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We study the dependence on the quark mass of the compositeness of the lowest-lying odd parity
hyperon states. Thus, we pay attention to Λ−like states in the strange, charm and beauty, sectors
which are dynamically generated using a unitarized meson-baryon model. In the strange sector
we use an SU(6) extension of the Weinberg-Tomozawa meson-baryon interaction, and we further
implement the heavy-quark spin symmetry to construct the meson-baryon interaction when charmed
or beauty hadrons are involved. In the three examined flavor sectors, we obtain two JP = 1/2−

and one JP = 3/2− Λ states. We find that the Λ states which are bound states (the three Λb) or
narrow resonances (one Λ(1405) and one Λc(2595)) are well described as molecular states composed

of s-wave meson-baryon pairs. The 1
2

−
wide Λ(1405) and Λc(2595) as well as the 3

2

−
Λ(1520) and

Λc(2625) states display smaller compositeness and so they would require new mechanisms, such as
d-wave interactions.
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I. INTRODUCTION

One of the chief theoretical efforts in hadron physics is to understand the nature of hadrons, whether they can be
primarily explained within the quark-model picture as multiquark states or mainly qualify as dynamically generated
states via hadron-hadron scattering processes. In particular, in the last years there has been a growing interest in the
properties of strange and charmed baryons in connection with many experiments such as the on-going CLEO [1], Belle
[2], BES [3], BaBar [4] as well as the planned PANDA [5] or the J-PARC upgrade [6]. Also, the LHCb Collaboration
at CERN has been exploring in the recent years an almost terra incognita in the spectroscopy of baryons with the
beauty degree of freedom. Results on beauty baryonic states, such as the Λb excited states [7], have been reported,
stimulating the theoretical work to understand the properties of the newly-discovered states.

Recent approaches based on unitarized coupled-channels methods have proven to be very successful in describing the
existing experimental data in the charmed [8–25] and beauty baryonic sectors [26, 27]. Most of these models emerge as
the theoretical effort extends from the strange to charmed and beauty sectors, partially motivated by the parallelism
between the Λ(1405) and the Λc(2595) as well as the Λb(5912) states. Of special importance are the symmetries that
are implemented in the hadronic models. While chiral symmetry should be implemented in the strangeness sector,
heavy-quark spin symmetry (HQSS) [28–30] appears naturally as we deal with systems that include charmed and
beauty degrees of freedom [31–41].

The use of the effective models combined with unitarity constraints in coupled channels allows to explain many
baryons in terms of meson-baryon interactions, interpreting them as composite or dynamically-generated states. The
ultimate goal is to determine the degree of “compositeness” and the “genuine” contributions of the given state. The
formalism was developed by Weinberg in Ref. [42], and later applied to the deuteron in [43], showing that the deuteron
can be fully understood as a proton-neutron bound state. More recent works have extended this analysis from bound
states to resonances and from s-wave to higher partial waves [44–51]. The theoretical aspects have been further
discussed in [52, 53].

The present paper is focused on the analysis of the compositeness of the lowest-lying JP = 1/2− and JP = 3/2− Λ
states going from the strange to the beauty sectors.1 The aim is to shed some light on the nature of newly discovered
excited Λc and Λb by exploiting the similarities with the strange Λ states. We also address any existing regularity in
the quark mass dependence of the compositeness of these excited baryons.

There exist previous studies in the strange sector. The Λ(1520) has been recently discussed in Ref. [54], while the
compositeness and elementariness of the two Λ(1405) states have been evaluated within the chiral unitarity model
(Goldstone boson-baryon chiral perturbation potential used as a kernel of a Bethe-Salpeter equation) at leading order
(Weinberg-Tomozawa interaction) in Ref. [55] and incorporating next-to-leading chiral corrections [56]. While the
results reported in Refs. [55, 56] are in qualitative agreement with those obtained in this work, there are some appre-
ciable differences between our approach and that followed in [54] for the Λ(1520) resonance, namely the consideration
of d-wave interactions, which effects will be further investigated.

The structure of this work is as follows. In Section II we summarize the model we are using to describe meson-
baryon interactions and present the dynamically-generated Λ resonances in the strange, charm and beauty sectors.
In Sect. III we use the generalized Weinberg’s sum rule to estimate the importance of the different channels in the
generated Λ states. With this analysis, we give an educated guess of the compositeness of these states. Finally, some
conclusions are addressed in Sect. IV. In Appendix A we present the analytical expression of compositeness on the
first and second Riemann sheets, whereas in Appendix B the compositeness rule is derived.

II. DYNAMICALLY-GENERATED STRANGE, CHARM AND BEAUTY Λ STATES

In order to analyze the compositeness of the Λ (isoscalar) states in the strange, charm or beauty sectors, we start
by summarizing the meson-baryon model used in the different sectors.

On one hand, for meson-baryon interactions involving strange hadrons, we consider the extension of the Weinberg-
Tomozawa (WT) interaction to SU(6) of Refs. [58–63]. This is an s-wave contact interaction. This model assumes
that the light quark–light quark interaction is approximately spin independent as well as SU(3) flavor symmetric,
thus, treating the six states of a light quark as equivalent. This approach has shown a reasonable semi-qualitative
outcome for different excited baryonic states as compared to the experimental data [62].

On the other hand, in the heavy sectors of charm and beauty, we extend the model by making use of the HQSS
to construct meson-baryon interactions involving heavy hadrons. Whereas HQSS connects vector and pseudoscalar

1 From here on we shall use Λ to indistinctly denote the Λ, Λc and Λb states
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Meson mass width decay SU(6)UC(1) SU(3)2J+1 HQSS Baryon mass width SU(6)UC(1) SU(3)2J+1 HQSS
constant

π 138.04 92.4 350 81 singlet N 938.92 560 82 singlet
K 495.65 113.0 350 81 singlet Λ 1115.68 560 82 singlet
η 547.86 111.0 350 81 singlet Σ 1193.15 560 82 singlet
ρ 775.49 150 153.0 350 83 singlet Ξ 1318.29 560 82 singlet
K∗ 893.88 50 153.0 350 83 singlet Σ∗ 1382.80 35 560 104 singlet
ω 782.65 138.0 350 ideal singlet Ξ∗ 1531.80 560 104 singlet
φ 1019.46 163.0 350 ideal singlet Λc 2286.46 211 3∗

2 singlet
η′ 957.78 111.0 10 11 singlet Ξc 2469.34 211 3∗

2 singlet
D 1867.23 157.4 6∗

1 3∗
1 doublet Σc 2453.54 211 62 doublet

D∗ 2008.61 fD 6∗
1 3∗

3 doublet Σ∗c 2518.07 211 64 doublet
Ds 1968.30 193.7 6∗

1 3∗
1 doublet Ξ′c 2576.75 211 62 doublet

D∗s 2112.10 fDs 6∗
1 3∗

3 doublet Ξ∗c 2645.90 211 64 doublet
B 5279.42 133.6 6∗

1 3∗
1 doublet Λb 5619.50 211 32 singlet

B∗ 5325.20 fB 6∗
1 3∗

3 doublet Ξb 5794.00 211 3∗
2 singlet

Bs 5366.77 159.1 6∗
1 3∗

1 doublet Σb 5813.40 211 62 doublet
B∗s 5415.40 fBs 6∗

1 3∗
3 doublet Σ∗b 5833.60 211 64 doublet

Ξ′b 5926.00 211 62 doublet
Ξ∗b 5949.30 211 64 doublet

TABLE I. Baryon masses, Mi, meson masses, mi, and meson decay constants, fi, (in MeV) used throughout this work. The
widths in MeV units, ΓR, used in the convolutions (Eq. (4)) are also provided. The masses and decay constants are taken from
Refs. [31, 34]. The SU(6)× SUC(2)×UC(1) and SU(3)× SU(2) labels are displayed as well (for simplicity we do not explicitly
give the spin of the heavy quark sector, since it is trivially 0 or 1/2.) The last column indicates the HQSS multiplets. Members
of a doublet are placed in consecutive rows.

mesons containing heavy quarks as all type of spin interactions vanish for infinitely massive quarks, chiral symmetry
fixes the lowest order interaction between Goldstone bosons and other hadrons in a model independent way via the WT
interaction. Then, it is appealing to construct a model for four flavors including all basic hadrons (pseudoscalar and
vector mesons, and 1/2+ and 3/2+ baryons) which reduces to the WT interaction in the sector where Goldstone bosons
are involved and which incorporates HQSS in the sector where heavy quarks participate [31–35]. This SU(6)×HQSS
model is justified in view of the reasonable semi-qualitative outcome of the SU(6) extension [62] and on a formal
plausibleness on how the SU(4) WT interaction in the heavy pseudoscalar meson-baryon sectors comes out in the
vector-meson exchange picture.

The extended WT meson-baryon interaction, in the coupled meson-baryon basis with total heavy content (charm
C /beauty B) H, strangeness S, isospin I and spin J , is given by

V HSIJij = DHSIJ
ij

2
√
s−Mi −Mj

4fifj

√
Ei +Mi

2Mi

√
Ej +Mj

2Mj
, (1)

where
√
s is the center of mass (C.M.) energy of the system; Ei and Mi are, respectively, the C.M. on-shell energy and

mass of the baryon in the channel i; and fi is the decay constant of the meson in the i-channel. Symmetry breaking
effects are introduced by using physical masses and decay constants. The masses and decay constants used in this
work are shown in Table I. The masses shown correspond to the arithmetic mean of the different isospin partners.

The DHSIJ
ij are the matrix elements coming from the group structure of the extended WT interaction [35]. The

matrix elements required for the Λ(1520) sector, with quantum numbers C = 0, B = 0, S = −1, I = 0, JP = 3/2−,
can be found in Eq. (45) of Ref. [60]. Those for the Λc(2595), with C = 1, B = 0, S = 0, I = 0, JP = 1/2− and
Λc(2625), with JP = 3/2−, can be found in Tables XV and XVIII of Ref. [31], respectively. The same coefficients apply
to the bottom case. Finally, the matrix elements for the Λ(1405) sector, with quantum numbers C = 0, B = 0, S =
−1, I = 0, JP = 1/2−, can be extracted following the directions of Appendix A of Ref. [62] and the conventions in
[64]. For convenience these matrix elements are explicitly displayed in Table II.

In order to obtain the unitarized T -matrix, we solve the on-shell factorized form of the Bethe-Salpeter equation
using the matrix V HSIJ as kernel

THSIJ = (1− V HSIJGHSIJ)−1V HSIJ , (2)
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where GHSIJ is a diagonal matrix containing the meson-baryon propagator in each channel. Explicitly,

GHSIJi (
√
s,mi,Mi) = i 2Mi

∫
d4q

(2π)
4

1

q2 −m2
i

1

(P − q)2 −M2
i

, (3)

being Mi(mi) the baryon (meson) mass of the channel i and Pµ the total four-momentum, which in the CM frame is
given by PµCM = (

√
s,0). The loop function is explicitly given in Ref. [65] and in Appendix A.

When the meson and/or the baryon in the intermediate state is not a stable particle, we convolute the meson-baryon
propagator (loop) with the corresponding hadronic spectral function, as done in Refs. [32, 66, 67]). Thus, in this case,

the loop function G is substituted by Ĝ, which is defined as the convolution of the loop function G with the spectral
function of this intermediate resonant state (R),

ĜHSIJ(
√
s,m,MR,ΓR) =

1

N

∫ (MR+2ΓR)2

(MR−2ΓR)2
dM̂2

(
− 1

π

)
Im

(
1

M̂2 −M2
R + iMRΓR

)
GHSIJ(

√
s,m, M̂), (4)

being N a normalization factor that reads,

N =

∫ (MR+2ΓR)2

(MR−2ΓR)2
dM̂2

(
− 1

π

)
Im

(
1

M̂2 −M2
R + iMRΓR

)
. (5)

The meson-baryon propagator is logarithmically ultraviolet divergent, thus, it needs to be renormalized. This has
been done by a subtraction point regularization such that

GHSIJii (
√
s) = 0 at

√
s = µHSI , (6)

with

µHSI =
√
α
√
m2

th +M2
th, (7)

where mth and Mth, are, respectively, the masses of the meson and baryon producing the lowest threshold (minimal
value of mth +Mth) for each HSI sector, independent of the angular momentum J , and α = 1. This renormalization
scheme was first proposed in Refs. [12, 13] and it was successfully used in Refs. [31–35, 68]. A recent discussion on
the regularization method can be found in Ref. [69]. The overall results obtained by the above choice of subtraction
point is similar to the observed spectrum of low-lying hadronic resonances. A more precise agreement can be achieved
by suitably shifting the subtraction point. To do so one can choose a value of the parameter α different from unity
[31, 34]. Note that, other than this, the model has no free parameters.

The dynamically-generated baryon states appear as poles of the scattering amplitudes on the complex energy
√
s

plane. The poles of the scattering amplitude on the first Riemann sheet that appear on the real axis below threshold

TABLE II. Matrix elements Dij for the Λ(1405) sector: C = B = 0, S = −1, I = 0, JP = 1/2−.

Σπ NK̄ Λη ΞK NK̄∗ Λω Σρ Λφ Σ∗ρ ΞK∗ Ξ∗K∗

Σπ −4
√

3
2

0 −
√

3
2

√
1
2

0
√

64
3

0
√

32
3

√
25
2

2

NK̄
√

3
2

−3 −
√

9
2

0
√

27
√

9
2

√
1
2

3 2 0 0

Λη 0 −
√

9
2

0
√

9
2

√
27
2

0 0 0 0 −
√

3
2

√
12

ΞK −
√

3
2

0
√

9
2

−3 0 −
√

1
2

√
25
2

−1 −2
√

3 0

NK̄∗
√

1
2

√
27

√
27
2

0 −9
√

3
2

√
25
6
−
√

27 −
√

4
3

0 0

Λω 0
√

9
2

0 −
√

1
2

√
3
2

0 4 0
√

8
√

25
6

√
4
3

Σρ
√

64
3

√
1
2

0
√

25
2

√
25
6

4 − 20
3

0
√

8
9
−
√

169
6

√
4
3

Λφ 0 3 0 −1 −
√

27 0 0 −4 0
√

1
3
−
√

8
3

Σ∗ρ
√

32
3

2 0 −2 −
√

4
3

√
8

√
8
9

0 − 22
3
−
√

4
3
−
√

128
3

ΞK∗
√

25
2

0 −
√

3
2

√
3 0

√
25
6
−
√

169
6

√
1
3
−
√

4
3

− 19
3
−
√

32
9

Ξ∗K∗ 2 0
√

12 0 0
√

4
3

√
4
3
−
√

8
3
−
√

128
3
−
√

32
9

− 14
3
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are interpreted as bound states. The poles that are found on the second Riemann sheet below the real axis and above
threshold are identified with resonances.2 The mass and the width of the state can be found from the position of the
pole on the complex energy plane. Close to the pole, the scattering amplitude behaves as

THSIJij (s) ≈ gi gj√
s−√sR

. (8)

The mass MR and width ΓR of the state result from
√
sR = MR− i ΓR/2, while gj (complex in general) is the coupling

of the state to the j-channel.
The calculated positions and widths of the lowest-lying Λ states in the strange, charm and beauty sectors together

with their couplings, gi, to the different meson-baryon channels are shown in Tables III, IV and V. In the case we
want to refer to a specific flavor we will write Λs, Λc or Λb. For each flavor f = s, c, b, the resonances Λf are ordered
by closeness to the πΣf threshold, and they are displayed in this sequence in the Tables.

We use the convoluted meson-baryon propagator for the non-stable intermediate particles (namely, ρ, K∗ and K̄∗

mesons and Σ∗ baryon) in the study of the strange sector for the Λ(1405) and Λ(1520) resonances, in a similar manner
as done in Ref. [62]. In Ref. [33], it was reported that the convolution did not affect the dynamically generated Λc
states in a substantial manner as the dominant convoluted meson-baryon channels were far from the position of the
heavy Λc states.

In view of their mass position and dominant couplings, we assign these states to the experimental strange [Λ(1405),
Λ(1520)], charmed [Λc(2595, Λc(2625)] and beauty [Λb(5912), Λb(5920)] states, similarly to Refs. [31, 33, 34, 62].
Note, however, that in Refs. [31, 34] the subtraction point was slightly modified in order to fix the position of the
dynamically-generated states to the experimental predictions of the Λc(2595) and Λb(5912), respectively.

Three Λ states are obtained in each of the flavor sectors, two of them with JP = 1/2− and one with JP = 3/2−.
The well-known two-pole pattern of the Λ(1405) [68, 70, 71] is reproduced for the Λc(2595) and Λb(5912). Indeed,
for JP = 1/2− we find a state that strongly couples to NM and NM∗ channels, with (M,M∗) = (K̄, K̄∗), (D,D∗)
or (B̄, B̄∗) for strange, charm or beauty sectors, respectively. The K̄N dominance in the Λ(1405) has been got some
support from lattice QCD calculations [72]. In addition, a second state 1/2− coupling to Bπ, with B = Σ, Σc or Σb
is also seen for strangeness, charm or beauty, respectively. (In what follows we simply refer to these two Λ( 1

2

−
) states

as “first” and “second” state, respectively). On the other hand, the JP = 3/2− states Λc(2625) and Λb(5920) are the
counterparts in the charm and beauty sectors of the Λ(1520).

In Refs. [31, 33, 34, 62], the coupling constants were interpreted as a measure of the importance of a channel in order
to determine the molecular nature of the state. For instance, the Λ(1405) state close to the scattering line would be
a mixture of K̄N and K̄∗N states, while the second Λ(1405) state, with a very large decay width, would be mainly
a πΣ state. In the next section, we argue that the coupling constants, though useful, are not sufficient to describe
the nature of a resonance. Thus, further analyses of the nature and, hence, of the compositeness of the Λ states are
required.

III. COMPOSITENESS OF THE Λ STATES

In Ref. [43] Weinberg analyzed the nature of the deuteron and found that this particle is best described as composed
of a proton and a neutron, rather than a genuine dibaryon. More recently, the issue of compositeness was addressed
in Ref. [44–46] for s-waves and small binding energies. An extension to larger binding energies in coupled-channel
dynamics was undertaken in Ref. [47] for bound states and in Refs. [48–51] for resonances. In this section we
summarize the formalism and the conclusions derived in Ref. [51] for the interpretation of the Weinberg’s sum rule
and its generalization to resonances.

In the unitarized setting the sum rule follows from the identity [52, 55–57]:

− 1 =
∑
i,j

gigj

(
δij
∂Gi(

√
s)

∂
√
s

+Gi(
√
s)
∂Vij(

√
s)

∂
√
s

Gj(
√
s)

)∣∣∣∣√
s=
√
sR

. (9)

This relation is derived in Appendix B. It holds for bounds states and resonances, as well as energy dependent or
energy independent interactions.

2 For convenience we will often use the word resonance for all molecular states discussed in this work, whether they are bound states or
proper resonances.
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The use of the definitions

Xi = −Re

(
g2
i

dGi
d
√
s

∣∣∣∣√
sR

)
, Z = −Re

∑
i,j

gigj

(
Gi
∂Vij
∂
√
s
Gj

)∣∣∣∣√
sR

(10)

provides the sum rule

1 = Z +
∑
i

Xi . (11)

For bound states the extraction of the real part in Eq. (10) is redundant since the quantities involved are already real.
The expression of Xi involves the derivative of the loop function. The analytical expression of this function on the
first and second Riemann sheets is made explicit in Appendix A.

As follows from the analysis in [51], for bound states, the quantity Xi is related to the probability of finding the
state in the channel i. For resonances, Xi is still related to the squared wave function of the channel i, in a phase
prescription that automatically renders the wave function real for bound states, and so it can be used as a measure
of the weight of that meson-baryon channel in the composition of the resonant state.

The quantity
∑
iXi = 1 − Z represents the compositeness of the hadronic state in terms of all the considered

channels, and Z is referred to as its elementariness. A non vanishing Z takes into account that ultimately the model
is an effective one. The energy dependent interaction effectively accounts for other possible interaction mechanisms
not explicitly included in the s-wave meson-baryon description. These could be other hadron-hadron interactions, or
even genuine negative-parity baryonic components not of the molecular type (hence the appellative elementariness).
Thus, a small value of Z indicates that the state is well described by the contributions explicitly considered, namely,
s-wave meson-baryon channels. Conversely, a larger value of Z indicates that, for that state, significant pieces of
information are missing in the model, and this information is being included through an effective interaction, to the
extent that the experimental hadronic properties are reproduced by the model.

The results we obtain for the compositeness weights, Xi, and aggregated compositeness 1 − Z of the various Λ
states are displayed in Tables III, IV and V, for the default value α = 1 and also for another phenomenological choice
of the subtraction point, so that the experimental masses are better reproduced. As mentioned in the introduction,
the results reported in Refs. [55, 56] are in qualitative agreement with those presented in Table III for the Λ(1405)
states. In what follows we draw some conclusions with regards to the nature of the Λ states and its variation with
the quark mass can be extracted from the numbers.

First, the contribution of each meson-baryon channel to the dynamical generation of a state is determined not only
by the value of the coupling constant but also depends on the closeness of meson-baryon channel to the state. For
instance, the K̄N and K̄∗N channels have similar couplings to the first pole of Λ(1405) but their contribution to the
compositeness is quite different due to their different thresholds, relative to the mass of the state.

Second, the neglected contributions can be measured by means of the elementariness. Indeed, we observe that
those Λ poles close to the scattering line are well described as molecular states through the s-wave meson-baryon
channels considered, while wider states need the consideration of other contributions, such as multi-hadron scattering.
This is clearly manifest for the JP = 3/2− states Λ(1520) and Λc(2625). There is, however, not a strict correlation
between the value of the width and the elementariness. The 1/2− states have a larger compositeness than their 3/2−

counterparts.
Third, taking the natural identification between different Λ states for different flavors, one observes that as a rule,

the heavier the flavor the larger the compositeness of the resonance. For instance, the Λ(1520), Λc(2625) and Λb(5920)
states have 1− Z = 0.27, 0.37, and 0.82, respectively (for α = 1).

In the tables we primarily display results for the default value α = 1, even though this choice of subtraction point
does not reproduce the empirical masses of the resonances in detail. We also display results with α suitably fitted
in each case so that empirical masses of the resonances are reproduced. For the sake of definiteness, an equal mass
for the two 1/2− Λ states of each flavor has been adopted. The purpose of doing this is not to achieve a precise
description of the resonance, but rather to see to what extent the subtraction point and the resonance position are
relevant for the compositeness discussion. We can see that no substantial modifications in the weights Xi take place
in the charm and beauty cases, and the same holds for the first Λ(1405) state. The change is somewhat larger for the
second Λ(1405) state and for the Λ(1520) resonance. For these two resonances, the change required in the subtraction
points is also sizable.

In order to understand these features, one can observe that the three first Λ states, namely, Λ(1405), Λc(2595) and
Λb(5912), have sizable weights (Xi) in the nucleon-pseudoscalar channel, K̄N , DN and B̄N , respectively, while the
weights of the Σ-pseudoscalar lightest channels, πΣ, πΣc and πΣb, are much smaller or even negligible in the bottom
case. The couplings (gi) to these two types of channels follow a similar trend, and this explains the small widths of
these resonances. In fact, for the Λ(1405), the K̄N channel is dominant as regards to compositeness (although the
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 0.001

 0.01

 0.1

 1

(πΣ*)s (K-* N)s (ρΣ)s (KΞ*)s (ρΣ*)s (K- N)d (πΣ)d

X
i

Λ(1520), α=1
 α≠1
Aceti

FIG. 1. Weights Xi of the main channels contributing to the composition of the Λ(1520). Our results (in blue) are represented
by stars for α = 1, and by squares when the subtraction point is modified to bring the mass of the resonance to its experimental
value. The vertical lines in red indicate the weights obtained in [54] for the two s-wave and two d-wave channels considered
there using various sets of fitting parameters.

coupling to K̄∗N is also large). For the Λc(2595) and Λb(5912), the weight of DN and B̄N is important but competes
with D∗N and B̄∗N . For the charm (bottom) sector this was also found in [31, 33] ([34]) and in [25]. Likely, this
is a consequence of the similar roles played by vector and pseudoscalar heavy mesons (D and D∗ or B̄ and B̄∗) due
to heavy quark symmetry. The fact that these first Λ(1405), Λc(2595) and Λb(5912) poles have compositeness 1− Z
close to unity indicates that the present model, with s-wave meson-baryon including pseudoscalar and vector mesons,
gives a fair description of these resonances.

Likewise, the compositeness is large in the case of the second Λb(5912) and the Λb(5920), suggesting that the model
is also fairly complete for these two resonances.

Small values of 1− Z, below 0.5, are found for the second Λ(1405) and the second Λc(2595) in the 1/2− sector, as
well as the Λ(1520) and Λc(2625) in the 3/2− sector. A conspicuous difference between the first and second Λ(1/2−)
resonances is that the latter states strongly couple to the lightest channel πΣ or πΣc, and these channel largely
saturate their compositeness 1− Z. The same applies to the 3/2− Λ states, this time with πΣ∗ or πΣ∗c channels. As
a consequence, these four resonances have a sizable width. Related to this, the available phase-space of the meson-
baryon pair allows mechanisms involving higher partial waves (beyond s-wave) to play a role in the composition of
the resonance. These missing mechanisms would be accounted for by the larger values of Z displayed by these four
resonances.

Within the molecular approach, the first missing interaction mechanism is expected to come from d-wave interac-
tions. These type of interactions have been considered in Ref. [54] for the Λ(1520). The specific channels considered
there are πΣ∗ and KΞ∗ in s-wave, and K̄N and πΣ in d-wave. Further, the interaction is modeled as to reproduce
K̄N scattering data, and several fits consistent with the experimental mass of the Λ(1520) are presented. That calcu-
lation suggests that d-wave components play an important role in the structure of the Λ(1520). In Fig. 1 we display
a comparison between our results and those in [54] for the weights of each channel. The vertical lines interpolate
between the different values given in that work for different fits. While we have not included higher partial waves
in our interaction, we find that the weights of the s-wave channels included in [54] are qualitatively similar in both
calculations and the agreement improves as the position of the pole is moved to its experimental value by a change
of subtraction point. It can also be seen that other s-wave channels are more relevant than KΞ∗, namely, K̄∗N , ρΣ
and ρΣ∗, although πΣ∗ is the dominant one in our model.



8

IV. SUMMARY AND CONCLUSIONS

In this work we have studied the nature of the lowest-lying negative-parity Λ resonances with strange, charm or

bottom flavors, with JP = 1
2

−
and 3

2

−
. To this end we have adopted a description based on pseudoscalar and vector

mesons interacting in s-wave with 1
2

+
and 3

2

+
baryons. The model, spelled out in [35], is based on spin-flavor and

heavy-quark extensions of the WT interaction, thereby embodying the correct symmetries in the appropriate limits,
such as chiral symmetry and HQSS. (The symmetries are explicitly broken at the level of masses and decay constants
of the basic hadrons.) The interaction is then used as an input of the Bethe-Salpeter equation in coupled-channels.
The model has no free parameters, barring the choice of subtraction point in the renormalization of the loop function.
This is fixed by a prescription, or occasionally used to modify the positions of the resonances to fulfill phenomenological
constraints.

As already uncovered by previous studies, we find a double pole structure for the states with JP = 1
2

−
and a

single pole for the states with 3
2

−
for each of the three flavors. The novelty comes from the systematic study of the

composition of these resonances, as a function of the heavy quark mass, addressing the question of to what extent the
structure of the resonances is fully saturated by the available s-wave meson-baryon channels.

Regarding the overall compositeness of the nine Λ resonances studied, we find that for a given flavor sector, the
closer to threshold (on the complex plane) the better the resonance is described as an s-wave meson-baryon molecule.

TABLE III. Calculated masses, widths and compositeness of the negative-parity Λ states in the strange sector. The coupling
constants and the weights of the various channels are also displayed. The main numbers refer to the default value α = 1, while
the numbers in parenthesis refer to the same quantities computed with a subtraction point chosen so that the masses are close

to the experimental ones [73]. For this purpose similar masses have been adopted for the two Λ( 1
2

−
) states. For each Λ state

the largest compositeness weights have been highlighted with boldface.

State JP
√
α MR ΓR 1− Z Channel |gi| gi Xi (Xi)

Λ(1405) 1
2

−
1 1430.0 5.5 0.887 πΣ 0.50 0.19 + 0.46i −0.008 (−0.006)

(0.867) (1405.1) (12.8) (0.772) K̄N 1.78 −1.76− 0.24i 0.795 (0.597)
ηΛ 0.94 −0.94− 0.06i 0.023 (0.040)
KΞ 0.10 0.05 + 0.09i −0.000 (−0.000)

K̄∗N 2.18 2.18 + 0.06i 0.066 (0.126)
ωΛ 0.48 0.48 + 0.06i 0.003 (0.004)
ρΣ 0.34 0.18− 0.29i −0.001 (−0.003)
φΛ 0.88 0.88 + 0.05i 0.007 (0.013)
ρΣ∗ 0.40 0.39− 0.09i 0.002 (0.002)
K∗Ξ 0.17 0.03− 0.17i −0.000 (−0.001)
K∗Ξ∗ 0.06 0.05− 0.03i 0.000 (0.000)

Λ(1405) 1
2

−
1 1373.0 170.0 0.332 πΣ 2.62 2.07− 1.60i 0.353 (0.586)

(1.12) (1405.0) (376.1) (0.522) K̄N 1.03 −0.78 + 0.67i −0.024 (−0.018)
ηΛ 0.21 0.07 + 0.20i −0.001 (0.001)
KΞ 0.46 0.29− 0.36i −0.001 (−0.005)
K̄∗N 0.57 −0.51 + 0.26i 0.003 (0.004)
ωΛ 0.24 −0.02− 0.24i −0.001 (0.002)
ρΣ 1.68 −1.37 + 0.97i 0.006 (−0.023)
φΛ 0.17 −0.07− 0.16i −0.000 (0.000)
ρΣ∗ 0.66 −0.45 + 0.48i −0.001 (−0.011)
K∗Ξ 0.93 −0.63 + 0.69i −0.002 (−0.011)
K∗Ξ∗ 0.29 0.01 + 0.29i −0.001 (−0.003)

Λ(1520) 3
2

−
1 1540.0 74.0 0.274 πΣ∗ 2.29 2.03− 1.05i 0.227 (0.109)

(0.780) (1522.7) (25.9) (0.134) K̄∗N 0.87 0.84− 0.23i 0.011 (0.005)
ωΛ 0.40 −0.31 + 0.26i 0.000 (0.001)
ρΣ 1.18 1.09− 0.46i 0.015 (0.008)
KΞ∗ 0.63 0.49− 0.40i 0.001 (0.001)
φΛ 0.04 0.02− 0.03i 0.000 (0.000)
ρΣ∗ 1.60 1.42− 0.74i 0.015 (0.009)
K∗Ξ 0.55 −0.50 + 0.24i 0.002 (0.001)
K∗Ξ∗ 0.59 0.46− 0.37i 0.001 (0.000)
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Also, the heavier the flavor the higher the compositeness 1 − Z. More explicitly, we find that 1 − Z is large for the

first Λ( 1
2

−
) of each flavor and the compositeness decreases as we move to the second Λ( 1

2

−
) states and then to the

Λ( 3
2

−
) ones. Also, the compositeness is large for all bottom Λ states. This would indicate that the three first Λ( 1

2

−
)

and all the rest of the bottom resonances considered are largely saturated, regarding their composition, by s-wave

meson-baryon channels. This would not be so for the strange and charmed second Λ( 1
2

−
) and strange and charmed

Λ( 3
2

−
) resonances, which would require further components to achieve the saturation of the sum rule.

With respect to the detailed composition of the states, we find that the first Λ( 1
2

−
) states of each flavor couple

strongly to pseudoscalar-N and vector-N channels. This is a manifestation of spin-flavor symmetry between pseu-
doscalar and vector partners, and in particular HQSS in the charm and bottom cases. For the Λ(1405) this implies
that the pseudoscalar-N channel, being lighter than the vector-N one, almost saturates the compositeness of the state.

TABLE IV. Same as Table III for the charm sector.

State JP
√
α MR ΓR 1− Z Channel |gi| gi Xi (X ′i)

Λc(2595) 1
2

−
1 2619.0 1.2 0.878 πΣc 0.31 0.22 + 0.22i −0.012 (−0.023)

(0.979) (2592.3) (0.3) (0.844) DN 3.49 −3.49− 0.14i 0.275 (0.292)
ηΛc 0.40 0.40− 0.00i 0.007 (0.009)
D∗N 5.64 −5.64 + 0.14i 0.465 (0.451)
KΞc 0.22 0.22− 0.00i 0.002 (0.001)
ωΛc 0.18 0.18 + 0.04i 0.001 (0.001)
KΞ′c 0.04 0.02 + 0.04i −0.000 (0.000)
DsΛ 1.38 −1.38 + 0.01i 0.026 (0.026)
D∗sΛ 2.87 −2.87 + 0.03i 0.086 (0.057)
ρΣc 0.41 0.39 + 0.12i 0.003 (0.005)
η′Λc 0.92 0.92 + 0.01i 0.018 (0.018)
ρΣ∗c 0.58 0.58− 0.07i 0.007 (0.006)
φΛc 0.01 0.01 + 0.00i 0.000 (0.000)
K∗Ξc 0.05 0.02 + 0.05i 0.000 (0.000)
K∗Ξ′c 0.16 0.16 + 0.04i 0.000 (0.000)
K∗Ξ∗c 0.15 0.15 + 0.02i 0.000 (0.000)

Λc(2595) 1
2

−
1 2617.0 90.0 0.401 πΣc 2.36 2.09− 1.09i 0.325 (0.252)

(0.950) (2595.0) (36.8) (0.354) DN 1.64 −1.46 + 0.75i 0.027 (0.015)
ηΛc 0.06 0.02− 0.06i −0.000 (0.000)
D∗N 1.43 1.34 + 0.51i 0.024 (0.057)
KΞc 0.04 0.02− 0.03i 0.000 (0.000)
ωΛc 0.43 0.30− 0.31i 0.000 (0.003)
KΞ′c 0.48 0.38− 0.29i 0.001 (0.002)
DsΛ 0.21 0.07 + 0.20i 0.000 (0.001)
D∗sΛ 0.40 0.22 + 0.33i −0.001 (0.002)
ρΣc 1.28 1.11− 0.63i 0.016 (0.013)
η′Λc 0.13 −0.07− 0.11i −0.000 (0.001)
ρΣ∗c 0.70 −0.64 + 0.28i 0.006 (0.006)
φΛc 0.01 0.01 + 0.01i 0.000 (0.000)
K∗Ξc 0.51 0.45− 0.25i 0.002 (0.002)
K∗Ξ′c 0.29 0.10− 0.27i 0.000 (0.001)
K∗Ξ∗c 0.20 −0.15 + 0.13i 0.000 (0.000)

Λc(2625) 3
2

−
1 2667.0 55.0 0.365 πΣ∗c 2.19 1.97− 0.95i 0.268 (0.319)

(0.985) (2628.1) (0.0) (0.405) D∗N 2.03 1.96− 0.51i 0.057 (0.044)
ωΛc 0.53 −0.45 + 0.28i 0.003 (0.018)
KΞ∗c 0.42 0.34− 0.24i 0.002 (0.001)
D∗sΛ 0.06 0.05− 0.04i 0.000 (0.000)
ρΣc 0.75 0.68− 0.31i 0.008 (0.005)
ρΣ∗c 1.30 1.17− 0.57i 0.022 (0.013)
φΛc 0.01 −0.01 + 0.01i 0.000 (0.000)
K∗Ξc 0.61 −0.55 + 0.27i 0.005 (0.004)
K∗Ξ′c 0.25 0.22− 0.12i 0.001 (0.000)
K∗Ξ∗c 0.40 0.33− 0.23i 0.001 (0.001)
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It is noteworthy that a large weight of K̄N in the Λ(1405) has been recently reported from lattice QCD calculations
[72]. The situation changes for charm and bottom flavors where the two channels (DN and D∗N or B̄N and B̄∗N) are
relatively closer due to HQSS. In this case, the weights of the channels follows more closely the trend of the couplings.
(Although with smaller weights, a similar pattern appears for the strange partners of the mesons, DsΛ, D∗sΛ, etc.,
due to SU(3)−light flavor symmetry.) These two channels almost saturate the composition of the first Λc(2595) and
Λb(5912) states.

For the second Λ(1
2

−
) states, the main observation is its sizable coupling to the lightest channels πΣ, πΣc and

πΣb. As a consequence these states are effectively more excited than the first Λ( 1
2

−
) states and for the strange and

charm flavor this explains their larger widths, as compared to the first states. The larger phase space also implies
that higher partial waves could play a role, consistently with the fact that they are much less saturated by the s-wave

TABLE V. Same as Table III for the beauty sector.

State JP
√
α MR ΓR 1− Z Channel gi Xi (X ′i)

Λb(5912) 1
2

−
1 5878.0 0.0 0.956 πΣb 0.04 0.000 (0.000)

(1.01) (5912.1) (0.0) (0.958) B̄N −4.55 0.205 (0.217)
ηΛb 0.33 0.006 (0.010)
B̄∗N −7.70 0.539 (0.561)
KΞb 0.22 0.002 (0.002)
ωΛb 0.04 0.000 (0.000)
KΞ′b 0.02 0.000 (0.000)
B̄sΛ −1.96 0.031 (0.031)
B̄∗sΛ −4.01 0.122 (0.084)
ρΣb 0.38 0.005 (0.006)
η′Λb 0.96 0.032 (0.032)
ρΣ∗b 0.57 0.011 (0.013)
φΛb 0.02 0.000 (0.000)
K∗Ξb −0.01 0.000 (0.000)
K∗Ξ′b 0.17 0.001 (0.000)
K∗Ξ∗b 0.19 0.001 (0.001)

Λb(5912) 1
2

−
1 5949.0 0.0 0.865 πΣb 1.31 0.698 (0.397)

(0.984) (5912.0) (0.0) (0.788) B̄N −2.90 0.096 (0.215)
ηΛb 0.01 0.000 (0.000)
B̄∗N 1.91 0.038 (0.082)
KΞb −0.01 0.000 (0.000)
ωΛb 0.78 0.028 (0.088)
KΞ′b 0.18 0.001 (0.001)
B̄sΛ −0.01 0.000 (0.000)
B̄∗sΛ 0.18 0.000 (0.000)
ρΣb 0.13 0.001 (0.002)
η′Λb −0.03 0.000 (0.000)
ρΣ∗b −0.08 0.000 (0.001)
φΛb −0.00 0.000 (0.000)
K∗Ξb 0.23 0.002 (0.002)
K∗Ξ′b 0.13 0.001 (0.000)
K∗Ξ∗b −0.10 0.000 (0.000)

Λb(5920) 3
2

−
1 5963.0 0.0 0.818 πΣ∗b 1.54 0.581 (0.356)

(0.983) (5919.7) (0.0) (0.785) B̄∗N 4.16 0.185 (0.319)
ωΛb −0.99 0.046 (0.102)
KΞ∗b 0.20 0.002 (0.001)
B̄∗sΛ 0.14 0.000 (0.000)
ρΣb 0.08 0.000 (0.001)
ρΣ∗b 0.12 0.001 (0.005)
φΛb 0.00 0.000 (0.000)
K∗Ξb −0.28 0.003 (0.002)
K∗Ξ′b 0.08 0.000 (0.000)
K∗Ξ∗b 0.17 0.001 (0.000)
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meson-baryon channels considered here.

Another observation is the similar structure of the second Λ( 1
2

−
) and Λ( 3

2

−
) states, which appear as HQSS or spin-

flavor partners. This is particularly clear in the bottom case, where HQSS works better. The couplings of πΣb in the
second Λb(5912) and πΣ∗b in Λb(5920) are similar and, the same pattern is seen for B̄N and B̄∗N . This translates to
the corresponding composition weights, although distorted by the effect of different excitation energy of the channels.
The spin-flavor symmetry between Σc and Σ∗c , and Σ and Σ∗ still acts for charm and strange flavors.

Although beyond the scope of the present work, it would be interesting to consider also quark models and try to
compare to hadronic results in order to see whether the composition of a given resonance can be termed as molecular,
made of quarks or hybrid, and if possible to quantify the hybrid mixture.

Appendix A: Derivative of the loop function

In order to compute analytically the derivative of the (s-wave) loop function required in Eq. (10), we recall its
definition in Eq. (3):

G = i 2M

∫
d4q

(2π)
4

1

q2 −m2 + iε

1

(P − q)2 −M2 + iε
, M,m > 0 . (A1)

Choosing the C.M. frame, Pµ = (
√
s,0), its partial derivative with respect to the energy can be written as

G′(
√
s) ≡ ∂G

∂
√
s

= −i 4M

∫
d4q

(2π)
4

1

q2 −m2 + iε

P 0 − q0(
(P − q)2 −M2 + iε

)2 . (A2)

Unlike the loop function, G′(
√
s) is ultraviolet convergent. The use of a standard Feynman’s parameterization (see

e.g. Eq. (10.13) of [74]) gives

G′ = −i 8M

∫
d4q

(2π)
4

∫ 1

0

dx
x(P 0 − q0)

[(q − xP )2 − x2P 2 −m2 + (P 2 −M2 +m2)x+ iε]
3 , (A3)

and after a translation in the integration variable:

G′ = −i 8M
√
s

∫ 1

0

dx

∫
d4q

(2π)
4

x(1− x)

(q2 + x(1− x)s− (1− x)m2 − xM2 + iε)
3 . (A4)

The integral over the qµ is now straightforward (using e.g. Eq. (A.44) of [75]) to obtain

G′ =
M
√
s

4π2

∫ 1

0

dx
1

s− m2

x −
M2

1−x + iε
. (A5)

It follows that G′ is purely real for s < (M +m)2, while ImG′ < 0 for s > (M +m)2.
The integral Eq. (A5) is well defined for

√
s on the complex plane, excluding s = (M +m)2, and it yields

G′ =
M

4π2s
√
s

(
s− (M2 −m2) log

M

m
− s(M2 +m2)− (M2 −m2)2

√
s− s+

√
s− s−

log

√
s− s+ −

√
s− s−√

s− s+ +
√
s− s−

)
(A6)

with

s± = (M ±m)2, Arg
√
s− s+ ∈ [0, π), Arg

√
s− s− ∈

[
−π

2
,
π

2

[
, Im log ∈ [0, π] (FRS). (A7)

The function G′(
√
s) inherits the branching points and Riemann sheet structure of the loop function G. The

expression in Eqs. (A6) and (A7) corresponds to the so-called First Riemann Sheet (FRS) with respect to the s+

branching point and the branch cut is along s ≥ s+. For the FRS, the point s = s− is a regular point. s+ is a
branching point of order one (by circling twice around s+ the function returns to its original value) hence there is a
Second Riemann Sheet (SRS) with respect to s+ that continues the FRS at the two borders of the selected cut. The
SRS is obtained by analytic continuation. The point s = s− is a branching point of order one in the SRS. However,
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dG/dE(s) [10-2], mπ=0.138 GeV, MΣ=1.193 GeV
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FIG. 2. Function G′(
√
s). On the left −ReG′. On the right +ImG′. The display corresponds to m = mπ and M = MΣ.

for the physical phase space of interest the new Riemann sheets introduced by the branching at s− are not relevant.
The expression of G′(

√
s) on the SRS takes the same form as in Eq. (A6) but taking

Arg
√
s− s+ ∈ [0, π), Arg

√
s− s− ∈ [

π

2
,

3π

2
), Im log ∈ [π, 2π] (SRS). (A8)

The function G′(
√
s) is displayed in Fig. 2. In the plot

√
s is on the FRS when Re(s) < (M + m)2 or when

Re(s) > (M + m)2 and Im(s) > 0, and on the SRS when Re(s) > (M + m)2 and Im(s) < 0. The bound states fall
on the “negative” (with respect to M + m) real axis and the resonances fall below the “positive” real axis, for the
relevant channel. This cut of the complex plane covers most cases. An exception is the Λ(1520) with

√
α = 0.780,

which falls slightly at the left of the branch cut, for πΣ∗.
For completeness we give here analytical form of the loop function, subtracted at s = s+:

G = − M

8π2s

(
(s− s+)

M −m
M +m

log
M

m
+
√
s− s+

√
s− s− log

√
s− s+ −

√
s− s−√

s− s+ +
√
s− s−

)
. (A9)

The choices of branches for the FRS and the SRS are as in Eqs. (A7) and (A8), respectively.

Appendix B: Compositeness sum rule

In this appendix we prove the relation in Eq. (9).
We start from Eq. (2)

T (
√
s) = (V −1(

√
s)−G(

√
s))−1 (B1)

where T , V and G are matrices and G is diagonal. Taking a derivative with respect to
√
s (using the operator identity

δ(A−1) = −A−1δAA−1)

T ′ = T
(
G′ + V −1V ′V −1

)
T . (B2)

On the other hand, Eq. (8) implies

Tij =
gigj
∆

+Rij(
√
s), ∆ ≡

√
s−
√
sR, (B3)

where the remainder Rij is regular at the pole. Taking a derivative with respect to ∆, substituting T in Eq. (B2) and
multiplying by ∆2 gives, at ∆ = 0,

− gigj =
∑
k,l

gigk

(
G′kδkl +

∑
r,s

(V −1)krV
′
rs(V

−1)sl

)
∆=0

glgj . (B4)

Since at least one of the couplings must be different from zero (to have a pole) it follows that

− 1 =
∑
k,l

gkgl

(
G′kδkl +

∑
r,s

(V −1)krV
′
rs(V

−1)sl

)∣∣∣∣∣
∆=0

. (B5)
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To arrive to Eq. (9) it only remains to show that (V −1)sl can be replaced by δslGl in Eq. (B5). This follows from
V −1 = T−1 +G and

∑
l(T
−1)jlgl|∆=0 = 0. The latter equality can be deduced from,∑

l

(T−1)jl

(glgj
∆

+Rlj(
√
s)
)

= 1 (B6)

without summing over the index j, which trivially follows from Eq. (B3) and T−1T = 1. Thus, in the limit ∆ → 0,
we find

lim
∆→0

∑
l

(T−1)jlgl = lim
∆→0

∆

gj
= 0 . (B7)

The statement is trivial if there is just one channel. More generally, the singular part of T in Eq. (B3) is a matrix
of rank one, the corresponding one-dimensional subspace being spanned by the vector gi, in coupled-channels space.
The combination

∑
l(T
−1)slgl selects that subspace, in which T−1 vanishes at the pole.3
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