-
meter scale provides an extremely high surface area with a nanoscale radius of
curvature and great mechanical �exibility. The geometry also provides anisotro-
pic properties that should be interesting from the point of view of nanomaterial
science and engineering. Their length makes them easy to manipulate for device
fabrication. Owing to their nanoscale dimensions in the radial direction, they may
exhibit size con�nement e�ects that give them novel physical properties as com-
pared to bulk materials. Consequently, semiconductor nanowires have attracted
intense research interest within the past decade. A wide range of nanowire-based
electronic and photonic devices have already been developed, including nanowire
solar cells [1], photodetectors [2], light emitting diodes [3,4] and lasers [5,6].

Nanowires can be fabricated via a number of approaches. These are classi�ed
into two broad categories: top-down and bottom-up. Top-down methods begin
with bulk material, from which nanowires are patterned via a combination of li-
thography and etching, for example using electron beam lithography and plasma
etching or focused ion beam milling. Top-down methods have underpinned the
microelectronics industry to date, but as the length scale of the devices shrink
according to Moore's law, top-down methods become increasingly problematic. The
lithographic and etching techniques are resolution limited, which makes it di�cult
to de�ne smaller features, and the quality of the nanostructures diminishes. The
etching and patterning processes introduce surface defects, which adversely a�ect
nanostructure properties.

Bottom-up methods, on the other hand, involve the chemical synthesis of nano-
wires whose properties can be carefully controlled and tuned during growth. These
nanowires are themselves building blocks, which ideally could be subsequently as-
sembled into more complex nanoscale devices and architectures. This bottom-up
paradigm o�ers opportunities for the fabrication of atomically precise, complex
devices not possible with conventional top down technologies. Consequently, this
paradigm is expected to lead the next generation of nanoscale electronics and
optoelectronics. In many ways, bottom-up methods mimic the growth of living or-
ganisms, whereby macro-molecules are assembled into larger, more complex struc-
tures.

It is practical to distinguish between growth mechanisms and growth methods.
The growth mechanism is the general phenomenon that explains how the ther-
modynamics and kinetics ensure that nanowires with a �lament morphology and
single crystallinity are obtained, while the growth methods refer to the experi-
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mental chemical processes that employ the appropriate environment to synthesize
the nanowires. So it is possible to utilize di�erent chemical processes to grow
di�erent species of nanowires using the same growth mechanism. Among the di�e-
rent nanowire growth mechanisms, the vapor-liquid-solid mechanism (VLS) growth
mechanism is so far the most versatile and extensively used to grow a variety of
semiconducting nanowires. The VLS synthesis requires a catalyst. For nanowires,
the best catalysts are liquid metal droplets or nanoclusters, which can either be
self-assembled from a thin �lm by dewetting, or purchased in colloidal form and
deposited on a substrate. The source enters these nanoclusters and begins to sa-
turate them. On reaching supersaturation, the source solidi�es and grows outward
from the nanocluster. Simply turning o� the source can adjust the �nal length of
the nanowire. Morales and Lieber demonstrated that very small diameter Si and
Ge nanowires (3-20 nm in diameter) and several µm in length could be grown using
a pulsed laser to vaporize the semiconductor and Fe needed in the growth seed.
This so-called pulsed laser vaporization (PLV) method provides nanometer-sized
Fe particles and Si/Ge vapor supply. [14] It was this landmark paper that arouse
worldwide research on semiconducting nanowires. Besides PLV method, several
other methods such as metal-organic chemical vapor deposition (MOCVD), vapor
transport using solid source or molecular precursors and physical evaporation ha-
ve been used to provide the necessary vapor source to initiate the VLS growth.
Several other solution phase synthesis growth mechanisms have also been explored
to synthesize semiconductor nanowires such as the so-called solution-liquid-solid
(SLS) mechanism and the super-critical �uid-liquid-solid mechanism. Other growth
methods based on beam epitaxy of various kinds and not needing the presence of
a catalyst have also been reported. Many NWs have been grown successfully with
these methods, although without a clear understanding of the growth mechanism.

The composition, crystal structure, [15�17] growth direction, [18] and lateral shape
and size [19,20] of the nanowires dominate their electronic and optical properties. In
this work we are interested in studying from the theoretical and computational
point of view some aspects of these in�uences for the case of small semiconductor
nanowires (with a radius range of 1-120 nm). We will ultimately focus on nanowi-
res with the crystalline structure of diamond, zincblende (ZB) and wurtzite (WZ),
grown along di�erent orientations. Two types of systems will be analyzed: simple,
uniform nanowires composed of a single material (we will call these systems he-
re free-standing nanowires) and bimaterial nanowires composed of a central core
material surrounded coaxially by a shell made of a di�erent material (core-shell
nanowires).

Just for illustration purposes, below we will comment on the growth techniques
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and possible applications of selected zincblende (ZB) and wurtzite (WZ) nanowires
studied in this thesis.

Figure 1.1: InAs nanowires grown on InP by MOCVD at various temperatures. Reproduced
from Ref. [21].

1.1. Zincblende Nanowires

In this section we will review some growth techniques and possible applications
of InAs and GaAs NWs.

1.1.1. InAs Nanowires

InAs exhibits a narrow (low temperature) energy band gap of 0.43 eV [22] and
high electron mobility (33000 cm2/V s). There have been several reports on the
preparation of InAs nanowires [21,23�27]. For example, Mandl et al. [21] demonstrated
growth of InAs nanowires by MOCVD without using Au or other metal particles as
a catalyst. Instead, prior to growth, a thin SiOx layer is deposited on the substrates.
Figure 1.1 shows scanning electron microscopy (SEM) images of InAs nanowires
on InP substrates. The wires are normal to the substrate and exhibit constant
diameter along the entire height without any tapering. An increase in growth
temperature results in an increase in wire diameter and a decrease in density.
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Figure 1.2: Application of the metal decoration method in transforming printed NW parallel
array devices into E-mode and in the fabrication of NMOS inverters composed of E-mode and D-
mode NWFETs. (a) SEM image and schematic illustration of an Au-cluster-decorated InAs NW
array FET. (b) IDS-VGS curves before and after decoration. (c) Field-e�ect mobility of an InAs
NW array FET before and after decoration. (d) The voltage transfer characteristics (red) and
the corresponding gain (black) of the representative NMOS inverter. Reproduced from Ref. [28].

Applications as �eld-e�ect transistors (FETs)

The most intriguing property of III-V NWs lies in the possibility they o�er
to achieve ultrahigh carrier mobilities, making them highly attractive materials
for next generation electronic devices. Especially, recent advances of NW con-
tact printing technology have provided a useful platform for NW assembly and
integration [29]. Combining the contact printing approach with the 'metal-cluster-
decoration' method, one can obtain both depletion mode (D-mode) and enhan-
cement mode (E-mode) FETs with parallel NW arrays at well-de�ned locations.
Based on that, n-channel metal oxide-semiconductor (NMOS) inverters are cons-
tructed, with Au-decorated E-mode InAs NW FETs as the drivers and original
D-mode InAs NW FET as the loads. Figure 1.2 shows the device structure of
NW array FETs and the electrical characteristics of FETs as well as the NMOS
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inverters [28]. The transfer curve in Figure 1.2(d) demonstrates clearly that the in-
put signal is inverted with a high gain of ∼13. More importantly, due to the high
electron mobility and low operating voltage of these InAs NWs, the static power
dissipation of this III-V NW NMOS inverter is found to be as low as ∼4 µW,
which is comparable to the lowest NW NMOS reported values and far lower than
their planar counterparts.

1.1.2. GaAs Nanowires

GaAs is a direct band gap semiconductor with a band gap of 1.51 eV. [22]

It has been grown in the nanowire form by laser-assisted catalytic growth [30,31],
MBE [32,33], MOCVD [31,34,35] and template-guided approach [36]. In the MOCVD
experiment reported in Ref. [37], growth temperatures between 380◦C and 520◦C
are explored to understand the impact on morphology. Undoped or Si-doped
GaAs(111) substrates are used with gold deposited as a thin layer (0.1, 1.0, and
10 nm). Figure 1.3 shows a view of the grown samples: Figures 1.3(a), (b) and (c)
show the particle size distribution after the gold �lm is heated to 500◦C for 10
min to allow the �lm to break into droplets. The SEM images on the right, (d),
(e) and (f), present the corresponding GaAs nanowire morphology For a gold �lm
thickness of 0.1 nm, the particle size ranges from 8 to 30 nm and the nanowires
appear to be like needles with the diameter at the midpoint approximately 20-30
nm. The nanowires are not vertical, instead appear to be brush-like. When the
Au �lm thickness is increased to 1 nm, the particle size distribution is 10− 40 nm
and the nanowires are cylindrical with a diameter of 70− 80nm. Finally, for a 10
nm thick gold �lm, the resulting particles are fairly large at 80− 500 nm, yielding
correspondingly thick nanowires of 70− 400 nm in diameter. In this case, as well
as for 1 nm �lm, the nanowires are vertical on the substrate. In Fig. 1.3(f), the
presence of gold particles at the tip is evident, which con�rms the VLS mechanism.

Applications as Photodetectors and Sensors

In typical III-V NWs the large density of surface states pin the surface Fermi
energy, limiting carrier mobility. These surface states can be 'passivated' by pla-
cing a shell around the nanowire. Dai and co-workers have developed a nanowire
photodetector using a GaAs-AlGaAs core-shell nanowires. [38] The GaAs-AlGaAs
systems are found to be signi�cantly more sensitive as a photodetector than the
GaAs nanowire alone. On the other hand, Peng and co-workers have developed
single GaAs nanowires as microscopic coherent THz sensors. [39] These single GaAs
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Figure 1.3: GaAs nanowires grown by MOCVD at 420◦C. The e�ect of the gold �lm thickness
on growth morphology is shown. The images on the left show particle size distribution for gold
�lms of thickness: (a) 0.1 nm, (b) 1 nm, and (c) 10 nm. The images on the right show the
corresponding nanowire growth results. Reproduced from Ref. [37].
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nanowire detectors were fabricated using a direct laser lithographic technique and
were even used as a spectrometer to measure the transmission spectrum of a 290
GHz low pass �lter.

1.2. Wurtzite Nanowires

Here we discuss the properties and possible applications of InN and ZnO na-
nowires.

1.2.1. InN Nanowires

Group III-nitride usually grow with the wurtzite structure, although occasio-
nally zincblende nanowires are obtained. These compound semiconductors exhibit
unique electrical and optical properties, including high electron mobility, large
saturation velocity, large electric breakdown �eld, extreme chemical stability, and
direct energy band gap encompassing the entire solar spectrum [40�42]. Compared to
other III-nitrides, InN exhibits the highest electron mobility (∼ 4400 cm 2V−1s−1

at 300 K), the smallest e�ective mass, and the highest saturation velocity, making
it an excellent candidate for a new generation of nanophotonic and nanoelectro-
nic devices, including chip-level nanoscale lasers and high-speed �eld e�ect tran-
sistors. InN nanowires have been grown using quartz tube furnace [43], molecular
beam epitaxy (MBE) [44,45] and MOCVD [46]. The resulting InN nanowires someti-
mes exhibit tapered morphology, with large variations in the wire diameter along
the wire length, as shown in Fig. 1.4a. [47]. The poorly de�ned surface morphology
severely limits the structural, optical and electrical properties of InN nanowires [48].
Recently, a novel growth technique using plasma-assisted MBE with in situ de-
posited In seeding layers has been shown to achieve non-tapered and nearly ho-
mogeneous InN nanowires. [49] In this growth process, a thin (∼ 0.5 nm) In layer
is �rst deposited on the substrate at elevated temperatures, prior to the introduc-
tion of nitrogen species. Shown in Fig. 1.4b, these wires are remarkably straight,
with identical top and bottom sizes. They also exhibit a homogeneous height. The
wires are well-separated, with the c-axis oriented vertically to the Si(111) substra-
te. With increasing growth temperature, InN nanowires generally exhibit reduced
areal densities and larger diameters. Detailed high resolution TEM studies con�rm
that the entire wire exhibits a wurtzite crystal structure and is relatively free of
dislocations.
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(a) (b)

Figure 1.4: SEM images of InN nanowires grown on Si(111) at 480 oC (a) without and (b) with
the use of an in situ deposited In seeding layer. Reproduced from Ref. [49].

Methods Diameter (nm) Reference
MOCVD 40-400 [50]

MBE 20-80 [51]

MBE 50-150 [48]

VS 70-150 [52]

Table 1.1: Summary of growth methods and typical size of InN nanowires.

Applications as Light Emitting Diodes (LEDs)

To date, it has remained challenging to realize III-nitride nanowire LEDs be-
yond red color, due to the di�culty in In incorporation. In order to address this
issue, Kishino et al. [53] developed the selective area growth of InGaN nanowires,
wherein In incorporation can be enhanced by controlling the nanowire diameter.
They have further demonstrated InGaN nanowire LEDs with an emission wave-
length of ∼1.46 µm. Previously, the realization of electroluminescence emission
from InN p-i-n diodes had been limited by the presence of surface electron accu-
mulation and the lack of p-type conduction. The surface charge properties of InN
nanowires can be well controlled by tuning the growth parameters. Under optimum
growth conditions, the grown surfaces of nearly defect-free InN nanowires can be
completely free of surface electron accumulation. Conduction of p-type conduction
has been further demonstrated in Mg-doped InN nanowires. [54] The free hole con-
centration was measured to be ∼ 1017 cm3, with a mobility around 100 cm2 V s [54].
Illustrated in Fig. 1.5a is a single InN nanowire p-i-n diode, which was fabricated
using standard e-beam lithography and metallization processes [55]. Shown in Fig.
1.5b is the I-V curve measured at 77 K. It is seen that the device has a turn on
voltage around 0.7 V. The electroluminescence spectrum under a continuous wave
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operation is shown in the inset, showing a peak emission peak around 0.7 eV (1.77
µm).

(a) (b)

Figure 1.5: (a) Schematic of the InN single nanowire LED. (b) I-V characteristics of the LED,
with the inset showing the electroluminescence (EL) spectrum. Reproduced from Ref. [55].

1.2.2. ZnO Nanowires

ZnO is a direct band gap semiconductor with a band gap of about 3.4 eV. [56,57]

The relatively large band gap of ZnO makes it a material with superior features,
such as low electronic noise, high breakdown voltage, and good stability under
high temperature and large electric �eld conditions. ZnO nanowires can be either
grown independently or on certain substrates. A vertically aligned growth on a
substrate has more advantages in many applications. The anisotropy of the ZnO
crystal structure assists the growth of nanowires. The anisotropic growth of the
nanowires takes place along the polar c-axis, in the [0001] direction [58]. The basal
plane (0001) can be terminated in partially positive Zn lattice points or partially
negative oxygen lattice points. The synthesis methods of ZnO nanowires reported
so far can be roughly classi�ed as vapor phase and solution phase. Vapor phase
synthesis is probably the most extensively explored approach in the formation of
1D nanostructures [59]. A typical vapor phase synthesis method takes place in a
closed chamber with a gaseous environment. Vapor species are �rst produced by
evaporation, chemical reduction, and gaseous reaction. After that, the species are
transferred and condensed onto the surface of a solid substrate. Generally, the
vapor phase synthesis process is carried out at higher temperatures from 500 oC to
1500 oC and produces high-quality nanowires. Among the vapor phase synthesis
methods, VLS [60] and MOCVD [61] are two of the most important methods for
synthesis of ZnO nanowires. A SEM image of the ZnO NWs synthesized by the
MOCVD method are shown in Fig. 1.6. The average length ranges from 1.5 to 10
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µm and the diameters are in the range of 144 ± 8 nm. The overall average areal
density of the ZnO NWs is 18.2 ± 0.5 NWs/µm2.

Figure 1.6: SEM image of ZnO NWs synthesized by MOCVD. Reproduced from Ref. [61].

Solution phase synthesis has some advantages when compared to vapor phase
synthesis, such as low cost, low temperature, scalability, and ease of handling. Ge-
nerally, solution phase reactions occur at relatively low temperatures (< 200oC)
compared to vapor phase synthesis methods. Thus, solution synthesis methods
allow for a greater choice of substrates including inorganic and organic substrates.
Due to these advantages, solution phase synthesis methods have attracted increa-
sing interest. In solution phase synthesis, the growth process could be carried out
in either an aqueous or organic solution or a mixture of the two [62,63].

Methods Diameter (nm) Reference
CVD 25 [64]

Electrodeposition 20-30 [65]

VLS 12-31 [66]

Table 1.2: Summary of growth methods and typical sizes of ZnO nanowires.

Applications as UV Detectors

UV detection is a promising optical application of ZnO nanowires [67]. The UV
detector utilizes the change of the electric potential of the ZnO nanowires under UV
irradiation. Chen et al. [68] constructed a UV photodetector by contacting a circular
spiral structure containing ZnO nanowires with IrO2 electrodes. The I-V measu-
rement showed that the curve corresponded to the Schottky metal-semiconductor
contacts with the photo-generated current reaching 5.11 × 10−7A, under a bias
voltage of 5 V (See Fig. 1.7) Li et al. [69] proposed a method of fabricating a ZnO
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bridging nanowire structure exhibiting nanowatt UV detection. The electrodes we-
re formed by the thick ZnO layers covering the Au-catalyst-patterned areas on the
substrate, and the sensing elements consisted of the ultra long ZnO nanowires
bridging the electrodes. The device exhibited drastic changes (10-105 times) in
current under a wide range of UV irradiance (10−8 − 10−2 W cm−2). Moreover,
the detector showed fast response (rise and decay times of the order of 1 s) to UV
illumination in air.

Figure 1.7: I-V characteristics of a ZnO NW photodetector in the dark and taken under
illumination by a Xe lamp. Reproduced from Ref. [68].



Chapter 2

Theoretical Modeling of Nanowires

In Chapter 1 we have commented di�erent properties and applications of na-
nowires. To better understand those and other properties, it is important to �rst
understand the electronic and vibrational spectra of the nanowires. Particularly,
one needs to understand how these properties are modi�ed with respect to their
bulk counterparts due to the new nanowire con�gurations (in size and shape), and
to the presence of deformations (internal and external) and electric �elds. Seve-
ral theoretical methods have been developed in the past to study the electronic,
piezoelectric and optical properties of semiconductor nanostructures. Below we
summarize the most widely used approaches.

2.1. Overview of Theoretical Methods

The theoretical approaches available are roughly divided into two groups: ato-
mistic and continuum methods. We examine them in turn.

2.1.1. Atomistic Methods

In the atomistic methodology the system structure is speci�ed by giving the
chemical signature and position of all the atoms in the system and modeling the
interaction between them. From this common starting point several strategies are
possible.

� First principle or ab initio methods : First principle calculations rely solely
on the basic laws of physics. Speci�cally, this kind of calculations take into
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account all the atoms and all types of interactions for the entire system
to solve the Schrödinger equation. The advantage of this approach is that
it is conceptually straightforward, starting from the basic laws of quantum
mechanics, without the addition of adjustable parameters. The paradigm of
the atomistic methods for the study of the electronic structure is the density
functional theory (DFT). [70] However, the DFT has the following prominent
di�culties: (i) the complexity of the calculation increases exponentially with
the increase in the number of atoms; (ii) the bandgaps of insulating bulk
solids are systematically underestimated; (iii) strongly correlated systems
are poorly treated; and (iv) DFT, being an electronic ground state theory,
does not o�er a good scheme for the calculation of the electronic excitations.
In the context of nanostructures, the ab initio methods are usually used
only to calculate properties of very small size materials because larger sizes
are computationally prohibitive. As such, it would be impractical to use
�rst principle calculations to study elastic, electronic and optical properties
in large nanowires. Thus, in the nanowire research �eld one can �nd DFT
calculations only for small radius nanowires. [19,71�74]

� Semi-empirical methods : In these approaches the electronic structure of the
material is also obtained by solving the one-particle Schrödinger equation
with the explicit consideration of the atomic positions. However, contrary to
the ab initio methods, the interactions between the atoms are now simulated
by a set of judiciously chosen parameters, thus avoiding the need of self-
consistent calculations. The computation time for the calculations is now
much shorter than in the case of ab initio methods and their use has become
very common in the study of all kinds of nanostructures. One of the most
important semi-empirical atomistic methods is the tight-binding approach
which has been widely used to study electronic and optical properties of
nanowires [75�78]. One of the drawbacks of the semi-empirical methods is that
they can be used only for systems whose parameters have been obtained
previously, and that their accuracy is very sensitive to the quality of the
parameters used.

� Molecular dynamics simulations : In this approach one predicts the trajec-
tories of a system of classical particles using the Newton's laws of motion.
Using the positions and momenta, one can investigate a variety of problems
including thermal transport at the atomic level. The only required inputs
are the atomic structure and an appropriate potential model describing the
interatomic interactions. The interatomic potentials are usually obtained by
�tting experimental data or results of ab initio calculations. Some of the
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potentials more widely used include the Stillinger-Weber [79] and Terso� po-
tentials [80]. The drawback of molecular dynamics simulations is that they can
only be used for systems where the appropriate interatomic potentials have
been developed. The required computational resources and the size of the
systems amenable to simulations are other limitations. In the �eld of nano-
wires, molecular dynamics simulations have recently been used to study the
thermal conductivity of both free-standing and core-shell nanowires [81�83].

2.1.2. The Nanostructure as a Piezoelectric Continuum Body

Unlike the atomistic methods, the continuum approaches assume that matter
is continuously distributed over the material body in a (piece-wise) homogeneous
manner. There are several models that treat the system of ions as a continuum.
The most popular among them is the linear piezoelectric continuum model, which
is able to accommodate a wide range of phenomenology described by internally or
externally induced strain and electric �elds with both static and dynamic beha-
viors. The dynamic problem is intimately associated with the acoustic phonon
modes of the system. In this work we will only focus on the static piezoelectric
�elds.

Under small deformation and electrostatic approximation the strain εij and
electric �eld Em are expressed as:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.1a)

Em = − ∂φ

∂xm
. (2.1b)

where ui and φ are the elastic displacement and electric potential respectively.
Moreover, under the regime of linear piezoelectricity, the stress tensor σij and the
piezoelectric displacement vector Dm can be expressed in terms of εij and Em by
means of the standard linear constitutive relations: [84,85]

σij = Cijklεkl − enijEn , (2.2a)

Dm = emklεkl + εmnEn , (2.2b)

where Cijkl is the elastic sti�ness tensor, enij is the piezoelectric tensor, and εmn is
the dielectric tensor.
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In this approach the distribution of strain and electric �eld are obtained by
minimization of the energy stored in the medium or, equivalently, by solving the
equations of equilibrium:

∂σij
∂xi

= −fj , (2.3a)

∂Dm

∂xm
= ρ , (2.3b)

where fj and ρ are body forces and electric charge respectively.

The continuum models are attractive since the computational resources requi-
red for their solution do not scale in general with the system size. Besides, the
continuum models admit analytical solutions in highly idealized situations that
serve to develop an intuition that can be useful for the treatment of more com-
plicated structures. The continuum piezoelectric approach has been used in the
�eld of nanostructures to study piezoelectric properties of quantum dots [86,87]. In
the �eld of nanowires most of the e�orts have been addressed to model single
nanowire nanogenerators. [88,89] Recently, it has also been used to study the lattice-
mismatch induced piezoelectric properties of core-shell nanowires [90�92] using direct
three-dimensional calculations.

In Chapter 3 of this thesis we will present a theoretical two-dimensional for-
mulation for solving the fully-coupled piezoelectric problem in wire-like systems.

2.1.3. The Envelope Function Approach to the Electronic

Structure

We have also included in the category of the continuum methods the envelope
function approach for the calculation of the electronic structure, to be described
below in detail. Although this approach is ultimately based on the Schrödinger
equation containing the potential created by all the atoms in the system, and the-
refore is not strictly a continuum method, the processing of that equation within
the envelope function theory leads to an envelope function equation where the de-
tails of the microscopic potential are in part merged into a set of kinetic parameters
and in part transformed into a smoother potential pro�le. In the simplest version,
the electron is assumed to move in vacuum with a renormalized mass (known as
e�ective mass) that depends on the material. The problem is then reduced to the
calculation of a slowly varying �eld (the envelope function) whose computational
requirements are essentially independent of the nanostructure size. This makes the
method computationally very e�cient and therefore more preferable than atomistic
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calculations, particularly in nanostructures which are composed of a large number
of atoms. In the �eld of nanowires, it has been used recently to study electronic
and optical properties of both free-standing and core-shell nanowires [18,93�95]. In
this thesis we have also chosen the envelope function approximation to calculate
the electronic structure of nanowires.

The envelope function approach is usually implemented in combination with a
description of the underlying bandstructure of the constituent bulk materials as
provided by the k ·p method. In the rest of the chapter we explain in further detail:
(i) �rst, the k · p method and its speci�c form in zincblende and wurtzite crys-
tals, (ii) then, the envelope function approximation as applied to one-dimensional
systems, and (iii) �nally, the fundamentals of the matter-radiation interaction ne-
cessary to describe the optical response in nanostructures.

2.2. The k · p Method

In this section, we will start with the general formulation of the k·pmethod and
then the special formulations for bulk zincblende and wurtzite crystal structures
will follow.

2.2.1. General formulation

The standard starting point for the study of the electronic structure of a solid
is the Schrödinger-Pauli equation: [96]

HΨ(r) ≡
{
p2

2m0

+ V0(r) +
1

2

1

m2
0c

2
0

[∇V0(r)× p] · s
}

Ψ(r) = EΨ(r), (2.4)

wherem0 is the free electron mass and c0 is the speed of light in vacuum. The linear
momentum operator is p = −i~∇. The solution of the eigenvalue problem (2.4)
for the Hamiltonian operator H yields the energies E and associated wavefunctions
Ψ(r) of the electron in the solid. The potential V0(r) results from two contributions:
�rst, there is the superposition of the potentials of the ion cores forming the solid,
and second, there is the self-consistent potential that accounts for the electron-
electron interaction in a mean �eld sense. [97] The third term in the Hamiltonian H
in (2.4) represents the so-called spin-orbit interaction, where s = ~

2
σ is the electron

spin operator, which is expressed in terms of the Pauli matrices σ = (σx, σy, σz). [96]
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Therefore, Ψ(r) is actually an spinor wave function:

〈r |Ψ〉 ≡ Ψ(r) =

(
Ψ↑(r)

Ψ↓(r)

)
= Ψ↑(r)︸ ︷︷ ︸
≡〈r |Ψ↑〉

|↑〉+ Ψ↓(r)︸ ︷︷ ︸
≡〈r |Ψ↓〉

|↓〉 = 〈r|
(
|Ψ↑〉 |↑〉+ |Ψ↓〉 |↓〉

)
,

where |↑〉 and |↓〉 indicate basic spinors corresponding to sz = +1
2
and sz = −1

2
,

respectively.

In the case of a cristalline solid that we are interested in here, the potential V0(r)

re�ects, among other system-speci�cic symmetries, the translational invariance of
the crystal, and is therefore periodic, i.e.,

V0(r +Rn) = V0(r) for any Bravais lattice vector Rn . (2.5)

Then, by using the Bloch theorem, the solution of (2.4) can be written as a Bloch
function:

Ψ(r)→ Ψbk(r) =
1√
V
eik·r ubk(r) ,

E → Eb(k) ,

(2.6)

where V = NΩ is the crystal volume, formed by N unit cells of volume Ω, k is a
wave vector inside the �rst Brillouin zone (BZ), and b is the band index. The energy
spectrum of the crystal is organized in the band structure {Eb(k)}b. The Bloch
function Ψbk(r) consists of a plane wave eik·r multiplied by a (Bloch) amplitude
ubk (which is itself a spinor function) showing the same lattice periodicity as V0(r):

ubk(r +Rn) = ubk(r) ∀Rn . (2.7)

Note that, if we require the Bloch functions to be orthonormal:∫
V
drΨ∗bk(r) Ψb′k′(r) = δbb′ δkk′ ,

we are lead to the following orthogonality relation for the Bloch amplitudes with
the same k: ∫

Ω

dr u∗bk(r)ub′k(r) = Ω δbb′ .

Substituting (2.6) into (2.4) yields, for each k, the following eigenvalue problem
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for the Bloch amplitudes and energies:

H(k)ubk(r) = Eb(k)ubk(r) , (2.8)

with

H(k) =
(p+ ~k)2

2m0

+ V0(r) +
1

2

1

m2
0c

2
0

(p+ ~k) · [s×∇V0(r)] , (2.9)

which can be conveniently rewritten as:

H(k) = H(0) +
~
m0

k ·
{
p+

1

2

1

m0c2
0

[s×∇V0(r)]

}
+

~2k2

2m0

, (2.10)

with

H(0) =
p2

2m0

+ V0(r)︸ ︷︷ ︸
≡H(0)

+
1

2

1

m2
0c

2
0

[∇V0(r)× p] · s︸ ︷︷ ︸
≡Hso

. (2.11)

The usual way to deal with (2.8) starts by formally expanding ubk in terms of
a (yet unspeci�ed) orthonormal basis of lattice periodic spinor functions {χh}h:

ubk(r) =
∑
h

cbk,h χh(r) , (2.12)

which allows to reformulate (2.8) as a matrix eigenvalue problem,∑
h′

Hhh′(k) cbk,h′ = Eb(k) cbk,h , (2.13)

with:

Hhh′(k) = H
(0)
hh′ + ∆hh′ +

~
m0

k · (phh′ + ϑhh′) +
~2k2

2m0

δhh′ , (2.14)

where1

H
(0)
hh′ =

〈
χh
∣∣H(0)

∣∣χh′〉 , (2.15)

∆hh′ = 〈χh |Hso|χh′〉 =
1

2

1

m2
0c

2
0

〈χh |[∇V0(r)× p] · s|χh′〉 , (2.16)

1The following compact de�nition is used hereafter for the matrix elements of operators
O(r,p, s) between lattice periodic spinor functions:

〈χh |O(r,p, s)|χh′〉 =

∫
Ω

dr χ∗h(r)O(r,p, s)χh′(r) .



20 Theoretical Modeling of Nanowires

phh′ = 〈χh |p|χh′〉 , (2.17)

ϑhh′ =
1

2

1

m0c2
0

〈χh |[s×∇V0(r)]|χh′〉 . (2.18)

Note that the matrix Hhh′(k) depends parametrically on the wavevector k.
Therefore, a priori, its diagonalization for all the values of k would provide the
band structure {Eb(k)}b throughout the Brillouin zone as well as the corresponding
eigenvectors cbk,h which determine the Bloch amplitudes ubk. However, we must
immediately point out that the matrix Hhh′(k) has in�nite dimension, its speci�-
cation requiring therefore an in�nite number of parameters: H(0)

hh′ , ∆hh′ , phh′ and
ϑhh′ . In practice it is necessary to �nd a procedure that allows to transform (2.13)
into an e�ective eigenvalue problem of �nite dimension. One systematic procedure
to achieve this is provided by the so-called k · p method. [98] It can be summarized
as follows:

� In the �rst place, we formally assume that we have solved the eigenvalue
problem (2.8) at k = 0 (Γ-point), in the absence of spin-orbit interaction:

H(0) ub(r) =

[
p2

2m0

+ V0(r)

]
ub(r) = E

(0)
b ub(r) , (2.19)

and know the corresponding energies E(0)
b ≡ E

(0)
b (k = 0) and Bloch (spi-

nor) functions ub(r) ≡ ubk=0(r). The Γ-point Bloch functions {ub}b form
an orthogonal basis for the space of lattice periodic functions, and therefore
it seems convenient to choose in the above treatment for {χh}h the set of
orthonormal functions

{χh}h −→
{
Ub ≡

1√
Ω
ub

}
b

.

This leads to a simpli�ed form of (2.14):

Hhh′(k) −→ Hbb′(k) =

(
E

(0)
b +

~2k2

2m0

)
δbb′ + ∆bb′ +

~
m0

k · (pbb′ + ϑbb′) ,

(2.20)
where the Hamiltonian matrix has now a convenient structure: there is a
diagonal contribution, a k-independent non-diagonal spin-orbit matrix,2 and
a term linear in k. The k-dependent e�ect of the spin-orbit interaction,
carried on by the term k ·ϑbb′ , is usually much smaller than that of the term

2Sometimes it is desirable (see Sec. 2.2.2) to start the k ·p method by assuming that we know
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k ·pbb′ . Therefore, although not strictly necessary, in practice it is commonly
neglected, and only the term k · pbb′ is retained.

Since the basis functions Ub are proportional to the Γ-point Bloch functions,
their symmetry properties can be anticipated by making use of group theory.
More speci�cally, they can be labeled by the irreducible representations of the
crystal point group. This symmetry information results of utmost importance
to identify the set of independent parameters in the matrix Hbb′(k).

� The Hamiltonian matrix (2.20) is still of in�nite dimension. However, at this
point one realizes that in the majority of the studies on direct gap semicon-
ductors, the energy range of interest locates around the fundamental band
gap at the Γ-point of the band structure. Under these conditions, only the
set of bands adjacent to that gap needs an explicit and accurate description,
whereas the remaining bands, energetically remote, play a secondary role
in the �nal con�guration of the band structure around the gap. The k · p
method implements formally these considerations as follows. First, the set
of basis functions {Ub}b is divided into two subsets: The functions in subset
A, {Ua}NAa=1, correspond to the bands that we want to describe explicitly and
accurately (bands A); the remaining basis functions form the subset R and
are associated to the remote bands (bands R). Then, by means of the pertur-
bation theory introduced by Löwdin, [96,99] the eigenvalue equation associated
to (2.20) is approximated by a �nite matrix problem:

NA∑
a′=1

H̃aa′(k) C̃a′ = E C̃a (a, a′ = 1, . . . , NA) , (2.22)

with eigenvalues E → Ea(k) describing the approximate dispersion of the
A bands around the Γ-point, and eigenvectors C̃a′ → C̃ak,a′ being the coe�-

the solutions of the Γ-point problem including the spin-orbit interaction:(
H(0) +Hso

)
ub(r) =

[
p2

2m0
+ V0(r) +Hso

]
ub(r) = Eb ub(r) , (2.21)

leading to the Hamiltonian matrix:

Hbb′(k) =

(
Eb +

~2k2

2m0

)
δbb′ +

~
m0

k · (pbb′ + ϑbb′) .
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cients of the approximate expansion of the corresponding Bloch amplitude:

uak(r) ≈
NA∑
a′=1

C̃ak,a′ ua′(r) . (2.23)

The new Hamiltonian matrix elements H̃aa′(k), which di�er from those in
(2.20) by a renormalization correction due to the in�uence of the functions
of type R, can be conveniently expressed in terms of a reduced number of
parameters.

It must be noticed, however, that the partition of {Ub}b between the subsets
A y R is not unique, and depending on the way it is performed, the k ·p met-
hod gives rise to di�erent models, with di�erent degrees of complexity and
accuracy. Of course, the truncation leading to the approximation (2.22) en-
tails a reduction in the k-range of validity of the approximation that depends
ultimately on the number of bands retained in the subset A.

In the simplest case, i.e., when we can focus on a well isolated band, then
NA = 2. If, in addition, the spin-orbit can be neglected, the corresponding
two Bloch amplitudes can be taken as:

{ Ua=1(r) = U(r) |↑〉 , Ua=2(r) = U(r) |↓〉 } ,

where U(r) is here a scalar function. Then we have

uak(r) ' ua(r) =
√

ΩUa(r) a = 1, 2 ,

and the energy band adopts a doubly degenerate parabolic dispersion rela-
tion,

Ea(k) ' H̃a,a(k) = E(0) +
~2k2

2m∗
a = 1, 2 ,

where m∗ is the e�ective mass parameter, which for simplicity here has been
taken to be isotropic.

In Sec. 2.2.2 and 2.2.3 below (and in Appendix A) we detail the eight-band
(NA = 8) models that, in combination with the envelope function approxima-
tion (see Sec. 2.3), are used in this work to simulate the electronic structure
of zincblende and wurtzite nanowires.

To take into account the e�ect of a uniform deformation of the crystal (re-
presented by a constant strain tensor εij) on its electronic structure, one usually
adopts the method proposed by G. L. Bir and G. E. Pikus. [100�102] This method
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shows that, in order to include the in�uence of small deformations, we must just
add to the k · p Hamiltonian in (2.22) a new term that depends linearly with εij
(Bir-Pikus Hamiltonian): H̃aa′ → H̃aa′ +HBP

aa′ (εij). The parameters that weigh the
impact of each component of the strain on the electronic structure are the so-called
(electronic) deformation potentials (see Appendix A).

2.2.2. Application to Zincblende Semiconductors

In the band structure of zincblende semiconductors the fundamental gap is di-
rect and occurs at k = 0 (Γ-point). Around that gap there are a doubly degenerate
conduction band and three doubly degenerate valence bands. In the neighborhood
of Γ, this set of bands is well separated from the remaining, lower and higher,
bands. Therefore, the situation is favorable to treat the band structure with a k ·p
Hamiltonian in which the above mentioned bands are retained as A-bands (then
NA = 8), and the associated Γ-point Bloch amplitudes are taken as basis functions,
{Ua}8

a=1.

A more precise picture of the Bloch states around the gap can be obtained by
taking advantage of the information provided by the tight-binding method. This
method shows that, in the absence of spin-orbit interaction, the highest valence
band states result essentially from the combination of the p-orbitals of the consti-
tuent atoms (both anion and cation). The corresponding (spinor) Bloch amplitudes
will be schematically denoted:

{|X〉 |↑〉 , |X〉 |↓〉} , {|Y 〉 |↑〉 , |Y 〉 |↓〉} , {|Z〉 |↑〉 , |Z〉 |↓〉} ,

where 〈r |X〉 is a normalized periodic function which behaves under the symmetry
operations of the tetrahedral group as an atomic px function. Similar considerations
apply to 〈r |Y 〉 and 〈r |Z〉. Note that the coordinates (x, y, z) refer to the cubic
crystallographic axes:

(x,X) ‖ [100] , (y, Y ) ‖ [010] , (z, Z) ‖ [001] ,

and |↑〉 and |↓〉 indicate basic spinors with the spin quantized along Z ‖ [001]. On
the other hand, the conduction band states at Γ are formed from the s-orbitals
of the constituent atoms. The corresponding (spinor) Bloch amplitudes will be
schematically denoted:

{|S〉 |↑〉 , |S〉 |↓〉} ,



24 Theoretical Modeling of Nanowires

where 〈r |S〉 is a normalized periodic function which behaves under the symmetry
operations of the tetrahedral group in the same way as an atomic s function.

Let us consider now the matrix elements of the k·pHamiltonian at k = 0,H(0)+

Hso, within the subspace generated by the above states. The spin-independent
Hamiltonian matrix H(0) is diagonal with matrix elements:〈

X
∣∣H(0)

∣∣X〉 =
〈
Y
∣∣H(0)

∣∣Y 〉 =
〈
Z
∣∣H(0)

∣∣Z〉 =: Ev ,〈
S
∣∣H(0)

∣∣S〉 =: Ec .

On the other hand, the spin-orbit matrix ∆aa′ = 〈Ua |Hso|Ua′〉 appearing in (2.20)
is not diagonal in the basis introduced above. However, group theory considerations
indicate that the non-zero matrix elements are all expressable in terms of a single
parameter ∆0: [102]

〈X |Hso|Y 〉 =
1

2

1

m2
0c

2
0

~
2
〈X |[∇V0(r)× p]z|Y 〉 =: −i 1

3
∆0 .

The fact that the k · p Hamiltonian at k = 0, H(0) + Hso, is not diagonal is
in itself not a critical issue, but in the case of zincblende crystals it is possible to
construct, by exploiting the analogy in symmetry between the wave functions |X〉,
|Y 〉 and |Z〉 and the atomic orbitals px, py and pz, an alternative basis in which
H(0) +Hso will be diagonal. [103] In a �rst step one transforms the original basis as
follows:



|X〉

|Y 〉

|Z〉


=⇒



− 1√
2
|X + iY 〉 =: |l = 1, lz = +1〉

|Z〉 =: |l = 1, lz = 0〉

+
1√
2
|X − iY 〉 =: |l = 1, lz = −1〉


. (2.24)

Note that these states behave under the tetrahedral group symmetry operations in
the same way as the spherical harmonics Yl,lz do, and therefore we assign to them
the notation {|l, lz〉 |↑〉 , |l, lz〉 |↓〉}. The spin-orbit interaction is not yet diagonal
in this basis but, by following a standard procedure of atomic physics, one can
construct from it another basis, denoted {|j, jz〉}, as detailed in Table 2.1, in which
H(0) + Hso is diagonal. [104] The states |j, jz〉 are eigenstates of the total angular
momentum ĵ = l̂ + ŝ and its z projection ĵz.

The explicit form of the eight-band k · p Hamiltonian matrix in this basis is
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given in Appendix A. This Hamiltonian was �rst introduced by E. O. Kane for the
study of narrow gap semiconductors and is often called the Kane Hamiltonian. [105]

The Hamiltonian at k = 0, H(0) +Hso, is diagonal in the basis {Ua} of Table 2.1,
with the following eigenvalues and eigenfunctions:

Ec(= Ev + Eg) → { |U1〉 , |U2〉 } ( Γc
6 )

Ev → { |U3〉 , |U6〉 } { |U4〉 , |U5〉 } ( Γv
8 )

Ev −∆0 → { |U7〉 , |U8〉 } ( Γv
7 )

, (2.25)

where Eg is the fundamental gap of the material. In the language of group theory,
the Γ Bloch states are basis states of the following irreducible representations of
the double group associated to the zincblende point group: Γ6 , Γ8 and Γ7. In
(2.25) the auxiliary label λ = c, v indicates whether the states correspond to the
conduction or valence bands. As said above, to include the e�ect of strain on the
band structure, we follow the formulation of Bir and Pikus, [102]. The eight-band
zincblende Bir-Pikus Hamiltonian can also be found in Appendix A.

Zincblende [001]
|Ua〉 |λ, j, jz〉 jz(a)

|c +〉 |U1〉 |iS〉 |↑〉
∣∣c, 1

2
,+1

2

〉
+1

2

|c −〉 |U2〉 |iS〉 |↓〉
∣∣c, 1

2
,−1

2

〉
−1

2

|hh +〉 |U3〉 |1,+1〉 |↑〉
∣∣v, 3

2
,+3

2

〉
+3

2

|lh +〉 |U4〉
√

1
3
|1,+1〉 |↓〉+

√
2
3
|1, 0〉 |↑〉

∣∣v, 3
2
,+1

2

〉
+1

2

|lh −〉 |U5〉
√

1
3
|1,−1〉 |↑〉+

√
2
3
|1, 0〉 |↓〉

∣∣v, 3
2
,−1

2

〉
−1

2

|hh −〉 |U6〉 |1,−1〉 |↓〉
∣∣v, 3

2
,−3

2

〉
−3

2

|so +〉 |U7〉 +
√

2
3
|1,+1〉 |↓〉 −

√
1
3
|1, 0〉 |↑〉

∣∣v, 1
2
,+1

2

〉
+1

2

|so −〉 |U8〉 −
√

2
3
|1,−1〉 |↑〉+

√
1
3
|1, 0〉 |↓〉

∣∣v, 1
2
,−1

2

〉
−1

2

Table 2.1: Basis of Γ-point Bloch amplitudes to be used for the representation of the eight-band

k · p Hamiltonian for zincblende semiconductors. Several alternative notations are provided. We

have introduced the auxiliary label λ =c,v, depending on whether the state corresponds to the

conduction band or valence band, respectively. In the last column we single out the intrinsic

angular momentum projection jz(a) associated to each basis element Ua, a = 1, . . . , 8.

Figures 2.1a and 2.1b show the band structures around the Γ-point for bulk
InAs and GaAs, respectively, as calculated with the eight-band k · p Hamiltonian
presented above. The material parameters used are available in Appendix E.1. The
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fourfold degenerate valence band edge is split away of Γ into two doubly degenerate
bands. The curvature of one of them is signi�cantly larger (and is therefore called
light-hole, lh, band) than the other (heavy-hole, hh, band). The lower (doubly
degenerate) valence band is well separated due to spin-orbit interaction (and is
therefore called the spin-orbit split-o�, so, band) The doubly-degenerate conduc-
tion band is not purely parabolic (especially for InAs) due to the coupling between
the conduction and valence bands included in the Kane Hamiltonian. When com-
paring the dispersion curves along the [0001] and [111] directions, it is observed
that the dispersion is not symmetrical, as a consequence of the directions not being
exactly equivalent. This can have some consequences on the behavior of the NW
electronic structure for di�erent NW orientations, as will be seen in Chapter 5.

(a) (b)

Figure 2.1: Band structure of (a) InAs and (b) GaAs around the Γ-point, along the [001] and
[111] directions, as calculated with the eight-band k · p Hamiltonian.

2.2.3. Application to Wurtzite Semiconductors

The construction of the k · p Hamiltonian for wurtzite semiconductors follows
a procedure analogous to the one presented for zincblende crystals. As in that
case, a su�cient description of the bands around the Γ-point direct bandgap can
be constructed from the bands formed by the linear combination of the anion and
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cation s and p valence atomic functions. In the absence of spin-orbit interaction
those Γ-point Bloch amplitudes are again denoted:

{|S〉 |↑〉 , |S〉 |↓〉 , |X〉 |↑〉 , |Y 〉 |↑〉 , |Z〉 |↑〉 , |X〉 |↓〉 |Y 〉 |↓〉 , |Z〉 |↓〉} .

Now, given the anisotropic crystalline structure, the spin-independent Hamiltonian
matrix H(0) is diagonal with matrix elements: [101]〈

X
∣∣H(0)

∣∣X〉 =
〈
Y
∣∣H(0)

∣∣Y 〉 =: Ev + ∆1 ,
〈
Z
∣∣H(0)

∣∣Z〉 =: Ev ,〈
S
∣∣H(0)

∣∣S〉 =: Ec ,

and all the non-zero values of the nondiagonal spin-orbit matrix ∆aa′ can be ex-
pressed in terms of two parameters, ∆2 and ∆3: [101]

〈X |Hso|Y 〉 =
1

2

1

m2
0c

2
0

~
2
〈X |[∇V0(r)× p]z|Y 〉 =: −i 1

3
∆2 .

〈Y |Hso|Z〉 =
1

2

1

m2
0c

2
0

~
2
〈Y |[∇V0(r)× p]x|Z〉 =: −i 1

3
∆3 .

Unlike in the case of zincblende, in wurtzite materials it is not possible to
�nd a material-independent form for the basis of eigenvectors of the Hamilto-
nian H(0) + Hso. Therefore, to study the nanowires whose crystal structure is of
wurtzite type we have preferred to work out the k · p Hamiltonian in the ba-
sis representation{|l, lz〉 |↑〉 , |l, lz〉 |↓〉} introduced in (2.24), despite not rendering
H(0) +Hso to a diagonal form. The basis is detailed again in Table 2.2. Althought
these basis functions do not have a well de�ned intrinsic angular momentum, as
in the representation chosen for the zincblende, they still have a well de�ned pro-
jection, jz = lz + sz, which is therefore a convenient quantum number. This fact
has great importance for the modeling of the NW electronic structures, and will
be discussed in depth in Chapter 4.

The k · p Hamiltonian for wurtzite semiconductors was originally derived in a
series of articles by E. I.Rashba, V. I. Sheka and G. E. Pikus and hence is some-
timed named the Rashba-Sheka-Pikus (RSP) Hamiltonian. [106] In a later work, S.
L. Chuang and C. S. Chang [101] have repeated the derivation of the Hamiltonian,
expressing it in an updated notation that is currently more widespread. We report
it in the Appendix A. The energies of the band edges and corresponding eigen-
functions can be obtained by diagonalization of the k · p Hamiltonian at k = 0,
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Wurtzite [0001]
|Ua〉 |λ, lz, sz〉 jz(a)

|U1〉 |iS〉 |↑〉
∣∣c, 0,+1

2

〉
+1

2

|U2〉 |iS〉 |↓〉
∣∣c, 0,−1

2

〉
−1

2

|U3〉 |1,+1〉 |↑〉
∣∣v,+1,+1

2

〉
+3

2

|U4〉 |1,−1〉 |↑〉
∣∣v,−1,+1

2

〉
−1

2

|U5〉 |1, 0〉 |↑〉
∣∣v, 0,+1

2

〉
+1

2

|U6〉 |1,+1〉 |↓〉
∣∣v,+1,−1

2

〉
+1

2

|U7〉 |1,−1〉 |↓〉
∣∣v,−1,−1

2

〉
−3

2

|U8〉 |1, 0〉 |↓〉
∣∣v, 0,−1

2

〉
−1

2

Table 2.2: Basis of Γ-point Bloch amplitudes to be used for the representation of the eight-

band k ·p Hamiltonian for wurtzite semiconductors. In the last column we single out the intrinsic

angular momentum projection jz(a) associated to each basis element Ua, a = 1, . . . , 8.

H(0) +Hso: [101]

EΓc
7
→ { |U1〉 , |U2〉 } ( Γc

7 )

EΓv
9
→ { |U3〉 , |U6〉 } ( Γv

9 )

EΓv
7,+
→ { a |U4〉+ b |U8〉 , b |U5〉+ a |U7〉 } ( Γv

7,+ )

EΓv
7,−
→ { b |U4〉 − a |U8〉 ,−a |U5〉+ b |U7〉 } ( Γv

7,− )

, (2.26)

where
EΓc

7
≡ Ec

EΓv
9
≡ Ev + ∆1 + ∆2

EΓv
7,+
≡ Ev +

∆1 −∆2

2
+

√(
∆1 −∆2

2

)2

+ 2∆2
3

EΓv
7,−
≡ Ev +

∆1 −∆2

2
−

√(
∆1 −∆2

2

)2

+ 2∆2
3

, (2.27)

and

a =
EΓv

7,+√
E2

Γv
7,+

+ 2∆2
3

, b =

√
2∆3√

E2
Γv

7,+
+ 2∆2

3

. (2.28)

Note that the eigenvectors depend on the material through the parameters Ec, Ev,



2.2 The k · p Method 29

∆1, ∆2 and ∆3. The eight-band wurtzite Bir-Pikus Hamiltonian can also be found
in Appendix A.

Figures 2.2a and 2.2b show the band structures around the Γ-point for bulk
InN and ZnO, respectively, as calculated with the eight-band k · p Hamiltonian
presented above. The material parameters used are available in Appendix E.2.
Note that now the bandstructure consists of a single conduction band and three
separated valence bands. However, we see that the ordering of the symmetries
of the valence band edges is again material-dependent. The corresponding group
representations of valence bands for InN are Γ7,+ ,Γ9 and Γ7,− while for ZnO
are Γ9,Γ7,+ and Γ7,−. The topmost valence band edge in InN has dominant |Z〉-
symmetry while in ZnO it has dominant ( |X〉 , |Y 〉)-symmetry. We also notice that
the dispersion of the valence bands is rather anisotropic.

(a) (b)

Figure 2.2: Band structure of (a) InN and (b) ZnO around the Γ-point, as calculated with the
eight-band k · p Hamiltonian.
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2.3. The Envelope Function Approximation

The envelope function approximation is a very useful theoretical tool for the
study of the electronic structure of crystals perturbed by some kind of disturbance,
e.g. the presence of a defect, an electric and/or magnetic �eld, etc. . . [107] Likewise,
it has also proved useful in the study of the electronic structure of heterostructures
in the quantum con�nement regime. [108,109] In this work, we will use the envelope
function approximation for studying the electronic structure of nanowires, inclu-
ding the e�ects of con�nement, deformation and internal �elds.

The �rst part of this section will cover the most fundamental aspects of the
method and then we discuss its application to the heterostructure problem. Alt-
hough the envelope function approximation has a long history and an extensive
literature, we will follow here the works of M. G. Burt, which in our opinion present
it in the most logical and rigorous way. [109�111]

2.3.1. General Formulation

When the crystalline Hamiltonian H introduced in Sec. 2.2.1 is disturbed by
the presence of an additional potential W (r), the Schrödinger-like equation to be
solved becomes:

[H +W (r)] Ψ(r) = EΨ(r) . (2.29)

M. G. Burt has approached this problem by �rst formally expanding the electron
wave function Ψ(r) in terms of a (yet unspeci�ed) orthonormal basis of lattice-
periodic (spinor) functions {χh}h (as in Sec. 2.2.1) as follows: [109,110]

Ψ(r) =
∑
h

Fh(r)χh(r) . (2.30)

The expansion (2.30) is mathematically rigorous and unique provided that the
functions {Fh(r)}h appearing as 'coe�cients' have a spatial Fourier spectrum li-
mited to the �rst BZ, i.e.,

Fh(r) =
1

V
∑
k∈BZ

Fh,k e
ik·r .

It is due to the separation of scales between χh and Fh that the later are called
the envelope functions. Burt has developed in a series of papers a mathematically
rigorous and exact framework that allows to transform the eigenvalue problem
(2.29) into an in�nite system of coupled integro-di�erential equations for the set
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of envelope functions {Fh} (exact envelope function theory). [109�111] This system
is in general rather complicated and, although in principle is amenable to (heavy)
numerical solution, in practice nobody tries to follow this approach. It is more
interesting to use the Burt envelope function theory instead as a starting point for
the development of further approximations.

One way to further simplify the envelope function theory is to follow the same
methodology as in the k · p approach sketched in Sec. 2.2.1. More speci�cally, one
chooses as basis functions {χh}h the restricted set of Γ-point Bloch amplitudes
corresponding to the bands in the energy range of interest (A-bands),

{χh}h −→
{
Ua ≡

1√
Ω
ua

}NA
a=1

.

The envelope functions are now denoted as {Fh}h → {Fa}NAa=1, and the electron
wave function becomes:3

Ψ(r) =

NA∑
a=1

Fa(r)Ua(r) . (2.31)

Note that, if we require the set of electron wavefunctions {Ψλ} to be orthonormal:∫
V
drΨ∗λ(r) Ψλ′(r) = δλλ′ ,

the orthonormality of {Ua} implies the following integral relation for the envelope
functions: ∑

a

∫
V
dr

1√
Ω
F ∗λ,a(r)

1√
Ω
Fλ′,a(r) = δλλ′ .

By using (2.31), it can be shown that, under certain reasonable requirements on
the smoothness of the potential W and the envelope functions {Fa}, the later can
be approximated by the solutions of the more manageable eigenvalue problem: [109]∑

a′

[
H̃aa′(−i∇) +W (r) δaa′

]
Fa′(r) = EFa(r) . (2.32)

3Sometimes written as a multicomponent wavefunction:

Ψ(r) =

NA∑
a=1

Fa(r) |Ua〉 .



32 Theoretical Modeling of Nanowires

The di�erential operators H̃aa′(−i∇) are obtained from the k · p Hamiltonian
matrix elements H̃aa′(k) introduced in (2.22) simply by making the formal subs-
titution k → −i∇. Therefore, in (2.32) all the information about the underlying
crystal is encoded in the parameters of the associated k ·p Hamiltonian, and only
the perturbing potential W appears explicitly. If, in addition, the crystal presents
a state of inhomogeneous deformation, it has been shown that its in�uence can be
accounted for within this framework by enlarging (2.32) with the corresponding
Bir-Pikus Hamiltonian in terms of the associated strain �eld εij(r). [112,113]

This level of description of the electronic structure of the perturbed crystal can
be called the multiband (k · p) envelope function approximation.

Clearly, if W = 0 one recovers the bulk results presented in Sec. 2.2.1:

Fλ,a′ → Fak,a′ =
1√
N
eik·r C̃ak,a′ ,

Ψλ(r) → Ψak(r) =
1√
N
eik·r

NA∑
a′=1

C̃ak,a′ Ua′(r) =
1√
V
eik·r uak(r) ,

Eλ → Ea(k) .

In the simplest case, i.e., when we can focus on a well isolated band and the
spin-orbit can be neglected, then NA = 2 and the Hamiltonian operator H̃aa′(−i∇)

reduces to (see Sec. 2.2.1)

H̃a,a′(−i∇) =

[
E(0) +

~2

2m∗
(−i∇)2

]
δaa′ ,

so that we have a doubly degenerate state,

{ Ψa=1(r) = F (r)U(r) |↑〉 , Ψa=2(r) = F (r)U(r) |↓〉 } ,

where the unique scalar envelope function F (r) is the solution of the eigenvalue
problem: [

−~2∇2

2m∗
+W (r)

]
F (r) =

(
E − E(0)

)
F (r) . (2.33)

We recognize in this particular case the appealing picture that the dynamics of
the envelope function is equivalent to that of an electron of e�ective mass m∗

(which replaces the e�ect of the periodic potential V0(r) of the undisturbed crystal)
evolving in empty space under the in�uence of the potential E(0) + W (r). This
is why this single-band envelope function approximation is more widely known as
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the e�ective mass approximation.4

2.3.2. Application to Heterostructures

In this section we show how the general envelope function approximation pre-
sented above can be adapted for the study of the electronic states of heterostruc-
tures and eventually of the nanowires that we are interested in.

Figure 2.3: (a) Heterostructure consisting of two materials occupying domains A and B, separa-
ted by the interface boundary ∂Ω. The system is limited by the outer surface, outside of which we
assume there is air/vacuum. (b) Heterostructure potential E(HS)(r), given by the discontinuity
of the band-edge energies across the interface between the two materials.

Let us suppose �rst that we are interested in a heterostructure like that shown
schematically in Fig. 2.3(a). The system is in general limited spatially by the ex-
ternal interface to air/vacuum, and composed of two domains occupied by di�erent
materials (here both domains and materials are denoted by the same label, A and
B) separated by an interface ∂Ω with an arbitrary geometry. Initially we do not
consider any additional potential W imposed on the system. Even in the absence
of W , the con�guration shown in Fig. 2.3(a) implies discontinuous changes in the

4Many authors also use the name e�ective mass approximation when actually referring to the
multiband envelope function approximation described above, eventhough the multiband approach
requires more parameters than simply the e�ective masses.
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lattice-periodic potential at the interfaces. This overall potential is expected to re-
sult in a perturbed electronic structure, as compared with that of the constituent
materials. However, the exact speci�cation of that potential is already a problem
in itself, due to the presence of interfaces around which there are di�erent atomic
species whose positions di�er from those of the constituent crystals, and must be
obtained self-consistently. The exact study of the electronic structure of such a
heterostructure can only be undertaken by ab initio methods but, as soon as the
size of the system goes beyond a few nanometers, the task becomes extraordina-
rily complicated. An alternative is to attempt to take advantage of the envelope
function theory. Although the mentioned potential discontinuity does not seem to
�t well with the smoothness requirements of the envelope function approximation,
Burt has shown how it is possible to systematically incorporate this situation into
a very convenient envelope-function-like approximate calculation scheme.

We focus in the �rst place on the outer surface of the system. For most purposes
it is su�cient to assume the air/vacuum as an impenetrable region, what simply
amounts to restricting the domain of de�nition of the electron wave functions.
The situation is less clear with respect to the treatment of the interfaces between
di�erent materials. It is in principle assumed that the interface is perfectly pseu-
domorphic. The e�ects of strain in lattice-mismatched heterostructures will be
introduced later on. Lacking a precise microscopic description of the real potential
at the interface, a rather reasonable assumption is to consider an abrupt interface

approximation, in which the potential of the heterostructure (HS) is written as:

V (HS)(r) = V
(A)

0 (r)χ(A)(r) + V
(B)

0 (r)χ(B)(r) ,

where V (A,B)
0 (r) are the bulk crystalline potential of materials (A,B) and χ(A,B)(r)

are the characteristic functions of the domains occupied by materials (A,B). This
potential can then be inserted into (2.29) (with W = 0) in the place of V0. Ac-
cording to Burt, if the Γ-point Bloch functions of the semiconductors making up
the heterostructure are similar, the expansion of the wave function (2.31) can be
tried with Ua chosen to be any one such set of zone-centre eigenfunctions or some
linear combinations thereof. [109] Burt then shows in detail that, if one can further
assume that the Fa will be slowly varying, the cumbersome nonlocal terms related
to the interface are negligible and that the envelope functions of the states of the
heterostructure can be approximated by the solutions of the following system of
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equations:∑
a′

H̃
(HS)
aa′ (−i∇) Fa′(r) =

∑
a′

[
T̃

(HS)
aa′ (−i∇) + E

(HS)
aa′ (r)

]
Fa′(r) = EFa(r) .

(2.34)
Equation (2.34) is to be solved in the restricted geometrical domain de�ned by
the outer surface of the system. The operator H̃(HS)

aa′ in the eigenvalue equation
(2.34) has the structure of the k · p Hamiltonian introduced in Sec. 2.2.1, except
for the substitution k → −i∇ and the r-dependence (piecewise-constant) of the
parameters there appearing. It has been conveniently splitted into its k-dependent
(T̃ (HS)

aa′ ) and k-independent (E(HS)
aa′ ) parts. It then exhibits the standard structure

consisting of a kinetic operator and a potential pro�le determined by the elements
E

(HS)
aa′ (r) which re�ect the spatial discontinuity of the band-edge energies and spin-

orbit splitting parameters between the A and B materials:

E
(HS)
aa′ (r) =

(
E(0,A)
a δaa′ + ∆

(A)
aa′

)
χ(A)(r) +

(
E(0,B)
a δaa′ + ∆

(B)
aa′

)
χ(B)(r) . (2.35)

In Fig. 2.3(b) we have represented schematically the discontinuity of the band-
edge energies across the interface between the two materials. The energy di�erence
E

(0,B)
a − E

(0,A)
a is called the a-band-o�set and is a key parameter in determining

the con�nement e�ects in the system. It is typically determined experimentally or
calculated by ab initio methods. Finally, if there were an additional potentialW (r)

acting on the system, it could be easily incorporated by making the substitution
E

(HS)
aa′ (r) → E

(HS)
aa′ (r) + W (r)δaa′ . This theoretical framework, that was introdu-

ced in an heuristic/phenomenological manner before its rigouros justi�cation by
Burt, [114] has been used with extraordinary success in most of the studies of the
electronic structure and optical properties of semiconductor heterostructures.

However, despite the attractiveness of this scheme, an important aspect remains
to be clari�ed: The material parameters appearing in the kinetic matrix elements
T̃

(HS)
aa′ are also space-dependent and the question arises as to their placement with

respect to the di�erential operators. One necessary but not su�cient criterium
is the Hermiticity of the operator. Among the allowed possibilities, one popular
heuristic approach, used in the vast majority of published papers, requires the
symmetrization of the di�erential operators as follows:

Q(r)
∂

∂xi
→ 1

2

(
Q(r)

∂

∂xi
+

∂

∂xi
Q(r)

)
, (2.36)

Q(r)
∂

∂xi

∂

∂xj
→ 1

2

(
∂

∂xi
Q(r)

∂

∂xj
+

∂

∂xj
Q(r)

∂

∂xi

)
, (2.37)
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where Q(r) generically represents a parameter or �eld depending on the posi-
tion. Foreman has investigated this problem rigorously and arrived to the proper
ordering rules, which appear to be dependent on the k · p model used and the
orientation of the interface. [115] It is to be noted that, in some cases, the electronic
states calculated with the Foreman rules di�er signi�catively from those obtained
using the above symmetrization rules.

Finally, we are going to particularize the above treatment to the class of so-
called one-dimensional problems, where the system is lattice-periodic along one of
the directions, say Z, and the perturbing potential (if any) is independent of the
coordinate z, i.e. W = W (x, y). This implies that the system is inde�nite along
Z, and can be equivalently treated as having a �nite large length L supplemented
with periodic boundary conditions. Clearly the nanowires (NWs) we are interested
in belong to this class of problems. Within this framework, each NW electronic
state (with wave vector kz) is written as

Fa(r) =
1√
L
eikzz F (kz)

a (x, y) → Ψ(kz)(r) =
1√
L
eikzz

∑
a

F (kz)
a (x, y)Ua(r) .

∫
V
drΨ

(kz)

λ
∗(r) Ψ

(k′z)
λ′ (r) = δkzk′zδλλ′ ,

∑
a

∫
S
dx dy

1√
Ω
F

(kz)

λ,a
∗(x, y)

1√
Ω
F

(kz)
λ′,a (x, y) = δλλ′ .

The envelope function equation (2.34) adopts a reduced form for this class of
problems: The electronic structure is determined, for each wavevector kz, by the
eigenvalue equation ( by making (HS)→ (NW) ):

∑
a′

[
T̃

(NW)
aa′

(
−i ∂
∂x
,−i ∂

∂y
, kz

)
+ E

(NW)
aa′ (x, y)

]
F

(kz)
a′ (x, y) = E(kz)F

(kz)
a (x, y) .

(2.38)
The energy spectrum is organized in one-dimensional subbands E(kz). If the-
re is an additional potential, it can be incorporated by making E

(NW)
aa′ (x, y) →

E
(NW)
aa′ (x, y) +W (x, y)δaa′ .

In this thesis we have implemented this scheme to study the electronic structure
of nanowires. As we will see in Chapter 3, the nanowires can exhibit sometimes a
nonuniform deformation. It will be taken into account by adding the corresponding
Bir-Pikus Hamiltonian. In order to bypass the complications connected with the
discontinuity in the material parameters at the interfaces, in this work we shall take
the simpli�ed approach of considering that the kinetic and deformation potential
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parameters are uniform throughout the entire structure.

2.4. Radiation-Matter Interaction

To describe the basic optical properties of the nanowires we need to incorporate
the radiation-matter interaction. The theory of quantum electrodynamics describes
completely the interaction between an electromagnetic �eld and matter. However,
in the context of solid state physics it is su�cient to work within the framework of
a semi-classical description of the problem. [116] In the semi-classical approximation,
the electronic structure of the matter is described by quantum mechanics and the
electromagnetic �eld through classical electrodynamics.

In our case the material system is the single electron treated in a mean �eld ap-
proximation that we have considered in Sec. 2.2.1 and 2.3, and whose Hamiltonian
can be written generically as:

H =
p2

2m0

+ V(r) , (2.39)

where

V =


V0 for a bulk crystal (see Sec. 2.2.1)

V0 +W for a perturbed crystal (see Sec. 2.3.1)

V
(HS,NW)

0 for a heterostructure, nanowire (see Sec. 2.3.2)

.

Let us suppose that the electron in the solid is acted upon by an external elec-
tromagnetic �eld, here modeled by a monochromatic plane wave speci�ed through
its vector potential,

A(r, t) = A0 cos (q · r − ωt) ê = A0
1

2

[
e+i(q·r−ωt) + e−i(q·r−ωt)

]
ê , (2.40)

where A0 is the amplitude and ê is the unit polarization vector transverse to the
propagation wave vector q, i.e., q · ê = 0. The vector potential then satis�es the
Coulomb gauge condition, ∇ ·A = 0. The wavevector q and angular frequency ω
are related through the phase velocity, ω/|q| = vph which in turn is determined
by the background refractive index, vph(ω) = c0/n(ω). The electric and magnetic
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�elds of the wave are explicitly obtained through the following expressions:

E = −∂A
∂t

, (2.41a)

B =∇×A . (2.41b)

Within this framework, the Hamiltonian operator of an electron in the solid
(with charge −e) under the action of the electromagnetic �eld becomes, after some
manipulations, [117]

H +
e

m0

A(r, t) · p︸ ︷︷ ︸
≡Hr-m

. (2.42)

The e�ect of the electromagnetic �eld in (2.42) appears then as a perturbation to
the problem of the electron in the solid. This additional term Hr-m is called the
radiation-matter interaction Hamiltonian or, in quantum language, the photon-
electron interaction.5

2.4.1. Optical Absorption

The interaction Hamiltonian Hr-m depends harmonically with time through the
vector potential, and this dependence will be made explicit as follows:

Hr-m = H(−)
r-m e−i ωt +H(+)

r-m e+i ωt ,

with
H(±)

r-m =
1

2

e

m0

A0 e∓i q·r (ê · p) .

However, in this work we are not interested in the exact description of the time
evolution of the system determined by the total Hamiltonian (2.42). As discus-
sed below, the basic optical properties (re�exion, transmission, absorption) can
be obtained from the transition probability per unit time between two electronic
states induced by the �eld, and this probability can be conveniently calculated by
means of time-dependent perturbation theory. [102] Thus, in �rst order in Hr-m, the
probability per unit time of a transition between initial state i and �nal state f

5In the following, we shall loosely use the quantum term 'photon' here and there, but ac-
tually meaning a classical normal mode of the electromagnetic �eld. We emphasize, though,
that throughout this work we are staying within the semiclasical theory of the radiation-matter
interaction.
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can be expressed as: [102]

Wi→f =
2π

~
∣∣〈Ψf |H(−)

r-m |Ψi〉
∣∣2 δ(Ef − Ei − ~ω)

+
2π

~
∣∣〈Ψf |H(+)

r-m |Ψi〉
∣∣2 δ(Ef − Ei + ~ω) . (2.43)

The �rst term describes the absorption of a photon by excitation of an electron from
i to f with Ef = Ei + ~ω while the second term corresponds to the (stimulated)
emission of a photon with deexcitation of an electron from i to f with Ef = Ei−~ω.
Therefore, the total probability per unit time of absorption of a photon of energy
~ω is:

R(~ω) =
2π

~
∑
f

∑
i

∣∣〈Ψf |H(−)
r-m |Ψi〉

∣∣2 δ(Ef − Ei − ~ω) . (2.44)

Finally, we must link the microscopic description developed until now with the
macroscopic optical properties observed experimentally. To do this we introduce
the optical absorption coe�cient α de�ned as the number of absorbed photons per
unit volume and per unit of time with respect to the number of incident photons
per unit area per unit time [102]. This quantity, that has dimensions of inverse
length, can be related to the penetration length of the photon in the medium, lph,
in the following manner:

α =
1

lph
=

1

vphτph
=
n

c

1

τph
, (2.45)

where τph is the lifetime of the photon in the material whose inverse coincides with
the total probability per unit time of absorption of one photon R(~ω). Finally, we
get the expression:

α(~ω) =
n(ω)

c

2π

~
∑
f

∑
i

∣∣〈Ψf |H(−)
r-m |Ψi〉

∣∣2 δ(Ef − Ei − ~ω) . (2.46)

The shape of the spectral line associated to each absorption transition i → f is
here represented by a Dirac delta function. In reality, there are di�erent mecha-
nisms (radiative decay, scattering by impurities and phonons, etc..) that broaden
the spectral line. Therefore, in the practical computations presented in this work
we have assumed a phenomenological Lorentzian shape function with broadening
parameter Γ, without delving into the details of its origin, so that the absorption
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spectrum is calculated by means of the expression:

α(~ω) =
n(ω)

c

2π

~
∑
f

∑
i

∣∣〈Ψf |H(−)
r-m |Ψi〉

∣∣2 1

π

Γ/2

(Ef − Ei − ~ω)2 + (Γ/2)2
. (2.47)

Until now the treatment has been rather general. Thinking in its application
to nanowires, below we describe the calculation of 〈Ψf |H(−)

r-m |Ψi〉, which we call the
optical matrix element, in the framework of the envelope function approximation.

2.4.2. The Optical Matrix Element

The initial and �nal electron states of the optical transition in the solid will be
described within the envelope function approximation introduced in Sec. 2.3 as:

Ψi(r) =
∑
a

Fi,a(r)Ua(r) , (2.48a)

Ψf (r) =
∑
a

Ff,a(r)Ua(r) . (2.48b)

In this work, we will study only optical transitions in which the dipole approxi-
mation is valid, i.e., the wavevector of the electromagnetic �eld is negligible, q ≈ 0.
The matrix element then reduces to:

〈Ψf |H(−)
r-m |Ψi〉 =

1

2

e

m0

A0

∫
V
d3rΨ∗f (r) (ê · p) Ψi(r)

=
1

2

e

m0

A0

∑
aa′

∫
V
d3r

[
U∗a (r) (ê · p)Ua′(r)

]
F ∗f,a(r)Fi,a′(r)

+
1

2

e

m0

A0

∑
aa′

∫
V
d3r

[
U∗a (r)Ua′(r)

]
F ∗f,a(r) (ê · p)Fi,a′(r) .

The range of integration comprises the entire system volume V . By taking advan-
tage of the lattice periodicity of Ua and the limitation in the Fourier spectrum of
Fa, the matrix element can be rewritten as follows: [103]

〈Ψf |H(−)
r-m |Ψi〉 =

1

2

e

m0

A0

[
P

(inter)
fi (ê) + P

(intra)
fi (ê)

]
, (2.49)

with
P

(inter)
fi (ê) =

∑
aa′

(ê · paa′)
∫
V
d3r

1√
Ω
F ∗f,a(r)

1√
Ω
Fi,a′(r) , (2.50)
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P
(intra)
fi (ê) =

∑
a

∫
V
d3r

1√
Ω
F ∗f,a(r) (ê · p)

1√
Ω
Fi,a(r) , (2.51)

where
paa′ = 〈Ua |p|Ua′〉 =

1

Ω

∫
Ω

d3r u∗a(r)pua′(r) . (2.52)

Interestingly, the matrix element (2.52) was already introduced in the course of
the development of the k ·p method, see Eq. (2.20). We thus see that P (inter)

fi (ê) is
governed by the same parameters that appear in the k ·p Hamiltonian. In the case
of the zincblende and wurtzite semiconductors that we study in this paper these
matrix elements are ultimately determined by the Kane parameter P de�ned in
Eq. (A.4) and (A.10), respectively.

The optical matrix element (2.49) contains two contributions that have been
denoted as interband and intraband. In general, both terms contribute to any tran-
sition i→ f , but the former dominates for transitions across the band gap where
the states i and f have di�erent dominant Bloch symmetry. In this work we will
only retain the interband contribution P (inter)

fi (ê) in the calculations of the optical

absorption around the fundamental energy gap. As we see, P (inter)
fi (ê) is governed

by the overlaps of the envelope functions of the initial and �nal states, weighted
by the factors (ê · paa′). These polarization-dependent weighting factors are de-
termined by the symmetries of the Γ-point Bloch amplitudes (see Appendix B).
In turn, they determine to a great extent (as long as the corresponding envelope
function overlaps are appreciable) the light polarization selection rules and the
possible polarization-anisotropy properties of the optical absorption spectrum of
the system.

We can now particularize the interband matrix element to the class of one-
dimensional problems, in particular the nanowires (NWs) we are interested in.
The initial and �nal NW electron states of the optical transition are given by:

Ψ
(k

(i)
z )

λi
(r) =

1√
L
eik

(i)
z z
∑
a

F
(k

(i)
z )

λi,a
(x, y)Ua(r) , (2.53a)

Ψ
(k

(f)
z )

λf
(r) =

1√
L
eik

(f)
z z
∑
a

F
(k

(f)
z )

λf ,a
(x, y)Ua(r) . (2.53b)

The interband matrix element is then given by:

P
(inter)
fi (ê) = δ

k
(f)
z k

(i)
z

∑
aa′

(ê · paa′)
∫
S
dx dy

1√
Ω
F

(k
(f)
z )

λf ,a
∗(x, y)

1√
Ω
F

(k
(i)
z )

λi,a′
(x, y) .

(2.54)
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Chapter 3

Piezoelectric Properties of

Nanowires

Some dielectric crystals have the following property: when deformed by the
application of external stress, the electric dipoles in the crystal get oriented such
that the crystal develops positive and negative charges on opposite faces, resulting
in an electric �eld across the crystal. The associated potential di�erence has one
polarity or the inverse depending on the character (tensile or compressive) of the
applied stress. The electric �eld is found to be directly proportional to the applied
stress. Jacques and Pierre Curie �rst observed this e�ect in quartz crystal in 1880
and called it the (direct) piezoelectric e�ect. Piezoelectric materials also exhibit the
reverse property: When they are subjected to an external electric �eld, they develop
asymmetric displacements of anions and cations that cause a net deformation of the
crystal. In order to exhibit piezoelectricity, a crystal must be noncentrosymmetric.

Due to the intrinsic characteristics of piezoelectric materials, there are nume-
rous applications of piezelectric semiconductors that bene�t from their uses, e.g.,
in energy harvesting [118�120], sensors [121] and piezoelectric generators [82]. In pre-
vious studies, [122] it has been shown that the high surface-to-volume ratio at the
nanoscale could dramatically enhance the surface e�ects and could ultimately lead
to distinct elastic and piezoelectric properties that are signi�cantly di�erent from
their macroscopic counterparts. Recently, piezoelectric nanowires have been used
for energy harvesting [123,124] and sensing [125�127].

In this chapter we develop a theoretical model to treat fully-coupled piezoelec-
tric problems in very long or in�nite translationally invariant systems. Clearly,
this model will be particularly useful for the study the piezoelectric properties of
heterostructure core-shell nanowires. The formulation developed incorporates the
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possibility to work with di�erent material types, crystal structures, geometries,
growth directions and multiple shells. The model also allows considering di�erent
types of applied loads. The chapter is organized as follows. We start by presen-
ting the general piezoelectric problem in Sec. 3.1. The theoretical model developed
by us is presented in Sec. 3.2. The numerical applications to di�erent systems of
heterostructure nanowires are presented in Sec. 3.3.

3.1. The Three-Dimensional Piezoelectric Problem

3.1.1. General Formulation

To �x the theoretical framework and the notation adopted, we summarize �rst
the general formulation of a piezoelectric continuum problem. To specify the ne-
cessary tensors we shall use index notation throughout the thesis. The Latin in-
dices (i, j, k, l,m, n = 1, 2, 3) in the tensorial objects will label the components
with respect to a Cartesian reference frame OX1X2X3, with associated coordi-
nates (x1, x2, x3). Einstein summation convention applies unless the contrary is
explicitly stated.

(a) (b)

Figure 3.1: (a) 3D piezoelectric body. (b) Piezoelectric bimaterial system with domains D−Ω
(matrix (M) ) and Ω (inclusion (I) ), separated by the interface boundary ∂Ω.

Let us consider a piezoelectric solid ( see Fig. 3.1(a) ) that occupies a 3D domain
D delimited by the boundary ∂D, containing the free volume charge density ρ and
subjected to a body force per unit volume fi. The goal is to �nd the distribution of
the elastic displacement vector ui and the piezoelectric potential φ over the solid.
When assuming the small-deformation and electrostatic approximations, the above
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quantities can be related to the strain tensor εij and the piezoelectric �eld Em by
the expressions:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3.1a)

Em = − ∂φ

∂xm
. (3.1b)

We restrict ourselves to the linear piezoelectric regime, which allows to express
the stress tensor σij and the piezoelectric displacement vector Dm in terms of εij
and Em by means of the standard linear constitutive relations: [84,85]

σij = Cijklεkl − enijEn , (3.2a)

Dm = emklεkl + εmnEn , (3.2b)

where Cijkl is the elastic sti�ness tensor, enij is the piezoelectric tensor, and εmn is
the dielectric tensor.

The equilibrium con�guration is determined by the following set of coupled
di�erential equations:

∂σij
∂xi

= −fj , (3.3a)

∂Dm

∂xm
= ρ . (3.3b)

The �rst equation is the mechanical equilibrium equation, and the second is the
electrostatic Poisson equation.

When dealing with speci�c problems, the tensors appearing in the general for-
mulation of the piezoelectric problem are often transformed into a matrix form by
means of the Voigt notation [128]. In Appendix D.1 we give the elastic, piezoelectric
and dielectric matrices, CIK , enI and εmn (I,K = 1, . . . , 6, m,n = 1, 2, 3), for the
crystalline materials belonging to the cubic system (crystal classes T and Td).

Equations (3.1)-(3.3), together with appropriate boundary conditions speci-
�ed at the surface ∂D (with outward normal vector ni), constitute the complete
mathematical description of the 3D fully-coupled piezoelectric problem. The most
general setting of boundary conditions would allow to specify either the applied
traction force t̄j or a prescribed displacement ūj, and the impressed surface charge
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density %̄ or a �xed potential φ̄, in the following way:1

niσij = t̄j on ∂Dt and uj = ūj on ∂Du , (3.4a)

− nmDm = %̄ on ∂D% and φ = φ̄ on ∂Dφ , (3.4b)

where (∂Dt, ∂Du) and (∂D%, ∂Dφ) represent two, in general di�erent, partitions of
the boundary ∂D. The physical problems are usually modeled by a simpler situa-
tion, the simplest one being the uncharged free boundary (that would correspond
to ∂Dt = ∂D% = ∂D with t̄j = 0 and %̄ = 0).

The so-called semi-coupled approach to the piezoelectric problem consists of
neglecting the piezoelectric contribution to the stress, by imposing enij → 0 in Eq.
(3.2a), and solving the resulting purely mechanical problem given by Eqs. (3.3a)
and (3.4a). In a second decoupled step, the obtained strain εij is inserted into
Eq.(3.2b) and the electrostatic Poisson problem given by Eqs. (3.3b) and (3.4b) is
solved to give the piezoelectric �eld En and the potential φ. Of course, in the case
of a non-piezoelectric material the piezoelectric constants vanish exactly (enij = 0)
in every expression, and one has to solve separately the uncoupled mechanical and
electrostatic problems.

3.1.2. The Coherent Piezoelectric Inclusion Problem

One problem of particular interest is that of �nding the elastic and electric �elds
induced in a coherent (or pseudomorphic) lattice-mismatched bimaterial system.
Such a heterostructure consists of two domains, D − Ω and Ω, occupied by two
materials that have the same crystalline structure but di�er in their lattice pa-
rameters ( see Fig. 3.1(b) ). Quite conventionally these domains are respectively
called the matrix ( associated quantities will be hereafter labeled with (M) ) and
the inclusion ( label (I) ). Their lattice parameters are denoted by a(M)

i and a(I)
i ,

i = 1, 2, 3. The contact interface between both materials is assumed to be coherent,
i.e., dislocation-free, despite the existing lattice mismatch. This requirement is the
cause for the appearance of a certain strain and �eld distribution over the system,
that we want to calculate.

For later reference it is convenient to introduce here the so-called mis�t (or
mismatch) strain derived from the nominal lattice mismatch between the matrix

1We ignore the electric �eld on the air/vacuum region surrounding the piezoelectric medium,
which is a good approximation as long as the dielectric constant of the medium is much larger
than the vacuum dielectric permittivity.
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and inclusion materials:

ε
(misfit)
ij = ε

(misfit)
i δij =

a
(M)
i − a(I)

i

a
(I)
i

δij . (3.5)

Note that here, and in Eq. (3.8) below, the repeated index i is not summed.

The elastic constants of the heterostructure can be written as:

Cijkl(r) = C
(M)
ijkl χ

(M)(r) + C
(I)
ijklχ

(I)(r) , (3.6)

where χ(I) is the characteristic function of the inclusion de�ned as:

χ(I)(r) =

{
1 if r ∈ Ω

0 if r ∈ D− Ω
, (3.7)

and χ(M) = 1−χ(I) is the characteristic function of the matrix. Similar expressions
to Eq. (3.6) can be written for the piezoelectric constants enij(r) and dielectric
constants εmn(r) of the heterostructure.

A generalization of the classical Eshelby inclusion method, well-known in the
micromechanics literature, [129,130] provides a systematic procedure to obtain the
strain and electric �eld in the above described system. It essentially amounts to
a gedanken procedure in which the two material domains are �rst independently
constrained to a common crystal lattice, characterized by reference lattice pa-
rameters a(ref)

i , by applying appropriate stresses and charges. For later use it is
convenient to introduce here the notation:

ε
(0)
ij (r) =

a
(ref)
i − a(M)

i

a
(M)
i

δij χ
(M)(r) +

a
(ref)
i − a(I)

i

a
(I)
i

δij χ
(I)(r) . (3.8)

Note that if we take a(ref)
i = a

(M)
i then:

ε
(0)
ij (r) = ε

(misfit)
ij χ(I)(r) , (3.9)

which is the usual choice when treating inclusions in an in�nite matrix.

Following with the gedanken procedure, the now lattice-matched material do-
mains are coherently joined, and left to relax to the �nal equilibrium con�guration
under applied stresses and charges opposite to the ones in the previous step, the-
reby removing any external action on the system. We summarize here the �nal
results of this procedure:
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� First, it has to be noticed that the Eshelby procedure gives the total strain
with respect to the undeformed state of the local lattice as the sum of two
terms:

ε
(T )
ij (r) = ε

(0)
ij (r) + εij(r) . (3.10)

In the context of the coherent inclusion problem, the unknown εij(r) des-
cribes the strain state attained after relaxation from the reference lattice
con�guration, and therefore is here called the relaxation strain. Associated
to εij(r) we have a displacement �eld ui as given by Eq. (3.1a) and consti-
tutive relations as given by Eq. (3.2).

� The �nal equilibrium con�guration for the relaxation strain εij(r) and the
electric �eld Em(r) can be obtained by solving the following set of coupled
partial di�erential equations:

∂σij
∂xi

= −f (0)
j , (3.11a)

∂Dm

∂xm
= ρ(0) , (3.11b)

where the lattice mismatch induced force f (0)
i and charge ρ(0) are given by:

f
(0)
j =

∂σ
(0)
ij

∂xi
with σ

(0)
ij (r) = Cijkl(r) ε

(0)
kl (r) , (3.12a)

ρ(0) = −∂P
(0)
m

∂xm
with P (0)

m (r) = emkl(r) ε
(0)
kl (r) . (3.12b)

Note that, due to the presence of the step-like characteristic functions inside
the derivatives in Eq. (3.12), f (0)

i and ρ(0) represent actually surface force
and charge applied on the interface ∂Ω separating the inclusion and matrix.

� If the system is further loaded with force fi and/or charge ρ, and/or subjected
to arbitrary boundary conditions on the surface ∂D, these e�ects can be easily
added, by means of the superposition principle, to the inclusion problem
represented by Eq. (3.11).

In conclusion, we have shown that the particular problem of a coherent piezo-
electric inclusion can be mapped to a standard piezoelectric problem as described
in Sec. 3.1.1 by a proper introduction of equivalent forces and charges. As long
as ε(0)

ij is small, the results of the generalized Eshelby procedure will be rather

insensitive to the speci�c choice of a(ref)
i .
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3.1.3. Weak Form of the 3D Piezoelectric Problem

In Sec. 3.1.1, the piezoelectric boundary value problem has been formulated
directly in terms of the �eld equilibrium equations (3.3), as well as the boundary
conditions according to Eqs. (3.4). Together these equations form the so-called
strong form of the piezoelectric boundary value problem. The strong term means
that, since the problem is de�ned by a system of partial di�erential equations, this
approach poses high requirements on the di�erentiability of the �eld variables (the
displacements ui and potential φ in this case). Therefore, the functions used to
approximate those �eld variables have to be di�erentiable up to the order of the
partial di�erential equations. However, this problem can alternatively be repre-
sented in an integral form, in the manner to be detailed below. This formulation
arrives at an integral condition that has to be ful�lled globally over the whole pie-
zoelectric domain, which moreover involves lower order derivatives than the strong
form. For these reasons, this formulation is commonly called the weak form of the
piezoelectric problem. It should be mentioned however that strong and weak form
are equivalent formulations as long as identical solution spaces are assumed and
no discretization is performed yet. The great utility of the weak form is that, being
able to accommodate approximate solutions with weaker continuity properties and
fewer boundary constraints, it is a convenient starting point for the approximation
of the problem by various discrete numerical methods.

In general various routes can be employed to arrive to the weak formulation of
a problem. In the case of the piezoelectric problem, the most natural approach is
to start from a physical variational principle, that will lead in the �rst instance to
a set of variational integral equations (weak form of the problem), and eventually
to a set of Euler di�erential equations (strong form of the problem).

Although we are ultimately interested in a stationary, time-independent pro-
blem, it is convenient to begin with the formulation of the variational principle for
the general case of a dynamic, time-dependent problem. Then, it is necessary to
introduce �rst the kinetic energy density:

K =
1

2
ρm

∂ui
∂t

∂ui
∂t

,

where ρm is the mass density. On the other hand, we remind that the internal
energy density associated to the linear continuum piezoelectric problem contains
mechanical and electrical contributions as follows:

U =
1

2
σij εij +

1

2
DmEm .
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This state function U is the appropriate working choice when the system is to be
described in terms of the variables εij and Dm. [131] However, as seen in Sec. 3.1.1,
we have taken as primary variables the mechanical displacement ui ( therefore εij,
see Eq. (3.1a) ) and the electric potential φ ( therefore Em, see Eq. (3.1b) ). In this
approach, the relevant state function is the electric enthalpy density H, which is
formally obtained from U through the following Legendre transform: [131]

H = U −DmEm =
1

2
σij εij −

1

2
DmEm

=
1

2
Cijkl εij εkl − emklEm εkl −

1

2
εmnEmEn

=
1

2
Cijkl

∂ui
∂xj

∂uk
∂xl

+ emkl
∂φ

∂xm

∂uk
∂xl
− 1

2
εmn

∂φ

∂xm

∂φ

∂xn
, (3.13)

where explicit use has been made of the constitutive equations (3.2) and kinematic
equations (3.1).

The following step requires the de�nition of an associated Lagrangian density
in terms of the electric enthalpy H:

L
(
∂ui
∂xj

,
∂ui
∂t
,
∂φ

∂xm

)
= K

(
∂ui
∂t

)
−H

(
∂ui
∂xj

,
∂φ

∂xm

)
,

and the introduction of the Lagrangian functional of the arbitrary functions ui and
φ,

L[ui, φ; t] =

∫
D
d 3rL

(
∂ui
∂xj

,
∂ui
∂t
,
∂φ

∂xj

)
,

where D is the domain occupied by the piezoelectric body. The corresponding
action functional, associated to the time interval [t1, t2], is given by:

S[ui, φ] =

∫ t2

t1

dt L[ui, φ; t] .

The Hamilton's principle (or principle of least action) now states that the
physical solutions for the evolution of displacement and potential �elds between
times t1 and t2, ui(r, t) and φ(r, t), are determined by the condition of stationarity
of the action:

δS[ui, φ] =

∫ t2

t1

dt δL[ui, φ; t] = 0 ,
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or, more explicitly,∫ t2

t1

dt

∫
D
d 3r

{
δK
(
∂ui
∂t

)
− δH

(
∂ui
∂xj

,
∂φ

∂xj

)}
= 0 ,

under arbitrary admissible virtual in�nitesimal variations around the physical so-
lutions, δui and δφ.

If the system is acted upon by external forces/charges, the Hamilton's principle
can be generalized simply reformulating it as follows:

δS[ui, φ] +

∫ t2

t1

dt δWext =

∫ t2

t1

dt {δL[ui, φ; t] + δWext} = 0 ,

where δWext is the instantaneous external virtual work done by the external agents
when virtual variations δui and δφ are taken.

Although the further development of the general dynamic problem poses no
major problem, we proceed hereafter with the stationary case. In this case, no
time dependence arises at any point, so that we can trivially eliminate δK from δL
and ignore the integrals

∫ t2
t1
dt. The principle then states that the physical solutions

for the displacement and potential �elds, ui(r) and φ(r), are determined by the
variational condition:

−
∫
D
d 3r δH

(
∂ui
∂xj

,
∂φ

∂xj

)
+ δWext = 0 ,

or, by using (3.13):

−
∫
D
d 3r

{
σij

∂δuj
∂xi

+Dm
∂δφ

∂xm

}
+ δWext

= −
∫
D
d 3r {σij δεij −Dm δEm}+ δWext = 0 , (3.14)

under admissible virtual variations around the physical solutions, δui and δφ. We
recognize here the so-called principle of virtual work as generalized to a piezoelec-
tric problem. This principle asserts that, in the equilibrium state, the sum of the
external virtual work and the virtual work from internal stresses σij and electric
displacements Dm during an (admissible) virtual displacement δui and potential
variation δφ is zero. More speci�cally, as proposed in Sec. 3.1.1, in our case the
external work is due to applied body force fj and surface traction t̄j (on ∂Dt) and
applied charge density ρ and surface charge %̄ (on ∂D%), and therefore is to be
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written as:

δWext =

∫
D
d 3r (fj δuj − ρ δφ) +

∫
∂Dt

dS t̄j δuj −
∫
∂D%

dS %̄ δφ . (3.15)

The above equations (3.14) and (3.15) represent the so-called weak formula-
tion of the piezoelectric problem. As said above, they are formulated as a global
integral condition that moreover implies weaker requirements on the �eld variables
(only derivatives of ui φ are in principle involved). However, the formal mathema-
tical solution of the above variational equation (weak form of the problem) under
the same conditions of continuity and di�erentiability as the strong problem, is
equivalent to the enforcement of the equilibrium equations (3.3) and the boundary
conditions 3.4 (strong form of the problem). Indeed, after standard manipulations,
the variational principle (3.14) takes the form: [131]∫

D
d 3r

{
∂σij
∂xi

+ fk

}
δuj +

∫
D
d 3r

{
∂Dm

∂xm
− ρ
}
δφ

−
∫
∂Dt

dS {niσij − t̄k} δuj +

∫
∂D%

dS {nmDm + %̄} δφ = 0 , (3.16)

which can be divided into a body term:∫
D
d 3r

{
∂σij
∂xi

+ fk

}
δuj +

∫
D
d 3r

{
∂Dm

∂xm
− ρ
}
δφ = 0 , (3.17)

and a surface term:

−
∫
∂Dt

dS {niσij − t̄k} δuj +

∫
∂D%

dS {nmDm + %̄} δφ = 0 . (3.18)

When enforced under arbitrary variations, δui and δφ, compatible with the essen-
tial boundary conditions (i.e., δui = 0 on ∂Du and δφ = 0 on ∂Dφ), the variational
equations (3.17) and (3.18) lead to the di�erential equations (3.3) and boundary
conditions (3.4) characterising the strong form of the problem.

Analytical solutions to the strong form equations are rare and only for geo-
metrically simple problems. On the other hand, semi-analytic or fully numerical
approximations are always possible, but again the type of problems that can be
treated e�ciently is limited. However, the integral formulation in Eqs. (3.14) and
(3.15) can be used as a starting point to generate practical and �exible numeri-
cal approximation methods. The usual procedure consists in (i) �rst, choosing a
set of explicit and �exible enough trial functions to expand the solutions and its
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virtual variations, (ii) then substituting them into (3.14), and (iii) after some alge-
bra one obtains a set of discretized system equations that (iv) when �nally solved
give much more stable and accurate results, especially for problems of complex
geometry. One very popular approach pertaining to this philosophy is the �nite
element method (FEM). The method consists of dividing the continuum domain
D into subdomains called �nite elements. These elements are interconnected at a
�nite number of points, where unknowns are de�ned. Within each �nite element,
unknowns are uniquely de�ned by the values they assume at the element nodes, by
using interpolation functions, usually named shape functions. The introduction of
this ansatz into the integral equations leads to a set of well behaved algebraic sys-
tem equations, which can be e�ciently solved for arbitrarily complex geometries
and general boundary conditions and applied loads/charges. In this thesis we have
adopted the �nite element method to derive the numerical solution for various
piezoelectric problems. In particular, we have used the commercial implementa-
tion o�ered by the piezoelectric module of the COMSOL Multiphysics software
platform. [132]

3.1.4. Application: Bending of a GaN Nanowire

Recently, a new approach for converting nanoscale mechanical energy into elec-
tric energy has been demonstrated using piezoelectric NWs. [123,133,134] The typical
setup of a piezoelectric nanowire nanogenerator is shown in Fig. 3.2a. The theo-
retical basis of the nanogenerator and the �eld of nanopiezotronics arises from
the voltage drop created across the cross section of the NW when it is laterally
de�ected. The surface of the compressed side of the NW will exhibit a negative
potential, while the surface of the stretched side will present a positive potential.
The piezoelectric potential is created by the polarization of anions and cations
inside the NW and will remain as long as the NW is maintained in a deformed
con�guration, because the polarization charges cannot freely move.

In the previous sections we have presented the theoretical formulation of the
general 3D piezoelectric problem. Here we will apply this approach by means of
a �nite element method (FEM) implementation to model the bending of a GaN
nanowire by an AFM tip. This exercise will serve to illustrate the computational
cost in directly solving a 3D piezoelectric problem. We investigate the piezoelectric
properties in a cylindrical GaN NW using direct 3D �nite element calculations.
The NW has wurtzite structure and is oriented along the [0001] crystallographic
direction. The NW modeled has radius of R =20 nm and length of 200 nm. We
assume that the bottom end of the NW is �xed and grounded. An important
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detail of our simulation is the mechanism used to apply the force responsible of
the NW bending. Experimentally the NW is bent by an AFM tip (See 3.2a).
Since it is di�cult to realistically model this interaction in our simulation, we
have employed a simpler method and used a point force as shown schematically
in Fig. 3.2b. Finally, the problem is solved by means of the �nite element method
as implemented in the software COMSOL Multiphysics. Figure 3.3a illustrates the
piezoelectric potential created in the bent GaN NW, which shows highest/lowest
values of the in-plane potential of ± 0.63V. The cross-section is taken at the center
of the GaN NW along the axial direction. In Fig. 3.3b we present the piezoelectric
potential φ as a function of the bending force Fy. As expected, the piezoelectric
potential increases with the applied bending force.

(a) (b) (c)

Figure 3.2: (a) Sketch of the experimental set-up of a nanogenerator: A conductive AFM tip
scans over a GaN NW, resulting in mechanical de�ection and piezoelectric polarization in the
NW. (b) Simpli�ed model of the AFM tip action for the FEM simulations. (c) Geometry of the
GaN nanowire investigated with details about the mesh employed.

The meshes used in the 3D FEM calculations are created by using quadrilateral
mesh with maximum element size 5 nm (See Fig. 3.2c). The number of degrees of
freedom is 295956 and it took 5 minutes to solve the problem on personal compu-
ter, which required 5GB of memory. If one wants to perform repeated calculations
by parametric changes of, say, the force or the geometrical parameters, the compu-
tational cost scales up rapidly. We can see then that direct 3D simulation of Eq. 3.2
is computationally expensive, especially when repeated calculations are necessary,
e.g. to explore the space of parameters of the problem. In the following section we
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(a)
(b)

Figure 3.3: (a) Potential distribution across the transverse section of a GaN NW with radius 20
nm and length 200 nm under a lateral bending force of Fy=1000 nN, as obtained by using direct
3D �nite element calculations. (b) Linescan of the piezoelectric potential φ along the Y -axis for
various values of the bending force Fy.

will develop an alternative, computationally e�cient, two-dimensional approach to
solve the fully-coupled equations Eq. 3.2 for general wire-like systems.

3.2. The Generalized Plane Piezoelectric (GPP)
Problem

As we have see in the previous section, the direct simulation of fully-coupled
3D piezoelectric problems is costly in terms of the required computing time and
resources. One possibility to overcome these di�culties for a broad class of pro-
blems is to approximate the original fully-coupled 3D piezoelectric problem into a
2D piezoelectric problem, as will be explained in detail in this section.

3.2.1. Motivation and Hypothesis

Many 2D approaches to original 3D piezoelectric problems rely on the so-called
plane strain (and �eld) approximation [135�137] This approximation is applied typi-
cally to elongated systems (e.g., along the X3 axis) and assumes that u3 = 0 and
E3 = 0, and that the remaining components depend only on the in-plane coordina-
tes (x1, x2). We shall use here the term plane piezoelectric problem or approxima-
tion to refer to this situation. However, this approximation has limitations: there
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are many piezoelectric problems involving speci�c crystal structures, orientations
and loading conditions, where the medium develops out-of-plane axial (ε33) and/or
shear (ε13 and ε23) strain components and/or axial electric �eld component (E3),
resulting in more general deformation and �eld states that cannot be captured
by the plane piezoelectric approach. To overcome such limitations we propose in
this work a more general 2D approach, which is called here the generalized plane

piezoelectric (GPP) problem.

(a)

(b)

Figure 3.4: Sketch of the geometry of the generalized plane piezoelectric problem: (a) 3D
geometry and (b) 2D cross section.

More speci�cally, the class of problems adapted to the GPP approach to be
developed below correspond to the situation sketched in Fig. 3.4(a): The geometry
of the general piezoelectric body of Fig. 3.1 is further restricted here by assuming
a right cylindrical shape, oriented along the X3 axis (hereafter referred as the
longitudinal axis), and with constant cross section. The axial length of the system
is in principle �nite with magnitude L. In this geometry, the boundary delimiting D
can be naturally decomposed as ∂D = ∂Dl

⋃
∂D+

⋃
∂D−, where ∂Dl is the lateral

surface of the cylinder, and ∂D± are the two extreme sections of the body, at
x3 = ±L

2
. The transversal section of D determines a 2D domain D(2D), its boundary

∂D(2D) being determined by the transversal section of ∂Dl ( see Fig. 3.4(b) ).
In addition, we assume that the material constants are independent of the axial
coordinate x3. The system may be subjected to body or boundary loads and/or
displacement restrictions, as well as impressed charges and/or applied potentials,
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as explained in Sec. 3.1.1, but we assume that the quantities representing these
actions are also independent of the x3 coordinate.

Even after all these assumptions, due to the end e�ects, the problem is still 3D,
i.e., εij and Em depend on (x1, x2, x3). If we are interested in the exact solution
(particularly, the behavior near the ends of the system), there is no option but
to solve the genuine 3D problem. However, in many cases the system has a high
aspect ratio, i.e., L� D (say L/D & 2− 3), where D is the largest dimension of
the cross section D(2D) ( see Fig. 3.4(b) ). For such a system, the Saint-Venant's
principle of linear elasticity suggests that, far from the end sections ∂D±, it is
expected that all the cross sections along the longitudinal axis can be considered
to be at identical conditions. [138,139] Hence, the strain and electric �eld distribution
at the central part of the body can be described as invariant along the longitudinal
X3 direction and dependent at most on the in-plane coordinates (x1, x2) [85,140]:

εij = εij(x1, x2) , (3.19a)

Em = Em(x1, x2) . (3.19b)

Note that here it is not required a priori that any strain and/or electric �eld
component vanishes, in contrast to the assumptions of the standard plane piezo-
electric approximation. In the following, we examine in detail the consequences of
the ansatz (3.19).

In the �rst place, by carefully integrating the kinematical relations (3.1) with
respect to x3, under the constraint (3.19), the following general expressions of the
displacement �eld and the electric potential are obtained:

u1(x1, x2, x3) = U1(x1, x2)− 1

2

1

R1

x3
2 + θx2x3 , (3.20a)

u2(x1, x2, x3) = U2(x1, x2)− 1

2

1

R2

x3
2 − θx1x3 , (3.20b)

u3(x1, x2, x3) = U3(x1, x2) + ε‖x3 +
1

R1

x1x3 +
1

R2

x2x3 , (3.20c)

φ(x1, x2, x3) = Φ(x1, x2)− E‖x3 , (3.21)

where ε‖, R1, R2, θ, and E‖ are constants, and Ui(x1, x2) (i = 1, 2, 3) and Φ(x1, x2)

are mathematically 2D �elds. As shown below, all of these quantities will have to be
determined ultimately from the equilibrium equations subjected to the boundary
conditions. By introducing the expressions (3.20) and (3.21) into Eq. (3.1), we can
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also obtain the general form of the strain tensor:

εij(x1, x2) = ε
(U)
ij (x1, x2) + ε

(•)
ij (x1, x2) , (3.22a)

ε
(U)
ij (x1, x2)↔

∂U1

∂x1

1
2
(∂U1

∂x2
+ ∂U2

∂x1
) 1

2
∂U3

∂x1

× ∂U2

∂x2

1
2
∂U3

∂x2

× × 0

 , (3.22b)

ε
(•)
ij (x1, x2)↔

0 0 +1
2
θx2

0 0 −1
2
θx1

× × ε‖ + 1
R1
x1 + 1

R2
x2

 , (3.22c)

and the electric �eld:

E(x1, x2) =

− ∂Φ
∂x1

− ∂Φ
∂x2

0

+

 0

0

E‖

 ≡ E(Φ)(x1, x2) + E‖u3 . (3.23)

The symbol × in Eqs. (3.22b) and (3.22c) means that the corresponding matrix
elements are obtained from the symmetry of the strain tensor. Moreover, the ins-
pection of (3.22) and (3.23) provides a clear interpretation of the di�erent constants
and �elds introduced in Eqs. (3.20) and (3.21). Thus, the vector �eld (U1, U2, U3)

represents the part of the displacement which is invariant along the X3 axis. The
out-of-plane displacement U3 is commonly called the warping function. Further, Φ

is the part of the potential leading to the in-plane projection of the �eld. It will
be called hereafter the in-plane piezoelectric potential. The constants ε‖, R1, R2,
θ, and E‖ have the following meaning:

� ε‖ is the axial strain describing the relative elongation of the of the system
along the X3 axis.

� R1 (R2) is the curvature radius associated to the bending of the body in the
X1X3 (X2X3) plane.

� θ is the twist per unit length associated to the torsion of the body about the
X3 axis.

� E‖ is the electric �eld along the X3 axis.

The general form of the stress tensor and electric displacement �eld compatible
with the ansatz (3.19) are obtained by combining Eqs. (3.22) and (3.23) with the
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constitutive relations (3.2) to obtain:

σij(x1, x2) = σ
(UΦ)
ij (x1, x2) + σ

(•)
ij (x1, x2) , (3.24a)

σ
(UΦ)
ij (x1, x2) = Cijkl ε

(U)
kl (x1, x2)− enij E(Φ)

n (x1, x2) , (3.24b)

σ
(•)
ij (x1, x2) = Cijkl ε

(•)
kl (x1, x2)− enij E‖δn3 . (3.24c)

Dm(x1, x2) = D(UΦ)
m (x1, x2) +D(•)

m (x1, x2) , (3.25a)

D(UΦ)
m (x1, x2) = emkl ε

(U)
kl (x1, x2) + εmnE

(Φ)
n (x1, x2) , (3.25b)

D(•)
m (x1, x2) = emkl ε

(•)
kl (x1, x2) + εmnE‖δn3 . (3.25c)

To sum up, the condition (3.19) has been shown to determine the most ge-
neral form of the various �elds as expressed in detail by Eqs. (3.20)-(3.25). The
piezoelectric problem that complies with that condition and the consequent �eld
pattern is here called a generalized plane piezoelectric (GPP) problem. If the ma-
terials involved are not piezoelectric (i.e., enij = 0) we would encounter uncoupled
generalized plane strain (GPS) and generalized plane electrostatic problems. Note
that in a GPP problem the strain and electric �eld are independent of x3, but
the mechanical displacement and electric potential can depend on x3 as well as
on (x1, x2). If one further requires that ∂ui

∂x3
= 0 = ∂φ

∂x3
, then the standard plane

piezoelectric problem is recovered. It is worth mentioning that other authors have
used the generalized plane quali�cation for problems with a more restricted scope
than our de�ning condition (3.19) (see Ref. [140�143] ). Those problems can always
be treated as particular cases of the general situation described in this paper.

3.2.2. Equilibrium Equations

So far, we have speci�ed the structure of the �elds for the GPP problem. It is
necessary now to establish the corresponding form of the equilibrium equations.

First, we introduce the GPP form of the stress (3.24) and electric displacement
(3.25) into the general 3D equilibrium equations (3.3) to obtain:

∂σ
(UΦ)
αj

∂xα
+
∂σ

(•)
αj

∂xα
= −fj(x1, x2) , (3.26a)
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∂D
(UΦ)
α

∂xα
+
∂D

(•)
α

∂xα
= ρ(x1, x2) . (3.26b)

Hereafter, the Latin indices continue to run over all spatial directions, i.e., i, j, k, l,
m, n = 1, 2, 3, whereas Greek indices will run only over in-plane directions, i.e.,
α, β = 1, 2. Note that σ33 and D3 do not appear in the equilibrium equations, since
they are determined by the remaining components, as can be shown by making
use of the inverse constitutive equations relating ε33 and E3 to σij and Dm.

Finally, after inserting Eqs. (3.22) and (3.23) into Eqs. (3.24) and (3.25), one
gets expressions for the stress tensor and electric displacement vector in terms of
the �elds Ui and Φ. These expressions can be entered into Eq. (3.26) to produce
the GPP problem equilibrium equations, that read in a compact matrix form as:

L̂11 L̂12 L̂13 L̂14

L̂21 L̂22 L̂23 L̂24

L̂31 L̂32 L̂33 L̂34

L̂41 L̂42 L̂43 L̂44



U1

U2

U3

Φ

 =


−f (•)

1

−f (•)
2

−f (•)
3

ρ(•)

 , (3.27)

where the matrix elements L̂jk are linear di�erential operators de�ned as:

L̂jk =
∂

∂xα
Cαjβk

∂

∂xβ
,

L̂j4 =
∂

∂xα
eβ,αj

∂

∂xβ
,

L̂4k =
∂

∂xα
eα,βk

∂

∂xβ
,

L̂44 = − ∂

∂xα
εαβ

∂

∂xβ
,

(3.28)

the inhomogeneous terms f (•)
j are modi�ed body forces given by

f
(•)
j = fj +

∂σ
(•)
αj

∂xα
, (3.29)

and ρ(•) is a modi�ed charge density given by

ρ(•) = ρ− ∂D
(•)
α

∂xα
. (3.30)

The above equations can be applied for inhomogeneous material properties, but
remember that in the context of the GPP problem they may depend at most on
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the in-plane coordinates, i.e., Cijkl(x1, x2), enij(x1, x2) and εmn(x1, x2).

For general anisotropic piezoelectric materials, the out-of-plane displacement
(warping function) U3 is coupled to the in-plane displacements Uα and potential
Φ. However, in the case of materials for which CI4 = 0 = CI5 (for I = 1, 2, 6)
and eβ4 = 0 = eβ5 (for β = 1, 2), one gets that L̂α3 = 0 = L̂3α (α = 1, 2) and
L̂43 = 0 = L̂34, and therefore the equilibrium equations simplify as follows:

L̂11 L̂12 0 L̂14

L̂21 L̂22 0 L̂24

0 0 L̂33 0

L̂41 L̂42 0 L̂44



U1

U2

U3

Φ

 =


−f (•)

1

−f (•)
2

−f (•)
3

ρ(•)

 , (3.31)

the di�erential equation related to the warping function U3 being decoupled from
the in-plane problem associated to (U1, U2,Φ). The above requirements on the ma-
terial constants hold for speci�c situations of interest, such as the case of diamond-
and zincblende-based systems with their longitudinal axis along the [001] direction
(see Appendix D.2) and wurtzite-type systems along the [0001] direction. There
are other interesting cases, such as the diamond- and zincblende-based systems
with axis along the [111] direction, that do not comply with the above material
symmetry requirements (see Appendix D.2) and they exhibit a warping function
fully-coupled into the piezoelectric problem as illustrated by the numerical results
in Sec.3.3.

As commented at the end of Sec. 3.2.1, in the case of general non-piezoelectric
materials with enij = 0, one has to deal separately with the uncoupled 2D elec-
trostatic and elastic problems. The electrostatic problem amounts to solve the 2D
Poisson equation. In the absence of body and surface charges or potentials, though,
one is left only with a purely elastic generalized plane strain (GPS ) problem [144]:L̂11 L̂12 L̂13

L̂21 L̂22 L̂23

L̂31 L̂32 L̂33


U1

U2

U3

 ≡
−f

(•)
1

−f (•)
2

−f (•)
3

 . (3.32)

As before, there exists, in general, the coupling between (U1, U2) and U3. Only for
materials with CI4 = 0 = CI5 (for I = 1, 2, 6), the equilibrium equations become
uncoupled and simplify as:L̂11 L̂12 0

L̂21 L̂22 0

0 0 L̂33


U1

U2

U3

 ≡
−f

(•)
1

−f (•)
2

−f (•)
3

 . (3.33)
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3.2.3. Boundary Conditions

In this section we de�ne appropriate boundary conditions for the GPP problem.
Given the special geometry displayed in Fig. 3.4, we must distinguish between those
conditions that must be satis�ed at the lateral surface ∂Dl from those at the end
surfaces ∂D± of the piezoelectric body.

Although more general settings are possible, we examine here the boundary
conditions corresponding to �xing the tractions and charges at the surfaces (Neu-
mann−type boundary conditions).

Lateral Surface Boundary Conditions

It is assumed here that the problem requires the speci�cation on the lateral
surface of the applied traction force t̄i and impressed surface charge density %̄.
When working on the 2D cross section of the problem, this implies the following
requirements:

nασαj = t̄j , (3.34a)

−nαDα = %̄ , (3.34b)

to be satis�ed on the boundary ∂D(2D).

End Surface Boundary Conditions

According to the Saint-Venant's principle, originally stated for an elastic pro-
blem, [139] the point-wise speci�cation of the imposed tractions at the end surfaces
of a �nite but long body is only necessary if the adjacent regions are to be studied.
Far from those extreme sections, at the central region of the body, it is expected
that the in�uence of the detailed distribution of end tractions becomes negligible
and the solution of the problem is only a�ected by the total force and torque. [85]

Therefore, to specify completely the GPP problem it should be enough to prescribe
the resulting force F = (F1, F2, F3) and torque M = (M1,M2,M3), as well as the
net charge Q, on the end surfaces:∫

D(2D)

dx1dx2 σ3j(x1, x2) = Fj , (3.35a)

∫
D(2D)

dx1dx2 ηjβk xβ σ3k(x1, x2) = Mj , (3.35b)
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−
∫
D(2D)

dx1dx2D3(x1, x2) = Q , (3.35c)

where ηjlk is the completely antisymmetric tensor. Note that within the GPP
problem the same boundary conditions must apply at both extreme surfaces, and
indeed to every transverse section of the system, as expressed by (3.35).

3.2.4. Overview

The theoretical framework de�ned by the set of equations Eq. (3.20)- (3.30),
together with boundary conditions (3.34) and (3.35), constitutes the mathema-
tically 2D generalized plane piezoelectric (GPP) problem. Since f (•)

i and ρ(•) de-
pend implicitly on ε‖, R1, R2, θ, and E‖, the non-homogeneous system of coupled
partial di�erential equations (3.27) must be solved under appropriate boundary
conditions, in a self-consistent manner, for the unknown in-plane �elds Ui(x1, x2)

and Φ(x1, x2) and constants (ε‖, R1, R2, θ, E‖). We note that, although not carried
further on here, the solutions of the homogeneous version of system (3.27) can be
conveniently studied by using the Stroh formalism [84].

The GPP problem has been introduced as a good approximation, in the sense of
the Saint-Venant's principle, for the central region of 3D �nite (length L) but high
aspect-ratio systems, whose transverse section, material properties, loads (forces
and charges) and boundary (and interface) conditions are translationally invariant
along their longitudinal direction. Alternatively, if the limit L → ∞ is taken, the
above approximation becomes an exact picture for the whole system, and therefore
the GPP can also be viewed as an exact representation for an idealized in�nite

system with homogeneous physics along the longitudinal direction.

3.2.5. Weak Form of the GPP Problem

In this section we are going to particularize the weak formalism of Sec. 3.1.3
taking into account the speci�c features of the GPP problem. By taking into
account the particular form of ui and φ within the GPP problem, their variations
adopt the form:

δu1 = δU1(x1, x2)− 1

2
δ

(
1

R1

)
x3

2 + δθx2x3 , (3.36a)

δu2 = δU2(x1, x2)− 1

2
δ

(
1

R2

)
x3

2 − δθx1x3 , (3.36b)
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δu3 = δU3(x1, x2) + δε‖x3 + δ

(
1

R1

)
x1x3 + δ

(
1

R2

)
x2x3 , (3.36c)

δφ = δΦ(x1, x2)− δE‖x3 . (3.37)

There are associated variations of the strain �eld:

δεij(x1, x2) = δε
(U)
ij (x1, x2) + δε

(•)
ij (x1, x2) , (3.38)

and the electric �eld:

δEm(x1, x2) = −δ∂Φ(x1, x2)

∂xm
+ δm,3 δE‖ . (3.39)

Now we analyze the variational equations of the piezoelectric problem under
the variations compatible with the GPP problem. On one hand, when taking into
account the variations (3.36) and (3.37), and the special form of the stress and
electric diplacement �elds within the GPP problem, the body term (3.17) imme-
diately leads to the equilibrium equations (3.26). We turn now to the surface term
(3.18). As said before, we only treat here the case of pure natural (Neumann)
boundary conditions, and therefore, in the expression (3.18) we can make

∂Dt → ∂D and ∂D% → ∂D ,

and the virtual variations δui and δφ are unrestricted. Moreover, according to the
geometry described in Fig. 3.4(a), the surfaces are as:

∂D = ∂Dl ∪ ∂D− ∪ ∂D+ ,

which leads to a corresponding separation of the variational equation (3.18) into
three associated equations. The enforcement of the variational equation on the
lateral surface ∂Dl also leads to the boundary conditions (3.34).

The variational equations on the end surfaces ∂D− (i.e., at x3 = −L
2
) and

∂D+ (i.e., at x3 = +L
2
) require a more careful treatment. Let us in principle

assume that there is a distribution of tractions t̄(±)
j (x1, x2) and surface charge

density %̄(±)(x1, x2) applied on the surface ∂D±. The enforcement of the variational
equations on ∂D± with respect to variations δUi and δΦ leads immediately to the
condition:

t̄
(−)
j (x1, x2) = −t̄(+)

j (x1, x2) and %̄(−)(x1, x2) = −%̄(+)(x1, x2) ,
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which restricts the types of applied end loads/charges compatible with the GPP
problem. Now, the analysis of the variational equation on ∂D± with respect to
variations δ

(
1
R1

)
, δ
(

1
R2

)
, δθ, δε‖ and δE‖ gives:2{∫

D(2D)

dx1 dx2 x1 σ33(x1, x2)− (−M2)

}
δ

(
1

R1

)
= 0 , (3.40a){∫

D(2D)

dx1 dx2 σ31(x1, x2)− F1

}
δ

(
1

R1

)
= 0 , (3.40b){∫

D(2D)

dx1 dx2 x2 σ33(x1, x2)− (+M1)

}
δ

(
1

R2

)
= 0 , (3.40c){∫

D(2D)

dx1 dx2 σ32(x1, x2)− F2

}
δ

(
1

R2

)
= 0 , (3.40d){∫

D(2D)

dx1 dx2 [x2 σ31(x1, x2)− x1 σ32(x1, x2)]− (−M3)

}
δθ = 0 , (3.40e){∫

D(2D)

dx1 dx2 σ33(x1, x2)− F3

}
δε‖ = 0 , (3.40f){

−
∫
D(2D)

dx1 dx2D3(x1, x2)−Q
}
δE‖ = 0 , (3.40g)

where
Fj =

∫
∂D+

dx1dx2 t̄
(+)
j (x1, x2)

is the total force applied on ∂D+,

Mj =

∫
∂D+

dx1dx2 ηjβk xβ t̄
(+)
k (x1, x2) ,

with ηjlk the completely antisymmetric tensor, is the total torque applied on the
system, and

Q =

∫
∂D+

dx1dx2 %̄
(+)(x1, x2)

is the total surface charge on ∂D+.

The enforcement of Eqs. (3.40) leads to the boundary conditions (3.35) and
this shows that, in agreement with the Saint-Venant principle, in order to fully
specify the GPP problem it is not necessary to specify in detail the distributions
t̄
(+)
j (x1, x2) and %̄(+)(x1, x2) but it su�ces to give the global values Fj, Mj and Q.

2We take into account here that ∂D+ = D(2D).
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This closes the weak formulation of the GPP problem. In the calculations shown
below we have employed a �nite element method based on that formulation as
implemented in the COMSOL Multiphysics software platform. [132] However, the
2D modules of this platform only provide the plane piezoelectric approximation.
Therefore, with the help of the presented theoretical formalism we have adapted the
software to include the solution for the warping �eld U3(x1, x2) and the parameters(
ε‖,

1
R1
, 1
R2
, θ, E‖

)
.

3.3. Application to Core-Shell Nanowires

To illustrate the use and utility of the generalized plane (GPS and GPP) ap-
proaches, we present in this section numerical results of the strain and electric
�eld distributions in a lattice-mismatched core-shell nanowire (CSNW), a system
which has been studied extensively in recent years [145�151].

In this work we have opted to solve numerically for the strain and electric
�elds by using the �nite element method (FEM), as implemented in the COMSOL
Multiphysics software platform. [132,152,153] We will �rst study the purely elastic pro-
blem as manifested in Ge/Si(111) and Si/Ge(111) core-shell nanowires. [149,154�156]

Further applications of the developed model are illustrated by studying the In-
concentration dependence of the strain distribution in WZ [0001] InN/InxGaN1−x

CSNWs and the thermoelastic properties of Ge/Si(111) CSNWs. Finally, we will
consider a system that exhibits reasonably strong piezoelectric e�ects, namely the
zincblende InN/GaN(111) and GaN/InN(111) core-shell nanowires, which have
also been studied recently. [157�161]

We have performed 2D generalized plane calculations according to the frame-
work introduced in Sec. 3.2 for a nanowire of radius RNW (to be precisely speci�ed
below). In addition, in order to test the quality of our GPS/GPP approaches, in
both cases we have also performed fully 3D computations for a �nite but long
nanowire. The nanowire length L is chosen such that the system has a high as-
pect ratio, i.e., L/(2RNW)� 1. The later calculations (more precisely, the results
at the central cross section) are then compared with those obtained from the 2D
GPS/GPP approaches. From the comparison, we can ascertain under what cir-
cumstances the generalized plane approaches represent a good approximation to
the central part of 3D systems, thereby quantifying their accuracy and limitations.
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(a)
(b)

Figure 3.5: Geometry of the core-shell nanowire investigated, with the meshes employed in
the FEM calculations. (a) The hexagonal cross section is characterized by the values of the
core radius Rcore and the width of the shell wshell. The total radius of the nanowire is then
RNW = Rcore +wshell. (b) Lateral view of the �nite nanowire considered for the 3D simulations.
The length used is L = 8RNW.

3.3.1. Elasticity Problem in Core-Shell Nanowires

Ge/Si Core-Shell Nanowires

First, we will apply the GPS approach to study a purely elastic problem co-
rresponding to a Ge/Si(111) core-shell nanowire. The core is made of Ge and the
shell is made of Si. The geometry of the nanowire is shown in Fig. 3.5. The cross
section is assumed to be hexagonal and it is characterized by the values of the core
radius Rcore and the width of the shell wshell. The total radius of the nanowire is
then RNW = Rcore +wshell. Within the linear elastic continuum theory the distribu-
tion of the strain �elds does not depend on the absolute dimensions but on their
relative size, in this case on wshell/Rcore.

Ge and Si have diamond crystalline structure and therefore exhibit macroscopic
cubic Oh symmetry, which is fully taken into account in the following calculations.
We have chosen the longitudinal axis X̂3 ≡ Z of the nanowire to be along the
[111] crystallographic direction, whereas the axes X̂1 ≡ X and X̂2 ≡ Y are taken
along [101̄] and [1̄21̄] directions, respectively. The matrix of elastic constants ĈIK
corresponding to the above axes can be found in Appendix D.2. It is apparent
there that, since Ĉ14, Ĉ24(= −Ĉ14) 6= 0, it is not possible the decoupling leading
to Eq. 3.33, and it is expected a nonvanishing warping function U3 coupled to the
in-plane deformation (U1, U2).
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Figure 3.6: Linescans of the strain components εrr, εφφ and εzz along the axis of a �nite
Ge/Si(111) nanowire, as obtained from the 3D calculations. Note that εrr = εφφ along the
nanowire axis. For comparison the results corresponding to an in�nite nanowire as obtained by
means of the GPS approach are also displayed.

We assume that the nanowire is free from external traction and body forces
(i.e., t̄j, Fj,Mj, fj = 0), so that the strain is solely induced by the internal lattice
mismatch between the core (inclusion, I) and shell (matrix, M) regions, through
the body force f (0)

i given by Eq. (3.12a). The lattice parameters and elastic cons-
tants used in the calculations can be found in Appendix E. For cubic materials
there is only one lattice parameter, ai → a0, and therefore the mis�t strain is
diagonal, with magnitude ε(misfit) = −0.039 (3.9%). The negative sign indicates
that the strain is compressive.

We have taken the following numerical values for the geometry parameters
(see Fig. 3.5): Rcore = 60 nm, wshell 40 nm, so that RNW = Rcore + wshell = 100

nm. Therefore, we have wshell/Rcore = 2/3. For the 3D calculations we have taken
L = 8RNW, so that the aspect ratio is L/(2RNW) = 4, which will be shown to
represent well the limiting case L/(2RNW) � 1. Note that the output of our
numerical calculations is the displacement associated to the relaxation strain εij
with respect to the reference lattice a(ref)

0 (see discussion in Sec. 3.1.2). In the
numerical calculations below we have taken as reference lattice that speci�ed by
a

(ref)
0 = (a

(M)
0 + a

(I)
0 )/2. In the 3D-2D comparisons of Figs. 3.6 and 3.7 it has been

represented the relaxation strain εij because it is the direct output from the FEM
calculations. We note that, although the concrete numerical values obtained for εij
depend on the choice of a(ref)

0 , the relevant total local strain ε(T )
ij can be recovered

eventually by adding the strain associated to the reference lattice ε(0)
ij , as shown in
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Eq. (3.10).

The strain components to be analyzed below are referred to the system of axes
O X̂1X̂2X̂3 presented in Fig. 3.5, although for the discussion below it is preferable
to express them in cylindrical coordinates (r, φ, z) rather than in Cartesian ones
(see Appendix D.3).

In the �rst place, we display in Fig. 3.6 the linescans of the relaxation strain
components εrr, εφφ and εzz along the Z axis of the �nite nanowire, as obtained with
the 3D calculations. For comparison, the values obtained by means of the 2D GPS
calculations at the center of the NW cross section are also indicated as horizontal
lines. The GPS approach gives an axial strain ε‖ = −0.00787 and no bending (the
calculated maximum bending strains are |RNW/R1|, |RNW/R2| < 10−8, which can
be considered zero within the numerical error), so that εzz = ε‖. The calculated
maximum torsion strain (θRNW)/2 = 2.3× 10−8 is also zero within the numerical
error. The absence of bending in this particular case is due to the concentric
nature of the core-shell system. The �rst conclusion we want to draw from Fig. 3.6
is that the 3D calculation for the long nanowire studied here presents two well
di�erentiated regions. There is the region |z| ≤ 150 nm around the center of the
nanowire ( otherwise stated, at distances away from the end surfaces larger than
250 nm = 1.25(2RNW) ), where the strain is essentially independent of z, with no
strain component deviating by more than 4% from the central values at z = 0. On
the contrary, in the region within a distance of ∼ 1.25(2RNW) from the end surfaces
the strains are rather inhomogeneous. Moreover, the agreement between the results
for the central cross section of the �nite model and those of an in�nite nanowire is
better than 99.8%. The above picture already indicates that our �nite nanowire
has su�cient length so that the strain �eld at its central portion corresponds to
that of the in�nite model modeled by our GPS approach, thus giving a numerical
con�rmation of the Saint-Venant's principle, [92]. In Fig. 3.7, scans of the various
relaxation strain components are shown now along two di�erent directions on the
nanowire cross section. The linescans for the strain calculated by means of the GPS
approach show again an excellent agreement with the 3D results at the central cross
section of the �nite wire.

Since the above analysis con�rms the 2D GPS approach as a very reliable tool
to model long nanowires, we use it in the following for a detailed description and
understanding of the strain distribution in the nanowire cross section. In Fig. 3.8
we show the contour plots of the total strain components ε(T )

ij in the XY plane as
provided by the GPS approach. We will try to elucidate the obtained anisotropic
strain distribution with the following comments, that show that the overall features
can be traced back to the initial lattice mismatch and the geometry.
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(a)

(b)

Figure 3.7: Linescan of various relaxation strain components for a Ge/Si(111) CSNW along the
(a) X-axis (b) Y -axis sketched in Fig. 3.5. The 3D results are obtained by scanning the cross
section at the middle of the nanowire.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: In-plane distribution of the total strain in an in�nite Ge/Si(111) CSNW as cal-

culated by the GPS approach. Plots (a)-(c) show the strain components ε
(T )
rr , ε

(T )
φφ , ε

(T )
hydro =

ε
(T )
rr + ε

(T )
φφ + ε

(T )
zz , and plots (d)-(f) show the shear strains ε

(T )
rφ , ε

(T )
rz and ε

(T )
φz , respectively.
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� The axial strain component ε(T )
zz (not shown in the �gure) exhibits a simple

step-like pro�le, whose values can be obtained easily from the calculated
ε‖ and the initial strain ε

(0)
ij : a compressive strain in the core ε(T )

zz (core) =

−0.0275 and tensile strain in the shell ε(T )
zz (shell) = +0.0126 are so obtained.

These values are consistent with the lattice mismatch. The core material (Ge)
has a larger lattice constant than the shell material (Si), and the energetically
most favorable con�guration in the deformed core-shell system corresponds
to a common axial lattice constant of value az = 5.497 Å in between those
of bulk Ge and bulk Si .

� Now we focus on the core-shell interface. If one looks in particular at the
central part of that interface, one sees a di�erence in sign between the values
of the tangential component εφφ at the core and shell sides of the interface,
the shell material being expanded (εφφ(shell) > 0) whereas the core material
is compressed (εφφ(core) < 0), much in the same way as εzz, and for the same
reasons. Concerning the radial strain εrr in the shell material, the compressive
character of εzz and εφφ, and the freedom at the outer surface of the shell
determines that εrr(shell) < 0, i.e., that the shell is radially compressed.
Although the same rationale would imply that the εrr of the core would
tend to be positive, the fact that the core is constrained by the shell makes
that response impossible to attain and the radial strain is eventually slightly
compressive, εrr(shell) < 0.

� The measure of the local volume deformation, the hydrostatic strain ε(T )
hydro =

ε
(T )
rr + ε

(T )
φφ + ε

(T )
zz , is depicted in Fig. 3.8c. In contrast to the individual strain

components, which have a complicated inhomogeneous space distribution,
the hydrostatic strain has a very simple behavior: The volume of the shell
(core) is expanded (compressed) in almost an uniform manner.

� In general, the values of the strain components change smoothly when moving
from the core-shell interface towards the nanowire center (in the core) and
towards the surface (in the shell). However, when moving towards the corners
they experience a stronger variation. This behavior can also be seen in the
linescans of Fig. 3.9b. The corner geometry allows for some partial stress
relief, as manifested by the increased importance of the shear strain εrφ.

� The small but nonvanishing values for the out-of-plane shear strain compo-
nents εrz and εφz displayed in Figs. 3.8e and 3.8f are a direct consequence
of U3(x1, x2) 6= 0, and correspond to the fact that a cross section in the XY
plane is warped into a non-�at surface in the strained wire (warping e�ect).
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In other words, when the core pushes outwards on the shell, it is energetically
favorable for the system to respond by not only becoming deformed in the
plane, but also by warping out of the XY plane. One important aspect of
our 2D GPS calculation is that it is able to fully capture that warping e�ect,
which is impossible to obtain by working under the standard plane strain
approximation that forces the warping function U3 to vanish.

Si/Ge Core-Shell Nanowire

In the previous subsection we have studied within the GPS approach the elas-
ticity problem in a Ge/Si [111] CSNW where the mis�t strain inside the core is
compressive (negative). For completeness, we show here the strain distribution in
a Si/Ge [111] CSNW, so that the mis�t strain of the core with respect to the shell
is tensile (positive) ε(0) = 0.041 (4.1%). We have taken the same geometry and
size as used previously for the study of the Ge/Si [111] system.

In Fig. 3.9 we present the X and Y -axis linescans of the relaxation strain
components while the corresponding total strain distributions are displayed in
Fig. 3.10. One important �gure is the axial strain of the system, which in this case
adopts the value ε‖ =0.0033. In general, the results are essentially reciprocal (i.e.,
with a change of sign in all strain components) to those of the Ge/Si system.

3.3.2. Wurtzite InN/InGaN Core-Shell Nanowires: In�uen-

ce of the Ga Concentration

In this section we study the strain distribution as a function of In concen-
tration in wurtzite [0001] InN/InxGaN1−x CSNW which has been recently grown
by catalyst-free plasma-assisted MBE [162]. The CSNW has hexagonal geometry
(See Fig. 3.5a) and is composed of InN core, Rcore= 50 nm, and InxGaN1−x shell,
wshell=10 nm. We assumed the NWs are free from forces and thus the strains in-
duced in the core-shell system are caused by In concentration dependence mis�t
strain between the core and shell materials. The lattice and elastic constants of
the alloy InxGaN1−x are calculated from the parameters of InN and GaN using
Vegard's law. [163]. The material parameters used in the calculations are available
at Appendix E.2. Finally, the In concentration dependent strain distribution inside
InN/InxGaN1−x core-shell nanowire is obtained by solving Eq. (3.2a) using GPS
problem approach.

The general trend of the strain distributions inside the WZ InN/InxGaN1−x

[0001] NWs are similar to the Ge/Si NWs due to the similarity in the sign of
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(a)

(b)

Figure 3.9: Linescan of various relaxation strain components for a Si/Ge(111) CSNW along
the (a) X-axis (b) Y -axis sketched in Fig. 3.5.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: In-plane distribution of the total strain in an in�nite Si/Ge(111) CSNW as cal-

culated by the GPS approach. Plots (a)-(c) show the strain components ε
(T )
rr , ε

(T )
φφ , ε

(T )
hydro =

ε
(T )
rr + ε

(T )
φφ + ε

(T )
zz , and plots (d)-(f) show the shear strains ε

(T )
rφ , ε

(T )
rz and ε

(T )
φz , respectively.
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(a)

(b)

(c)

Figure 3.11: The X-Axis linescan of total strain components in an in�nite InN/InxGaN1−x

CSNW obtained by GPS problem. Plots (a)-(c) show ε
(T )
zz , ε

(T )
φφ , and ε

(T )
rr respectively.
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the mis�t strain. Thus, in Fig. 3.11 we present the e�ect of In concentration
inside the shell on the strain distribution of the entire InN/InxGaN1−x CSNW. The
linescans are taken along the X-axis. We comment �rst the case of x =0. In the
axial direction the core-shell system undergoes stepwise compression ε(T )

zz (core) =

−0.037 inside InN and extension ε
(T )
zz (shell) = 0.053 inside GaN. In the angular

direction the core InN is contracted while the shell GaN is relaxed. The amount
of contraction inside the core InN decreases away from the core-shell interface
while the relaxation inside the shell GaN increases as we go into the surface of
the CSNW. In the radial direction the center of the core and the shell are under
compressive strain while the part of the core near the core-shell interface becomes
relaxed. Unlike the case of the non-piezoelectric problem in ZB [111] Ge/Si CSNW,
here the warping of the cross section disappears i.e. zero out-o�-plane shear strains,
ε

(T )
rz = ε

(T )
φz = 0.

Turning into the In concentration dependence strain distribution,

� In the axial direction, increase of In concentration forces the shell to relax
less as shown in Fig. 3.11a. Increase of In concentration by 80% changes
the axial relaxation from ε

(T )
zz (shell) = 0.053 to ε(T )

zz (shell) = 0.012. To the
contrast, the core has to contract less with increase of In concentration inside
the shell InxGaN1−x as the space left for it increased after the decrease in the
relaxation of the shell. Increase of In concentration by 80 % decreased the
contraction from ε

(T )
zz (core) = -0.037 to ε(T )

zz (core) = -0.006. These changes
are direct result of the decrease in the mis�t strain between the core and
shell with increase of In concentration inside the shell InxGaN1−x. The axial
strain inside the shell and core goes to unstrained state (ε(T )

zz →0) as the
concentration of In approaches 100 %.

� In the angular direction, the e�ects of In concentration are similar to the axial
strain. Increase of In concentration from x =0 to x =0.8 resulted in decrease
of compressive strain at the center of the core InN from ε

(T )
φφ =-0.0185 to

ε
(T )
φφ =-0.00226 while the relaxation at the middle of the shell InxGaN1−x is

forced to decrease from ε
(T )
φφ =0.077 to ε(T )

φφ =0.016 ( See Fig. 3.11b).

� The strain in radial direction ε(T )
rr (See Fig. 3.11c) is under contraction inside

both the center of the core and shell. Particularly, at the center of the core
InN the compressive strain decreases from ε

(T )
rr =-0.007 to ε(T )

rr =-0.001 as
the concentration of In increases from x =0 to x = 0.8. The same increase of
In concentration changes the contraction inside the shell from ε

(T )
rr =-0.037
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to ε(T )
rr =-0.1. The relaxation strain at the part of the core near the core-shell

interface also decreases with increase of In inside the shell.

Unlike the other CSNWs discussed above, where we have taken the sizes of
the NWs for theoretical study, the same core-shell nanowire considered in this
section has been grown recently by plasma-assisted molecular beam epitaxy [162].
Moreover, the results of the calculation performed here has been used in Ref.
[162] to study the strain induced phonon frequency change in InxGa1−xN core-shell
nanowire which is given by ∆ωλ = aλ(ε11 + ε22) + bλ(ε33), where aλ and bλ are
phonon deformation potentials [164].

The frequencies of the A1(LO) phonon along the radius of the core-shell NW
with and without the strain �elds in the NW are shown in �gure 3.12. The concen-
tration of Ga inside the core and shell are taken asX(core)

Ga = 4%, andX(shell)
Ga =

30%. Under these conditions, the core becomes compressed while the shell is under
tensile strain. It was found that, these strain �elds cause a nearly constant 7 cm
−1 phonon blue-shift in the core region and a variation between 15 and 5 cm−1

for the shell of the NW. The strain-corrected theoretical predictions compare very
well with the two contributions, centered a 597 and 625 cm −1.

Figure 3.12: Calculated frequency of A1(LO) phonon along the radius of a core-shell NW with
(solid line) and with out (dashed line) the inclusion of strain corrections taken from Ref. [162].
The characteristic of the core-shell NW are X(core)

Ga = 4%, Rcore =50 nm, X(shell)
Ga = 30%

and wshell =10 nm. Reproduced from Ref. [162].
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3.3.3. Elasticity Problem in Non-Concentric Core-Shell Na-

nowires

In all the elasticity problem in CSNWs discussed above, we have assumed the
geometric center of the core and shell to coincide. Thus the terms to related bending
strain ( RNW/R1 and RNW/R2) given in Eq. 3.20 were numerically very small as
all the out of plane stress components cancel out each other due to the symmetry.
Here, we want to investigate the bending behaviour of the CSNW as a result of
non-concentric core and shell inclusion i.e. by assuming that the geometric center
of the core and shell do not coincide. For demonstration, we have considered the
ZB [111] Ge/Si CSNW discussed in Sec. 3.3.1. We have kept the same core and
shell radii but moved the center of the Ge core along the X-Axis by a distance
d =1-10 nm as shown in Fig. 3.13. This is a situation found sometimes in actually
grown samples where speci�c experimental conditions can lead to a 'shadow e�ect'
that inhibit the shell growth on some facets with respect to others.

Figure 3.13: Displacement of the center of the Ge core with respect to the center of the Si
domain along the X1 direction by distance d. The radius of the core and NW are taken as,
Rcore =60 nm and RNW =100 nm.

When the center of the core is moved along X1 direction with respect to the
center of the shell, the symmetry between the core and shell will be lost. As a result,
the total out of plane shear stress component along X1 direction will become non-
zero. There fore, the core-shell nanowire will experience out of plane bending along
the X1−X3 plane even though no bending moment is applied. When we compare
the results with the concentric inclusion, now RNW/R1 is di�erent from zero but
RNW/R2 and Θ still equal to zero. In Fig. 3.14a we present the bending strain
along the X1 − X3 plane as function of distance d. We can see that the bending
strain increases as the center of the core moves away from the center of the shell
creating bending without external force. The pro�le of other strain components
showed similar trends as the case of concentric core-shell inclusion in the range
of distances d explored. The change in the minimum and maximum of all strain
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components as a result of largest displacement d =10 nm, when compared with
the concentric inclusion, was found to be in the order of ×10−3. In Fig. 3.14b we
show how the NW is bent as a result of the out-of plane bending strains given in
Fig. 3.14a. Here we have taken the length of the NW as L =200 nm. We clearly
see that the more the center of the core-is moved the more the NW bends.

(a)
(b)

Figure 3.14: (a) Bending strain component in non-concentric ZB Ge/Si [111] CSNWs created
by displacing the center of the core with respect to the center of the shell along the X-axis.
(b) Shows the bending of the NW with L =200 nm as a result of out-of plane bending strain.
The labels d1,..., d5 correspond to displacement of the center of the core by 2,4,6,8, and 10 nm
respectively as shown in Fig. 3.13.

3.3.4. Thermo-Elastic Properties in Core-Shell Nanowires

In the Sec. 3.3.1 we have seen that the GPS problem approach is computatio-
nally cheap and able to describe the strain distributions at the central region of an
long CSNWs. In this section we will extend the GPS problem to study the elastic
properties of CSNW under thermal loading.

Generally, the constitutive equation for thermoelastic material with an initial
lattice constant a(0)

i , at temperature temperature T0 which is then heated or co-
oled to a �nal temperature T , can be extended from the pure elasticity problem
given in Eq. (3.2a) by including the proportionality of deformation as a result of
temperature change using Duhamel-Neumann Law [165] as:
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σij = Cijklεkl − βijΘ (3.41)

Where the temperature change Θ = T − T0 , T0 is a reference temperature
usually taken at room temperature, i.e., T0=300 K, βij is the coe�cient of linear
thermal expansion. Note that no shear strains are induced by the thermal e�ect
and as a result the material will retain its shape. Then the equilibrium equation
of the thermo-elastic problem can be given by,

∂σij
∂xj

= −f (0)
i + f

(T )
i (3.42)

Where f (0)
i is the lattice-mismatch induced body force de�ned in Eq. 3.12a

and the thermal induced body force f (T )
i is given by,

f
(T )
i = f

(M)
i χ(M) + f

(I)
i χ(I) (3.43)

where χ(M)(r) and χ(I)(r) are the characteristic function of the inclusion de-
�ned at 3.7. f (S)

i and f (C)
i are thermal induced body forces inside the shell and

core respectively and are given as:

f
(I)
i =

∂

∂xi

[
β

(I)
ij (r)Θ

]
(3.44a)

f
(M)
i =

∂

∂xi

[
β

(M)
ij (r)Θ

]
, (3.44b)

where β(I)
ij and β(M)

ij are the thermal expansion coe�cients of the core and shell
respectively.

As demonstration of the model presented, we will study the thermoelastic pro-
perties of the ZB [111] Ge/Si CSNW discussed in Sec. 3.3.1 and also studied
recently in Ref. [166]. The thermal expansion coe�cients of Si and Ge are taken as
β

(Si)
ij = 2.6×0−6/K and β(Ge)

ij = 5.9×10−6/K respectively. The temperature chan-
ge varies as 0≤ Θ ≤900 K. We assume that the temperature change accompanying
the deformation does not result in essential variations of material parameters [90].
Thus, we assumed that these coe�cients are independent of temperature (T ) and
we consider geometrically linear thermoelasticity. Moreover, we assume that the
nanowire is free from external forces, so that the strain is solely induced by the
internal lattice-mismatch induced body force f (0)

i and thermal induced body force
f

(T )
i (see Eq. 3.42 ). Finally, the temperature dependent strain distribution inside
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(a)

(b)

(c)

Figure 3.15: The X-Axis linescan of total strain components in ZB [111] Ge/Si CSNW under

thermal loading as obtained by the GPS problem. Plots (a)-(c) show ε
(T )
zz , ε

(T )
φφ and ε

(T )
rr res-

pectively. The temperature varies as Θ =0-900 K. The radius of the core R1 =60 nm and shell
wshell =40 nm.
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the CSNW is obtained by solving Eq. (3.11a) using the GPS problem approach. In
Fig. 3.15 we detail the e�ects of the change in temperature on the elastic properties
of the CSNW by presenting X-axis linescans of strain components.

� In the axial direction, the Si shell becomes more relaxed with increase of
temperature as shown in Fig. 3.15a. The rise of temperature from Θ =0 K to
Θ =900 K changes the relaxation from εTzz(shell) =0.0123 to εTzz(shell) =0.0156.
To the contrary, the contraction inside Ge core decreases with increase of tem-
perature even though it has smaller space left after the relaxation of the Si
shell. The contraction becomes ε(T )

zz (core) =-0.0267 at 0 K and ε(T )
zz (core) =-

0.0237 at 900 K.

� In the angular direction, the core becomes less contracted with increase of
temperature while the shell becomes more relaxed as the CSNW becomes
hotter as shown in Fig. 3.15b. The values at the center of the core becomes
ε

(T )
φφ = -0.0079 at Θ =0 K and ε(T )

φφ = -0.0032 at Θ =900 K. At the middle of

the shell, the relaxation has increased from ε
(T )
φφ = 0.020 at Θ =0 K to 0.024

at Θ =900 K.

� In the radial direction, the rise of temperature resulted in decrease of com-
pression inside both the Ge core and Si shell as shown in Fig. 3.15c. Particu-
larly, the compression inside the Ge core decreased by a larger amount than
inside the Si shell which is due to the large thermal expansion coe�cient of
Ge as compared to that in Si. At the center of the Ge core the values of the
radial strains are ε(T )

rr =-0.0079 at Θ =0 K and ε(T )
rr = -0.0032 at Θ =900 K.

We also note that the core-shell interface in the side of the core Ge becomes
fully relaxed (ε(T )

rr > 0) at higher temperatures (Θ >300 K).

3.3.5. Piezoelectric Problem in Core-Shell Nanowires

InN/GaN Core-Shell Nanowires

Next, we will present the GPP results for a fully-coupled piezoelectric problem.
The problem corresponds to a zincblende core-shell nanowire oriented along the
[111] direction. The core is made of InN and the shell is made of GaN. The geo-
metry of the nanowire is the same shown in Fig. 3.5. The elastic, piezoelectric
and dielectric tensors of zincblende materials exhibit cubic Td symmetry, which is
fully taken into account in the calculations. The Voigt matrices in the reference
frame associated to the nanowire, ĈIK , ênI and ε̂mn, can be found in Appendix
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D.2. Now, besides the nonvanishing elastic constants Ĉ14, Ĉ24(= −Ĉ14) 6= 0, there
appear nonvanishing piezoelectric constants ê15, ê24(= ê15) 6= 0, so the system will
exhibit a nonvanishing warping function U3, coupled to both (U1, U2) and Φ.

Figure 3.16: The gray thick curves represent the linescans of the electric �eld compo-
nents Er, Eφ and Ez along the longitudinal axis of the �nite nanowire passing through (x =
0.5RNW, y = 0.5RNW) as obtained from the 3D calculations. For comparison, the results corres-
ponding to an in�nite nanowire as obtained by means of the GPP approach are also displayed
as horizontal lines.

We assume again that the nanowire is free from external traction and body
forces (i.e., t̄j, Fj,Mj, fj = 0), as well as from external charges (i.e., %̄, Q, ρ = 0), so
that the only cause for the deformation and potential �elds is the lattice mismatch,
through the body force f (0)

i and the charge density ρ(0) given in Eqs. (3.12). The
lattice parameters and material constants used can be found in Table E.3. In this
case, the diagonal mis�t strain between the core (inclusion, I) and shell (matrix,
M) is ε(misfit) = −0.0964 (9.64%). For the following calculations we have taken the
same cross section geometry and length as in Sec. 3.3.1. As before, the relaxation
strain is calculated starting from a reference lattice with a(ref)

0 = (a
(M)
0 + a

(I)
0 )/2,

and the strain and electric �elds will be expressed in cylindrical coordinates (see
Appendix D.3).

Since the sign of the mis�t strain is the same, the strain �elds in this case
follow a pattern qualitatively similar to that for the non-piezoelectric nanowire in
Sec. 3.3.1. Consequently, we focus here on the piezoelectric �eld and potential. In
the �rst place, we will analyze the linescans of the �eld along a longitudinal axis
of the �nite nanowire. Due to symmetry reasons, Er, Eφ = 0 along the Z axis,
so we have chosen to display in Fig. 3.16 a linescan of the �eld components, as
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(a)

(b)

Figure 3.17: Linescan of the �eld components for a InN/GaN(111) CSNW along the (a) X-axis
(b) Y -axis sketched in Fig. 3.5, as obtained with the 3D calculations at the central cross section
of the �nite nanowire (thick gray lines) and by means of the 2D GPP calculations (thin coloured
lines).
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(a)

(b)

(c)

Figure 3.18: In-plane distribution of: (a) the potential Φ , and �eld components (b) Er and
(c) Eφ in an in�nite InN/GaN(111) CSNW as calculated by the GPP approach.
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obtained from the full 3D calculation, along a longitudinal o�-center axis crossing
the transverse section through coordinates (x = 0.5RNW , y = 0.5RNW ). For com-
parison, the corresponding values obtained by means of the GPP approach are also
indicated as horizontal lines. In particular, the GPP approach gives an axial �eld
Ez = E‖ = 1.36 × 108 V/m, which is uniform throughout the transverse section.
As for the strain, we distinguish also in the �eld pro�le two regions. In the cen-
tral region, for distances away from the end surfaces larger than 1.25(2RNW ) (i.e.,
|z| < 150 nm ), the �eld is rather uniform along the axis (e.g., Ez does not deviate
by more than 5% from the value at z = 0). On the other hand, within a distance
of 1.25(2RNW ) from the end surfaces, the �eld varies considerably, mainly as a
consequence of the over relaxation e�ect in the strain components. The results for
the central cross section of the �nite model are again very well approximated by
those of an in�nite nanowire as calculated by means of the 2D GPP approach (the
agreement at z = 0 being better than 99.3% for Ez and better than 98% for Er
and Eφ). These results represent a numerical con�rmation that the Saint-Venant's
principle works well also for the fully-coupled piezoelectric nanowire problem.

In Fig. 3.17 the various �eld components are shown along two di�erent direc-
tions on the nanowire cross section. The �eld linescans calculated by means of
the GPP approach show again a remarkable agreement with the 3D results at the
central cross section of the �nite wire, thus con�rming the reliability of the GPP
approach to simulate the central region of high aspect-ratio piezoelectric problems.

Finally, we illustrate in Fig. 3.18 the distribution of the in-plane piezoelectric
potential pro�le Φ(x1, x2) and electric �eld components across the XY plane for
an in�nite wire modeled using the GPP model. Remember that Ez is uniform
and equal to 1.36× 108 V/m. It is apparent in Fig. 3.18a that the highest/lowest
value of piezoelectric potential (±13.6V ) locate in an alternated manner at the
external corners of the GaN shell, while the InN core is mostly at zero potential.
The associated in-plane �eld distribution is shown in Figs. 3.18b and 3.18c. The
maximum values of the radial component of the in-plane �eld Er,max = 8.95× 108

V/m are con�ned at the corners of the core-shell interface. On the other hand,
Eφ,max = 3.97× 108 V/m is located at the outer surface of the shell, between the
corners.

GaN/InN Core-Shell Nanowires

In the previous subsection we have studied within the GPP approach the pie-
zoelectric problem in a ZB [111] InN/GaN CSNW where the mis�t strain inside
the core is compressive (negative). For completeness, we show here the strain dis-
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tribution in the reciprocal GaN/InN CSNW, where the mis�t strain of the core
with respect to the shell is now tensile ε(misfit) = 0.107. We have taken the same
geometry and size as used previously for the study of the InN/GaN system.

In Fig. 3.19 we present the X and Y -axis linescans of the electric �eld com-
ponents whereas the corresponding 2D potential and �eld distributions are given
in Fig. 3.20. The piezoelectric potential Φ(x1, x2) is displayed in Fig. 3.20a: The
highest/lowest value of piezoelectric potential developed is localized inside the InN
shell and corresponds to ±27.2 V, which is higher than found in the InN/GaN con-
�guration. The electric �eld components in the radial Er and angular directions
Eφ are shown in Figs. 3.20b and 3.20c, respectively. The maximum radial electric
�eld is Er,max = 1.059 × 109 V/m and is con�ned at the corners of the core-shell
interface. On the other hand, the maximum electric �eld in the angular direction is
Eφ,max = 7.44× 108 V/m and is localized inside the shell. The axial electric �eld is
uniform of value Ez = 2.40× 108 V/m. The results are sign-reversed as compared
to those of the InN/GaN system, although we see that the GaN/InN con�guration
exhibits larger values of the potential and electric �elds.
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(a)

(b)

Figure 3.19: Linescan of the �eld components for a GaN/InN(111) CSNW along the (a) X-axis
(b) Y -axis sketched in Fig. 3.5, as obtained with the 2D GPP calculations.
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(a)

(b)

(c)

Figure 3.20: In-plane distribution of: (a) the potential Φ, and �eld components (b) Er and (c)
Eφ in an in�nite GaN/InN(111) CSNW as calculated by the GPP approach.



Chapter 4

Envelope Function Model for the

Nanowire Electronic Structure

In this chapter we will explain the methodology employed for the calculation
of the electronic structure and optical absorption in model nanowires. We have
chosen as theoretical framework the multiband (k · p) envelope function approxi-
mation introduced in Sec. 2.3. For ease of presentation, the technical details of the
computational approach will be �rst introduced within the single band envelope
function approximation (or e�ective mass approximation) in Sec.4.1. Within this
simplifed model, one needs to solve only a single Schrödinger-like equation and the
results obtained are easy to interpret. Although the picture o�ered by this model
is sound and very popular, it is insu�cient to describe realistically the electronic
structure of many types of nanowires. It can only be considered as the crudest
approximation to the problem, and we analyse it �rst only because it will allow us
to gain an insight into the problem of electronic con�nement that will be of great
help in the discussion of the results that will be obtained when we treat multiband
models in Sec. 4.2. Indeed, in Sec. 4.2, we will introduce the necessary generaliza-
tions to be taken into account when working within the multiband approach that
will be �nally used in the calculations presented in Chapters 5 and 6.

4.1. Single Band Model

In this section we will use a single band model to describe the nanowire in the
framework of the envelope function approximation explained in Sec. 2.3. In this
simplest situation, where one focus on a well isolated band (NA = 2) and neglects
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the spin-orbit interaction, the doubly degenerate NW states have the form

{ Ψa=1(r) = F (r)U(r) |↑〉 , Ψa=2(r) = F (r)U(r) |↓〉 } ,

where U(r) is the k = 0 scalar Bloch amplitude of the band under study and F (r)

is the scalar envelope function. This shows that, although in principle the envelope
function is an spinor, when the problem is spin-independent the NW states are
doubly degenerate in spin and the single band model refers to a scalar envelope
function. Eventually, this treatment can be done separately for the conduction
band and valence band.

In the coming subsections, we will introduce the formulation of the single band
problem and describe the numerical method used for its resolution.

4.1.1. Formulation of the Single Band Envelope Function

Equation

As explained in Sec. 2.3.2, the envelope function for a 1D system adopts the
form

F (r)→ F (kz)(r) =
1√
L
eikzz F (kz)(x, y) , (4.1)

and the e�ective mass equation describing the nanowire electronic structure for
�xed kz can be written in cartesian coordinates as follows:

H(NW)F (kz)(x, y) = E(kz)F
(kz)(x, y) , (4.2)

where E(kz) is the energy, and

H(NW) ≡

− ~2

2m∗x

∂2

∂x2
− ~2

2m∗y

∂2

∂y2︸ ︷︷ ︸
=:T⊥

+
~2k2

z

2m∗z
+ V (NW)(x, y)

 ,

where an anisotropic e�ective mass of the band has been introduced, and it is
considered uniform across the NW cross section. The potential term V (NW)(x, y)

is given by the discontinuity of the energy band edge E(0) between regions A and
B of the NW cross section:

V (NW)(x, y) = E(0,A) χ(A)(x, y) + E(0,B) χ(B)(x, y) . (4.3)
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Note that an additional perturbing potential W (x, y), as originated, e.g., from
space charge or from piezoelectric charges, could be easily added here. It has to
be remembered here that, for bounded systems limited by an external interface to
air/vacuum, as the nanowires, it is common to assume that outside that surface the
potential is in�nitely high, and therefore the domain of de�nition of the electron
wavefunctions is restricted to the cross section of the material system.

Now we introduce a strong assumption and suppose that the geometry and
whatever other ingredients that contribute to V (NW) are axially symmetric, i.e., by
working on cylindrical coordinates:

(x, y)→ (ρ, φ) =⇒ V (NW)(x, y) = V (NW)(ρ) .

We will also need to assume that the underlying band structure is such that the
e�ective mass is transversely isotropic:

m∗x = m∗y =: m∗⊥ .

With all these considerations, we can express Eq. (4.2) in cylindrical coordinates
(ρ, φ) as:1

H(NW)F (kz)(ρ, φ) ≡
[
T⊥ +

~2k2
z

2m∗z
+ V (NW)(ρ)

]
F (kz)(ρ, φ) = E(kz)F

(kz)(ρ, φ) ,

(4.4)
where now

T⊥ = − ~2

2m∗⊥

(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
− 1

ρ2

1

~2
L̂ 2
z

)
. (4.5)

L̂z is the z component of the angular momentum associated with the envelope
function given by,

L̂z = x p̂y − y p̂x = x

(
−i~ ∂

∂y

)
− y

(
−i~ ∂

∂x

)
= −i~ ∂

∂φ
. (4.6)

Whenever the above assumptions are met, the Hamiltonian H commutes with
L̂z. Therefore, its eigenvalue m (in units of ~) is a good quantum number, and
we classify the states of the system according to it. As long as [H, L̂z] = 0, the

1Do not confuse the cylindrical coordinates (ρ, φ) with the same notation used for the charge
density and piezoelectric potential in Chapter 3.



94 Envelope Function Model for the Nanowire Electronic Structure

eigenfunctions of the Eq. (4.4) can be written as:

F (kz ,m)(ρ, φ) =
1√
2π

eimφF (kz ,m)(ρ) , m = 0,±1,±2, . . . . (4.7)

Substituting (4.7) in (4.4) we get a series of problems with independent energy
subbands for each value of m.[

T (m)
ρ +

~2k2
z

2m∗z
+ V (NW)(ρ)

]
F (kz ,m)
λ (ρ) = Em,λ(kz)F (kz ,m)

λ (ρ) , (4.8)

where the kinetic operator has been rewritten as:

T⊥ → T (m)
ρ = − ~2

2m∗⊥

(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
− m 2

ρ2

)
. (4.9)

and λ represents other quantum numbers necessary to label the energy eigenstates.
Besides the spin degeneracy we �nd that the states with ±m are also degenerate.

4.1.2. Resolution of the Problem

In general, it is not possible to solve the equation (4.8) analytically for an ar-
bitrary potential. In this work, to solve the nanowire problem, we have chosen a
method in which we �rst expand the envelope function in a series of orthogonal
basis functions with coe�cients to be determined. Introducing such expansion in
(4.8), the resolution of the di�erential equation reduces to a matrix eigenvalue
problem, which can be solved numerically to give the energies of the nanowire.
Once the eigenvectors are obtained we can reconstruct the envelope functions.
This method was successfully implemented in a similar problem by J. Y. Marzin
and G. Bastard [167]. A more general formulation and a thorough discussion on
the justi�cation and validity can be found in the work of G. A. Bara� and D.
Gershoni [168]. This strategy o�ers a versatile solution method requiring moderate
computing resources. Other methods commonly employed for solving the Schrö-
dinger equation are, for example, the transfer matrix formalism [169], and those
where space is discretized (�nite di�erence [170], �nite element [171] and boundary
element [172] methods).

To implement the solution method it is necessary to �rst choose a set of basis
functions that �ts with the geometry of the problem. We have chosen as basis states
the eigensolutions for a cylindrical cavity with the same radius R as the NW and
with in�nity potential barriers, so that the assumed boundary conditions at the
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external surface of the nanowire are immediately ful�lled. The basis functions and
the energy eigenvalues of that auxiliar problem are then given, for m �xed, by:

ξ(m)
α (ρ, φ) =

1√
2π
eimφN (m)

α Jm(k(m)
α %) , (4.10)

ε(m)
α =

~2

2m∗⊥

(
k

(m)
α

R

)2

+
~2k2

z

2m∗z
, (4.11)

where % = ρ/R, Jm is the Bessel function of order m and k
(m)
α is its αth zero

(α = 1, 2, . . . ). The normalization constant is de�ned as:

N (m)
α =

√
2

R
∣∣∣Jm+1

(
k

(m)
α

)∣∣∣ , (4.12)

so that the basis functions are orthonormal

〈ξ(m′)
α′ |ξ

(m)
α 〉 =

∫
SNW

d2r ξ
(m′)
α′

∗(ρ, φ) ξ(m)
α (ρ, φ) = δm,m′δα,α′ . (4.13)

Now, to solve Eq. (4.8) we express the envelope function of the electron in the
potential V (NW)(ρ) as a �nite linear combination of basis functions ξ(m)

α (ρ, φ):

1√
Ω
F

(kz ,m)
λ (ρ, φ) =

NR∑
β=1

[A
(kz ,m)
λ ]β ξ

(m)
β (ρ, φ) , (4.14)

where [A
(kz ,m)
λ ]β are the coe�cients to be determined. The number of basis func-

tions NR is a parameter of the numerical method, and it must be chosen large
enough so as to guarantee the convergence of the solutions to the eigenvalue pro-
blem. Now, by substituting (4.14) in (4.8), multiplying both sides of the equation
by ξ

(m)
α
∗(ρ, φ) and integrating over the cross section of the nanowire, SNW, we

obtain the following matrix problem, for �xed kz and m:

NR∑
β=1

〈
ξ(m)
α

∣∣H(NW)
∣∣ ξ(m)

β

〉
[A

(kz ,m)
λ ]β = Em,λ(kz) [A

(kz ,m)
λ ] , (4.15)

where 〈
ξ(m)
α

∣∣H(NW)
∣∣ ξ(m)

β

〉
=

∫
SNW

d2r ξ(m)
α
∗(ρ, φ)H(NW)ξ

(m)
β (ρ, φ) . (4.16)
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With this procedure, we have transformed the di�erential equations into a ma-
trix eigenvalue problem. The expressions for the matrix elements can be found in
Appendix C. The Hamiltonian matrices so obtained for �xed kz and m can be ef-
�ciently diagonalized to give a sequence of eigenvalues {Em,λ(kz)}λ and associated
eigenvectors.

4.2. Multiband Model

In the single band model introduced in Section 4.1, we considered that all
the information of the band structure could be represented by the e�ective mass
parameters. Although the picture o�ered by this model has been used to suc-
cessfully explain many properties of semiconductor heterostructures, [173] it is also
well known that a realistic description of the NW electronic structure needs to
go beyond that simpli�ed model. In this section, we will extend the theoretical
framework by considering a larger number of coupled Bloch functions in the des-
cription of the electron wave function. For this task, we used in its full capacity
the multiband (k ·p) envelope function approximation developed in Sec. 2.3. This
procedure will allow us to de�ne multiband models for studying the electronic
structure of NWs and give a more accurate description of the properties of these
nanostructures.

4.2.1. Formulation of the Multiband Envelope Function Equa-

tion

In the �rst place, following the procedure presented in Sec. 2.3, we �rst select
the underlying k ·p model on which the multiband envelope function methodology
is going to be built up. This implies identifying a set of A-bands (number NA) for
which the Γ-point Bloch amplitudes {Ua} and energy matrices {E(0) δaa′ + ∆aa′}
are known for the materials composing the NW. The Bloch amplitudes {Ua} are
assumed to be similar for all materials so any of them or a linear combination
thereof can be used in the envelope function expansion of the nanowire electronic
wavefunction:

Ψ(kz)(r) =
∑
a

F (kz)
a (r)Ua(r) , (4.17)

where F (kz)
a (r) can be written as:

F (kz)
a (r) =

1√
L
eikzz F (kz)

a (x, y) . (4.18)
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The equation determining these wave functions and energies for �xed kz was in-
troduced in Eq. (2.38) and we reproduce it here:∑

a′

H
(NW)
aa′ F

(kz)
a′ (x, y) = E(kz)F

(kz)
a (x, y) , (4.19)

where E(kz) is the energy, and

H
(NW)
aa′ ≡

[
T̃

(NW)
aa′

(
−i ∂
∂x
,−i ∂

∂y
, kz

)
+ E

(NW)
aa′ (x, y)

]
.

In the applications that we will undertake in this work, the multiband model consi-
dered is the 8×8 k ·p method. The speci�c form of the di�erential matrix operator
T̃

(NW)
aa′ (a, a′ = 1, . . . 8) is obtained by taking the k ·p Hamiltonian of Eq. (A.3) and

(A.9) and making the substitution kα → −i~ ∂
∂xα

, for xα = x, y, in the kinetic part.
The Bloch amplitudes Ua at the center of the Brillouin zone are listed in Table
2.1 for zincblende materials and in Table 2.2 for wurtzite materials. If there were
deformation in the system, we should incorporate to the equation (4.19) the con-
tribution of Bir-Pikus Hamiltonian, H(NW)

aa′ → H
(NW)
aa′ + HBP

aa′ ( εij(x, y) ) (see (A.8)
and (A.17)). This Hamiltonian has a dependence with position through the com-
ponents of the strain tensor εij(x, y). The parameters of T̃ (NW) and HBP (kinetic
Luttinger parameters, deformation potentials, etc ...) will be considered indepen-
dent of position, i.e. constant throughout the NW cross section as discussed in
Sec. 2.3.2. On the other hand, the potential term which appears in (4.19) is deter-
mined by the position dependence of the energy parameters used in the de�nition
of the k = 0 band edges in the model:

E
(NW)
aa′ (x, y) =

(
E(0,A)
a δaa′ + ∆

(A)
aa′

)
χ(A)(x, y) +

(
E(0,B)
a δaa′ + ∆

(B)
aa′

)
χ(B)(x, y) .

(4.20)
As before, for the nanowires we assume that outside their external surface the
potential is in�nitely high, and the domain of de�nition of the electron wavefun-
ctions is limited to the cross section of the material system. An additional poten-
tial W could be easily taken into account by making E(NW)

aa′ (x, y)→ E
(NW)
aa′ (x, y) +

W (x, y) δaa′ .

Now there come the assumptions speci�c to our nanowire model. As in the
single band model, we assume that we are focusing on a system with an axially
symmetric potential, so that:

E
(NW)
aa′ (x, y) = E

(NW)
aa′ (ρ) .
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In Section (4.1), we presented a single band model which allowed to express
the electron wave function as an eigenfunction of the envelope angular momentum
projection L̂z. This greatly helped to simplify the problem. In the multiband ap-
proach the problem turns out to be more complicated because the function Ψ(r) is
a multiband object involving simultaneously NA scalar envelope functions that ha-
ve to obey the system of di�erential equations (4.19). It is however possible under
some circumstances to use symmetry arguments to also simplify this problem. The
formalism we have implemented in this work takes advantage of the symmetry pro-
perties of the nanowire even in the presence of multiband coupling. [174,175] Below
we will brie�y review the main elements of this procedure.

According to K. J. Vahala and P. C. Sercel, the space of the multiband envelope
functions can be formally endowed with a generalized total angular momentum
de�ned as Ĵ = L̂+ ĵ, where L̂ is the envelope orbital angular momentum operator
acting on the space of envelope functions Fa and j is the intrinsic (Bloch) angular
momentum associated to the symmetries under rotations of the (spinor) Bloch
amplitudes Ua. The corresponding z-projection of the angular momentum operator
is: Ĵz = L̂z + ĵz.

Due to the axial symmetry of the nanowire, it seems reasonable to express
the envelope function in terms of functions with well de�ned z component of the
orbital angular momentum as follows:

F (kz)
a (ρ, φ) =

∑
m

1√
2π

eimφF (kz ,m)
a (ρ)

−→ Ψ(kz)(r) =
1√
L
eikzz

∑
a

∑
m

1√
2π

eimφF (kz ,m)
a (ρ)Ua(r) , (4.21)

where, for each a, we have included a sum over m since this is the most general
form that the solution can adopt. As explained in Secs. 2.2.2 and 2.2.3, the Bloch
amplitudes Ua have a well de�ned z component of the intrinsic angular momentum
operator, ĵz = l̂z + ŝz → jz(a), as can be easily checked in Tables 2.1 and 2.2.
Therefore, each separate term in (4.21) would have an associated total angular
momentum projection: m+ jz(a).

If [HNW, Ĵz] = 0, then it would be possible to work with simultaneous eigen-
functions of HNW and Ĵz, and therefore the eigenvalue of Ĵz → M could be used
to label the energy eigenstates. However, in general the commutator [HNW, Ĵz] is
nonzero. This is because the rotational symmetry around the NW axis (Z-axis)
of the underlying bulk k · p Hamiltonian is smaller than the rotation group C∞.
Although it can be shown that in the case of wurtzite with Z ‖ [0001] we have
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[HNW, Ĵz] = 0, the most general zincblende Hamiltonian contains a number of
terms that spoil the desired in-plane isotropy. To overcome this di�culty one can
increase the symmetry of the Hamiltonian by introducing the axial approxima-
tion. [176] This approximation is based on the fact that (γ2 − γ3)/2 is very small
when compared with (γ2 + γ3)/2 and therefore is expected to have a negligible
impact on the elements of the k ·p Hamiltonian where both terms appear (see Ec.
(A.3)). Finally, if there is strain in the system, as induced, e. g., by some lattice
mismatch or by external loads, its e�ect must be accounted for through the incor-
poration of HBP(εij), and it is necessary to investigate also [HBP, Ĵz]. In order for
this commutator to vanish, one must require in the �rst place that the strain be
axially symmetric (this necessitates making some isotropic approximations on the
material constants in zincblende materials). Moreover, it must be required that
the terms containing (Du−D′u)/2 in the Bir-Pikus Hamiltonian be neglected (see
Ec. (A.8)). With all these approximations it is achieved that [HNW +HBP, Jz] = 0,
and the energy eigenfunctions of HNW +HBP can be chosen with de�ned angular
momentum M :

Ψ(kz ,M)(r) =
1√
L
eikzz

∑
a

F (kz ,M)
a (ρ, φ)Ua(r)

=
1√
L
eikzz

∑
a

[
1√
2π

eimaφF (kz ,ma)
a (ρ)

]
Ua(r) , (4.22)

where now the summation over m in (4.21) has been removed, since for each basis
function Ua, the orbital angular momentum of the envelope function is uniquely
determined by

ma ≡M − jz(a) .

In Table 4.1 we show, for di�erent values ofM , the corresponding envelope angular
momenta ma for both [001] zincblende and [0001] wurtzite materials.

Therefore, the Schrödinger (4.19) becomes:∑
a′

H
(NW)
aa′ F

(kz ,M)
λ,a′ (ρ, φ) = EM,λ(kz)F

(kz ,M)
λ,a (ρ, φ) , (4.23)

and, for �xed values of kz and M , we have a family of independent states labeled
by λ. Given the symmetry of the problem, the ±M solutions of (4.23) are Kramers
doubly degenerate. [177]
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Zincblende [001] Wurtzite [0001]
a 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

M jz(a) 1
2 − 1

2
3
2

1
2 − 1

2 − 3
2

1
2 − 1

2
1
2 − 1

2
3
2 − 1

2
1
2 − 3

2
1
2 − 1

2
1
2 ma 0 1 -1 0 1 2 0 1 0 1 -1 1 0 2 0 1

− 1
2 ma -1 0 -2 -1 0 1 -1 0 -1 0 -2 0 -1 1 -1 0
3
2 ma 1 2 0 1 2 3 1 2 1 2 0 2 1 3 1 2

− 3
2 ma -2 -1 -3 -2 -1 0 -2 -1 -2 -1 -3 -1 -2 0 -2 -1
5
2 ma 2 3 1 2 3 4 2 3 2 3 1 3 2 4 2 3

− 5
2 ma -3 -2 -4 -3 -2 -1 -3 -2 -3 -2 -4 -2 -3 -1 -3 -2
7
2 ma 3 4 2 3 4 5 3 4 3 4 2 4 3 5 3 4

− 7
2 ma -4 -3 -5 -4 -3 -2 -4 -3 -4 -3 -5 -3 -4 -2 -4 -3

Table 4.1: Pattern of values of the envelope angular momenta ma for various values of M .

4.2.2. Resolution of the Problem

We will address the resolution of the equation (4.23) with the same numerical
method used in the single band model and described in Sec. 4.1.2. First, we expand
each envelope function appearing in (4.23) in terms of the basis functions (4.11):2

1√
Ω
F

(kz ,M)
λ,a (ρ, φ) =

NR∑
α=1

[A
(kz ,M)
λ,a ]α ξ

(ma)
α (ρ, φ), (4.24)

where [A
(kz ,M)
λ,a ]α are the coe�cients to be determined. These expansions are intro-

duced into (4.23) which is then transformed into the matrix eigenvalue problem:

∑
a′

NR∑
α′=1

〈
ξ(ma)
α

∣∣∣H(NW)
aa′

∣∣∣ ξ(ma′ )
α′

〉
[A

(kz ,M)
λ,a′ ]α′ = EM,λ(kz) [A

(kz ,M)
λ,a ]α . (4.25)

This problem of dimension (8NR×8NR) can be solved by standard diagonalization
techniques. Appendix C shows the details of the calculation of the matrix elements.

4.2.3. Optical Absorption

The initial and �nal NW electron states of the optical transition are given by:

i ≡
(
k(i)
z ,Mi, λi

)
=⇒ Ψ

(k
(i)
z ,Mi)

λi
(r) =

1√
L
eik

(i)
z z
∑
a

F
(k

(i)
z ,Mi)

λi,a
(ρ, φ)Ua(r) ,

(4.26a)

2The maximum number of basis functions used in our calculations has been NR = 30.
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f ≡
(
k(f)
z ,Mf , λf

)
=⇒ Ψ

(k
(f)
z ,Mf )

λf
(r) =

1√
L
eik

(f)
z z
∑
a

F
(k

(f)
z ,Mf )

λf ,a
(ρ, φ)Ua(r) .

(4.26b)

The optical absorption spectrum is given by (k(f)
z = k

(i)
z =: kz):

α(~ω) = C
∑
kz

∑
Mf ,λf

∑
Mi,λi

∣∣∣P (inter)
fi (ê)

∣∣∣2 1

π

Γ/2

(EMf ,λf (kz)− EMi,λi(kz)− ~ω)2 + (Γ/2)2
,

(4.27)

with

C =
n(ω)

c

2π

~

(
1

2

e

m0

)2

|A0 |2 ,

and the interband matrix element is given here by:

P
(inter)
fi (ê) =

∑
aa′

(ê · paa′) δma,ma′
NR∑
α=1

[
A

(kz ,Mf )

λf ,a

]∗
α

[
A

(kz ,Mi)
λi,a′

]
α
. (4.28)

where ma = Mf − jz(a) and ma′ = Mi − jz(a′).

It is interesting to investigate whether there is any selection rule associated to
the angular momentum number M . This is achieved by recalling the expressions
(B.1) and (B.2), which show that the momentum matrix element has the property:

ê± · paa′ ∝ δjz(a),jz(a′)±1 , (4.29a)

êz · paa′ ∝ δjz(a),jz(a′) , (4.29b)

where
e± =

1√
2

(ex ± i ey) .

By incorporating this result into (4.28) we obtain the following property of the
interband matrix element:

P
(inter)
fi (ê±) ∝ δMf ,Mi±1 ,

P
(inter)
fi (êz) ∝ δMf ,Mi

.

Consequently, we obtain the following selection rules:

� For a radiation �eld polarized in the XY plane (ê±) the z component of
the total angular momentum of the initial and �nal states of the optical
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transitions will di�er in one unit: Mf = Mi ± 1.

� For the case of polarization parallel to the NW orientation the value of M
should be conserved: Mf = Mf .

In order to analyze the electronic structure and the optical absorption spectra
obtained within this sophisticated multiband framework, it is interesting to have
a characterization of the symmetry of the electronic states. We quantify it here
by the projections of the wavefunction over Bloch (spinor) amplitudes of speci�ed
symmetry, generically denoted |`〉,

w` =

∫
dx dy

∣∣∣∣∣∑
a

〈` |Ua〉 Fa(x, y)

∣∣∣∣∣
2

. (4.30)

In the discussion of the symmetry of the electronic states of zincblende NWs
that we present below we have decided to use the projections over the bulk Γ Bloch
amplitudes:

wS = wS↑ + wS↓
whh = whh+ + whh−
wlh = wlh+ + wlh−
wso = wso+ + wso− .

These symmetry weights satisfy

wS + whh + wlh + wso = 1 .

On the other hand, in the case of wurtzite NWs we will use the projections:

wS = wS↑ + wS↓
wX = wX↑ + wX↓
wY = wY ↑ + wY ↓
wZ = wZ↑ + wZ↓ .

It is convenient to introduce also the notation w⊥ = wX + wY . These symmetry
weights satisfy

wS + w⊥ + wZ = 1 .

In analyzing the symmetry weights of the calculated electronic states it is often
found that one of these weights is signi�cantly larger than the rest (say w` > 0.5),
and then we say that the state has dominant `-character or `-symmetry . The
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numbers w` themselves will be referred as symmetry weights, symmetry characters
or simply characters.
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Chapter 5

Electronic Structure and Optical

Absorption of Zincblende Nanowires

In this chapter we will study the electronic structure and optical absorption of
free-standing and core-shell nanowires having zincblende crystal structure. We use
the term free-standing to refer to nanowires (NWs) made of a single material as
opposed to heterostructure systems such as the core-shell nanowires. To calculate
the electronic and optical properties, we will use the model developed in Chapter 4.

The chapter is organized as follows. Initially, in Sec. 5.1 we present the results
on the size dependence of the electronic and optical properties of free-standing
InAs and GaAs NWs. We have considered NWs grown along [001] and [111] crys-
tallographic directions. Then, in Sec. 5.2 we focus on the study of lattice-matched
[111] AlxGa1−xA/GaAs core-shell nanowires (CSNWs), which allows to discuss the
purely geometrical e�ects induced by the new geometry. Finally, in Sec. 5.3 we pre-
sent the results of the electronic and optical properties of lattice-mismatched [001]
GaAs/InAs CSNWs, which allows to investigate the interplay of the geometry and
the built-in strain �elds.

Before the exposition of the results, it is convenient to �x some notation and
methodology that will be followed during the discussions in Chapters 5 and 6.
Obviously, the NW electronic structure is conveniently divided into the energy
ranges corresponding to the bulk conduction band (CB) and valence bands (VB).
The energy spectrum of the NWs is organized into a manifold of one-dimensional
subbands, whose dispersion can be quite involved, specially in the VB region. It is
therefore convenient to �rst focus on the kz = 0 (Γ) states, hereafter referred simply
as CB and VB states. In the coming discussions, these states will be labeled as
follows: For a given nanowire, we will denote the CB (VB) states as c1, c2, c3, . . .
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(v1, v2, v3, . . . ) in order of increasing energy separation from the bulk CB (VB)
edge. If necessary, each of these states can be more precisely described by giving
its angular momentum |M | and its dominant character ` ( see (4.30) ), e.g. c1(|M | =
1/2, S).1 The lowest CB state is c1 and the highest VB state is v1, and their energy
di�erence determines the NW fundamental gap energy E(NW)

g = Ec1 − Ev1 . The
material parameters used in the calculations are collected in Appendix E.1.

5.1. Free-Standing InAs and GaAs Nanowires

In this section we analyze �rst the free-standing NWs with zincblende structure.
We investigate in detail the size dependence of the electronic and optical proper-
ties of both InAs and GaAs nanowires. We have considered NWs having radius
R = 1 − 120 nm which covers the range of sizes in recently grown NWs. [36,178,179]

This will give an idea of the e�ect of the con�nement imposed by the NW geo-
metry. Furthermore, we will explore in parallel the dependence on the nanowire
orientation, by considering NWs grown along [001] and [111] crystallographic di-
rections. We have chosen these orientations because they are compatible with the
cylindrical symmetry of the bulk electronic structure, as explained in Sec. 4.2.1.

In the literature, the electronic and optical properties of both InAs and GaAs
nanowires grown along the [001] and [111] crystallographic directions have been
studied. Recently, the eight-band k · p model was implemented to study the elec-
tronic properties of InAs NWs grown along [001] and [111] directions [180]. Kishore
et.al [95] also used the eight-band k · p model to study the electronic and opti-
cal properties of [001] InAs NWs. Redinski and Peeters have calculated the band
structure of GaAs nanowires oriented in the [111] direction using the six-band k ·p
model. [18] However, these studies lack a detailed analysis of the size dependence of
the electronic and optical properties of the nanowires. Particularly, they miss the
analysis of the characters of the lowest CB and highest VB states, which play a
very important role in understanding the optical absorption of nanowires.

5.1.1. InAs Nanowires

Electronic Structure

In order to study the e�ects of con�nement and direction of growth on the
electronic structure of the InAs NW, here we start with the analysis of the CB and

1Remember that each state ci or vi exhibits double (±M) degeneracy, and therefore only |M |
needs to be speci�ed.
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VB states as a function of size. We start by investigating the dependence on the
NW radius R of the CB states at the Γ-point (kz = 0). The R-dependence of the
con�nement energies of the �ve lowest CB states, denoted c1, . . . , c5, is presented in
Fig. 5.1. Note that, as explained in Chapter 4, due to the inclusion of the spin-orbit
interaction, the spin up-down degeneracy does not apply here and it only remains
the time-reversal (Kramers) degeneracy, which in this system is assimilated with
the twofold degeneracy ±M . Therefore, the CB states (c2, c3) and (c4, c5) are no
longer degenerate, although the corresponding splittings (Ec3−Ec2) and (Ec5−Ec4)

are very small (< 1 meV). The energies of the CB states show a monotonous
increase with decreasing NW radius as a result of the lateral con�nement e�ect,
without any level crossing or anti-crossing. Moreover, the con�nement e�ect is
larger for [001] orientation as compared to the [111] one: the con�nement energy
of the state c1 for R = 1 nm is 0.77 eV for the [001] InAs NW and 0.65 eV for
the [111] InAs NW. This di�erence in the strength of CB con�nement energies is
mainly due to lighter in-plane heavy hole mass of [001] InAs NW (0.521 m0) than
[111] (0.596 m0).

(a) (b)

Figure 5.1: Con�nement energies of the lowest CB states as a function of the NW radius for
(a) [001] and (b) [111] InAs NWs. Ec denotes the bulk CB edge. The squared wave function of
the states for R = 10 nm are given in the inset.

To investigate the dependence of the energy Ec1 with R, it has been �tted to
the function:

Ec1(R)− Ec =
C

Rβ
, (5.1)

and the following values are obtained: C = 0.79, β = 1.16 for [001] InAs NWs
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and C = 0.66, β = 1.15 for [111] InAs NWs. Therefore, the dependence given in
Eq. (5.1) deviates signi�cantly from the relation ∼ 1/R2 predicted by the single-
band e�ective mass approximation (EMA), which evidences the necessity of the
multiband approach that we have used.

It is also interesting to study the symmetry of the CB states. In Figs. 5.2a
and 5.2b we present the symmetry weights of the wavefunction for the state c1

of InAs NWs grown along [001] and [111] directions, respectively. The results are
again similar in both orientations. The S-character has the largest contribution
(wS > 92 %) for all NW sizes considered, whereas the remaining characters have
contributions below 5%. This admixture of VB symmetry within the CB state is
induced by the enhancement of the CB-VB coupling due to the lateral con�nement.
As the NWs become wider (R >100 nm), the character wS of the state c1 tends
to ' 100 %, in accordance with the pure S-symmetry of the CB edge in the bulk
InAs crystal.

(a) (b)

Figure 5.2: Symmetry weights of the wavefunction corresponding to the state c1 in (a) [001]
and (b) [111] InAs NWs, as a function of the radius.

Let us now see how the VB states behave for di�erent sizes. Figures 5.3a and
5.3b show the con�nement energies of the �ve highest VB states at the Γ-point
for [001] and [111] InAs NWs as a function of size. In the smallest [001] InAs NW
(R =1 nm), the con�nement energies of the �ve highest VB states span a range of
1.7 eV, with Ev1−Ev being 0.73 eV. In the case of [111] InAs NWs, the con�nement
energies are slightly smaller: The �ve highest VB states span a range of 1.23 eV
with Ev1 − Ev corresponding to 0.35 eV. In both [001] and [111] InAs NWs the
con�nement energies decrease with increasing radius and become very small (<13
meV) in larger (R >15 nm) InAs NWs. The con�nement energies of the two highest
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states, v1 and v2 (that have the same angular momentum |M | = 1/2 but di�erent
dominant character) show a crossing for both orientations. In [001] InAs NWs,
the size dispersion of v1 and v2 cross each other at a critical radius Rc ∼4.6 nm.
For NWs with R ≤ 4.6 nm v1 and v2 have dominant lh(+) and lh(−)-characters,
respectively, whereas for radius R > 4.6 nm they exchange those characters. This
�nding is contrary to results reported in Ref. [94,181] where the character of the
VB states remain similar for di�erent InAs nanowire sizes. The VB state v3 and
v4 are dominantly composed of lh(+) and lh(−)-characters, respectively. The size
dispersion of v3 and v4 do not show any crossing in all the considered range. When
we look at the [111] InAs NWs, we �nd the crossing radius is decreased to Rc ∼ 3.2
nm. Unlike the case of [001] InAs NWs, the size dispersions of v3 and v4 also cross
each other at around the same critical radius Rc ∼ 3.2 nm. For [111] InAs NWs
with radius R ≤ 3.2 nm, v3 and v4 have lh(−) and lh(+)-characters, respectively.
This change in the symmetry of the topmost VB state can have in�uence on both
the electronic and optical properties of the nanowires as will be discussed below.

(a) (b)

Figure 5.3: Size dependence of the con�nement energies E − Ev of the top �ve Γ-point VB
states of (a) [001] and (b) [111] InAs NWs. The vertical dashed lines show the radius at which
the energies cross each other. The states are labeled by their angular momentum |M |.

We extend our investigation to the study of the symmetry of the VB states.
First we investigate the size dependent spinor distribution of v1. In Fig. 5.4a we
present the contribution of each symmetry to v1 for [001] InAs as a function of
the NW radius. For NWs with R < 2 nm the hh-character is dominant while
for NWs with R ≥ 2 nm the lh-character becomes more dominant. For larger
(R > 5 nm) InAs NWs, the percentage contributions of both lh and hh becomes
uniform at wlh ∼ 74 % and whh ∼26 %. Unlike the case of [001] InAs NWs, the
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lh-character is dominant (wlh >80%) at all sizes for [111] InAs NWs as it can be
seen in Fig. 5.4b. It has its smallest contribution (wlh ∼ 80%) for R ∼=1 nm and
reaches its maximum value (wlh ∼ 91%) for R ∼=5 nm. That contribution slightly
decreases as the NWs become larger (R > 5 nm) and almost becomes uniform at
(whh ∼ 87%). The hh-character has a signi�cant role in the composition of v1 only
for larger [111] InAs NWs. For both orientations of InAs NWs, the so-character
has signi�cant contribution in very small NWs. The S-character has no in�uence
for all the NW sizes explored.

(a) (b)

Figure 5.4: Symmetry weights of the spinors corresponding to the Γ-point VB v1 for (a) [001]
and (b) [111] InAs NWs as a function of the NW radius from 1 to 15 nm.

Next we present the size dependence of the fundamental band gap of [001] and
[111] InAs NWs, ENW

g = Ec1 − Ev1, which play an important role to understand
the electronic and optical properties. In Figs. 5.5a and 5.5b we illustrate the
con�nement e�ect by representing the change of the NW band gap with respect to
that of bulk InAs crystal band gap ∆ Eg (R)= ENW

g (R)-Ebulk
g (where Ebulk

g =0.37
eV) as a function of size for InAs NWs oriented along [001] and [111]. For the
smallest radius considered, R =1 nm, the band gaps are increased by 1.5 eV and 1
eV, respectively in [001] and [111] InAs NWs. However, as the radius increases the
e�ect of con�nement on the band gap monotonously decreases for both orientations
and becomes very small (< 2 meV) for very large size nanowires with R > 20 nm.
The nanowire band gap dependence with the radius can be compared with that
predicted by the single band e�ective mass approximation (EMA). According to
the single band EMA, the band gap change of the NW (∆Eg) should follow the
relation ∆Eg(R) ∼ ~2R2/2m. We �tted our results to the function ∆Eg(R) = a/Rb
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(a) (b)

Figure 5.5: Change in the fundamental band gap energy ∆Eg of InAs NWs with respect to the
band gap of bulk InAs crystal Eg =0.37 eV for (a) [001] and (b) [111] InAs NWs as a function of
their size. The solid red lines are the results from our eight-band k ·p Hamiltonian. Blue dashed
lines correspond to TB calculations from Ref. [182]. Green dots in (a) are experimental results
from Ref. [183]. The inset in (b) shows the band gap di�erence ENW

g[001]-E
NW
g[111] of InAs NWs.

where a and b are constants to be �tted. We obtain the values: a =1.54 and b =1.50
for [001] InAs NWs while we obtain relatively smaller a = 1.03 and b = 1.25 values
for the [111] InAs NWs. These signi�cant deviations from the relation predicted
by the EMA again show the inadequacy of the single-band EMA and the necessity
of the multiband model which is implemented in this work. Similar deviations are
reported in di�erent previous works. [19,93,183�185] When we compare our results with
other theoretical and experimental works, we �nd that our result for small [001]
InAs NWs (solid lines) �ts well with both tight binding (TB) results from Ref.
[182] (blue dashed lines) and experimental results from Ref. [183] (green squares).
For larger [001] InAs NWs, particularly with radius R >7 nm, our results and TB
results from Ref. [182] become indistinguishable. For the case of [111] InAs NWs,
our band gap prediction �ts well with TB results from Ref. [182] even though we
observe small di�erence for smaller sizes. In the inset of Fig. 5.5b, we present the
band gap di�erence (ENW

g[001]-E
NW
g[111]) between the [001] and [111] InAs NWs. The

[001] InAs NWs have relatively larger band gap in small NWs. For example at
R =1 nm the di�erence amounts to ∼ 500 meV. However, that di�erence becomes
very small (≤4 meV) as the NWs become larger (R > 15 nm).

In Fig. 5.6 we present the band structures of InAs NWs with radius R =2.5,
10 and 20 nm. The zero of the energy is taken at the VB maximum of the corres-
ponding bulk material. The conduction subbands in InAs NWs are not parabolic
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Band structure of [001] [Plots (a)-(c)] and [111] [Plots (d)-(f)] InAs NWs. For each
orientation the results corresponding to R=2.5, R=10 and R=20 nm are shown. All the bands
are labeled based on their angular momentum |M |.
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around the Γ-point due to the CB-VB coupling. The highest VB states in both
types of NWs have a camel back structure which results in a negative e�ective
mass for some subbands. The camel back structure is more visible in the smaller
NW while it disappears as the size of the NW is increased which is in agreement
with the results from Ref. [18]. We also see in Fig. 5.6 that the VB dispersion of
larger NWs become more complicated due to weaker con�nement.

Optical Absorption

In Fig. 5.7 we show the calculated optical absorption for InAs NWs, following
the theoretical model presented in Sec. 4.2.3. We have separately calculated the
spectra for light polarizations ê+ (hereafter denoted ê⊥2) and êz. In all the calcu-
lations in this thesis, the optical absorption spectra are obtained by introducing
a Lorentzian broadening of Γ = 5 meV. We will particularly focus on the range
of small radii (R = 1 − 10 nm) where we have found changes in the character of
the highest VB states as the size is varied around a critical radius Rc. Remem-
ber that the values of Rc corresponding to [001] and [111] InAs NWs are 4.6 nm
and 3.2 nm respectively. The spinor wavefunctions are labeled by the total angu-
lar momentum, |M |, which determines the a priori possible transitions according
to the selection rules detailed in Sec. 4.2.3. But it is also of interest to identify
the dominant character (or Bloch amplitude) in each spinor, and the associated
envelope symmetry, according to the Table 4.1. To facilitate the analysis of the
optical spectra, the properties of selected CB and VB states are summarized in
Tables 5.1a and 5.1b for [001] and [111] InAs NWs, respectively.

In both [001] and [111] NWs, the lowest CB state c1 has S(↑)-character and
s-type (m = 0) envelope function symmetry independently of the size. On the
other hand, for NWs with radius R ≤ Rc, the topmost VB state v1 is composed
of mainly lh(+)-character and has s-type (m = 0) envelope function symmetry.
As a result, the oscillator strength of the transition v1(lh) → c1 is non-zero for
both polarizations. Due to this, the fundamental optical gap (de�ned as the lowest
transition energy with appreciable oscillator strength) is exactly coincident with
the NW band gap. This can be seen in the optical absorption of [001] and [111]
InAs NWs with radius R =2.5 nm shown in Figs. 5.7a and 5.7c respectively.
However, for [001] and [111] InAs NWs with radius R > Rc, the oscillator strength
for the transition v1(lh)→ c1 is zero. However, the second VB state v2 is composed
of lh(+)-character and has s-type envelope function symmetry. Thus the oscillator

2In the axially symmetric NWs under study, the spectra for ê+ and ê− are found to be
identical so we refer to them generally by the notation ê⊥.
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(a)

Size (nm) State Envelope Dominant Optical
symmetry character transition

R≤4.6 c1 s S(↑)
v1 s lh(+) bright
v2 p lh(−) dark
v3 p lh(+) dark
v4 d lh(−) dark

R >4.6 c1 s S(↑) -
v1 p lh(−) dark
v2 s lh(+) bright
v3 p lh(+) dark
v4 d lh(−) dark

(b)

Size (nm) State Envelope Dominant Optical
symmetry character transition

R ≤3.2 c1 s S(↑)
v1 s lh(+) bright
v2 p lh(−) dark
v3 d lh(−) dark
v4 p lh(+) dark

R >3.2 c1 s S(↑) -
v1 p lh(−) dark
v2 s lh(+) bright
v3 p lh(+) dark
v4 d lh(−) dark

Table 5.1: Electronic and optical properties of the lowest CB and highest VB states for (a)
[001] and (b) [111] InAs NWs as a function of size. Note that we have considered only the states
with positive angular momentum: The states c1, v1, and v2 have M = +1/2, and v3 and v4 have
M = +3/2. The counterpart states with negative angular momentum are degenerate and have
opposite spin projections. For each VB state, it is also annotated the dark or bright nature of the
optical transition towards c1, depending whether the full oscillator strength is zero/negligible or
not.
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(a) (b)

(c) (d)

Figure 5.7: Plots (a) and (b) show the optical absorption of [001] InAs NWs with radius R=2.5
nm and R=10 nm respectively. Plots (c) and (d) show corresponding results for [111] InAs NWs.
The purple and blue dashed vertical lines show the fundamental gaps of the InAs NW and bulk
InAs crystal, respectively.

(a) (b)

Figure 5.8: Plots (a) and (b) show the blueshift of the fundamental optical gap as as a function
of size for [001] and [111] InAs NWs respectively.
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strength of the transition v2(lh) → c1 becomes non-zero. As a result, the onset
of the optical absorption for [001] and [111] InAs NWs with radius R > Rc is
not placed at the band gap of the NWs. For [001] and [111] InAs NWs with radius
R =10 nm (See Figs. 5.7b and 5.7d), the fundamental optical gaps lay respectively
2.1 and 3.7 meV higher in energy than the band gap of the corresponding NWs.

In the discussions above we have seen that the crossing in the size dispersion
of the topmost VB states results in a blueshift of the fundamental optical gap
with respect to the NW band gap of the in both [001] and [111] InAs NWs. Here
we investigate the e�ect of size on this blueshift of the optical gap. In Fig. 5.8a
we present the amount of blueshift in the fundamental optical gap of the optical
absorption in [001] InAs NW. As discussed above, v1 for [001] InAs NWs with
radius R ≤4.6 nm is a bright state. As a result, the blueshift in this range of
radius is zero. However, for NWs with radius R >4.6 nm, the blueshift increases
with increase of size of the NW up to radius of R ∼= 7.2 nm where it reaches a
maximum value of 2.65 meV. To the contrary, for NWs with radius R > 7.2 nm
the blueshift starts to decrease with increase of size of the NW and becomes below
2.4 meV as the con�nement e�ects become weaker for large NWs (R > 20 nm).
Finally, when we compare the two orientations of InAs NWs, we can clearly see
that the blueshift for the [111] orientation is almost two times larger than for the
[001] one. This is due to relatively smaller con�nement in the case of [111] direction
as compared to [001] InAs NWs.

5.1.2. GaAs Nanowires

In the previous subsection we have explored in detail the size and orientation
dependence of the electronic and optical properties of InAs NWs. Thus, in this
subsection, devoted to the same calculations on GaAs NWs, we will mainly focus
on the di�erences between the two types of NWs.

Electronic Structure

We start our discussion by investigating the e�ect of the NW size on the CB
energy spectrum of the [001] and [111] GaAs NWs: In Figs. 5.9a and 5.9b we
present the variation with the NW size of the con�nement energy of the �rst �ve
CB states. The behavior obtained is qualitatively similar to the one found for InAs
NWs. The con�nement of the lowest CB state at R =1 nm corresponds to 0.47
eV for [001] GaAs NW while for [111] GaAs NW it becomes only 0.38 eV. These
values are smaller than values obtained for InAs NW of same size discussed in
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Sec. 5.1.1. The di�erences arise mainly as a result of the larger conduction band
e�ective mass of GaAs than InAs.

(a) (b)

Figure 5.9: Con�nement energies of the lowest CB states as a function of the NW radius for
(a) [001] and (b) [111] GaAs NWs. Ec denotes the bulk CB edge. The squared wave function of
the states for R = 10 nm are given in the inset.

As for InAs NWs, we have �tted the con�nement energy Ec1−Ec to the function
(5.1) and obtained the following values: C= 0.50 and β = 1.18 for [001] GaAs NWs
and C = 0.40 and β =1.15 for [111] GaAs NW. Here again the dependence given
deviates from the prediction given by single band EMA and con�rms the need for
a multiband approach.

In Section 5.1.1 we have seen the impact of of the VB-CB coupling in the
symmetry weights of the CB wavefunctions in narrow gap InAs NWs. We repeat
here the analysis for the wider band gap GaAs NWs: The symmetry weights of the
wavefunction for the lowest CB state c1 of GaAs NWs grown along [001] and [111]
directions are given in Figs. 5.10a and 5.10b respectively. Here the S-character is
very dominant (wS >97 %) at all sizes considered. This is in contrast to the case
of InAs NWs where whh can reach values of 5 % for small sizes (R ≤ 10 nm ). This
di�erence is a direct result of the larger band gap of GaAs than InAs. Thus, the
six-band k ·p Hamiltonian model has been used by some authors for exploring the
properties of the GaAs NWs [18].

Turning our attention to the VB states, we investigate the con�nement energies
of VB states as a function of size as we did in the previous section for InAs NWs.
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(a) (b)

Figure 5.10: Symmetry weights of the wavefunction corresponding to the state c1 in (a) [001]
and (b) [111] GaAs NWs, as a function of the radius.

In Figs. 5.11a and 5.11b we present the con�nement energies of the �ve highest
VB states at the Γ-point for [001] and [111] GaAs NWs, respectively. The �ve
states span an energy range of 1.42 (1.1) eV with the VB con�nement energy of
the smallest NWs considered R =1 nm being 0.6 (0.32) eV for [001] ([111]) GaAs
NW. The VB states v1 and v2 in both [001] and [111] GaAs have dominant lh(+)

and lh(−)-characters respectively for all sizes of the NWs considered without any
crossing, unlike the case of InAs NWs discussed in the previous section.

In Figure 5.12 we present the symmetry weights for v1 of [001] and [111] GaAs
NWs as a function of NW size. The results obtained for both orientations are
similar. The character lh is the most dominant (wlh > 78 %) at all NW sizes
considered. However, for GaAs NWs with radius R <3 nm NWs, the so-symmetry
also has signi�cant contribution. Unlike the case of InAs NWs, the lh-character has
no important in�uence on the v1 spinor of v1 for all the GaAs NW sizes explored.

Optical Absorption

For all sizes considered, the state c1 of the [001] and [111] GaAs NWs is do-
minantly composed of S(↑)-character and has s-type envelope function symmetry.
Moreover, the size dispersions of v1 and v2 of both [001] and [111] GaAs NWs do
not cross each other unlike the case of InAs NWs discussed in Sec. 5.1.1. As a
result, we expect the same polarization properties of the optical absorption at all
sizes of GaAs NWs (See Fig. 5.13(a) and Fig. 5.13(b)). Moreover, the fundamental
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(a) (b)

Figure 5.11: Con�nement energy E −Ev of the �ve highest Γ-point VB states of (a) [001] and
(b) [111] GaAs NWs versus NW size. The states are distinguished by its angular momentum |M |.

(a) (b)

Figure 5.12: Symmetry weights of the spinor corresponding to the Γ-point VB v1 for (a) [001]
and (b) [111] GaAs NWs as a function of the NW radius from 1 to 15 nm.
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optical gap is exactly located at the band gaps irrespective of the size of the GaAs
NWs. As an illustration, the optical absorption of [001] and [111] GaAs NWs with
radius R = 2.5 nm are shown in Fig. 5.13.

Figure 5.13: Polarization-dependent optical absorption of (a) [001] and (b) [111] GaAs NWs
with radius R =2.5 nm. In each case it has been represented separately, in the positive and
negative vertical axis, the spectra corresponding to e⊥ and ez polarization, respectively.

5.2. AlGaAs/GaAs Core-Shell Nanowires

In Sec. 5.1 we have studied the electronic and optical properties of free-standing
InAs and GaAs NWs. In particular, we have reported how the electronic and op-
tical properties depend on the geometry (size and orientation) of the NWs. In this
section we extend our investigation to core-shell nanowires (CSNWs). As explai-
ned in detail in Chapter 3, the presence of two lattice-mismatched materials leads
to the appearance of a built-in strain distribution whose e�ects on the electronic
structure superpose to those coming from the pure geometry. In order to disentan-
gle both in�uences, we �rst discuss a system where it is a reasonable approximation
to neglect strain e�ects in a �rst approximation, namely the core-shell nanowires
made of GaAs and AlxGa1−xAs/GaAs. The lattice constant of GaAs and AlAs
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correspond to 5.65 Å and 5.66 Å respectively, [186] and the mis�t strain between
both materials is below 0.2%. As a result, these materials and their alloys can be
easily grown epitaxially on top of each other without accumulating signi�cative
elastic deformation. The geometry of our cylindrical model for the core-shell sys-
tem is presented in Fig. 5.14a, and it can be speci�ed by the radius of core Rcore

and the thickness of the shell wshell. The core-shell nanowire is a heterostructure
and hence the inclusion of the band o�sets is essential to de�ne the con�nement
potentials appearing in the diagonal terms of the Hamiltonian. The o�sets bet-
ween the valence and conduction band edges at the AlxGa1−xAs-GaAs interface
are taken as ∆Ev = 0.57x eV and ∆Ec = 0.87x eV, respectively. [187] The resulting
band alignments between AlxGa1−xAs and GaAs are shown in Fig. 5.14b. For a
given combination of materials, in this case GaAs and AlxGa1−xAs, there are two
possible con�gurations of the CSNW: Either the lower gap material (in this ca-
se, GaAs) is in the core or it is in the shell. The electronic structure and optical
absorption of [001] AlxGa1−xAs/GaAs and GaAs/AlxGa1−xAs CSNWs have been
studied recently by using the six-band k · p Hamiltonian for the valence band and
a parabolic energy spectrum for the conduction band. [94] It is there con�rmed that
the electronic structure of unstrained CSNWs can di�er signi�cantly from the co-
rresponding single material nanowires. Here we focus on a [111] AlxGa1−xAs/GaAs
CSNW, where the carriers are expected to be con�ned in the shell forming a ring-
like charge distribution, and use the eight-band k · p envelope function formalism
developed in Chapter 4 to investigate the e�ects of the core-shell geometry on the
electronic and optical properties. The material parameters for AlxGa1−xAs used in
the calculations are taken from the material parameters of GaAs and AlAs using
linear interpolation. [163] They are available in Appendix E.1. Since we are here
interested in investigating the geometry e�ects we consider for all the calculations
a �xed Al concentration x =0.4, and from here on the term AlGaAs will be used
to abbreviate Al0.4Ga0.6As.

Electronic Structure

In order to study the e�ect of con�nement on the electronic structure of CSNWs
we will examine the in�uence of increasing the shell thickness wshell for �xed core
radius Rcore. The total nanowire radius is therefore R = Rcore +wshell. In Fig. 5.15a
we present the �ve lowest CB states as a function of shell thickness for Rcore = 10

nm. In this case it will be instructive to consider simultaneously the distribution
of the CB electron in the cross section of the CSNW: In Fig. 5.15b we present
the probability density of the lowest CB state c1 for various values of wshell. As
expected, for wshell = 0, i.e., for a free-standing AlGaAs NW of radius 10 nm,
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(a)
(b)

Figure 5.14: (a) Cylindrical core-shell nanowire with radius of the core Rcore and thickness of
the shell wshell. The nanowire is oriented along the [111] direction, which is taken as the Z axis.
(b) Band alignments between AlxGa1−xAs and GaAs.

the lowest �ve CB states locate above the CB bulk AlGaAs band edge, spanning
an energy range of around 0.54 eV, with the lowest one exhibiting a con�nement
energy of ∼ 0.43 eV. The corresponding c1 wavefunction is localized on the center of
the NW. For thin shells, e.g. wshell < 2 nm, the energies show a slight decrease, but
keep themselves above Ec(AlGaAs), and the wavefunctions stays localized near the
center of the core. However, at wshell ∼ 2 nm, a rather abrupt change of behavior
can be identi�ed: the CB energies start to decrease more steeply with increase of
shell thickness moving below Ec(AlGaAs). This behavior re�ects the transition to
a con�nement within the lower energy shell region, as can be clearly visualized by
the probability density for wshell = 2 nm, which shows the electron transiting from
the core to the shell. As the shell becomes thicker, the energies decrease further and
the electron is being increasingly localized on the shell in a ring-like con�guration.
For very large wshell, the energy levels cluster above Ec(GaAs) spanning a range
from 47 to 60 meV. The whole evolution proceeds without any level crossing or
anti-crossing, and therefore without changes in the symmetry of the states.

Now we turn to the VB states. In the VB con�nement (See Fig. 5.16a ), the
�ve highest VB states cover an energy range of ∼ 0.26 eV with the highest one
showing a con�nement energy of ∼ 0.24 eV, whereas for the largest shell thickness
the con�nement energy spans a range from 5 to 10 meV. When we compare, we
can clearly see that the the CB states pushed downward with increase of shell
thickness than the VB states.
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(a) (b)

Figure 5.15: (a) Energies of the �ve lowest CB states in a [111] AlGaAs/GaAs CSNW as a
function of the shell width. The radius of the core is Rcore = 10 nm and the shell thickness is let
to vary from 0 to 10 nm. The energies are referred to the CB edge of bulk AlGaAs, Ec(AlGaAs).
For illustration purposes, both CB edges of AlGaAs and GaAs are indicated as horizontal dashed
lines. (b) Probability density for the lowest CB state c1 for various values of the shell thickness.

Finally, we are interested in investigating the localization of electron and hole
inside the Al0.4Ga0.6As/GaAs CSNW as function of shell thickness. In Figs. 5.15b
and 5.16b we present the shell thickness dependence probability density of c1 and
v1 respectively at the Γ-point for Al0.4Ga0.6As/GaAs CSNWs with Rcore =10 nm.
For the case of free-standing (wshell=0) Al0.4Ga0.6As NW, both the electron and
hole are populated at the center of the NW. For wshell = 1 nm, the electron is
still con�ned inside the core but become pushed away from the center of the NW.
This explains the reason why we didn't see signi�cant change in the band gap
for very small shell thickness as shown in Fig. 5.17. For wshell=2 nm, the electron
becomes strongly pushed away from the center of the core and appears partially
inside the shell as a result the band gap starts to become sensitive to the change
in the thickness of the shell. Increase of shell thickness further leads to the shift in
the position of the electron from the core to the shell. This can be seen in the case
of wshell =3 nm where there is high chance of getting the electron inside the shell
GaAs than the core. When we look at the hole, for all shell thickness wshell ≥1 nm,
is already con�ned entirely inside the shell unlike the case of the electron.

The band gaps of AlGaAs/GaAs CSNWs as function of shell thickness wshell

and radius of the core Rcore are given in Fig. 5.17. For reference, the band gap of
bulk AlGaAs and GaAs are also shown with horizontal dashed lines. Generally, the
band gap of AlGaAs/GaAs CSNW CSNWs with smaller core size have larger band
gaps while the band gap converge as both the core and shell become larger in size.
We can also see that the increase of Al concentration inside the core increases the
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(a) (b)

Figure 5.16: (a) Energies of the �ve highest VB states in a [111] AlGaAs/GaAs CSNW with
Rcore = 10 nm as a function of the shell width. The energies are referred to the VB edge of bulk
AlGaAs, Ev(AlGaAs). Both VB edges of AlGaAs and GaAs are indicated as horizontal dashed
lines. (b) Probability density for the lowest VB state v1 for various values of the shell thickness.

con�nement inside the shell GaAs due to the increase in the band o�sets. However,
the band gaps decrease monotonously with increase of shell thickness. We also note
that for very small thickness (wshell/Rcore →0 ) the change in the band gap with
increase of shell thickness becomes very small (below 1 meV). This is due to the
thin shell which forces the electron to be con�ned inside the core. As a result the
electron will not be sensitive to a change in thickness of the shell. When both the
core and shell becomes larger, the band gap approaches band gap of bulk GaAs
crystal.

Optical Absorption

In this section we present the polarization dependent optical absorption of [111]
AlGaAs/GaAs CSNW as function shell thickness. For all sizes of shell thickness,
c1 has s-type envelope function symmetry and is composed of S(↑)-character. For
free standing AlGaAs (wshell = 0), c1 and v1 at the Γ-point have s-type envelope
function symmetry and are dominantly composed of S(↑) and lh(+)-characters
respectively. Thus the �rst strong transition at the Γ-point comes from the tran-
sition v1,lh → c1. As a result, the optical absorption is polarized along the [111]
direction. Moreover, the fundamental optical gap is exactly placed at the band gap
of the NW as shown in Fig. 5.18(a). For shell thickness wshell ≥ 1nm, the dominant
character of v1 at the Γ-point changes into lh(−). As a result and cannot couple
with c1. This change in the character can be seen qualitatively in the wave fun-
ctions presented in Fig. 5.16. However the optical absorption remained polarized
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Figure 5.17: Band gap Eg of AlGaAs/GaAs CSNWs as function of shell thickness radius
core wshell . The CSNWs are grown along [111] direction. The purple and orange dashed lines
correspond receptively to the band gaps of bulk AlGaAs and GaAs.

along the axis of the NW (See Figs. 5.18(b)-(d)) but blueshifted due to v2 which
has dominant lh(+)-character at the Γ-point.

5.3. GaAs/InAs Core-Shell Nanowires

The properties of heterostructure nanowires depend �rst on their chemical com-
position and crystalline structure. These properties can be further manipulated by
varying the geometrical parameters [94,95] or by doping [188�190]. Recently, the tai-
loring of the electronic properties of nanowires by an external mechanical strain
has also been considered. [191�197] Besides external strains, the strain induced by a
lattice-mismatch is also known to modify the electronic and optical properties of
core-shell nanowires. [78,198�209] In this section we investigate the e�ects of the built-
in strain on the electronic structure and optical absorption of lattice-mismatched
[001] GaAs/InAs CSNWs, see Fig. 5.19a. The unstrained band alignment is shown
in Fig. 5.19b. We will make the analysis as a function of the shell thickness to
understand the change in the con�nement imposed both by the geometry and
strain.
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Figure 5.18: Polarization dependent optical absorption of AlGaAs/GaAs core-shell nanowires
as function f shell thickness. Plots (a)-(d) correspond to results for shell thickness wshell =0, 1, 2
and 3 nm respectively. The CSNWs are grown along [111] direction with radius Rcore = 10 nm.
In each case it has been represented separately, in the positive and negative vertical axes, the
spectra corresponding to ~e⊥ and ~ez polarization, respectively.
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(a) (b)

Figure 5.19: (a) Cylindrical core-shell nanowire with radius of core Rcore and thickness of shell
wshell. The nanowire is oriented along the [001] direction, which is taken as Z axis. (b) Band
alignments between GaAs and InAs.

Strain Distribution

Before examining the electronic and optical properties of strained GaAs/InAs
CSNWs, we start with the investigation of strain pro�les inside the CSNW. The
radius of the core is �xed to Rcore = 10 nm and the thickness of the shell varies
as 2 ≤ wshell ≤ 10 nm. The lattice constant of InAs and GaAs are aInAs = 6.033
Å and aGaAs =5.645 Å respectively. Thus the mis�t strain inside the core with
reference to the shell is ε‖ = 6.87 %. For each value of the shell thickness, the
elastic problem is solved by using the GPS approach discussed in Sec. 3.2. Here we
will discuss only the strain components, εh = ε

(T )
xx + ε

(T )
yy + ε

(T )
zz , ε̂ = ε

(T )
xx − ε(T )

yy and
ε̃ = −2ε

(T )
zz + ε

(T )
xx + ε

(T )
yy , that appear at the Pikus-Bir Hamiltonian for zincblende

structures (See (A.8)). Below we will discuss the main features of the strain pro�le
in the core-shell system:

� The hydrostatic strain εh is displayed in Fig. 5.20a. We can see that the strain
inside the GaAs is uniform and of tensile character as a result of having a
smaller lattice constant than InAs. The strain increases with increase of
shell thickness. In contrast, the shell is dominated by uniform compressive
strain which decreases with increase of shell thickness and approaches the
unstrained state.

� The strain component ε̂ is shown in Fig. 5.20b. Its value inside the core
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(a)

(b)

(c)

Figure 5.20: The X-Axis line scan of strain components for (a) εh,(b) εbiax and (c) ε̂ inside
the core and shell of GaAs/InAs CSNW. The radius of the core is �xed at Rcore = 10 nm and
thickness of the shell varies as 2 ≤ wshell ≤10 nm. The vertical dashed lines show the core-shell
interface.
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is zero but manifests as tensile strain inside the shell and decreases as one
moves towards the surface of the CSNW.

� The biaxial stain (See Fig. 5.20c) inside the core GaAs is compressive and
increases with increase of shell thickness. Inside the shell GaAs, the strain is
tensile and rather inhomogeneous. It has the larger values near the core but
decreases slowly when moving in the direction of the InAs surface.

Electronic Structure

In this section we investigate the electronic properties of strained GaAs/InAs
CSNW. The valence band o� set is taken as VBO = 0.17 eV. [210] We have �xed
the radius of the core to Rcore =10 nm and made the study as a function of the
shell thickness in the range 1≤ wshell ≤10 nm. In Figs. 5.21a and 5.21b we present
the energies (referred to the bulk GaAs CB and VB edges) of the �ve lowest CB
(Ec1 , . . . , Ec5) and �ve highest VB states (Ev1 , . . . , Ev5) for the strained GaAs/InAs
CSNWs. We found out that the energy of the CB states decreases with the increase
of the shell thickness. The energy of the lowest CB state decreases by ∼ 0.74 eV
as the thickness of the shell increases to 10 nm. In contrast, the energies of the VB
states are pushed upwards as the GaAs shell becomes thicker. The changes in the
VB states are more abrupt for small shell thickness. When the shell becomes very
thick (wshell/R >0.3 ) the energy of the VB states almost remains constant.

(a) (b)

Figure 5.21: Con�nement energies of the (a) �ve lowest CB states and (b) �ve highest VB
states of [001] GaAs/GaAs CSNW with core radius Rcore = 10 nm as a function of the shell
thickness. The energies of the CB and VB states are referred to the bulk GaAs CB and VB
nband edges.
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In Fig. 5.22 we present the band gaps of strain-free and strained GaAs/InAs
CSNWs. The �rst feature we note is that the change in the thickness alone, without
including the mismatch-induced strain, has an impact in changing the band gap:
The band gap has higher values for thinner shell and decreases as the shell becomes
thicker. For example, the band gap for the smallest shell thickness considered,
wshell =1 nm, is ENW

g =1.58e eV while it decreases to 0.512 eV for wshell =10
nm. When we look at the band gap of strained GaAs/InAs CSNWs, we observe a
qualitatively similar trend However, the hydrostatic strain results in a decrease of
the band gap when compared with the strain-free case. The band gap is decreased
from ENW

g =1.3 eV for wshell =1 nm to 0.338 eV at wshell =10 nm. Thus, the
band gap decreases with increase of the shell thickness as a combined e�ect of the
geometry and the strain. We also note that the band gap change in the strained
CSNW is mainly due to the decrease in energy of the CB states as shown in
Fig. 5.21.

Figure 5.22: Band gaps of GaAs/InAs CSNWs with and with out strain. The radius of the core
is �xed at Rcore = 10 nm and thickness of the shell varies as 1 ≤ wshell ≤ 10.

To investigate the e�ects of the con�nement and strain on the localization of
the CB and VB wavefunctions, we present in Figs. 5.23a and 5.23b the probability
densities associated to states c1 and v1, respectively, as a function of shell thickness
again for the core radius �xed to Rcore =10 nm. In the case of free-standing GaAs
(wshell =0), the probability density of the CB state is concentrated at the center
of the NW while that of the VB state is con�ned at the middle (ρ ∼= 5 nm)
of the NW. For wshell = 2 nm, we see that the CB state density is still mainly
concentrated inside the core but when the shell becomes thicker (wshell > 2 nm)
it becomes pushed away from the center of the NW and starts to appear inside
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the shell GaAs. The VB state density has become con�ned entirely inside the shell
GaAs for wshell >2 nm.

(a) (b)

Figure 5.23: Probability densities for states (a) c1 and (b) v1 of GaAs/InAs CSNWs of di�erent
shell thicknesses. The core radius is Rcore =10 nm. The vertical dashed line shows the core-shell
interface.

Optical Absorption

In this section we examine the optical absorption of strained GaAs/InAs CSNWs.
In Fig. 5.24 we present the optical absorption for various shell thicknesses for �xed
core radius Rcore =10 nm. For wshell =0, which corresponds to a pure GaAs NW,
the oscillator strength of the transition v1(lh)→ c1 is non zero as seen in Sec. 5.1.2.
Thus the polarization for the optical absorption is along the [001] direction and
the fundamental optical gap coincides with the band gap of the NW as shown
in Fig. 5.24(a). In contrast, the oscillator strength for the transition v1(lh) → c1

in the strained GaAs/InAs CSNW (wshell >0) becomes optically dark. However,
the polarization for the optical absorption remains along the NW axis due to the
transition v2(lh) → c1 which has non-zero oscillator strength. Thus, the funda-
mental absorption edge becomes blueshifted by the energy Ev1 − Ev2 as shown in
Fig. 5.24(b)-(d) for wshell ≥1 nm.
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Figure 5.24: Optical absorption spectra of strained GaAs/InAs CSNW with core radius
Rcore =10 nm and shell thickness wshell = 0-4 nm.



Chapter 6

Electronic Structure and Optical

Absorption of Wurtzite Nanowires

In this chapter we present a study of the size dependence of the electronic
and optical properties of free-standing InN and ZnO NWs having the wurtzite
crystal structure and oriented along the [0001] crystallographic direction. In the
case of ZnO NWs, we have also studied the e�ects of an applied uniaxial stress.
The electronic structure is calculated by means of the model discussed in chapter
4 with the eight-band Hamiltonian presented in Appendix A. Since the analysis is
parallel to that of the zincblende NWs presented in Chapter 5, here we will make
emphasis only on the di�erences. The material parameters used in the calculations
are collected in Appendix E.2

6.1. InN Nanowires

Electronic Structure

The variation of the con�nement energies of the �ve lowest CB states, c1, . . . , c5

with the NW radius R is presented in Fig. 6.1. In the inset of Fig. 6.1 we present
the corresponding squared wave function of the CB states of an InN NW with
radius R = 10 nm. The state c1 is localized at the center of the NW while c2 is
concentrated at a radial distance ρ ' 5 nm. As for the ZB NWs, we have �tted the
con�nement energy Ec1 − Ec to the function (5.1) and obtained the values, C =

0.468 and β = 1.252. This behavior deviates signi�cantly from the relation ∼ 1/R2

predicted by the EMA which again shows the inadequacy of the single-band EMA
as also seen in Chapter 5 for the case of ZB NWs.
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We continue our study by exploring the symmetry of the lowest CB state c1.
In Fig. 6.2 we present the contribution of the symmetry weights w` for the state
c1 as a function of NW radius. We found out that for all the sizes considered
the S-symmetry is dominant (wS > 95%), the remaining contribution being of
⊥-symmetry (i.e., of X- or Y - symmetry). The maximum mixing of ⊥-symmetry
(∼ 4%) occurs for NWs with radius R < 10 nm and it is therefore a consequence
of the increased lateral con�nement.

Figure 6.1: Con�nement energies of the lowest CB states as a function of the radius of the InN
NWs. Ec denotes the bulk CB edge. The squared wave function of the states for R = 10 nm are
given in the inset.

Focusing on the VB states, in Fig. 6.3 we present the con�nement energies
E −EΓv

7+
(with respect to the bulk VB edge EΓv

7+
) of the �ve highest Γ-point VB

states for NWs of size R =1-15 nm. For the largest NW analyzed, these states cover
an energy range of around 1.6 meV with the topmost one showing a con�nement
energy of around 1 meV, whereas for the smallest NW considered the con�nement
energy spans a range from 180 to 550 meV. Whereas the NW VB energies approach
monotonically the VB edge of bulk InN EΓv

7+
as R increases, for small radii the size

dependence of the VB states is more involved. The size at which the dispersion
of v1 and v2 undergo a change in their dominant character is shown with vertical
dashed line. In the inset of Figure 6.3 we present the character of the four highest
VB states as function of radius. For InN NWs with R ≤ 2 nm the VB states v1

and v2 are dominantly composed of Z and ⊥-characters, respectively. However, for
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Figure 6.2: Symmetry weights of the wavefunction corresponding to the state c1 in InN NWs,
as a function of the radius.

InN NWs with radius R > 2 nm the dominant character of v1 changes from Z to
⊥. For v2, we found out two size ranges where it has di�erent dominant characters:
For InN NWs with 2 < R ≤ 3, the Z-character is dominant while the ⊥-character
become more dominant for InN NWs with radius R > 3 nm. The third and fourth
VB states (v3 and v4 ) have |M | = 3/2. Their size dispersion crosses at the same
critical radius Rc ∼ 2 nm: Thus, Z and ⊥-characters are respectively dominant
in v3 and v4 for InN NWs with R ≤2 nm while they exchange their dominant
characters for larger InN NWs with R > 2 nm.

In Figure 6.4 we present the change of the NW band gap ∆Eg = ENW
g −Ebulk

g ,
with respect to that of bulk InN crystal band gap Ebulk

g = 0.7 eV. The change of
the band gap is higher for small InN NWs. The band gap at R = 1 nm is increased
by ∼ 0.65 eV. However, thes e�ect monotonously decreases with increasing the size
and becomes below 4.2 meV for InN NWs with large radius (R >30 nm).

In Fig. 6.5 we present the band structure of InN NWs with R =2, 2.5 and 10
nm. We can clearly see that the VB dispersions are highly non-parabolic due to
band mixing e�ects. The lowest CB and highest VB states have the same angular
momentum | M |= 1/2 so that transitions between them can only be induced by
light linearly polarized along the axis of the NWs, which will be illustrated later.
The conduction subbands all exhibit a similar curvature, because they come from
the same bulk conduction band. Moreover, the subbands do not cross each other.
In the case of the largest NW with radius R=10 nm (See Fig. 6.5c) we see a large
number of subbands due to the weaker con�nement e�ect. The valence subbands
show a di�erent picture. The di�erent bands experience multiple crossings and
anti-crossings. In the band structure of the small NW, we observe the coexistence
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Figure 6.3: Con�nement energy of the �ve highest Γ-point VB states of an InN NW versus
radius. The states are distinguished by its angular momentum |M |. The inset show the dominant
character of the VB states for di�erent size ranges.

Figure 6.4: Change in the fundamental band gap energy ∆Eg of InN NWs, with respect to the
InN bulk band gap Ebulk

g = 0.7 eV, as a function of size.
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of subbands of very di�erent curvature: the '�atter' bands have w⊥ ' 100 % while
the bands with more pronounced curvature have wZ ' 100 %. Note that in the
largest NW the highest valence subbands are all '�at' bands with dominant ⊥-
symmetry. On the other hand, in smaller NWs, the highest valence band structure
is dominated by subbands with more pronounced curvature. The VB dispersion for
the largest NW (Fig. 6.5c) is more involved as a result of the weaker con�nement.
Here, there is a larger number of �atter bands, all with dominant w⊥-characters.

(a) (b) (c)

Figure 6.5: Plots (a)-(c) show the band structure of InN NWs with R=2 nm, 2.5 nm and 10
nm respectively.

Finally, in Fig. 6.6 we display the symmetry weights of the lowest CB state
as a function of kz for a NW with radius R = 10 nm. It is found out that the
S contribution decreases to levels close to ∼ 80%, whereas the Z contribution
reaches values of the order of ∼ 15%. The ⊥-symmetry contribution remains very
small in the whole range of kz examined. The symmetry weights of the topmost
VB state (not shown here) as a function of kz, reveals that the ⊥-character is
dominant (w⊥ ∼ 100 %) in the whole range of kz examined.

Optical Absorption

In this section we will study in detail the polarization dependent optical ab-
sorption of InN NWs. The optical absorptions α(~ω) of InN NWs considering all
the possible transitions from the valence-to-conduction band states are displayed
in �gure Fig. E.12. A 5 meV Lorentzian broadening function is used in the optical
absorption calculations. Since we will focus on the investigation of the e�ects of
the above described crossing of the topmost VB states, we have chosen to present
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Figure 6.6: Dependence with kz of the symmetry weights w` of the ground state (c1) subband
for a NW with radius R =10 nm.

the spectra for three InN NWs radii R =2, 2.5 and 10 nm, whose band structures
are given in Fig. 6.5. In Table 6.1 we have summarized the electronic and op-
tical properties of the lowest CB and highest VB states for di�erent size of InN
NWs. Generally, the optical spectra of ê⊥-polarized absorptions present a more
complex pro�le while the spectra êz-polarized absorptions are composed by single
peaks well separated from each other. This is due to the large number of states
with ⊥-character than states with Z-character. Thus, for all the InN NW sizes
considered, in the circular polarized spectra we recognize a structure composed by
group of peaks of similar energies, where several transitions participate. In the case
of the êz-polarized spectra, the structure is simpler, and exhibits the mentioned
single-peak pro�le.

For InN NWs with R ≤2 nm the optical absorption is polarized along the axis of
the NW. Moreover, the fundamental optical gap is exactly located at the NW band
gap as it can bee seen in the case of InN NW with R = 2 nm in Fig. 6.7a. This
is due to the �rst VB state v1 having s-type envelope function symmetry. This
state has a non-zero oscillator strength in the transition v1(Z) → c1 for the ez
polarized absorption since it is mainly composed of Z-character. Thus the state v1

is a bright state. On the contrary, the ê⊥-polarized optical absorption has its �rst
observable peaks from the transition v4(⊥) → c1. This is because v4 is composed
of ⊥-character and has s-type envelope function symmetry. Thus the ê⊥-polarized
optical absorption is blueshifted with respect to the band gap by an amount equal
to the energy separation Ev1−Ev4 . In the case of InN with R = 2 nm the blueshift
amounts to ∼ 53 meV. For InN NW with radius 2 < R ≤ 3 nm, transition from
v1 → c1 for êz has zero oscillator strength for both polarizations because of its
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Size (nm) Direction State Envelope Dominant Optical
of polarization symmetry character state

R≤ 2.0 ez c1 s S -
v1 s Z bright
v2 p ⊥ dark
v3 p Z dark
v4 s,d ⊥ bright

2<R≤ 3.0 ez c1 s S -
v1 p ⊥ dark
v2 s Z bright
v3 s,d ⊥ bright
v4 p Z dark

R>3 e⊥ c1 s S -
v1 p ⊥ dark
v2 s,d ⊥ bright
v3 s,d ⊥ bright
v4 p Z dark

Table 6.1: Electronic and optical properties of lowest CB and highest VB states at
Γ-point of InN NW with di�erent size.

dominant p-envelope symmetry, di�erent from that of the c1 state: State v1 is then
a dark state. However, v2 in this window of radii is composed of dominantly Z-
character and has s-type envelope function symmetry. As a result, the transition
v2(Z)→ c1 has non-zero oscillator strength for the êz polarized absorption. So for
InN NWs in this radius range, optical absorption is polarized along the c-axis but
the fundamental optical edge is shifted by the energy di�erence of Ev1 − Ev2 . For
InN with radius R = 2.5 nm the blueshift amounts to 13 meV (See Fig. 6.7b).
When we look at larger (R >3 nm) InN NWs the �rst transition v1 → c1 remains
dark and the v2 state, which has dominant ⊥-character and a mixture of S- and
d- envelope symmetries, can couple through ê⊥ light with the CB state c1. As a
result, the optical absorption becomes polarized into the in-plane direction. This
is clearly visible in InN with radius R = 10 nm as shown in Fig. 6.7c. Thus, from
the above discussion we see that the crossing between the size dispersion of the
topmost VB states not only resulted in blueshift of the fundamental optical gap
like the case of InAs NWs discussed in Sec. 5.1.1 but also a change in the direction
of polarization.

In Fig. 6.8 we present the blueshift of the �rst strong VB to CB transition
as a function of NW size. As seen above in very small InN NWs (R ≤2 nm) the
fundamental absorption edge is located at the band gaps. Thus the blueshift of the
on-axis polarized absorbtion is zero. However, for 2 < R ≤3 nm, the on-axis optical



140 Wurtzite Nanowires

(a)

(b)

(c)

Figure 6.7: Polarization-dependent optical absorption spectra of InN NWs with radii (a) R=2
nm, (b)R=2.5 nm and (c) R=10 nm. In each case it has been represented separately, in the
positive and negative vertical axes, the spectra corresponding to e⊥ and ez polarization, respec-
tively. The vertical blue and purple dashed lines shows the band gap of corresponding InN NW
and bulk InN crystal respectively.
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absorption is blueshifted by 4.2 meV at R=2.2 nm and increases with increase of
radius and becomes 22.1 meV at R=3 nm. For very large InN NWs (R >3 nm), the
blueshift for the in-plane polarized optical absorption reaches a maximum value of
23.4 meV at radius R =3.2 nm but decreases monotonously and becomes negligible
as the NW becomes very large (R >20 nm).

Figure 6.8: Blueshift of the optical absorption edges of the on-axis and in-plane polarized
optical absorption in InN NWs. The red, blue and green dots show the �rst strong transitions of
v1,z → c1, v2,z → c1 and v3,⊥ → c1 respectively.

6.2. ZnO Nanowires under Uniaxial Stress

In this section we consider cylindrical ZnO NW under uniaxial stress. We will
make the analysis as function of radius and applied stress. The electronic structure
of ZnO NW under uniaxial strain has been addressed recently by many authors.
DFT calculations suggest that the band gap has nonlinear relationship with the ap-
plied uniaxial strain [193�197]. However, experimentally, it is shown that the band gap
and the applied uniaxial strains have linear relationships [211,212]. It is also shown
that the band gap reduction curve caused by applying uniaxial tensile strain exhi-
bit a two-step linear feature for ZnO NW with diameters less than 300 nm [213]. The
optical absorptions under axial strain have also been studied in Ref. [194]. However,
in this work only the optical absorption along the axis of the nanowire is investiga-
ted and the e�ect of the applied stress on the absorption edges is not clear as the
prediction of the band gaps is underestimated by DFT calculations. In addition,
the size of the ZnO NWs considered is very small.
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Here we want to clarify the ambiguities on the relationship between the applied
uniaxial stress and the band gap. Moreover, we want to investigate the e�ects of
compressive and tensile stress on the polarization dependent optical absorption.

Elastic Properties

In this section we start by investigating the elastic properties of ZnO NWs un-
der uniaxial stress. The material constants used in our calculations can be found
in Appendix. E.2. The geometry and mesh used in this work is shown in Fig.
6.9(a). The pure stretching and compressing homogeneous uniaxial stress are ap-
plied on both top and bottom surfaces of ZnO NW along the c-axis as shown in
Fig. 6.9 (b) and (c). The boundary condition assumed is that the bottom and
top ends of the NW are free. To model the in�nite length ZnO NW with radius
R, we consider cylindrical ZnO NW with a �nite length L but having large aspect
ratio (L/R >> 1) so that by Saint-Venant principle [7,140] the strain �elds at its
central portion correspond to that of the in�nite length ZnO NW. This approach
to model in�nite length NWs has been used recently in piezoelectric problems of
core-shell nanowires [92,152,153]. Then we solved the governing elastic problem 3.3a
by �nite element method to obtain the strain distributions. Note that the strain
distributions do not depend on the size of the nanowires as long as the applied
uniaxial stress is the same.

Figure 6.9: (a) Geometry of the unstrained ZnO nanowire investigated, with the meshes emplo-
yed in the FEM calculations. The NW is grown along c-axis and the geometry is characterized by
radius R and length L=16R. (b) and (c) The total displacement by compressing and stretching
stress of F =20 GPa respectively.
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In Figure 6.9 we present the total displacement of ZnO NW with radius R =5
nm under compressing and stretching uniaxial stress of F =-20 and F =20 GPa
respectively. In both stretching or compressing, the total displacement continuously
drops from one side of the nanowire to the other. As a representative of elastic
deformation behavior of ZnO NWs, we present the resulting axial (εzz) and in-plane
(ε⊥ = εxx+εyy ) strain distributions in ZnO NWs under compressing and stretching
stress are shown in Fig 6.10. Here we show only the strain components that will be
included in the Pikus-Bir Hamiltonian and are presented in Cartesian coordinates.
We can see that the stretching (compressing) stress resulted in surface-shrinking
(tensile) strain along the in-plane directions and tensile (surface-shrinking) strain
along the c-axis direction. As expected, the magnitude of the in-plane strains is
much smaller than the axial strains. Moreover, we found out that both the in-
plane ε⊥ and out-o� plane εzz strains have linear relationships with the applied
stress. Note that the applied axial forces are homogenous and do not create shear
deformations i.e εxy = εxz = εyz =0.

Figure 6.10: In-plane (ε⊥) and out-o� plane strain (εz) distributions in ZnO NW as a result
of compressing and stretching axial stress applied on both top and bottom surfaces. The uniaxial
stress varies from F =-40 GPa to 40 GPa.

Electronic Structure

Band gap plays an important role in the optical absorption, electron-hole pair
recombination, and o�-state leakage in semiconductor electronic devices, and so
on. Band gap is altered by the strain as a result of strain-shifted conduction and
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valence bands. If strain is introduced by applied external stress, the band gap can
even be continuously tuned.

Figure 6.11: Size dependence change in the fundamental band gap energy ∆Eg of
ZnO NWs with respect to the band gap of bulk ZnO crystal Eg =3.43 eV. The
solid red lines are the results from our eight-band k · p Hamiltonian. The green
squares corresponds to single particle calculations from Ref. [184].

Before going into the electronic properties of stressed ZnO NWs, in �gure 6.11
we present the band gap change ∆ Eg (R)= ENW

g (R)-EBulk
g of the stress free ZnO

NW with respect to the band gap of bulk ZnO crystal EBulk
g =3.43 eV. For the

smallest radius of NW considered R = 1 nm, the band gap of ZnO NW is increased
by 0.72 eV because of high quantum con�nement e�ect. However, as the radius
increases (R >20 nm ) the band gap monotonously decreases and becomes below
3.3 meV. To validate the eight-band k · p predicted band gaps, we compare our
results with single particle band gaps from Ref. [184] (green squares). As it can
been seen from Fig. 6.11, we got a very good agreement.

Focusing on the ZnO NWs under uniaxial stress, the strain distributions taken
are included into the electronic structure calculations through Pikus-Bir Hamil-
tonian discussed in Sec. 2.2.3 and given in Appendix A. Finally, the electronic
structures of stressed ZnO NWs are obtained by solving the total strain dependent
Hamiltonian. In �gure 6.12a we present the band gaps of ZnO NWs with radius
R =1.5 to 10 nm under uniaxial stress of F =-40 GPa to F =40 GPa. Clearly, the
electronic properties of ZnO NWs are a�ected signi�cantly by the applied stress.
We can clearly see that the compressive uniaxial stress widened the energy gap
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(a)

(b)

Figure 6.12: (a) Band gaps of ZnO NWs with R =1.5 to 10 nm under axial compressive and
stretching stress. (b) Show the probability density of the highest VB states at Γ-point for ZnO
NW with radius R = 5 nm under uniaxial stress of F =-20,0,20 GPa respectively.
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while the stretching uniaxial stress diminished the band gap. Moreover, we see
that the band gaps of thinner ZnO NWs are more sensitive to the applied stress
than thicker ZnO NWs. We see that the relationship between the band gap of ZnO
NWs with di�erent size is linear with the applied stress which is consistent with
the experimental results in [211,212]. To study the e�ect of applied compressive and
stretching stress on the radial localization of hole, in Fig. 6.12b we present the
probability densities of the highest VB states at Γ-point for ZnO NW with radius
R =5 nm. We can clearly see that the holes are concentrated around the middle
of the NW, r =2.5 nm, in the strain free and stretched ZnO NW. To the contrast
the holes become con�ned at the center of the compressed ZnO NW.

To understand the e�ects of the uniaxial stress on the electronic structure of
ZnO NW, in Fig. 6.13 we present the band structures of ZnO NW with R =5 nm
under uniaxial stress of F =-20 to F =20 GPa. The compressing ( stretching) unia-
xial stress pushed the VB states downwards (lifted up ward) while the conduction
band states are lifted upward (pushed down ward) by stretching (compressing)
uniaxial strain. Moreover, by doing detail analysis on the valence bands we found
out that bands which are almost �at have w⊥ ∼ 100 % character while those bands
with more pronounced curvature have wZ ∼ 100 % character.

(a) (b) (c)

Figure 6.13: Band structure of ZnO NW with radius R=5 nm and under uniaxial stress of (a)
F = −20 GPa, (b) F = 0 GPa, and (c) F = 20 GPa.

The size dependent electronic properties of the topmost VB states of strain
free ZnO NWs at Γ-point is qualitatively similar to the case of free-standing InN
NWs discussed in Sec. 6.1. In all sizes of ZnO NWs, v1 and v2 have s-type envelope
function symmetry while v3 has p-type envelope function symmetry. In small ZnO
with radiusR ≤ 1.4 nm, v1 and v2 are composed of Z and⊥-characters respectively.
In ZnO NWs with radius range of 1.4< R ≤2 nm, v1 and v2 are composed of ⊥
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and Z-characters respectively. To the contrast, in very large ZnO NWs with radius
R >2 nm, both v1 and v2 have ⊥-dominant character. The third VB state v3 is
composed of ⊥-character for ZnO NWs with radius R >2 nm.

In the discussion above, we have seen that the uniaxial stress changed the
dominant character of the topmost VB of ZnO NWs. In Fig. 6.14 we present
the minimum amount of critical stress Fc that creates a change in the dominant
character of the topmost VB state as a function of size of the ZnO NWs.

� Tensile uniaxial stresses F ≥ Fc changes the dominant character of v1,v2 and
v3 at Γ-point into ⊥ for ZnO NWs with radius R ≤2 nm as shown in Fig.
6.14a. The minimum amount of the tensile stresses corresponds to Fc ∼30
GPa for the smallest ZnO NW considered R = 1 nm while it is becomes
Fc ∼2 GPa for ZnO NW with R =2 nm.

� Compressive stress F ≤ Fc changes the character of v1,v2 and v3 at Γ-point
into Z for ZnO NWs with radius R >2 nm. The amount of the critical stress
is around Fc ∼ -6 GPa for ZnO NWs with R ∼2.1 nm but increases with
increase of size of the NW to Fc ∼-10 GPa for NW with R =4.5 nm. However,
for large ZnO NWs radius range 4.5 < R ≤14 nm and R >14 the critical
stress becomes uniform at Fc ∼-10 and Fc ∼-11 GPa respectively as show in
Fig. 6.14b.

(a) (b)

Figure 6.14: The minimum critical amount of uniaxial stress required to have a change in the
dominant characteristic of the three highest VB states at Γ-point for the ZnO NWs with radius
(a) R ≤2 and (b) R > 2 nm.
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From the discussion above we have seen that the dominant character of the
top most VB states at the Γ-point can be changed from ⊥ to Z and vice versa by
applying uniaxial stress depending on the size of the NW. This gives the opportu-
nity to tune the direction of the polarization for the optical absorption which will
be discussed in the next section.

Optical Absorption

The size dependent optical properties of strain free ZnO NWs are qualitatively
similar to the free-standing InN NWs discussed in Sec.6.1. For ZnO NWs with
radius R ≤ 2 nm, the optical absorbtion is polarized along the axis of the NW
(See Fig. 6.15(a) for ZnO NW with radius R =1.4 nm). However, the fundamental
optical gap concedes with the band gap of the NW only for NW with R ≤1.4
nm while it become blueshifted by separation energy of v2− v1 for range of radius
1.4< R ≤2 nm. The direction of polarization changes in to the plane perpendicular
to the axis of the NW for ZnO NWs with R >3 nm (See Fig. 6.15(c) for ZnO NW
with radius R =5 nm).

Focusing on the optical properties of stressed ZnO NWs, in the discussion above
we have seen that applying a uniaxial stress beyond a certain critical value changes
the dominant characteristic of the topmost VB states at Γ-point of ZnO NWs and
the values of the critical stress highly depend on the size of the NW. For small
ZnO NWs ( R ≤ 2 nm) stretched by a uniaxial stress of F ≥ Fc, v1 and v2 have
s-type envelope function and are dominantly composed of ⊥-character. However,
the transition from these states are not visible. The third VB has p-type envelope
function symmetry and is composed of mainly ⊥-character. Thus, the transition
v3,⊥ → c1 has non-zero oscillator strength. As a result, the optical absorption
becomes polarized into the in-plane direction. This can be seen in the case of ZnO
NW with radius R =1.4 nm under a stretching stress of F =20 GPa as shown in
Fig. 6.15(b).

In the case of lager ZnO NWs ( R >2 nm) compressed by a uniaxial stress of
F ≤ Fc, the situation is di�erent from the unstrained and stretched ZnO NWs.
In this case, the top VB state v1 at kz =0 has Z-character and the value of the
oscillator strength for the transition v1(Z)→ c1 becomes non-zero. Therefore, the
optical absorption in the compressed ZnO NW becomes polarized along the c-axis
and the fundamental absorption optical gap coincides with the band gap energy of
the NW. This can been clearly seen in Fig. 6.15(d) for ZnO NWs with radius R =

5 nm under a compression stress of F =-20 GPa. In Table 6.2 we have summarized
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the electronic and optical properties of of selected lowest CB and highest VB states
in ZnO NW under uniaxial stress.

Figure 6.15: Polarization dependent optical absorption spectra of ZnO NWs nm under a unia-
xial stress of (a) F = 0 GPa and (b) F = 20 GPa for radius R = 1.4 nm, and (c) F = 0 GPa,
(b) F = −20 GPa for ZnO NW with radius R = 5 nm. In each case it has been represented
separately, in the positive and negative vertical axes, the spectra corresponding to e⊥ and ez
polarization, respectively.

Applied Direction of State Envelope Dominant Optical
Stress of polarization symmetry character (`) state

stretching e⊥ c1 s S -
(F> Fc) v1 s ⊥ dark

v2 s ⊥ dark
v3 p ⊥ bright

compressing ez c1 s S -
(F≤ Fc) v1 s Z bright

v2 s Z dark
v3 p Z dark

Table 6.2: Electronic and optical properties of lowest CB and highest VB states at
Γ-point of ZnO NWs under uniaxial compressive and tensile stress.
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Chapter 7

Summary and Conclusions

In this PhD thesis we have successfully developed theoretical models to study
piezoelectric, electronic and optical properties of nanowires. The calculations for
the piezoelectric properties are performed based on linear continuum mechanics
theory while envelope function approach is used for the electronic structure study.
We have considered both free standing and core-shell nanowires having wurtzite
and zincblende crystal structures. The electronic subband structure and optical
absorption spectrum are calculated as a function of the nanowire size.

Comprehensive introduction for the various growth techniques and the possible
applications of selected nanowires is given in Chapter 1. In Chapter 2 the k · p
method used in the calculation of electronic structure is discussed in detail for
zincblende and wurtzite structures. The Pikus-Bir Hamiltonian to include strain
e�ects for both zincblende and wurtzite structures is also discussed.

In Chapter 3 we developed computationally cheap and fast two dimensional ap-
proach (GPP problem), which is able to solve fully-coupled piezoelectric problems
in wire-like three dimensional systems. In the case of non-piezoelectric problems,
the model developed reduces to the purely elastic GPS problem. The model develo-
ped is able to accommodate di�erent geometric cross sections and crystal structu-
res with di�erent axial orientations. Moreover, it allows to incorporate externally
applied stresses and imposed surface charges. The developed models have been
illustrated by studying inde�nite lattice-mismatched core-shell nanowires along
[111] direction made of diamond Ge/Si and zincblende piezoelectric InN/GaN ma-
terials. The 3D-2D comparisons show that for these systems, the behavior of the
3D solutions (strain and electric �elds) at distance & 1.25D (where D is the largest
dimension of the cross section) from the end surfaces is very well approximated by
the predictions of the 2D GPP approach, in both non-piezoelectric and piezoelec-
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tric problems. In other words, it has been numerically con�rmed the validity of the
Saint-Venant's principle also for the 3D fully-coupled piezoelectric problems. The
superiority of the GPP approach is clearly manifested in the core-shell nanowire
simulations where warping e�ects, completely absent in the standard 2D plane
piezoelectric approximation, are perfectly taken into account. Further application
of the developed 2D model was presented by studying thermoelastic properties of
ZB [111] Ge/Si CSNW. Thus, the GPP approach provides a versatile procedure to
study accurately and with moderate computing resources the details of the strain
and electric �eld distribution in elongated piezoelectric systems. Furthermore, the
developed models are expected to be important for analyzing and understanding
the properties of epitaxially grown core-shell nanowires and their applications in
nanowire electronics, optoelectronic and sensing.

The formulations of the eight-band k·pmethod using envelope function method
for studying electronic structure of nanowires are given in Chapter 4. In Chapter 5,
we use this model to investigate electronic structure and optical absorption of zinc-
blende nanowires grown along [001] and [111] directions. In InAs NWs, we found
out that the narrow band gap resulted in strong coupling between the conduction
and valence bands. To the contrast, the wide band gap of GaAs created weaker
coupling between the conduction and valence bands. The dependence of the lowest
conduction band state with with the size of the NWs obtained for both InAs and
GaAs NWs was found signi�cantly deviated from the relation predicted by the
EMA which showed the inadequacy of the single-band approach and the need for
the multiband method. In the valence band of both [001] and [111] InAs NW, the
size dispersions of the topmost two states having the same angular momentum
| M = 1/2 | but di�erent dominant character types cross each other at a critical
radius Rc. The values of Rc correspond to 4.6 and 3.2 nm respectively for [001]
and [111] InAs NWs. As a result, the optical phenomena around the band gap
become strongly dependent on the size of the NW. We found out that the opti-
cal absorptions for both [001] and [111] InAs NWs are polarized along the axis
of the NWs. However, the fundamental optical gaps coincide with the band gap
of the NW only for [001] and [111] InAs NWs with R ≤ Rc. For both [001] and
[111] InAs NWs with R > Rc, the optical the optical gaps are blue-shifted by
separation energy of v1 − v2 with respect to the band gaps of the NWs. To the
contrast, the size dispersion of top most two VB states in both [001] and [111]
GaAs NWs do not cross each other. Thus, the optical absorptions in both [001]
and [111] GaAs NWs are polarized along the axis of the NWs and the fundamental
optical gaps coincide with the band gaps of the NW independent of size. We be-
lieve that the results presented here will provide important information about the
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electronic structures and optical absorption of the [001] and [111]-oriented InAs
and GaAs nanowires and useful guidance for the use of these nanowires in novel
nanoelectronic, optoelectronic and quantum devices.

We have also studied the electronic and optical properties of zincblende core-
shell nanowires. In the lattice-matched ZB [111] AlGaAs/GaAs CSNW, we found
that the presence of Al concentration increased the band gap due to the increase
in the band o�sets. Particularly, the change in the gap is higher for thinner co-
re and shell. In the optical absorption, the presence of Al concentration created
optically inactive states in the top most valence band state at Γ-point which resul-
ted in the blue shift of the axially polarized optical absorption. Next we studied
lattice-mismatched [001] GaAs/InAs CSNW. The lattice-mismatch induced strain
distributions inside the CSNW are obtained by using GPS approach and their ef-
fects of the strain on the electronic structure are included by using the Pikus-Bir
hamiltonian. In both strain free and strained GaAs/InAs CSNW, we found out
that the band gaps decrease with increase of shell thickness for �xed radius of
core. The band gap in the strained GaAs/InAs CSNWs are decreased as a result
of the strain when compared with the strain free case. In the optical calculations,
we found out that the optical absorptions are polarized along the [001] direction
but blue-shifted due to the presence of dark states at the Γ-point of topmost VB
state.

The electronic structure and optical absorption of wurtzite NWs are also in-
vestigated in Chapter 6. In InN NW, we found out that the CB states exhibit
monotonously decreasing energy with increasing NW radius. On the other hand,
the size dispersion of the valence band states show various crossing and anticros-
sing e�ects due to the interplay between the con�nement and band mixing e�ects.
The crossing between the size dispersion of topmost valence band states not only
resulted in blueshift of fundamental optical gap, like the case of InAs NW, but
also a complete change in the direction of polarization for the optical absorption.
For InN NWs with R ≤3 nm, the optical absorption is polarized along the axis of
the NW while for InN NWs with R > 3 nm the optical absorption was found to
be polarized along the in-plane direction. Moreover, the spectra of the smaller na-
nowires display a distinguishable sequence of peaks re�ecting the one-dimensional
density-of-states. The absorption peaks become denser for larger nanowires, and
for radii larger than 10 nm the spectrum starts to resemble that of bulk InN.

Finally, we studied electronic and optical properties of ZnO NW under uniaxial
stress. The band gaps follow a linear relationship with the applied stress. Com-
pressive stress widened the band gap while the tensile stress narrows the gap. In
the optical absorption, we found out a minimize critical uniaxial stress where the
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direction of polarization can be be tuned depending on the size of the NW due to
the change in the dominant character of top most valence band states at Γ-point.
Thus, we found out that applying tensile stress beyond the critical values changes
the direction of polarization for ZnO NWs with R ≤ 2 nm from the axis of the NW
into the in-plane direction. To the contrast, for ZnO NW with R > 2 nm, applying
a compressive stress beyond a critical value changes the direction of polarization
from the in-plane into the axis of the NW. The results obtained here contribute
signi�cantly to the understanding of the optoelectronic properties of ZnO nanowire
and its device applications.
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Appendix A

Hamiltonian Matrix for Zincblende

and Wurtzite Structures

In this appendix we present the explicit form of the k·p Hamiltonians that have
been discussed in Sec. 2.2 and used in Chapters 5 and 6 for the calculation of the
zincblende and wurtzite nanowire electronic structures. In writing the Hamiltonian
matrices we have used the following auxiliary notation:

k± = kx ± i ky, (A.1a)

k2
⊥ = k2

x + k2
y (= k+ k− = k− k+), (A.1b)

k2 = k2
⊥ + k2

z , (A.1c)

ε⊥ = εxx + εyy, (A.2a)

Tr(ε) ≡ εh = ε⊥ + εzz, (A.2b)

ε̃ ≡ εbiax = ε⊥ − 2 εzz, (A.2c)

ε̂ = εxx − εyy, (A.2d)

ε±± = ε̂± 2 i εxy, (A.2e)

ε± = εxz ± iεyz. (A.2f)
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A.1. Zincblende Structure

A.1.1. k · p Hamiltonian Matrix

Here we present the explicit form of the k · p Hamiltonian matrix for the
zincblende structure discussed in Sec. 2.2.2.
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We remind that in the above Hamiltonian, the coordinates and wavectors are
referred to the cubic crystallographic axes: ( X ‖ [100] , Y ‖ [010] , Z ‖ [010] ),
and |↑〉 and |↓〉 indicate basic spinors with the spin quantized along Z ‖ [001]. To
obtain the Hamiltonians referred to axes:

(X ′ ‖ [101̄] , Y ′ ‖ [1̄21̄] , Z ′ ‖ [111] ) ,

that are used in the modeling of nanowires oriented along [111], we have followed
the rotation procedure sketched in Ref. [180].

Below we will give the de�nition of the parameters appearing in the Hamilto-
nian matrix (A.3).

� The Kane parameter P is the parameter controlling the coupling strength
between the conduction and valence bands, and is proportional to the mo-
mentum matrix element,

P =
~
m0

〈S|px|X〉 =
~
m0

〈S|py|Y 〉 =
~
m0

〈S|pz|Z〉 . (A.4)

With this de�nition P is purely imaginary, P = −i|P |, with |P | being a
positive number. [105] The Kane energy Ep is de�ned as:

Ep =
2m0

~2
|P |2. (A.5)

� (γ′1, γ
′
2, γ

′
3) are the reduced Luttinger parameters to be used in the 8 × 8

Hamiltonian. They are de�ned in terms of (γ1, γ2, γ3), introduced originally
by Luttinger, [103] by the following relations, [214]

γ′1 = γ1 −
1

3

Ep
Eg
, (A.6a)

γ′2 = γ2 −
1

6

Ep
Eg
, (A.6b)

γ′3 = γ3 −
1

6

Ep
Eg
. (A.6c)

� m′ is the e�ective mass of the conduction band to be used in the 8 × 8

Hamiltonian, and is related to the experimental e�ective mass me by:

m0

m′
=
m0

me

− Ep
3

(
2

Eg
+

1

Eg + ∆0

)
. (A.7)
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A.1.2. Bir-Pikus Hamiltonian Matrix

Here we present the explicit form of the Bir-Pikus Hamiltonian matrix for
the zincblende structure. It can be obtained formally from the k · p Hamiltonian
according to the following prescription: [102]

kikj → εij,

~2

2m′
→ C1, ≡ ac,

~2γ1

2m0

→ −Dv
d ≡ −av,

~2γ2

2m0

→ Du

3
≡ − b

2
,

~2γ3

2m0

→ D′u
3

≡ − d

2
√

3
,

The notation of the deformation potential of the second column is employed
by H.-R. Trebin et al.. [215] Those shown in the third column were de�ned by G. L.
Bir and G. E. Pikus and are widely used in the literature.
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A.2. Wurtzite Structure

A.2.1. k · p Hamiltonian Matrix

Here we present the explicit form of the k · p Hamiltonian matrix for the
wurtzite structure discussed in Sec. 2.2.3.
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Below we will give the de�nition of the parameters appearing in the Hamilto-
nian matrix (A.9)

� The Kane-like parameters Pz and P⊥ are de�ned as:

Pz =
~
m0

〈S|pz|Z〉, (A.10a)

P⊥ =
~
m0

〈S|px|X〉 =
~
m0

〈S|py|Y 〉 , (A.10b)

and, as in the zincblende, they are purely imaginary numbers, i.e.,

Pz = −i|Pz| , (A.11a)

P⊥ = −i|P⊥| , (A.11b)

where |P⊥| and |Pz| are positive values. From these parameters we introduce
the energies Ep,z and Ep,⊥:

Ep,z =
2m0

~2
|Pz|2, (A.12a)

Ep,⊥ =
2m0

~2
|P⊥|2. (A.12b)

� A′i, i = 1, . . . , 6, are parameters equivalent to the Luttinger parameters ap-
pearing in the zincblende k · p Hamiltonian. They are related to Ai through
the following expressions: [216]

A′1 = A1 +
Ep,z
Eg

(A.13a)

A′2 = A2 (A.13b)

A′3 = A3 −
Ep,z
Eg

(A.13c)

A′4 = A4 +
1

2

Ep,⊥
Eg

(A.13d)

A′5 = A5 +
1

2

Ep,⊥
Eg

(A.13e)

A′6 = A6 +

√
2m0

~2

PzP⊥
Eg

. (A.13f)

In this case the Kane-like parameters are obtained from the experimental
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e�ective masses me,z and me,⊥ and the energy parameters as follows:

P 2
z =

~2

2m0

(
1

me,z

− 1

)
(Eg + ∆1 + ∆2)(Eg + 2∆2)− 2∆2

3

Eg + 2∆2

, (A.14)

P 2
⊥ =

~2

2m0

(
1

me,⊥
− 1

)
(Eg + ∆1 + ∆2)(Eg + 2∆2)− 2∆2

3

(Eg + ∆1 + ∆2)(Eg + ∆2)−∆2
3

. (A.15)

A.2.2. Bir-Pikus Hamiltonian Matrix

Here we present the explicit form of the Bir-Pikus Hamiltonian matrix for
the zincblende structure. It can be obtained formally from the k · p Hamiltonian
according to the following prescription:

kikj → εij ,

~2k2
z

2m0,z

→ azezz ,

~2k2
⊥

2m0,⊥
→ a⊥(exx + eyy) ,

~2Ai
2m0

→ Di ,

(A.16)

where az and a⊥ are deformation potentials of the conduction bands and Di,
i = 1, . . . 6, are the deformation potentials of the valence bands.
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Appendix B

Momentum Matrix Elements

In this appendix we give the explicit form of the momentum matrix elements
(ê · paa′) appearing in the expression of the interband optical matrix element
(2.50), when expressed in the Bloch basis employed for the matrix representa-
tion of the k · p Hamiltonians for zincblende and wurtzite structures detailed in
Appendix A.

B.1. Zincblende Structure

(ê · paa′)↔ P
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B.2. Wurtzite Structure

(ê · paa′)↔
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Appendix C

Matrix Elements for the Envelope

Function Model

In this appendix we present some necessary expressions for the calculation of
the matrix elements: 〈

ξ(m)
α

∣∣H(NW)
∣∣ ξ(m′)

α′

〉
that appear in the multiband envelope function model introduced in Chapter 4 for
the calculation of the nanowire electronic structure.

� 〈ξ(m)
α

∣∣∣T (m)
ρ

∣∣∣ ξ(m)
β 〉

〈ξ(m)
α

∣∣T (m)
ρ

∣∣ ξ(m)
β 〉 =

~2

2m∗⊥R
2
δα,β . (C.1)
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ρ dρR∗m,α(ρ)V (NW )(ρ)Rm,β(ρ) . (C.2)
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� 〈ξ(m±2)
α

∣∣k2
±
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∣∣k2
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Appendix D

Material Tensors

D.1. Voigt Notation

The tensor representation of the constitutive relations in Eq.(3.2) can be ex-
pressed in a compact matrix form using the Voigt notation explained in the table
below:

tensor notation ij or kl 11 22 33 23,32 13,31 12,21

matrix notation I or K 1 2 3 4 5 6

Table D.1: Voigt notation.

In the case of the piezoelectric coupling matrix, which is a third rank tensor,
the last two indices are replaced by a single index according to Voigt notation
whereas the �rst index remains unchanged. The new matrix arrangement of the
material constants will look like:

Cijkl → CIK , enij → enI . (D.1)

Using the Voigt notation, the fully-coupled constitutive relations (3.2) can be writ-
ten in compact form as:

σI = CIKεK − enIEn , (D.2a)

Dm = emKεK + εmnEn , (D.2b)
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or in matrix form as

σ1 = σ11

σ2 = σ22

σ3 = σ33

σ4 = σ23

σ5 = σ13

σ6 = σ12

D1

D2

D3


=



C11 C12 C13 C14 C15 C16 e11 e21 e31

C21 C22 C23 C24 C25 C26 e12 e22 e32

C31 C32 C33 C34 C35 C36 e13 e23 e33

C41 C42 C43 C44 C45 C46 e14 e24 e34

C51 C52 C53 C54 C55 C56 e15 e25 e35

C61 C62 C63 C64 C65 C66 e16 e26 e36

e11 e12 e13 e14 e15 e16 −ε11 −ε12 −ε13

e21 e22 e23 e24 e25 e26 −ε21 −ε22 −ε23

e31 e32 e33 e34 e35 e36 −ε31 −ε32 −ε33





ε1 = ε11

ε2 = ε22

ε3 = ε33

ε4 = 2ε23

ε5 = 2ε13

ε6 = 2ε12

−E1

−E2

−E3


.

(D.3)

D.2. Material Tensors

In this section we give the elasticity, piezoelectric and dielectric Voigt matrices
of zincblende and wurtzite semiconductors used in Chapter 3 for the study of
elastic and piezoelectric properties of nanowires.

Material Tensors of the Diamond/Zincblende Structure

For crystalline materials belonging to the cubic system (crystal classes T and
Td), when referred to the crystallographic axes (X1 ‖ [100], X2 ‖ [010], X3 ‖ [001]),
these matrices are given by: [128]

CIK ↔



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


, (D.4)

enI ↔

0 0 0 e14 0 0

0 0 0 0 e14 0

0 0 0 0 0 e14

 , (D.5)

εmn ↔

ε11 0 0

0 ε11 0

0 0 ε11

 , (D.6)
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where C11, C12, C44, e14, and ε11 are the only independent material constants. In
the case of the crystal class Oh corresponding to non-piezoelectric materials, e14

must be taken to be zero.

If a rotated system of axes is to be used, then it is necessary to �rst transform
accordingly the material tensors and only afterwards construct the associated Voigt
matrices. This is the situation in Secs. 3.3.1 and 3.3.5, where a nanowire with X̂3

axis along the crystallographic direction [111] is studied. For that purpose it is
convenient to employ a new system of axes (X̂1 ‖ [101̄], X̂2 ‖ [1̄21̄], X̂3 ‖ [111]).
The rotation matrix leading to this new reference frame is:

R =


1√
2

0 − 1√
2

− 1√
6

2√
6
− 1√

6
1√
3

1√
3

1√
3

 . (D.7)

Following the procedure outlined above, one obtains the following Voigt matrices
corresponding to the rotated system of axes:

ĈIK ↔



Ĉ11 Ĉ12 Ĉ12 Ĉ14 0 0

Ĉ12 Ĉ11 Ĉ12 −Ĉ14 0 0

Ĉ12 Ĉ12 Ĉ33 0 0 0

Ĉ14 −Ĉ14 0 Ĉ44 0 0

0 0 0 0 Ĉ44 Ĉ14

0 0 0 0 Ĉ14 Ĉ66


, (D.8)

ênI ↔

 0 0 0 0 ê15 −ê22

−ê22 ê22 0 ê15 0 0

ê31 ê31 ê33 0 0 0

 , (D.9)

ε̂mn ↔

ε11 0 0

0 ε11 0

0 0 ε11

 , (D.10)

where the elements of the matrices are:

Ĉ11 =
1

2
(C11 + C12 + 2C44) ,

Ĉ12 =
1

6
(C11 + 5C12 − 2C44) ,

Ĉ13 =
1

3
(C11 + 2C12 − 2C44) ,
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Ĉ14 =
1

3
√

2
(−C11 + C12 + 2C44) ,

Ĉ33 =
1

3
(C11 + 2C12 + 4C44) ,

Ĉ44 =
1

3
(C11 − C12 + C44) ,

Ĉ66 =
1

2
(Ĉ11 − Ĉ12) ,

ê15 = −
√

1

3
e14 ,

ê22 =

√
2

3
e14 ,

ê31 = −
√

1

3
e14 ,

ê33 =

√
4

3
e14 .

Material Tensors of the Wurtzite Structure

For wurtzite materials the elasticity tensor has �ve independent elements, given
in Voigt notation as C11, C12, C13, C44 and C66. ForX3 ‖ [0001] the elasticity matrix
takes the form [217]

CIK ↔



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66


, (D.11)

where C66 = 1
2
(C11 − C12) and the piezoelectric coupling matrix is of the form

enI ↔

 0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0

 , (D.12)
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where e15, e31 and e33 are the independent piezoelectric constants. The dielectric
matrix of the wurtzite structure is given by

εmn ↔

ε11 0 0

0 ε11 0

0 0 ε33

 , (D.13)

where ε11 and ε33 are the relative permittivities along the a and c axis of the
wurtzite structure respectively.

D.3. Strain and Electric Field Components in Cy-
lindrical Coordinates

Here we give the relationship between the cartesian and cylindrical components
for the strain and electric �elds. First we give the relationships for the strain
components:

εrr = ε11 cos2 φ+ ε22 sin2 φ+ ε12 sin 2φ ,

εφφ = ε11 sin2 φ+ ε22 cos2 φ− ε12 sin 2φ ,

εzz = ε33 ,

εrφ =
1

2
(ε22 − ε11) sin 2φ+ ε12 cos 2φ ,

εrz = ε23 sinφ+ ε13 cosφ ,

εφz = ε23 cosφ− ε13 sinφ ,

and for the electric �elds we have the relationship:

Er = E1 cosφ+ E2 sinφ ,

Eφ = −E1 sinφ+ E2 cosφ ,

Ez = E3 .
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Appendix E

Material Parameters

In this appendix we show the numerical values of the parameters used in the
calculations presented in this thesis.

E.1. Parameters for Diamond/Zincblende Materials

Si Ge GaAs InAs InN GaN

a0 (Å) 5.430 [218] 5.652 [218] 5.645 [186] 6.053 [186] 4.98 [186] 4.5 [186]

C11 (GPa) 162.0 [219] 128.5 [219] 124.2 [220] 92.2 [220] 204.1 [220] 316.9 [220]

C12 (GPa) 62.8 [219] 45.7 [219] 51.4 [220] 46.5 [220] 119.4 [220] 152.0 [220]

C44 (GPa) 77.2 [219] 66.8 [219] 63.4 [220] 44.4 [220] 114.1 [220] 197.6 [220]

e14 (C/m2) − − -0.20 [221] -0.05 [221] 0.84 [220] 0.59 [221]

ε11 (ε0) 11.97 [222] 16.00 [222] 12.80 [222] 15.15 [222] 8.4 [222] 9.7 [222]

Table E.1: Lattice, elastic, piezoelectric and dielectric constants.

Parameters GaAs InAs AlAs

Ep (eV) 23.81 [22] 19.33 [22] 21.1 [186]

Eg (eV) 1.51 [22] 0.37 [22] 3.099 [186]

∆0 (eV) 0.34 [22] 0.43 [22] 0.28 [186]

me (m0) 0.067 [22] 0.023 [22] 0.15 [186]

γ1 7.05 [22] 19.67 [22] 3.76 [186]

γ2 2.33 [22] 8.37 [22] 0.82 [186]

γ3 3.00 [22] 9.29 [22] 1.42 [186]

Table E.2: Bandstructure parameters.
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Parameters GaAs InAs

ac (eV) -7.17 [186] -5.08 [186]

av (eV) -1.16 [186] -1.0 [186]

b (eV) -2.0 [186] -1.8 [186]

d (eV) -4.8 [186] -3.6 [186]

Table E.3: Deformation potentials.

E.2. Parameters for Wurtzite Materials

InN GaN ZnO

a0 (Å) 3.535 [223] 3.187 [224] 3.248 [224]

c0 (Å) 5.701 [223] 5.183 [224] 5.205 [224]

C11 (GPa) 258.6 [220] 407.7 [220] 238 [225]

C12 (GPa) 112.7 [220] 138.0 [220] 106 [225]

C13 (GPa) 71.6 [220] 75.2 [220] 84 [225]

C33 (GPa) 299.8 [220] 470.4 [220] 176 [225]

C44 (GPa) 53.6 [220] 102.3 [220] 58 [225]

e15 (C/m2) -0.43 [226] -0.31 [226] -0.53 [226]

e31 (C/m2) -0.59 [226] -0.44 [226] -0.68 [226]

e33 (C/m2) 1.14 [226] 0.75 [226] 1.31 [226]

Psp (C/m2) -0.035 [226] -0.027 [226] -0.042 [226]

ε11 (ε0) 14.40 [227] 10.40 [227] 8.91 [228]

ε33 (ε0) 13.10 [227] 9.50 [227] 7.77 [228]

Table E.4: Lattice, elastic, piezoelectric and dielectric constants.
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parameters InN ZnO

Eg (eV) 0.70 [229] 3.43 [57]

Ep,⊥ (ev) 7.04 ∗ 10.32 ∗

Ep,z (ev) 7.48 ∗ 10.74 ∗

∆1 (eV) 0.0437 [229] 0.066 [57]

∆2 (eV) -0,003167 [229] -0.001167
∆3 (eV) -0,001967 [229] -0.001167
me,z (m0) 0.09 [229] 0.2460 [57]

me,⊥ (m0) 0.09 [229] 0.250 [57]

A1 -5.98 [229] -2.743 [230]

A2 -0.58 [229] -0.393 [230]

A3 5.44 [229] 2.377 [230]

A4 -2.46 [229] -2.069 [230]

A5 -2.53 [229] -2.051 [230]

A6 -1.55 [229] -2.099 [230]

∗ Numerical values of Ep,⊥ and Ep,z are calculated using the relation given in
(A.12).

Table E.5: Bandstructure parameters.

Parametrs InN ZnO

a1 (eV) -3.5 [231] 0.84 ∗∗

a2 (eV) -3.5 [231] 1.67 ∗∗

D1 (eV) 0.14 ∗∗ 3.9 [232]

D2 (eV) 1.08 ∗∗ 4.13 [232]

D3 (eV) 2.68 [230] 0.47 [230]

D4 (eV) -1.78 [230] -0.84 [230]

D5 (eV) -2.07 [230] -1.21 [230]

D6 (eV) -3.95 [230] -1.77 [230]

∗∗ Numerical values of D1 and D2 are calculated values using (a1) and (a2) through
the following expression: ag = a1 − a2. [230]

Table E.6: Deformation potentials.
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Resumen en Castellano

Simulaciones de las Propiedades

Piezoeléctricas, Electrónicas y Ópticas

de Nanohilos

Los nanohilos semiconductores han atraido un interés creciente debido a sus
potenciales aplicaciones en electrónica, óptica y fotónica. Un amplio rango de dis-
positivos fotónicos y electrónicos basados en nanohilos han sido ya demostrados,
incluyendo células solares, [1] fotodetectores, [2] diodos emisores de luz, [3,4] y láse-
res. [5,6] Para comprender las propiedades de los nanohilos es necesario conocer su
estructura electrónica. Además, es importante conocer cómo estas propiedades de-
penden del tamaño, estructura cristalina y orientación, y cómo se ven afectadas
por las deformaciones. El objetivo de esta tesis es desarrollar modelos teóricos
realistas, pero manejables desde un punto de vista computacional, para estudiar
el comportamiento piezoeléctrico y las propiedades electrónicas y ópticas de los
nanohilos. Hemos considerado nanohilos con la estructura de la zincblenda y de la
wurtzita. En lo que respecta a la composición, hemos considerado tanto nanohilos
simples (free standing) como estructurados radialmente en una geometría coaxial
de núcleo-corteza (core-shell).

Propiedades Piezoeléctricas de Nanohilos

Para estudiar las propiedades piezoeléctricas de los nanohilos con geometría
núcleo-corteza, hemos desarrollado un nuevo procedimiento bi-dimensional (2D)
apropiado para estudiar problemas piezoeléctricos totalmente acoplados con sime-
tría traslacional. El procedimiento está basado en la idea de que para sistemas



con una relación de aspecto grande, se puede considerar que todas las secciones
transversales se encuentran en idénticas condiciones, y por tanto la deformación y
el campo eléctrico dependen sólo de las coordenadas en el plano. [7] Bajo esta única
hipótesis, el problema tri-dimensional (3D) original puede ser muy bien aproxima-
do por el que hemos denominado problema piezoeléctrico plano generalizado (en
inglés, generalized plane piezoelectric, GPP, problem). [8]. En el caso de un sistema
no piezoeléctrico, el problema GPP se convierte en puramente elástico y se redu-
ce al llamado problema de deformación plana generalizada (en inglés, generalized
plane strain, GPS, problem). Este procedimiento es completamente general y �e-
xible dentro del marco de las hipótesis del modelo y permite una implementación
numérica e�ciente para el estudio de sistemas complejos. Los cálculos numéricos se
han realizado sobre una forma discretizada del problema GPP mediante el método
de los elementos �nitos.

Figure E.1: Sección transversal del nanohilo con geometría núcleo-corteza estudiado, junto con
el mallado empleado en los cálculos por el método de elemento �nitos. La sección transversal se
supone hexagonal y está caracterizada por los valores del radio del núcleo Rcore y de la anchura
de la corteza wshell. El radio total del nanohilo es entonces RNW = Rcore + wshell.

Los modelos desarrollados ha sido ilustrados estudiando las propiedades piezo-
eléctricas de nanohilos inde�nidos constituidos por semiconductores piezoeléctricos
tipo zincblenda InN(núcleo)/GaN(corteza) con desacuerdo de red. Los nanohilos
están orientados a lo largo de la dirección [111]. La geometría de la sección trans-
versal se muestra en la Fig. E.1.

En Fig. E.2 presentamos las componentes del campo, tal como se obtienen de
un cálculo completo 3D, a lo largo de un eje longitudinal del nanohilo. A modo de
comparación, también se indican, mediante líneas horizontales, los valores corres-
pondientes obtenidos mediante el procedimiento GPP. En la Fig. E.2 distinguimos
dos regiones. En la región central, para distancias a las super�cies extremas ma-
yores que 1.25(2RNW ) (i.e., |z| < 150 nm ), el campo es bastante uniforme a lo



Figure E.2: Las líneas gruesas grises representan las componentes del campo eléctrico Er,
Eφ y Ez a lo largo de un eje longitudinal de un nanohilo �nito largo que pasa a través de
(x = 0.5RNW , y = 0.5RNW ) tal como se obtienen a partir de los cálculos 3D. Por comparación,
también se muestran como líneas horizontales los resultados correspondientes a un nanohilo
in�nito tal como se obtienen por medio del procedimiento GPP.

largo del eje. Por otro lado, a distancias de los extremos menores que 1.25(2RNW ),
el campo varía considerablemente, principalmente como consecuencia del efecto
de sobrerelajación de las componentes de la deformación. Los resultados para la
sección transversal central del modelo �nito son muy bien aproximados por los de
un nanohilo in�nito calculado por medio del procedimiento 2D GPP (el acuerdo
en z = 0 es mejor del 99.3% para Ez y mejor que 98% para Er y Eφ). Estos
resultados representan una con�rmación numérica de que el principio de Saint-
Venant, inicialmente formulado para problemas elásticos, también funciona para
el problema totalmente acoplado de un nanohilo piezoeléctrico.

(a) (b) (c)

Figure E.3: Distribución en el plano de: (a) el potencial Φ, y de las componentes del campo
(b) Er y (c) Eφ en un nanohilo núcleo-corteza, según los cálculos del procedimiento GPP.



En la Fig. E.3 se muestra la distribución sobre el plano XY del per�l del po-
tencial piezoeléctrico Φ(x, y) y de las componentes en el plano del campo eléctrico,
para un hilo in�nito modelizado usando el problema GPP. El procedimiento GPP
da un campo axial Ez = E‖ = 1.36× 108 V/m, que es uniforme en toda la sección
transversal. La Fig. E.3a muestra que los valores máximo/mínimo del potencial pie-
zoeléctrico (±13.6V ) se sitúan alternadamente en las esquinas externas de la capa
de GaN, mientras que el núcleo de InN se encuentra esencialmente a potencial cero.
La distribución asociada del campo en el plano se muestra en Figs. E.3b y E.3c: Los
valores máximos de la componente radial Er,max = 8.95× 108 V/m están situados
en las esquinas de la intercara núcleo-corteza. Por otro lado, Eφ,max = 3.97 × 108

V/m está localizado entre las esquinas de la super�cie externa del nanohilo, .

Estructura Electrónica y Absorción Óptica de Na-
nohilos con Estructura Zincblenda

En esta tesis se ha utilizado el método de la función envolvente multibanda, en
combinación con el Hamiltoniano k ·p de ocho bandas, para estudiar la estructura
electrónica de nanohilos simples (free-standing) y núcleo-corteza (core shell). Em-
pezamos nuestra investigación con nanohilos simples de InAs orientados a lo largo
de la dirección [001]. La geometría del hilo, que está alineado a lo largo del eje Z,
se describe por su radio R, como se muestra en la Fig. E.4.

Figure E.4: Nanohilo cilíndrico simple con radio R alineado a lo largo de la dirección [001], que
tomamos como eje Z.

La energía de los estados de la banda de conducción en el punto Γ aumenta mo-
nótonamente al decrecer el radio. Dichos estados tienen un carácter dominante S.
Por el contrario, la dispersión con el tamaño de los estados de la banda de valencia



muestra un comporatmiento más complejo con multitud de cruces y anticruces.
Las curvas de dispersión con el radio de los dos estados más altos de la banda de
valencia (v1 and v2) se cruzan en un radio crítico Rc ∼4.6 nm como se muestra
en Fig. E.5: Para nanohilos con (R ≤ Rc), v1 and v2 tienen caracteres dominantes
lh(↑) y lh(↓), respectivamente, mientras que intercambian ese carácter para radios
mayores (R > Rc). En el caso de nanohilos de InAs orientados a lo largo de la
direccción [111], el radio crítico del cruce adopta un valor menor de Rc ∼3.2 nm.

Figure E.5: Dependencia con el tamaño de los cinco estados más altos de la banda de valencia
en el punto Γ. La línea vertical discontinua muestra el radio en que se cruzan las curvas asociadas
a los dos primeros estados. Los estados están etiquetados según su momento angular |M |.

Las estructuras de bandas de nanohilos de [001] InAs con radios R =2.5 y 10
nm se presentan en Fig. E.6. Las subbandas están etiquetadas según su momento
angular. Las subbandas de conducción en los nanohilos de InAs no son parabólicas
alrededor del punto Γ debido a su acoplamiento con la banda de valencia. Las sub-
bandas de valencia más altas del nanohilo de radio R =2.5 nm exhiben claramente
una estructura de "joroba de camello"(en ingles, camelback) que da lugar a una
masa efectiva negativa. La estructura camelback es más visible en los hilos de InAs
más pequeños y va desapareciendo a medida que el tamaño de los hilos aumenta.

En la absorpción óptica encontramos que las transiciones ópticas alrededor del
gap óptico fundamental dependen acusadamente del tamaño del nanohilo. Como
resultado del comentado cruce de las curvas de dispersión con el tamaño de los
dos estados más altos de la banda de valencia, para nanohilos de [001] InAs con
R ≤ Rc la absorción óptica está polarizada a lo largo el eje del nanohilo y el
gap óptico fundamental coincide exactamente con el gap de banda del nanohilo,



(a) (b)

Figure E.6: Estructura de subbandas de nanohilos [001] InAs con radios R=2.5 y 10 nm.

como se muestra en Fig. E.7a para el caso de radio R =2.5 nm. Sin embargo,
para (R > Rc) el gap fundamental se desplaza hacia el azul con una separación
de energía v2 − v1 con respecto al gap de banda del nanohilo (ver Fig. E.7b para
nanohilos de [001] InAs con radio R =5 nm). La magnitud del desplazamiento al
azul disminuye con el aumento del tamaño del nanohilo.

(a) (b)

Figure E.7: Los grá�cos (a) y (b) muestran la absorción óptica de los nanohilos de InAs con
radio R=2.5 nm y R=10 nm, respectivamente. Las líneas discontinuas verticales roja y azul
muestran el correspondiente gap fundamental los nanohilos de InAs y del cristal masivo de InAs,
respectivamente.

También se han estudiado en esta tesis las propiedades electrónicas y ópticas
de nanohilos núcleo-corteza con la estructura de la zincblenda. En primer lugar
se ha estudiado el caso de nanohilos núcleo-corteza [111] Al0.4Ga0.6As/GaAs con



acuerdo de red. La geometría del sistema está descrita por el radio del núcleo Rcore

y el espesor de la corteza wshell (ver Fig. E.8). Encontramos que la presencia de la
aleación de aluminio aumenta el gap debido al aumento de los desalineamientos de
las bandas. Particularmente, el cambio en el gap de banda es mayor para dimen-
siones pequeñas del núcleo y la corteza, como se muestra en Fig. E.9. La presencia
de la concentración de Al convierte en opticamente inactivo el estado más alto de
la banda de valencia en el punto Γ, lo que resulta en un corrimiento hacia el azul
de la absorción óptica polarizada axialmente.

Figure E.8: Descripción geométrica de un hilo cilíndrico núcleo-corteza AlxGa1−xAs/GaAs con
radio del núcleo Rcore y anchura de la corteza wshell. El nanohilo está orientado a lo largo de la
dirección [111], que se toma como eje Z.

Figure E.9: Gap de banda ENW
g de nanohilos núcleo-corteza Al0.4Ga0.6As/GaAs en función

del espesor de la corteza wshell. Las líneas discontinuas púrpura y naranja corresponden respec-
tivamente a los gaps de los materiales masivos Al0.4Ga0.6As y GaAs.

También hemos considerado nanohilos núcleo-corteza GaAs/InAs con desacuer-
do de red orientados en la dirección [001]. El desacuerdo de red del núcleo (InAs)
respecto a la corteza (GaAS) es 6.87 %. La distribución de la deformación induci-
da por el desacuerdo de red en el sistema núcleo-corteza se ha obtenido haciendo
uso del procedimiento GPS discutido más arriba. A continuación se han incluido



los efectos de la deformación sobre la estructura electrónica usando el Hamilto-
niano Bir-Pikus. En Fig. E.10 presentamos el gap de nanohilos GaAs/InAs sin
deformación y deformados en función del grosor de la corteza wshell para un radio
�jo del núcleo Rcore =10 nm. Lo primero que llama la atención es que, sólo con
el cambio en las dimensiones de la corteza, sin tener en cuenta la deformación
intrínseca, ya se produce una variación apreciable del gap. El gap tiene valores
más altos para cortezas más estrechas y decrece a medida que la corteza es más
gruesa. En el caso de los nanohilos GaAs/InAs deformados, observamos una ten-
dencia cualitativamente similar con el aumento en el espesor de la corteza, pero
ahora la deformación hidrostática da lugar a una disminución apreciable del gap
comparado con el caso libre de deformación. Así, globalmente el gap disinuye con
el aumento del espesor de la corteza como un efecto combinado de la disminución
del con�namiento y de la deformación. También observamos que el cambio en el
gap de los nanohilos deformados es debido principalmente a la disminución en la
energía del borde de la banda de conducción.

Figure E.10: Gap de los nanohilos núcleo-corteza de GaAs/InAs sin y con deformación. El radio
del núcleo está �jado en Rcore = 10 nm y la anchura de la corteza varía entre 1 ≤ wshell ≤ 10.

En Fig. E.11 presentamos la absorción óptica de los nanohilos de GaAs/InAs
en función del espesor de la corteza para un radio del núcleo Rcore =10 nm. Pa-
ra wshell =0, que representa el caso de un nanohilo simple de GaAs, la fuerza de
oscilador de la transición v1,lh → c1 es no nula, y por tanto la dirección de pola-
rización de la absorción óptica es a lo largo de la orientación del nanohilo [001] y
el gap óptico coincide con el gap fundamental del nanohilo, como se muestra en
Fig. E.11(a). En contraste, la fuerza de oscilador de la transición v1,lh → c1 en
el nanohilo deformado GaAs/InAs (wshell >0) se anula, y esa transición se hace
invisible. Sin embargo, la dirección de polarización de la absorción óptica continúa
siendo la dirección Z (en este caso la dirección [001]) debido a que la transición
v2,lh → c1 tiene una fuerza de oscilador no nula. Así, el borde de absorción fun-



damental se desplaza hacia el azul por la separación de energía v1 − v2, como se
muestra en Fig. E.11(b)-(d) para wshell ≥1 nm. De la discusión precedente vemos
que el efecto de la deformación es convertir en ópticamente inactivo al estado más
alto de la banda de valencia.

Figure E.11: Absorción óptica de nanohilos deformados núcleo-corteza de GaAs/InAs con radio
del núcleo Rcore =10 nm y anchura de la corteza wshell =0-4 nm.

Estructura Electrónica y Absorción Óptica de Na-
nohilos con Estructura Wurtzita

En la parte �nal de la tesis hemos estudiado las propiedades electrónicas y
ópticas de nanohilos con la estructura de la wurtzita. En los nanohilos de InN
orientados a lo largo de la dirección [0001] hemos encontrado que la energía de los
estados de la banda de conducción exhibe un decrecimiento monótono al aumentar
el radio del nanohilo, y tienen carácter dominante S. La dispersión con el tamaño
de los dos estados más altos de la banda de valencia se cruza en un radio crítico
Rc ∼2 nm. Este cruce no sólo resulta en un desplazamiento hacia el azul del gap
óptico, como en el caso de los nanohilos de InAs, sino que va acompañado también
de un cambio en la dirección de la polarización para la absorción óptica: Para
nanohilos de InN con R ≤2 nm, la absorción óptica está polarizada a lo largo del



eje del nanohilo y el gap óptico coincide con el gap fundamental como se muestra
en Fig. E.12a para R =2 nm. Para nanohilos con 2< R ≤ 3nm, el gap óptico se
desplaza hacia el azul aunque la absorción óptica continúa polarizada a lo largo del
eje del nanohilo, como se ve en Fig. E.12b para R =2.5 nm. Por el contrario, para
nanohilos de InN con R >3 nm, la absorción óptica se encuentra polarizada en el
plano transversal al nanohilo como se muestra en Fig. E.12c para un nanohilo de
radio R =10 nm.

(a) (b) (c)

Figure E.12: Espectros de absorción óptica dependientes de la polarización para nanohilos de
InN con radios (a) R=2 nm, (b) R=2.5 nm y (c) R=10 nm. En cada caso se han representado
de forma separada, en los ejes verticales positivo y negativo, los espectros correspondientes a
las polarizaciones e⊥ y ez, respectivamente. Las líneas verticales azul y roja marcan el gap del
correspondiente nanohilo y del cristal masivo de InN, respectivamente.

Finalmente, investigamos el caso de nanohilos de ZnO tensionados uniaxial-
mente. En este caso, los gaps muestran una relación lineal con la tensión aplicada:
la tensión compresiva aumenta el gap mientras que la tensión extensiva lo dismi-
nuye. En la absorción óptica encontramos una tensión crítica mínima en que la
dirección de polarización puede ser cambiada de ez a e⊥ y viceversa, dependiendo
del tamaño del nanohilo. Así, aplicando tensión extensiva, más allá de un valor
crítico, se cambia la dirección de polarización para nanohilos con R ≤ 2 nm de
ez hacia e⊥, como se muestra en Figs. E.13(a) y (b) para nanohilos de ZnO con
R =1.4 nm bajo una tensión de F = 0 y F = 20 GPa, respectivamente. Por el
contrario, para nanohilos con R >2 nm, al aplicar una tensión compresiva más allá
del valor crítico, se cambia la dirección de polarización de la absorción óptica de e⊥
a ez (ver Figs. E.13(c) y (d) para R = 5 nm bajo tensión F = 0 y F = −20 GPa,
respectivamente). La magnitud de la tensión crítica requerida depende mucho del
tamaño de los nanohilos de ZnO.



Figure E.13: Espectro de absorción óptica dependiente de la polarización de los nanohilos de
ZnO bajo una tensión uniaxial de (a) F = 0 GPa y (b) F = 20 GPa, para radio R =1.4, y
(c) F = 0 GPa y (b) F = −20 GPa, para radio R =5 nm. En cada caso se han representado
separadamente, en los ejes verticales positivo y negativo, los espectros correspondientes a las
polarizaciones e⊥ y ez, respectivamente.

Conclusiones

En esta tesis hemos estudiado primero los campos piezoeléctricos en nanohilos y
luego hemos explorado los efectos del tamaño, orientación y deformación sobre sus
propiedades electrónicas y ópticas. Los resultados concretos obtenidos se resumen
a continuación:

� Desarrollo de un modelo bidimiensional de elementos �nitos, general, �exible
y computacionalmente e�ciente, para estudiar las propiedades piezoeléctricas
de nanohilos con geometría núcleo-corteza.

� Investigación de la dependencia con el tamaño y la orientación ([001] y [111])
de las propiedades electrónicas y ópticas de nanohilos con la estructura de
la zincblenda (InAs y GaAs).

� Investigación de las propiedades electrónicas y ópticas de nanohilos con la
estructura de la zincblenda y con geometría núcleo-corteza en los casos en
que hay un acuerdo de red entre ambos materiales ([111] AlxGa1−xAs/GaAs)
y cuando hay un desacuerdo importante ([001] GaAs/InAs).

� Investigación de las propiedades electrónicas y ópticas de nanohilos con la
estructura de la wurtzita (InN) orientados a lo largo de la dirección [0001].



� Investigación de la dependencia con la tensión uniaxial de las propiedades
electrónicas y ópticas de nanohilos de ZnO.
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