
 

 

 

 
 

 

 

N-Glycosylation efficiency is determined by the distance to 
the C-terminus and the amino acid preceding an Asn-Ser-

Thr sequon 
 

 

Journal: Protein Science 

Manuscript ID: PRO-10-0241.R2 

Wiley - Manuscript type: Full-Length Papers 

Date Submitted by the 
Author: 

n/a 

Complete List of Authors: Bañó-Polo, Manuel; University of Valencia, Biochemistry and 
Molecular Biology 
Baldin, Francesca; University of Valencia, Biochemistry and 
Molecular Biology 
Tamborero, Silvia; University of Valencia, Biochemistry and 
Molecular Biology 
Marti-Renom, Marc; Centro de Investigación Príncipe Felipe, 
Bioinformatics & Genomics 
Mingarro, Ismael; University of Valencia, Biochemistry and 
Molecular Biology 

Keywords: 
C-terminus tagging, glycosylation efficiency, membrane protein 
topology, oligosaccharyltransferase acceptor site, sequon 

  
 

 

 

John Wiley & Sons

Protein Science



26 September 2010 

 

N-Glycosylation efficiency is determined by the 

distance to the C-terminus and the amino acid 

preceding an Asn-Ser-Thr sequon 

 

Manuel Bañó-Polo 1, Francesca Baldin 1, Silvia Tamborero 1, Marc A. Marti-

Renom 2 and Ismael Mingarro 1 * 

 

1 Departament de Bioquímica i Biologia Molecular, Universitat de València. 

E-46100 Burjassot, Spain 

2 Structural Genomics Unit, Bioinformatics and Genomics Department, Centro 

de Investigación Príncipe Felipe. Valencia. Spain 

 

 

Running title: Glycosylation of C-terminal Asn-Ser-Thr tags  

Manuscript information: 20 text pages, 6 figures 

* Corresponding author: I. Mingarro. 

Phone: Int+34-96-354 3796. 
Fax: Int+34-96-354 4635. 
E-mail: Ismael.Mingarro@uv.es 

 

 

 

Page 1 of 28

John Wiley & Sons

Protein Science



Page 2 of 28

John Wiley & Sons

Protein Science



 3 

Abstract 

N-glycosylation is the most common and versatile protein modification. In 

eukaryotic cells, this modification is catalyzed co-translationally by the 

enzyme oligosaccharyltransferase, which targets the β-amide of the 

asparagine in an Asn-Xaa-Ser/Thr consensus sequon (where Xaa is any 

amino acid but proline) in nascent proteins as they enter the endoplasmic 

reticulum. Because modification of the glycosylation acceptor site on 

membrane proteins occurs in a compartment-specific manner, the presence of 

glycosylation is used to indicate membrane protein topology. Moreover, 

glycosylation sites can be added to gain topological information. In this study, 

we explored the determinants of N-glycosylation with the in vitro 

transcription/translation of a truncated model protein in the presence of 

microsomes and surveyed 25,488 glycoproteins, of which 2,533 glycosylation 

sites had been experimentally validated. We found that glycosylation 

efficiency was dependent on both the distance to the C-terminus and the 

nature of the amino acid that preceded the consensus sequon. These findings 

establish a broadly applicable method for membrane protein tagging in 

topological studies. 
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Introduction 

Membrane proteins represent about a third of the proteins in all living 

organisms, but structural information is lacking for an understanding of their 

various functions.  Based on the membrane proteins with 3-D structures in the 

membrane protein database maintained in Stephen White’s laboratory 

(http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html), at the end of 

2009, there were 217 membrane proteins with unique structures. These 

represented less than 0.4% of the total protein structures deposited in the 

Protein Data Bank 1. Compared to soluble proteins, there is a striking paucity 

of membrane protein structures. Therefore, membrane protein topology (i.e., 

the number of transmembrane segments and their orientation in the 

membrane) provides an important intermediate picture that is more 

informative than the amino acid sequence 2, although less than the fully 

folded 3D structure. 

Our knowledge of the underpinnings of membrane protein structure 

has grown exponentially in the last few years 3; 4. Common membrane protein 

architectural features are necessary for insertion into the lipid environment of 

the cell membrane. Hence, the great majority of membrane proteins contain 

one or more transmembrane (TM) α-helices formed by a stretch of 

approximately 20 amino acids with hydrophobic side chains. These 

hydrophobic TM regions are connected with hydrophilic loops with distinct 

charge distributions 5. This provides a simple method for predicting the 
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topology of a membrane protein, which is typically confirmed with molecular 

and biochemical techniques. 

In eukaryotic cells, most membrane proteins are integrated into the 

membrane cotranslationally; i.e., at the same time that they are being 

synthesized by ribosomes. They are incorporated into the endoplasmic 

reticulum (ER) membrane at sites termed translocons, which comprise a 

specific set of membrane proteins 6. During this process, the translocon 

mediates the integration of TM sequences into the non-polar core of the 

membrane bilayer and delivers hydrophilic cytoplasmic and luminal domains 

to the appropriate compartments. Simultaneously, a nascent protein may 

undergo covalent modifications, like signal sequence cleavage and N-

glycosylation. N-glycosylation is performed in the lumen of the ER by the 

enzyme oligosaccharyltransferase (OST). OST transfers preassembled sugar 

moieties from a lipid carrier to the β-amino groups of the asparagine residues 

in the Asn-Xaa-Ser/Thr (NXS/T) consensus sequences 7. Modifications of the 

glycosylation acceptor sites occur in a compartment-specific manner; thus, the 

presence of glycosylation can provide valuable topological information 8. This 

endogenous glycosylation information can be extended experimentally by 

adding glycosylation tags at the C-terminus of the polypeptide. The aim of 

this study was to explore the determinants of glycosylation efficiency for 

added C-terminal tags. Our results showed that a C-terminal tag requires at 

least six amino acid residues for efficient glycosylation, and that the amino 

acid preceding the NXS/T sequon is an important determinant of 

glycosylation efficiency.  
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Results and Discussion 

Glycosylation efficiency increases with distance from the C-terminus 

To examine the influence of the distance between the glycosylation site and 

the C-terminus of the polypeptide, we expressed a truncated protein in an in 

vitro translation/glycosylation system with or without added dog pancreas 

microsomes. We utilized the well-characterized Escherichia coli inner 

membrane protein leader peptidase (Lep) harbouring an Asn-Ser-Thr sequon, 

which is a well-known glycosylation motif. Lep is anchored in the 

cytoplasmic membrane by two TM segments (H1 and H2) that are connected 

by a highly positively-charged cytoplasmic domain (P1), which drives 

membrane topology 9. When Lep was translated/glycosylated in vitro in the 

presence of dog pancreas microsomes, it inserted into the microsomal 

membrane with both the N and C termini on the luminal side 10; 11. Previous 

studies have shown that, when an engineered N-glycosylation site was placed 

downstream of H2 at 11-12 residues distal to the hydrophobic end (Fig. 1, 

top), it was glycosylated upon correct insertion into the microsomal 

membrane 10; 12. Glycosylation of the molecule resulted in a 2.5 kDa increase 

in molecular mass relative to that of Lep expressed in the absence of 

microsomes. To determine whether glycosylation efficiency was affected by 

the position of the glycosylation acceptor site, we generated truncated 

proteins that included N-linked glycosylation sites at different distances from 

the C-terminus. These truncated Lep variants were expressed in a rabbit 
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reticulocyte cell-free translation system supplemented with [35S] Met/Cys and 

dog pancreas rough microsomes. Translation of each variant yielded two 

types of protein products: the truncated Lep protein with a single 

oligosaccharide attached to the tag and the unglycosylated truncated protein. 

The proportion of glycosylated and unglycosylated proteins directly reflected 

the efficiency of N-glycosylation by OST. After SDS-PAGE analysis, the 

proportions of glycosylated and unglycosylated protein were quantified from 

gel autoradiographs. 

We first determined whether truncated Lep proteins that carried a C-

-terminal glycosylation tag were cotranslationally glycosylated. It has long 

been reported that the tripeptide sequon Asn-Xaa-Thr is more efficiently 

glycosylated than Asn-Xaa-Ser 13; in fact, the occurrence rate of the former is 

about one-third higher than that of the latter (39,161 and 30,579 sequons in 

our database, respectively), which is in agreement with a recent statistical 

survey 14. We found that translation of truncated Lep with a six residue 

glycosylation tag (NSTMMS) in the presence of rough microsomal 

membranes (RM) was associated with an increase in the molecular mass, 

indicative of protein glycosylation (Fig. 1, lane 2). This result was further 

corroborated when the increase in mass was abolished by treatment with 

endoglycosidase H (Fig. 1, lane 3), a glycan-removing enzyme 15. Notably, 

when microsomal membranes were included post-translationally, after 

translation inhibition with cycloheximide, the C-terminal acceptor site was 

not glycosylated (Fig. 1, lane 4); this suggested that the truncated Lep was 

integrated into the membrane cotranslationally, via the ER translocon. These 
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results were consistent with an earlier study on truncated Lep, where the 

glycosylation efficiency was reduced to ~40% when the glycosylation acceptor 

site was placed six residues upstream of the stop codon 16. 

Next, we investigated glycosylation efficiency as a function of the 

distance between the acceptor Asn residue and the C-terminus of the 

polypeptide. As shown in Figs. 2A and 2B, the glycosylation efficiency 

increased gradually with the distance between the acceptor site and the C-

terminus. When the C-terminal glycosylation tag only included the three 

amino acid residues that formed the acceptor sequon (NST, 3 residues tag), 

the truncated polypeptide remained unglycosylated (Fig. 2A, lanes 1 and 2). 

Extending the C-terminal tag to four residues (NSTM) slightly increased 

glycosylation (~20%, lanes 3 and 4), and a C-terminal tag with five residues 

(NSTMM) nearly doubled the glycosylation efficiency (Fig. 2A, lanes 5 and 6). 

Further extensions of the tag length rendered similar glycosylation levels 

(~50%, see Fig. 2A, lanes 7-12). In order to compare these results with native 

glycoproteins, we performed a statistical analysis using the sequences and 

their annotations from the UniProt database (http://www.uniprot.org, 

release 2010_09) 17. After selecting non-redundant N-glycosylated proteins 

(see Materials and Methods), the complete set of putative N-glycosylation 

sites was obtained by selecting only Asn-Xaa-Thr sequons. The final dataset 

contained 39,161 sequons of which 5,753 were experimentally validated. 

Native glycosylated sites located at the C-terminal regions were more 

prominent (13 occurrences) for sequons with the Asn amino acid located 6 

residues upstream from the C-terminus (Fig. 2C). Nevertheless, the total 
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number of glycosylation sites at this position relative to the total sequons 

(5,753 in native sequences) suggests that protein glycosylation near the C-

terminus is a relatively rare event and explains the low glycosylation 

efficiency (~50%) in our experiments. Thus, the tag with six amino acid 

residues (NSTMMS) was selected for further experiments. It should be noted 

that the presence of a methionine residue following the glycosylation sequon 

conferred optimal glycosylation efficiency when Thr was present at the 

hydroxyl (third) position 18. 

Glycosylation of truncated Lep variants  

We translated 20 variants of C-terminal-tagged truncated Lep proteins to 

examine systematically whether the amino acid residue preceding the 

acceptor Asn affected glycosylation efficiency (Fig. 3). As expected, when a 

Pro residue preceded the acceptor Asn, glycosylation was significantly 

inhibited. However, Pro had a stronger inhibitory effect when it was located 

either at the central Xaa position 19 or following the glycosylation sequon 18. It 

is interesting to note that Pro has never found preceding an experimentally 

verified glycosylation site in our database when the glycosylated Asn residue 

in the NXT sequon is located at six residues from the C-terminal end (Fig. 2C). 

However, this inhibitory effect was not observed when the Pro residue was 

inserted just before the acceptor Asn in a full-length Lep construct (Fig. 4). In 

fact, more than 80% of the molecules were glycosylated when this Lep mutant 

was assayed (Fig. 4, lane 8). This suggested that the residue preceding the 

glycosylation sequons only impacted glycosylation efficiency when the 

acceptor Asn residue was close to the end of the polypeptide. Indeed, of the 

Page 10 of 28

John Wiley & Sons

Protein Science



 11 

42 sequons Asn-Xaa-Thr located within the last 8 residues, only two were 

preceded a Pro residue (Fig. 2C). 

The probability of each amino acid type preceding a verified 

glycosylation sites has been calculated for the Asn-Xaa-Thr sequons in the 

non-redundant dataset (Fig. 5). All 20 amino acids can be found preceding the 

Asn residue of the sequons, although significant differences between their 

probabilities occur in the experimentally validated glycosylation sites. 

Experimentally, we found that the glycosylation efficiency of the NST sequon 

was also significantly lowered when it was preceded by Met, Trp, or Arg 

residues (Fig. 3), which correlates with the results of our statistical analysis, 

especially in the case of Met and Trp (Fig. 5). One explanation for this 

observation might be that the bulky side chains of these residues may block 

accessibility to the OST active site or the lipid carrier donor; another 

explanation could be that it may induce an unfavorable local protein 

conformation. Previous studies revealed that glycosylation was strongly 

inhibited when Trp was placed at the central Xaa position 19; 20, and it was 

somewhat inhibited when Trp followed the glycosylation sequon 18. Our 

results also pointed out some average effect caused by the presence of acidic 

residues immediately before the glycosylation site. It is interesting to note that 

it has been described a notable reduction in the probability of finding acidic 

residues preceding the glycosylation site 21. Even more, this is accompanied 

by an increase probability of finding acidic residues preceding unoccupied 

glycosylation sites 14. However, both Asp and Glu have been found as 

average preceding NXT acceptor sites (Fig. 5). The apparent discrepancies 
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between our and the previous studies could arise from the fact that the later 

surveys included the glycosylation sites with Ser in the third position 

(NXS/T), whilst our database focussed in NXT glycosylation sites. The other 

amino acid residues appeared to have only minor effects on glycosylation 

efficiency; however, the Gly residue consistently induced higher glycosylation 

levels (Fig. 3), and again, an increased probability of finding Gly preceding 

glycosylation sites was observed in our analysis (Fig. 5). We assumed that the 

flexibility that Gly confers on the conformation of the polypeptide chain may 

provide an advantage for OST catalysis. In fact, the structural conformation of 

the local region around the glycosylation sequon also influenced its 

accessibility and, consequently, its site occupancy 22. This supports the 

hypothesis that unfolding or flexibility is required for protein domains to be 

efficiently glycosylated. It should be also noted that there is a marked 

preference for hydrophobic amino acids immediately preceding the 

glycosylation site in our experimental data, which nicely correlates with 

previous 21 and the present statistical analysis of glycan-protein linkage, 

especially in the case of Leu that has been also found prevalent in 

glycosylated sequons (see reference 14 and Fig. 5). 

Interestingly, recent statistical analyses of active bacterial N-

glycosylation site consensus sequences showed that Asn, Phe, Ser, and Leu 

residues frequently precede the acceptor Asn 23. In the present study, we 

found that these same residues and Gly were the best suited for glycosylation 

in a eukaryote OST. Based on these results, we propose that bacterial and 
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eukaryotic systems might require similar sequences flanking the acceptor sites 

in order to adopt an optimal conformation upon the binding of OST. 

Statistical studies have also shown that the glycosylation sequon occurs 

at the C-terminal end of well-defined glycoproteins at a lower frequency than 

that expected based on random chance 13; 14. Furthermore, those studies found 

that the glycosylation efficiency for Asn-Xaa-Thr sequons dropped when 

located close to the C-terminal end of the protein 14. The present work pointed 

out that this effect was emphasized at the very end of the protein (Fig. 2C). 

This suggested that it was necessary to use sufficiently large C-terminal 

glycosylation tags. In fact, we found that at least six residues long C-terminal 

glycosylation tags were needed to achieve significant glycosylation; this 

validated their utility in membrane protein topological studies. 

In order to prove our approach, we have fused the N-terminus of 

bacteriorhodopsin (bR) (from Trp10 to Val101) at the C-terminus of the 

engineered Lep sequence (see Materials and Methods). We choose bR because 

it is a membrane protein with a well-defined topology, in which the N-

terminus faces the extracellular side similarly to our chimeric constructs (Fig. 

6, top). In vitro transcription/translation of protein truncates using a 

glycosylable C-terminal tag after bR helix a (the first TM segment) rendered 

singly-glycosylated forms (Fig. 6, lane 2), indicating the insertion of bR helix 

a. Truncated polypeptides, which include the first two TM helices of bR, were 

efficiently doubly-glycosylated (Fig. 6, lane 4), demonstrating translocation of 

the glycosylation site included as a C-terminal tag, and validating our 

experimental approach. 
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Conclusion 

We have investigated N-linked glycosylation efficiency using an in vitro 

system based on microsomes and a well-characterized model protein. In 

conclusion, we found that in placing a glycosylation tag on a polypeptide 

chain, one should consider both the distance from the hydrophobic end of a 

TM segment and the nature of the amino acid residue preceding the acceptor 

Asn residue. Taken together, our results provided a rapid and efficient 

method for the determination of membrane protein topology. 

 

Materials and Methods 

Enzymes and chemicals  

The pGEM1 plasmid, rabbit reticulocyte lysate, and the TnT coupled 

transcription/translation system were purchased from Promega (Madison, 

WI). The ER rough microsomes from dog pancreas and the SP6 RNA 

polymerase were purchased from tRNA Probes (College Station, TX). The [35S] 

Met/Cys and 14C-methylated markers were purchased from Perkin Elmer. 

The restriction enzymes and endoglycosidase H were purchased from Roche 

Molecular Biochemicals. The DNA plasmid, RNA clean up, and PCR 

purification kits were from Qiagen (Hilden, Germany). The PCR mutagenesis 

kit, QuikChange was from Stratagene (La Jolla, CA). All the oligonucleotides 

were purchased from Thermo (Ulm, Germany). 

DNA manipulations  
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Full-length Lep DNA was amplified directly from the pGEM1 plasmid, which 

carried a modified lep gene. In that sequence, the nucleotides that encoded the 

Asn-Glu-Thr glycosylation acceptor site at position 214-216 in the wild type 

protein was changed to a nonacceptor sequence Gln-Glu-Thr. In addition, an 

Asn-Ser-Thr (NST) glycosylation acceptor site was introduced 20 amino acids 

downstream of H2 at codons 97-99. Alternatively, we prepared templates for 

in vitro transcription of the truncated wild type lep mRNA with a 3’ 

glycosylation tag. The truncated lep sequence was prepared by PCR 

amplification of a fragment of the pGEM1 plasmid that encoded the N-

terminal 178 amino acid residues of Lep. The 5’ primer was the same for all 

PCR reactions and had the sequence 5’-TTCGTCCAACCAAACCGACTC-3’. 

This primer was situated 210 bases upstream of the lep translational start 

codon; thus, all amplified fragments contained the SP6 transcriptional 

promoter from pGEM1. The 3’ primers were designed to have approximately 

the same annealing temperature as the 5’ primer. They contained a 

glycosylation tag preceded by one of the 20 natural amino acids, and followed 

by the tandem translational stop codons, TAG and TAA. PCR amplification 

comprised a total of 30 cycles with an annealing temperature of 52ºC. The 

amplified DNA products were purified with the Qiagen PCR purification kit, 

according to the manufacturer’s protocol, and verified on a 1% agarose gel. 

The mutations Leu96 Met and Leu96Pro were performed with the 

QuikChange mutagenesis kit from Stratagene (La Jolla, CA), according to the 

manufacturer’s protocol.  
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The N-terminal region from bacteriorhodopsin (residues 10-101) was 

PCR amplified and cloned into the modified Lep sequence from pGEM 

plasmid 24; 25 between SpeI and KpnI sites. The truncated Lep/bR chimeras 

were prepared by PCR amplification of fragments that encoded up to Lys41 

(bR sequence) in the case of Lep/bRa and up to Ile78 for Lep/bRab truncates. 

All DNA manipulations were confirmed by sequencing the plasmid DNAs. 

Expression in vitro 

Truncated lep mRNAs with stop codons were transcribed from the SP6 

promoter with SP6 RNA polymerase (tRNA probes). Briefly, the transcription 

mixture was incubated at 37ºC for 2 h. The mRNA products were purified 

with a Qiagen RNeasy clean up kit and verified on a 1% agarose gel.  

In vitro translation of in vitro transcribed mRNA was performed in the 

presence of reticulocyte lysate, [35S] Met/Cys, and dog pancreas microsomes, 

as described previously 26. For the posttranslational membrane insertion 

experiments, Lep-derived mRNAs were translated (30ºC 1 h) in the absence of 

rough microsomal membranes (RMs). Translation was then inhibited with 

cycloheximide (10 min, 26ºC, 2 mg/mL final concentration), after which RMs 

were added and incubated for an additional hour at 30ºC 27. In all cases, after 

translation, membranes were collected by ultra-centrifugation and analyzed 

by sodium-dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). 

Finally, the gels were visualized on a Fuji FLA3000 phosphorimager with 

ImageGauge software. 

For endoglycosidase H (Endo H) treatment, the translation mixture 

was diluted in 4 volumes of 70 mM sodium citrate (pH 5.6) and centrifuged 
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(105 × g for 20 min at 4ºC). The pellet was then resuspended in 50 µL of 

sodium citrate buffer with 0.5% SDS and 1% β-mercaptoethanol, boiled for 5 

min, and incubated for 1 h at 37ºC with 0.1 mU of Endo H. The samples were 

analyzed by SDS-PAGE. 

Full-length Lep constructs were transcribed and translated in the TnT 

Quick system (Promega). 1 µg DNA template, 1 µL 35S-Met/Cys (5 µCi) and 1 

µL microsomes (tRNA Probes) were added at the start of the reaction, and 

samples were incubated for 90 min at 30ºC. Translation products were 

analyzed as previously described for the truncated molecules. For the 

proteinase K protection assay, the translation mixture was supplemented with 

1 µL of 50 mM CaCl2 and 1 µL of proteinase K (4 mg/mL), then, digested for 

40 min on ice. The reaction was stopped by adding 1 mM 

phenylmethanesulfonylfluoride before SDS-PAGE analysis. 

Statistical analysis of N-glycosilation sites in native proteins. 

Sequences and their annotations were obtained from the UniProt database 

(http://www.uniprot.org, release 2010_09) 17. Selection of N-glycosylated 

proteins was done using the UniProt search engine by selecting all sequence 

annotation (FT field) as glycosylated modified amino acid. Such selection 

contained both, experimentally validated as well as non-validated 

glycosylation sites. The total number of sequences containing at least one 

glycosylation site was 25,488, of which 2,533 had been experimentally 

validated. Next, all the selected sequences were compared to each other using 

the cd-hit program with default parameters 28. Redundant sequences at the 

90% sequence identity cut-off were removed. Finally, only N-glycosylation 
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sites with sequons NXT (being X any of the 20 amino acid types) were 

maintained. Our final dataset, which contained 39,161 NXT sequons of which 

5,753 were experimentally validated, could be considered as an up-to-date set 

of non-redundant sequences with annotated NXT N-glycosylation sites. 

 

 

Figure legends 

Figure 1. C-terminal-tagged truncated Lep constructs are cotranslationally 

glycosylated. (Top) Diagram showing the orientation of truncated Lep in the 

microsomal membrane. (Bottom) C-terminal-tagged (NSTMMS) Lep 

construct was translated in either the absence (lanes 1 and 4) or presence 

(lanes 2 and 3) of dog pancreas rough microsomes (RM). After translation, 

samples were treated with Endo H (lane 3). In lane 4, RMs were added post-

translationally; Lep constructs underwent 1 h translation, followed by 10 min 

cycloheximide treatment, then incubation with RMs was continued for 

another 1 h. Bands of unglycosylated and glycosylated proteins are indicated 

with white and black dots, respectively. 

Figure 2. Glycosylation efficiency increases with the distance from the 

C-terminus. (A) In vitro translation of the truncated proteins with different C-

terminal glycosylation tags in the absence (–) and in the presence (+) of RM. 

As in Fig. 1, glycosylated and unglycosylated products are shown with black 

and white dots, respectively. (B) The glycosylation efficiency is shown as a 

function of the number of residues between the acceptor Asn and the C-
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terminus (tag length). In order to calculate the percent efficiencies, the total 

glycosylation (100%) was taken as the sum of the signals present in the 

glycosylated and non-glycosylated forms. Data correspond to averages of at 

least three independent experiments; error bars show standard deviations. (C) 

NXT glycosylation sequon distribution at the C-terminal region (positions 3 to 

8) in non-redundant experimentally validated glycoproteins. Each bar height 

is proportional to the number of sequons and displays the distribution of 

amino acid residues at each position. Non-occurring amino acid residues at 

each site are omitted. 

Figure 3. Glycosylation efficiencies of Lep truncates with different amino 

acid residues preceding the glycosylation sequon. C-terminal-tagged 

truncated Lep variants contained the indicated amino acid residues in front of 

the Asn residue of the glycosylation site. Glycosylation levels were 

determined from gel autoradiographs. Data correspond to averages of at least 

three independent experiments; error bars show standard deviations. 

Fig. 4. Glycosylation efficiency of full-length Lep mutants. In vitro 

translation of mRNAs encoding full-length Lep mutants was achieved in the 

presence (+) and absence (-) of membranes and proteinase K (PK) as 

indicated. Lep variants contain a single Asn-Ser-Thr sequon (codons 97-99) 

preceded by Leu (lanes 1-3), Met (lanes 4-6) or Pro (lanes 7-9) in each case. 

Bands of non-glycosylated protein are indicated by a white dot and 

glycosylated proteins are indicated by a black dot. The asterisk identifies 

undigested protein after PK treatment. (Top) Schematic representations of the 

Lep full-length construct and the proteinase K-protected fragment. 
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Figure 5. Distribution of amino acid residues preceding the Asn residue in 

NXT glycosylation sequons. Distribution of amino acid residues preceding 

NXT glycosylation sequons in all sites (gray bars) and experimentally 

validated sites (black line). 

Fig. 6. Glycosylation efficiency of Lep/bR truncates. In vitro translation of C-

terminal-tagged mRNAs encoding Lep/bR constructs was performed in the 

presence (+) and absence (-) of membranes as indicated. Bands of non-

glycosylated proteins are indicated by a white dot and singly- and doubly-

glycosylated proteins are indicated by one and two black dots, respectively. 

(Top) Schematic representations of the Lep/bR constructs including bR helix 

a (left) and bR helices a and b (right). 
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