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P. Hernándeza, M. Kekica, J. López-Pavónb, J. Rackera and N. Riusa

aInstituto de F́ısica Corpuscular, Universidad de Valencia and CSIC,

Edificio Institutos Investigación, Apt. 22085, E-46071 Valencia, Spain
b SISSA and INFN Sezione di Trieste, via Bonomea 265, 34136 Trieste Italy.

Abstract: We revisit the production of leptonic asymmetries in minimal extensions of the

Standard Model that can explain neutrino masses, involving extra singlets with Majorana

masses in the GeV scale. We study the quantum kinetic equations both analytically,

via a perturbative expansion up to third order in the mixing angles, and numerically.

The analytical solution allows us to identify the relevant CP invariants, and simplifies

the exploration of the parameter space. We find that sizeable lepton asymmetries are

compatible with non-degenerate neutrino masses and measurable active-sterile mixings.
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1. Introduction

One of the interesting potential implications of (Majorana) neutrino masses is the gener-

ation of a matter-antimatter asymmetry in the Universe. It has been demonstrated that

the generation of sizeable leptonic asymmetries, leptogenesis, is generic in extensions of the

Standard Model that can account for neutrino masses [1]. In particular two new ingredients

are essential for this mechanism to work: the existence of new weakly interacting particles

that are not in thermal equilibrium sometime before the electroweak phase transition and

the existence of new sources of CP violation.

Leptogenesis from the out-of-equilibrium decay of heavy Majorana fermions that ap-

pear in type I seesaw models [1] has been extensively studied (for a comprehensive review

see e.g. [2]). The simplest version requires however relatively large Majorana masses > 108

GeV [3, 4] (or > 106 if flavour effects are included [5]), which imply that this scenario
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would be very difficult to test experimentally. It is possible to have sizeable asymmetries

for smaller masses if a large degeneracy exists, through resonant leptogenesis [6].

On the other hand, for Majorana masses in the GeV range, when the neutrino Yukawa

couplings are small, another mechanism might be at work. In particular, the non-equilibrium

condition takes place not in the decay, but in the production of the heavy sterile neutrinos.

The small Yukawa couplings imply that some of the species might never reach thermal

equilibrium and a lepton asymmetry can be generated at production and seed the baryon

asymmetry in the Universe. This mechanism was first proposed by Akhmedov, Rubakov

and Smirnov (ARS) in their pioneering work [7] and pursued, with important refinements

in refs. [8, 9]. For a recent review and further references see [10]. In most of these works,

the case of just two extra sterile species is considered, which is also the limiting case of

the so-called νMSM where there are three species, but one of them plays the role of warm

dark matter (WDM) and is almost decoupled, having no impact in the generation of the

lepton asymmetry. When the mechanism involves just two species, it has been found that

the observed baryon asymmetry is only possible if the two states are highly degenerate in

mass. This however was not the conclusion of the ARS paper.

The purpose of this paper is to explore systematically the parameter space in the case

of three sterile species (which encompass the one with two neutrinos) as regards the baryon

asymmetry, in particular we do not want to restrict the parameter space to have a WDM

candidate. The model has many free parameters (only 5 out of the 18 parameters are

fixed by the measured light neutrino masses and mixings) and the exploration of the full

parameter space is challenging. Only with the help of approximate analytical solutions to

the kinetic equations this task is feasible. The analytical solutions furthermore allows us

to identify the relevant CP invariants and to reach regions of parameter space where the

equations become stiff and very difficult to deal with numerically.

The paper is organised as follows. In section 2 we present the model, which is essen-

tially a generic type I seesaw model, establish the notation and discuss on general grounds

what are the CP reparametrization and flavour invariants we expect to find in computing

any CP violating quantity such as any putative lepton asymmetry. In section 3 we present

the kinetic equations that describe the production of sterile neutrinos and solve them ana-

lytically via a perturbative expansion in the mixing angles up to the third order. In section

4 we compare the analytical and numerical solutions for several choices of the parame-

ters, and identify the region of parameter space where the analytical solution accurately

describes the numerical one. In section 5 we use the analytical solutions and perform a

Monte Carlo scan (using the software package MultiNest [11, 12]) to find regions of param-

eter space that can reproduce the observed baryon asymmetry, and that are compatible

with the measured neutrino masses and mixings. In section 6 we conclude.

2. Minimal Model of neutrino masses

We will concentrate on the arguably simplest model of neutrino masses that includes three
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right-handed singlets. The Lagrangian is given by:

L = LSM −
∑
α,i

L̄αY αiΦ̃N i
R −

3∑
i,j=1

1

2
N̄ ic
RM

ijN j
R + h.c.,

where Y is a 3 × 3 complex matrix and M a diagonal real matrix. The spectrum of this

theory has six massive Majorana neutrinos, and the mixing is described in terms of six

angles and six CP phases generically. One convenient parametrization for the problem at

hand is in terms of the eigenvalues of the yukawa and majorana mass matrices together

with two unitary matrices, V and W . In the basis where the Majorana mass is diagonal,

M = Diag(M1,M2,M3), the neutrino Yukawa matrix is given by:

Y ≡ V †Diag(y1, y2, y3)W. (2.1)

Without loss of generality, using rephasing invariance, we can reduce the unitary matrices

to the form1:

W = U(θ12, θ13, θ23, δ)
†Diag(1, eiα1 , eiα2),

V = Diag(1, eiφ1 , eiφ2)U(θ̄12, θ̄13, θ̄23, δ̄), (2.2)

where2

U(θ1, θ2, θ3, δ) ≡

 cos θ1 sin θ1 0

− sin θ1 cos θ1 0

0 0 1


 cos θ2 0 sin θ2e

−iδ

0 1 0

− sin θ2e
iδ 0 cos θ2


 1 0 0

0 cos θ3 sin θ3

0 − sin θ3 cos θ3

 . (2.3)

Obviously not all the parameters are free, since this model must reproduce the light

neutrino masses, which approximately implies the seesaw relation:

mν ' −
v2

2
Y

1

M
Y T , (2.4)

where v = 246 GeV is the vev of the Higgs. On the other hand, the known neutrino masses

and mixings do not give us enough information to determine the Majorana spectrum, not

even the absolute scale. Very strong constraints can be derived from neutrino oscillation

experiments for masses below the eV range [13, 14, 15, 16]. Cosmology can exclude a huge

window below 100 MeV [17, 18, 19, 20, 21, 22], except maybe for one species that could be

lighter provided the lightest active neutrino mass is below . 3×10−3eV [20, 21]. The GeV

range is interesting because an alternative mechanism for lepton asymmetry generation

could be at work [7, 8, 9]. Majorana neutrinos in this range are heavy enough to safely

decay before Big Bang Nucleosynthesis, while they are light enough that they might have

not reached thermal equilibrium by the time of the electroweak phase transition (EWPT),

behaving as reservoirs of a putative lepton asymmetry.

Our goal in this paper is to explore the full parameter space of this model allowed by

neutrino masses, as regards leptogenesis. An essential condition will be that at least one

1Although we use the same notation for the mixing angles and phases of W as those in the usual PMNS

matrix, they should not be confused.
2Note the unconventional ordering of the 2×2 rotation matrices in U .
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of the sterile neutrinos does not reach thermal equilibrium before the EWPT. This can be

ensured assuming a large hierarchy in the yukawas [7]:

y3 � y1, y2. (2.5)

It is mandatory, however, to have an accurate analytical description, since the uncon-

strained parameter space is huge. We will solve the quantum kinetic equations in a per-

turbative expansion in the mixings in the next section. Since the lepton asymmetry is

necessarily a CP-odd observable, on general grounds we can derive what are the expecta-

tions in terms of weak-basis CP invariants.

2.1 CP invariants

In [23], weak basis (WB) invariants sensitive to the CP violating phases which appear in

leptogenesis, within the type I seesaw model, were derived. All of them should vanish if

CP is conserved, and conversely the non-vanishing of any of these invariants signals CP

violation. They must be invariant under the basis transformations:

`L → WL`L,

NR → WRNR . (2.6)

Defining h ≡ Y †Y , and HM ≡M †M , a subset of the invariants can be written as:

I1 ≡ ImTr[hHMM
∗h∗M ], (2.7)

I2 ≡ ImTr[hH2
MM

∗h∗M ], (2.8)

I3 ≡ ImTr[hH2
MM

∗h∗MHM ]. (2.9)

Since the Ii are WB invariants, we can evaluate them in any basis. In the WB where the

sterile neutrino mass matrix M is real and diagonal, one obtains:

I1 = M1M2∆M2
21Im(h2

12) +M1M3∆M2
31Im(h2

13) +M2M3∆M2
32Im(h2

23), (2.10)

I2 = M1M2(M4
2 −M4

1 )Im(h2
12) +M1M3(M4

3 −M4
1 )Im(h2

13)

+ M2M3(M4
3 −M4

2 )Im(h2
23), (2.11)

I3 = M3
1M

3
2 ∆M2

21Im(h2
12) +M3

1M
3
3 ∆M2

31Im(h2
13) +M3

2M
3
3 ∆M2

32Im(h2
23), (2.12)

where ∆M2
ij ≡M2

i −M2
j and, using the parametrization of eq. (2.1)

Im(h2
ij) = Im[(Y †Y )2

ij ] =
∑
α,β

y2
αy

2
β Im[W ∗αiW

∗
βiWαjWβj ]. (2.13)

It is explicit in the above expression that such unflavoured invariants depend only on the

CP phases of the sterile neutrino sector, which are encoded in the unitary matrix W : one

Dirac-type phase, δ and two Majorana-type phases α1, α2. Not surprisingly, these invariants

are the relevant ones in unflavoured leptogenesis, i.e., in the conventional computation of

the CP asymmetry generated by heavy Majorana neutrino decay neglecting flavour effects.
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The combinations of W matrix elements which appear in Im(h2
ij) can be expressed in

terms of the rephasing invariants defined in [24] as follows:

Im[W ∗αiW
∗
βiWαjWβj ] =

Im[WαiW
∗
βiW

∗
αjWβj(WαjW

∗
αi)

2]

|WαiWαj |2
. (2.14)

Notice that JW ≡ ±Im[WαiW
∗
βiW

∗
αjWβj ] is the Jarlskog invariant for the matrix W ,

while the quantities Im[(WαjW
∗
αi)

2] determine the Majorana phases, α1,2. When consid-

ering processes, such as heavy neutrino oscillations, where the Majorana nature does not

play a role, only the Dirac phase δ will be relevant and therefore we expect to find just the

Jarlskog invariant of the matrix W.

Since there are six independent CP-violating phases, it is possible to construct three

more independent WB invariants, which would complete the description of CP violation

in the leptonic sector. One simple choice are those invariants obtained from Ii under the

change of the matrix h by h̄ ≡ Y †h`Y , with h` = λ`λ
†
`, being λ` the charged lepton Yukawa

couplings, i.e.,

Ī1 = ImTr[Y †h`Y HMM
∗Y Th∗`Y

∗M ] , (2.15)

and analogously for Ī2, Ī3. The corresponding CP odd invariants are Im(h̄2
ij), which in the

basis where also the charged lepton Yukawa matrix is real and diagonal can be written as:

Im(h̄2
ij) =

∑
α,β

λ2
αλ

2
β Im[Y ∗αiYαjYβjY

∗
βi] . (2.16)

The lepton number (L) violating part of the flavoured CP asymmetries in leptogenesis

depends on the above combinations [25]:

ε6Liα =
∑
β,j

Im[Y ∗αiYαjYβjY
∗
βi]f̃(Mi,Mj) , (2.17)

where f̃ is an arbitrary function. Upon substitution of the neutrino Yukawa couplings as

given in eq. (2.1) can be written as:

ε6Liα =
∑
j

∑
β,δ,σ

yβ yδ y
2
σ Im[W ∗βiVβαV

∗
δαWδjW

∗
σiWσj ]f̃(Mi,Mj) . (2.18)

These asymmetries contain the additional rephasing invariants of the form Im[W ∗βiVβαV
∗
δαWδj ],

which depend on the phases in the matrix V (δ̄, φ1, φ2), showing that the flavoured CP asym-

metries of leptogenesis are also sensitive to the CP phases in the V leptonic mixing matrix,

besides those in W .

Alternatively, we choose to construct the WB invariants which will appear when the

Majorana character of the sterile neutrinos is not relevant, i.e., L-conserving ones. These

– 5 –



are given by:

Ī ′1 ≡ ImTr[hH2
M h̄HM ]

= M2
1M

2
2 ∆M2

21Im(h12h̄21) +M2
1M

2
3 ∆M2

31Im(h13h̄31)

+ M2
2M

2
3 ∆M2

32Im(h23h̄32) , (2.19)

Ī ′2 ≡ ImTr[hH3
M h̄HM ]

= M2
1M

2
2 (M4

2 −M4
1 )Im(h12h̄21) +M2

1M
2
3 (M4

3 −M4
1 )Im(h13h̄31)

+ M2
2M

2
3 (M4

3 −M4
2 )Im(h23h̄32) , (2.20)

Ī ′3 ≡ ImTr[hH3
M h̄H

2
M ]

= M4
1M

4
2 ∆M2

21Im(h12h̄21) +M4
1M

4
3 ∆M2

31Im(h13h̄31)

+ M4
2M

4
3 ∆M2

32Im(h23h̄32) , (2.21)

where

Im(hij h̄ji) =
∑
α,β

λ2
α Im[YαiY

∗
αjYβjY

∗
βi] . (2.22)

The L-conserving CP asymmetry in leptogenesis via heavy neutrino decay, as well as

the CP asymmetries encountered in leptogenesis through sterile neutrino oscillations, are

sensitive to the above combinations of Yukawa couplings [25]:

εLiα =
∑
j,β

Im[YαiY
∗
αjYβjY

∗
βi] f(Mi,Mj) , (2.23)

where f is an arbitrary function, and can be written in terms of the rephasing invariants

as:

εLiα = −
∑
j

∑
β,δ,σ

yβyδy
2
σ Im[W ∗βiVβαV

∗
δαWδjWσiW

∗
σj ] f(Mi,Mj) . (2.24)

Notice that the crucial difference between the L-violating and the L-conserving CP asym-

metries is that in εLiα the combination of W matrix elements is such that all dependence

on the Majorana phases α1,2 disappears, as expected.

In the approximation of neglecting y3 � y1, y2, we obtain that Im[YαiY
∗
αj(Y

†Y )ij ] =∑
β Im[YαiY

∗
αjYβjY

∗
βi] reduces to

Im[YαiY
∗
αj(Y

†Y )ij ] = y2
1y

2
2(|V2α|2 − |V1α|2)Im[W ∗1iW1jW

∗
2jW2i]

+ y1y2

{[
y2

2|W2i|2 − y2
1|W1i|2

]
Im[W ∗1jV1αV

∗
2αW2j ]

+
[
y2

1|W1j |2 − y2
2|W2j |2

]
Im[W ∗1iV1αV

∗
2αW2i]

}
, (2.25)

so in principle we expect that the lepton asymmetry will depend on ten CP invariants,

namely Im[W ∗1iV1αV
∗

2αW2i], with i = 1, 2, 3 and α = 1, 2, 3 and JW .

However, they are not all independent. In ref. [24] it has been shown that in the

minimal seesaw there are only six independent CP invariants that can be made out of the

matrices V,W . Two of them correspond to the Majorana phases of W , α1,2, which as

we have argued before will not contribute in the limit of small sterile neutrino Majorana

masses that we are considering. Other two are the equivalent of the Jarlskog invariants
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for the matrices V,W and therefore determine the Dirac phases, δ̄, δ, respectively. The

last two are of the form Im[W ∗1iV1αV
∗

2αW2i], for two reference values of i, α, that fix the

additional phases φ1,2. Moreover, it can be shown that since we are neglecting the Yukawa

coupling y3, the phase φ2 of the matrix V does not appear in eq. (2.25), thus we are left

with only three independent invariants.

The unitarity of the mixing matrices V,W implies that∑
α

V1αV
∗

2α = 0 , (2.26)∑
i

W ∗1iW2i = 0 , (2.27)

which allows to write the invariants Im[W ∗1iV1αV
∗

2αW2i] for α = 2 in terms of those with

α = 1, 3, and the invariants for i = 2 in terms of the corresponding ones with i = 1, 3. By

exploiting the identities

Im[W ∗1iV1βV
∗

2βW2i] =
Im[(W ∗1iV1αV

∗
2αW2i)(V

∗
2βV2αV

∗
1αV1β)]

|V1αV2α|2
. (2.28)

we can write for instance one of the invariants with β = 3 in terms of the invariant with

α = 1 and the Jarlskog invariant for V , Im[V ∗2βV2αV
∗

1αV1β] = ±JV .

It is simpler, though, to write the results in terms of the following four invariants, even

if only three are independent, expanded up to 3rd order in the small mixing angles θij , θ̄ij :

I
(2)
1 = −Im[W ∗12V11V

∗
21W22] ' θ12θ̄12 sinφ1,

I
(3)
1 = Im[W ∗12V13V

∗
23W22] ' θ12θ̄13θ̄23 sin(δ̄ + φ1),

I
(3)
2 = Im[W ∗13V12V

∗
22W23] ' θ̄12θ13θ23 sin(δ − φ1),

JW = −Im[W ∗23W22W
∗
32W33] ' θ12θ13θ23 sin δ. (2.29)

A generic expectation for the CP-asymmetry relevant for leptogenesis is

∆CP =
∑
α,k

|Yαk|2 ∆α, (2.30)

with

∆α =
∑
i

εLiα =
∑
i,j

Im[YαiY
∗
αj(Y

†Y )ij ]f(Mi,Mj). (2.31)

Since the CP rephasing invariants are at least second order in the angles, we just need to

take the diagonal elements in ∆CP , to keep the result up to 3rd order. Then, in the limit

y3 = 0, we get:

∆CP = y2
1y

2
2(y2

2 − y2
1)
∑
i,j

Im[W ∗1iW1jW
∗
2jW2i]f(Mi,Mj)

+ y1y2

(
(y2

2 − y2
1)
{
I

(2)
1 [g(M1)− g(M2)] + I

(3)
2 [g(M1)− g(M3)]

}
(2.32)

− y2
2I

(3)
1 [g(M1)− g(M2)]

)
,
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where

g(Mi) ≡ y2
1[f(M1,Mi)− f(Mi,M1)]− y2

2[f(M2,Mi)− f(Mi,M2)] . (2.33)

From the above definition of g(Mi), it immediately follows that g(M1) − g(M2) =

(y2
2 − y2

1)[f(M1,M2)− f(M2,M1)], so ∆CP simplifies to

∆CP = y2
1y

2
2(y2

2 − y2
1)
∑
i,j

Im[W ∗1iW1jW
∗
2jW2i]f(Mi,Mj)

+ y1y2(y2
2 − y2

1)
{[

(y2
2 − y2

1)I
(2)
1 − y2

2I
(3)
1

]
[f(M1,M2)− f(M2,M1)]

+ I
(3)
2 [g(M1)− g(M3)]

}
. (2.34)

We will see in the next section that this is precisely the yukawa and mixing angle

dependence we will find when solving the kinetic equations, which is a strong crosscheck

of the result.

3. Perturbative Solution of the Raffelt-Sigl equation

3.1 Sterile neutrino production

Our starting point is the Raffelt-Sigl formulation [26] of the kinetic equations that describe

the production of sterile neutrinos in the early Universe. The density matrix is the expec-

tation value of the one-particle number operator for momentum k: ρN (k) for neutrinos,

and ρ̄N (k) for antineutrinos. We will assume that only sterile neutrinos and the lepton

doublets are out of chemical equilibrium, but assume that all the particles are in kinetic

equilibrium, using Maxwell-Boltzmann statistics:

ρa(k) = Aaρeq(k), Aa = eµa ; ρā(k) = Aāρeq(k), Aā = e−µa , (3.1)

where ρeq(k) ≡ e−k0/T , with k0 = |k|, and µa denotes the chemical potential normalised by

the temperature. We will furthermore neglect spectator processes and the washout induced

by the asymmetries in all the fields other than the sterile neutrinos and lepton doublets.

We expect this approximation to give uncertainties of O(1) which for our purpose is good

enough [27].

In [7], only the asymmetry in the sterile sector was considered, neglecting the feedback

of the leptonic chemical potentials. In this case, the equations get the standard form

ρ̇N = −i
[
H, ρN

]
− 1

2

{
Γ, ρN − ρeq

}
, (3.2)

and the analogous for ρ̄N with H → H∗, where H is the Hamiltonian (we neglect matter

potentials for the time being but we will include them later on)

H ≡W∆W †, ∆ ≡ Diag
(

0,
∆M2

12

2k0
,
∆M2

13

2k0

)
. (3.3)
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Γ is the rate of production/annihilation of sterile neutrinos in the plasma, which is diagonal

in the basis that diagonalises the neutrino Yukawa’s:

Γ = Diag(Γ1,Γ2, 0), Γi ∝ y2
i , (3.4)

where we assume y3 = 0. In deriving eq.(3.2) it is assumed that the particles involved

in the production/annihilation of the sterile neutrinos are in full equilibrium (all chemical

potentials vanish), and that kinematical effects of neutrino masses are negligible.

Note that only the matrix W appears in these equations and therefore any CP asym-

metry generated can only be proportional to the invariant JW which depends at third order

on the mixing angles of W .

In [8] it was correctly pointed out that the asymmetries in the sterile sector will be

modified by the leptonic chemical potentials that will be generated as soon as sterile neu-

trinos start to be produced. Including the evolution of the leptonic chemical potentials has

two important consequences: new sources of CP violation become relevant and washout

effects are effective. Leptons are fastly interacting through electroweak interactions in the

plasma and therefore it is a good approximation to assume they are in kinetic equilibrium.

An important question is what is the flavour structure of these chemical potentials.

For T . 109 GeV the Yukawa interactions of the tau and muon are very fast, which implies

that µ will be diagonal in the basis that diagonalises the charged lepton Yukawa matrix,

since no other interaction changing flavour is in equilibrium before the heavy neutrinos

are produced. Note however that this is not the basis where the neutrino Yukawas are

diagonal, the two are related by the mixing matrix V . As a result, when the evolution

of the lepton chemical potentials is taken into account, the CP phases of the matrix V

become relevant.

Adapting the derivation of [26] to this situation, we find that the evolution of the

CP-even and CP-odd parts of the neutrino densities: ρ± ≡ ρN±ρ̄N
2 and the lepton chemical

potentials , µα, to linear order in µα, ρ−, satisfy in this case:

ρ̇+ = −i[Hre, ρ+] + [Him, ρ−]−
γaN + γbN

2
{Y †Y, ρ+ − ρeq}

+iγbN Im[Y †µY ]ρeq + i
γaN
2

{
Im[Y †µY ], ρ+

}
,

ρ̇− = −i[Hre, ρ−] + [Him, ρ+]−
γaN + γbN

2

{
Y †Y, ρ−

}
+γbNRe[Y †µY ]ρeq +

γaN
2

{
Re[Y †µY ], ρ+

}
,

µ̇α = −µα
(
γbνTr[Y Y †Iα] + γaνTr

[
Re[Y †IαY ]r+

])
+(γaν + γbν)

(
Tr
[
Re[Y †IαY ]r−

]
+ iTr

[
Im[Y †IαY ]r+

])
, (3.5)

where Hre ≡ Re[H], Him ≡ Im[H], Iα is the projector on flavour α and γa,bN , γa,bν are the

rates of production/annihilation of a sterile neutrino or a lepton doublet neglecting all

masses, after factorizing the flavour structure in the Yukawas,

γ
a(b)
N(ν) ≡

1

2k0

∑
i

∫
p1,p2,p3

ρeq(p1)|M(a(b))
N(ν),i|

2(2π)4δ(k + p1 − p2 − p3), (3.6)
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N

Lα

Φ

N Lα

Φ

a
b

Figure 1: a, b topologies for annihilation/production of sterile neutrinos

where k is the momentum of the N or ν and a(b) refer to the s-channel (t,u-channels)

depicted in figure 1. In topology a the lepton and sterile neutrino are both in the initial or

final state, while topology b corresponds to those diagrams where one is in the initial and

other in the final state. Finally

r± ≡
∑

i

∫
p1,p2,p3

ρ±(p1)|M(a)
νi |2(2π)4δ(k + p1 − p2 − p3)∑

i

∫
p1,p2,p3

ρeq(p1)|M(a)
νi |2(2π)4δ(k + p1 − p2 − p3)

. (3.7)

A similar derivation can be found in [28] and we agree with their findings.

These equations reduce to those in eq. (3.2) in the limit µ→ 0 with Γi = y2
i (γ

a
N +γbN ).

Most previous studies have assumed that the rates are dominated by the top quark

scatterings. In this case, the rates are given (in the Boltzman approximation) by the

well-known result [29, 30]

γbN,Q = 2γaN,Q = 2γbν,Q = 4γaν,Q =
3

16π3

y2
t T

2

k0
. (3.8)

The factor of 2 difference between the rates of the N and the ν is due to the fact that the

lepton is a doublet and the sterile neutrino is a singlet. Note that there is a non-linear

term of the form O(µρ+), as first noted in [28]. More recently in [31], the equations have

been written in terms of the µB−Lα/3 chemical potentials, however not all the chemical

potentials (e.g. higgs and top quark) have been included. A full treatment including all

chemical potentials will be postponed for a future work, but we expect that including these

spectator effects will change the results by factors of O(1).

In [30, 32], it has been pointed out that the scattering processes L̄N ↔ WH get a

strong enhancement from hard thermal loops and are actually the dominant scatterings.

The results of [30, 32] however do not include the chemical potentials of spectators, so it

is not clear how to include them consistently in the above equations. We will neglect these

effects in the following. Note however that the lepton flavour structure of these and of the

top quark scatterings is the same.
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It is easy to see also that total lepton number is conserved as it should:

2
∑
α

µ̇α + Tr[ṙ−] = 0. (3.9)

Two approximations are often used in solving these equations: 1) assume that the mo-

mentum dependence of ρ± follows that of ρeq, i.e. kinetic equilibrium for the sterile states,

which implies r± = ρ±/ρeq are constants and the integro-differential equations become just

differential equations, 2) neglect the k0 dependence of the rates by approximating

〈k−1
0 〉 '

T−1

2
. (3.10)

The effect of these approximations has been studied numerically in [28] and the results do

not differ too much. We will therefore adopt both approximations that simplify consider-

ably the perturbative treatment.

3.2 Lepton asymmetries in the sterile sector

We are going to solve these equations perturbing in the mixing angles up to third order.

We first consider the simpler case, neglecting leptonic chemical potentials and considering

in turn the evolution in a static Universe and in the expanding case.

3.2.1 Static Universe

We start with eq. (3.2) and assume y3 = 0. In this case, neither H nor Γ depend on time.

Defining ρNij/ρeq ≡ aij + ibij and taking into account the hermiticity of ρN we change the

matrix equation into a vector equation:

r ≡ (a11, a22, a12, b12, a13, b13, a23, b23, a33). (3.11)

At 0-th order the system of equations of eq. (3.2) can be rewritten as

ṙ(0) = A0r
(0) + h0, (3.12)

with

h0 ≡ (Γ1ρeq,Γ2ρeq, 0, ....0), (3.13)

and the matrix A0 is constant and has a block structure:

A0 ≡

 (AI)4×4 0 0

0 (AII)4×4 0

0 0 0

 , (3.14)

AI ≡


−Γ1 0 0 0

0 −Γ2 0 0

0 0 −Γ1+Γ2
2

−∆12

∆12 −Γ1+Γ2
2

 , AII ≡


−Γ1/2 −∆13 0 0

∆13 −Γ1/2 0 0

0 0 −Γ2
2

∆12 − ∆13

0 0 −(∆12 − ∆13) −Γ2
2

 . (3.15)
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The matrix can be easily diagonalised and exponentiated so the general solution to the

equation is

r(0)(t) = eA0t

∫ t

0
dx e−A0xh0. (3.16)

At the next order we have to keep O(θij) in the Hamiltonian and translate the matrix

form into the vector form:

−i[H(1), ρ(0)(t)]→ A1r
(0). (3.17)

The equation for the first order correction to the density is

ṙ(1) = A0r
(1) +A1r

(0)(t). (3.18)

The solution at this order is therefore

r(1)(t) = eA0t

∫ t

0
dxe−A0xA1r

(0)(x). (3.19)

We can iterate this procedure to get the correction at order n:

ṙ(n)(t) = A0r
(n)(t) +

n−1∑
i=1

Air
(n−i)(t), (3.20)

with solution

r(n)(t) = eA0t

∫ t

0
dxe−A0x

n−1∑
i=1

Air
(n−i)(x). (3.21)

We can define the evolution operator

U0(t, x) ≡ eA0te−A0x, (3.22)

so that the solution can be written as

r(n)(t) =

∫ t

0
dx U0(t, x)

n−1∑
i=1

Air
(n−i)(x). (3.23)

As a first estimate of the leptonic asymmetry that can be generated, we are interested in

∆ρ33 since this is the sector that will never reach equilibrium (in the absence of mixing)

and therefore can act as reservoir of the leptonic asymmetry until the electroweak phase

transition [7].

One can easily compute the solution of the eq. (3.21) up to order n = 3, which is the

first order that gives a non-vanishing result, as expected from general considerations on

CP invariants. The result at finite t is not particularly illuminating but the limit t → ∞
is rather simple:

lim
t→∞

∆ρ33

ρeq
≡ lim

t→∞

ρN33 − ρ̄N33

ρeq
= 2JW

(Γ1 − Γ2)∆12∆13(∆12 −∆13)[
∆2

13 +
Γ2

1
4

] [
(∆12 −∆13)2 +

Γ2
2

4

] . (3.24)
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Figure 2: Comparison of numerical (blue) and perturbative (red) solution for ∆ρ33 as a function

of time, in the case with no expansion of the Universe. The two curves are indistinguishable (left

plot) until large times (right plot): the vertical line on the lower plot corresponds to (θ2
31Γ1)−1,

while those on the upper one correspond to Γ−1
2 and Γ−1

1 respectively.

A few comments are in order. We have not assumed any expansion in Γi in this expression,

only in the mixing angles. According to general theorems the equations should reach a

stationary solution if all the eigenvalues of the matrix A0 + A1 + A2 + ... are real and

negative. However, because Γ3 = 0, one of the eigenvalues of A0 vanishes and it is lifted

only at second order in perturbation theory, ∼ θ2
i3Γi, therefore we expect the perturbative

expansion should break down for t ∼ 1
θ2
i3Γi

, which is the time scale of equilibration of the

third state. On the other hand, if θ is small, the perturbative solution should be accurate

for times t ≥ Γ−1
1(2). Indeed this is precisely what we find comparing the perturbative and

numerical solutions in figure 2.

The result is proportional to JW which is the only CP rephasing invariant that can

appear in this case. The result vanishes if any two of the masses or the yukawa’s are

degenerate, since the CP phase would be unphysical in this case.

3.2.2 Expanding Universe

Let us turn now to the realistic case of an expanding Universe. As usual, we will consider

the evolution as a function of the scale factor x ≡ a, in such a way that the Raffelt-Sigl

equation becomes

d

dt
→ xHu(x)

∂

∂x
ρ(x, y)

∣∣∣∣
fixed y

= −i[H(x, y), ρ(x, y)]− 1

2
{Γ(x), ρ(x, y)− ρeq(y)},

(3.25)

where Hu(x) is the Hubble parameter, Hu =

√
4π3g∗(T )

45
T 2

MPlanck
, and y ≡ p

T . Assuming for

simplicity a radiation dominated Universe with constant number of degrees of freedom,

during the sterile evolution time we can assume xT= constant that we can fix to be one.

Therefore the scaling of the different terms is

H(x, y) ≡ xW ∆M2

2y
W †, Γi(x) ≡ ci

x
, xHu(x) ≡ 1

M∗Px
, (3.26)
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where M∗P ≡MPlanck

√
45

4π3g∗(T0)
and g∗(T0) is the number of relativistic degrees of freedom

in the plasma during the sterile evolution.

Therefore the equation as function of x is:

ρ̇ = −ix2[W∆W †, ρ]− 1

2
{γ, ρ− ρeq}, (3.27)

where we have defined

∆ij ≡
∆M2

ij

2y
M∗P , γi ≡ ciM∗P . (3.28)

The perturbative expansion works as in section 3.2.1, but now all theAn(x) are x-dependent:

An(x) with n ≥ 1 scale like the Hamiltonian, ie. x2, while A0(x) contains terms that scale

with x2 and others that do not depend on x. Fortunately, there is an important sim-

plification in that A0(x) can be diagonalised by an x-independent matrix, therefore the

path-ordered exponential can be easily evaluated. The result can be written in the same

form of eq. (3.23), with the evolution operator given by

U0(t, r) = e
∫ t
0 A0(x)dxe−

∫ r
0 A0(y)dy. (3.29)

At third order in the mixings, after algebraic simplifications and partial integrations,

the result can be given in terms of integrals of the form

Jn(α1, β1, .., αn, βn, t) ≡
∫ t

0
dx1e

iα1
x3
1
3

+β1x1

∫ x1

0
dx2e

iα2
x3
2
3

+β2x2 ..

∫ xn−1

0
dxne

iαn
x3
n
3

+βnxn ,

(3.30)

where αi are combinations of ∆ij and βi are combinations of γi. Up to third order in the

perturbative expansion only integrals with n ≤ 3 appear.

Since we are in a regime where γi � |∆ij |(1/3), the integrands are highly oscillatory

and hard to deal with numerically. To evaluate the integrals, we separate the integration

interval [0, t] = [0, t0] + [t0, t] with t0 such that t0|∆ij |1/3 � 1 and t0γi � 1:

Jn(α1, β1, .., αn, βn, t) = Jn(α1, β1, ...αn, βn, t0) + ∆Jn(α1, β1, ...αn, βn, t0, t). (3.31)

To solve the integrals up to t0 we can safely Taylor expand in βi (which results in an

expansion in γ1,2/|∆ij |) and write the integrals in terms of simpler integrals of the form:

Jnk(α1, .., αn, t) ≡
∫ t

0
dx1x

k1
1 ei

α1x
3
1

3

∫ x1

0
dx2x

k2
2 ei

α2x
3
2

3 ..

∫ xn−1

0
dxnx

kn
n ei

αnx
3
n

3 ,

(3.32)

up to third order in the βi expansion we just need integrals with n +
∑

i ki ≤ 3. We can

use the relation

d

dx
[Fn(x)] = xnei

αx3

3 (3.33)
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with

Fn(α, x) = −3
n−2

3 (−iα)−
1+n

3 Γ

[
1 + n

3
,−1

3
iαx3

]
, (3.34)

to evaluate immediately the one-dimensional integrals in terms of incomplete Γ functions.

The integrals in the range [t0, t] can be approximated by the large t behaviour of the

J1n(α, t) functions, after resumming the Taylor series in βi. Further details are presented

in appendix A.

The finite t dependence of the asymmetry ∆ρ33 is rather complicated, but the asymp-

totic value is non-zero and rather simple:

lim
t→∞

∆ρ33

ρeq
= −JWγ1γ2(γ2 − γ1) lim

t→∞
Im[J30(∆12 −∆13,−∆12,∆13, t) + J30(∆12 −∆13,∆13,−∆12, t)

+ J30(∆13,−∆12,∆12 −∆13, t) + J30(∆13,∆12 −∆13,−∆12, t)].

(3.35)

This can be simplified to

lim
t→∞

∆ρ33

ρeq
= −JW

γ1γ2(γ2 − γ1)

(∆13∆12∆23)1/3
Im

[
I

(
∆12

∆23
,−∆13

∆23

)
+ I

(
−∆12

∆13
,−∆23

∆13

)]
,

(3.36)

where

I

(
∆2

∆1
,
∆3

∆1

)
≡ (∆1∆2∆3)1/3

∫ ∞
0

dxei
∆1x

3

3 J10(∆2, x)J10(∆3, x). (3.37)

Comparing eq. (3.36) and eq. (3.24) we see that in the expanding case the asymmetry

is cubic in γi and not linear. Note that the dependence on the yukawa’s is precisely that

expected from a flavour invariant CP asymmetry. In fact this is effectively the situation

in the expanding case, because the asymmetry is generated at times t � γ−1
i and the

dependence in the yukawa’s in this regime is therefore perturbative. This is in contrast

with the non-expanding case, where the asymmetry evolves all the way till t ∼ γ−1
i . To

understand the reason behind this different behavior, it is useful to recall the definition of

∆ij from eq. (3.28). Then, we see that ∆ijx
3 � 1 implies ∆M2

ij/(4T )� T 2/M∗P = Hu(T ),

therefore in this regime the sterile neutrino oscillations are much faster than the Hubble

parameter and no asymmetry is produced anymore, since oscillations are averaged out.

Thus in the expanding Universe the generation of the asymmetry occurs at x ∼ |∆ij |−1/3 �
γ−1
i .

Until now we have neglected the matter potentials, however given the suppression in

three powers of γ of the leading result, there are corrections of same order coming from

the potentials, and in fact they are numerically more important.

The equation including the potentials in the basis with diagonal neutrino Yukawas is:

ρ̇ = −ix2[W∆W †, ρ]− i[v, ρ]− 1

2
{γ, ρ− ρeq}, (3.38)
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where

vij =
y2
i

8
M∗P δij ≡ viδij . (3.39)

The result for the asymmetry including the potentials is given by:

lim
t→∞

∆ρ33

ρeq
= JW limt→∞Re [z1J30(∆12 −∆13,−∆12,∆13, t) + z2J30(∆12 −∆13,∆13,−∆12, t)

+ z2J30(∆13,∆12 −∆13,−∆12, t) + z3J30(∆13,−∆12,∆12 −∆13, t)] .

(3.40)

with

z1 ≡ γ1γ2∆v + γ1v2∆γ + i

(
γ1γ2∆γ

2
− 2γ1v2∆v

)
,

z2 ≡
[
γ1v2 − γ2v1 + i

(γ1γ2

2
+ 2v1v2

)]
∆γ ,

z3 ≡ −γ1γ2∆v − γ2v1∆γ + i

(
γ1γ2∆γ

2
− 2γ2v1∆v

)
. (3.41)

and ∆v ≡ v2 − v1 and ∆γ ≡ (γ2 − γ1).

The leading terms O(v2γ) at asymptotic times t� γ−1
1,2 are:

lim
t→∞

∆ρ33

ρeq
=

9y6
t

2048π3
JW

y2
1y

2
2(y2

2 − y2
1)M

∗2
P

|∆M2
12∆M2

13∆M2
23|1/3

κ, (3.42)

where

κ ≡ |∆12∆13∆23|1/3Im
[
J30(∆12 −∆13,−∆12,∆13, t)− J30(∆12 −∆13,∆13,−∆12, t)

−J30(∆13,∆12 −∆13,−∆12, t) + J30(∆13,−∆12,∆12 −∆13, t)
]

(3.43)

depends only on the ratios of mass differences and/or the ordering of the states. This result

is parametrically the same as the result of [7] if we neglect the dependence of κ on the mass

differences and has the dependence on the yukawas expected from eq. (2.34).

Considering the naive seesaw scaling y2
i ∼ 2mνMi

v2 , for mν ∼ 1 eV and assuming no big

hierarchies or degeneracies, i.e. M2
i ∼ ∆M2

ij ∼M2, leads to

lim
t→∞

∆ρ33

ρeq
∼ 2× 10−7JW

( mν

1 eV

)3
(

M

10 GeV

)
. (3.44)

The asymmetry is highly sensitive to the light neutrino mass. Note that we have pushed the

value to the limit, a light neutrino mass in the less constrained 0.1 eV range would imply

three orders of magnitude suppression. The asymmetry grows linearly with the mass of the

heavy steriles. However, for masses larger than ∼ 10 -100 GeV lepton number violating

transitions via the Majorana mass could washout further the asymmetry, an effect that

requires a refinement of the formulation to be taken into account.
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3.3 Lepton asymmetries in the active sector

The asymmetry generated ignoring the µ evolution depends only on the Dirac-type phase,

δ, appearing in W as we have seen. However when the evolution of the leptonic chemical

potentials is included, other phases contribute to the total lepton asymmetry. We will

perform a perturbative expansion to third order in the mixings of both V and W matrices.

The result at finite t� θ2
i3(θ̄2

i3)γ−1
i can be written in the form:

Tr[µ](t) =
∑
ICP

ICPAICP
(t) (3.45)

where all the four CP invariants appear, ICP =
{
JW , I

(2)
1 , I

(3)
1 , I

(3)
2

}
, given in eqs. (2.29).

At finite t, the result for the functions AICP is well approximated by

A
I

(2)
1

(t) = y1y2(y2
2 − y2

1)

(
1− γN

γ̄N

)
γ2
NG1(t),

A
I

(3)
1

(t) = −y1y2(y2
2 − y2

1)

(
1− γN

γ̄N

)
γ2
NG2(t),

A
I

(3)
2

(t) = y1y2

(
1− γN

γ̄N

)
γNG3(t),

AJW (t) = γ1γ2

(
1− γN

γ̄N

)
G41(t)− γN

2γ̄N
G42(t). (3.46)

where γN ≡ γaN + γbN and γ̄N ≡
2γaN+3γbN

2 , while

G1(t) ≡
(
e−γ̄2t − e−γ̄1t

)
Re [iJ20(∆12,−∆12, t) + 2∆vJ201(∆12,−∆12, t)]

+
1

2

2∑
k=1

(−1)ke−γ̄ktRe [J210(∆12,−∆12, t) (−2∆v + i(2γ̄k − γ1 − γ2))] ,

(3.47)

and

G2(t) = G1(t)|γ̄1=0 , (3.48)

where we have defined γ̄i ≡ y2
i γ̄N and ∆v ≡ v2− v1, and the result for G3(t), G41(t), G42(t)

are lengthier and reported in the appendix B. These results would get modified for γit� 1

had we included the non-linear terms that modify the rate of thermalisation at large times.

In these equations there is an implicit expansion up to third order in γi(vi)/∆
1/3 when

∆1/3t� 1, while the terms γi(vi)t are resumed.

In figure 3 we plot the functions A
I

(2)
1

(t) and A
I

(3)
1

(t), which depend only on one

neutrino mass difference. We show two physical situations: one with very degenerate

neutrinos and the other with no strong degeneracies.

These two invariants are the only ones relevant for the scenario that has been considered

in most previous studies, where it has been assumed that only two sterile neutrinos have a

role in generating the lepton asymmetry (see for instance [33] for a very recent analysis).
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Figure 3: Functions A
I
(2)
1

(t) (left) and A
I
(3)
1

(t) (right) assuming the rates are dominated by top

quark scattering, and taking y2/
√

2 = y1 = 10−7, for two choices of ∆M2
12 = 1GeV2 (dashed)

and ∆M2
12 = 10−6 GeV2 (solid). tEW is the electroweak phase transition time, corresponding to

TEW ' 140GeV.

This is the situation in the limit of complete decoupling of N3, ensured by the condition

θi3 = 0, implying that only the invariants I
(2)
1 and I

(3)
1 survive. In [8] an approximate

analytical solution was obtained, expanding in the yukawa’s, under the assumption that

|∆12|−1/3 � tEW � γ̄−1
i . In this limit, the result of eqs. (3.46) and (3.47) can be simplified

to

Tr[µ](tEW ) ' −
(
(y2

2 − y2
1

)
I

(2)
1 − y2

2I
(3)
1 )y1y2(y2

2 − y2
1)

(
1− γ̄N

γN

)
γ3
N

Im[J20(∆12,−∆12,∞)]

TEW
.

(3.49)

Comparing with eq. (2.34), we see that the dependence on the yukawa’s is again that

expected from a flavour invariant CP asymmetry. Using

Im[J20(∆12,−∆12,∞)] = −2

(
2

3

)1/3 π3/2

Γ[−1/6]

sign(∆12)

|∆12|2/3
, (3.50)

and γ̄N = 4
3γN , and assuming the naive seesaw relations y2

1 = 2
√

∆solM1

v2 , y2
2 = 2

√
∆atmM2

v2

we find:

Tr[µ](tEW ) ' 10−2(I
(2)
1 − I(3)

1 )

√
M1M

7/3
2

GeV5/3

(
M2

2

|∆M2
12|

)2/3

, (3.51)

while for y2
1 = y2

2/2 = 10−14 (that would correspond to light neutrino masses in the eV

range and heavy ones in the GeV range) we would have

Tr[µ](tEW ) ' 7× 10−10 I
(2)
1 − 2I

(3)
1

|∆M2
12(GeV2)|2/3

. (3.52)

Even if the CP invariants are ofO(1), the asymmetry is too small unless there is a significant

degeneracy between the two states [8]. It is important however to realise that the naive

seesaw scaling is too naive and a full exploration of parameter space is necessary.
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Figure 4: Functions A
I
(3)
2

(t) (left) and AJW (t) (right) assuming the rates are dominated by

top quark scattering, and taking y2/
√

2 = y1 = 10−7, for three choices of [∆M2
12,∆M

2
13] =

[1, 2], [10−6, 2] and [10−6, 2 × 10−6] in GeV2 (dashed, dotted and solid). tEW is the electroweak

phase transition time, corresponding to TEW ' 140GeV.

In figure 4 we plot the functions A
I

(3)
2

(t) and AJW (t). They depend on the two neutrino

mass differences, so we show three examples here: one in which there are no degeneracies,

one where there are two almost degenerate states, and the case where the three states are

almost degenerate. As in the previous case we see a large enhancement when only one of

the mass differences is small and a further enhancement when the two are small compared

to the absolute scale. In the case of AJW we find that there is a significant difference in

the regime ∆
1/3
ij t � 1 if we plot AJW (t) truncated to the terms of O(y6

i ). As we will see

in the next section, the latter is much closer to the numerical result. The reason for this

difference is that at small times, ∆1/3t � 1, only some terms of order O(y8
i ) are kept in

eqs. (3.46), while there is a strong cancellation if all had been included. Note however that

this effect is only important at times where the asymmetry is suppressed and seems to

affect only AJW .

It is interesting to note that even though the dependence on the yukawas of the func-

tions AICP (t) is different (fourth or sixth order), the maxima for all cases are roughly of the

same order of magnitude. Note, however, that in the limit t� γ−1
i , only the contribution

of two invariants, JW and I
(3)
1 , survive:

lim
t→∞

Tr[µ](t) ' − γN
2γ̄N

lim
t→∞

[
∆ρ33(t)

ρeq

]
eq. (3.41)

− 24/3π3/2

31/3Γ
[
−1

6

]I(3)
1

y1y2(y2
2 − y2

1)

|∆12|2/3

(
1− γN

γ̄N

)
γ2
N , (3.53)

where we kept only the leading terms O(y4) proportional to I
(3)
1 and we have used the

result of eq. (3.50).

The first term in this expression corresponds to the expectation of [7], ie. the final

asymmetry is proportional to that stored in the third sterile state, eq. (3.40), while the

second term was missing in the simplified treatment of [7]. Note that they depend on

different CP invariants.
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Figure 5: Left: full numerical solution (solid blue) and numerical solution neglecting non-linear

terms (dotted green) for case 1, normalised to the invariant I
(2)
1 , compared with the prediction,

A
I
(2)
1

(t) (dashed red). Right: same for case 2 normalised to the invariant I
(3)
1 compared to A

I
(3)
1

(t).

The parameters are the same as in figure 3 for the degenerate case.

4. Numerical solution

In order to check the accuracy of the analytical solutions presented in the previous sec-

tion, we have solved the differential equations numerically. As shown in [28], the momen-

tum dependence does not change significantly the results so we will consider the average-

momentum approximation.

In figures 5-6 we compare the analytical and numerical solutions for the functions

AICP (t) in the highly degenerate case (the values of the mixing angles are of O(10−2)) . In

order to isolate the appropriate invariant we make the following choices:

• Case 1: θi3 = θ̄i3 = 0 isolates I
(2)
1 ,

• Case 2: θi3 = θ̄12 = 0 isolates I
(3)
1 ,

• Case 3: θ12 = θ̄i3 = 0 isolates I
(3)
2 ,

• Case 4: θ̄ij = 0 isolates IJW .

The numerical results normalised by the corresponding CP invariant are shown together

with the predictions of the previous section. In the case of JW , we plotted the function

AJW keeping only the terms of O(y6) that is more accurate at small t and the full function

at large t. The agreement in all cases is quite good. The differences observed at large t

come from the non-linear terms in the equations. We also show the numerical results of

the equations without them and find a very good agreement also at large t. Note that the

approximation works well in the regime γt � 1, that is in the strong washout regime of

the fast modes.

Numerically it is very hard to go to regimes where the ratios γ/|∆|1/3 become very

small, since the system becomes stiff. On the other hand, there is no reason why the

perturbative solution is not accurate in such regime. We will therefore assume this to be
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Figure 6: Left: full numerical solution (solid blue) and numerical solution neglecting non-linear

terms (dotted green) for case 3, normalised to the invariant I
(3)
2 , compared with the prediction,

A
I
(3)
2

(t) (dashed red). Right: same for case 4 normalised to the invariant JW compared to AJW (t).

The parameters are the same as in figure 4 for the double degenerate case.

the case in the following section and use the perturbative solution to perform a scan of

parameter space.

5. Baryon asymmetry

The observed baryon asymmetry is usually quoted in terms of the abundance, which is

the number-density asymmetry of baryons normalised by the entropy. After Planck this

quantity is known to per cent precision [34]:

Y exp
B ' 8.6(1)× 10−11. (5.1)

The lepton asymmetries in the left-handed (LH) leptons generated in the production of

the sterile neutrinos are efficiently transferred via sphaleron processes [35] to the baryons.

The baryon asymmetry is given by

YB =
28

79
YB−L. (5.2)

Since we have neglected spectator processes in the transport equations, the B−L asymme-

try is related to the chemical potentials computed in the previous sections by the relation

YB−L = − 90

π4g∗
Tr[µ], (5.3)

where g∗ = 106.75 (which ignores the contribution to the entropy of the sterile states).

Our estimate for the baryon asymmetry is therefore

YB ' 3× 10−3 Tr[µ(t)]|tEW . (5.4)

We have performed a first scan of the full parameter space of the model. Given the

theoretical uncertainties mentioned in different sections of the paper, we have considered

– 21 –



as interesting the points that can explain the baryon asymmetry within a factor of 5. For

this we have used the analytical solutions, even though in some regions of parameter space

they will not be precise, since they are based on a perturbative expansion on the mixing

angles of the matrices V and W . We have considered however a few cases where the angles

are not small and we find that the analytical solutions differ from the numerical ones only

in some global numerical factor of a few , but the time dependence is very similar.

Even with an analytical expression the exploration of the large parameter space is a

challenge. We have used the package Multinest [11, 12] to perform a scan on the Casas-

Ibarra parameters [36], where the Yukawa matrix is written as

Y = −iU∗PMNS
√
mlightR(zij)

T
√
M

√
2

v
. (5.5)

mlight is a diagonal matrix of the light neutrino masses and R is a complex orthogonal

matrix that depends on three complex angles zij . We fix the light neutrino masses and

mixings to the present best fit points in the global analysis of neutrino oscillation data of

ref. [37] and leave as free parameters: three complex angles, the three phases of the PMNS

matrix, the lightest neutrino mass as well as the heavy Majorana masses that are allowed

to vary in the range Mi ∈ [0.1, 100] GeV. In total thirteen free parameters.

The scan searches for minima of the quantity | log10 |YB(tEW)/Y exp
B || (in the range

≤ 1.5) and the MultiNest algorithm is optimised to sample properly when there are several

maxima. For the determination of YB we use the analytical results of the previous sections,

for which the CP invariants are computed directly from the matrix elements of the V,W

matrices that can be easily calculated by diagonalising the Yukawa mass matrix obtained

in the Casas-Ibarra parametrization. Since the mechanism to work requires that at least

one of the modes does not get to equilibrium before the electroweak phase transition we

restrict the search to the range where one of the yukawa eigenvalues, y3, is much smaller

than the others and the following conditions are satisfied

y3 ≤ 0.01Min[y1, y2],
∑
i=1,2

Γi
(
|Vi3|2 + |Wi3|2

)
≤ 0.01Hu(TEW). (5.6)

Furthermore, since the kinetic equations neglect lepton number violating effects in the

rates, we impose additionally the constraint(
Mi

TEW

)2

Γi � Hu(TEW ). (5.7)

We first consider a case where one of the sterile neutrinos is effectively decoupled from

baryon number generation, that we can assume to be N3. This can be achieved with the

choice of parameters:

m3(1) = 0, zi3 = 0, R(zij)→ R(zij)(P ), (5.8)

for the IH(NH), where P is the 123 → 312 permutation matrix (only necessary for the

NH). With this choice, only the terms corresponding to the CP invariants I
(2)
1 and I

(3)
1

contribute. This case is the one that has been considered in most previous works on the
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Figure 7: Points on the plane ∆M = M2 −M1 versus M1 for which YB > 1/5 × Y exp
B (blue),

YB > Y exp
B (green) and YB > 5 × Y exp

B (red) for NH (left) and IH (right), with only two sterile

neutrino species.

subject [8, 9, 38, 28, 31], where the number of parameters is reduced to six: only one

complex angle, two PMNS CP phases and two Majorana neutrino masses are relevant.

It is believed that a large degeneracy of the two sterile neutrinos is needed to obtain the

correct baryon asymmetry. In figure 7 we show the result of the scan under the conditions

of eq. (5.8) on the plane ∆M12 ≡ M2 −M1 versus M1 for normal and inverted orderings

of the light neutrinos. The different colours correspond to values of YB > 1/5, 1, 5× Y exp
B

(blue,green,red). Successful leptogenesis is possible in a larger range of parameter space

for IH than for NH. In the range shown our results agree reasonably well with those in

ref. [39] for the IH, while the range for NH looks a bit smaller. We see that there are a

significant number of points for which the degeneracy is mild for the IH. We have analysed

more carefully some of these points by solving the full numerical equations. We find that

even though these points correspond to cases where the angles in V,W are not small, the

analytical and numerical solution agree very well and have the same t dependence as shown

in figure 8. Note that the numerical solution is difficult at large times for non-degenerate

solutions and the standard methods that we use fail. An optimised numerical method

is needed to solve the stiffness problem and this will be studied elsewhere. It is very

interesting to correlate the baryon asymmetry with observables that could be in principle

measured such as the Dirac CP phase of the PMNS matrix, the amplitude of neutrinoless

double beta decay or the active-sterile mixings that control the probability for the heavy

sterile states to be observed in accelerators or in rare decays of heavy mesons. The effective

mass entering the 0νββ decay is given by

mββ =

3∑
i=1

U2
eimi +

3∑
i=1

U2
e(i+3)Mi

M0νββ(Mi)

M0νββ(0)
, (5.9)

where M0νββ are the Nuclear Matrix Elements (NMEs) defined in [40]3. The first term

3The results for the NMEs computation in the interacting shell model [41, 42] are available in Appendix

A of [40]
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Figure 8: Comparison of the analytical (red-dashed) and numerical (blue-solid) solution for one

of the points with mild degeneracy and YB ≥ Y exp
B , corresponding to log10(M1(GeV )) = 0.9 and

log10(∆M(GeV )) = −0.92 and yukawa couplings y1 = 1.3× 10−6, y2 = 9.8× 10−9.

corresponds to the standard light neutrino contribution and the second is the contribution

from the heavy states. Uei with i ≥ 4 is the active-sterile neutrino mixing.

In figure 9 we show the results for the active-sterile mixing as function of the sterile

mass and compare them with present direct bounds and the prospects of SHiP[43] and

LBNE near detector [44]. We show the result for M1 but the one for M2 is almost identical.

We see that most of the parameter space for successfull baryogenesis is not excluded by

present constraints and that the active-sterile mixings tend to be larger for the IH. A

sizeable region in the range of the GeV could be explored in the future experiment SHiP

in the case of the IH and by LBNE near detectors. It is interesting to note that the less

degenerate solutions can not have very small active-sterile mixing, as shown in figure 10,

where we plot the points on the plane εdeg ≡ |M2−M1|/(M2 +M1) versus the active-sterile

mixing in the electron flavour. The degeneracy can be lifted to some extent at the expense

of larger yukawa couplings which also imply larger mixings.

We have looked for direct correlations of the baryon asymmetry with the phases of the

PMNS matrix. We have found that the distribution on the Dirac phase and the Majorana

phase are flat. This is due to the fact that the complex angle can provide the necessary CP

violation, even if the PMNS phases would vanish. The same is true for the effective mass of

neutrinoless double beta decay, which depends on the Majorana phase. A dedicated scan

is needed to quantify how the putative measurement of various observables could constrain

the lepton asymmetry. This will be done elsewhere.

In the general case, N3 is also relevant and the main difference with respect to the

previous situation is that there is a significantly enlarged parameter space where degeneracy

is not necessary. This was already found in refs. [46] for some points of parameter space.
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Figure 9: Points on the plane |Ue4|2(left), |Uµ4|2(middle), |Uτ4|2(right) versus M1 for which YB
is in the range [1/5− 1]× Y exp

B (blue) and [1− 5]× Y exp
B (green) for NH (up) and IH (down), with

only two sterile neutrino species. The red bands are the present constraints [45], the solid black

line shows the reach of the SHiP experiment [43] and the solid red line is the reach of LBNE near

detector [44].

Figure 10: Points on the plane εdeg = |M2−M1|
M2+M1

versus |Ue4|2 for which the asymmetry is in the

range [1/5, 5]× Y exp
B in the range explored for IH.

In figure 12 we show the points on the plane (∆M12,M1) for the general case. The active-

sterile mixings are shown in figure 13. These mixings can be larger in this case, specially

in the case of the NH. The SHiP prospects are therefore more promising in this context.

As in the N = 2 case there is no direct connection between the asymmetry and the PMNS

CP phases. On the other hand, the lightest neutrino mass is non-zero in this case, but the

requirement that one yukawa needs to be significantly smaller than the others, eq. (5.6),
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Figure 11: Distribution of m1 for points that satisfy YB > Y exp
B for the NH.

Figure 12: Points on the plane ∆M = M2 −M1 versus M1 for which YB > 1/5 × Y exp
B (blue),

YB > Y exp
B (green) and YB > 5× Y exp

B (red) for NH (left) and IH (right), in the general case with

three neutrinos.

implies that the lightest neutrino mass must be small. In figure 11 we show the distribution

of this quantity for those points that satisfy YB ≥ Y exp
B in the case of NH (the IH being

very similar).

6. Conclusions

We have studied the mechanism of leptogenesis in a low-scale seesaw model that is arguably

the simplest extension of the Standard Model that can account for neutrino masses. For

Majorana neutrino masses in the GeV range, sizeable lepton asymmetries can be generated

in the production of these states some of which never reach thermal equilibrium before the

electroweak phase transition. Lepton asymmetries are efficiently transferred to baryons

via sphaleron processes. This mechanism was proposed in [7, 8] and studied in many
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Figure 13: Points on the plane |Ue4|2(left), |Uµ4|2(middle), |Uτ4|2(right) versus M1 for which the

YB is in the range [1/5− 1]× Y exp
B (blue) and [1− 5]× Y exp

B (green) for NH (up) and IH (down),

with three sterile species. The red bands are the present constraints, the solid black line shows the

reach of the SHiP experiment [43] and the solid red line is the reach of LBNE near detector [44].

works, but a full exploration of parameter space in the general case of three neutrinos

is lacking. To this aim we have developed an accurate analytical approximation to the

quantum kinetic equations which works both in the weak and strong washout regimes of

the fast modes (there is always a slow mode that does not reach thermal equilibrium before

the EW phase transition). It relies on a perturbative expansion in the mixing angles of the

two unitary matrices that diagonalise the Yukawa matrix. This analytical approximation

allows us to identify the relevant CP invariants, and explore with confidence the regime

of non-degenerate neutrino masses which is very challenging from the numerical point of

view. We have used this analytical solution to scan the full parameter space using the

MultiNest package to identify the regions where the baryon asymmetry is within an order

of magnitude of the experimental value. We have performed first a scan in the simpler

setting where one of the sterile neutrino decouples, which reduces the parameter space,

and is the approximation that has been considered in most previous works on the subject,

for example in the so-called νMSM. Although baryon asymmetries tend to be larger in the

case of highly degenerate neutrinos, we find solutions with a very mild degeneracy that

also correlate with a larger active-sterile mixing. These non-degenerate solutions appear

for an inverted ordering of the light neutrinos. On the other hand we do not observe a

direct correlation with other observables, such as the PMNS CP phases nor the neutrinoless

double beta decay amplitude.

We have also performed a scan in the full parameter space, with the only requirement

that one of the yukawa matrix eigenvalues is very small, and that one mode will not reach

equilibrium before the electroweak transition, for the washout not to be complete. The
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main difference with the simpler case of two neutrinos is that the parameter space with

successfull baryogenesis is significantly enlarged, in particular as regards non-degenerate

spectra. Also the active-sterile mixings can reach larger values, particularly in the normal

hierarchy case, improving the chances of future experiments such as SHiP or LBNE to find

the GeV sterile neutrinos. There is much less difference in this case between normal and

inverted neutrino orderings and also no direct correlation with the PMNS phases. On the

other hand, the requirement of a small yukawa eigenvalue implies that the lightest neutrino

mass cannot be large.

A number of refinements are needed to improve the precision of the determination of

the baryon asymmetry. First a more precise determination of the scattering rates of the

sterile neutrinos is required. Most previous studies, and this one, have included only top-

quark scatterings, but it has been pointed out recently that gauge scatterings are also very

important. A correct treatment of these processes in the kinetic equations is necessary.

Also the kinetic equations neglect effects of O((Mi/T )2). Such effects are not so small

for masses in the GeV near the electroweak phase transition and their effect should be

quantified. Finally, spectator processes and the asymmetries of fields other than the sterile

neutrinos and LH leptons have not been taken into account in the kinetic equations. A

proper treatment could easily bring corrections of O(1). Finally, a more ambitious scan

of parameter space should define more accurately the limits of eq. (5.6) for successfull

baryogenesis. These effects will be studied in the future.
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A. Results for the perturbative integrals

A.1 One dimensional integrals

We just need them up to O(β/α)2:

J1(α1, β1, t) ' J10(α1, t0) + β1J11(α1, t0) +
β2

1

2
J12(α1, t0) + ∆J1(α1, β1, t, t0),

(A.1)
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with

∆J1(α1, β1, t, t0) =
∑
n

βn1
n!
J1n(α1, t, t0) ' i

∑
n

βn1
n!

 ei
α1t

3
0

3

α1t
2−n
0

− ei
α1t

3

3

α1t2−n

+O(t−4, t−4
0 )

= i

eiα1t
3
0

3
+β1t0

α1t20
− ei

α1t
3

3
+β1t

α1t2

 . (A.2)

We can factor out the α dependence and define:

J10(α, t) =
1

|α|1/3
(

Re
[
J10(1, t|α|1/3)

]
+ isign(α)Im

[
J10(1, t|α|1/3)

])
. (A.3)

A.2 Two dimensional integrals

We just need them up to O(β/α):

J2(α1, β1, α2, β2, t) ' J200(α1, α2, t0) + β1J210(α1, α2, t0) + β2J201(α1, α2, t0)

+ ∆J2(α1, β1, α2, β2, t, t0), (A.4)

where if
∑

i αi 6= 0:

∆J2(α1, β1, α2, β2, t, t0) =

J1(α2, β2, t0) + i
ei
α2t

3
0

3
+β2t0

α2t20

∆J1(α1, β1, t, t0)

− i

iei
∑
i αit

3
0

3
+
∑
i βit0

α2
∑

i αit
4
0

− ie
i
∑
i αit

3

3
+
∑
i βit

α2
∑

i αit
4

 , (A.5)

and for those terms where
∑

i αi = 0

∆J2(α1, β1, α2, β2, t, t0) =

J1(α2, β2, t0) + i
ei
α2t

3
0

3
+β2t0

α2t20

∆J1(α1, β1, t, t0)

− i

α2

(∫ t

t0

e
∑
i βix

x2

)
. (A.6)

We can factorize the α-dependence:

J200(−α, α, t) =
1

|α|2/3
(

Re
[
J200(−1, 1, t|α|1/3)

]
+ i sign(α)Im

[
J200(−1, 1, t|α|1/3)

])
,

J201(−α, α, t) =
1

|α|

(
Re
[
J201(−1, 1, t|α|1/3)

]
+ i sign(α)Im

[
J201(−1, 1, t|α|1/3)

])
,

J210(−α, α, t) =
1

|α|

(
Re
[
J210(−1, 1, t|α|1/3)

]
+ isign(α)Im

[
J210(−1, 1, t|α|1/3)

])
,

(A.7)

and reduce the integrals to the basic ones.
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A.3 Three dimensional integrals

We need the integrals up to O(β/α)0 in this case. We can use the relation:

J30(α1, α2, α3, t) = J10(α1, t)J200(α2, α3, t)−
∫ t

0
dx e

iα2x
3

3 J10(α1, x)J10(α3, x).

(A.8)

Since
∑

i αi = 0 for the cases of interest, we can rewrite the result in terms of some basic

integrals, I1 and I2:

J200(α1, α2, t) =
1

|α1α2|1/3
I1

(
|α2/α1|, sign(α2), sign(α1), t|α1|1/3

)
(A.9)

and∫ t

0
dx e

iα2x
3

3 J10(α1, x)J10(α3, x) =
I2

(
|α1/α2|, sign(α1), sign(α3), sign(α2), t|α2|1/3

)
|α1α2α3|1/3

(A.10)

where

I1(r, s1, s2, t) ≡
∫ t

0
dx eis2x

3/3J10(s1, r
1/3x) (A.11)

I2(r, s1, s2, s3, t) ≡
∫ t

0
dx eis3x

3/3J10(s1, r
1/3t)J10(s2, (−s3/s2 − s1/s2r)

1/3t) (A.12)

B. Perturbative result for the invariants JW and I
(3)
2

The finite t perturbative results proportional to the invariants JW are given by the following

expressions (we have used the property γi ∝ vi to simplify them):

AJW (t) = γ1γ2

(
1− γN

γ̄N

)
G41(t)− γN

2γ̄N
G42(t), (B.1)

where

G41(t) ≡
2∑

k=1

(−1)k e−γ̄kt

{
∑
i<j

Re
[
aijJ20(∆ij ,−∆ij , t0) + bijJ201(∆ij ,−∆ij , t0) + c

(k)
ij (t)J210(∆ij ,−∆ij , t0)

]}
,

(B.2)

with

a12 = i , b12 = 2∆v, c
(k)
12 = −∆v + i

2(2γ̄k − γ1 − γ2),

a13 = −i, b13 = 2v1, c
(k)
13 = −v1 − i

2(2γ̄k − γ1),

a23 = i, b23 = −2v2, c
(k)
23 = v2 + i

2(2γ̄k − γ2),
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and ∆v ≡ v2 − v1, ∆γ ≡ (γ2 − γ1).

G42(t) ≡ Re
[
d1J30(∆12 −∆13,−∆12,∆13, t) + d2J30(∆12 −∆13,∆13,−∆12, t)

+ d3J30(∆13,∆12 −∆13,−∆12, t) + d4J30(∆13,−∆12,∆12 −∆13, t)

+ d5J30(∆12,−∆12 + ∆13,−∆13, t) + d6J30(∆12,−∆13,−∆12 + ∆13, t)
]
,

(B.3)

with

d1 = z1 + i
γ1

2

[
2∆v + i∆γ

][
2v2 − i(2γ̄2 − γ2)

]
e−γ̄2t,

d2 = z2 + i
∆γ

2

[
− 2v1 + iγ1

][
2v2 − i(2γ̄2 − γ2)

]
e−γ̄2t,

d3 = z2 − i
∆γ

2

[
2v2 + iγ2

][
2v1 + i

(
2γ̄1 − γ1

)]
e−γ̄1t,

d4 = z3 + i
γ2

2

[
2∆v − i∆γ

][
2v1 + i(2γ̄1 − γ1)

]
e−γ̄1t,

d5 =
γ1

2

(
2v2 + iγ2

)[
e−γ̄1t(2i∆v + 2γ̄1 − γ1 − γ2)− e−γ̄2t(2i∆v + 2γ̄2 − γ1 − γ2)

]
,

d6 = −γ2

2

(
2v1 − iγ1

)[
e−γ̄1t(2i∆v + 2γ̄1 − γ1 − γ2)− e−γ̄2t(2i∆v + 2γ̄2 − γ1 − γ2)

]
.

(B.4)

On the other hand, for the invariant I
(3)
2

A
I

(3)
2

(t) = y1y2

(
1− γN

γ̄N

)
γNG3(t), (B.5)

G3(t) ≡
2∑

k=1

(−1)k e−γ̄kt

{
∑
i<j

Re
[
a′ijJ20(∆ij ,−∆ij , t0) + b′ij(t)J201(∆ij ,−∆ij , t0) + c

′(k)
ij (t)J210(∆ij ,−∆ij , t0)

]

+Re
[
w1J30(∆12,−∆12 + ∆13,−∆13, t) + w2J30(∆12,−∆13,−∆12 + ∆13, t)

]}
,

(B.6)

with

w1 =
1

2
[2v2γ1 + iγ1γ2] , w2 =

1

2
[−2v1γ2 + iγ1γ2] , (B.7)

and

a′12 = iγ2, b′12 = 2γ2v2 − v1γ2 − v2γ1, c
′(k)
12 = 1

2γ2

(
− 2∆v + i(2γ̄k − γ2 − γ1)

)
,

a′13 = −iγ1, b′13 = 2γ1v1, c
′(k)
13 = −1

2γ1

(
2v1 + i(2γ̄k − γ1)

)
,

a′23 = iγ2, b′23 = −2γ2v2, c
′(k)
23 = 1

2γ2

(
2v2 + i(2γ̄k − γ2)

)
.
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