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The simplest models of inflation predict small non-gaussianities and a featureless power spectrum.
However, there exist a large number of well-motivated theoretical scenarios in which large non-
gaussianties could be generated. In general, in these scenarios the primordial power spectrum
will deviate from its standard power law shape. We study, in a model-independent manner, the
constraints from future large scale structure surveys on the local non-gaussianity parameter fnr,
when the standard power law assumption for the primordial power spectrum is relaxed. If the
analyses are restricted to the large scale-dependent bias induced in the linear matter power spectrum
by non-gaussianites, the errors on the fxr, parameter could be increased by 60% when exploiting
data from the future DESI survey, if dealing with only one possible dark matter tracer. In the
same context, a nontrivial bias [0fnrn| ~ 2.5 could be induced if future data are fitted to the
wrong primordial power spectrum. Combining all the possible DESI objects slightly ameliorates the
problem, as the forecasted errors on fx1, would be degraded by 40% when relaxing the assumptions
concerning the primordial power spectrum shape. Also the shift on the non-gaussianity parameter
is reduced in this case, |0 fxL| ~ 1.6. The addition of Cosmic Microwave Background priors ensure
robust future fx1, bounds, as the forecasted errors obtained including these measurements are almost
independent on the primordial power spectrum features, and |§fnr| ~ 0.2, close to the standard
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single-field slow-roll paradigm prediction.

PACS numbers:

I. INTRODUCTION

Inflationary theories have been extremely successful in
explaining the horizon problem and the generation of the
primordial perturbations seeding the structures of our
current universe [IHII]. The firm confirmation of these
theories as the responsible ones for the universe we ob-
serve today would come from the detection of a signal
of primordial gravitational waves. A key observable to
disentangle between different inflationary theories is the
primordial power spectrum, i.e. the power spectrum of
the initial curvature perturbations Pg (k). This power
spectrum is usually taken to be a featureless primordial
power spectrum (PPS), described by a simple power-law
Pr (k) oc k™ ~1 with n, the scalar spectral index. How-
ever, there exists a vast number of models in the liter-
ature which may give rise to a non-standard PPS (see
the recent review [12]). That is the case of slow-roll in-
duced by phase transitions in the early universe [I3HI5],
by some inflation potentials [T6H37], by resonant particle
production [3842], variation in the sound speed of adi-
abatic modes [43] [44] or by trans-Planckian physics [45-
[49]. All these non-standard scenarios, as well as other
non-canonical schemes [50H57], could lead to a PPS which
may notably differ from the simple power-law parameter-
ization.

Another key observable to distinguish among the pos-
sible inflationary models is the deviation from the pure
Gaussian initial conditions. Non-gaussianities are usu-
ally described by a single parameter, fxi,. In the matter

dominated universe, the gauge-invariant Bardeen poten-
tial on large scales can be parametrized as [58H61]

dng = @ + fa (@7 — (%)), (1)

where ® is a gaussian random field. The non-gaussianity
parameter fyi, is often considered to be a constant, yield-
ing non-gaussianities of the local type.

Traditionally, the standard observable to constrain
non gaussianities is the Cosmic Microwave Background
(CMB), through the three point correlation function, or
bispectrum. As the odd power correlation functions van-
ish for the case of Gaussian random variables, the bispec-
trum provides the lowest order statistic to test any de-
parture from gaussianity. The bispectrum is much richer
than the power spectrum, as it depends on both the scale
and the shape of the primordial perturbation spectra.
The current bound from the complete Planck mission
for the local non-gaussianity parameter is fxr, = 0.8 £ 5
(68% CL) [62].

The large scale structures of the universe provide an
independent tool to test primordial non-gaussianites, as
shown in the pioneer works of Refs. [63] and [64]. Dark
matter halos will be affected by the presence of non-
gaussianties, and a scale-dependent bias will characterise
the non-gaussian signal at large scales [65H7I]. The
tightest bounds on primordial non-Gaussianity using ex-
clusively large scale structure data are those obtained
from DR& photometric data, see Ref. [72], which exploits
800000 quasars and finds —49 < fxr, < 31 (see also
Ref. [73]). While current large scale structure constraints



are highly penalised due to their systematic uncertain-
ties, it has been shown by a number of authors that the
prospects from upcoming future large scale structure sur-
veys can reach o(fyr) < 1 [71l [74H84].

Even if Eq. is commonly used in the literature as-
suming a scale independent parameter fyy,, let us men-
tion that some theoretical scenarios can give rise to a
scale-dependent fyr, [85H88]. This scale dependence has
already been studied in several works, see e.g. [S89HII]
using large scale structure information, cluster number
counts and/or CMB spectral information. The fore-
cast on the errors on the non-gaussianity parameters
are however known to be parametrization/model depen-
dent [90, OI]. The recent work of Ref. [9I] focuses on
the complementarity of the different cosmological probes,
which could help enormously to determine the functional
dependence of a scale-dependent non-gaussianity param-
eter without having to assume a particular choice of such
a scale-dependence. In particular, they make use of spec-
tral distortions of the CMB background. In this work,
we shall focus on the forecasts associated to future large
scale structure probes only and we will restrict ourselves
to a scale independent parameter fyr,. However, when al-
lowing for a non-standard primordial power spectrum as
well, additional measurements of the CMB distortion pa-
rameters could help in removing some of the degeneracies
that appear between non-gaussianities and the parame-
ters governing the primordial power spectrum parameter-
ization. Furthermore, these degeneracies could copiously
appear in the case of scale-dependent non-gaussinities.

Despite the fact that the simplest models of inflation
(i.e. single field, slow-rolling with a canonical kinetic
term) predict small non-gaussianities, there are some the-
oretical scenarios in which large non-gaussianties could
be generated, see e.g Ref. [92] and references therein.
The same deviations from the standard slow-roll infla-
tion that give rise to non-gaussianities could also be
a potential source for other features in the PPS [I5],
which are absent in the simplest inflation models. Par-
ticle production during inflation gives rise to both a
non-canonical PPS and large non-gaussianities simulta-
neously [42]. These two phenomena could also appear to-
gether in single field models with non-standard inflation-
ary potentials [20] 2], 24] [32] 34 [36], as well as in Brane
Inflation [29] and multi-field inflationary models [33].
Other possibilities that will give rise to both a non-
standard matter power spectrum and non-gaussianities
include preheating scenarios [93] [94].

As nature could have chosen other inflationary scenario
rather than the single field slow-roll paradigm, it is inter-
esting to explore, in a model-independent way, how the
forecasts for large scale structure surveys concerning fu-
ture measurements of fyi, are affected when the assump-
tion of a standard PPS is relaxed. This has never been
done before while forecasting errors on the fy, parameter
and it is a mandatory calculation, because models which
will produce non-gaussianities will likely give rise to a non
standard PPS as well. Even if non-gaussianties and dis-

tortions from the standard power-law PPS are expected
to be governed by the same fundamental physics, (and
therefore, related to each other), the underlying infla-
tionary mechanism is unknown a priori. A conservative
and general approach is therefore to treat these two phys-
ical effects as independent and to be determined simul-
taneously. This is the strategy we follow in this paper.
The structure of this manuscript is as follows. We start
describing the parameterization of the PSS used here in
Sec. [[} Section [[ITA] describes the scale-dependent halo
bias in the matter power spectrum, while in Section [[ITB]
we describe the methodology followed for our calcula-
tions as well as the specifications of the future large scale

structure survey illustrated here. We present our results
in Sec. [[IL(J and conclude in Sec. [Vl

II. PRIMORDIAL POWER SPECTRUM

The simplest models of inflation predict a power-law
form for the PPS of scalar and tensor perturbations. As
previously stated, in principle, a different shape for the
PPS (see Ref. [12] and references therein), can be gen-
erated by more complicated inflationary models (see e.g.
Ref. [95] for some compilation). In order to explore the
robustness of future forecasted errors from large scale
structure surveys on the local non-gaussianity parame-
ter fnL, we assume a non-parametric form for the PPS,
following the prescription of Ref. [96], which is an ex-
ample of a number of possible methods explored in the
literature [97HIZE]. We describe the PPS of the scalar
perturbations by means of a function to interpolate the
PPS values in a series of nodes at fixed position. The
function we exploit to interpolate is commonly named as
a piecewise cubic Hermite interpolating polynomial, the
PCHIP algorithm [120], see the Appendix A of Ref. [96]
for details concerning the version of the (PCHIP) algo-
rithm [127] used in the following. Within this model,
one only needs to provide the values of the PPS in a dis-
crete number of nodes and to interpolate among them.
As in previous work [96], we define the PPS at twelve
nodes, whose values of k are:

ki = 5-1075 Mpc ™,

ky = 1073 Mpc™!,

kj = ka(k11/k2)U=2/% for je|[3,10],

ki1 = 0.35 Mpe™!,

k1o = 10 Mpc™* . (2)

In the range (k2, k11), that has been shown to be well con-
strained by current cosmological data [124], we choose
equally spaced nodes (in logarithmic scale). The pur-
pose of the first and the last nodes is to allow for a
non-constant behaviour of the PPS outside the well-
constrained range. The PCHIP PPS is given by

P(k) = Po X PCHIP(k; Ps,h ey Ps’lg) s (3)



with P; ; the value of the PPS at the node k; divided by
Py =2.2-107?, according to the latest results from the
Planck collaboration, see Ref. [128].

III. FORECASTS
A. Non-gaussian halo bias

Non-gaussianities as introduced in Eq. induce a
scale-dependent bias that affects the matter power spec-
trum at large scales. This scale-dependent bias reads
as [63] [65]

55] =bdgm where b=0bg+ Ab, (4)
where §,4(dam) are galaxy (dark matter) overdensities, bg
is the gaussian bias and Ab reads as

HZQ
Ab=3 1—bg)le—smim 5

fNL( G) k’QT(k‘)D(a) ( )
with T'(k) the linear transfer function. The growth factor
D(a) is defined as dgm(a)/dam(a = 1) and . refers to the
linear overdensity for spherical collapse [129]. The power
spectrum with non-gaussianties included is obtained us-
ing

Png:P(bG+Ab+fﬂz)27 (6)

where g is the cosine of the angle between the line
of sight and the wave vector k£ and f is defined as
dIndqm/dIna. P is the dark matter power spectrum,
whose k dependence is driven either by Eq. or by the
standard power-law matter power spectrum (with a given
amplitude A, and slope ng).

In Fig. [} top panel, we illustrate the galaxy power
spectrum in the absence of non-gaussianites (i.e. fni, =
0) as well as for the fyr, = 20 case. We also show,
see the thin red dashed line, that using a PCHIP PPS
with fnp, = 0 it is possible to match the galaxy power
spectrum obtained with a standard power-law PPS and
fnL # 0. The P; ; values needed to obtain such an effect
were taken to be within their currently 95% CL allowed
regions [96]. Therefore, large degeneracies between the
P, j nodes and fnr, parameter are expected. Such a large
value of fni, = 20, albeit allowed by the current large
scale structure limits on local non-gaussianities, is much
larger than the expected errors from the upcoming galaxy
redshift surveys (see e.g. Refs. [76, [130]). Therefore, we
also illustrate in Fig.[[, bottom panel, the equivalent plot
for fnr, = 5. For this case, the values for the PPS nodes
P, ; required to match the predictions from a standard
power law PPS lie within their 68% CL current allowed
regions [96]. However, notice that the degeneracies are
still present. We therefore expect that the forecasted er-
rors on the fyr parameter are largely affected by the
uncertainties on the precise PPS shape.
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FIG. I: The upper panel depicts the galaxy power spectrum
for the standard PPS power law case, for fnr. = 0 (black solid
curve) and fxr, = 20 (blue dotted curve), together with a
PCHIP PPS case (red dashed lines) for fxr, = 0. The values
of the PCHIP PPS nodes are chosen accordingly to match the
predictions of the fxi, = 20 case. The lower panel shows the
equivalent but for fxi, = 5. We have also changed accordingly
the value of the PCHIP PPS nodes. We also show with k; for
i =4,..,11 the k position of five of the nodes considered in our
analysis (i = 5, ..,9), plus k4,10,11 that lie outside the k range
probed by the DESI experiment. The galaxy power spectra
are obtained for z = 0.57, |ux| = 1 and assuming a constant
gaussian bias bg.

B. Methodology

We focus here on the future spectroscopic galaxy sur-
vey DESI (Dark Energy Instrument) experiment [I31].
Although multi-band, full-sky imaging surveys have
been shown to be the optimal setups to constrain non-
gaussianities via large scale structure measurements [71}
74, the purpose of the current paper is to explore the de-
generacies with the PPS parameterization rather than to
optimise the fny, sensitivity. Therefore, we restrict our-
selves here to the DESI galaxy redshift survey (similar
results could be obtained with the ESA Euclid instru-
ment).

In order to compute the expected errors on the lo-
cal non-gaussianity parameter, we follow here the usual



Fisher matrix approach, whose elements, as long as the
posterior distribution for the parameters can be well ap-
proximated by a Gaussian function, read as [I32HI34]

Fap = (7)

%Tr [C’*leaC*IC,g} ,
with C' = S+ N the total covariance. The covariance ma-
trix contains both the signal S and the noise N terms,
and C, refer to its derivatives with respect to the cos-
mological parameter p, in the context of the underlying
fiducial cosmology. The 68% CL marginalized error on a
given parameter p, is 0(pa) = \/(F~1)aa, with F~1 the
inverse of the Fisher matrix. In the following, in order to
highlight the differences in the error on the fynr, param-
eter arising from different PPS choices, we only consider
information concerning non-gaussianites from large scale
structure data, neglecting the information that could be
added from CMB bispectrum measurements.

Our large scale structure Fisher matrix reads as [135]

. Fmax 91n Pog (k) Oln Pog(K) .~ dk
P = [ e e e
B L rkmax 9lp Py (k, i) O1n Pog(k, pu)
B /—1 /kmin OPa 8105
ork2dkdu
2(2m)3

where Vg is the effective volume of the survey:

nPng(kv ,[j’k)

2
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Tohr 1] Yo O
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where P, is the power spectrum with non-gaussianities
included (see Eq. @) and n refers to the galaxy number
density per redshift bin. We assume k. = 0.1h/Mpc
and ki, is chosen to be equal to 27/V/3, where V rep-
resents the volume of the redshift bin. The DESI survey
is expected to cover 14000 deg? of the sky in the redshift
range 0.15 < z < 1.85, divided in redshift bins of width
Az =0.1. We follow Ref. [I36] for the number densities
n(z) and biases bg(z) associated to the three types of
DESI tracers: Luminous Red Galaxies (LRGs), Emission
Line Galaxies (ELGs) and high redshift quasars (QSOs).
We include the redshift dependence of the (fiducial) bias
b in Eq. (6) as follows: bg(2)D(z) = 0.84,1.7,1.2 for
ELG, LRG and QSO’s respectively, where D(z) is the
growth factor as in Eq. . In order to combine the three
different Fishers matrices from the three DESI tracers
(LRGs, ELGs and QSOs), we follow the multi-tracer for-
malism developed in Ref. [137], where the authors present
a generic expression for the Fisher information matrix of
surveys with any number of tracers. The multi-tracer
technique provides constraints that can surpass those set
by cosmic variance, due to the differences in the cluster-
ing of the possible tracers of large scale structure.

Also, let us remind that the observed size of an object
or a feature at a given redshift z are obtained in terms of

(®)

redshift and angular quantities Az and Af. These two
quantities are related to the comoving dimensions 7| and
r, along and across the line of sight through the angular
diameter distance D 4(z) and the Hubble rate H(z). The
same applies to the Fourier transform associated vari-
ables (we will refer to these as k| and &k, for the dual
coordinates of 7| and 7). Therefore, when one aims to
reconstruct the measurements of galaxy redshifts and po-
sitions in some reference cosmological model which differ
from a given fiducial cosmology, one has to account for
geometrical effects in the following way [135] :

. DA(Z)‘zef

re re H z
Pobs(k f7klf)_ DA(Z)2 ( )

H(Z)lw

I ; Pfid(knalﬂ) )
(10)
where the ref sub/superscript denote quantities in the
reference cosmological model*. We properly account for
such effects in our Fisher matrix forecasts when taking
numerical derivatives of the galaxy power spectrum with
respect to the cosmological parameters at given values of
|k| and i (or equivalently, of k| and k).
In addition to Fisher matrix forecasts, we will also com-
pute the expected shift in the fni, parameter if the P ;
PCHIP parameters (with j = 5,..,9) are (incorrectly) set

Vet (k, 111) to values different from their fiducial ones. For that pur-

pose, we use the method developed by the authors of
Ref. [I38]. The main idea is as follows: if the future DESI
data are fitted assuming a cosmological model with fixed
values of PS,jT and therefore characterised by n’ = 5 pa-
rameters M’ = {Quh?, Q.h2, h, fxr, w}, but the true
underlying cosmology is a model with different values
of P; ; and therefore characterized by n = 10 parameters
M= {Qbh2, Qch2, h, fNL; w, Psﬁj} (Wlthj = 5, ) 9), the
inferred values of the n’ = 5 parameters will be shifted
from their true values to compensate for the fact that
the model used to fit the data is wrong. Assuming that
the likelihood is gaussian, the shifts in the n’ parameters
read as [138]

59; = 7(F’71)(15G5<5¢)C a, B = 1...71’,

C=n"+1...n,

(11)

where I is the Fisher matrix for the n’ parameters model
(with the P;; fixed) and G denotes the Fisher matrix
for the n parameters model (including the n’ previous
parameters plus the PCHIP P, ; parameters).

In the following, unless otherwise stated, we shall
adopt the best-fit values from the complete Planck mis-
sion [12§], which, in the standard power law PPS, corre-
sponds to A; = 2.2-107% and ns = 0.965 at kpjyor = 0.05.
Within the PCHIP parameterization, the best-fit values
used for the nodes considered in the numerical analy-
ses below are: Ps5 = 1.07099, P, = 1.04687, P, ; =

“ky = k| Da(2)lves/Dalz) and ki = K\ H(z)/H(2)lres -
f Fixing the values of P; ; corresponds to fix both ns and As to

their best-fit values according to the normalization used here.



1.02329, P, g = 1.00024 and P;9 = 0.97771. These
values are obtained calculating the value of the best-fit
power-law power spectrum, given by Planck 2015 best-fit
values for A and ng as mentioned above, at the positions
of the nodes k5 to k9. The remaining nodes are outside
the k range expected to be covered by the DESI survey,
given the values of ky.x and ki, considered here.

C. Results

In the following, we shall present the results arising
from our Fisher matrix calculations, for the two fiducial
cosmologies explored here: one in which the PPS is de-
scribed by its standard power-law form, and a second
one in which the PPS is described by the PCHIP param-
eterization. The parameters describing the model with
a power-law PPS are the baryon and cold dark matter
physical energy densities, ,h? and Q.h%, the Hubble
parameter h (with Hy, the Hubble constant, defined as
100k km/s/Mpc), the scalar spectral index ng, the am-
plitude of the PPS A,, and the equation of state of the
dark energy component w. The PCHIP PPS case is also
described by Q,h2, Q.h2, h, w plus five nodes P, ; (with
j ranging from 5 to 9) describing the PCHIP PPS. Non-
gaussianites of the local type are implemented in both
fiducial cosmologies via the fni, parameter. All the re-
sults described below (unless otherwise stated) refer to
the analysis of the three DESI tracers (ELGs, LRGs and
QSOs), i.e. they have been obtained exploiting exclu-
sively the scale-dependent biases imprinted in the power
spectra of these three types of tracers.

Table shows the 1o marginalized errors for the
case of a standard (PCHIP) PPS, for a fiducial value
fnr = 20 for each of the DESI tracers as well as the er-
ror from the combination of all of them, using the multi-
tracer technique. Even if such a value of the fyi, param-
eter (fnr. = 20) is larger than the expected sensitivity
from future probes, it is still allowed by current large
scale structure bounds on primordial non-gaussianities.
Notice that, for the standard power law PPS, the ex-
pected error on fyr is 19.9, 10.1 and 8.56 for LRGs,
ELGs and QSOs respectively, while for the case of the
PCHIP parameterization, one obtains o(fn1,) = 32.2, 13.3
and 12.6 respectively. Therefore, there is a large increase
in the error on the non-gaussianity parameter, which can
reach the 60% level. Concerning the remaining cosmolog-
ical parameters, they are barely affected. In some cases,
their error is even smaller than in the standard power-
law scenario. This is indeed the case of the equation
of state parameter w, or Q,h? and Q.h? (the errors on
the latter two parameters are smaller than in the stan-
dard PPS approach only when exploiting either ELGs or
QSOs tracers). The combination of the data from the
three tracers exploiting the multi-tracer technique allevi-
ates the problem with the error on fyr,, as the increase
in the value of o( fn1,) when relaxing the assumption of a
simple power-law PPS is around 40%, rather than 60%.

The reason for this generic increase in the error of fyr,
is due to the the large degeneracies between the non-
gaussianity fnr, parameter and the P, ; nodes, which get
reduced when combining the tracers. The top and bot-
tom panels of Fig. [[]|illustrate the large degeneracies be-
tween the non-gaussianity fni, parameter, for the fiducial
value fyi, = 20 and two of the P; ; nodes, Py 5 and P; g.
We only show here these two nodes, but similar degen-
eracies are obtained for the remaining nodes.

This degeneracy problem could a priori be solved in
two ways, either exploiting smaller scales in the observed
galaxy or quasar power spectra, or using CMB priors.
In practice, going to the mildly non-linear regime would
require new additional P, ; nodes and new degenera-
cies between these additional P, ; nodes and the non-
gaussianity parameter fyi, will appear. We have numer-
ically checked that such a possibility does indeed not
solve the problem. Furthermore, a non-linear descrip-
tion of the matter power spectrum will depend on addi-
tional parameters, enlarging the number of degeneracies.
In contrast, the CMB priors on both the PPS param-
eters as well as on the dark matter and baryon mass-
energy densities help enormously in solving the problem
of the large degeneracies between the PPS parameteriza-
tion and non-gaussianities. Tables [[T]] and [[V] show the
equivalent of [[] and [[] but including CMB priors from
the Planck mission 2013 data [I39]. Notice that the im-
pact of the Planck priors is largely more significant in the
PCHIP parameterization case: the fyr, errors arising from
the three different dark matter tracers when the CMB
information is included are smaller in the PCHIP PSS de-
scription than in the standard power-law PSS modeling.
When the multi-tracer technique is applied, the overall
errors after considering Planck 2013 CMB constraints are
very similar regardless on the PPS description and close
to U(fNL) ~ 5.

Table shows the 1o marginalized errors for the
case of a standard (PCHIP) PPS, for another possible non-
gaussianity parameter fiducial value, fnr, = 5, from each
of the DESI tracers, as well as the error arising from
the combination of all of them using the multi-tracer
technique. As in the case of fxr, = 20, the error on
the non-gaussianity parameter is increased, reaching in
some cases a 60% increment. The results are very similar
to those obtained and illustrated before for larger non-
gaussianites. The errors on the other cosmological pa-
rameters remain unaffected under the choice of the PPS
parameterization. The dark energy equation of state pa-
rameter is extracted with a smaller error in the PCHIP
PPS case, and also ,h2 and Q.h? are determined with a
smaller error in that case while dealing with either ELGs
or QSOs tracers. The multi-tracer technique provides a
reduction on the fni, error similar to that obtained in
the fxr = 20 case. The top and bottom right panels of
Fig. [[]illustrate the large degeneracies between the non-
gaussianity fnr, parameter and two of the P;; nodes,
Py 5 and Py g for the fiducial value fxi, = 5. Notice that
the degeneracy pattern appears to be independent of the



fiducial LRG ELG QSO All
Quh?] 0.02267 [4.78-1072 4.86-10"° 5.11-10"° 2.38-10~°
Q.h%| 0.1131 |1.75-1072 1.65-1072 1.51-10"2 7.70- 1073
h 0.705 [5.02-1072 5.01-1072 4.69-1072 2.42- 1072
Ns 0.96 |5.68-1072 4.28-1072 4.12-1072 1.96-1072
A, [22-107° 0.341 0.331 0.302 0.156
fNL 20 19.9 10.1 8.56 4.79
w -1 5.38-1072 4.09-1072 6.18-1072 2.36- 1072

TABLE I: Marginalized 1-0 constraints on the parameters associated to the standard PPS assuming a fiducial value fnr, = 20.
The error on the amplitude of the power spectrum is evaluated on A,/(2.2-1077).

fiducial] LRG ELG QSO All
0,h2]0.02267(7.85- 1073 3.65- 105 4.70-10~° 2.30-10~°
Q.h%]0.113112.30-1072 1.11-1072 1.41-1072 6.36- 1073
h | 0.705 |7.67-1072 3.59-1072 4.62-1072 2.12- 1072
P, 5 [1.07099| 0.340 0.169 0.212 0.111
P, |1.04687| 0.419 0.198 0.254 0.119
P,711.02329| 0.451 0.216 0.276 0.125
P, [1.00024| 0.479 0.229 0.293 0.132
P,y |0.97771| 0.482 0.234 0.298 0.134
L 20 32.2 13.3 12.6 6.43
w —1 |4.03-1072 2.80-1072 4.45-1072 2.45-1072

TABLE II: Marginalized 1-0 constraints on the parameters associated to the non-standard PPS assuming fni, = 20.

value of fnr. The addition of the CMB priors brings the
errors on all the cosmological parameters (fyr, included)
to the same values in both PPS parameterizations (stan-
dard power-law and PCHIP PPS prescriptions), as shown

in Tabs. V11l and [VIT1l

We now perform an additional forecast. We focus here
on the shift induced in the local non-gaussianity param-
eter fnr, which we set to zero in the two cosmologies M
and M. For the purpose of this analysis, we fix all of the
P ; to their best-fit values according to the Planck 2013
results, for the case of the M’ cosmology. A shift in fnr,
is expected to compensate for the fact that the P ; PCHIP
nodes are additional parameters in M, while not being
considered as free parameters in the M’ analysis. There-
fore, we displace the P, ; parameters (with j = 5,..,9)
from their fixed fiducial values in M’, i.e. we are adding
them as additional parameters in the cosmological model
(i.e. to be determined by data). Referring to the no-
tations of Eq. , using a shift d¢p, ; = 0.1, which is
smaller than the 1o expected errors (see Tabs. and,
we obtain that the corresponding shift in the fyi, parame-
ter is 005, ~ 2.5, regardless of the exploited dark matter
tracer. This is a quite large displacement of the local non-
gaussianity parameter which will induce a non-negligible
bias in reconstructing the inflationary mechanism. While
the remaining cosmological parameters are also slightly
displaced with respect to their fiducial values, their shifts
will not induce a misinterpretation of the underlying true
cosmology. The non-gaussianity shift 60, could be a
potential problem when extracting the (true) value of
the fnr parameter not only for the DESI survey, but
also for future experiments with improved sensitivities
to non-gaussianities, such as SPHEREx [75]. The com-

bination of all the three possible DESI tracers leads to
a smaller shift in the fyr, parameter (66, ~ 1.6). If
CMB priors are applied, the shift is considerably reduced,
00y, =~ 0.2, which is close to the expectations for non-
gaussianities in the most economical inflationary models,
i.e. within single field slow-roll inflation [92] [140].

IV. CONCLUSIONS

While the simplest inflationary picture describes the
power spectrum of the initial curvature perturbations
Pr (k) by a simple power-law without features, there ex-
ists a large number of well-motivated inflation models
that could give rise to a non-standard PPS. The major-
ity of these models will also generate non-gaussianities.
The large scale structure of the universe provides, to-
gether with the CMB bispectrum, a tool to test primor-
dial non-gaussianites. Plenty of work has been devoted in
the literature to forecast the expectations from upcom-
ing galaxy surveys, such as the Dark Energy Instrument
(DESI) experiment. The forecasted errors and bounds on
the non-gaussianity local parameter fyi, are however usu-
ally derived under the assumption of a standard power-
law PPS. Here we relax such an assumption and compute
the expected sensitivity to fyp, from the DESI experi-
ment assuming that both the precise shape of the primor-
dial power spectrum and the non-gaussianity parameter
need to be extracted simultaneously. If the analysis is
restricted to large scale structure data, the standard er-
rors computed assuming a featureless power spectrum are
enlarged by 60% within the PCHIP PPS parameterization
explored here and when treating each of the possible dark



fiducial LRG ELG QSO All
Quh%] 0.02267 [2.67-10"7 2.63-10"* 2.66-10~* 2.59-10~*
Q.h?| 0.1131 |1.64-1073 1.44-1073 1.52-1072 1.24-1073

h 0.705 |6.66-1072 5.24-1072 5.86- 1072 4.12-1073
Ns 0.96 [6.72-1072 6.41-1072 6.53-10"2 5.84-102
A, 122-107°(3.87-1072 3281072 3.51-1072 2.71-1072
L 20 17.4 9.14 7.58 4.56

w -1 451-1072 3.36-1072 5.44-1072 2.17-1072

TABLE III: As Tab. [[] but including CMB priors, see the text for details.

fiducial LRG

ELG

QSO all

3.92.1071%
1.36-1073

Q,h%]0.02267
Q.h?| 0.1131

h | 0.705 |4.13-1073
P, 5 |1.07099(2.98 - 102
P, |1.04687(2.89 - 1072
P,.7 |1.02329(2.00 - 102
P, 5 |1.00024(1.92 - 1072
P, |0.97771(2.59 - 1072
fNL 20 13.0

w -1

3.79 -
1.10 -
3.14 -
2.69 -
2.10 -
1.73 -
1.76 -
2.31-
6.85
3.24-1072 2.46 - 1072

10717
1073
1073
1072
1072
1072
1072
1072

3.87-10"% 3.74-107 7
1.18-107% 1.04-1073
3.62-1072 2.93.1073
2.77-1072 2.60- 1072
2.32-1072 1.99.1072
1.84-1072 1.69 - 1072
1.86-1072 1.73-1072
2.42-1072 2.22.1072
5.64 4.75
4.0-1072 2.28-1072

TABLE IV: As Table [[I] but including CMB priors.

matter tracers individually. Another potential problem
in future galaxy surveys could be induced by the (wrong)
assumption of a featureless PSS (while nature could have
chosen a more complicated inflationary mechanism lead-
ing to a non-trivial PPS). If future data is fitted to the
wrong PPS cosmology, a shift in |66, | ~ 2.5 would be
inferred (for kmax = 0.1h/Mpc) even if the true cosmol-
ogy has fnr, = 0. The multi-tracer technique helps in
alleviating the former two problems. After combining all
the DESI possible tracers, the forecasted errors on fni,
will be degraded by 40% (when compared to the value
obtained within the standard power-law PPS model) and
the resulting shift will be reduced to |60y, | ~ 1.6. The
addition of Cosmic Microwave Background priors from
the Planck 2013 data on the PPS parameters and on the
dark matter and baryon mass-energy densities lead to
a fnp error which is independent of the PPS parame-
terization used in the analysis. After considering CMB
priors, the value of the shift |06, | is 0.2, which is of
the order of standard predictions for single-field slow-roll
inflation [92, [140).
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