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Universidad de Valencia and IFIC,

Centro Mixto Universidad de Valencia-CSIC,
Institutos de Investigación de Paterna,
Aptdo. 22085, 46071 Valencia, Spain

2Instituto de F́ısica,
Universidade de São Paulo,

C.P. 66318, 05389-970 São Paulo, SP, Brazil

(Dated: October 8, 2014)

Abstract
We use the local hidden gauge approach in order to study the BB̄∗ and B∗B̄∗ interactions for

isospin I=1. We show that both interactions via one light meson exchange are not allowed by

OZI rule and, for that reason, we calculate the contributions due to the exchange of two pions,

interacting and noninteracting among themselves, and also due to the heavy vector mesons. Then,

to compare all these contributions, we use the potential related to the heavy vector exchange as

an effective potential corrected by a factor which takes into account the contribution of the others

light mesons exchange. In order to look for poles, this effective potential is used as the kernel of

the Bethe-Salpeter equation. As a result, for the BB̄∗ interaction we find a loosely bound state

with mass in the range 10587− 10601 MeV, very close to the experimental value of the Zb(10610)

reported by Belle Collaboration. For the B∗B̄∗ case, we find a cusp at 10650 MeV for all spin

J = 0, 1, 2 cases.

PACS numbers: 11.80.Gw, 12.38.Gc, 12.39.Fe, 13.75.Lb
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I. INTRODUCTION

In 2003 the Belle collaboration observed the first new charmoniumlike state called
X(3872) in the B+ → X(3872)K+ → J/ψ π+π−K+ process [1]. It was later confirmed
by BaBar, CDF and D0 collaborations [2]. After its discovery, many other new states
have been found by these collaborations, with masses situated in the charmonium mass
region. Most of them are above the meson-meson threshold and, if they were a conventional
charmonium, they would decay into a pair of open charm mesons. However, this is not seen
in the experiment, instead, what is observed is their decay into J/ψ plus pions which is an
unusual property for a simple cc̄ state. Furthermore, the predictions from potential models
for the mass and decay channels do not fit with the experimental results. For all these
reasons, a strong experimental and theoretical effort has been made in order to understand
the quark configuration of these new states as well as their production mechanisms, decay
widths, masses and spin-parity assignments. In Refs. [3–8] one can find a detailed discussion
about the current status of those states, commonly called X, Y and Z.

Since the discovery of the X, Y and Z states, an enormous bulk of work has been done
in an attempt to accomodate them in an exotic picture. By exotic we mean a more complex
quark structure beyond quark-antiquark state, like hybrid, tetraquark, hadrocharmonium
and meson molecule. The exotic state idea is not new, actually is quite old, but before
the discovery of Z+

c (3900) by BESIII and Belle collaborations last year, no exotic structure
had been conclusively identified. It is a challenge to understand these new charmoniumlike
states as exotic since using the models mentioned above it is relatively simple to reproduce
the masses of those states. The same challenges also concern the bottomoniumlike states.
Among them, the Zb(10650) and Zb(10610) are very interesting. They were observed by the
Belle collaboration in π± hb(nP ) and π±Υ(mS), with the n = 1, 2 and m = 1, 2, 3, invariant
mass distribution of the Υ(5S) decay channel [10]. As a result of the measurements, Belle
reported: MZb(10610) = (10608.4±2.0) MeV, ΓZb(10610) = (15.6±2.5) MeV and for Zb(10650),
MZb(10650) = (10653.2± 1.5) MeV and ΓZb(10650) = (14.4± 3.2) MeV. The quantum numbers
are reported as JP = 1+ and positive G parity. The neutral partner has also been observed
in the Υ(5S)→ Υ(nS)ππ decay in the belle Colaboration [11].

In an attempt to understand the Zb(10610) and Zb(10650) configuration, some interpre-
tations were considered. The authors of [12] treated the states as molecular states of BB̄∗

and B∗B̄∗ using HQSS, but the strength of the interaction was unknown. The proximity
of the masses of these states to the BB̄∗ and B∗B̄∗ thresholds prompted the author of [13]
to suggest that these peaks could be a consequence of cusps originated at these thresholds.
This idea has been made more quantitative in a recent paper [14]. In [15] the dynamics of
hadro-quarkonium system was formulated, based on the channel coupling of a light hadron
(h) and heavy quarkonium (QQ̄) to intermediate open-flavor heavy-light mesons (Qq, Qq).
In [16] the authors used QCD sum rules assuming tetraquarks or molecules, and in all cases
they could obtain good results, but the errors in the masses were of the order of 200 to 300
MeV. In the same line, in [17] the states are also assumed to be tetraquarks. A tetraquark
picture was assumed by the authors of Ref. [9], where using the framework of QCD sum
rules, they calculated the Zb’s mass, but the masses obtained were lower than those of the
Zb states. In [18] the authors consider the states as molecular states driven by the one
pion exchange interaction. In [19] heavy quark spin symmetry is used, analysing the power
counting of the loops, and concluding that the molecular nature of the states can account for
the observed features. In [20] the authors mention that using heavy quark spin symmetry
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(HQSS) and the molecular picture, states of 1− should exist in addition to the reported
states of 1+. In [21] the molecular option is also supported by sum rules, but again with
about 220 MeV uncertainty in the mass. In [22] a tetraquark nature is invoked. In [23]
BB̄∗, B∗B̄∗ (in S-wave) are investigated in the framework of chiral quark models using
the Gaussian expansion method. The bound states of BB̄∗, B∗B̄∗ with quantum numbers
I(JP ) = 1(1+), which are good candidates for the Zb(10610) and Zb(10650) respectively,
are obtained. Another BB̄∗ bound state with I(JPC) = 0(1++), and other two B∗B̄∗ with
I(JPC) = 1(0++), I(JPC) = 0(2++) are predicted in that work. In [17] 1+ tetraquarks are
invoked and possible 1++ , 2++ states from charge conjugation are investigated. In [24] the
molecular picture is again pursued and the Υ(5S) → Υ(nS)π+π− decays are investigated.
In [25] the authors make arguments of HQSS starting from the X(3872) extrapolating to
the beauty sector, and find a plausible molecular interpretation for the Zb(10610) state. In
[26] once again the molecular structure is supported within HQSS. A different intepreta-
tion is given in [27], where the initial pion emission mechanism is invoked to reproduce the
Υ(5S) → Υ(nS)ππ, with the second π and the resonance produced from the loop diagram
involving three B∗ states. Again from the molecular point of view in [28], several decay
channels are investigated in order to give support for the molecular picture. In [29], using
phenomenological Lagrangians and the hypothesis of molecular states, the Z → Υ(nS)π
transition rates are evaluated. Tetraquarks are again invoked in [30]. Pion exchange is
considered in [31] and limits for the strength to produce binding are discussed. In [32] a
tetraquark is preferred, since meson exchange binds in I=0 but not in I=1. By using HQSS
and assuming the states to be molecular states, different modes of production are evaluated
in [33].

Using the chiral quark models, the authors of [34] interpret the states as loosely bound
states of BB̄∗, B∗B̄∗. Tetraquarks are again favoured in sum rules in [35]. In [36] the
authors use HQSS to relate these states, which are assumed to be molecular, to the X(3872).
A molecular interpretation was again used in Ref. [37] in order to explain the states as B∗B̄
and B∗B̄∗ assuming a s- and d-wave mixture.

The amount of theoretical work done is quite large, offering theoreticians a challenge
with observed states that obviously cannot have a cc̄ nature, which should have I = 0. Our
contribution to the subject lines up with the molecular interpretation, using a dynamical
model that provides the strength of the interaction. We use for this purpose the extrapolation
of the local hidden gauge approach to the heavy sector, extending results obtained for the
Zc(3900) and Zc(4025) using that approach [38, 39] which at the same time was shown to
fully respect the rules of HQSS [40, 41].

II. FORMALISM

In order to study BB̄∗ and B∗B̄∗ states, the extension of the local hidden gauge approach
[42–44] to the heavy quark sector [45] seems most appropriate. The interaction is generated
by the exchange of a vector meson. If one exchanges light vectors the heavy quarks act
as spectators and then, the heavy quark spin symmetry (HQSS) of QCD is automatically
fulfilled [40]. However, following the approach of Refs. [38, 39], we can show that the BB̄∗

and B∗B̄∗ interactions by means one light meson exchange are not allowed by OZI rule for
I = 1 states. In Fig. 1, a diagram illustrating an interaction between a B+B̄∗0 is shown. In
order for this interaction to occur a dd̄ state has to be converted into a uū state, which is
OZI forbidden. This implies a cancellation between the contributions coming from ρ and ω
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mesons exchange if equal masses are taken. The same argument holds for the exchange of
a pseudoscalar and one finds an exact cancellation of π, η, η′ exchange in the limit of equal
masses for these mesons [38, 39].

B+

B̄∗0

b

b̄

u

d̄d̄

u

FIG. 1. Diagram representing the B+B̄∗0 → B+B̄∗0 process through the exchange of qq̄, which is

not allowed by OZI rule.

Because of this cancellation, we shall consider processes in which the OZI restriction no
longer holds. We, thus, calculate the contributions coming from heavy vector exchange and
also due to the exchange of two pions, interacting and non-interacting among themselves.

A. BB̄∗ and B∗B̄∗ interactions via heavy vector exchange

In order to evaluate BB̄∗ and B∗B̄∗ interactions due to the exchange of vector mesons,
we need the Lagrangians describing the V PP and V V V vertices, namely

LV PP = −ig〈V µ[P, ∂µP ]〉 , (1)

LV V V = ig〈(V µ∂νVµ − ∂νVµV µ)V ν〉 . (2)

The coupling g is given by g = MV /2fπ, being fπ = 93 MeV the pion decay constant, while
MV is the vector meson mass.

In Eqs. (1) and (2), the symbol 〈 〉 stands for the trace of SU(4). The vector field Vµ is
represented by the SU(4) matrix, which is parametrized by 16 vector mesons including the
15-plet and singlet of SU(4),

Vµ =


ω√
2

+ ρ0√
2

ρ+ K∗+ B̄∗0

ρ− ω√
2
− ρ0√

2
K∗0 B∗−

K∗− K̄∗0 φ B∗−s
B∗0 B∗+ B∗+s J/ψ


µ

, (3)

where the ideal mixing has been taken for ω, φ and J/ψ. On the other hand, P is a matrix
containing the 15-plet of the pseudoscalar mesons written in the physical basis in which η,
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η′ mixing is taken into account [46],

P =


η√
3

+ η′√
6

+ π0
√

2
π+ K+ B̄0

π− η√
3

+ η′√
6
− π0
√

2
K0 B−

K− K̄0 − η√
3

+
√

2
3
η′ B−s

B0 B+ B+
s ηb

 . (4)

The channels we are interested in are those with B = 0, S = 0 and isospin I = 1. In the
B∗B̄∗ case, they are B∗B̄∗ and ρΥ. In the case of BB̄∗ we are only interested in the positive
G-parity combination, namely (BB̄∗ + cc)/

√
2 and also ηb ρ and πΥ.

1. B∗B̄∗ case

B∗+(k1, ǫ1)

B∗−(k2, ǫ2) B∗−(k4, ǫ4)

B∗+(k3, ǫ3)

B∗−(k2, ǫ2) B∗0(k4, ǫ4)

B∗+(k1, ǫ1) B∗0(k3, ǫ3) B∗0(k1, ǫ1) B∗0(k3, ǫ3)

B̄∗0(k2, ǫ2) B̄∗0(k4, ǫ4)

ρ0, ω,Υ(k1 − k3, ǫ
(0)) ρ+(k1 − k3, ǫ

(0)) ρ0, ω,Υ(k1 − k3, ǫ
(0))

FIG. 2. Vector exchange diagrams contributing to the process B∗B̄∗ → B∗B̄∗.

Consider now the reaction B∗B̄∗ → B∗B̄∗. Here we are following the same steps as in
Ref. [45], in which the authors were concerned in the D∗D̄∗ case. As in [45] we also consider
that the external vectors have negligible three-momentum with respect to their masses. In
our case, the most important diagrams are depicted in Fig. 2. As an example, we shall
calculate in detail the amplitude of the first diagram in Fig. 2. The evaluation of the other
ones is analogous. For this end, we must calculate the three-vector vertex which is given by
the Lagrangian of Eq. (2). Figs. 3(a) and (b) illustrate the three-vector vertices B∗+B̄∗+ρ0

and B∗−B̄∗−ρ0 with the momenta assignments. The corresponding vertex functions are

tB∗+B∗+ρ0 =
g√
2

(k1 + k3)µε1νε
ν
3ε

(0)
µ , (5)

tB∗−B∗−ρ0 =
g√
2

(k2 + k4)µε2νε
ν
4ε

(0)
µ . (6)

Once we have determined the vertices, it is possible to calculate the amplitude for the
first diagram of Fig. 2. Considering all the particles involved in the exchange, we obtain

tB∗+B∗−→B∗+B∗− = −1

2
g2

[
2

M2
Υ

+
1

M2
ρ

+
1

M2
ω

]
(k1 + k3) · (k2 + k4)ε1µε2νε

µ
3ε
ν
4 , (7)

where MΥ, Mρ and Mω are the masses of the Υ, ρ and ω mesons, respectively.
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B∗+(k3, ǫ3)

B∗+(k1, ǫ1)

ρ0(k1 − k3, ǫ
(0))

B∗−(k2, ǫ2)

B∗−(k4, ǫ4)

ρ0(k1 − k3, ǫ
(0))

(a) (b)

FIG. 3. Three-vector vertex associated with B∗+B∗+ ρ0.

As we are interested in the B∗B̄∗ interaction in the I = 1 channel, we must rewrite Eq.
(7) in the isospin basis. The isospin states are

|B∗B̄∗〉I=1 = − 1√
2
|B∗+B̄∗−〉+

1√
2
|B∗0B̄∗0〉 , (8)

|B∗B̄∗〉I=0 =
1√
2
|B∗+B̄∗−〉 − 1√

2
|B∗0B̄∗0〉 .

By taking into account all the three diagrams of Fig. 2, we get

tI=1
B∗B̄∗→B∗B̄∗ = g2

[
2M2

ρM
2
ω +M2

Υ(−M2
ω +M2

ρ )

2M2
ΥM

2
ωM

2
ω

]
(k1 + k3) · (k2 + k4)ε1µε2νε

µ
3ε
ν
4, (9)

which shows explicitly the cancellation of ρ and ω exchange.
In order to rewrite the amplitude given by Eq. (9) in terms of spin 0, 1 and 2 states, we

use the spin projectors P(0), P(1) and P(2) given by [45]

P(0) =
1

3
εµεµε

νεν ,

P(1) =
1

2
(εµενε

µεν − εµενενεµ) ,

P(2) =
1

2
(εµενε

µεν + εµενε
νεµ)− 1

3
εµεµε

νεµ ,

(10)

where the order of the particles 1, 2, 3 and 4 is implicit. In terms of those projectors the
polarization vector combination ε1µε2νε

µ
3ε
ν
4 appearing in Eq. (9) is equal to

ε1µε2νε
µ
3ε
ν
4 = P(0) + P(1) + P(2). (11)

Therefore, substituting Eq. (11) into Eq. (9), projecting it in s-wave, and including the
contact term already evaluated in Ref. [45], we obtain

tI=1,S=0,1,2

B∗B̄∗→B∗B̄∗ = −g2 + g2

[
2M2

ρM
2
ω +M2

Υ(−M2
ω +M2

ρ )

4M2
ΥM

2
ωM

2
ρ

]
(4M2

B∗ − 3s) , (12)

where s stands for the center of mass energy of the B∗B̄∗ system.
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Consider now the other channel, B∗B̄∗ → ρΥ. The most relevant diagrams are depicted
in Fig 4. The procedure to get the amplitude for this channel is analogous to what we have
done earlier. Thus, the amplitude in isospin I = 1 basis for the spin S = 0, 2 states in
s-wave, corresponding to all diagrams of Fig. 4 plus the contact term is given by

tI=1,S=0,2

B∗B̄∗→ρΥ
= −2g2 + g2

[
2M2

B∗ +M2
Υ +M2

ρ − 3s

M2
B∗

]
. (13)

The interaction in S = 1 vanishes as a consequence of a cancellation of terms where the ρ0

and Υ are interchanged in the diagrams. The diagonal ρΥ → ρΥ transition is again OZI
forbidden and null in this approach.

B∗+(k1, ǫ1) ρ0(k3, ǫ3)

B∗−(k2, ǫ2) Υ(k4, ǫ4)

B∗+(k1 − k3, ǫ
(0))

ρ0(k3, ǫ3)B∗0(k1, ǫ1)

B̄∗0(k2, ǫ2)
Υ(k4, ǫ4)

B̄∗0(k1 − k3, ǫ
(0))

FIG. 4. Vector exchange diagrams contributing for the B∗B̄∗ → ρΥ channel.

Eqs. (12) and (13) will be used as a kernel of the Bethe-Salpeter equation as we shall
discuss it later.

2. BB̄∗ case

In this case, the Lagrangians defined in Eqs. (1) and (2) can also be used to provide the
vertices of the PV → PV interaction through exchange of a heavy vector. The resulting
amplitudes were already calculated in s-wave in Refs. [47, 48]. In particular the authors
were concerned with axial-vector resonances dynamically generated. Yet, in Ref. [38] the
same equation for the amplitude is used in order to study DD̄∗ interaction. Here, we extend
these amplitudes for the BB̄∗ interaction in the isospin I = 1 channel, with the result

Vij(s) = −~ε ~ε
′

8f 2
π

Cij
[
3s− (M2 +m2 +M ′2 +m′2)− 1

s
(M2 −m2)(M ′2 −m′2)

]
, (14)

where the masses M (M ′) and m (m′) in Eq. (14) correspond to the initial (final) vector
meson and pseudoscalar meson, respectively. The indices i and j represent the initial and
final V P channels (BB̄∗ + cc)/

√
2, ηb ρ and πΥ.

The Cij are elements of a 3 × 3 matrix, which for the positive G-parity of the BB̄∗

combination, is defined as

Cij =

 −ψ √
2γ

√
2γ√

2γ 0 0√
2γ 0 0

 , (15)

where γ =
(
mL
mH

)2

and ψ =
(
mL
mH′

)2

. Those factors are defined in this way in order to take

into account the suppression due to the exchange of a heavy vector meson. Concerning the
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parameters mL, mH and mH′, we choose their values in order to have the same order of
magnitude of the light and heavy vector meson masses: mL = 800, mH = 5000 MeV and
mH′ = 9000 MeV.

3. The T -Matrix

The results of the amplitudes discussed earlier provide the potential or kernel to be used
in the Bethe-Salpeter equation in coupled channels,

T = (1− V G)−1V , (16)

where V is the potential, which in the B∗B̄∗ case is a 2× 2 matrix whose elements are the
amplitudes defined by Eqs. (12) and (13) respectively associated with the channels B∗B̄∗

and ρΥ. In the case of BB̄∗, V is a 3× 3 matrix and its elements are the amplitudes given
by Eq. (14) with Cij defined by Eq. (15), associated with the channels BB̄∗, ηb ρ and πΥ.

In Eq. (16), G is a diagonal matrix and its elements are given by the two meson loop
function, Gl for each channel l:

Gl = i

∫
d4q

(2π)4

1

q2 −m2 + iε

1

(q − P )2 −M2 + iε
, (17)

where m is the mass of the pseudoscalar (in the BB̄∗ case) or vector (in the B∗B̄∗ case),
while M is the vector meson mass involved in the loop in the channel l. In Eq. (17) P
means the total four-momentum of the mesons. The integral of Eq. (17) is logarithmically
divergent and it can be regularized with a cut off in the momentum space or dimensional
regularization. With the cut off method

Gl =

qmax∫
0

d3q

(2π)3

ω1 + ω2

2ω1ω2

1

(P 0)2 − (ω1 + ω2)2 + iε
, (18)

where ω1 =
√
m2 + ~q 2 and ω2 =

√
M2 + ~q 2 and qmax is a free parameter. In dimensional

regularization there is a scale µ and a subtraction constant α(µ) acting as a free parameter,
namely,

Gl =
1

16π2
(αl + log

m2

µ2
+
M2 −m2 + s

2s
log

M2

m2
+

p√
s

(log
s−M2 +m2 + 2p

√
s

−s+M2 −m2 + 2p
√
s

+ log
s+M2 −m2 + 2p

√
s

−s−M2 +m2 + 2p
√
s

)) .

(19)

with p standing for the three-momentum of the mesons in the center-of-mass frame.
For the sake of comparison of the different potentials obtained, it is interesting to recall

that Eq. (16) with the cut off regularization of Eq. (18) can be obtained from the Lippmann-
Schwinger equation using a potential in momentum space [49]

V (~q, ~q ′) = V θ(qmax − |~q |)θ(qmax − |~q ′|) . (20)

Hence, assuming ~q ≈ 0 for an external particle, ~q ′ can play the role of momentum transfer
in loop diagrams, and then V as a function of ~q ′ remains constant up to qmax, where it goes
to zero.
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B. The σ exchange contribution to the BB̄∗ and B∗B̄∗ interactions

The potential due to the σ exchange in some cases provides an important contribution
to the interaction. In Ref. [50] the authors studied the NN system considering that the
σ resonance arises from the interaction of two pions, providing an important contribution
to the binding energy for the NN system. In Refs. [38, 39] the same idea was applied to
the DD̄∗ and D∗D̄∗ cases. Following the approach of those references we shall extend the
formalism to the bottom sector, more specifically, to study the BB̄∗ and B∗B̄∗ interactions.

B∗+

B∗+

B+

π0

π0

π0

π0

B̄∗0

B̄∗0

B̄0

a)

B∗+

B∗+

B+

π0

π0

π−

π−

B̄∗0

B̄∗0

B−

b)

B∗+

B∗+

B0

π−

π−

π0

π0

B̄∗0

B̄∗0

B̄0

c)

B∗+

B∗+

B0

π−

π−

π−

π−

B̄∗0

B̄∗0

B̄−

d)

FIG. 5. Diagrams contributing to the two pions interaction in lowest order in I = 1 for the

B∗B̄∗ → B∗B̄∗ process.

Let us consider first, the B∗B̄∗ case. The diagrams contributing to this interaction are
illustrated in Fig. 5. As can be seen from Fig. 5, each diagram has four vertices containing
two pseudoscalars, the π and B (B̄) mesons and one B∗ (B̄∗) vector. Their evaluation is
done by means of the local hidden gauge Lagrangian already defined in Eq. (1). On the
other hand, instead of calculating the vertices and then the amplitude from the Lagrangian
of Eq. (1), we start from the amplitude obtained in Ref. [39] and substitute the masses of
the D and D∗ mesons by the masses of the B and B∗, respectively. As a result, we obtain

− itσB∗B̄∗ = −i V 2 3

2
tI=0
ππ→ππ , (21)

where tI=0
π π→π π is the isoscalar amplitude for the π π interaction, namely

tI=0
π π→π π = − 1

f

s′ − m2
π

2

1 + 1
f2
G(s′)(s′ − m2

π

2
)
, (22)

with G(s′) the two pions loop function suited to this case (whose explicit form is given in
[39, 50]) and with P the total π π momentum, with the pions travelling to the right in the
diagrams. Hence, P 2 = s′ is actually the variable t for the B∗+B̄∗0 system.

In Eq. (21), V is a factor that takes into account the contributions coming from the
triangular loops of the diagram. The detailed derivation of the V factor can be found in
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Ref. [39]. We adopt the Breit frame,

p1 ≡ (p0
1, ~q/2) ,

p′1 ≡ (p′ 0
1 ,−~q/2) ,

p ≡ (p0, ~p ) ,

(23)

where ~q is the three-momentum transferred in the process and p1 and p′1 the momenta for
the two incoming B∗. The equations for V are obtained from [39] with the trivial changes
in the masses of the particles. It also contains the factor (MB∗/MK∗)

4 replacing the factor
(MD∗/MK∗)

4 in [39] as demanded by HQSS in [40].

0 500 1000 1500 2000
0

1

2

3

4

5

q HMeVL

t Σ

FIG. 6. Potential tσ
B∗B̄∗

as a function of the momentum transferred in the process.

Finally, substituting Eq. (22) into Eq. (21) and taking s = −~q 2 since there is no energy
exchange, we get the following expression for the potential

tσB∗B̄∗(~q) = V 2 3

2

1

f 2

~q 2 + m2
π

2

1−G(−~q 2) 1
f2

(~q 2 + m2
π

2
)
, (24)

with
V = εµε

′
ν(ag

µν + cp′µ1 p
ν
1) (25)

and a and c also given in [39] with trivial changes in the masses. Assuming the spatial
components of the momenta p1µ and p′1ν smaller than the vector masses, which implies
taking ε0 = 0, only the term with the a coefficient contributes to the potential, providing
the ε ε′ combination. The other vertex gives the same structure and then we have the ε ε′ ε ε′

combination. Hence, the potential can be rewritten as

tσB∗B̄∗(~q) = a2 3

2

[
1

f 2

~q 2 + m2
π

2

1−G(−~q 2) 1
f2

(~q 2 + m2
π

2
)

]
ε1µ ε

′
2ν ε

µ
3 ε
′ ν
4 , (26)

where we have rewritten the polarization vectors combinations in order to associate the
subindices 1 , 2 , 3 and 4 with 1 + 2 → 3 + 4. Therefore, the final form of the potential can

10



be written in terms of the spin projectors, Eq. (10), providing

tσB∗B̄∗(~q) = a2 3

2

[
1

f 2

~q 2 + m2
π

2

1−G(−~q 2) 1
f2

(~q 2 + m2
π

2
)

]
(P(0) + P(1) + P(2)) . (27)

In Fig. 6 we can see the plot of the tσ
B∗B̄∗

potential, Eq. (27), as a function of the transferred
momentum ~q.

B+

B+

B∗+

π0

π0

π0

π0

B̄∗0

B̄∗0

B̄0

a)

B+

B+

B∗+

π0

π0

π−

π−

B̄∗0

B−

b)

B+

B+

B∗0

π−

π−

π0

π0

B̄∗0

B̄∗0

B̄0

c)

B+

B+

B∗0

π−

π−

π−

π−

B̄∗0

B̄∗0

B̄−

d)

B̄∗0

FIG. 7. Diagrams contributing to the two pion exchange interaction in lowest order for the BB̄∗ →
BB̄∗ process in I = 1.

Next, we shall consider the same mechanism, but now for the BB̄∗ case. The diagrams
for this process are shown in Fig. 7. For this case, the potential tσ

BB̄∗
has a difference in

comparison with the former case. Now we have two different triangular loops. This implies
two V factors in Eq. (21), where each factor is associated with each triangular loop. Hence,
the potential tσ

BB̄∗
is given by

− itσBB̄∗ = −i V V̄
3

2
tI=0
ππ→ππ , (28)

where tI=0
ππ→ππ is the isoscalar amplitude defined in Eq. (22) and V̄ is again given by Eq.(29)

in [39] with trivial changes of masses. The potential tσ
BB̄∗

is plotted in Fig. 8.

C. The exchange due to the two uncorrelated pions

In this case, the pions are not interacting, then only the diagrams a) and d) of Figs. 5
and 7 contribute for the B∗B̄∗ and BB̄∗ interactions. Details on the evaluation can be found
in [39]. The amplitude tπ π

B∗B̄∗
can be rewritten in terms of its spin components as

tπ πB∗B̄∗ =
5

4
g4
B

A

15

∫
d3p

(2π)3
(4~p 2 − ~q 2

4
)2 F 2 1

ω1 + ω2

1

2ω1ω2

1

4E2
B

1

p0
1 − ω1 − EB + iε

× 1

p0
1 − ω2 − EB + iε

(
1 +

EB + ω1 + ω2 − p0
1

p0
1 − ω1 − EB + iε

+
EB + ω1 + ω2 − p0

1

p0
1 − ω2 − EB + iε

)
,

(29)
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FIG. 8. Potential tσ
BB̄∗

as a function of the momentum transferred in the process.
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p′2
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p− p′1 + p2

(a)
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p− p′1 + p2

(b)

FIG. 9. Momenta assignments in the two uncorrelated pion exchange in B∗B̄∗ → B∗B̄∗ and

BB̄∗ → BB̄∗, respectively.

where A = 5 is associated with spin J = 0, while A = 2 is related to the J = 2 case,
ω1 =

√
(~p+ ~q/2)2 +m2

π, ω2 =
√

(~p− ~q/2)2 +m2
π are the energies of the pions and EB(~p ) =√

~p 2 +m2
B is the energy of the B meson. F (~q ) is a form factor of the type

F = F1(~p+
~q

2
)F2(~p− ~q

2
) =

Λ2

Λ2 + (~p+ ~q
2
)2

Λ2

Λ2 + (~p− ~q
2
)2
, (30)

with Λ = 700 GeV, which is also used later to help the convergence. Note that, according
to [40], the coupling g = MV /2fπ used in Sec. II A is now replaced by gB = (MB∗/MK∗) g
to account for the requirements of heavy quark spin symmetry. On the other hand, this
correction is automatically implemented in the extrapolation of the vector exchange to the
heavy sector (Weinberg-Tomozawa term) because this term is explicitly proportional to the
external B∗ energies.
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FIG. 10. Potential tB
∗B̄∗

ππ for non-interacting pion exchange in the case of J = 0 (solid line) and

J = 2 (dashed line).

In Fig. 10 we can see the amplitude for the two spin cases as a function of the momentum
transfer.

For the BB̄∗ case we find

tπ πBB̄∗ = −5

4
g4
B

1

2
~ε ′ ~ε ′′

∫
d3p

(2π)3
(~p 2 − ~q 2)

[
(4~p 2 − ~q 2

4
)− 1

~q 2

[
(2~p ~q )2 − ~q 4

4

]]
F 2

ω1 + ω2

1

2ω1ω2

× 1

2EB

1

2EV
[ω2

1 + ω2
2 + ω1ω2 − (ω1 + ω2)(2p0

1 − EB∗ − EB) + (p0
1 − EB∗)(p0

1 − EB)]

× 1

p0
1 − ω1 − EB∗ + iε

1

p0
1 − ω1 − EB + iε

1

p0
1 − ω2 − EB∗ + iε

1

p0
1 − ω2 − EB + iε

,

(31)

where EB∗(~p ) =
√
~p 2 +m2

B∗ is the energy of the B∗ meson. The amplitude tπ π
BB̄∗

as a
function of the momentum transfer is plotted in Fig. 11
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FIG. 11. Potential tπ π
BB̄∗

for non-interacting pion exchange as a function of the momentum trans-

ferred in the process.
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III. ITERATED EXCHANGE OF TWO LIGHT MESONS

In this section we evaluate the contribution coming from the iterated exchange of two
light mesons, shown in Fig. 12 in the case of the B∗B̄∗ (a) and of the BB̄∗ (b) interactions.

π, η, η′

π, η, η′

B∗+

B∗+ B̄∗0

B̄∗0

B+ B̄0

π, η, η′

π, η, η′

B∗+

B∗+ B̄0

B̄0

B+ B̄∗0

(a) (b)

FIG. 12. Iterated exchange of two light mesons for the B∗B̄∗ (a) and BB̄∗ (b) cases.

In the case of B∗B̄∗, the details of the calculation can be found in Sec. C of Ref. [39]
and they lead to the following expression for the amplitude:

tboxB∗B̄∗ =
1

4
tboxππ +

1

9
tboxηη +

1

36
tboxη′η′ −

1

3
tboxπη −

1

6
tboxπη′ +

1

9
tboxηη′ , (32)

where

tboxij = g4
BSJ

∫
d3p

(2π)3
~p 4 F 2 1

mD∗ + ω1 − EB(~p)± iε
1

mB∗ + ω2 − EB(~p)± iε

× 1

(EB(~p ))2

( 1

2ω1ω2

1

ω1 + ω2

Num

mB∗ − ω1 − EB(~p ) + iε

1

mB∗ − ω2 − EB(~p ) + iε

+
1

EB(~p )−mB∗ + ω1 + iε

1

EB(~p )−mB∗ + ω2 + iε

1

2mB∗ − 2EB(~p ) + iε

)
, (33)

where i j = π, η, eta′ and ω1 and ω2 are their energies of the two light mesons exchanged,

SJ =


4
3

J = 0

8
15

J = 2 ,

(34)

and
Num = −(ω2

1 + ω2
2 + ω1ω2) + (mB∗ − EB(~p ))2 . (35)
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The former calculation has been done at threshold. The momentum transfer dependence on
~q can be obtained easily from Eq. (33) by taking for the initial and final states four-momenta
p1 = (p0

1, ~q/2), p2 = (p0
2,−~q/2), p3 = (p0

3,−~q/2) and p4 = (p0
4, ~q/2) (p3, p4 momenta of the

two final B∗).
In Fig. 13 the amplitude tbox

B∗B̄∗
is plotted as a function of the momentum transferred ~q

for the case J = 0 (dashed line) and J = 2 (solid line).
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FIG. 13. Amplitude tbox
B∗B̄∗

as a function of the momentum transferred in the process for the case

J = 0 (dashed line) and J = 2 (solid line).

With a similar procedure we can obtain the amplitude in the case of BB̄∗, using again
the Lagrangian of Eq. (1). We find

tboxBB̄∗ =
1

4
t̃boxππ +

1

9
t̃boxηη +

1

36
t̃boxη′η′ −

1

3
t̃boxπη −

1

6
t̃boxπη′ +

1

9
t̃boxηη′ , (36)

where

t̃
box
ij = g4

B

1

3
~ε · ~ε′

∫
d3p

(2π)3
~p 4 F 2 1

EB∗(~p )

1

EB(~p )

1

EB∗(~p ) + ω1 − EB(~p )± iε
× 1

EB∗(~p ) + ω1 − EB(~p )± iε
1

EB∗(~p ) + ω2 − EB(~p )± iε
( 1

2ω1ω2

× 1

ω1 + ω2

1

EB(~p )− ω1 − EB∗(~p ) + iε

Num′

EB(~p )− ω2 − EB∗(~p ) + iε

+
1

EB(~p ) + ω1 − EB∗(~p )− iε
1

EB(~p ) + ω2 − EB∗(~p )− iε
× 1

MB − EB(~p ) +MB∗ − EB∗(~p ) + iε

)
, (37)

with i, j = π, η, η′. The numerator Num′ in Eq. (37) is given by

Num′ = −(ω2
1 + ω2

2 + ω1ω2) + (ω1 + ω2)(MB + EB −MB∗ − EB∗)
× (MB − EB∗)(MB∗ − EB) .

(38)

EB, EB∗ , ω1 and ω2 are already defined in Section II C.
The potential tbox

BB̄∗
is plotted in Fig. 14 as a function of the tranferred momentum ~q.
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FIG. 14. Amplitude tbox
BB̄∗

as a function of the momentum transferred in the process.

IV. RESULTS
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FIG. 15. Comparison between the potentials tB∗B̄∗→B∗B̄∗ (small dashed line, vector exchange Eq.

(12)), tσ
B∗B̄∗

(dotted line, Eq. (27)), tππ
B∗B̄∗

for J = 0 (dotted dashed line, Eq. (29)) and J = 2

(solid line), tbox
B∗B̄∗

for J = 0 (solid thick line, Eq. (32)) and J = 2 (large dashed line) as functions

of the momentum transferred in the process.

After we have calculated the amplitudes of all the processes contributing to the B∗B̄∗ and
BB̄∗ interactions, we want to make a rough estimate of the strength of each potential. This
is done by evaluating the integral

∫
d3q V (q) in order to take into account the contributions

coming from the exchange of light mesons and use them to obtain an effective potential
Veff . We will follow a simple strategy to account for the different potentials. We will get
the strength

∫
d3q Vi (q) for all the potentials exchanging light mesons and sum them. Then

we convert the sum into an effective potential of the type of the vector exchange,

Veffθ(qmax − |~q |)θ(qmax − |~q ′|) , (39)
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FIG. 16. Comparison between the potentials tBB̄∗→BB̄∗ (solid line, Eq. (14)), tσ
BB̄∗

(dashed line,

Eq. (28)), tππ
BB̄∗

(dotted line, Eq. (31)), tbox
BB̄∗

(dotted dashed line, Eq. (36)) as functions of the

momentum transferred in the process.

where qmax is the maximum momentum used in the loops in Eq. (18) (see Eq. (20)), such
that

∫
q<qmax

d3q Veff is equal to the sum of
∫
d3q Vi (q).

Then, we take as potential in our case this effective potential plus the one coming from
vector exchange. Both are of the type of Eq. (20) and can then be used in the Bethe-Salpeter
equation with the same G function (Eq. (18)), regularized with the cut off qmax.

On the other hand, the value of the strength depends on the value of the upper limit
of the integral

∫
d3q V (q). For this reason we calculated the effective potential Veff using

values of this limit for the light meson exchange potential varying from 700 to 1100 MeV
for both B∗B̄∗ and BB̄∗ interactions. Changing the upper limit in

∫
d3q Vi (q) introduces

large uncertainties in the approach concerning the final potential. The strength of the final
potential, summing Veff and the vector exchange, can be a factor 2.4 − 14.5 times the one
of the vector exchange alone for the case of B∗B̄∗ with J = 0, while for J = 2 we find a
factor 1.2− 5.2. For the case of BB̄∗ the factor varies between 30 and 64.

In the following we study the shape of |T11|2 for both B∗B̄∗ and BB̄∗ cases. As we
will discuss in detail, both amplitudes show a clear peak and the large uncertainties on
the potential do not affect drastically its position, which justifies a posteriori the approach
followed indulging in large uncertainties.

A. BB̄∗ case

In this case, we are interested in studying the T matrix for the channels: BB̄∗, ηb ρ and
πΥ. We evaluated the transition matrix T between those channels for values of

√
s around

10600 MeV. In order to do this, we use the dimensional regularization formula for the loop
function G, given by Eq. (19). To obtain reasonable values of the subtraction constants
in each channel we proceed as follows: we take a cut off qmax, then we find a subtraction
constant that provides at threshold the same G function obtained with the cut off method.
Here we are taking qmax = 700 MeV, for which we find αBB̄∗ = −2.79, αηbρ = −3.56 and
απΥ = −3.78.

In Ref. [38, 39] the changes in the position of the peak of the T matrix due to the variation
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FIG. 17. |T11|2 as a function of the
√
s center of mass energy for the case of BB̄∗. Each curve is

associated with a value of the integration limit: 700 MeV, 800 MeV, 900 MeV, 1000 MeV, 1100

MeV. The peak moves from right to left as the integration limit increases.

of qmax were studied. However, in the current case, the changes due to this parameter are
smaller than the ones due to the variations of the upper limit of the integral

∫
d3q V (q)

used to estimate Veff . In Fig. 17 the shape of |T11|2, the component of the T matrix
that describes the transition BB̄∗ → BB̄∗, for different values of the integration limit, is
depicted. As can be seen, even choosing values of the limit between 700 and 1100 MeV,
the effect on the binding and the width is small. As a result, we find that the position of
the peak moves slightly to higher energies for decreasing values of the upper limit and it is
seen in the range of 10587 − 10601 MeV. This values are very close to what was found by
the Belle collaboration, MZb(10610) = (10608.4± 2.0) MeV. It is worth noting that both the
ηb ρ and πΥ channels are open for decays, and this gives a width between 1.6 and 3 MeV,
with bigger widths corresponding to lower values of the integration limit. The experimental
value reported by Belle collaboration is ΓZb(10610) = (15.6± 2.5) MeV.

B. B∗B̄∗ case

For this case we have two channels: B∗B̄∗ and ρΥ. Again, we use the dimensional
regularization form of the loop function G, Eq. (19), with µ = 1500 MeV and the subtraction
constants αB∗B̄∗ = −2.79 and αρΥ = −3.56, corresponding to a cut off value equal to
qmax = 700 MeV.

Fig. 18 shows the shape of |T11|2, which means the component of the T matrix that
describes the transition from B∗B̄∗ to itself, for different values of the integration limit
plotted as a function of the center of mass energy,

√
s, of the system. This peak corresponds

to spin J = 0. In Fig 19, we show the shape of |T11|2 for the J = 2 case, again for different
values of the integration limit. It is important to emphasize that, according to Eq. (13),
there is no contribution in the transition matrix T from B∗B̄∗ to ρΥ channel for spin J = 1.
In this case, B∗B̄∗ stands as a single channel.
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FIG. 18. |T11|2 as a function of the
√
s center of mass energy for the case of B∗B̄∗ for J = 0. Each

curve is associated with a value of the integration limit: 700 MeV, 800 MeV, 900 MeV, 1000 MeV,

1100 MeV. The peak moves from bottom to top as the integration limit increases.
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FIG. 19. |T11|2 as a function of the
√
s center of mass energy for the case of B∗B̄∗ for J = 2. Each

curve is associated with a value of the integration limit: 700 MeV, 800 MeV, 900 MeV, 1000 MeV,

1100 MeV. The peak moves sligthtly from bottom to top as the integration limit increases.

From these figures we can see that the variations of the integration limit cause no effect
to the peak position, as we already noted in the BB̄∗ case. It is interesting to note that,
even with the large uncertainties in the potential admitted, we always find a structure for
the peak of |T11|2 which corresponds clearly to a cusp. Whether to call this a resonant state
or not it is a question of criterion. We should however note that the a0(980) appears in the
experiments (or in the theories) [53, 54] as a cusp and is universally accepted as a resonance.

19



Our findings, obtained a cusp for the |T11|2 amplitude in this case, would come to support
the claims of the former works [13, 14].

For the sake of completeness, we repeat the calculation considering the spin J = 1 case.
Here we have a single channel problem,

T11 =
t̃B∗B̄∗→B∗B̄∗

1− t̃B∗B̄∗→B∗B̄∗ GB∗B̄∗
, (40)

where GB∗B̄∗ is the loop function defined by Eq. (19) for the B∗B̄∗ channel, while t̃B∗B̄∗→B∗B̄∗
is the B∗B̄∗ → B∗B̄∗ vector exchange potential already defined in Eq. (12), plus the
contribution from Veff due to the exchange of two interacting pion exchange. In this case, we
saw that the noninteracting pion exchange vanished, and the interacting two pion exchange
was also small (see Fig. 6), smaller than the vector exchange (see Fig. 15), in all range.
This is why, in this case, in order to play with uncertainties we follow the strategy of Refs.
[38, 39] and we change the range of the vector exchange potential, by changing the cut off
qmax to values from 700 to 1100 MeV.
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FIG. 20. |T11|2 as a function of the
√
s center of mass energy when only the B∗B̄∗ channel is

considered (J = 1 case). Each curve is related to the cut off values qmax equal to 700, 800, 900, 1000

and 1100 MeV. The peak moves from bottom to top as the cut off increases.

In Fig. 20 we show the plot for |T11|2 as a function of the center of mass energy of the
system. Note that in this case, we also have a peak about 10650 MeV, which is just the
threshold mass of the B∗B̄∗ channel. Again, we see essentially a cusp in the amplitude which
does not correspond to a bound state. The situation is similar if we increase the value of
t̃B∗B̄∗→B∗B̄∗ of a factor 1.5 to account for possible uncertainties. The value of |T11|2 grows
accordingly, but the cusp remains and its shape is like in Fig. 20.

V. SUMMARY AND CONCLUSION

Using the local hidden gauge lagrangians, we have studied the BB̄∗ and B∗B̄∗ interactions
for isospin I = 1. We show that the exchange of a light meson is not allowed by OZI rule.
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For that reason we have investigated the contributions coming from heavy vector exchange
and also due to the two pion exchange, interacting and noninteracting among themselves,
in which the OZI restriction no longer holds. Unlike Refs. [38, 39], the vector exchange
potential is not the main source of the interactions here. In view of this, we consider the
vector exchange potential corrected by a factor that takes into account the contributions of
the others mesons exchange cases and, then we use it as the kernel of the Bethe-Salpeter
equation in order to solve the transition matrix T . Looking for poles in the T matrix, we
tried to relate them with the Zb(10610) and Zb(10650) states reported by Belle collaboration.
From our results, using a cut off value qmax = 700 MeV, we found a bound state of BB̄∗ with
mass in the range 10587− 10601 MeV very close to the experimental mass of the Zb(10610)
at 10608 MeV. In the case of B∗B̄∗ interaction, we found a cusp at 10650 MeV for spin
J = 0 and J = 2 cases. On the other hand, the spin J = 1 case can be considered only in
the one channel problem without taking into account the ρΥ channel. In this case, again a
cusp at 10650 MeV appears in the |T11|2 as can be seen in Fig. 20 and was also pointed out
in Ref. [13, 14].
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