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Resum

Introducció

Els sistemes de lleis de conservació hiperbòliques i les equacions que es
deriven d’aquestes han estat el tema central de moltes lı́nies de recerca
en les darreres quatre dècades, per exemple a l’hora de modelitzar el
flux d’aire al voltant d’un vehicle, meteorologia i prediccions de l’oratge,
o models de flux d’aigua sobre un canal o sedimentació de partı́cules
sòlides petites dispersades en un fluid viscós.

Com que no es coneix la solució analı́tica de gran part d’aquestes
equacions, s’han anat desenvolupant al llarg del temps diferents tècni-
ques per tal d’abordar aquests problemes des d’una perspectiva numèri-
ca, amb mètodes que han anat evolucionant i millorant al llarg d’aquests
anys. El nostre interés se centra en l’obtenció de resultats el més ràpida-
ment possible amb la major precisió possible, però la resolució numèrica
de problemes fı́sics modelats per sistemes de lleis de conservació és un
assumpte delicat, degut a la presència de discontinuı̈tats a la solució.
Aquestes discontinuı̈tats es desenvolupen fins i tot quan les dades inici-
als són suaus. Si calculem solucions discontı́nues de lleis de conservació
emprant mètodes estàndard desenvolupats sota l’assumpció que les so-
lucions són suaus, llavors tı́picament s’obtenen resultats numèrics que
no són suficientment acurats.

Aixı́ doncs, es necessita fer ús d’esquemes shock-capturing, desenvo-
lupats per tal d’obtenir aproximacions fines de solucions discontı́nues
automàticament, sense una detecció explı́cita o condicions de salt, per
tal d’assegurar un tractament adequat de discontinuı̈tats a les simulaci-
ons numèriques.

Els mètodes d’ordre petit són més ràpids i fàcils d’implementar, però
proporcionen resultats menys precisos que els mètodes d’alta resolució.
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Els mètodes High-Resolution Shock-Capturing (HRSC) són l’estat de l’art
de simulacions numèriques per a problemes fı́sics. L’objectiu de dits
mètodes és el d’obtenir alta resolució on la solució és suau, al mateix
temps que les discontinuı̈tats queden ben capturades, tot evitant al ma-
teix temps la formació d’oscil.lacions espúries al seu voltant.

Com que l’inconvenient de les reconstruccions d’alt ordre són les os-
cil.lacions que aquestes poden crear, s’han anat suggerint una sèrie de
tècniques per a combinar el marc d’upwinding, en el qual la discretitza-
ció de les equacions en una malla es realitza d’acord amb la direcció de
propagació de la informació en eixa malla, amb un mecanisme per a pre-
venir la creació i evolució d’aquestes d’oscil.lacions espúries numèriques.
Per tant, la major part d’aquests esquemes emergeixen d’una combinació
d’upwinding i interpolació d’alt ordre.

Els esquemes HRSC robustos i acurats sovint tenen un cost com-
putacional alt, que està relacionat amb la incorporació d’upwinding a
través d’informació caracterı́stica requerida a la frontera de cadascuna
de les cel.les del domini computacional i procediments de reconstrucció
d’alt ordre.

Per tal de resoldre equacions en derivades parcials (EDPs), substi-
tuı̈m el problema continu representat per les EDPs per un conjunt finit
de valors discrets. Aquests s’obtenen discretitzant primer el domini de
les EDPs en un conjunt finit de punts o volums mitjançant una malla.
Tı́picament el domini computacional es divideix en cel.les i les equacions
contı́nues se substitueixen per una aproximació discreta a cada cel.la.

Els esquemes weighted essentially non-oscillatory (WENO), basats en
una discretització espacial per diferències finites, s’han convertit en un
dels mètodes més populars per a aproximar les solucions d’equacions
hiperbòliques; és per això que aquests s’han anat desenvolupant de ma-
nera considerable. Aquests mètodes tenen un ingredient bàsic: les re-
construccions WENO, ço és, “interpoladors de mitjanes en cel.la”, amb
una precisió d’alt ordre i un control d’oscil.lacions.

Aquests esquemes van ser desenvolupats per Liu, Osher i Chan en
[35], com una millora dels esquemes ENO (essentially non-oscillatory),
originalment introduı̈ts i desenvolupats en [16, 18]. L’única diferència
entre aquests esquemes i la versió estàndard de mitjanes en cel.la de
l’ENO és la definició del procediment de reconstrucció que produeix una
aproximació global amb alt ordre de precisió de la solució a partir de les
seues mitjanes en cel.la, que venen donades.

En [25], Jiang i Shu milloraren els esquemes de diferències finites
d’alt ordre WENO definint una nova manera de mesurar la suavitat de
la solució numèrica, que resulta en un esquema WENO de cinquè ordre
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per a stencils de cinc punts, en lloc de l’esquema de quart ordre obtingut
amb la mesura de suavitat original proposada per Liu et al. [35].

Pel que fa a les condicions de frontera d’alt ordre, alguns autors han
abordat aquest problema des de perspectives diferents. En [43] els au-
tors desenvolupen una tècnica basada en interpolació de Lagrange amb
un limitador el qual queda restringit a mètodes de segon ordre i una sola
cel.la fantasma. També relacionats amb el nostre procediment són els
treballs de Shu i col.laboradors [45, 46], on l’equació que es resol s’em-
pra per extrapolar valors de la derivada de la solució numèrica als punts
de la frontera on hi ha condicions inflow, els quals s’aproximen a través
d’un desenvolupament de Taylor. Pel que fa a les fronteres outflow, s’em-
pra una tècnica d’extrapolació basada en el mètode WENO, tot assolint
alt ordre quan les dades són suaus en ambdós casos. Els inconvenients
d’aquesta manera de procedir és que hi ha una dependència del proble-
ma (veure [23, 52] per a un mètode similar aplicat a altres equacions),
que requereix un tractament diferent en funció del tipus de frontera i
que té un cost computacional relativament alt.

Quant a la discretització temporal, la més tı́picament emprada, amb
propietats excel.lents d’estabilitat, eficiència i baix emmagatzemament, i
que ha estat emprada molt freqüentment en molts treballs, és el mètode
de tercer ordre anomenat Runge-Kutta 3 TVD (total variation diminishing)
[15]. Com que apareixen problemes d’estabilitat a partir de mètodes de
Runge-Kutta de quart ordre i superior, en un intent de desenvolupar
una famı́lia d’esquemes amb ordre temporal arbitràriament alt, Qiu i
Shu [39] desenvoluparen en 2003 un esquema basat en el procediment
de Lax-Wendroff, també conegut com la tècnica de Cauchy-Kowalewski.
L’inconvenient en aquest cas és que novament la implementació depèn
fortament de l’equació i les derivades corresponents del flux, aixı́ com un
cost d’implementació i computacional alt.

En aquest treball desenvolupem un seguit de tècniques amb l’objec-
tiu d’obtenir un esquema d’ordre arbitràriament alt, tant espacial com
temporal, a partir de la consecució de dos objectius principals:

• Desenvolupar un esquema d’alt ordre per aplicar condicions de
frontera numèriques d’alt ordre i guardar la informació a les cel-
les fantasma a cada pas temporal. Aquest procediment ha de tenir
en compte la possible geometria complexa de la frontera, de manera
que el procediment siga adientment acurat, i que tinga en compte
la possible presència eventual de discontinuı̈tats prop de la fronte-
ra, amb disseny de pesos contenint la corresponent informació de
suavitat.
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• Dissenyar un esquema d’alt ordre temporal que siga competitiu
amb els esquemes Runge-Kutta TVD, amb menys dificultats d’im-
plementació i menor cost computacional que els proposats per Qiu
i Shu. La implementació d’aquests esquemes no hauria de ser més
difı́cil que la implementació dels esquemes de Runge-Kutta i el cost
computacional corresponent al càlcul de les derivades d’alt ordre no
hauria de ser excessivament alt. Això, juntament amb el fet que so-
lament es requereix una descomposició espectral per pas temporal,
hauria de donar lloc a un esquema més eficient que la famı́lia dels
mètodes de Runge-Kutta. En aquest sentit, també desenvolupem
un mecanisme que evita la propagació de termes grans a les apro-
ximacions de les derivades d’alt ordre al voltant de discontinuı̈tats.

El contingut del text s’organitza com segueix:
En el Capı́tol 2 es recorden els conceptes bàsics i idees relacionades

amb les lleis de conservació hiperbòliques i els mètodes numèrics per a la
seua resolució, essent el procediment de diferències finites de Shu-Osher
i el procediment de reconstrucció WENO el focus central.

Al Capı́tol 3 descrivim un procediment per a mallar automàticament
amb una malla cartesiana la frontera d’un conjunt de dues dimensions
descrit per una corba tancada. El procediment garanteix el càlcul de
totes les interseccions de les rectes de la malla amb la frontera, aixı́ com
el càlcul de totes les rectes normals a la frontera que passen per cada
cel.la fantasma, ambdós calculades per a la precisió desitjada.

En el Capı́tol 4 introduı̈m algunes tècniques per a efectuar les extra-
polacions associades a condicions de frontera numèriques amb precisió
d’ordre arbitràriament alt, amb un procediment que té en compte la pos-
sible formació o aproximació de discontinuı̈tats a la frontera. Per a fer-
ho, es desenvolupen un seguit de dissenys de paràmetres de tolerància,
thresholds, i pesos, en ambdós casos independents de l’escala i adimen-
sionals, que permeten realitzar les extrapolacions sota les consideracions
anteriorment esmentades.

El Capı́tol 5 tracta el desenvolupament d’un esquema d’alt ordre tem-
poral, basat en el procediment de Lax-Wendroff proposat per Qiu i Shu,
amb algunes millores d’implementació, eficiència i resolució. Més es-
pecı́ficament, desenvolupem un esquema en què no és necessari el càlcul
de cap derivada del flux, més ràpid que l’esquema original sota cir-
cumstàncies comuns, degut a una simplificació considerable del càlcul
dels termes d’alt ordre, i capaç de capturar millor les discontinuı̈tats.

Finalment, es presenten algunes conclusions i treball futur al Capı́tol
6.
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Lleis de conservació hiperbòliques

Una llei de conservació hiperbòlica és un sistema d’equacions en deriva-
des parcials de la forma

∂u

∂t
+

d∑
i=1

∂f i(u)

∂xi
= 0, x ∈ Rd, t ∈ R+, (1)

on u = (u1, . . . , um)T : Rd × R+ −→ Rm és el vector de les variables conser-
vades i les funcions f i : Rm −→ Rm reben el nom de fluxos, i = 1, . . . , d.

L’equació (1) ve suplementada amb condicions inicials

u(x, 0) = u0(x), x ∈ Rd,

per tal de resoldre un problema de Cauchy, és a dir, trobar l’estat del
sistema després d’un cert temps t = T , donat l’estat al temps t = 0.
El sistema (1) rep el nom d’hiperbòlic si qualsevol combinació lineal de
les matrius jacobianes de f i,

∑d
i=1 αi(f

i)′(v) és diagonalitzable amb va-
lors propis reals ∀v ∈ Rm. Aquesta condició garanteix l’estabilitat dels
problemes de Cauchy per a sistemes linealitzats sobre estats constants.

També s’han d’especificar condicions de frontera quan es considera
un domini fitat, Ω ⊆ Rd. Una part d’aquesta tesi se centra en l’aborda-
ment de condicions de frontera numèriques sobre dominis complexos en
múltiples dimensions.

El sistema (1) pot escriure’s en forma quasi-lineal com

∂u

∂t
+

d∑
i=1

(f i)′(u)
∂u

∂xi
=
∂u

∂t
+

d∑
i=1

m∑
j=1

∂f i(u)

∂uj

∂uj
∂xi

= 0.

En el cas particular m = 1 l’equació (1) rep el nom de llei de conserva-
ció escalar, que per al cas d = 1 es pot escriure com

ut + f(u)x = 0, x ∈ R, t ∈ R+.

Com a exemples canònics, tenim l’equació d’advecció lineal

ut + aux = 0, a ∈ R,

i l’equació de Burgers

ut + (
u2

2
)x = 0.
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Un altre exemple corresponent a m = 4 i d = 2 són les equacions
d’Euler en dues dimensions, que venen donades per

ut + f(u)x + g(u)y = 0 (2)

amb

u =


ρ
ρvx

ρvy

E

 , f(u) =


ρvx

ρ(vx)2 + p
ρvxvy

vx(E + p)

 , g(u) =


ρvy

ρvyvx

ρ(vy)2 + p
vy(E + p)

 , (3)

on ρ denota la densitat, vx i vy són les components cartesianes del vector
velocitat v, E és l’energia i p és la pressió, on l’energia (densitat) E està
definida com la suma de l’energia cinètica i l’energia interna ρe

E =
1

2
ρ((vx)2 + (vy)2) + ρe, (4)

on e denota l’energia interna especı́fica, unida amb la pressió i densitat
a través d’una equació d’estat termodinàmica, e = e(p, ρ). Emprarem
l’equació d’estat dels gasos perfectes.

e =
p

(γ − 1)ρ
,

on
γ =

cp
cv

(5)

és el quocient dels calors especı́fics a pressió constant, cp, i a volum
constant, cv, i depèn del gas. Per a l’aire pren el valor γ ≈ 1.4.

La versió en una dimensió (d = 1, m = 3) de les equacions s’obté postu-
lant que totes les quantitats depenen solament de x i vy és constant, de
manera que s’obté  ρ

ρvx

E


t

+

 ρvx

ρ(vx)2 + p
vx(E + p)


x

= 0. (6)

Les lleis de conservació provenen habitualment de relacions integrals
que representen la conservació d’una certa quantitat u. Per conservació
s’entén que la quantitat continguda en un cert volum únicament pot
canviar degut al fet que el flux d’eixa quantitat creua les interfı́cies d’un
volum determinat. En una dimensió espacial pot escriure’s com:∫ x2

x1

(u(x, t2)− u(x, t1))dx =

∫ t2

t1

f(u(x1, t))dt−
∫ t2

t1

f(u(x2, t))dt, (7)

on el volum de control en el pla x− t és V = [x1, x2]× [t1, t2] ⊆ R× R.
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Estructura caracterı́stica

S’entén per estructura caracterı́stica d’una llei de conservació hiperbòlica
l’estructura de valors i vectors propis de la matriu jacobiana dels fluxos,
on les velocitats caracterı́stiques es corresponen amb els valors propis λik
de les matrius jacobianes (f i)′, i = 1, . . . , d, k = 1, . . . ,m. En el cas uni-
dimensional, les caracterı́stiques per a una funció u són corbes (t, x(t))
verificant x′(t) = λk(u(x(t), t)). Per a equacions escalars, aquesta con-
dició es redueix a x′(t) = f ′(u(x(t), t) = f ′(u(x(0), 0)), de manera que les
caracterı́stiques són rectes de pendent f ′(u0(x(0))), sobre les quals la in-
formació roman constant.

Solucions febles i condicions de Rankine-Hugoniot

Entenem per solució clàssica de (1) una funció suau u : Rd × R+ −→ Rm
que satisfà les equacions puntualment. No obstant això, relaxant les
condicions imposades per (1) es poden considerar solucions des d’un
context més general i fı́sicament rellevant.

Definició 1. Una funció u(x, t) és solució feble de (1) donades unes certes
dades inicials u0(x) si es compleix

∫
R+

∫
Rd

u(x, t)
∂φ

∂t
(x, t) +

d∑
j=1

f j(u)
∂φ

∂xj

 dxdt = −
∫
Rd
φ(x, 0)u0(x)dx

per a tot φ ∈ C1
0 (Rd × R+), on C1

0 (Rd × R+) és l’espai de les funcions
contı́nuament diferenciables amb suport compacte en Rd × R+.

Les condicions de Rankine-Hugoniot caracteritzen les solucions febles
en termes del moviment de les discontinuı̈tats, i proporciona informació
sobre el comportament de les variables conservades al llarg de les dis-
continuı̈tats. Aquestes venen donades per

[f ] · n = [u](n · s), (8)

on f = (f1, . . . fd) és una matriu contenint els fluxos, u és la solució, s és
la velocitat de propagació de la discontinuı̈tat i n és el vector normal a la
discontinuı̈tat. La notació [·] indica el salt d’una variable al llarg d’una
discontinuı̈tat. En el cas particular de problemes escalars la condició
anterior és

f(uL)− f(uL) = s(uL − uR),
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on uL i uR són els estats a l’esquerra i a la dreta de la discontinuı̈tat,
respectivament.

Les solucions febles no són necessàriament úniques, i per tant es
proposen condicions addicionals, anomenades entròpiques, que identifi-
quen la solució fı́sicament rellevant (entròpica) del problema.

Mètodes numèrics per a lleis de
conservació

Tot i que en alguns casos pot comprovar-se l’existència de solucions fe-
bles entròpiques per a lleis de conservació hiperbòliques, en molts pocs
casos es coneix la solució analı́tica, on el coneixement d’aquestes que-
da restringit essencialment a equacions lineals o alguns problemes de
Riemann. És per això que en la majoria de casos cal emprar mètodes
numèrics per aproximar les solucions.

Considerem un problema de Cauchy escalar en una dimensió espacial{
ut + f(u)x = 0, x ∈ R, , t ∈ R+,
u(x, 0) = u0(x),

(9)

on u, f : R −→ R.
Per definir una malla, considerem el subconjunt discret de punts

(nodes) {xj}j∈Z, xj ∈ R ∀j i suposem que la malla és uniforme, ço és,
xj − xj−1 = ∆x > 0, ∀j ∈ Z. Aquesta constant s’anomena grandària de la
malla i l’abreviem per h = ∆x. A partir dels punts {xj} definim les cel.les
cj com els subintervals el centre de les quals és xj.

cj =

[
xj−1 + xj

2
,
xj + xj+1

2

]
=
[
xj− 1

2
, xj+ 1

2

]
.

Una malla es defineix, depenent del context, com o bé el conjunt de cel.les
{cj}j∈Z o el conjunt de nodes {xj}j∈Z.

Discretitzem la variable temporal definint punts en temps {tn}n∈N,
amb tn < tn+1, ∀n ∈ N. Si tn+1 − tn és constant amb respecte de n,
ho denotem per ∆t i l’anomenem increment temporal. Denotarem per
un = {unj }j∈Z la informació corresponent a la solució exacta u(xj , t

n) de
(9).

En problemes reals, el domini de definició de les equacions està res-
tringit a un subconjunt fitat de R i un interval temporal finit, de manera
que la malla s’ha de restringir a un nombre finit de nodes o cel.les. Si
considerem l’interval I = [0, 1] i un temps fixat T > 0, aleshores podem
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prendre nombres positius N i M i definir un conjunt de nodes {xj}0≤j<M
donat per xj = (j + 1

2)∆x, amb ∆x = 1
M . Els punts en temps {tn}0≤n<N

poden definir-se per tn = n∆t, amb ∆t = 1
N .

L’explicació anterior pot estendre’s per al cas multidimensional. Con-
siderem per exemple una llei de conservació escalar en 2D de la forma:{

ut(x, y, t) + f(u(x, y, t))x + g(u(x, y, t))y = 0, (x, y) ∈ R× R, t× R+,
u(x, y, 0) = u0(x),

i dos conjunts de punts ordenats {xi}i∈Z i {yj}j∈Z, que satisfan xi < xi+1

per a tot i ∈ Z i yj < yj+1 per a tot j ∈ Z. A més, assumim com abans
que ∆x = xi+1 − xi i ∆y = yj+1 − yj són constants amb respecte de i i j,
respectivament. Podem definir cel.les ci,j per

ci,j =
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
,

de manera que cada node (xi, yj) és el centre de la cel.la ci,j.

Mètodes conservatius

La forma més senzilla d’aproximar derivades és mitjançant diferències
finites lineals. Si la solució presenta alguna singularitat llavors, en ge-
neral, aquestos mètodes no proporcionen aproximacions satisfactòries
de les derivades parcials que apareixen a les equacions. A més, en trac-
tar solucions discontı́nues, pot haver més d’una solució feble i el mètode
pot no convergir a la correcta o fins i tot convergir a una funció que no
és una solució feble de l’EDP. Existeix un requeriment simple, el com-
pliment del qual garanteix que el mètode, en cas de convergir, ho faça a
una solució feble.

Definició 2. Un mètode numèric es diu conservatiu si pot escriure’s de la
forma

un+1
j = unj −

∆t

∆x

(
f̂(unj−p+1, . . . , u

n
j+q)− f̂(unj−p, . . . , u

n
j+q−1)

)
, (10)

on la funció f̂ : Rp+q → R rep el nom de flux numèric i p, q ∈ N, p, q ≥ 0.

El propòsit dels mètodes conservatius és el de reproduir a un nivell
discret la conservació de les variables fı́siques en les equacions contı́nues.
De fet, (10) es pot veure com una versió discreta de la forma integral (7)
de l’EDP.

Un requeriment essential per al flux numèric és la condició de con-
sistència:
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Definició 3. Direm que el flux numèric d’un mètode numèric conservatiu
és consistent amb la llei de conservació si el flux numèric f̂ es redueix al
flux exacte f per al cas de dades constants, i.e.,

f̂(u, . . . , u) = f(u).

La condició de consistència és necessària per tal de garantir que els
mètodes conservatius proporcionen una forma discreta de conservació,
anàloga a la llei de conservació.

En general, es requereixen certes condicions de suavitat, en la forma
en què f̂ s’aproxima a un cert valor f(u), llavors suposem que el flux
numèric és localment Lipschitz contı́nua en cada variable, és a dir, si x
és un punt en un espai normat M aleshores existeix una constant K i
un entorn N(x) de x tal que ||f(y)− f(x)|| ≤ K||y − x||, ∀y ∈ N(x).

El resultat principal sobre mètodes conservatius és el teorema de Lax-
Wendroff, que demostra que si produeixen una seqüència d’aproxima-
cions que convergeix a alguna funció u(x, t) segons es refina la malla,
aleshores aquesta funció és una solució feble de la llei de conservació:

Teorema 1. (Lax-Wendroff, [31, 22]) Considerem una seqüència de malles
indexades per k = 1, 2, . . ., amb grandàries de malla (∆xk,∆tk), verificant

lim
k→+∞

∆xk = 0,

lim
k→+∞

∆tk = 0.

Siga {uk(x, t)} la funció constant a trossos definida a partir de la solució
numèrica obtinguda per un mètode conservatiu, consistent amb (1), en la
malla k-èssima. Si la variació total de la funció uk(·, t) està uniformement
fitada en k, t, o el que és el mateix, supk,t∈[0,T ] TV (uk(·, t)) < ∞ i uk(x, t)
convergeix en L1

loc a una funció u(x, t) quan k → ∞, aleshores u és una
solució feble de la llei de conservació.

Cal imposar condicions addicionals per tal de convergir a solucions
entròpiques [38, 44]; altrament, els mètodes conservatius poden generar
shocks que violen l’entropia, els quals es corresponen a solucions febles
no entròpiques.

Esquema conservatiu de diferències finites de
Shu-Osher

Per tal d’obtenir esquemes conservatius de diferències finites d’alt or-
dre per resoldre lleis de conservació hiperbòliques, emprem la tècnica de
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Shu-Osher [42]. Els esquemes de tercer ordre o superior multidimen-
sionals que s’obtenen amb aquesta tècnica són més eficients, tant en
l’execució com implementació, que el seu esquema homòleg de volums
finits. Una restricció per al cas d’esquemes de diferències finites d’alt
ordre és que es requereixen malles cartesianes, la qual cosa és un incon-
venient seriós a l’hora de tractar amb dominis de frontera corbada. Com
veurem, una contribució essencial d’aquest treball és mostrar que és
possible superar aquest inconvenient emprant tècniques d’extrapolació
adients per a dades a les cel.les fantasma.

La idea bàsica que fa possible el procediment de Shu-Osher es recull
al lema següent:

Lema 1. Si les funcions g, ϕ satisfan

g(x) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

ϕ(ξ)dξ,

aleshores

g′(x) =
ϕ
(
x+ ∆x

2

)
− ϕ

(
x− ∆x

2

)
∆x

.

Si apliquem aquest resultat a g(x) = f(u(x, t)), per a un valor de t
fix, la propietat conservativa de la discretització espacial s’obté definint
implı́citament la funció ϕ per:

f(u(x, t)) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

ϕ(ξ, t)dξ,

de manera que la derivada espacial en

ut + f(u)x = 0

s’obté exactament a partir d’una fórmula de diferències finites conserva-
tives a les fronteres de les cel.les,

f(u)x =
ϕ
(
x+ ∆x

2 , t
)
− ϕ

(
x− ∆x

2 , t
)

∆x
.

Obviant la dependència de t en la presentació de la semidiscretització
espacial, observem que es poden calcular aproximacions d’alt ordre de
ϕ
(
x± ∆x

2

)
a partir de valors nodals coneguts de f (que són mitjanes en

cel.la de ϕ) i un procediment de reconstrucció R. Si ϕ̂ és una aproximació
de ϕ obtinguda a partir de valors puntuals de f en un stencil al voltant



xx

de xj+ 1
2

tal que ϕ(xj+ 1
2
) = ϕ̂(xj+ 1

2
) + d(xj+ 1

2
)∆xr + O(∆xr+1), per a una

funció Lipschitz d, llavors podem discretitzar

f(u)x(xj) =
ϕ̂(xj+ 1

2
)− ϕ̂(xj− 1

2
)

∆x
+O(∆xr),

és a dir, l’error local de truncament de l’esquema semidiscret és O(∆xr).
Denotem per R(f̄j−s1 , . . . , f̄j+s2 , x) la reconstrucció local genèrica de

f(x) a partir de les seues mitjanes en cel.la {f̄j−s1 , . . . , f̄j+s2}, on s1 i s2

són enters no negatius.
A l’hora d’obtenir reconstruccions, un altre aspecte important a tenir

en compte és l’upwinding, en el qual la discretització de les equacions
en una malla es realitza d’acord amb la direcció de propagació de la
informació en dita malla, és a dir, s’ha de tenir en compte el costat en el
qual la informació (vent) flueix, donat pels signes dels valors propis de la
matriu jacobiana.

Les aproximacions f̂n
j+ 1

2

s’obtenen mitjançant reconstruccions esbiai-

xades d’alt ordre R±(f̄j−s1 , . . . , f̄j+s2 , x), ço és, interpoladors de mitjanes
en cel.la els stencils dels quals tenen més punts al costat de l’upwind
dels punts on aquests s’avaluen. En aquest treball, f̂ s’obté mitjançant
la partició de fluxos de Donat-Marquina [11] amb el mètode de recons-
trucció WENO, que veurem tot seguit.

El mètode de Donat-Marquina empra descomposicions caracterı́stiques
locals dels jacobians del flux i projeccions de les variables d’estat i fluxos
en camps caracterı́stics. Per al cas de cinquè ordre la fórmula s’escriu
com:

f̂i+ 1
2

=

m∑
k=1

r+,k
(
R+

(
l+,k · f+,k

i−2 , . . . , l
+,k · f+,k

i+2 ;xi+ 1
2

))
+

m∑
k=1

r−,k
(
R−

(
l−,k · f−,ki−1 , . . . , l

−,k · f−,ki+3 ;xi+ 1
2

))
,

(11)

on f±,kl = f±,k(ul) es defineix més endavant, r±,k = rk(u±
i+ 1

2

), l±,k = lk(u±
i+ 1

2

)

són els vectors propis normalitzats dreta i esquerra corresponents al va-
lor propi λk(f ′(u±i+ 1

2

)) del jacobià del flux f ′(u±
i+ 1

2

), respectivament, calcu-

lat a u±
i+ 1

2

, on

u+
i+ 1

2

= I+(ui−2, . . . , ui+2;xi+ 1
2
), u−

i+ 1
2

= I−(ui−1, . . . , ui+3;xi+ 1
2
),
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per a certs interpoladors I±. f±,k satisfan f+,k+f−,k = f , ±λk((f±,k)′(u)) >
0 per a u en algun rang rellevantMi+ 1

2
prop de u±

i+ 1
2

, i venen donats per:

(f−,k, f+,k)(v) =


(0, f(v)), λk(f

′(u)) > 0, ∀u ∈Mi+ 1
2

(f(v), 0), λk(f
′(u)) < 0, ∀u ∈Mi+ 1

2

(F−αk
i+ 1

2

(v), Fαk
i+ 1

2

(v)), ∃u ∈Mi+ 1
2
/λk(f

′(u)) = 0,

on αk
i+ 1

2

≥ |λk(f ′(u))| per a u ∈Mi+ 1
2

i Fα(v) = 1
2(f(v) + αv).

Esquemes WENO en diferències finites

Les reconstruccions WENO apareixen per primera vegada en [35]. Ex-
pliquem el seu funcionament tot seguit. Denotem h = ∆x. Si f és suau
en l’stencil S2r−1

j+r−1 = {xj−r+1, . . . , xj+r−1}, aleshores pot calcular-se una
aproximació d’ordre (2r − 1) al punt xj+ 1

2
a partir del polinomi p2r−1

r−1 que

reconstrueix f (f i p2r−1
r−1 tenen les mateixes mitjanes en cel.la) a eixe

stencil:
p2r−1
r−1 (xj+ 1

2
) = f(xj+ 1

2
) +O

(
h2r−1

)
.

Si considerem els r possibles substencils Srj+k = {xj−r+1+k, . . . , xj+k},
k = 0, . . . , r − 1, de grandària r de S2r−1

j+r−1 i les seues corresponents re-
construccions polinòmiques de grau r − 1, prk(x), complint prk(xj+ 1

2
) =

f(xj+ 1
2
) + O(hr), aleshores una reconstrucció WENO (esbiaixada cap a

l’esquerra) de f ve donada per la combinació convexa:

q(xj+ 1
2
) =

r−1∑
k=0

wkp
r
k(xj+ 1

2
), (12)

on:

wk ≥ 0, k = 0, . . . , r − 1,

r−1∑
k=0

wk = 1.

i la corresponent avaluació de l’operador de reconstrucció (esbiaxada cap
a l’esquerra) ve donada per:

R(f̄j−r+1, . . . , f̄j+r−1) =

r−1∑
k=0

ωj,kp
r
j,k(xj+ 1

2
).
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Els pesos haurien de triar-se amb l’objectiu d’assolir el màxim ordre
de precisió possible, 2r − 1, allà on f siga suau, i ordre r a la resta de
zones.

De la mateixa manera que en la versió WENO original [35], primer
notem que per a r ≥ 2, es poden calcular uns coeficients Crk, anomenats
pesos òptims, tals que

p2r−1
r−1 (xj+ 1

2
) =

r−1∑
k=0

Crkp
r
k(xj+ 1

2
),

on

Crk ≥ 0 ∀k,
r−1∑
k=0

Crk = 1.

En [2], Aràndiga et al. proporcionen diferents fórmules explı́cites per a
les reconstruccions polinòmiques i els pesos òptims.

Notem que per tal d’acomplir els requeriments dels pesos no lineals
wk és suficient definir-los de manera que es verifique la condició:

wk = Ck +O(hm), k = 0, . . . , r, (13)

amb m ≤ r − 1. Aleshores, es verifica (veure [2], [35]) que

f(xj+ 1
2
)− q(xj+ 1

2
) = O(hr+m), (14)

i, si m = r − 1 en (13), llavors l’aproximació (14) té ordre òptim 2r − 1.
Un altre requeriment que han de verificar els pesos és que aquells que

es corresponen amb polinomis construı̈ts emprant stencils on la funció
presenta una singularitat haurien de ser molt petits, de manera que la
reconstrucció WENO no té en compte eixos polinomis.

A [35] es defineixen pesos satisfent la combinació de condicions ante-
riors com se segueix:

wk =
αk∑r−1
i=0 αi

, αk =
Crk

(ε+ Ik)p
, k = 0, . . . , r − 1, (15)

on p ∈ N, Crk són els pesos òptims, Ik = Ik(h) és un indicador de suavitat
de la funció f a l’stencil Sk i ε és un nombre positiu i petit, possible-
ment depenent de h, introduı̈t per tal d’evitar denominadors nuls, però,
com veurem més endavant en aquesta tesi, té una forta influència en el
rendiment global de les aproximacions a punts crı́tics i discontinuı̈tats.
D’acord amb la definició, els pesos satisfan

∑
k ωk = 1 independentment

de la tria dels indicadors de suavitat.



RESUM xxiii

Emprem els indicadors de suavitat de Jiang i Shu (veure [25]):

Ik =
r−1∑
l=1

∫ x
j+ 1

2

x
j− 1

2

h2l−1(p
(l)
k (x))2dx, (16)

El terme h2l−1 fou introduı̈t per a evitar factors depenents de h a les
derivades dels polinomis de reconstrucció pk(x).

Mètodes de Runge-Kutta TVD

En acabar el procediment de semidiscretització espacial, resolem el sis-
tema d’equacions diferencials ordinàries resultant

duj(t)

dt
+D(u(t))j = 0, D(u(t))j =

f̂j+ 1
2
− f̂j− 1

2

∆x
, ∀j, (17)

emprant un resoledor per a equacions diferencials ordinàries (EDO). En-
tre els més freqüentment emprats en aquest context, trobem els mètodes
de Runge-Kutta TVD desenvolupats per Shu i Osher en [41]. La formu-
lació general és la següent:

u(0) = un,

u(i) =
i∑

k=0

(
αiku

(k) − βik∆tD(u(k))
)
, 1 ≤ i ≤ r̄,

un+1 = u(r̄),

on r̄ depèn de l’ordre de precisió de l’esquema de Runge-Kutta particular
i αik, βik són els coeficients que també depenen del mètode (per a més
detalls, veure [41, 42]). Especı́ficament, en aquest treball emprem la
versió de tercer ordre:

u(1) = un −∆tD(un),

u(2) =
3

4
un +

1

4
u(1) − 1

4
∆tD(u(1)),

un+1 =
1

3
un +

2

3
u(2) − 2

3
∆tD(u(2)).

(18)

Notem que podem desenvolupar l’expressió de (18) com:

un+1
j = unj −

∆t

∆x

[(
1

6
f̂j+ 1

2
(un) +

1

6
f̂j+ 1

2
(u(1)) +

2

3
f̂j+ 1

2
(u(2))

)
−
(

1

6
f̂j− 1

2
(un) +

1

6
f̂j− 1

2
(u(1)) +

2

3
f̂j− 1

2
(u(2))

)]
.

(19)
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Com que u(1) i u(2) s’obtenen a partir de un, podem escriure (19) de
manera conservativa:

un+1
j = unj −∆t

(
f̂RK3
j+ 1

2

(un)− f̂RK3
j− 1

2

(un)
)
,

on el flux numèric ve donat per

f̂RK3(un) =
1

6
f̂(un) +

1

6
f̂(u(1)) +

2

3
f̂(u(2)).

L’error local de truncament de l’esquema completament discret està re-
lacionat amb els errors locals de truncament de la semidiscretització es-
pacial i la del resoledor d’EDOs per a la discretització temporal.

Mallat de dominis complexos

La primera pregunta que s’esdevé a l’hora d’abordar un problema amb
condicions de frontera és com discretitzar aquestes de manera que el
mètode numèric puga combinar adequadament les condicions de fronte-
ra requerides amb dades procedents dels nodes interiors.

Per a fer-ho, proposem un procediment de mallat basat en el càlcul
d’interseccions entre les rectes del mallat, contenint informació nodal
i de la frontera ∂Ω. En aquest treball, ens centrarem en la resolució
de sistemes en dues dimensions de lleis de conservació amb dominis
complexos.

Suposem en primer lloc que Ω ⊆ R2 és un domini simplement connex
tal que ∃α : [a, b] → R2, α ∈ C2 a trossos corba tancada (és a dir, α(a) =
α(b)) tal que α([a, b]) = ∂Ω. En un cas més general, podem considerar
dominis la frontera dels quals és la unió d’un nombre finit de corbes
tancades.

Detecció segura d’interseccions

Hi ha moltes maneres de mallar un conjunt, però com que els mètodes
numèrics emprats en aquest treball per a resoldre les equacions fı́siques
són esquemes de diferències finites ens centrarem en el cas de malles
cartesianes, és a dir, malles les cel.les de les quals són rectangulars i
idènticament distribuı̈des. Per tant, hem de desenvolupar una estratègia
per a automatitzar el procediment de mallat, ço és, el càlcul de totes les
interseccions de la frontera amb les rectes de la malla, cel.les fantasma,
rectes normals, etc. independentment de la parametrització de la corba.



RESUM xxv

Siga α : [a, b] → R2 una corba C2([a, b],R2) tal que α(a) = α(b). Supo-
sem que volem establir una malla al seu interior amb rectes horitzontals
i verticals de la forma xk = x0 + khx i yk = y0 + khy, k ∈ Z, amb hx, hy > 0
els espaiats vertical i horitzontal, respectivament. Tot seguit il.lustrem el
procediment de cerca d’interseccions de les rectes horitzontals del ma-
llat.

Siga L1 una fita superior de la primera derivada de α2 en [a, b] (és a dir
una constant de Lipschitz) i L2 una fita superior de la segona derivada de
α2 en [a, b]. Llavors es pot comprovar que efectuant el salt de paràmetre

∆s = max{∆s1,∆s2}, on ∆s1 =
hy
L1
, ∆s2 =

2hy√
|α′2(s0)|2 + 2L2hy + |α′2(s0)|

es garanteix la detecció de totes i cadascuna de les possibles intersecci-
ons de la malla amb ∂Ω.

Mètode de Newton amb control de bisecció

El procediment previ redueix el problema del càlcul d’interseccions a la
cerca d’arrels d’una funció contı́nua dins d’un cert interval. Per a ser
més precisos, si tenim y0 + khy ≤ α2(s0) ≤ y0 + (k + 1)hy i y0 + (k + 1)hy ≤
α2(s1) ≤ y0 + (k + 2)hy llavors pel teorema de Bolzano ∃c ∈ [s0, s1] tal que
α2(c) = y0 + (k + 1)hy. Si definim f(s) = α2(s) − (y0 + (k + 1)hy), aleshores
f(s0) ≤ 0, f(s1) ≥ 0 i c és una arrel de f , és a dir, f(c) = 0. Per tant, aquest
problema pot traduir-se a la cerca d’una arrel de la funció f . Note’s que
f és una funció de classe C2([s0, s1]) que canvia de signe a eixe interval,
i per tant pel teorema de Bolzano ∃c ∈ (s0, s1) tal que f(c) = 0. Denotem
per simplicitat [a, b] = [s0, s1]. El procediment es descriu tot seguit.

Inicialment, prenem a0 = a, b0 = b tot complint-se f(a0)f(b0) < 0 i com
a punt inicial x0 = a+b

2 . Suposem que estem en el pas n, amb an−1 ≤
an < bn ≤ bn−1 complint-se f(an)f(bn) < 0 i xn com a aproximació de c.
Aleshores calculem xn+1 bé siga pel mètode de Newton o el mètode de la
secant i aleshores si f(xn+1) està suficientment prop de zero llavors el
procediment s’atura ja que s’ha trobat l’arrel. Altrament, considerem els
dos casos següents:

• Si |f(xn+1)| > |f(xn)|
2

o xn+1 6∈ [an, bn], aleshores el ràtio de con-

vergència és, en termes generals, pitjor que el mètode de la bisecció
o bé el nou punt de la iteració està fora dels lı́mits de seguretat, i

aleshores redefinim xn+1 com xn+1 =
an + bn

2
.
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• Si |f(xn+1)| ≤ |f(xn)|
2

i xn+1 ∈ [an, bn], aleshores el ràtio de con-

vergència local és més o menys el mateix o millor que el mètode
de la bisecció i el punt es troba dins de la zona de seguretat, i per
tant mantenim el valor de xn+1.

En ambdós casos, si sign(f(xn+1)) = sign(f(an)) aleshores definim an+1 =
xn+1 i bn+1 = bn; altrament, si sign(f(xn+1)) = sign(f(bn)) aleshores defi-
nim an+1 = an i bn+1 = xn+1.

El procediment s’atura quan |f(xn+1)| o |bn+1 − an+1| estan per baix
d’una certa tolerància. Aquest algorisme garanteix que el ràtio de con-
vergència és almenys el que proporciona el mètode de la bisecció.

Cel.les fantasma

Els esquemes WENO d’ordre senar, 2` − 1, empren un stencil (conjunt
d’ı́ndexs consecutius) de 2` punts, per tant es necessiten ` cel.les addici-
onals a ambdós costats de cada cel.la per tal d’efectuar un pas temporal.
Per a cel.les properes a la frontera alguna d’aquestes cel.les addicionals
pot trobar-se fora del domini computacional i en aquest cas reben el nom
de cel.les fantasma i, en termes dels seus centres, venen donades per:

GC := GCx ∪ GCy,

on

GCx := {(xr, ys) : 0 < d (xr, Πx (Ω ∩ (R× {ys}))) ≤ khx, r, s ∈ Z} ,

GCy := {(xr, ys) : 0 < d (ys, Πy (Ω ∩ ({xr} × R))) ≤ khy, r, s ∈ Z} ,

on Ω és el domini computacional, Πx i Πy denoten les projeccions a les
respectives coordenades i

d(a,B) := inf{|b− a| : b ∈ B},

per a un a ∈ R donat i B ⊆ R. Notem que d(a, ∅) = +∞, ja que, per
conveni, inf ∅ = +∞.

Rectes normals

Ens centrem ara en la configuració 2D i fronteres amb condicions Di-
richlet, com ara condicions reflectants per a les equacions d’Euler. En
aquesta situació, sembla raonable que l’extrapolació a una determinada
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cel.la fantasma P = (x∗, y∗) ∈ GC estiga basada en el valor especificat al
punt de la frontera més proper. Es pot provar que un punt P0 ∈ ∂Ω que
compleix

‖P − P0‖2 = min{‖P −B‖2 : B ∈ ∂Ω}

també satisfà que la recta determinada per P i P0 és normal a la corba
∂Ω a P0 si ∂Ω és diferenciable en P0. Dit d’una altra manera, suposant
que P0 = α(s∗), es verifica la següent condició:

〈P − P0, α
′(s∗)〉 = 0.

Açò indueix un procediment iteratiu per a aproximar automàticament a
través del mètode de Newton o de la secant la recta normal associada a
cada node fantasma P mitjançant la cerca de l’arrel de la funció

FP (s) = 〈P − α(s), α′(s)〉.

La unicitat de P0 es té sempre que P estiga suficientment prop de la
frontera; en tal cas, denotem N(P ) = P0.

L’argument anterior suggereix que una bona estratègia és realitzar
una rotació (virtual) del domini i obtenir dades en alguns punts Ni ∈ Ω
de la recta que passa per P i N(P ) (recta normal a ∂Ω que passa per P ) i
aleshores emprar una extrapolació unidimensional de les dades en eixos
punts al segment per a aproximar el valor de P .

Els punts Nq, 1 ≤ q ≤ R + 1, s’obtenen a partir d’interpolació o extra-
polació unidimensional d’una filera de dades nodals del domini compu-
tacional, a partir d’un conjunt de punts Nq,i ∈ D, 1 ≤ q, i ≤ R + 1, que
es troben a la mateixa coordenada x o y, en funció de l’angle de la recta
normal de manera que la distància total siga la mı́nima possible.

En cas de condicions Dirichlet, anomenant P0 = N(P ), cal efectuar
un pas intermig entre l’obtenció dels Nq, 1 ≤ q ≤ R + 1, i l’extrapolació a
P per tal que l’stencil final d’extrapolació siga equiespaiat. Per a fer-ho,
s’extrapola la informació obtinguda al primer pas dels nodes de la recta
normal Nq a nous punts Pq, 1 ≤ q ≤ R, de manera que juntament amb P0

formen un stencil equiespaiat.
En el cas que les condicions de frontera proporcionen valors per a

la component normal d’una incògnita vectorial −→v relacionada amb el
sistema de coordenades (com és el cas de les condicions de frontera re-
flectants per a les equacions d’Euler), aleshores hom defineix

−→n =
P −N(P )

‖P −N(P )‖
,
−→
t = −→n ⊥,
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i obté les components normal i tangencial de −→v a cada punt Ni del seg-
ment esmentat per:

vt(Ni) = −→v (Ni) ·
−→
t , vn(Ni) = −→v (Ni) · −→n .

El procediment d’extrapolació s’aplica a vt(Ni) per tal d’aproximar vt(P ) i
a vn(Ni) i vn(N(P )) = 0 per a aproximar vn(P ). Una vegada obtingudes les
aproximacions dels valors vt(P ), vn(P ), l’aproximació a −→v (P ) s’estableix
com

−→v (P ) = vt(P )
−→
t + vn(P )−→n .

Notem que tots els passos del procediment d’extrapolació d’informació a
les cel.les fantasma descrit anteriorment requereix únicament la realit-
zació d’interpolacions o extrapolacions unidimensionals.

Tècniques d’extrapolació per a condicions
de frontera numèriques

Per tal d’aconseguir un esquema espacial completament d’alt ordre, te-
nint en compte la possible formació o posicionament eventual d’una dis-
continuı̈tat prop de la frontera, s’ha de tindre especial cura a l’hora de
plenar les cel.les fantasma mitjançant condicions de frontera numèriques,
ja que l’interpolació/extrapolació pot produir errors grans si hi ha una
discontinuı̈tat en la regió determinada pels nodes d’interpolació i el punt
d’avaluació. A l’hora d’implementar l’extrapolació a les cel.les fantasma,
per tal d’evitar aquesta pèrdua de precisió considerable o fins i tot una
fallida completa de la simulació, és necessari tractar aquesta qüestió
amb molt de compte.

Alguns autors han abordat aquest problema des de perspectives dife-
rents. En [43] els autors desenvolupen una tècnica basada en interpo-
lació de Lagrange amb un limitador el qual està restringit a mètodes de
segon ordre amb una única cel.la fantasma. Podem trobar altres articles
que també estan relacionats amb el nostre procediment, com ara els tre-
balls de Shu i col.laboradors, [45, 46], on l’equació a resoldre s’empra per
a extrapolar valors de les derivades de la solució numèrica a punts de la
frontera on hi ha establides condicions inflow i aleshores aproximen va-
lors fantasma mitjançant un desenvolupament de Taylor. Per a fronteres
outflow, s’empra una tècnica d’extrapolació basada en el mètode WENO,
tot assolint alt ordre quan les dades són suaus en ambdós casos. Els in-
convenients d’aquest procediment és que el mètode depèn del problema
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i requereix tractaments diferents per a diferents tipus de frontera, a més
de tenir un cost computacional relativament alt.

En aquest treball s’introdueixen noves tècniques per a l’extrapolació
d’informació interior a cel.les fantasma mitjançant condicions de fronte-
ra (en cas d’haver-ne) i dades interiors properes a una cel.la fantasma
donada. Aquest procediment és capaç de detectar canvis abruptes a les
dades.

Totes les tècniques d’extrapolació a la frontera descrites en aquesta
secció ens asseguren l’obtenció d’aproximacions de l’ordre adequat sota
certes condicions.

Selecció d’stencils mitjançant thresholding

Suposem que tenim informació en un stencil amb nodes no necessàri-
ament equiespaiats, x0 < · · · < xR (R ≥ r), amb valors nodals correspo-
nents ui = u(xi), i que volem interpolar a un cert node x∗.

El node clau a partir del qual establim un criteri de proximitat en el
seu corresponent valor nodal és el node interior més proper a x∗, és a dir,
triem el node xi0, i0 ∈ {0, . . . , R} tal que:

i0 = argmin
0≤i≤R

|xi − x∗|.

L’objectiu és ara aproximar el valor que el node x∗ hauria de tenir, basant-
se en la informació del substencil “més suau” i el node xi0.

Siga r el grau dels polinomis interpoladors que utilitzarem en la re-
construcció, que satisfà r+1 ≤ dR+1

2 e. Aleshores tenim R−r+1 substencils
possibles:

Sm = {xm, . . . , xm+r}, 0 ≤ m ≤ R− r.

Denotem per pm(x) l’interpolador associat a l’stencil Sm, 0 ≤ m ≤ R−r.
Si hi ha suavitat suficient a tot l’stencil, llavors es té

u(xi)− pm(xi) = O(hr+1
x ), i = 1, . . . , R, (20)

i per tant
u(xi) = u(xi0) + (pm(xi)− pm(xi0)) +O(hr+1

x ).

Aleshores seleccionem el substencil que satisfà:

m0 := argmin
0≤m≤R−r

r∑
k=1

∫ xm+r

xm

(xm+r − xm)2k−1p(k)
m (x)2dx, (21)
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i definim
vi := ui0 + (pm0(xi)− pm0(xi0)). (22)

Finalment, siga δ ∈ (0, 1] un threshold i definim el conjunt d’ı́ndexs Iδ
per

Iδ := {i ∈ {0, . . . , R} : δ (|ui − ui0 |+D(xi)) ≤ |vi − ui0 |+D(xi)} , (23)

on

D(x) :=
r∑
j=1

∣∣∣(x− xi0)jp(j)
m0

(xi0)
∣∣∣ .

Notem que Iδ 6= ∅, ja que i0 ∈ Iδ. L’stencil que utilitzarem per interpolar
és el substencil de Iδ de grandària r+1 (o inferior si Iδ no conté suficients
punts) composat per i0 i els punts més propers.

Com a darrer filtre (opcional), si u∗ és el valor obtingut a partir de
l’interpolació Lagrange de l’stencil resultant, S = {xi : i ∈ Iδ} , aleshores
el mateix criteri de threshold pot aplicar-se a eixe valor, tot resultant en
un valor d’extrapolació definitiu:

u∗def =

{
u∗ if δ′ (|u∗ − ui0 |+D(x∗)) ≤ |pm(x∗)− pm(xi0)|+D(x∗)
ui0 if δ′ (|u∗ − ui0 |+D(x∗)) > |pm(x∗)− pm(xi0)|+D(x∗)

(24)

amb 0 ≤ δ′ ≤ 1.

Extrapolació amb pesos

Considerem un stencil de nodes equiespaiats x0 < · · · < xr amb valors
nodals corresponents uj = u(xj). Denotem per J = {0, . . . , r} i X = {xj}j∈J
i siga x∗ el node el qual volem interpolar i j0 el node interior més proper
a x∗, ço es,

j0 = argmin
j∈J

|xj − x∗|.

L’objectiu és novament aproximar el valor que x∗ hauria de tenir, basat
en la informació de l’stencil “més suau” i el node xj0. Definim inductiva-
ment el següent conjunt d’ı́ndexs:

J0 = {j0}, i X0 = {xj}j∈J0 = {xj0}.

Suposem que tenim definit Jk = {jk, . . . , jk + k}; aleshores Jk+1 ve definit
seguint un procediment ENO per

Jk+1 =

{
{jk − 1} ∪ Jk si jk > 0 ∧ [ujk−1, . . . , ujk+k] ≤ [ujk , . . . , ujk+k+1]

Jk ∪ {jk + k + 1} si jk < r − k ∧ [ujk , . . . , ujk+k+1] < [ujk−1, . . . , ujk+k]
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i
Xk+1 = {xj}j∈Jk+1

,

on [v1, . . . , v`] representa la diferència no dividida de v1, . . . , v`. Per cons-
trucció, és clar que el conjunt Xk pot escriure’s com una successió de
nodes amb ı́ndexs consecutius, és a dir, stencils:

Xk = {xik+j}kj=0

per a algun 0 ≤ ik ≤ r − k, 0 ≤ k ≤ r.
Ara, per a cada k, 0 ≤ k ≤ r, definim pk com el polinomi interpolador

de grau com a molt k tal que pk(xik+j) = uik+j , ∀j, 0 ≤ j ≤ k. Donat
un conjunt de pesos {ωk}rk=1 tals que 0 ≤ ωk ≤ 1, definim la recurrència
següent:

u
(0)
∗ = p0(x∗) = ui0 ,

u
(k)
∗ = (1− ωk)u

(k−1)
∗ + ωkpk(x∗), 1 ≤ k ≤ r.

(25)

On els pesos ωk estan construı̈ts de manera que són essencialment 1
si Xk és un stencil dins d’una zona suau i essencialment 0 en altre cas.

El resultat final de l’extrapolació es defineix aleshores per u∗ := u
(r)
∗ ,

que es pren com a aproximació del valor u(x∗).
Existeixen diferents maneres de construir els pesos i variacions del

mètode. De manera resumida, tenim les següents:

• Pesos simples: Venen donats per

ωk = 1−
(

1−
(
ISk
Ik

)s1)s2
, 1 ≤ k ≤ r0,

ωk = min

{
1−

(
1−

(
ISr0
Ik

)s1)s2
, 1

}
, r0 + 1 ≤ k ≤ r.

(26)

• Pesos millorats: Es defineixen per

ωk =
1

1 + ρk
, (27)

on

ρk = τk

(
1− σk
σk

)d
, d ≥ r

2
,

τk :=
Ik
IMk

,

σk := min

{
ISmin{k,r0}

Ik
, 1

}
,



xxxii

i

IMk = max
0≤j≤r−k

1

r

r0∑
`=1

∫ xr

x0

h2`−1q
(`)
k,j(x)2dx, 1 ≤ k ≤ r0.

• Pes únic: El resultat d’extrapolació és en aquest cas

u∗ = (1− ω)p0(x∗) + ωpr(x∗) = (1− ω)ui0 + ωpr(x∗),

on ω ve donat per
ω := (1− (1− ρ)s1)s2 , (28)

amb

ρ :=
(r − r0 + 1)2(∑r−r0

j=0 Imr0,j

)(∑r−r0
j=0

1
Imr0,j

) .
Per raons d’estabilitat, aquestes extrapolacions es combinen amb mı́nims
quadrats a zones suaus:

u∗ := ωz∗ + (1− ω)v∗, (29)

on v∗ és el resultat obtingut a partir d’alguna de les dues primeres
tècniques o, en el cas del pes únic, v∗ = ui0, i ω és el pes donat per
l’equació (28).

D’altra banda, z∗ és el resultat d’aplicar mı́nims quadrats a un stencil
de grandària R ≥ r contenint l’stencil original, a partir d’un polinomi de
grau r; és a dir, és el resultat de resoldre p(xi) = ui, 0 ≤ i ≤ R per mı́nims
quadrats i avaluar en x∗.

Esquemes d’alt ordre temporal

Una vegada completada la formulació d’un esquema d’alt ordre espaci-
al en un context general, presentem un esquema d’alt ordre temporal,
que en combinació amb les tècniques anteriors dóna lloc a un esque-
ma d’alt ordre general. Per a la seua derivació prenem com a referència
l’esquema presentat per Qiu i Shu en 2003 [39], basat en la conversió
de derivades temporals a derivades espacials mitjançant la tècnica de
Cauchy-Kowalewski, a través del procediment de Lax-Wendroff.

Per raons de simplicitat, comencem amb el cas unidimensional per a
una equació escalar (d = m = 1). Per a la solució u(x, t) de ut+f(u)x = 0 en
una malla espacial fixada (xi), amb espaiat h = xi+1 − xi i un cert temps
tn, a partir d’una malla temporal amb espaiat δ = ∆t = tn+1 − tn > 0,
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proporcional a h, δ = τh, on τ respon a restriccions d’estabilitat (condició
CFL), emprem la següent notació per a les derivades temporals de u i
f(u):

u
(l)
i,n =

∂lu(xi, tn)

∂tl
,

f
(l)
i,n =

∂lf(u)(xi, tn)

∂tl
.

El nostre objectiu és el d’obtenir un esquema d’avanç temporal d’ordre
R, és a dir, un esquema amb un error local de truncament d’ordre R+ 1,
basat en el desenvolupament de Taylor de la solució u des del temps tn
fins al següent temps tn+1:

un+1
i =

R∑
l=0

∆tl

l!
u

(l)
i,n +O(∆tR+1).

Per tal d’aconseguir-ho, definim les corresponents aproximacions

ũ
(l)
i,n = u

(l)
i,n +O(hR+1−l),

f̃
(l)
i,n = f

(l)
i,n +O(hR−l),

per recurrència sobre l, suposant (per una anàlisi de l’error local de trun-
cament) que ũ0

i,n = u
(0)
i,n = u(xi, tn). L’aproximació ũ1

i,n es definirà de mane-
ra separada.

El fet que u siga solució d’un sistema de lleis de conservació implica
que les derivades temporals u

(l)
i,n, 1 ≤ l ≤ R, poden escriure’s en termes

de les derivades espacials d’algunes funcions de u(j)
i,n, j < l,

f
(l−1)
i,n = Fl−1(uni , u

(1)
i,n , . . . , u

(l−1)
i,n ), (30)

seguint el procediment de Cauchy-Kowalewski (o de Lax-Wendroff de se-
gon ordre):

∂lu

∂tl
=

∂l−1

∂tl−1

(
ut
)

= − ∂l−1

∂tl−1

(
f(u)x

)
= −

[
∂l−1f(u)

∂tl−1

]
x

, (31)

i la fórmula de Faà di Bruno establida al Teorema 2.
Especı́ficament, per a aproximar la primera derivada temporal, ut =

−f(u)x, emprem l’esquema de les diferències finites de Shu-Osher [42]
amb reconstruccions espacials WENO upwind d’ordre 2r − 1 del flux.

u
(1)
i,n = ut(xi, tn) = −[f(u)]x(xi, tn) = −

f̂n
i+ 1

2

− f̂n
i− 1

2

h
+O(h2r−1). (32)
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Per a les següents derivades s’empren al seu lloc diferències centrades,
molt més assequibles en termes de cost computacional.

Aixı́ doncs, la segona derivada es calcula per

utt = [ut]t = [−f(u)x]t = −[f(u)t]x = −[f ′(u)ut]x,

on f ′(u)ut és ara una expressió que es coneix de manera aproximada als
nodes requerits. Emprem aleshores una diferència centrada de segon
ordre per tal d’obtenir l’aproximació:

ũ
(2)
i,n = −

f̃
(1)
i+1,n − f̃

(1)
i−1,n

2h
,

on
f̃

(1)
i,n = F1(ũ

(0)
i,n , ũ

(1)
i,n) = f ′(ũ

(0)
i,n)ũ

(1)
i,n .

La tercera derivada temporal s’aproxima per

uttt = [ut]tt = [−f(u)x]tt = −[f(u)tt]x = −
(
f ′′(u)u2

t + f ′(u)utt

)
x
,

on novament la funció f ′′(u)u2
t + f ′(u)utt es coneix de manera aproximada

als nodes i per tant uttt es pot aproximar per

ũ
(3)
i,n = −

f̃
(2)
j+1,n − f̃

(2)
j−1,n

2h
,

on
f̃

(2)
i,n = F2(ũ

(0)
i,n , ũ

(1)
i,n , ũ

(2)
i,n) = f ′′(ũ

(0)
i,n) · (ũ(1)

i,n)2 + f ′(ũ
(0)
i,n) · (ũ(2)

i,n)2.

Si, per exemple, es desitja un esquema temporal de tercer ordre, és su-
ficient amb haver realitzat els càlculs anteriors, i podem aproximar la
següent iteració temporal per

ũn+1
i = ũni + ∆tũ

(1)
i,n +

∆t2

2
ũ

(2)
i,n +

∆t3

6
ũ

(3)
i,n .

El procediment aproximat de Lax-Wendroff

Tal i com indiquen els autors de [39], el càlcul dels valors nodals exactes
de f (k) pot arribar a ser molt car en termes computacionals en augmentar
k, ja que el nombre d’operacions augmenta exponencialment. A més,
implementar-lo és costós i requereix moltes manipulacions amb eines de
càlcul simbòlic per a cada equació.
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Tot seguit presentem una alternativa, que és menys costosa com-
putacionalment per a k gran i que no necessita disposar de les deriva-
des del flux de l’equació. Aquest procediment també funciona en el cas
multidimensional i en el de sistemes (treballant component a compo-
nent). Aquesta tècnica està basada en l’observació que es poden obtenir
fàcilment aproximacions de f̃ (l−1) ≈ f (l−1) mitjançant un ús subtil de
diferències finites, en lloc d’emprar l’expressió exacta de Fl−1 en (30).

Donada una funció u : R→ Rm, denotem la funció en la malla definida
per un punt base a i un espaiat de mallat h per

Ga,h(u) : Z→ Rm, Ga,h(u)i = u(a+ ih).

Denotem per ∆p,q
h a l’operador de diferències finites que aproxima deriva-

des p-èssimes a ordre 2q en malles amb espaiat h.
Volem definir aproximacions ũ

(k)
i,n ≈ u

(k)
i,n , k = 0, . . . , R, recursivament.

Comencem la recursió amb

ũ
(0)
i,n = uni ,

ũ
(1)
i,n = −

f̂n
i+ 1

2

− f̂n
i− 1

2

h
,

(33)

on f̂n
i+ 1

2

es calculen mitjançant reconstruccions WENO upwind amb par-

tició de fluxos obtingudes a partir de les dades (uni ) al pas temporal n
(veure [42, 11, 26] per a més detalls).

Associat a valors h, i, n fixats, una vegada obtinguts ũ
(l)
i,n, l = 0, . . . , k,

en el procés recursiu, definim el polinomi aproximat de Taylor de grau k,
Tk[h, i, n], per

Tk[h, i, n](ρ) =
k∑
l=0

ũ
(l)
i,n

l!
ρl.

Per a k = 1, . . . , R− 1, definim per recurrència

f̃
(k)
i,n = ∆

k,dR−k2 e
δ

(
G0,δ

(
f(Tk[h, i, n])

))
,

ũ
(k+1)
i,n = −∆

1,dR−k2 e
h f̃

(k)
i+·,n,

(34)

on denotem per f̃ (k)
i+·,n el vector donat pels elements (f̃

(k)
i+·,n)j = f̃

(k)
i+j,n.

Amb tots eixos ingredients, l’esquema proposat és:

un+1
i = uni +

R∑
l=1

∆tl

l!
ũ

(l)
i,n. (35)
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D’una banda, el següent resultat garanteix que el nostre esquema té
l’ordre desitjat.

Proposició 1. L’esquema definit per (34) i (35) té ordre R.

D’altra banda, també pot provar-se que el nou esquema és conserva-
tiu.

Teorema 2. L’esquema resultat del procediment d’aproximació de fluxos
pot escriure’s de manera conservativa, és a dir,

un+1
i = uni −

∆t

h

(
ĝn
i+ 1

2

− ĝn
i− 1

2

)
. (36)

Control de fluctuacions

Ara ens centrem en el càlcul dels valors nodals aproximats de la derivada
temporal de primer ordre. Tı́picament, hom empraria directament les
aproximacions obtingudes mitjançant el procediment de reconstrucció
upwind de les diferències finites de Shu-Osher, ço és,

ũ
(1)
j,n = −

f̂j+ 1
2
,n − f̂j− 1

2
,n

h
.

De fet, aquest és el procediment que es segueix al treball de Qiu-Shu
[39]. No obstant això, prendre directament eixos valors com a aproxi-
macions de la primera derivada per a aproximar les següents derivades
amb procediments sense pesos, és a dir, suposant que les dades són
suaus, no és segur ja que en realitat les dades no necessàriament són
suaus; de fet, inclou termes d’ordre O(h−1) al voltant de les disconti-
nuı̈tats, que anomenarem d’ara endavant fluctuacions. Aquests termes
apareixen quan f̂j− 1

2
,n i f̂j+ 1

2
,n procedeixen de dos costats diferents d’una

discontinuı̈tat.
Això motiva la necessitat de calcular una aproximació nodal alterna-

tiva amb dades completament suaus, que anomenarem ˜̃u(1)

i , que s’em-
praran per a calcular les derivades següents, però no s’empraran com
a termes de primer ordre del desenvolupament de Taylor per a avançar
en temps, on se seguirà emprant l’aproximació conservativa i upwind de

Shu-Osher de la primera derivada ũ
(1)
j = −

f̂j+ 1
2
− f̂j− 1

2

h
.

Per a fer-ho, s’empren reconstruccions WENO centrals, que es des-
criuen tot seguit.
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Suposem que el nostre esquema espacial empra reconstruccions WE-
NO d’ordre 2r − 1. Considerem l’stencil de 2r − 1 punts

S2r−1
i+r−1 := {i− r + 1, . . . , i, . . . , i+ r − 1}, (37)

Per un i fix, siga qrk el polinomi interpolador de grau ≤ r−1 tal que qrk(xj) =
fj , j ∈ Sri+k := {i − r + 1 + k, . . . , i + k, }, 0 ≤ k ≤ r − 1. Tenint en compte
la discussió anterior, el nostre objectiu és obtenir una aproximació de la
derivada del flux f(u)x(xi) a partir de l’stencil S2r−1

i+r−1, que té ordre 2r−1 si
els nodes de l’stencil es troben en una regió suau. Per a fer-ho, emprem
tècniques WENO, amb l’ajuda del següent resultat.

Lema 2. Existeix un conjunt de constants {crk}rk=1 que satisfà 0 < crk < 1,
per a 0 ≤ k ≤ r − 1,

∑r−1
k=0 c

r
k = 1, tals que

r−1∑
k=0

crk(q
r
k)
′(xi) = (q2r−1

r−1 )′(xi).

Tenint en compte aquest resultat, definim l’aproximació suavitzada
com ˜̃u(1)

i,n = −
r∑

k=1

ωkq
′
k(xi),

on
ωk =

αk∑r
l=1 αl

, αk =
ck

(Ik + ε)m
, (38)

amb Ik els corresponents indicadors de suavitat de Jiang-Shu:

Ik =

r−1∑
`=1

∫ x
i+ 1

2

x
i− 1

2

h2`−1p
(`)
k (x)2dx, 0 ≤ k ≤ r − 1 (39)

on pk és el polinomi de grau r − 1 que satisfà

1

h

∫ x
j+ 1

2

x
j− 1

2

pk(x)dx = fj , i− r + 1 + k ≤ j ≤ i+ k, 0 ≤ k ≤ r − 1.
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Abstract

High-Resolution Shock-Capturing (HRSC) schemes constitute the state
of the art for computing accurate numerical approximations to the so-
lution of many hyperbolic systems of conservation laws, especially in
computational fluid dynamics.

In this context, the application of suitable numerical boundary con-
ditions on domains with complex geometry has become a problem with
certain difficulty that has been tackled in different ways according to the
nature of the numerical methods and mesh type. In this work we present
a new technique for the extrapolation of information from the interior of
the computational domain to ghost cells designed for structured Carte-
sian meshes (which, as opposed to non-structured meshes, cannot be
adapted to the morphology of the domain boundary).

The aformentioned technique is based on the application of Lagrange
interpolation equipped with detection of discontinuities that permits a
data dependent extrapolation, with higher order at smooth regions and
essentially non oscillatory properties near discontinuities.

We also propose an alternative approach to develop a high order ac-
curate scheme both in space and time, with the one that was proposed
by Qiu and Shu for numerically solving hyperbolic conservation laws as
starting point. Both methods are based on the conversion of time deriva-
tives to spatial derivatives through the Cauchy-Kowalewski technique,
following the Lax-Wendroff procedure. Such spatial derivatives are then
discretized through the Shu-Osher finite difference procedure with an
adequate upwind scheme. The alternative approach replaces the exact
derivatives of the flux by approximations of the suitable order in order
to reduce both the implementation and the computational cost, as well
as a fluctuation control which avoids the expansion of large terms at the
discretization of the high order derivatives.



xl



1
Introduction

1.1
Motivation

Systems of hyperbolic conservation laws and related equations have been
the focus of many research lines in the past four decades, for example
in modeling the flow of air around a vehicle, meteorology and weather
prediction, or modeling the flow of the water over a channel or the sedi-
mentation of small solid particles dispersed in a viscous fluid.

Since no analytic solution is known for many of these equations, dif-
ferent techniques have been developed in order to tackle these problems
from a numerical point of view, with methodologies that have evolved and
improved along these years. Our interest concerns obtaining the results
from the simulations as fast as possible and with the highest possible
accuracy, but the numerical simulation of physical problems modeled
by systems of conservation laws is a delicate issue, due to the presence
of discontinuities in the solution. These discontinuities are developed
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even when the initial flow is smooth. If we compute discontinuous solu-
tions to conservation laws using standard methods developed under the
assumption of smooth solutions, we typically obtain numerical results
that are not accurate enough or even a failure in the simulation.

So, we require the use of shock-capturing schemes, developed to pro-
duce sharp approximations to discontinuous solutions automatically,
without explicit tracking or using jump conditions, in order to ensure
a proper handling of discontinuities in numerical simulations.

Low-order methods are faster and easier to implement, but provide
less accurate results than high-resolution methods. High-Resolution
Shock-Capturing (HRSC) schemes are the state of the art for numerical
simulations of physical problems. The aim of those methods is to obtain
high-order resolution wherever the solution is smooth, while maintain-
ing sharp profiles of the discontinuities and avoiding the formation of
spurious oscillations near them.

Since the drawback of a high-order reconstruction is the oscillations it
might create, several methods were suggested to combine the upwinding
framework, in which the discretization of the equations on a mesh is
performed according to the direction of propagation of information on
that mesh, with a mechanism to prevent the creation and evolution of
such spurious numerical oscillations. Therefore, most of these schemes
emerge from a combination of upwinding and high-order interpolation.

Robust and accurate HRSC schemes often have a high computational
cost, which is related to their incorporating upwinding through charac-
teristic information required at each cell boundary in the computational
domain and high-order reconstruction procedures.

To solve partial differential equations (PDEs) we replace the continu-
ous problem represented by the PDEs by a finite set of discrete values.
These are obtained by first discretizing the domain of the PDEs into a
finite set of points or volumes via a mesh or grid. Typically the compu-
tational domain is divided into cells, and the continuous equations are
replaced by a discrete approximation at each cell. Boundary conditions
are also discretized and the above concerns about the scheme used in
the interior (accuracy, presence of discontinuities, etc.) also apply to
them.
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1.2

Previous work

Weighted essentially non-oscillatory (WENO) finite-difference spatial dis-
cretization schemes have become one of the most popular methods to
approximate the solutions of hyperbolic equations, so, a lot of develop-
ment has been done on them. These schemes have as a basic ingredient:
the WENO reconstructions, i.e, “cell-average interpolators”, with a high
order of accuracy and a control of the oscillations.

These schemes were developed by Liu, Osher and Chan in [35] as
an improvement of ENO (essentially non-oscillatory) schemes, originally
introduced and developed in [16, 18]. The only difference between these
schemes and the standard cell-average version of ENO is the definition
of the reconstruction procedure which produces a high-order accurate
global approximation to the solution from its given cell-averages.

In [25], Jiang and Shu improved the high-order WENO finite-difference
schemes by defining a new way of measuring the smoothness of the nu-
merical solution, which results in a fifth-order WENO scheme for five-
points stencils, instead of the fourth-order scheme obtained with the
original smoothness measurement by Liu et al. [35].

Regarding high order boundary conditions, some authors have ap-
proached this problem from different perspectives. In [43] the authors
develop a technique based on Lagrange interpolation with a limiter which
is restricted to second order methods and a single ghost cell. Also re-
lated to our approach are the works of Shu and collaborators [45, 46]
where the equation to be solved is used to extrapolate derivative values
of the numerical solution to the boundary points where inflow conditions
are prescribed and then approximate ghost values by a Taylor expan-
sion; such technique is known as the inverse Lax-Wendroff procedure.
For outflow boundaries an extrapolation technique based on the WENO
method is used, achieving high order when the data is smooth in both
cases. The drawbacks of this approach are that it is problem-dependent
(see [23, 52] for a similar methodology applied to other equations), that
it requires a different treatment for different types of boundary and its
relatively high computational cost.

As for the time discretization, the most tipically used time discretiza-
tion scheme with excellent stability, efficiency and low storage proper-
ties, which has been vastly used in the literature, is the third order
Runge-Kutta 3 TVD (total variation diminishing) scheme [15]. Since sta-
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bility issues arise for fourth and higher order Runge-Kutta methods, in
an attemp to develop a family of schemes with arbitrarily high order
in time, Qiu and Shu [39] developed in 2003 an scheme based on the
Lax-Wendroff procedure, also known as Cauchy-Kowalewski. The draw-
back in this case is that again the implementation relies strongly on the
equation and the corresponding derivatives of the flux, as well as a high
implementation and computational cost.

1.3

Scope of the work

In this work we develop some techniques addressed to obtain a fully high
order accurate scheme, mainly pursuing two main goals:

• To develop a high order accurate method to perform numerical
boundary conditions and store the information at the ghost cells
at each time step. This procedure must take into account the pos-
sible complex geometry of the boundary so that the process is prop-
erly accurate and the eventual presence of discontinuities near the
boundary, with the design of weights containing the information
related with this issue.

• To design a high order accurate time scheme, competitive with
Runge-Kutta TVD schemes, overcoming some implementation and
computational time issues inherent to the scheme originally pro-
posed by Qiu and Shu. The implementation of these schemes should
not be much harder than the implementation of Runge-Kutta schemes
and the computational cost involving the high order derivatives
should not be too high. This, together with the fact that only one
spectral decomposition per time step is needed, should yield a more
efficient scheme than the family of Runge-Kutta methods. In this
sense, we also develop a mechanism to avoid the propagation of
large terms at the approximation of the high order derivatives near
discontinuities.
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1.4

Organization of the text

The text is organized as follows:
In Chapter 2 we recall the basic concepts and ideas concerning hyper-

bolic conservation laws and numerical methods for their solution, focus-
ing on the description of Shu-Osher’s finite-difference approach and the
weighted essentially non-oscillatory (WENO) reconstruction procedure.

In Chapter 3 we describe a procedure to automatically mesh through
a Cartesian grid the boundary of a two-dimensional set described by a
closed curve. The procedure ensures the computation of all the intersec-
tions of the mesh lines with the boundary, as well as the computation
of all the normal lines to the boundary passing through each ghost cell,
both of them computed at the desired precision.

In Chapter 4 we introduce some techniques to perform the extrapo-
lations associated to the numerical boundary conditions with arbitrarily
high order accuracy, with a procedure that takes into account the pos-
sible formation or approaching of discontinuities to the boundary. To
do so, we develop two kind of methods, respectively based on thresh-
olds and weights, in both cases scale and dimension independent, which
allow to perform the extrapolations under the aforementioned consider-
ations. This chapter is based on “A. Baeza, P. Mulet, D. Zorı́o”, High
order boundary extrapolation technique for finite difference methods on
complex domains with Cartesian meshes, Journal of Scientific Comput-
ing, 66: 761-791, 2016 and “A. Baeza, P. Mulet, D. Zorı́o”, High order
weighted extrapolation for boundary conditions for finite difference meth-
ods on complex domains with Cartesian meshes, to appear in Journal of
Scientific Computing.

Chapter 5 stands for the development of a high order time scheme,
based on the Lax-Wendroff procedure proposed by Qiu and Shu, with
some implementation, performance and resolution improvements. More
precisely, we develop an scheme where no flux derivative is required to
be computed, faster than the original scheme under common circum-
stances due to a considerable simplification of the computation of high
order terms and capable of capturing better the discontinuities. This
chapter is partially based on “D. Zorı́o, A. Baeza, P. Mulet”, An approx-
imate Lax-Wendroff procedure for high order accurate in space and time
scheme for hyperbolic conservation laws, submitted to Journal of Scien-
tific Computing.
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Finally, some conclusions and future research lines to be followed
from this work are pointed out in Chapter 6.



2
Preliminaries

In this chapter we collect some basic facts about hyperbolic conserva-
tion laws and numerical methods for them, focusing on finite difference
Weighted Essentially Non-Oscillatory (WENO) methods applied to fluid
dynamics equations, mainly to the Euler equations of gas dynamics.
More information can be obtained from classic books such as Landau
and Lifshitz [28], Chorin and Marsden [8], Whitham [50], Dafermos [10]
and Lax [30]. Other interesting references are the books by LeVeque
[32, 33], Evans [12] and Toro [47].

We also include the statement and proof of a generalization of the
chain rule for higher order derivatives of composition of functions, known
as Faà di Bruno’s formula.
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2.1
Hyperbolic conservation laws

Conservation laws are systems of first order partial differential equations
that can be written as:

∂u

∂t
+

d∑
i=1

∂f i(u)

∂xi
= 0, x ∈ Rd, t ∈ R+, (2.1)

where u = (u1, . . . , um)T : Rd × R+ −→ Rm is the vector of conserved vari-
ables and f i : Rm −→ Rm are the flux functions, i = 1, . . . , d.

Equation (2.1) is provided with initial conditions

u(x, 0) = u0(x), x ∈ Rd,

in order to solve a Cauchy problem, i.e., to find the state of the sys-
tem after a certain time t = T , given the state at time t = 0. System
(2.1) is hyperbolic if any linear combination of the Jacobian matrices of
f i,

∑d
i=1 αi(f

i)′(v), is diagonalizable with real eigenvalues ∀v ∈ Rm. This
conditions ensures the stability of Cauchy problems for the linearized
systems about constant states.

Boundary conditions have to be also specified when considering a
bounded domain Ω ⊆ Rd. Part of this thesis will be focused on handling
numerical boundary conditions on complex domains in multiple dimen-
sions.

System (2.1) can be written in quasi-linear form as:

∂u

∂t
+

d∑
i=1

(f i)′(u)
∂u

∂xi
=
∂u

∂t
+

d∑
i=1

m∑
j=1

∂f i(u)

∂uj

∂uj
∂xi

= 0.

The particular case m = 1, often referred as scalar conservation law,
is one of the systems most used in this work due to their simplicity. In
1D, when d = 1, this conservation law can be written as

ut + f(u)x = 0, x ∈ R, t ∈ R+,

with the conserved variable u : R × R+ −→ R and flux function f : R −→
R. Many examples will use scalar conservations laws, such as linear
advection

ut + aux = 0, a ∈ R,
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and Burger’s equation

ut + (
u2

2
)x = 0.

Conservation laws regularly come from an integral relationship rep-
resenting the conservation of a certain quantity u. Conservation means
that the amount of quantity contained in a given volume can only change
due to the flux of this quantity crossing the interfaces of the given vol-
ume. In one space dimension it is written as:∫ x2

x1

(u(x, t2)− u(x, t1))dx =

∫ t2

t1

f(u(x1, t))dt−
∫ t2

t1

f(u(x2, t))dt, (2.2)

where the control volume in the x− t plane is V = [x1, x2]× [t1, t2] ⊆ R×R.
The characteristic structure of the hyperbolic conservation laws refers

to the eigenstructure of the Jacobian matrix of the fluxes. The charac-
teristic structure is important both for exact and approximate solutions
of the equations. The characteristic speeds are the eigenvalues of the
Jacobian matrices. For one-dimensional systems of conservation laws,
we will assume that there are smooth functions λk : Rm → R, k = 1, . . . ,m,
such that λk(u) is the k-th eigenvalue of f ′(u). For scalar conservation
laws, these characteristic speeds are just the flux derivatives f ′(u). For
one-dimensional systems of conservation laws, characteristics for a solu-
tion u are curves (t, x(t)) satisfying x′(t) = λk(u(x(t), t)). For scalar equa-
tions, this reduces to x′(t) = f ′(u(x(t), t) = f ′(u(x(0), 0)), so in this case
characteristics are straight lines of slope f ′(u0(x(0))).

2.1.1
Weak solutions and Rankine-Hugoniot conditions

A classical solution of (2.1) is a smooth function u : Rd × R+ −→ Rm that
satisfies the equations point-wise. A key feature of nonlinear conserva-
tion laws is the general lack of classical solutions of (2.1) beyond some
finite time interval, even when the initial condition u0 is a smooth func-
tion. This is due to the fact that the classical method of characteristics
for obtaining solutions of first order PDE may fail to give global existence
of classical solutions at all time when characteristics cross, which may
happen since nonlinearity of fluxes is equivalent to characteristic speeds,
i.e., the eigenvalues of the Jacobian matrices, being non constant.

In order to be able to consider non-smooth solutions, the classical
concept of solution is relaxed by using a weak, distributional formulation
that involves no derivatives of u.
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Definition 1. A function u(x, t) is a weak solution of (2.1) with given initial
data u0(x) if

∫
R+

∫
Rd

u(x, t)
∂φ

∂t
(x, t) +

d∑
j=1

f j(u)
∂φ

∂xj

 dxdt = −
∫
Rd
φ(x, 0)u0(x)dx (2.3)

is satisfied for all φ ∈ C1
0 (Rd × R+), where C1

0 (Rd × R+) is the space of
continuously differentiable functions with compact support in Rd × R+.

Weak solutions provide an adequate generalization of the concept of
classical solution for hyperbolic conservation laws. It is easy to see that
strong solutions are also weak solutions, and continuously differentiable
weak solutions are strong solutions. Furthermore, the weak formulation
(2.3) is equivalent to the integral formulation (2.2) and the satisfaction of
the initial conditions in L1

loc.
The Rankine-Hugoniot condition [24, 40], whose derivation can be

found for example in [8, 19, 20], follows from the definition of weak so-
lution. This condition characterizes weak solutions in terms of the dis-
continuity movement, and gives information about the behavior of the
conserved variables across discontinuities.

For a general conservation law the Rankine-Hugoniot condition reads:

[f ] · n = [u](n · s), (2.4)

where f = (f1, . . . fd) is a matrix containing the fluxes, u is the solution,
s is the speed of propagation of the discontinuity and n is the vector
normal to the discontinuity. The notation [·] indicates the jump on a
variable across the discontinuity. For scalar problems this simply gives:

f(uL)− f(uR) = s(uL − uR),

where uL and uR are the states at the left and the right side of the dis-
continuity, respectively.

At discontinuities, weak solutions have to satisfy the Rankine-Hugoniot
condition. It can be shown that a function u(x, t) is a weak solution of
(2.1) if and only if equation (2.1) holds wherever u is smooth at (x, t) and
the Rankine-Hugoniot condition is satisfied if u is not smooth in (x, t),
see e.g. [8].

However, weak solutions are often not unique (see e.g. [32]), and
there are entropy conditions proposed to single out a unique weak solu-
tion, known as entropy solution. The most well-known entropy condition
characterizes a p-shock, 1 ≤ p ≤ m, as a discontinuity of u, defined by
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x = s(t), separating two states uL(t) and uR(t), such that the Rankine-
Hugoniot conditions holds and

λp(uL(t)) ≥ s′(t) ≥ λp(uR(t)), (2.5)

where λp is the p-th eigenvalue of the flux Jacobian.
Condition (2.5) is called Lax’s E-condition [29]. There is also an

entropy inequality for entropy-entropy flux pairs, due also to Lax [29],
which is closely linked to vanishing viscosity solutions. There are other
entropy conditions such as Oleinik’s condition [37], Kružkov’s condition
[27], Wendroff’s condition [49] or Liu’s condition [34].

Establishing the existence of weak solutions satisfying entropy condi-
tions is a great challenge. Positive answers to this existence question can
be found for wide classes of multi-dimensional scalar conservation laws
or one-dimensional systems. Knowledge of the characteristic structure,
Riemann invariants and solution of Rankine-Hugoniot conditions yields
answers to this question for Riemann problems for some hyperbolic sys-
tems of conservation laws, i.e., problems for which the initial value data
is piecewise constant with only one discontinuity.

The solution to Riemann problems may be used as a building block
for theoretical or practical purposes when the initial data belongs to a
more general class of functions. For scalar conservation laws and some
hyperbolic systems of conservations laws, existence can be established
by the front tracking method [9, 21, 22]. Other simpler means of es-
tablishing existence may apply in some cases, such as Lax-Oleinink’s
formula [12] for scalar conservation laws with convex flux.

2.1.2
Euler equations

One of the most well-studied hyperbolic systems of conservation laws
is that formed by the Euler equations, which model the dynamics of a
Newtonian, ideal, inviscid fluid. They are derived from the conservation
of mass, linear momentum and energy of the fluid in motion, and rep-
resent a simplified model for the Navier-Stokes equations, which are the
most complete model used up to now for the simulation of Newtonian
fluid dynamics.

The two-dimensional Euler equations can be written as:

ut + f(u)x + g(u)y = 0 (2.6)
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with

u =


ρ
ρvx

ρvy

E

 , f(u) =


ρvx

ρ(vx)2 + p
ρvxvy

vx(E + p)

 , g(u) =


ρvy

ρvyvx

ρ(vy)2 + p
vy(E + p)

 , (2.7)

where ρ denotes density, vx and vy are the Cartesian components of the
velocity vector v, E is energy and p is pressure, where the energy (density)
E is defined as the sum of the kinetic energy and the internal energy ρe

E =
1

2
ρ((vx)2 + (vy)2) + ρe, (2.8)

with e denoting the specific internal energy, linked with pressure and
density through a thermodynamical equation of state e = e(p, ρ). We will
use a perfect gas equation of state

e =
p

(γ − 1)ρ
,

where

γ =
cp
cv

(2.9)

is called the specific heat ratio, and depends on the gas. For air it takes
the value γ ≈ 1.4.

The one dimensional version of the equations are obtained by postu-
lating that all quantities depend only on x and vy is constant, so that we
get  ρ

ρvx

E


t

+

 ρvx

ρ(vx)2 + p
vx(E + p)


x

= 0. (2.10)

The hyperbolicity of system (2.7) is better established by formally
rewriting it in terms of the primitive variables

w =


ρ
vx

vy

p

 ,
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as follows

wt +Ax(w)wx +Ay(w)wy = 0

Ax(w) = W ′(U(w))f ′(U(w))(W ′(U(w)))−1 =


vx ρ 0 0
0 vx 0 1/ρ
0 0 vx 0
0 γp 0 vx



Ay(w) = W ′(U(w))g′(U(w))(W ′(U(w)))−1 =


vy 0 ρ 0
0 vy 0 0
0 0 vy 1/ρ
0 0 γp vy


where W is the function that transforms conserved variables into primi-
tive variables

W (ρ, ρvx, ρvy, E) = (ρ, (ρvx)/ρ, (ρvy)/ρ, (γ − 1)
(
E − 1

2
ρ−1
(
(ρvx)2 + (ρvy)2

))
.

Assume, without loss of generality that the coefficients in the linear
combination of Jacobian matrices satisfy α2 + β2 = 1. Since

αf ′(u) + βg′(u) = W ′(u)−1
(
αAx(W (u)) + βAy(W (u))

)
W ′(u),

we deduce that the eigenvalues of αf ′(u) + βg′(u) coincide with those of
αAx(W (u)) + βAy(W (u)) and the eigenvectors of both matrices can be re-
lated by product by the matrix W ′(u) or W ′(u)−1. The advantage of this
algebraic manipulation is that A = αAx(w) + βAy(w) is much simpler
than the other matrix and its eigenstructure can be readily obtained.
Simple calculations yield that A has eigenvalues z, z, z − c, z + c, where
z = αvx + βvy and c =

√
γp
ρ is the sound velocity. The corresponding

right eigenvectors form the matrix R columnwise and the (normalized)
left eigenvectors form the matrix L = (R)−1 rowwise, in such a way that
LAR = Λ, for the following matrices:

R =


1 0 1 1
0 −β −αc

ρ
αc
ρ

0 α −βc
ρ

βc
ρ

0 0 c2 c2

 , L =


1 0 0 − 1

c2

0 −β α 0

0 −αρ
2c −βρ

2c
1

2c2

0 αρ
2c

βρ
2c

1
2c2

 ,Λ =


z 0 0 0
0 z 0 0
0 0 z − c 0
0 0 0 z + c

 .
If we denote ‖v‖2 = (vx)2 + (vy)2, the total enthalpy by H = (E + p)/ρ =

‖v‖2 +c2/(γ−1), z⊥ = −βvx+αvy, then the right and left eigenvectors form
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the following matrices

R =
(
W ′(u)

)−1
R =


1 0 1 1
vx −ρ β vx − α c vx + α c
vy αρ vy − β c vy + β c
‖v‖2

2 ρ z⊥ H − z c H + z c



L = LW ′(u) =


1− (γ−1) ‖v‖2

2 c2
(γ−1) vx

c2
(γ−1) vy

c2
−γ−1

c2

− z⊥
ρ −β

ρ
α
ρ 0

z
2 c + (γ−1) ‖v‖2

4 c2
−α c+(γ−1) vx

2 c2
− (γ−1) vy+c β

2 c2
γ−1
2 c2

− z
2 c + (γ−1) ‖v‖2

4 c2
α c−(γ−1) vx

2 c2
− (γ−1) vy−c β

2 c2
γ−1
2 c2

 ,
that satisfy L(αf ′(u) + βg′(u))R = Λ, hence the Euler equations are hy-
perbolic. We can further obtain the eigenvectors of f ′(u) and g′(u), by
setting α = 1, β = 0 and α = 0, β = 1, respectively. For the first case,
z = vx, z⊥ = vy and the eigenvector matrices are:

Rx =


1 0 1 1
vx 0 vx − c vx+, c
vy ρ vy vy

‖v‖2
2 ρ vy H − vx c H + vx c



Lx =


1− (γ−1) ‖v‖2

2 c2
(γ−1) vx

c2
(γ−1) vy

c2
−γ−1

c2

−vy

ρ 0 1
ρ 0

vx

2 c + (γ−1) ‖v‖2
4 c2

− c+(γ−1) vx

2 c2
− (γ−1) vy

2 c2
γ−1
2 c2

− vx

2 c + (γ−1) ‖v‖2
4 c2

c−(γ−1) vx

2 c2
− (γ−1) vy

2 c2
γ−1
2 c2

 ,
For the second case, z = vy, z⊥ = −vx and the eigenvector matrices

are:

Ry =


1 0 1 1
vx ρ vx vx

vy 0 vy − c vy + c
‖v‖2

2 ρ vx H − vy c H + vy c



Ly =


1− (γ−1) ‖v‖2

2 c2
(γ−1) vx

c2
(γ−1) vy

c2
−γ−1

c2

−vx

ρ
1
ρ 0 0

vy

2 c + (γ−1) ‖v‖2
4 c2

− (γ−1) vx

2 c2
− (γ−1) vy+c

2 c2
γ−1
2 c2

− vy

2 c + (γ−1) ‖v‖2
4 c2

− (γ−1) vx

2 c2
− (γ−1) vy−c

2 c2
γ−1
2 c2

 ,
where we have further changed the sign to the second left and right
eigenvectors for symmetry.
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2.2
Numerical methods

Although existence of entropy weak solutions to hyperbolic systems of
conservation laws can be established in some cases, practical closed for-
mulas only exist in very limited cases, such as linear equations or some
Riemann problems. Therefore, numerical methods should be used to
obtain approximations to the solutions. In this section we review some
basic concepts and results related to numerical methods for hyperbolic
systems of conservation laws, paying special attention to finite differ-
ence conservative methods [42] and Weighted Essentially Non-Oscillatory
(WENO) reconstructions [35, 26].

2.2.1
Computational grids

The first step to numerically solve partial differential equations is to re-
place the continuous problem, represented by the PDE’s, by a discrete
representation of it. First of all we discretize the x− t plane by choosing
a mesh (or grid) composed by a finite set of points or volumes defined be-
low. Then the PDE is discretized on this grid, and the resulting discrete,
finite-dimensional problem, is solved. We use a point-value discretization
if we regard these discrete values as point values defined at grid points.
On the other hand, we use a cell-average discretization if those discrete
values represent the average value over cells.

Consider a scalar Cauchy problem in one space dimension,{
ut + f(u)x = 0, x ∈ R, , t ∈ R+,
u(x, 0) = u0(x),

(2.11)

where u, f : R −→ R.
To define a mesh, we consider a discrete subset of points (nodes)

{xj}j∈Z, xj ∈ R ∀j and assume that the grid is uniform, i.e., xj − xj−1 =
∆x > 0, ∀j ∈ Z. This constant is called mesh size and we abbreviate it as
h = ∆x. From the points {xj} we define the cells cj as the subintervals
whose respective centers are xj:

cj =

[
xj−1 + xj

2
,
xj + xj+1

2

]
=
[
xj− 1

2
, xj+ 1

2

]
.
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A grid is defined, depending on the context, to be either the set of cells
{cj}j∈Z or the set of nodes {xj}j∈Z.

We discretize the time variable by defining points in time {tn}n∈N, with
tn < tn+1, ∀n ∈ N. If tn+1 − tn is constant with respect to n, we denote it
by ∆t and call it the time increment. We will denote by un = {unj }j∈Z the
computed approximation to the exact solution u(xj , t

n) of (2.11).
In real problems, the domain of definition of the equations is re-

stricted to a bounded subset of R and a finite time interval, so the grid
has to be restricted to a finite number of nodes or cells. If we consider the
interval I = [0, 1] and a fixed time T > 0, then we can take positive num-
bers M and N and define a set of nodes {xj}0≤j<M given by xj = (j+ 1

2)∆x,
with ∆x = 1

M . The points in time {tn}0≤n<N can be defined by tn = n∆t,
with ∆t = 1

N .
We can extend all this explanation to the two-dimensional case. Let

us consider a scalar conservation law in 2D with the form:{
ut(x, y, t) + f(u(x, y, t))x + g(u(x, y, t))y = 0, (x, y) ∈ R× R, t× R+,
u(x, y, 0) = u0(x),

and two sets of ordered points, {xi}i∈Z and {yj}j∈Z, satisfying xi < xi+1

for all i ∈ Z and yj < yj+1 for all j ∈ Z. Moreover, we assume as before
that ∆x = xi+1 − xi and ∆y = yj+1 − yj are constant with respect to i and
j respectively. We can define cells ci,j by

ci,j =
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
,

so that each node (xi, yj) is the center of the cell ci,j.

2.2.2
Conservative methods

The simplest way to approximate derivatives is by means of linear finite
differences. If a solution presents some singularity then, in principle,
finite-differences do not yield a satisfactory approximation of the par-
tial derivatives appearing in the equations. Finite volume methods (Go-
dunov’s method, Roe’s method, etc.), based on approximating (2.2), and
Discontinuous Galerkin methods, based on (2.3), overcome this difficulty
by resorting to weak formulations that do not require derivatives of the
unknowns.

When we deal with discontinuous solutions, as mentioned in section
2.1.1, there may be more than one weak solution and the method may
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not converge to the right one or it may converge to a function that is not
a weak solution of the PDE. Some examples of these facts can be found
e.g. in [32]. There exists a simple requirement that we can impose on
the numerical methods to guarantee that they do not converge to non-
solutions. Conservative methods ensure that convergence can only be
achieved to weak solutions (Lax-Wendroff’s theorem).

Definition 2. A numerical method is said to be conservative if it can be
written in the form

un+1
j = unj −

∆t

∆x

(
f̂(unj−p+1, . . . , u

n
j+q)− f̂(unj−p, . . . , u

n
j+q−1)

)
, (2.12)

where the function f̂ : Rp+q → R is called the numerical flux function and
p, q ∈ N, p, q ≥ 0.

The purpose of conservative methods is to reproduce at a discrete
level the conservation of the physical variables in the continuous equa-
tions. In fact (2.12) can be seen as a discrete version of the integral form
(2.2) of the PDE.

An essential requirement on the numerical flux is the consistency
condition:

Definition 3. We say that the numerical flux function of a conservative
numerical method is consistent with the conservation law if the numerical
flux function f̂ reduces to the exact flux f for the case of constant flow, i.e,

f̂(u, . . . , u) = f(u).

The consistency condition is necessary to ensure that a discrete form
of conservation, analogous to the conservation law, is provided by con-
servative methods.

In general, some smoothness is required in the way in which f̂ ap-
proaches a certain value f(u), then we suppose that the flux function
is locally Lipschitz continuous in each variable, i.e., if x is a point in
a normed space M then there exists a constant K and a neighborhood
N(x) of x such that ||f(y)− f(x)|| ≤ K||y − x||, ∀y ∈ N(x).

The main result about conservative methods is the Lax-Wendroff the-
orem, that proves that if they produce a sequence of approximations that
converges to some function u(x, t) as the grid is refined, then this func-
tion will be a weak solution of the conservation law:
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Theorem 1. (Lax-Wendroff, [31, 22]) Consider a sequence of grids indexed
by k = 1, 2, . . . with grid sizes (∆xk,∆tk), satisfying

lim
k→+∞

∆xk = 0,

lim
k→+∞

∆tk = 0.

Let {uk(x, t)} denote the piecewise constant function defined from the nu-
merical solution obtained by a conservative numerical method, consistent
with (2.1), on the k-th grid. If the total variation of the function uk(·, t) is
uniformly bounded in k, t, i.e., supk,t∈[0,T ] TV (uk(·, t)) < ∞ and uk(x, t) con-
verges in L1

loc to a function u(x, t) as k → ∞, then u is a weak solution of
the conservation law.

Some extra conditions for convergence to entropy solutions need to
be imposed [38, 44], otherwise entropy violating shocks, which are non-
entropic weak solutions, may result from conservative methods.

2.2.3
High-resolution conservative methods

The term “high-resolution” is applied to methods whose local truncation
error has order higher than two, thus giving second or even higher order
global errors in smooth parts of the solution, while giving well-resolved
non-oscillatory approximations near discontinuities.

Godunov’s method [14] is a first order accurate method based on the
computation of local Riemann problems located at each cell interface
and subsequent computation of cell-averages of the numerical solution
after a time step short enough so that the waves emanating from the
cell-interfaces do not interact.

The idea of solving Riemann problems forward in time is at the basis
of many modern high-resolution shock-capturing finite volume methods.
A common practice to design numerical methods with order of accuracy
higher than one and suitable for non-linear systems is using piecewise
constant initial data obtained by a high-order reconstruction at the cell
interfaces (see [48]).

To achieve higher order some techniques have been developed as the
essentially non-oscillatory (ENO) methods, introduced by Harten, En-
gquist, Osher and Chakravarthy in [16] and the weighted essentially
non-oscillatory (WENO) methods [25, 35], explained in more detail in
section 2.2.6.
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2.2.4
Semi-discrete formulation

The previously mentioned schemes have all been fully discrete methods,
discretized in both space and time. Let us now consider the discretization
process in two stages, following the so called “method of lines”: we first
discretize only in space, leaving the problem continuous in time. This
leads to a system of ordinary differential equations in time, called “semi-
discrete equations”, that can be written as

d uj(t)

dt
+D(u(t))j = 0, ∀j, (2.13)

where D(u(t))j ≈ f(u)x(xj , t). The discrepancy in this approximation is
defined as the local truncation error of the semi-discrete scheme (2.13),
whose spatial order is precisely the order of the local truncation error.

If we compute the spatial approximation using a conservative formu-
lation, we can rewrite the ODE system (2.13) as:

duj(t)

dt
+
f̂j+ 1

2
− f̂j− 1

2

∆x
= 0, ∀j, (2.14)

where f̂j+ 1
2

= f̂(uj−p+1(t), . . . , uj+q(t)), so that D(u(t))j =
f̂
j+ 1

2
−f̂

j− 1
2

∆x .
After that, we solve the system of ordinary differential equations (2.14)

using an ODE solver. Among the most widely used ODE solvers in this
context are the TVD Runge-Kutta methods developed by Shu and Osher
in [41]. The general formulation of these methods is as follows:

u(0) = un,

u(i) =

i∑
k=0

(
αiku

(k) − βik∆tD(u(k))
)
, 1 ≤ i ≤ r̄,

un+1 = u(r̄),

where r̄ depends on the order of accuracy of the particular Runge-Kutta
scheme and αik, βik are coefficients that also depend on the method (for
more details see [41, 42]). Specifically, in this work we use the third-
order version: 

u(1) = un −∆tD(un),

u(2) =
3

4
un +

1

4
u(1) − 1

4
∆tD(u(1)),

un+1 =
1

3
un +

2

3
u(2) − 2

3
∆tD(u(2)).

(2.15)
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The overall local truncation error of the fully-discrete scheme is re-
lated to the local truncation errors of the spatial semi-discretization and
of the ODE solver.

If we use this TVD Runge-Kutta method as a ODE solver together with
spatial operators that lead to ODE’s of the form (2.14), then we obtain
conservative schemes that can be expressed in the conservative form
(2.12). For example, if we expand (2.15) for each node xj, supposing that

D(un)j =
f̂
j+ 1

2
(un)−f̂

j− 1
2

(un)

∆x , then we can write

un+1
j = unj −

∆t

∆x

[(
1

6
f̂j+ 1

2
(un) +

1

6
f̂j+ 1

2
(u(1)) +

2

3
f̂j+ 1

2
(u(2))

)
−
(

1

6
f̂j− 1

2
(un) +

1

6
f̂j− 1

2
(u(1)) +

2

3
f̂j− 1

2
(u(2))

)]
.

(2.16)

Since u(1) and u(2) are obtained from un we can write (2.16) in terms
of a numerical flux function

f̂RK3(un) =
1

6
f̂(un) +

1

6
f̂(u(1)) +

2

3
f̂(u(2)),

which is consistent, as

un+1
j = unj −∆t

(
f̂RK3
j+ 1

2

(un)− f̂RK3
j− 1

2

(un)
)
.

2.2.5
Shu-Osher’s finite-difference conservative schemes

In order to obtain high-order finite-difference conservative schemes to
solve hyperbolic systems of conservation laws, we use Shu and Os-
her’s technique [42]. Third or higher order multidimensional schemes
obtained with this technique are more efficient, both in execution and
implementation, than their finite volume counterparts. A restriction
of high order finite-difference conservative schemes is that uniformly-
spaced Cartesian grids are required, which is a serious drawback when
dealing with domains with curved boundaries. As we shall see, an essen-
tial contribution of this work is to show that we can overcome this draw-
back by using suitable extrapolations techniques for ghost-cell data.

The basic idea that makes possible Shu-Osher’s approach is stated in
the following lemma:
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Lemma 1. If the functions g, ϕ satisfy

g(x) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

ϕ(ξ)dξ,

then

g′(x) =
ϕ
(
x+ ∆x

2

)
− ϕ

(
x− ∆x

2

)
∆x

.

Applying this result to g(x) = f(u(x, t)), for a fixed t, the conservative
property of the spatial discretization is obtained by implicitly defining the
function ϕ as:

f(u(x, t)) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

ϕ(ξ, t)dξ,

so that the spatial derivative in

ut + f(u)x = 0

is exactly obtained by a conservative finite-difference formula at the cell
boundaries,

f(u)x =
ϕ
(
x+ ∆x

2 , t
)
− ϕ

(
x− ∆x

2 , t
)

∆x
.

Dropping the dependence on t for the presentation of the spatial
semi-discretization, we notice that highly accurate approximations to
ϕ
(
x± ∆x

2

)
are computed using known grid values of f (which are cell-

averages of ϕ) and a reconstruction procedure R. If ϕ̂ is an approxima-
tion to ϕ obtained from point values of f in an stencil around xj+ 1

2
such

that ϕ(xj+ 1
2
) = ϕ̂(xj+ 1

2
) + d(xj+ 1

2
)∆xr + O(∆xr+1), for a Lipschitz function

d, then we can discretize

f(u)x(xj) =
ϕ̂(xj+ 1

2
)− ϕ̂(xj− 1

2
)

∆x
+O(∆xr),

i.e., the local truncation error of the semi-discrete scheme is O(∆xr).
We denote as R(f̄j−s1 , . . . , f̄j+s2 , x) the generic local reconstruction pro-

cedure for f(x) from its cell-averages {f̄j−s1 , . . . , f̄j+s2}, where s1 and s2 are
non-negative integers. The most important properties that has to satisfy
this local reconstruction procedure are:

• Preservation of the cell-averages:

1

∆x

∫ x
k+ 1

2

x
k− 1

2

R(f̄j−s1 , . . . , f̄j+s2 , x)dx = f̄k, k = j − s1, . . . , j + s2.
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• Accuracy:

R(f̄j−s1 , . . . , f̄j+s2 , x) = f(x) +O(∆xr), x ∈ [xj−s1− 1
2
, xj+s2+ 1

2
].

wherever f is smooth, for some r > 0.

• The total variation of R(f̄j−s1 , . . . , f̄j+s2 , x) is essentially bounded by
the total variation of f(x), i.e., for some p > 0:

TV (R(f̄j−s1 , . . . , f̄j+s2 , x)) ≤ C · TV (f(x)) +O(∆xp).

When computing reconstructions, another essential point is the use
of an upwinding framework, in which the discretization of the equations
on a mesh is performed according to the direction of propagation of in-
formation on that mesh, i.e we have into account the side from which
information (wind) flows, given by the signs of the eigenvalues of the Ja-
cobian matrix. For instance, for scalar equations, the direction of prop-
agation of the solution is locally given by the sign of f ′(u) and we use
the value of f ′(u) to perform reconstructions biased towards the correct
direction: if f ′(u) > 0, the upwind side is the left side whereas if f ′(u) < 0,
the upwind side is the right side.

The approximations f̂n
j+ 1

2

are obtained by high-order upwind-biased

reconstructionsR±(f̄j−s1 , . . . , f̄j+s2 , x), i.e., cell-average interpolators who-
se stencils have more points at the upwind side of the points where they
are evaluated. In this work, we obtain f̂ by the WENO reconstruction
method which will be explained in the next section.

Summarizing, the computation of the numerical fluxes with Shu-
Osher’s procedure is performed as follows:
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Algorithm 1. (Shu-Osher’s algorithm for scalar equations)

Define βj+ 1
2

= maxu∈[uj ,uj+1] |f ′(u)|

if f ′(u) 6= 0 ∀u ∈ [uj , uj+1]
if f ′(u) > 0

f̂j+ 1
2

= R+(fj−s1 , . . . , fj+s2 , xj+ 1
2
)

else
f̂j+ 1

2
= R−(fj−s1+1, . . . , fj+s2+1, xj+ 1

2
)

end
else
f̂+
j+ 1

2

= R+(f+
j−s1 , . . . , f

+
j+s2

, xj+ 1
2
)

f̂−
j+ 1

2

= R−(f−j−s1+1, . . . , f
−
j+s2+1, xj+ 1

2
)

f̂j+ 1
2

= f̂+
j+ 1

2

+ f̂−
j+ 1

2

.

end

where the functions f± define a flux-splitting that satisfies f+ + f− = f
and the eigenvalues λk satisfy ±λk ((f±(u))′) ≥ 0 (f± are upwind fluxes)
for u ∈ [uj , uj+1]. In their work, Shu and Osher [41] use a local Lax-
Friedrichs (LLF) flux-splitting version of the ENO algorithms.

To extend these schemes to systems of conservation laws we can com-
pute the numerical flux f̂i+ 1

2
(we drop the j subscript for simplicity) by

using a fifth order Donat-Marquina’s flux-splitting [11], which uses local
characteristic decompositions of the flux Jacobians and projections of
the state variables and fluxes onto characteristic fields. for the case of a
fifth order method the formula is:

f̂i+ 1
2

=

m∑
k=1

r+,k
(
R+

(
l+,k · f+,k

i−2 , . . . , l
+,k · f+,k

i+2 ;xi+ 1
2

))
+

m∑
k=1

r−,k
(
R−

(
l−,k · f−,ki−1 , . . . , l

−,k · f−,ki+3 ;xi+ 1
2

))
,

(2.17)

where f±,kl = f±,k(ul) as defined below, r±,k = rk(u±
i+ 1

2

), l±,k = lk(u±
i+ 1

2

) are

the right and left normalized eigenvectors corresponding to the eigen-
value λk(f ′(u±i+ 1

2

)) of the flux Jacobian f ′(u±
i+ 1

2

), respectively, computed at

u±
i+ 1

2

, where

u+
i+ 1

2

= I+(ui−2, . . . , ui+2;xi+ 1
2
), u−

i+ 1
2

= I−(ui−1, . . . , ui+3;xi+ 1
2
),
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for some interpolators I±. The functions f±,k satisfy f+,k + f−,k = f ,
±λk((f±,k)′(u)) > 0 for u in some relevant range Mi+ 1

2
near u±

i+ 1
2

, and are

given by:

(f−,k, f+,k)(v) =


(0, f(v)), λk(f

′(u)) > 0, ∀u ∈Mi+ 1
2

(f(v), 0), λk(f
′(u)) < 0, ∀u ∈Mi+ 1

2

(F−αk
i+ 1

2

(v), Fαk
i+ 1

2

(v)), ∃u ∈Mi+ 1
2
/λk(f

′(u)) = 0,

where αk
i+ 1

2

≥ |λk(f ′(u))| for u ∈ Mi+ 1
2

and Fα(v) = 1
2(f(v) + αv). For the

Euler equations we can simply takeMi+ 1
2

= {ui, ui+1}.

2.2.6
WENO reconstruction method

For the Essentially Non Oscillatory (ENO) schemes, introduced by Harten
et al. in [16], a given cell interface reconstruction is obtained by choos-
ing one of the different polynomial reconstructions of a given degree that
can be constructed using stencils that contain one of the cells that define
the given interface. The stencil choice is based on the smoothness of the
numerical solution on it and the obtained reconstructions are r-th or-
der accurate when considering r stencils (consecutive indexes) of length
r containing the target cell, with the condition that at least one of the
stencils does not contain a singularity. During the stencil selection pro-
cedure the ENO method considers r possible stencils, which altogether
contain 2r − 1 cells.

Weighted Essentially Non Oscillatory (WENO) reconstructions, intro-
duced by Liu, Osher and Chan in [35], are based on the idea of increas-
ing the order of accuracy of the method in smooth regions by consid-
ering a reconstruction given by a convex combination of the different
polynomial reconstruction candidates of the ENO method, with spatially
varying weights designed to increase the accuracy of the individual re-
constructions corresponding to the different stencils. In [35], the r-th
order of accuracy of the ENO method obtained with stencils of r points
was raised to r + 1 in smooth regions, whilst retaining the r-th order
near discontinuities. The weight assigned to the polynomial reconstruc-
tion associated to a given stencil depends on a smoothness indicator,
for which they used a suitably weighted sum of squares of (undivided)
differences of the data corresponding to that stencil. A new smoothness
indicator was proposed by Jiang and Shu in [25] to achieve fifth-order
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reconstructions from third-order ENO reconstructions, i.e. an order of
2r − 1 when r = 3.

We describe next the ENO and WENO reconstruction schemes used
in this work.

Let h = ∆x be the grid spacing. In the ENO algorithm [16] a left-
biased approximation to the value f(xj+ 1

2
) is computed using the values

f̄l at stencils of r nodes (r ≥ 2) that contain the node xj. There are r
stencils of r nodes that contain xj, given by

Srj+k = {xj+k−r+1, . . . , xj+k}, k = 0, . . . , r − 1.

From them, r different polynomial reconstructions of degree at most r−1,
denoted by prk(x), can be constructed, each of them satisfying

prk(xj+ 1
2
) = f(xj+ 1

2
) +O(hr)

if f is smooth in the corresponding stencil.
Among all the candidate substencils the ENO algorithm selects the

substencil producing the smallest divided differences, in an attempt to
produce less oscillatory interpolants, see [1, 16] for further details. The
polynomial reconstruction prk(xj+ 1

2
) would be the r-th order accurate ap-

proximation of the numerical flux computed by the ENO algorithm if the
stencil Srj+k had been chosen in the stencil selection procedure.

Weighted ENO reconstructions appeared in [35] as an improvement
upon ENO reconstructions. In [35], Liu et al. state that there is no need
of selecting just one of the possible stencils, and that a combination of
them can give better results in smooth regions. If f is smooth in all
stencils, a (2r − 1)-th order reconstruction

p2r−1
r−1 (xj+ 1

2
) = f(xj+ 1

2
) +O

(
h2r−1

)
can be computed using the stencil S2r−1

j+r−1 = {xj−r+1, . . . , xj+r−1}, instead
of the r-th order reconstruction provided by the ENO algorithm.

If we consider the r candidate stencils of the ENO algorithm, Srj+k =
{xj−r+1+k, . . . , xj+k}, k = 0, . . . , r − 1, and the (r − 1)-th degree polynomial
reconstructions prk(x), defined on each stencil Srj+k, satisfying prk(xj+ 1

2
) =

f(xj+ 1
2
) + O(hr) , then a (left-biased) WENO reconstruction of f is given

by the convex combination:

q(xj+ 1
2
) =

r−1∑
k=0

wkp
r
k(xj+ 1

2
), (2.18)
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where:

wk ≥ 0, k = 0, . . . , r − 1,

r−1∑
k=0

wk = 1

and the corresponding (left-biased) reconstruction evaluation operator is
given by:

R(f̄j−r+1, . . . , f̄j+r−1) =
r−1∑
k=0

ωj,kp
r
j,k(xj+ 1

2
).

The weights should be selected with the goal of achieving the maximal
order of accuracy 2r−1 wherever f is smooth, and r−th order, as the ENO
algorithm, elsewhere.

As in the original WENO approach [35], we first note that for r ≥ 2,
coefficients Crk, called optimal weights, can be computed such that:

p2r−1
r−1 (xj+ 1

2
) =

r−1∑
k=0

Crkp
r
k(xj+ 1

2
),

where,

Crk ≥ 0 ∀k,
r−1∑
k=0

Crk = 1.

In [2], Aràndiga et al. give different explicit formulae for the polynomial
reconstructions and the optimal weights.

Notice that to accomplish the requirements on the non-linear weights
wk one can define them satisfying the condition:

wk = Ck +O(hm), k = 0, . . . , r, (2.19)

with m ≤ r − 1. Then, there holds (see [2], [35]) that

f(xj+ 1
2
)− q(xj+ 1

2
) = O(hr+m), (2.20)

and, if m = r − 1 in (2.19), then the approximation (2.20) has maximal
order 2r − 1.

Another requirement for the weights is that the ones corresponding
to polynomials constructed using stencils where the function has a sin-
gularity should be very small, so that the WENO reconstruction does
not take those polynomials into account and, as required, yields an ap-
proximation of an order not worse than that of the ENO interpolators.
Besides, the weights should be smooth functions of the cell-averages of
the reconstructed function and efficiently computable.
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Weights satisfying these conditions are defined in [35] as follows:

wk =
αk∑r−1
i=0 αi

, αk =
Crk

(ε+ Ik)p
, k = 0, . . . , r − 1, (2.21)

where p ∈ N, Crk are the optimal weights, Ik = Ik(h) is an smoothness
indicator of the function f on the stencil Sk and ε is an small positive
number, possibly dependent on h, introduced to avoid null denomina-
tors, but, as we will see later on in this thesis, it has a strong influence
in the overall performance of the approximations at critical points and
at discontinuities. The weights thus defined satisfy

∑
k ωk = 1 indepen-

dently of the smoothness indicator choice.
We use Jiang and Shu’s smoothness indicator (see [25]):

Ik =
r−1∑
l=1

∫ x
j+ 1

2

x
j− 1

2

h2l−1(p
(l)
k (x))2dx, (2.22)

with which they obtained WENO schemes with optimal order 2r − 1 for
r = 2, 3. The term h2l−1 was introduced to remove h-dependent factors in
the derivatives of the polynomial reconstructions pk(x).

In [2], the authors give explicit formulae for the optimal weights Crk
and polynomial values prk(xj+ 1

2
) for k = 0, . . . , r − 1.

The optimal weights for r = 2, 3, 4, 5 obtained using these explicit for-
mulae are displayed in Table 2.1.

r k = 0 k = 1 k = 2 k = 3 k = 4

2 1/3 2/3

3 1/10 6/10 3/10

4 1/35 12/35 18/35 4/35

5 1/126 20/126 60/126 40/126 5/126

Table 2.1: Optimal weights for r = 2, 3, 4, 5.

In [2], Aràndiga et al. prove that the order of accuracy of the scheme
is 2r−1 when using stencils of length 2r−1 contained in smooth regions,
regardless of neighboring extrema, whereas this order is at least r when
at least one of the substencils involved in the weighted average does not
cross a discontinuity. They also show that for achieving the maximal
order 2r − 1 at any smooth region with the original weights proposed
by Liu, Osher and Chan in [35] (given by (2.21)), the choice of ε being
proportional to h2 is optimal.
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2.3
Faà di Bruno’s formula

High order derivatives of composition of functions are ubiquitous in nu-
merical analysis and the following generalization of the chain rule, known
as Faà di Bruno’s formula [13], comes in very handy in many situations.
For the sake of completeness, we include a proof of Theorem 2, for which
we have not found satisfactory references.

Theorem 2 (Faà di Bruno formula). Let f : Rm → Rp, u : R → Rm n times
continuously differentiable. Then

dnf(u(t))

dtn
=
∑
s∈Pn

[
n
s

]
f (|s|)(u(t))Dsu(t), (2.23)

where Pn = {s ∈ Nn/
∑n

j=1 jsj = n}, |s| =
∑n

j=1 sj,
[
n
s

]
=

n!

s1! · · · sn!
, Dsu(t)

is an m× |s| matrix whose (
∑
l<j

sl + k)-th column is given by

(Dsu(t))∑
l<j

sl+k =
1

j!

∂ju(x)

∂tj
, k = 1, . . . , sj , j = 1, . . . , n, (2.24)

and the action of the k-th derivative tensor of f on a m×k matrix A is given
by

f (k)(u)A =

m∑
i1,...,ik=1

=
∂kf

∂ui1 . . . ∂uik
(u)Ai1,1 . . . Aik,k ∈ Rp. (2.25)

Denote byM(s, n) the vector space of multilinear functions (tensors),

T :

s︷ ︸︸ ︷
Rn × · · · × Rn → R.

Since

s︷ ︸︸ ︷
Rn × · · · × Rn is isomorphic to the vector space of n× s matrices, we

can regard s-tensors as acting on the columns of n× s matrices. Tensors

can be characterized as
s︷ ︸︸ ︷

n× · · · × n matrices (Ti1,...,is), i.e.,

T (A) = TA =
n∑

i1=···=is=1

Ti1,...,isAi1,1 . . . Ais,s.

The following result is easily established.
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Lemma 2. Assume T : Rn →M(s, n) is differentiable (equivalently, Ti1,...,iis
are differentiable) and that A : R→ Rn×s, u : R→ Rn are also differentiable.
Then, ∀x ∈ R

d

dx
T (u(x))A(x) = T ′(u(x))[u′(x) A(x)] + T (u(x))

s∑
j=1

djA(x),

where we have used the notation djA(x) for the n × s matrix given by the
columns:

(djA(x))k =

{
Ak(x) k 6= j

A′j(x) k = j

We introduce some further notation for the proof of Theorem 2. For
s ∈ N, we denote

Ps,j = {m ∈ Ps/mj 6= 0}.

We denote also

S0 : Ps → Ps+1,1, S0(m)k =


0 k = s+ 1

mk s ≥ k 6= 1

m1 + 1 k = 1,

Sj : Ps,j → Ps+1,j+1, Sj(m)k =


0 k = s+ 1

mk s ≥ k 6= j, j + 1

mj − 1 s ≥ k = j

mj+1 + 1 s ≥ k = j + 1.

for 1 ≤ j < s, and Ss that maps (0, . . . , 0, 1) ∈ Ns to (0, . . . , 0, 1) ∈ Ns+1.

Proof. (of Theorem 2) We use induction on s, the case s = 1 being the
chain rule. By the induction hypothesis for s and Lemma 2 we deduce:

ds+1f(u(x))

dxs+1
=
∑
m∈Ps

[
s
m

]
d

dx

(
f (|m|)(u(x))Dmu(x)

)
=
∑
m∈Ps

[
s
m

] (
(f (|m|))′(u(x))[u′(x) Dmu(x)] + f (|m|)(u(x))

n∑
j=1

djD
mu(x)

)
=
∑
m∈Ps

[
s
m

] (
f (|m|+1)(u(x))[u′(x) Dmu(x)] + f (|m|)(u(x))

n∑
j=1

djD
mu(x)

)
.
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Now,
djD

mu(x) = DSj(m)u(x)PE,

where P is a permutation matrix correspondig to the transposition of j
and

∑
l≤kml, with

∑
l<kml < j ≤

∑
l≤kml and E is a diagonal matrix with

k + 1 in the
∑

l≤kml entry and 1 in the rest.
By the symmetry of f (|m|), if

∑
l<kml < j ≤

∑
l≤kml

f (|m|)(u(x))djD
mu(x) = (k + 1)f (|Sk(m)|(u(x))DSk(m)u(x),

therefore, collecting identical terms,

ds+1f(u(x))

dxs+1
=
∑
m∈Ps

[
s
m

] (
f (|S0(m)|)(u(x))DS0(m)u(x)

+
n∑
j=1

f (|m|)(u(x))djD
Sj(m)u(x)

)
can be written as

ds+1f(u(x))

dxs+1
=
∑
m∈Ps

[
s
m

] (
f (|S0(m)|)(u(x))DS0(m)u(x)

+

n∑
k=1

mk(k + 1)f (|Sk(m)|)(u(x))DSk(m)u(x)
)
,

(2.26)

where we point out that in the last expression the only terms that ac-
tually appear are those for which mk > 0. Since mk − 1 = (Sk(m))k, by
collecting the terms for m, k such that Sk(m) = m̂, (2.26) can be written
as

ds+1f(u(x))

dxs+1
=

∑
m̂∈Ps+1

am̂f
(|m̂|)(u(x))Dm̂u(x), (2.27)

where

am̂ =


ãm̂ if m̂1 = 0

ãm̂ +

[
s

S−1
0 (m̂)

]
if m̂1 6= 0,

ãm̂ =
∑

m̂ = Sk(m),
k ∈ {1, . . . , s},
m ∈ Ps,k

[
s
m

]
mk(k + 1).

(2.28)
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For k ∈ {1, . . . , s}, and m ∈ Ps,k, such that m̂ = Sk(m), i.e., m̂i = mi,
i 6= k, k + 1, m̂k = mk − 1, m̂k+1 = mk+1 + 1, we deduce:[

s
m

]
mk(k + 1) =

s!

m1! . . . (mk − 1)!mk+1! . . .ms!
(k + 1)

=
s!

m̂1! . . . m̂k!(m̂k+1 − 1)! . . . m̂s!
(k + 1)

=
s!

m̂1! . . . m̂k!m̂k+1! . . . m̂s!
m̂k+1(k + 1).

Let m̂ = Sk(m) with k < s, then one has m̂s+1 = 0. The only element
m ∈ Ps,s is (0, . . . , 0, 1) ∈ Ns and Ss(m) = (0, . . . , 0, 1) ∈ Ns+1. Therefore

ãm̂ =
s!

m̂1! . . . m̂s+1!

∑
m̂ = Sk(m),
k ∈ {1, . . . , s},
m ∈ Ps,k

m̂k+1(k + 1)

ãm̂ =
s!

m̂1! . . . m̂s+1!

s∑
k=1

m̂k+1(k + 1) =
s!

m̂1! . . . m̂s+1!

s+1∑
k=2

m̂kk. (2.29)

On the other hand, if m̂1 6= 0, then:[
s

S−1
0 (m̂)

]
=

s!

(m̂1 − 1)!m̂2! · · · m̂s!
=

s!

m̂1!m̂2! · · · m̂s!m̂s+1!
m̂1, (2.30)

where the last equality holds since, as before, we have m̂s+1 = 0. Then,
regardless of m̂1, (2.29) and (2.30) yield for m̂ ∈ Ps+1

am̂ =
s!

m̂1! . . . m̂s+1!

s+1∑
k=1

m̂kk =
s!

m̂1! . . . m̂s+1!
(s+ 1) =

[
s+ 1
m̂

]
, (2.31)

since m̂ ∈ Ps+1 means
∑s+1

k=1 m̂kk = s + 1. We deduce from (2.27), (2.28)
and (2.31) that

ds+1f(u(x))

dxs+1
=

∑
m̂∈Ps+1

[
s+ 1
m̂

]
f (|m̂|)(u(x))Dm̂u(x),

which concludes the proof by induction.



32 2.3. Faà di Bruno’s formula



3
Meshing procedure for

complex domains

The first question that may arise when tackling a problem with boundary
conditions is how to discretize them in a way such that the numerical
method can properly mix the required boundary information with the
data from the interior nodes.

In order to do so we propose a meshing procedure that relies on
the computation of the intersections between the mesh lines, where the
nodal information is contained, and the domain boundary. In this work,
we will focus on solving two-dimensional systems of conservation laws
with complex domains, and therefore we will assume d = 2 along this
chapter.

As a first simplification, for now we will assume that Ω ⊆ R2 is a
simply connected open domain such that ∃α : [a, b]→ R2, α ∈ C2([a, b],R2)
closed curve (namely, α(a) = α(b)) such that α([a, b]) = ∂Ω. In a more
general case scenario we can consider domains whose boundary is the
union of a finite number of closed curves.
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There are mainly two ways in which such a boundary can be de-
scribed:

1. By means of a differentiable curve parametrized in a compact inter-
val.

2. Through an implicit equation of the form F (x, y) = 0. In this case, it
can be determined if a point (x, y) ∈ R2 belongs to Ω, ∂Ω or R2 \ Ω in
terms of the sign of F (x, y).

Our analysis will be focused on the first case, since, although work-
ing with parametrizations is more complicated in some senses, such as
computing intersections, it is convenient to tackle this case because it
is easier to describe a curve through parametrizations rather than by an
implicit equation. Our goal is thus obtaining an automated process to
mesh the interior of a closed curve, in terms of an algorithm which can
be implemented in a computer.

3.1
Safe detection of intersections

There are many ways to mesh a set, but as the numerical methods used
in this work to solve the physical equations are finite-difference schemes
we will focus on the case of Cartesian meshes, i.e., meshes whose cells
are rectangular and identically distributed. We must therefore design a
strategy to automate the meshing procedure, that is, the computation
of all the intersections of the boundary with the mesh lines, ghost cells,
normal lines, etc. regardless the parametrization of the curve.

Let α : [a, b] → R2 be a piecewise C2 curve such that α(a) = α(b). Let
us assume we want to establish a grid into its interior with horizontal
and vertical lines of the form xk = x0 + khx and yk = y0 + khy, k ∈ Z, with
hx, hy > 0 the vertical and horizontal spacings, respectively.

We will show the procedure for the computation of the intersection
between the horizontal mesh lines and the boundary, being the vertical
case completely analogous. Starting at α(a) the procedure follows the
boundary curve trying to find the values of the parameter defining the
boundary where horizontal intersections occur. Hence, we will focus
only on the second component of α, α2. We take our starting parameter
s0 = a and consider the value α2(s0). The first step is to find k such that
α2(s0) is between y0 + khy and y0 + (k+ 1)hy. By continuity considerations
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it is clear that the closest intersection involves one of these two lines. It
holds that α2(s0) = y0 + k̃hy, where k̃ := α2(s0)−y0

hy
. Therefore, the values we

are looking for are y0 + kh and y0 + (k + 1)h, with k = bk̃c.
Now we must perform a suitable parameter displacement in order to

approach the first intersection, with enough care in order not to surpass
two or more lines in a single step as in that case some intersections
could be unintentionally discarded. This is where we take advantage of
the assumption that curve is twice differentiable with second derivative
continuous.

We are thus interested in finding ∆s > 0 such that the inequality
|α2(s0 + ∆s) − α2(s0)| ≤ hy holds and on the other hand α2(s0 + ∆s) is
as big as possible in order to reduce the number of iterations (curve
evaluations) required to find the intersection as much as possible.

For the enforcement of the above inequality a natural way to proceed
is to use the mean value theorem for real functions:

|α2(s0 + ∆s)− α2(a)| = ∆s|α′2(s0 + ξ)|, ξ ∈ (0,∆s).

The expression involving α′2 can be bounded through different consid-
erations. The simplest one is by using its boundedness as α′2 is continu-
ous at the compact set [a, b]: ∃L1 > 0 such that |α′2(s)| ≤ L1 ∀s ∈ [a, b]; in
particular, taking s = a+ ξ we have |α′2(a+ ξ)| ≤ L1 as well. Therefore:

|α2(s0 + ∆s)− α2(s0)| = ∆s|α′2(s0 + ξ)| ≤ L1∆s.

Hence, if we want |α2(s0+∆s)−α2(s0)| ≤ hy it suffices to impose L1∆s ≤ hy,
and therefore the choice

∆s1 :=
hy
L1

is valid.
As indicated previously, we are interested in finding ∆s as large as

possible in order to avoid unnecessary evaluations of the curve, thus the
optimal value for L1 is

L1 = max
s∈[a,b]

|α′2(s)|.

Therefore, if the maximum can be computed, we take its value as L1

and an upper bound as fine as possible otherwise.
The bound can be optionally refined by increasing the accuracy order

of the approximation from first to second order. To do so, we perform a
second order Taylor expansion:

α2(s0 + ∆s) = α2(s0) + ∆sα′2(s0) +
∆s2

2
α′′2(s0 + ξ), ξ ∈ (0,∆s).
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Therefore

|α2(s0 + ∆s)− α2(s0)| ≤ ∆s|α′2(s0)|+ ∆s2

2
|α′′2(s0 + ξ)| ≤ ∆s|α′2(s0)|+ ∆s2

2
L2,

where
L2 = max

s∈[a,b]
|α′′2(s)|,

which exists since by assumption α′′2 is continuous in the compact set
[a, b].

Thus, to satisfy
|α2(s0 + ∆s)− α2(s0)| ≤ hy

it suffices to impose

∆s|α′2(s0)|+ ∆s2

2
L2 ≤ hy,

which solving for ∆s > 0 yields

∆s ≤
√
|α′2(s0)|2 + 2L2hy − |α′2(s0)|

L2
=

2hy√
|α′2(s0)|2 + 2L2hy + |α′2(s0)|

.

Therefore, the optimal parameter step in this case is

∆s2 =
2hy√

|α′2(s0)|2 + 2L2hy + |α′2(s0)|
.

In practice, we will take the maximum value between the first and second
order approach as optimal step:

∆s = max{∆s1,∆s2}.

We denote s1 = α2(s0 + ∆s).
The procedure that has been described up to now is a method to cap-

ture every single possible intersection of the grid lines with the boundary
of the domain, which is an indispensable information to mesh the do-
main. After each step, we must check if a mesh line has been crossed
(i.e., α2(s0) ∈ [yk, yk+1] and α2(s1) ∈ [yk+1, yk+2] or α2(s1) ∈ [yk−1, yk]). If
this is the case, we know by continuity arguments that there is an inter-
section between the two parameters. In this situation, we can compute
through a safe procedure an accurate approximation of the parameter
corresponding to such intersection, which is described next. Otherwise
we replace s0 by s1 and repeat the procedure until an horizontal mesh
line is crossed.
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3.2
Newton’s method with bisection control

The previous approach reduces the problem to the one of finding a root
of a continuous function within a certain interval. More precisely, if we
have y0+khy ≤ α2(s0) ≤ y0+(k+1)hy and y0+(k+1)hy ≤ α2(s1) ≤ y0+(k+2)hy
then by Bolzano’s theorem ∃c ∈ [s0, s1] such that α2(c) = y0+(k+1)hy. If we
define f(s) = α2(s)−(y0 +(k+1)hy), then f(s0) ≤ 0, f(s1) ≥ 0 and c is a root
of f , namely, f(c) = 0. Therefore this problem can be translated to find
the root of the function f . Recall that f is a function of class C2([s0, s1])
that changes sign at that interval, and hence by Bolzano’s theorem ∃c ∈
(s0, s1) such that f(c) = 0. Let us denote by simplicity [a, b] = [s0, s1].

Let us recall that the bisection method consists on taking the mid-
dle point x1 of the interval (a, b), x1 := a+b

2 and then evaluate the sign of
f(x1). If sign(f(x1)) = sign(f(a)) then a root is located at (x1, b), an in-
terval whose length is half the original one. Analogously, if sign(f(x1)) =
sign(f(b)) then a root is located at (a, x1), which is again an interval of
half the size of the original. Then we repeat the process by computing
x2 as the midpoint of the current interval and so on. The decreasing
size of the intervals and the continuity of f yields the convergence of this
algorithm.

On the other hand, Newton’s method takes a starting point x0 reason-
ably close to the root c in order to generate a recurrence in an attempt to
approximate it:

xn+1 = xn −
f(xn)

f ′(xn)
, n ∈ N∗.

This method is much faster than the bisection method with an excellent
convergence rate provided f ′ is far enough from zero in a neighborhood
of c.

Alternatively, the secant method allows to approximate the root as
well without using the expression of the first derivative, by approximating
it through

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
,

with x0 = a and x1 = b.
The last two methods, however, can be extremely slow or even di-

vergent if f ′ is close to zero around c. We next describe how to obtain a
hybrid procedure combining the robustness of the bisection method with
the efficiency of methods as Newton’s or secant method. The algorithm
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produces a sequence of intervals [an, bn] of decreasing size that contain
the root of f , with a convergence rate equal or higher to the one of the
bisection method.

Initially we take a0 = a, b0 = b such that f(a0)f(b0) < 0 and a starting
point x0 = a+b

2 . Assume we are in step n, with an−1 ≤ an < bn ≤ bn−1,
f(an)f(bn) < 0 and xn as approximation of c. Then we compute xn+1 either
by Newton’s or secant method and then: if f(xn+1) is close enough to zero
then the procedure stops since the root has been found. Otherwise, we
consider the following two cases:

• If |f(xn+1)| > |f(xn)|
2

or xn+1 6∈ [an, bn], then the convergence rate

is roughly worse than the bisection method or the new iteration
point is out of the safe bounds, and then we redefine xn+1 as xn+1 =
an + bn

2
.

• If |f(xn+1)| ≤ |f(xn)|
2

and xn+1 ∈ [an, bn], then the local convergence

rate is roughly the same or better than the bisection method and
inside the safe zone, and then we keep the value of xn+1.

In both cases, if sign(f(xn+1)) = sign(f(an)) then we define an+1 = xn+1

and bn+1 = bn; on the other hand, if sign(f(xn+1)) = sign(f(bn)) then we
define an+1 = an and bn+1 = xn+1.

The procedure stops once |f(xn+1)| or |bn+1 − an+1| are below a certain
tolerance. This algorithm ensures that the convergence rate is at least
the one offered by the bisection method.

3.3
Ghost cells

WENO schemes of odd order, say 2`− 1, use a stencil (set of consecutive
indexes) of 2` points to perform a reconstruction at each cell interface,
therefore ` additional cells are needed at both sides of each cell in order
to perform a time step. For cells close to the boundary some of these
additional cells may fall outside the computational domain and in that
case they are usually named ghost cells and, in terms of their centers,
are given by:

GC := GCx ∪ GCy,
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where

GCx := {(xr, ys) : 0 < d (xr, Πx (Ω ∩ (R× {ys}))) ≤ khx, r, s ∈ Z} ,

GCy := {(xr, ys) : 0 < d (ys, Πy (Ω ∩ ({xr} × R))) ≤ khy, r, s ∈ Z} ,

where Ω is the computational domain, Πx and Πy denote the projections
on the respective coordinates and

d(a,B) := inf{|b− a| : b ∈ B},

for given a ∈ R and B ⊆ R. Notice that d(a, ∅) = +∞, since, by convention,
inf ∅ = +∞.

3.4
Normal lines

We focus now on the two-dimensional setting and boundaries with pre-
scribed Dirichlet conditions, e.g., reflective boundary conditions for the
Euler equations. In this situation, it seems reasonable that the extrapo-
lation at a certain ghost cell P = (x∗, y∗) ∈ GC is based on the prescribed
value at the nearest boundary point. It can be proven that a point P0 ∈ ∂Ω
satisfying

‖P − P0‖2 = min{‖P −B‖2 : B ∈ ∂Ω}

also satisfies that the line determined by P and P0 is normal to the curve
∂Ω at P0, if ∂Ω is differentiable at P0. Namely, assuming P0 = α(s∗), the
following condition is verified:

〈P − P0, α
′(s∗)〉 = 0.

This yields an iterative procedure to automatically approximate through
Newton’s or secant method the normal line associated to each ghost node
P by finding the root of the function

FP (s) = 〈P − α(s), α′(s)〉.

Uniqueness of P0 holds whenever P is close enough to the boundary, so
we will henceforth denote N(P ) = P0.

This argument suggests that a good strategy is to perform a (virtual)
rotation of the domain and obtain data on some points Ni ∈ Ω on the
line that passes through P and N(P ) (normal line to ∂Ω passing by P )
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and then use a one-dimensional extrapolation from the data on these
points on the segment to approximate the value at P . The details of this
procedure are described in Section 3.4.1.

In case that the boundary conditions prescribe values for the normal
component of a vectorial unknown −→v related to the coordinate frame (as
is the case for reflective boundary conditions for the Euler equations),
then one defines

−→n =
P −N(P )

‖P −N(P )‖
,
−→
t = −→n ⊥,

and obtains normal and tangential components of −→v at each point Ni of
the mentioned segment by:

vt(Ni) = −→v (Ni) ·
−→
t , vn(Ni) = −→v (Ni) · −→n .

The extrapolation procedure is applied to vt(Ni) to approximate vt(P ) and
to vn(Ni) and vn(N(P )) = 0 to approximate vn(P ). Once vt(P ), vn(P ) are
approximated, the approximation to −→v (P ) is set to

−→v (P ) = vt(P )
−→
t + vn(P )−→n .

3.4.1
Choice of nodes on normal lines

If we wish to compute boundary data in a way such that a certain pre-
cision in the resulting scheme is formally preserved it is necessary to
extrapolate information from the domain interior in an adequate man-
ner. Therefore, if the basic numerical scheme has order r it is reasonable
to use extrapolation of this order at least. For the sake of clarity, we will
not distinguish between interpolation or extrapolation when these take
place at the interior of the domain.

At this point there are many possibilities. However, as expected, not
all of them yield the same quality in the results nor the same computa-
tional efficiency. The following configuration aims to represent a reason-
able balance between both factors.

We proceed in a fashion similar to [43]. Let (x∗, y∗) ∈ GC and consider
the corresponding point in ∂Ω at minimal distance, N(x∗, y∗). As already
mentioned, the vector determined by both points is orthogonal to ∂Ω at
N(x∗, y∗). Let us suppose that we wish to use an extrapolation of order r
at the ghost cell center (x∗, y∗).

At first place, one needs to obtain data from the information in Ω at
a set of points N (x∗, y∗) = {N1, . . . , NR+1}, with R ≥ r, on the line deter-
mined by the points (x∗, y∗) and N(x∗, y∗). By a CFL stability motivation,
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we will do the selection with a spacing between them of at least the dis-
tance between (x∗, y∗) and N(x∗, y∗) We will choose the nodes depending
on the slope of the normal line, so that the use of interior information
is maximized. We denote by v = (v1, v2) the vector determined by (x∗, y∗)
and N(x∗, y∗), so that the normal line passing through (x∗, y∗) is given by
the parametric equations:

x = x∗ + sv1,

y = y∗ + sv2.

Depending on the angle θ of the vector v = (v1, v2), we consider two pos-
sibilities:

1. |v1| ≥ |v2|.

2. |v1| < |v2|.

In the first case we take points N ′q = (x∗+qCxhx, y∗+qCxhx
v2
v1

), with Cx ∈ Z
chosen with the same sign as v1 and so that:

‖N ′q −N ′q+1‖2 ≥ ‖v‖2.

As

‖N ′q −N ′q+1‖2 =
hx|Cx|
|v1|

‖v‖2 ≥ ‖v‖2 ⇔ |Cx| ≥
|v1|
hx

,

our choice is Cx = d v1
hx
e. Now, if Dirichlet boundary conditions at P0 :=

N(x∗, y∗) are prescribed, we take the nodes

N (x∗, y∗) =

{
{P0, N

′
1, . . . , N

′
R} if ‖P0 −N ′1‖2 ≥ ‖v‖2

{P0, N
′
2, . . . , N

′
R+1} if ‖P0 −N ′1‖2 < ‖v‖2.

(3.1)

If no boundary condition is specified at N(x∗, y∗) then

N (x∗, y∗) = {N ′1, N ′2, . . . , N ′R+1}. (3.2)

In this fashion, the chosen nodes N (x∗, y∗) = {N1, . . . , NR+1} satisfy ‖Nq −
Nq+1‖2 ≥ ‖v‖2, q = 1, . . . , R.

Let us denote Nq = (x̃q, ỹq). For each q for which u(x̃q, ỹq) is not known,
we need to obtain a sufficiently accurate approximation of this value from
the information on the interior nodes. Since the second coordinate, ỹq,
of Nq does not need to coincide with the center of a vertical cell, we will
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use interpolation from the cells in the line x = x̃q by using the following
set of points:

Sq = {Nq,1, . . . , Nq,R+1} := argmin
A∈A

∑
(x̃q ,ys)∈A

|ys − ỹq|,

A := {A = {(x̃q, yj), . . . , (x̃q, yj+R)}/A ⊆ Ω}.

That is, we select the vertical stencil of length R+1 with a first coordinate
fixed to x̃q such that it be as centered as possible with respect to the point
Nq, see Figure 3.1 (a) for a graphical example.

In a dual fashion, in the second case (|v1| < |v2|) we take points N ′q =
(x∗ + qCyhy

v1
v2
, y∗ + qCyhy), with Cy = d v2

hy
e and

Sq = {Nq,1, . . . , Nq,R+1} := argmin
A∈A

∑
(xs,ỹq)∈A

|xs − x̃q|,

A := {A = {(xj , ỹq), . . . , (xj+R, ỹq)}/A ⊆ Ω}.

See Figure 3.1 (b) for a graphical example.
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Figure 3.1: Examples of choice of stencil: (a) Cx = 1, Nq,i ∈ Sq; (b) Cy = 2,
Nq,i ∈ Sq

As will be expounded in Chapter 4, there are extrapolation methods
which, due to efficiency reasons, should be used using stencils contain-
ing equally spaced nodes, mainly because of the computation of smooth-
ness indicators, which can be very computationally expensive if the data
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is not equally spaced, as it will generally happen on Dirichlet boundaries.
To overcome this issue, we perform an additional step before extrapolat-
ing the value at the ghost cell in order to generate a new stencil that
includes the boundary node and is composed by equally spaced points.

Therefore, if Dirichlet conditions are prescribed, we use the data ob-
tained in Nq, 1 ≤ q ≤ R + 1 to perform 1D interpolations at the points Pq,
1 ≤ q ≤ R, where Pq = (P x0 + qhx, P

y
0 + q v2

v1
hx), 0 ≤ q ≤ R if |v1| ≥ |v2| or

Pq = (P x0 + q v1
v2
hy, P

y
0 + qhy), 0 ≤ q ≤ R, otherwise, and use the data from

the stencil S(P ) = {P0, P1, . . . , PR} to extrapolate it at the ghost cell P .
In case of outflow conditions, we extrapolate directly the data from the

stencil S(P ) = {N1, N2, . . . , NR+1}. See Figure 3.2 for graphical examples.
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N2,1 N2,2 N2,3 N2,4

N3,1 N3,2 N3,3 N3,4

N4,1 N4,2 N4,3 N4,4

N4

P1

P2

P3

(a) (b)

Figure 3.2: Examples of choice of stencil to perform extrapolations with
stencils including equally spaced nodes. We use the stencil S(P ) =
{N1, N2, N3, N4} in case of outflow boundary and conditions and the sten-
cil S(P ) = {P0, P1, P2, P3} in case of Dirichlet boundary conditions.

If the boundary does not change with time the elements involved in
the computation of the extrapolated value at P are determined only once
at the beginning of the simulation.

The above procedure for the selection of the interpolation nodes at the
normal lines and their corresponding sets Sq is performed only once at
the beginning of the simulation as long as the boundary does not change.
With an adequate use of this data structure, one can reconstruct data at
order r (in case of smoothness) at the points N1, . . . , NR+ 1 on the normal
line. Once these values are obtained, they are used to finally extrapolate
to the given ghost cell (x∗, y∗).
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The full extrapolation procedure is thus done in two stages in the case
of outflow boundaries and in three in the case of Dirichlet boundaries (if
one wants to use stencils with equally spaced nodes in all the extrapola-
tion phases): in a first step, data located at the normal lines is computed
from the numerical solution by (horizontal or vertical) 1D interpolation;
in the second one, only performed on Dirichlet boundaries, the nodes
obtained in the first step are used to interpolate at new points at the
normal line so that they compose an equally spaced stencil together with
the point N(P ); finally, values for the ghost cell are obtained by 1D ex-
trapolation along the normal line obtained in the first stage (in case of
outflow boundary) or the second stage (in case of Dirichlet boundary).
Note that stencils with equally spaced notes are used in all the above
approximations.



4
Extrapolation

techniques for
numerical boundary

conditions

In order to have a fully high order accurate spatial scheme while taking
into account the possible formation or eventual positioning of a disconti-
nuity at the vicinity of the boundary, special care should be taken when
filling the ghost cells through numerical boundary conditions, because
interpolation/extrapolation can produce large errors if there is a discon-
tinuity in the region determined by the interpolation nodes and the eval-
uation point. When implementing extrapolation at ghost cells, in order
to avoid this considerable loss of precision or even a complete failure of
the simulation, it is necessary to handle this situation carefully.

Some authors have approached this problem from different perspec-
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tives. In [? ] a second order extrapolation procedure is developed for
elliptic interface problems with Cartesian meshes. A second order proce-
dure for the Poisson equation is developed in [? ], and extended to fourth
order for the Laplace and heat equation in [? ]. Ghost-point-based meth-
ods on elliptic problems are developed in [? ] for arbitrary interfaces
on one dimensional problems and through multigrid methods in [? ].
In [43] the authors develop a technique based on Lagrange interpolation
with a limiter which is restricted to second order methods and a single
ghost cell. Also related to our approach are the works of Shu and col-
laborators [45, 46] where the equation to be solved is used to extrapolate
derivative values of the numerical solution to the boundary points where
inflow conditions are prescribed and then approximate ghost values by
a Taylor expansion. For outflow boundaries an extrapolation technique
based on the WENO method is used, achieving high order when the data
is smooth in both cases. The drawbacks of this approach are that it
is problem-dependent (see [23, 52] for a similar methodology applied to
other equations), that it requires a different treatment of different types
of boundary and its relatively high computational cost.

In this work we introduce new techniques for the extrapolation of in-
terior information to ghost cells (cells outside the domain, but within the
stencils of interior points) making use of boundary conditions (if avail-
able) and interior data near a given ghost cell. This procedure is able
to detect abrupt data changes. Our approach can be understood as an
extension of [43] in the sense that it is based on Lagrange extrapolation
with filters, both through a Boolean approach and in a WENO sense, but
without imposing limitations on the order of the method or the number
of ghost cells. Further, albeit the description is made for hyperbolic con-
servation laws, the procedure is agnostic about the equation and can be
applied to other hyperbolic problems. Finally, the methodology is the
same for inflow and outflow boundaries, just by considering the bound-
ary node as an interpolation node in the case of inflow data.

Since in our procedure the interpolator is evaluated at a point which
is not necessarily centered with respect to the interpolation nodes, we
cannot directly use techniques based on the partition of the stencil in
substencils and/or the weighting of these, such as it is done in ENO
[17] or WENO schemes, because in this case not all the substencils are
useful, this depending on the localization of the discontinuity and the
evaluation point.

Consider for instance the function u := χ[1/2,+∞) and take the nodes
xi := i, 0 ≤ i ≤ 4, with nodal values ui := u(xi) and suppose we want
to extrapolate this information at x∗ = −1. Our nodal values are thus



4. Extrapolation techniques for numerical boundary conditions 47

u0 = 0 and ui = 1 for 1 ≤ i ≤ 4. It is well-known that the ENO3
technique divides the global stencil of five points into three substencils,
Sm := {xm, xm+1, xm+2}, 0 ≤ m ≤ 2, and chooses the one with maximal
smoothness in terms of its divided differences, in this case, S1 or S2,
both with all nodal values equal to 1 and thus all derivatives are zero.
However, the result of this extrapolation at x∗ = −1 is 1, which corre-
sponds to the other state of the discontinuity from where x∗ is located.
The same applies for WENO.

Therefore, the interpolation strategy should be made more flexible, in
order to choose certain nodes as valid according to some criterion and
reject the rest. The strategy expounded in Chapter 3 lets us focus on a
one-dimensional setting.

In Section 4.1 we introduce an extrapolation method that, starting
from a wide stencil, selects the substencil that, in some sense, is the
most adequate and then computes the extrapolation by means of ordi-
nary Lagrange polynomials computed on that stencil [4].

In section 4.2 another technique for extrapolation, based on weights,
is introduced. In some sense it represents an evolution of the previous
one, as it also ponders the contributions of different stencils but now
based on a weighted combination of their reconstructions that improves
the method in Section 4.1 and depends on less parameters [5]. Several
options for the design of the weights used in the method are given and
analyzed.

4.1
Stencil selection by thresholding

Let r be the sought degree of the interpolating polynomial used for the
extrapolation and assume to have information on a stencil of not nec-
essarily equispaced nodes, x0 < · · · < xR (R ≥ r), with corresponding
nodal values ui = u(xi), and that we wish to interpolate at a certain node
x∗. The procedure described in this section selects a substencil of size
not bigger than r+ 1, contained in {x0, . . . , xR} where the data is smooth.
The criterion for the selection of the nodes that will compose that subs-
tencil merges two complementary considerations: on the one hand, the
comparison with a reference value which is the value of the function at
the node closest to x∗, and on the other hand, smoothness information,
obtained from smoothness indicators.

The key node on which we establish a proximity criterion on its corre-
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sponding nodal value is the interior node which is the closest to x∗, i.e.,
we choose the node xi0, i0 ∈ {0, . . . , R} such that:

i0 = argmin
0≤i≤R

|xi − x∗|.

Now, the goal is to approximate the value that that node should have,
based on the information of the “smoothest” substencil and the node xi0.

We consider all possible substencils of size r+ 1. There exist therefore
R− r + 1 possible substencils:

Sm = {xm, . . . , xm+r}, 0 ≤ m ≤ R− r.

We denote by pm(x) the interpolator associated to the stencil Sm, 0 ≤ m ≤
R− r. If sufficient smoothness at the whole stencil holds, then one has:

u(xi)− pm(xi) = O(hr+1), i = 0, . . . , R, , (4.1)

therefore
u(xi) = u(xi0) + (pm(xi)− pm(xi0)) +O(hr+1).

We select the substencil that solves:

m0 := argmin
0≤m≤R−r

r∑
k=1

∫ xm+r

xm

(xm+r − xm)2k−1p(k)
m (x)2dx, (4.2)

and define
vi := ui0 + (pm0(xi)− pm0(xi0)). (4.3)

From (4.1), we have that vi = ui + O(hr+1) if there is smoothness up to
the r-th derivative of u. On the other hand, assuming that u is smooth
on an open set that contains Sm0, if there is a discontinuity within the
whole stencil

⋃R−r
m=0 Sm and ui is quite far from ui0, since by construction

vi = ui0 +O(h), then it can be expected that vi also be quite different from
ui.

In order for the smoothness assumption on Sm0 to make sense in a
general setting, one needs r + 1 ≤ dR+1

2 e, because all substencils would
overlap in some common central nodes otherwise, leading to a situation
where all substencils contain a discontinuity if it is contained in the
overlapping region.

Therefore, one can conclude that the proximity of vi with respect to
ui indicates the stencil smoothness that would entail including or not a
node xi in the stencil used for the final extrapolation.
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Finally, let δ ∈ (0, 1] be a threshold and define the set of indexes

Iδ := {i ∈ {0, . . . , R} : δ (|ui − ui0 |+D(xi)) ≤ |vi − ui0 |+D(xi)} , (4.4)

where

D(x) :=
r∑
j=1

∣∣∣(x− xi0)jp(j)
m0

(xi0)
∣∣∣ .

Notice that Iδ 6= ∅, since i0 ∈ Iδ.
The term D(xi) is used in (4.4) to avoid an order loss at smoothness

regions whenever ∃j0, 1 ≤ j0 ≤ r : |u(j0)| ≥ O(hr+1) near xi0. When the
first derivative is close to zero, despite both |vi − ui0 | and |ui − ui0 | are
still r + 1-th order close, its quotient may be far from 1, specially when
one of the previous expressions is close to zero or even exactly zero (for
instance, in zeros of even degree functions). The terms D(xi), alleviate
this discrepancy by adding a O(hk0) 6= O(hk0+1) term, with k0 ≤ r being
the minimum index such that the k0-th derivative does not have a zero
around xi0. The definitive stencil is the largest stencil in Iδ containing i0.

As last (optional) filter, if u∗ is the value obtained from Lagrange inter-
polation from the resulting stencil, then the same threshold criterion can
be applied to that value, resulting in the definitive extrapolation value:

u∗def =

{
u∗ if δ′ (|u∗ − ui0 |+D(x∗)) ≤ |pm(x∗)− pm(xi0)|+D(x∗)
ui0 if δ′ (|u∗ − ui0 |+D(x∗)) > |pm(x∗)− pm(xi0)|+D(x∗)

(4.5)

with 0 ≤ δ′ ≤ 1.
This last criterion can be useful to detect wrong extrapolations (even

when data are apparently smooth and previous criteria are met). Since it
is an a posteriori criterion, we may generally use it with threshold values
that are more permissive (i.e., much smaller than one) than those used
for the node acceptance check. By construction, the closer the parameter
δ is to one the lesser the tolerance to high gradients will be (with the
consequent risk of eliminating some nodes from smooth regions). On
the other hand, if δ is set to too low values, there may appear some
oscillations or artifacts near discontinuities.

The quality of the smoothness criterion is enhanced with a larger sub-
stencil size (there is less risk of rejecting “correct” nodes). Furthermore
a larger substencil can be also used to avoid a loss of precision order
when consecutive derivatives are null at some point (precisely, until the
(r−1)-th order derivative). Nevertheless, this would force increasing R to
work with a wider initial stencil, i.e., obtain more data from the general
problem in order to avoid the previously mentioned problem.
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In summary, the extrapolation of the nodal data {(xi, ui)}Ri=0 to the
point x∗ consists of the following steps:

1. Find i0 such that xi0 is the closest node to x∗.

2. Find the (r+1)-point stencil Sm0 = {xm0+j}rj=0 with maximal smooth-
ness. We use the smoothness indicators in (4.2) for this purpose.

3. For i ∈ {0, . . . , R} compute candidate approximations vi of ui using
(4.3).

4. Fix a value 0 < δ ≤ 1 and compute the set of nodes Iδ according to
(4.4).

5. Extract the substencil in Iδ composed by xi0 and its r closest points.
If Iδ contains less that r+ 1 points then extract the largest stencil in
Iδ containing i0.

6. Compute the extrapolated value u∗ at x∗ using the stencil in the
previous step.

7. Optionally, fix 0 < δ′ ≤ 1 and replace u∗ by u∗def computed from (4.5).

Let us apply the previous steps to the toy example in page 46. We
have R = 4, r = 2 in that example and we assume the values δ = δ′ = 0.5,
although any other choice of δ and δ′ in the range (0, 1) would give the
same result. The stencil selection procedure is as follows:

1. The closest node to x∗ = −1 is x0 = 0, whose nodal value is u0 = 0.

2. There are two stencils where the information is constant, S1 and S2

and therefore any of them would be selected in this step leading to
the same result. Assume S1 is chosen.

3. vi = u0 = 0, 0 ≤ i ≤ 4, because p1 = 1 for all i ∈ {0, . . . , 4} and thus
D(x) = 0.

4. The differences |ui− vi| are all equal to 1 except for x0 for which it is
equal to 0. Therefore Iδ = {x0} and the result of the extrapolation is
u∗ = u0 = 0.

5. If the a posteriori filter is applied the result is kept as δ′|u∗ − u0| =
0 ≤ 0 = |p1(x∗)− p1(x1)|.

More numerical experiments on this technique are presented in Sec-
tion 4.3.
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4.2
Weighted extrapolation

The method described in Section 4.1 tries to produce extrapolations at
the ghost nodes that maintain the target order of accuracy even increas-
ing the size of the global stencil whenever required.

We now present a new technique, which can be considered as an evo-
lution of the thresholding method, based on the computation of dimen-
sionless and scale independent weights that are used to combine differ-
ent polynomial reconstructions in several ways according to the weight
design. This method outperforms the method based on thresholds and
depends on less parameters. The extrapolation keeps maximal order if
the data is smooth and produces a lower order approximation otherwise.

Consider a stencil of equally spaced nodes x0 < · · · < xr and their
corresponding nodal values uj = u(xj). Denote J = {0, . . . , r} and X =
{xj}j∈J and let x∗ be the node where we wish to interpolate and j0 the
interior node which is closest to x∗, i.e.,

j0 = argmin
j∈J

|xj − x∗|.

The goal is again to approximate the value that x∗ should have, based
on the information of the “smoothest” substencil and the node xj0. We
define inductively the following set of indexes:

J0 = {j0}, and X0 = {xj}j∈J0 = {xj0}.

Assume we have defined Jk = {jk, . . . , jk + k}; then Jk+1 is defined in
an ENO fashion by

Jk+1 =

{
{jk − 1} ∪ Jk if jk > 0 ∧ [ujk−1, . . . , ujk+k] ≤ [ujk , . . . , ujk+k+1]

Jk ∪ {jk + k + 1} if jk < r − k ∧ [ujk , . . . , ujk+k+1] < [ujk−1, . . . , ujk+k]

and
Xk+1 = {xj}j∈Jk+1

,

where [v1, . . . , v`] represents the undivided difference of v1, . . . , v`. By con-
struction, it is clear that the set Xk can be written as a sequence of nodes
with successive indexes, i.e., stencils:

Xk = {xik+j}kj=0

for some 0 ≤ ik ≤ r − k, 0 ≤ k ≤ r.
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Now, for each k, 0 ≤ k ≤ r, we define pk as the interpolating polynomial
of degree at most k such that pk(xik+j) = uik+j , ∀j, 0 ≤ j ≤ k. Given a set of
weights {ωk}rk=1 such that 0 ≤ ωk ≤ 1, we define the following recurrence:

u
(0)
∗ = p0(x∗) = ui0 ,

u
(k)
∗ = (1− ωk)u

(k−1)
∗ + ωkpk(x∗), 1 ≤ k ≤ r.

(4.6)

We define the final result of the weighted extrapolation as

u∗ := u
(r)
∗ ,

which will be taken as an approximation for the value u(x∗).
The idea is to increase the degree of the interpolating polynomial only

if the solution in the corresponding stencil is smooth, and therefore the
chosen weights should verify that ωk ≈ 0 if the stencil Jk crosses a dis-
continuity and ωk ≈ 1 if the data from the stencil is smooth. We will show
below a weight construction that verifies that property as well as the ca-
pability of preserving the accuracy order of the extrapolation in case of
smoothness.

From now on, we will assume that the nodes X are equally spaced
and define h = xj+1 − xj.

For each 1 ≤ k ≤ r, we define a slight modification of the Jiang-Shu
smoothness indicator [26] associated to the stencil Jk as the following
value:

Ik =
1

r

k∑
`=1

∫ xr

x0

h2`−1p
(`)
k (x)2dx.

Now, given 1 ≤ r0 ≤ b
r

2
c, we will seek for a smoothness zone along the

stencils of r0 + 1 points as a reference.
This procedure will work correctly if there is only one discontinuity in

the stencil, and the restriction r0 ≤ b
r

2
c is set in order to avoid a stencil

overlapping, since a discontinuity might eventually be in the overlapping
zone and thus none of the stencils would include smooth data. Define

ISk = min
0≤j≤r−k

1

r

r0∑
`=1

∫ xr

x0

h2`−1q
(`)
k,j(x)2dx, 1 ≤ k ≤ r0,

where qk,j is the polynomial of degree at most k such that qk,j(xj+i) = uj+i
for 0 ≤ i ≤ k, 0 ≤ j ≤ r − k.

There are many possibilities for defining the weights in (4.6). We next
introduce several possibilities that might be suitable for different scenar-
ios. We start with two designs that we name Simple Weights (SW) and
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Improved Weights (IW) that show good performance for problems that
have smooth solutions but might misbehave otherwise. Albeit the in-
terest of such approaches is reduced to academic problems we describe
them in Sections 4.2.1 and 4.2.2 with some detail as they are illustrative
of the ideas behind other methods described in the rest of the section,
which are much more oriented to more challenging problems that may
include the typical non-smooth features of hyperbolic problems.

Numerical experimentation shows that the use of the SW and IW
methods in complex problems can lead to poor results, probably because
of the low numerical viscosity introduced by the methods at the bound-
ary. For this reason, we introduce new weight designs which are derived
from the two aforementioned extrapolation techniques. These are the
unique weight (UW), where the extrapolation is performed by comput-
ing one weight (Section 4.2.4), a tuned version (λ-UW), where the tuning
parameter λ can magnetize the weight to 0 or 1 in order to improve the
quality of the extrapolation depending on the context we are working in
(Section 4.2.4) and the global average weight (GAW), also based on a sin-
gle weight, but more robust than the UW version, described in Section
4.2.5. Finally, since some stability issues may appear if the extrapolation
is solely based on Lagrange extrapolation, we introduce a least-squares
extrapolation procedure, which can be ultimately combined with any of
the the weighted extrapolation techniques. We refer to this combination
as Weighted Least Squares (WLS) so that WLS-X denotes the WLS tech-
nique combined with weights computed by the method X. We describe
this approach in Section 4.2.6. Numerical experiments analyzing all the
above possibilities are shown in Section 4.3.

4.2.1
Simple weights (SW)

The weights are defined as follows

ωk = 1−
(

1−
(
ISk
Ik

)s1)s2
, 1 ≤ k ≤ r0,

ωk = min

{
1−

(
1−

(
ISr0
Ik

)s1)s2
, 1

}
, r0 + 1 ≤ k ≤ r.

(4.7)

A small positive number ε > 0 is added to each smoothness indicator
in order to avoid the denominator to become zero (in all our experiments,
we take ε = 10−100). The parameter s1 enforces the convergence to 0
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when the stencil is not smooth, while the parameter s2 enforces the con-
vergence to 1 when it is smooth.

It can be shown that for a smooth stencil, if there exists some 1 ≤ k0 ≤
r0 such that |u(k0)| >> 0 around the stencil, then

ωk = 1−O(hs2)

and if the stencil crosses a discontinuity, then

ωk = O(h2s1).

A drawback of this weight design, apart from the loss of accuracy
when all the k-th derivatives 1 ≤ k ≤ r0 vanish near the stencil, is the
fact that sometimes the optimal order cannot be attained regardless of
the values of s1 and s2. Consider for instance r = 5 and r0 = 2 and the
function

u(x) =

{
x2, x ≤ 0
1, x > 0

Now we take the nodes xi = −0.5 + 0.2i, 0 ≤ i ≤ 5, and the correspond-
ing values ui are U = {0.25, 0.09, 0.01, 1, 1, 1}. Since one of the substencils
of three points contains {1, 1, 1}, it is clear then that IS = 0 and there-
fore ωk = 0, ∀k, 1 ≤ k ≤ 5. If we performed a weighted extrapolation
to x∗ = −0.7 then it would be obtained the nodal value from the corre-
sponding closest node, x0 = −0.5, that is, u∗ = u0 = 0.25, while the most
reasonable thing to do would be to perform a second order extrapolation
taking the first three nodes (take all the nodes from the correct side of the
discontinuity), which gives 0.49. The aforementioned scenario is depicted
in Figure 4.1.

This has occurred because in this case the smoothest substencil be-
longs to the other side of the discontinuity, and thus the information
about the derivatives is wrong. We next present an alternative weight
design that overcomes the above issue.

4.2.2
Improved weights (IW)

The previously mentioned issue can be solved through the following mod-
ification of the weights design. In this new weight design we will define
and combine additional parameters in order to ensure that, for stencils
with discontinuities, the information is taken from the correct side of the
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Figure 4.1: Comparison of the SW extrapolation results against the ex-
pected optimal result.

discontinuity. Let us now consider the maximum value of the up to r0-th
order smoothness indicators:

IMk = max
0≤j≤r−k

1

r

r0∑
`=1

∫ xr

x0

h2`−1q
(`)
k,j(x)2dx, 1 ≤ k ≤ r0.

We define

σk := min

{
ISmin{k,r0}

Ik
, 1

}
,

τk :=
Ik
IMk

,

and

ρk = τk

(
1− σk
σk

)d
, d ≥ r

2
,

to finally define our new weights as

ωk =
1

1 + ρk
. (4.8)

We now see in detail the reason for this choice. These are the possible
values in terms of powers of O(h) that both quotients between smooth-
ness indicators can take:

σk =

{
1−O(h) if there is smoothness,
O(h2) if Xk crosses a discontinuity.
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However, if there is not smoothness but still Xk does not cross a dis-
continuity there may be two possibilities: ISmin{k,r0} is obtained in the
“correct” side or in the “wrong” one. In the first case, we would have
ISmin{k,r0}

Ik
= 1 +O(h), as desired, but otherwise, if the derivatives are dif-

ferent from one side and another in a random fashion, that would lead
to quotients with values in a random fashion as well. Here is thus the
importance of the second quotient in order to fix such issue:

τk =


1 +O(h) if smoothness,
O(h2) if not smoothness and Xk belongs to a smooth zone,
O(1) if not smoothness and Xk crosses a discontinuity,

where O(1) means that it is a value comprised between 0 and 1 in a
random fashion, but not O(h) since in that case it is a quotient between
two smoothness indicators, both in non-smooth zones. Note from that
the term IMk from the definition of τk can be replaced by Ir, since in this
case τ will still verify the above properties and less smoothness indicators
will be required to be computed. In practice, we will work through this
modification.

One can show that this way

ρk =

{
O(hd) if Xk belongs to a smooth zone,
O(h−2d) if Xk crosses a discontinuity,

as desired, and thus

ωk =

{
1−O(hd) if Xk belongs to a smooth zone,
O(h2d) if Xk crosses a discontinuity,

except when all derivatives up to the r0-th one are close to be zero in some
of the two discontinuity sides, where the value of the weight cannot be
predicted, although it will take values more likely close to 0 rather than
1.

We can fix this issue by redefining σk as

σk =
ISk + β

Ik + β
, (4.9)

where β is assumed to be a small quantity, β = O(hb), b ≤ 2r0. We propose
two different choices of β satisfying that condition:

• β = λ2h2r0, where λ is a parameter proportional to the scaling of the
solution. That is, if we re-scale the data by a factor of µ, then the
value λ should be replaced by µλ.
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• In our context, we have knowledge about a wide range of point val-
ues of a function (the numerical data from a computational domain
in a certain scheme). Hence, we can naturally define a quantity
O(h2r0) depending directly on the data of the problem.

For instance, if we assume we have a 1D simulation with data Uj ,
0 ≤ j ≤ n, then one can define

β =

 1

n

n∑
j=1

|uj − uj−1|

2r0

= TV (u)2r0h2r0 .

The above value can be generalized to any dimension as a global
average of all the absolute values of all the directional undivided
differences (in all directions).

When discontinuities and zeros at the first derivative are supposed
to be in a region of measure 0, the above value verifies β = O(h2r0),
while keeping σk scaling independent. This argument is also valid
even when the first derivative is zero almost everywhere, but there
is a discontinuity on the data, which is also a common case as
initial condition for shock problems. Another valid case is when,
despite having zeros in the derivative in a non-null region, there is
a non-null region having non-zero derivatives as well provided that
the discontinuities, if any, are located in a null region.

If one wants to keep some stricter control of the above parameter
due to the presence of very strong discontinuities which might make
β too big, one can always consider a tuning parameter κ (in this case
independent of the scaling as well) and redefine σk as

σk =
ISk + κβ

Ik + κβ
.

If one uses the above technique to avoid a loss of accuracy near zeros
on the corresponding derivatives and makes sure that the parameters, if
any, are well tuned, it makes no sense to use a smoothness control sten-
cil longer than a two-points one, and thus for that case we will always
use r0 = 1. Moreover, in this particular case it is no longer needed to de-
fine σk such that does not surpass the unity, since we have the following
result.

Proposition 1. If r0 = 1 then

αk :=
I1

Ik
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verifies 0 ≤ αk ≤ 1, 1 ≤ k ≤ r.

Proof. Given f, g ∈ L2([xi−1, xi]) we define the following scalar products

〈f, g〉i =

∫ xi

xi−1

f(x)g(x)dx

and their induced norms as

‖f‖2i = 〈f, f〉i, 1 ≤ i ≤ r.

Now, taking into account that xi − xi−1 = h, we have

Ik =
1

r

k∑
`=1

∫ xr

x0

h2`−1p
(`)
k (x)2dx ≥ 1

r

∫ xr

x0

hp′k(x)2dx =
1

r

r∑
i=1

h

∫ xi

xi−1

p′k(x)2dx

=
1

r

r∑
i=1

∫ xi

xi−1

dx

∫ xi

xi−1

p′k(x)2dx =
1

r

r∑
i=1

‖fi‖2i ‖gi‖2i ,

where fi(x) = 1 and gi(x) = p′k(x) for x ∈ [xi−1, xi]. By the Cauchy-Schwarz
Inequality

〈fi, gi〉2i ≤ ‖fi‖2i ‖gi‖2i

we have

Ik ≥
1

r

r∑
i=1

‖fi‖2i ‖gi‖2i ≥
1

r

r∑
i=1

〈fi, gi〉2i =
1

r

r∑
i=1

(∫ xi

xi−1

fi(x)gi(x)dx

)2

=
1

r

r∑
i=1

(∫ xi

xi−1

p′k(x)dx

)2

=
1

r

r∑
i=1

(pk(xi)− pk(xi−1))2 =
1

r

r∑
i=1

(ui − ui−1)2

≥ 1

r

r∑
i=1

min
1≤j≤r

(uj − uj−1)2 = min
1≤j≤r

(uj − uj−1)2 = I1.

With these modifications, weighted extrapolation will not suffer from a
loss of accuracy in any case and it will have the optimal order in presence
of sharp discontinuities.

If we now apply this technique, it will still capture well sharp dis-
continuities while keeping the highest order as possible when there is a
discontinuity in the stencil.
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4.2.3
Examples

Example 1. Let u : R→ R a function defined by

u(x) =

{
x2 if x ≤ 1,

1 + x3 if x > 1.

We study numerically the accuracy behavior of our scheme in a six point
stencil around the discontinuity point x = 1 when h→ 0. Given h > 0 we
select as stencil the set of nodes xi = 1 + (−2.5 + i)h, 0 ≤ i ≤ 5. Figure 4.2
shows a graphical example of the grid points for h = 0.2 and h = 0.1.
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Figure 4.2: Illustration of the grid configuration in Example 1.

We start with h0 = 0.04 and define hi = hi−1/2 for 1 ≤ i ≤ 6 and
compute the exact errors extrapolating at x∗ = 1 + 3.5h using the above
techniques. A successful one should give third order accuracy since
there are available three points from the right side of the discontinuity.

The results obtained with the simple weights (4.7) for s1 = s2 = 3 and
r0 = 2 are shown in Table 4.1.

It can be clearly seen that the optimal accuracy is not attained by this
weight design.

The technical reason for this happening is that the derivative of u for
x 6= 1 is

u′(x) =

{
2x if x < 1,
3x2 if x > 1,

and thus limx→1− u
′(x) = 2 and limx→1+ u′(x) = 3, hence since the “smoo-

thest” information is taken from the left side of the discontinuity but the
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Resolution Error Order
h0 5.72E−2 −
h1 1.18E−2 1.48

h2 7.40E−3 1.32

h3 3.24E−3 1.19

h4 1.51E−3 1.10

h5 7.26E−4 1.06

h6 3.56E−4 1.03

Table 4.1: Simple weights (4.7), example 1.

actual information should be taken from the right side of the discon-
tinuity, where there is smoothness as well. Therefore, the weights ωk,
1 ≤ k ≤ 2, converge to (1 − (2

3)3)3 as h → 0 rather than 1 for the above
explained reason.

Now, we repeat the same test using the new weights defined in (4.8)
for d = 3 and r0 = 1 and we present in Table 4.2 the errors for the same
setup as above, where it can be clearly seen that the optimal third order
accuracy is obtained.

Resolution Error Order
h0 3.89E−4 −
h1 4.82E−5 3.01

h2 6.01E−6 3.00

h3 7.50E−7 3.00

h4 9.38E−8 3.00

h5 1.17E−8 3.00

h6 1.46E−9 3.00

Table 4.2: Improved weights (4.8), example 1.

Example 2. We now consider an example where one derivative van-
ishes. This example is very similar to the one presented to motivate the
definition of the improved weights. In this case, we define u : R→ R as

u(x) =

{
sin(x) if x ≤ 0,

1 if x > 0.

We define now the grid points as xi = (−2.5 + i)h, 0 ≤ i ≤ 5, whose
configuration is depicted in Figure 4.3 for h = 0.2 and h = 0.1.

Taking the same values of h as in the above experiment, we now ex-
trapolate at x∗ = −3.5h and we obtain the results in Table 4.3 using the
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Figure 4.3: Illustration of the grid configuration in Example 2.

improved weights with the same parameters as above. This order decay
is now due to the fact that one of the derivatives vanishes.

Resolution Error Order
h0 3.97E−2 −
h1 2.00E−2 0.99

h2 1.00E−2 1.00

h3 5.00E−3 1.00

h4 2.50E−3 1.00

h5 1.25E−3 1.00

h6 6.25E−4 1.00

Table 4.3: Improved weights (4.8), example 2.

To fix this, we use the weight modification suggested in (4.9) by taking
β = h2, obtaining third order accuracy as can be observed in Table 4.4.

4.2.4
Unique weight extrapolation (UW)

In this section we propose a method that uses only one weight to de-
cide the extrapolation method attending to the global smoothness in the
stencil X that contains all r + 1 nodes. The idea is that switching to a
low order reconstruction as soon as a lack of smoothness is detected in-
creases the robustness of the procedure in the non-smooth case when
the extrapolation is performed in the context of PDEs, where disconti-
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Resolution Error Order
h0 6.38E−4 −
h1 7.99E−5 3.00

h2 1.00E−5 3.00

h3 1.25E−6 3.00

h4 1.56E−7 3.00

h5 1.95E−8 3.00

h6 2.44E−9 3.00

Table 4.4: Improved weights (4.8), β = h2, example 2.

nuities get smeared, while maintaining high order in the smooth case,
besides being more computationally efficient.

As our purpose, apart from achieving robustness, is also designing
an efficient method, we will propose for the UW method a simplified ver-
sion of the smoothness indicators introduced previously. We will also
introduce in Section 4.2.4 an additional (and optional) tuning parame-
ter, with which we can map the original weight ω to another one through
a transformation that magnetizes values far from 1 (but still far from 0
as well) to 0. This variant is particularly useful in problems with strong
shocks –as in this case the weights should be very close to 0– or in prob-
lems with complex smooth structure –where the results are better if the
weights are close to 1 near them–.

The computation of the weights in the previous cases implies the use
of logical structures since a minimum has to be computed. We overcome
this issue as well by designing a weight capable of capturing well the
discontinuities while keeping high order accuracy on smooth zones. This
will be discussed in Section 4.2.5.

The procedure for the extrapolation with only one weight is performed
in the following sense: Instead of gradually increasing the degree of the
interpolating polynomials, we will just average the constant extrapola-
tion (k = 0) and maximum degree extrapolation (k = r), that is, we will
consider

u∗ = (1− ω)p0(x∗) + ωpr(x∗) = (1− ω)ui0 + ωpr(x∗),

where

ω = min

{
1−

(
1−

(
ISr0
Ir

)s1)s2
, 1

}
.

It can be shown that for a smooth stencil, if there exists some 1 ≤ k0 ≤
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r0 such that |u(k0)| >> 0 around the stencil, then

ω = 1−O(hs2)

and if the stencil crosses a discontinuity, then

ω = O(h2s1).

In order to lower the computational cost and ensure that 0 ≤ ω ≤ 1
without having to artificially bound it by 1 when r0 > 1, we can replace
the definition of Ir, which is a smoothness indicator of the whole r + 1
points stencil, by the average of all smoothness indicators of the subs-
tencils of r0 + 1 points, i.e.:

I∗r :=
1

r − r0 + 1

r−r0∑
j=0

Ir0,j ,

where

Ir0,j =
1

r0

r0∑
`=1

∫ xr0+j

xj

h2`−1q
(`)
r0,j

(x)2dx. (4.10)

Then one can define

ω = 1−
(

1−
(
ISr0
I∗r

)s1)s2
,

which in this case it clearly verifies 0 ≤ ω ≤ 1.
Under the hypothesis ∃k0 ∈ N, 1 ≤ k0 ≤ r0 such that |u(k0)| >> 0 around

the stencil, then
u∗ = u(x∗) +O(hr

′+1),

where r′ = min{s2(r0 − k0 + 1), r}.

Tuned weight (λ-UW)

When the stencil includes globally some smeared discontinuity, one can
map a ω value such that ω >> 0 and ω << 1 to a new one ω̃ ≈ 0, as
desired in this case, but that at same time ω̃ ≈ 1 when ω ≈ 1 as well.

Let ω̃ = Fλ(ω) be

ω̃ :=

{
eλω−1
eλ−1

if λ 6= 0

ω if λ = 0
,

for some λ ∈ R. It can be proven that ∀ω ∈ [0, 1], Gω ∈ C∞(R), where
Gω(λ) := Fλ(ω). The larger λ is, the stricter the discontinuity detection
filter will be. The lower (negative) λ is, the more permissive it will be.
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Figure 4.4: Plot of the mapping ω → ω̃ for λ = 14.

Assume smoothness conditions, therefore ω = 1− δ, where δ = O(hs1).
Assume s1 ≥ r in order to achieve the maximum order accuracy. We
have:

eλω − 1 = eλ(1−δ) − 1 = eλe−λδ − 1 = eλe−λδ − 1 = eλe−λδ − eλ + eλ − 1

= (eλ − 1) + eλ(e−λδ − 1).

Therefore

ω̃ =
(eλ − 1) + eλ(e−λδ − 1)

eλ − 1
= 1 +

eλ

eλ − 1
(e−λδ − 1).

On the other hand, using the Taylor expansion:

e−λδ − 1 =
∞∑
k=1

(−λδ)k

k!
= −λO(hs1).

Therefore

ω̃ = 1− eλ

eλ − 1
λO(hs1)

and the desired accuracy is attained provided that 0 << λ = O(1).
Figure 4.4 shows a plot of the mapping ω → ω̃ for λ = 14.
An alternative expression to tune the weights without using exponen-

tial functions is, given 0 < µ < 1,

Wµ(ω) =
µω

µω + (1− µ)(1− ω)
, ω ∈ [0, 1].

In this case, it holds W 1
2

= Id[0,1], limµ→0+ Wµ(ω) = 0 ∀ω ∈ [0, 1) and
limµ→1−Wµ(ω) = 1 ∀ω ∈ (0, 1].
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4.2.5
Global average weight (GAW)

Using the weight defined through the smoothness indicator replacement
in (4.2.4), a natural substitute of ISr0 using every available r0-th order
smoothness indicator is their harmonic mean:

IS∗r0 :=
1

1
r−r0+1

∑r−r0
j=0

1
Ir0,j

.

We can thus define the new weight ω as

ω := (1− (1− ρ)s1)s2 ,

where

ρ :=
IS∗r0
I∗r

=

1
1

r−r0+1

∑r−r0
j=0

1
Im
r0,j

1
r−r0+1

∑r−r0
j=0 Imr0,j

=
(r − r0 + 1)2(∑r−r0

j=0 Imr0,j

)(∑r−r0
j=0

1
Imr0,j

) ,
and m is a parameter that enforces the convergence to 0 of the weight in
a discontinuity. We next show that 0 ≤ ρ ≤ 1 (and therefore ω verifies this
property as well) as well as the desired properties both in smooth and
non-smooth cases.

Proposition 2. 0 ≤ ρ ≤ 1 and verifies

ρ =

{
1−O(h2cs) if the stencil is Cr0 with a s-th order zero derivative,
O(h2ms) if the stencil contains a discontinuity,

with cs := max{r0 − s, 0}. Therefore

ω =

{
1−O(h2s1cs) if the stencil is Cr0 with a s-th order zero derivative,
O(h2s2ms) if the stencil contains a discontinuity.

Proof. Let aj > 0, 1 ≤ j ≤ k. We show that the quotient between their
harmonic mean and their mean is bounded by 1, that is

0 ≤ ρ =

1
1
k

∑k
j=1

1
aj

1
k

∑k
j=1 aj

≤ 1.

Since

ρ =

1
1
k

∑k
j=1

1
aj

1
k

∑k
j=1 aj

=
k2

(
∑k

j=1
1
aj

)(
∑k

j=1 aj)
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it suffices to show that

A :=

 k∑
j=1

1

aj

 k∑
j=1

aj

 ≥ k2.

Indeed,

A =

k∑
i=1

k∑
j=1

ai
aj

= k +

k∑
i=1

i−1∑
j=1

(
ai
aj

+
aj
ai

)
= k +

k∑
i=1

i−1∑
j=1

(ai − aj)2 + 2aiaj
aiaj

= k + 2

k∑
i=1

(i− 1) +

k∑
i=1

i−1∑
j=1

(ai − aj)2

aiaj
= k2 +

k∑
i=1

i−1∑
j=1

(ai − aj)2

aiaj
≥ k2.

Let us now assume that the stencil is Cr0 smooth with a s-th zero in the
derivative, then

Ir0,j = h2s(1 +O(hmax{r−s,0})) = h2sC(1 +O(hcs)).

Since we have actually proven that

A = k2 +

k∑
i=1

i−1∑
j=1

(ai − aj)2

aiaj
,

replacing the a terms with the corresponding smoothness indicators to
the power of m in case of smoothness

Imr0,j = h2msCm(1 +O(hcs))m = h2msCm(1 +O(hcs)),

we have, denoting k := r − r0 + 1,

A = k2 +
k∑
i=1

i−1∑
j=1

(h2msCm(1 +O(hcs))− h2msCm(1 +O(hcs)))2

h4msC2m(1 +O(hcs))2

= k2 +
k∑
i=1

i−1∑
j=1

h4msC2m(O(hcs))2

h4msC2m(1 +O(hcs))
= k2 +

k∑
i=1

i−1∑
j=1

O(h2cs)

1 +O(hcs)

= k2 +O(h2cs).

Therefore,

ρ =
k2

A
=

k2

k2 +O(h2cs)
= 1 +O(h2cs).
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Finally, if there is smoothness at least in one substencil with corre-
sponding smoothness indicator Ir0,i0 = h2sC(1 + O(hcs)) = O(h2s) and a
discontinuity crosses the stencil then there will be another substencil
such that its smoothness indicator verifies Ir0,j0 = O(1), then the corre-
sponding term in the above sum (swapping the indexes if necessary, that
is, if i0 < j0) satisfies:

(Imr0,i0 − I
m
r0,j0

)2

Imr0,i0I
m
r0,j0

=
(O(h2ms)−O(1))2

O(h2ms)O(1)
=
O(1)

O(h2ms)
= O(h−2ms),

and thus
A = O(h−2ms).

Therefore,

ρ =
k2

A
=

k2

O(h−2ms)
= O(h2ms).

It follows from the result that to obtain an order of accuracy as large
as possible, and if r = 2r0, as it will be our usual choice of r0 from
now on, we must take s1 ≥ r0 (to prevent from a possible extreme case
s = r0 − 1). Note that in the worst case scenario, s ≥ r0, implies an
unavoidable downgrade of the accuracy as it happens with the original
WENO-JS weights for reconstructions. The only way to overcome this
is issue is to add to each smoothness indicator the β parameter defined
above, but it will not be done in the forthcoming tests as we do not do it
either in the definition of the WENO-JS weights in our numerical solver.

4.2.6
Weighted least squares extrapolation (WLS)

After some 2D order accuracy tests for smooth solutions with different
spacing setups, it has been noticed that depending on the complexity
of the domain, not only high order may not be achieved using straight
Lagrange extrapolation at the ghost cells, but also the scheme might turn
mildly unstable in some extreme cases, this independently of the choice
for the spacing of the normal line points to be extrapolated at the ghost
cell.

To avoid this phenomena, it is necessary to find an alternative to
Lagrange (and weighted) extrapolation that stabilizes the scheme while
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keeping high order accuracy in terms of the global error. A possibility is
to use least squares fitting as described in [45], [46].

Let R ≥ r and let {(xi, ui)}Ri=0 be the stencil with nodal data, where
xi+1− xi = h. Let us assume that we want to extrapolate or interpolate at
the point x∗ with a certain r-th degree polynomial

p(x) =
r∑
j=0

ajx
j

using the data from the whole stencil. Since in general there is no poly-
nomial of r passing through the R points, we find the polynomial p(x)
of degree r which minimizes the error with respect to {(xi, ui)}Ri=0 in the
L2-norm, i.e., we solve p(xi) = ui, 0 ≤ i ≤ R by least squares, which will
be still a (r + 1)-th order accurate approximation if the data is smooth.

We can now combine the least squares extrapolation, conceived for
smooth regions with the already described techniques techniques based
on weights. Let z∗ be the result of the least squares extrapolation and v∗
the result of some chosen modality of the weighted extrapolation tech-
niques. To this aim we define a weight ω by using the information of the
whole stencil of R + 1 points through the λ-UW or GAW technique and
then take the final result of the extrapolation as

u∗ := ωz∗ + (1− ω)v∗. (4.11)

The simplest and most robust case for the election of v∗ is to take
v∗ = ui0. This is ultimately the technique that will be used both for
smooth and non-smooth problems in our numerical experiments, so that
we will indicate by WLS-X the weighted least squares method with ω in
(4.11) computed through the method X.

We next show a step-by-step algorithm of the chosen WLS-GAW tech-
nique, for a stencil {xi}Ri=0 with nodal values {ui}Ri=0, to be extrapolated
at the point x∗, is thus:

1. Find the index 0 ≤ i0 ≤ R such that xi0 is the closest point to x∗.
Then ui0 is the reference value.

2. Compute the least-square polynomial of degree r at x∗, p(x∗), using
the whole stencil data.

3. Obtain the corresponding smoothness indicators from the substen-
cils of size r0.

4. Compute the global average weight, w from the previously computed
smoothness indicators.
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5. The final extrapolated value, u∗, is then obtained as a weighted aver-
age of the least-square polynomial and the reference value, namely:

u∗ = ωp(x∗) + (1− ω)ui0 .

We next summarize all parameters related to the size of the various
stencils involved in the extrapolation:

• r + 1: Stencil size for Lagrange extrapolation. The accuracy order is
thus r + 1 in case of smoothness.

• r0 + 1: Substencil size used in the computation of the smoothness
indicators.

• R + 1: Stencil size for least-squares extrapolation. In this context,
we refer to r as the degree of the computed polynomial (hence the
accuracy order is r + 1 as well).

Table 4.5 shows all the parameters involved in the different weight
designs and indications on whether a parameter is involved or not on a
particular method.

Method (columns) / Parameter (rows) SW IW UW GAW
s1: ω = O(hξs1) if discontinuity Y N Y Y
s2: ω = 1−O(hξs2) if smoothness Y N Y Y

d:
ω = O(hξd) if discontinuity
ω = 1−O(hξd) if smoothness

N Y N N

λ:
ω → 0 if λ→ +∞
ω → 1 if λ→ −∞ N N O N

m: ω = O(hξm) if discontinuity N N N Y

Table 4.5: List of parameters for the weights (Y: yes, N: no, O: optional).
In each case, ξ is a parameter that depends on the method, the sub-
stencils size r0, the number of consecutive zero-derivatives and other
parameters.

In the experiments shown in Section 4.3, the parameters are set to
R = 8 (a stencil of 9 nodes to perform a least squares extrapolation),
r = 4 (degree of the least squares interpolating polynomial), r0 = 2 (subs-
tencils of size 3 where smoothness indicators are computed), s1 = r0 = 2
(requirement to match the whole scheme accuracy at the boundary pro-
vided that the first and second derivatives do not vanish simultaneously),
s2 = 1 and m = 2 (in order to mimic the exponent choice at the WENO-JS
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weights computation for spatial biased reconstructions, although in the
boundary case it does not affect the order of the extrapolation when a
discontinuity crosses the stencil since the alternative choice is just the
constant extrapolation).

4.3
Numerical experiments

4.3.1
One-dimensional experiments

In this section we present some one-dimensional numerical experiments
where both the accuracy of the extrapolation method for smooth solu-
tions and its behavior in presence of discontinuities will be tested and
analyzed.

Let us remark that for one-dimensional tests it is not necessary to
develop a procedure as in the two-dimensional case described in Chap-
ter 3, because one can set up initially a proper spacing between the
nodes and perform a straight extrapolation at the ghost cells without
having stability issues due to the presence of small-cut cells. However,
to present accuracy and stability analysis in an easier setup, we per-
form the one-dimensional extrapolation, which directly corresponds to
the two-dimensional extrapolation procedure that is proposed in this pa-
per. This approach will illustrate that the accuracy order will still be
the expected one in the smooth case and that the extrapolation method
shows good performance in the non-smooth case.

Linear advection, C∞ solution.

We start with a simple one-dimensional test case that will be used to
illustrate the performance of the proposed method and also to analyze
the importance and relative influence of some elements of the algorithm
along the four examples detailed below. The problem statement for this
test is the same as in [45]. We consider the linear advection equation

ut + ux = 0, Ω := (−1, 1),

with initial condition given by u(x, 0) = 0.25 + 0.5 sin(πx) and boundary
condition u(−1, t) = 0.25 − 0.5 sin(π(1 + t)), t ≥ 0. We apply a numerical
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outflow condition at x = 1, where Dirichlet boundary conditions cannot
be imposed due to the direction of propagation of the information.

It is immediately checked that the unique (smooth) solution to this
problem is

u(x, t) = 0.25 + 0.5 sin(π(x− t)).

Example 1. In order to numerically test the order of accuracy we
perform tests at resolutions given by n = 20 · 2j points, j = 1, . . . , 5. The
cell centers are xj := −1 + (j + 1

2)h, with h := 2
n . We recall that the set of

all cell centers which are interior to Ω is

D := {xj : j ∈ {0, . . . , n− 1}} .

Since we use WENO5 reconstruction, we require 3 extra cells at each side
of the boundary, where extrapolation from the interior will take place.

• x = −1: xj , −3 ≤ j ≤ −1.

• x = 1: xj , n ≤ j ≤ n+ 2.

Given that the ODE solver is third order accurate, in order to at-
tain fifth order accuracy in the overall scheme, we need to select a

time step given by ∆t =
(

2
n

) 5
3 , with corresponding Courant numbers

∆t/h = (2/n)2/3 ≤ 1/202/3.
Since the left boundary conditions are time dependent, we also have

to take into account that a specific approximation is needed in each of
the 3 stages in each RK3-TVD time step. In general, if the inflow condi-
tion is given by some function g(t) which is at least twice continuously
differentiable, we have to use the following values at the boundary to
preserve third order accuracy [7]:

• First stage: g(tk).

• Second stage: g(tk) + ∆tg′(tk).

• Third stage: g(tk) + 1
2∆tg′(tk) + 1

4∆t2g′′(tk).

Taking into account all the previous considerations, we execute the sim-
ulation until t = 1 for all the previously specified resolutions and we
study the errors in the 1 and ∞ norms, together with the order deduced
from them. We consider different modalities of boundary extrapolation:
Constant extrapolation using only the closest node value (Table 4.6), five
points stencil Lagrange extrapolation without discontinuity filters (Table
4.7) and with filters by thresholding described in Section 4.1 for different
choices of the thresholds (Tables 4.8–4.10).
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n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 2.07E−3 − 3.87E−2 −
80 5.32E−4 1.96 1.96E−2 0.98
160 1.34E−4 1.99 9.81E−3 1.00
320 3.38E−5 1.99 4.91E−3 1.00
640 8.48E−6 1.99 2.45E−3 1.00

Table 4.6: Example 1: constant extrapolation (first order).

The Table 4.6 illustrates that a low order extrapolation affects the
order of the global scheme. We can see that in this case is downgraded
to second order in ‖ · ‖1, while it is first order in ‖ · ‖∞.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 8.73E−6 − 2.44E−5 −
80 2.70E−7 5.01 7.35E−7 5.05
160 8.45E−9 5.00 2.31E−8 4.99
320 2.64E−10 5.00 6.95E−10 5.06
640 8.26E−12 5.00 2.13E−11 5.03

Table 4.7: Example 1: Lagrange extrapolation (without filter).

From Table 4.8 on, we add the last column with the percentage of
extrapolations for which no rejection, either in the 5 nodes or in the final
result in the a posteriori criterion, has taken place along the complete
simulation.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞ % Success
40 5.45E−5 − 3.81E−4 − 86.18 %

80 3.06E−6 4.15 3.65E−5 3.38 95.77 %

160 1.34E−8 7.83 2.10E−7 7.44 99.55 %

320 2.64E−10 5.67 6.95E−10 8.93 100.00 %

640 8.26E−12 5.00 2.13E−11 5.03 100.00 %

Table 4.8: Example 1: thresholding, δ = δ′ = 0.99.

From the results in those tables one can conclude that the threshold-
ing detection behavior improves with increasing resolution. The techni-
cal reason for this is that the quotient between the quantities appearing
in (4.4) satisfies

lim
h→0

|ui − ui0 |+D(xi)

|vi − ui0 |+D(xi)
= 1.
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n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞ % Success
40 1.95E−5 − 1.38E−4 − 98.75 %

80 2.70E−7 6.17 7.35E−7 7.55 100.00 %

160 8.45E−9 5.00 2.31E−8 4.99 100.00 %

320 2.64E−10 5.00 6.95E−10 5.06 100.00 %

640 8.26E−12 5.00 2.13E−11 5.03 100.00 %

Table 4.9: Example 1: thresholding, δ = 0.9, δ′ = 0.75.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞ % Success
40 8.73E−6 − 2.44E−5 − 100.00 %

80 2.70E−7 5.01 7.35E−7 5.05 100.00 %

160 8.45E−9 5.00 2.31E−8 4.99 100.00 %

320 2.64E−10 5.00 6.95E−10 5.06 100.00 %

640 8.26E−12 5.00 2.13E−11 5.03 100.00 %

Table 4.10: Example 1: thresholding, δ = 0.75, δ′ = 0.5.

Even at low resolutions, we observe that it is sufficient to use a relatively
restrictive threshold for not rejecting any point in the extrapolations pro-
cedure at each time step.

Example 2. We now perform a test omitting the D(xi) terms, which,
as stated in the previous section, help avoiding erratic node eliminations
when the differences are very close to be 0. The results can be seen at
Table 4.11, illustrating the importance of such terms.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞ % Success
40 2.60E−5 − 1.72E−4 − 99.73 %

80 3.25E−7 6.32 1.60E−6 6.75 99.92 %

160 8.45E−9 5.27 2.31E−8 6.11 99.97 %

320 2.64E−10 5.00 6.95E−10 5.06 99.99 %

640 8.26E−12 5.00 2.13E−11 5.03 99.99 %

Table 4.11: Example 2: filter without D(xi) terms, δ = 0.2, δ′ = 0.1.

We see that, indeed, without the D(xi) terms there are always some
nodes removed even using very low threshold values.

Example 3. In order to illustrate the behavior of our method in pres-
ence of small-cut cells, we now perform a test changing the location of
the nodes by xj = −1 +

(
j + 1

8

)
h. For instance, to extrapolate data to

x∗ := x−1 = −1 − 7
8h, one first computes v = N(x∗) − x∗ = −1 − x−1 = 7

8h,
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Figure 4.5: Example 3: stability.

Cx = dv/he = 1 and considers points N ′q = x∗ + qCxh = x−1 + qh = xq−1.
Since there is a boundary condition at N ′0 = N(x∗) = −1 and |N ′0 − N ′1| =
h
8 < |v| = 7h

8 , then N ′1 = x0 is not considered for extrapolation and the
selected five nodes are {−1, N ′2, . . . , N

′
5} = {−1, x1, . . . , x4}

The results obtained for δ = 0.75, δ′ = 0.35 are shown in Table 4.12.
No node rejection occurred in this experiment.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 9.81E−6 − 2.39E−5 −
80 3.06E−7 5.00 7.56E−7 4.98
160 9.52E−9 5.00 2.28E−8 5.05
320 2.97E−10 5.00 7.03E−10 5.02
640 9.23E−12 5.01 2.12E−11 5.06

Table 4.12: Example 3: Lagrange extrapolation (node removal).

Note that in our numerical scheme and for accuracy reasons we have
used ∆t = h

5
3 and, therefore, no stability issue should appear anyway for

big enough n. Forgetting about matching the spatial accuracy order with
the time accuracy order, we set n = 80, ∆t = 0.9h, that is, a CFL value of
0.9, and see that our scheme is indeed stable and obtains good results
as can be seen in Figure 4.5.

Example 4. To complete the previous examples we now analyze what
happens if we attempt to extrapolate directly information at ghost cells
without the removal of nodes too close to the boundary, i.e., for x∗ = x−1

the stencil would be {−1, x0, . . . , x3}. For this experiment, we use the
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grid from Example 3, a Courant number of 0.9, i.e., ∆t = 0.9h, and a five
nodes extrapolation at both sides of the boundary as done in the previous
experiments. The crucial difference with respect to Example 3 is that
now we do not remove N ′1, thus resulting in a stability problem clearly
visible already at the early stages of the simulation shown in Figure 4.6
(a), which ultimately lead to failure by numeric overflow.

In order to illustrate that it is actually a CFL issue, we now repeat
the simulation with a Courant number set again to 0.9 but based on
the distance of the closest node of the inflow boundary to this last one
(based on a spacing of h

8 ), i.e., ∆t = 0.9h8 . In Figure 4.6 (b) it can be
seen that now the scheme is stable. We conclude that the intermediate
step consisting in extrapolating the information on nodes with adequate
spacing is necessary in order to avoid unnecessarily severe time step
restrictions.
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(a) (b)

Figure 4.6: Example 4: (a) ∆t = 0.9h, t = 0.147. Oscillations appear; (b)
∆t = 0.9h8 , t = 1. No oscillations

We repeat the test comparing some weighted modalities described
in Section 4.2: IW, WLS-UW and WLS-GAW. We show the errors cor-
responding to 1− and ∞−norm, and the numerical order computed from
them in Tables 4.13–4.15.

From the results, and comparing with those obtained with the thresh-
olding technique, it can be seen that IW behaves essentially as Lagrange
extrapolation even for low resolutions, as it happens with thresholding
extrapolation with not excessively restrictive parameter for the detection
of discontinuities.

On the other hand, the two remaining techniques involving least
squares extrapolation produce slightly less accurate results, but still fifth
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n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 8.73E−6 − 2.44E−5 −
80 2.70E−7 5.01 7.35E−7 5.05
160 8.45E−9 5.00 2.31E−8 4.99
320 2.64E−10 5.00 6.95E−10 5.06
640 8.26E−12 5.00 2.13E−11 5.03

Table 4.13: Error table for linear advection problem, t = 1, IW.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 4.28E−5 − 1.99E−4 −
80 5.32E−7 6.33 1.86E−6 6.74
160 1.38E−8 5.26 4.65E−8 5.32
320 4.16E−10 5.06 1.43E−9 5.02
640 1.27E−11 5.03 4.49E−11 5.00

Table 4.14: Error table for linear advection problem, t = 1, WLS-UW.

order accurate. This is what should be expected since a wider stencil is
used, involving a polynomial of the same degree than IW. Albeit this fact,
we will see in further experiments that the WLS-X techniques are more
robust than the ones based on Lagrange extrapolation for more demand-
ing problems.

Linear advection, discontinuous solution.

We illustrate with this experiment the behavior of the scheme based on
thresholds when discontinuities are present and the entailed improve-
ment with respect to using Lagrange extrapolation with no filters. We
consider the same meshing and data as in Example 1 for the previous

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 1.50E−5 − 4.29E−5 −
80 4.56E−7 5.04 1.44E−6 4.90
160 1.37E−8 5.06 4.57E−8 4.98
320 4.16E−10 5.04 1.43E−9 5.00
640 1.27E−11 5.03 4.49E−11 4.99

Table 4.15: Error table for linear advection problem, t = 1, WLS-GAW.
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problem, but now the boundary condition is defined by:

u(−1, t) = g(t) =

{
0.25 if t ≤ 1
−1 if t > 1

With this definition, the unique (weak) solution to this problem has a
moving discontinuity and is given by:

u(x, t) =


−1 if x < t− 2
0.25 if t− 2 ≤ x ≤ t− 1

0.25 + 0.5 sin(π(x− t)) if x ≥ t− 1

In Figure 4.7 we check the graphical results that correspond to the
simulation until t = 1.5, first using Lagrange extrapolation with no filters
and afterwards with a filter with δ = 0.75 and δ′ = 0.5, the same values
that have achieved no node rejections in the first test. As it can be seen
in Figure 4.7, Lagrange extrapolation without filters leads to spurious
oscillations around the left side of the discontinuity, while thresholding
removes them.

Burgers equation.

Let us now perform some tests using Burgers equation

ut +

(
u2

2

)
x

= 0, Ω = (−1, 1),

with initial condition u(x, 0) = 0.25 + 0.5 sin(πx), outflow condition at the
right boundary and a left inflow boundary conditions given by u(−1, t) =
g(t), where g(t) = w(−1, t), with w the exact solution of the problem using
periodic boundary conditions.

For t = 0.3 the solution is smooth and we get the following error table
for n = 40 · 2k, 0 ≤ k ≤ 5, and the same spacing as the first test, using,
on the one hand, threshold values of δ = 0.75 and δ′ = 0.5, where no node
rejection occurs at any resolution, whose result is shown in Table 4.16,
and, on the other hand, some weighted approaches shown in Tables
4.17-4.19.

At t = 1.1, a shock is fully developed in the interior of the compu-
tational domain and enters the inflow boundary at t = 8. At t = 12 it
is located at x = 0. We can see in Figure 4.8 that in this case the dis-
continuities are well captured by our scheme as well. The thresholding
version is run with the parameters δ = 0.75, δ′ = 0.5 and the WLS-GAW
version is used for the weighted extrapolation.
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Figure 4.7: Comparison of different extrapolations for the linear advec-
tion test with discontinuous solution.

Euler equations.

We end the one-dimensional experiments with an experiment using the
Euler equations

ut + f(u)x = 0, u = u(x, t), Ω = (0, 1),

u =

 ρ
ρv
E

 , f(u) =

 ρv
p+ ρv2

v(E + p)

 , (4.12)

where ρ is the density, v is the velocity and E is the specific energy of
the system. The variable p stands for the pressure and is given by the
equation of state:

p = (γ − 1)

(
E − 1

2
ρv2

)
,
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n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 3.66E−5 − 7.45E−4 −
80 6.96E−7 5.72 1.73E−5 5.43
160 1.33E−8 5.70 3.58E−7 5.59
320 3.34E−10 5.32 1.15E−8 4.96
640 1.02E−11 5.04 3.43E−10 5.06
1280 3.19E−13 4.99 1.03E−11 5.06

Table 4.16: Error table for Burgers equation, thresholding, t = 0.3.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 2.03E−5 − 3.57E−4 −
80 6.56E−7 4.95 1.47E−5 4.60
160 1.36E−8 5.59 2.81E−7 5.71
320 2.82E−10 5.58 9.16E−9 4.94
640 7.58E−12 5.22 2.76E−10 5.05
1280 2.23E−13 5.09 8.30E−12 5.06

Table 4.17: Error table for Burgers equation, t = 0.3. IW.

where γ is the adiabatic constant, that will be taken as 1.4.
We simulate the interaction of two blast waves [51] by using the fol-

lowing initial data

u(x, 0) =


uL 0 < x < 0.1,
uM 0.1 < x < 0.9,
uR 0.9 < x < 1,

where ρL = ρM = ρR = 1, vL = vM = vR = 0, pL = 103, pM = 10−2, pR = 102.
We set reflecting boundary conditions at x = 0 and x = 1, simulating
a solid wall at both sides. This problem involves multiple reflections of

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 1.88E−3 − 3.65E−2 −
80 6.62E−5 4.82 3.94E−3 3.21
160 1.72E−7 8.52 9.45E−6 8.70
320 2.50E−9 6.10 9.45E−6 5.37
640 4.49E−11 5.80 6.73E−9 5.08
1280 9.61E−13 5.55 1.92E−10 5.13

Table 4.18: Error table for Burgers equation, t = 0.3. WLS-UW.
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n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 7.80E−4 − 2.61E−2 −
80 2.82E−6 8.11 8.14E−5 8.32
160 1.11E−7 4.66 6.31E−6 3.69
320 2.40E−9 5.53 2.28E−7 4.79
640 4.48E−11 5.74 6.73E−9 5.08
1280 9.61E−13 5.54 1.92E−10 5.13

Table 4.19: Error table for Burgers equation, t = 0.3. WLS-GAW.

shocks and rarefactions off the walls and many interactions of waves
inside the domain. We will use the same extrapolation nodes setup as in
the previous tests as well as the same threshold values.

Figure 4.9 shows the density profile at t = 0.038 at two different res-
olutions, using thresholding extrapolation with δ = 0.75, δ′ = 0.5 and
the WLS-GAW weighted extrapolation, being the reference solution com-
puted at a resolution of h = 1/16000. The figure clearly shows that the
results are satisfactory.

4.3.2
Two-dimensional experiments

2D linear advection, C∞ solution.

We consider the 2D linear advection equation

ut + ux + uy = 0, (4.13)

with
u0 = u(x, y, 0) = 0.25 + 0.5 sin(π(x+ y)) (4.14)

for different domains Ω. We start with a square, Ω = (−1, 1) where inflow
conditions g(t) = u(x, y, t) = 0.25 + 0.5 sin(π(x+ y − 2t)) are imposed at the
left and bottom boundary and outflow conditions at the rest. We compute
the solution with the same setup and techniques to achieve fifth order
accuracy as the above 1D tests for resolutions n × n, for n = 10 · 2j ,
1 ≤ j ≤ 6, and we obtain the results in Tables 4.20-4.22 using different
extrapolation techniques, running a simulation until t = 1.

We now change the domain and set Ω with respective boundary con-
ditions as indicated in Figure 4.10, where Ω is the bounded connected
component of R2 \K, where K is the closed curve given by
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Figure 4.8: Shock in Burgers equation, n = 80.

K = A1 ∪A2 ∪A3 ∪A4 ∪A5 ∪A6 ∪A7 ∪A8,

with

A1 = {(cos(s), sin(s)), s ∈ [0, π2 ]}, A5 = {(cos(s), sin(s)), s ∈ [π, 3π
2 ]},

A2 = {(−s, 1), s ∈ [0, 3
4 ]}, A6 = {(s,−1), s ∈ [0, 3

4 ]},
A3 = {(−3

4 − s, 1− 2s), s ∈ [0, 1
4 ]}, A7 = {(3

4 + s,−1 + 2s), s ∈ [0, 1
4 ]},

A4 = {(−1, 1
2 − s), s ∈ [0, 1

2 ]}, A8 = {(1,−1
2 + s), s ∈ [0, 1

2 ]}.

Note that ∂Ω = K.
This time, the complexity of the domain makes Lagrange extrapolation

mildly unstable, whereas WLS is still stable and fifth order accurate as
we can see numerically in Tables 4.23-4.24 that it is indeed achieved,
running a simulation until t = 0.85.
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Figure 4.9: Density profile for the blast wave problem, t = 0.038.

Euler equations.

The equations that will be considered in this section are the two-dimen-
sional Euler equations for inviscid gas dynamics

ut + f(u)x + g(u)y = 0, u = u(x, y, t),

u =


ρ
ρvx

ρvy

E

 , f(u) =


ρvx

p+ ρ(vx)2

ρvxvy

vx(E + p)

 , g(u) =


ρvy

ρvxvy

p+ ρ(vy)2

vy(E + p)

 . (4.15)

In these equations, ρ is the density, (vx, vy) is the velocity and E is the
specific energy of the system. The variable p stands for the pressure and
is given by the equation of state:

p = (γ − 1)

(
E − 1

2
ρ((vx)2 + (vy)2)

)
,
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n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
20 5.36E−4 − 1.56E−3 −
40 1.66E−5 5.01 5.40E−5 4.85
80 5.24E−7 4.99 1.71E−6 4.98
160 1.65E−8 4.99 5.33E−8 5.00
320 5.15E−10 5.00 1.62E−9 5.04
640 1.63E−11 4.98 5.04E−11 5.01

Table 4.20: Error table for problem (4.13) - (4.14), Square domain, IW.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
20 6.14E−3 − 9.07E−2 −
40 4.22E−5 7.19 2.98E−4 8.25
80 6.90E−7 5.93 3.47E−6 6.42
160 1.95E−8 5.15 9.13E−8 5.25
320 5.94E−10 5.04 2.81E−9 5.02
640 1.84E−11 5.01 8.90E−11 4.98

Table 4.21: Error table for problem (4.13) - (4.14), Square domain, WLS-
UW.

where γ is the adiabatic constant, that will be taken as 1.4 in all the
experiments.

Double Mach Reflection

This experiment uses the Euler equations to model a vertical right-going
Mach 10 shock colliding with an equilateral triangle. By symmetry, this
is equivalent to a collision with a ramp with a slope of 30 degrees with
respect to the horizontal line, which is how we will model the simulation

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
20 8.22E−4 − 2.07E−3 −
40 2.12E−5 5.28 8.10E−5 4.68
80 6.39E−7 5.05 2.89E−6 4.81
160 1.94E−8 5.04 9.03E−8 5.00
320 5.94E−10 5.03 2.80E−9 5.01
640 1.84E−11 5.01 8.91E−11 4.98

Table 4.22: Error table for problem (4.13) - (4.14), Square domain, WLS-
GAW.
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Figure 4.10: Complex domain for 2D experiment.

to half the computational cost.
The data for this problem are the following:

Ω =

{
(x, y) ∈ (0, 4)× (0, 4) : y >

√
3

3

(
x− 1

4

)}
.

The domain with the corresponding boundary conditions is sketched in
Figure 4.11.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
20 1.14E−2 − 1.12E−1 −
40 4.82E−3 1.56 4.54E−2 1.40
80 8.33E−6 9.18 2.25E−4 7.66
160 7.53E−8 6.79 3.00E−6 6.23
320 2.14E−9 5.14 1.01E−7 4.89
640 6.59E−11 5.02 3.57E−9 4.82

Table 4.23: Error table for problem (4.13) - (4.14), Complex domain,
WLS-UW.
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n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
20 3.78E−3 − 3.06E−2 −
40 8.04E−5 5.56 1.41E−3 4.44
80 1.81E−6 5.48 2.39E−5 5.88
160 6.81E−8 4.73 2.42E−6 3.31
320 2.13E−9 5.00 9.96E−8 4.60
640 6.58E−11 5.01 3.57E−9 4.80

Table 4.24: Error table for problem (4.13) - (4.14), Complex domain,
WLS-GAW.

The initial conditions are the following:

u = (ρ, vx, vy, E) = (8.0, 8.25, 0, 563.5) if x ≤ 1
4

u = (ρ, vx, vy, E) = (1.4, 0, 0, 2.5) if x > 1
4

The most commonly used strategy for this simulation (see [51]) is to
rotate the reference frame by −30 degrees, so that the simulation is cast
into a rectangular domain, with a shock that is inclined 60 degrees with
respect to the horizontal. In our case, we perform the simulation with
the original problem to see that the improvement achieved by increasing
the order of the extrapolations at the boundary leads to results that are
comparable to those obtained with the rotated version.

Following the notation of the previous section, we have selected the
values R = 10, M = 3 for the boundary in the thresholding case (subs-
tencils are of the same size as those in WENO5). The reason for selecting
R = 10 is not achieving an order higher than the one of the method, but
having a wider stencil with more room for a safe selection of a substencil
in smoothness regions.

We perform the simulation until t = 0.2. The experiment consists in
different simulations with different threshold values, considering also a
version with a unique point in the stencil (order 1). In Figure 4.12 we
present the result for the density ρ at a resolution of hx = hy =

√
3

2
1

640 ,
which is equivalent to a resolution ĥx = ĥy = 1

640 in the rotated experi-
ment. A comparison of the results for the original and the rotated exper-
iment for different extrapolation options is shown in Figure 4.13.

The Schlieren plots shown in Figures 4.13, 4.15, 4.16 display the gra-
dients of the density field in an exponential scale in a gray scale, where
darker tonalities correspond to higher values (see [36] and references
therein for details).

As it can be seen, lower threshold values lead to better defined vor-
tices. Also, note that according to the results on the figures, the rotated
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Figure 4.11: Domain for the double Mach reflection test.

problem (with first order extrapolations) looks better than the original
problem using also first order extrapolations. One of the reasons might
be the fact that the cell centers are exactly located on each normal line,
leading to exact values on the first step of the extrapolation process (we
recall the reader that this step consists in extrapolating information to
points on normal lines from the values of the computational domain).

Interaction of a shock with a circular obstacle

We now change our data to a right-going vertical Mach 3 shock initially
located at x = 0.1 with a circular obstacle with center (0.5, 1) and radius
0.2 into a square domain (0, 2)× (0, 2). This experiment has already been
performed in [6] using penalization techniques. The technique used here
is the thresholding extrapolation for δ = δ′ = 0.99. To halve the com-
putational time by exploiting the symmetry of the solution, we run a
simulation until t = 0.4 and a mesh size of hx = hy = 1

512 on the upper
half of the domain, by adding reflecting boundary conditions at the bot-
tom. A Schlieren plot of the result can be seen at Figure 4.15. As it can
be seen, the results are very similar to those obtained in [6].
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Figure 4.12: Double Mach Reflection: original problem.

Interaction of a shock with multiple circular obstacles

We repeat the previous experiment by adding multiple circles in the do-
main as shown in Figure 4.16. This test can also be found in [6]. In this
case, we run the simulation until t = 0.5 and a mesh size of hx = hy = 1

512
on the whole domain. As in the previous experiment, we present a
Schlieren plot for the last time step in Figure 4.16. These results are
again consistent with those obtained in [6].

Steady-state supersonic flow around a triangle

We next simulate the flow field over a solid triangle with height h = 0.5
and half angle θ = 20 deg moving at supersonic speeds. The initial con-
ditions are

u = (ρ, vx, vy, p) = (1,
√
γM1, 0, 1)

and the computation is stopped when a steady state is obtained from the
position of the shock waves. In order to halve the computational cost,
we perform the simulation in the upper half of the domain, imposing
appropriate reflecting boundary conditions at the symmetry axis. We
solve this problem using the WLS-GAW technique at the boundary.

Figure 4.17 shows results that are consistent with those obtained in
[6] and have sharper resolution that the ones reported in that paper for
the same resolution.
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(a) Rotated domain. (b) 1st o. extrap.

(c) 5th o. extrap. δ = δ′ = 0.9. (d) 5th o. extrap. δ = δ′ = 0.35.

Figure 4.13: Double Mach Reflection: rotated version, first order and
high order thresholding extrapolation. Enlarged view of the turbulence
zone (Schlieren).
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(a) WLS UW (WLS 0-UW). (b) WLS (-5)-UW

(c) WLS (-50)-UW (d) WLS GAW.

Figure 4.14: Double Mach Reflection: weighted extrapolation techniques.
Enlarged view of the turbulence zone (Schlieren).
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Figure 4.15: Circle reflection test: (a) domain; (b) simulation for t = 0.4.
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Figure 4.16: Circles reflection test, t = 0.5: (a) thresholding extrapolation,
δ = δ′ = 0.99; (b) WLS-GAW.
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(a)

(b)

Figure 4.17: Triangle: (a) Left wedge (enlarged view). (b) Turbulence aside
upper right corner of the triangle (enlarged view).
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5
High order accurate
time discretizations

In this chapter we present a high order accurate temporal scheme, which
combined with the spatial HRSC scheme introduced in Chapter 2 and
the high order boundary extrapolation techniques expounded in Chapter
4 yields a fully high order accurate scheme. For the derivation of the
high order time scheme we take as starting point the one that was pro-
posed in 2003 by Qiu and Shu [39], for numerically solving hyperbolic
conservation laws, based on the conversion of time derivatives to spa-
tial derivatives through the Cauchy-Kowalewski technique, following the
Lax-Wendroff procedure.

For the sake of simplicity, we start with the one-dimensional scalar
case (d = m = 1). For the solution u(x, t) of ut+f(u)x = 0 on a fixed spatial
grid (xi) with spacing h = xi+1 − xi and some time tn from a temporal grid
with spacing δ = ∆t = tn+1 − tn > 0, proportional to h, δ = τh, where τ
is dictated by stability restrictions (CFL condition) we use the following
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notation for time derivatives of u and f(u):

u
(l)
i,n =

∂lu(xi, tn)

∂tl
,

f
(l)
i,n =

∂lf(u)(xi, tn)

∂tl
.

Our goal is to obtain an R-th order accurate numerical scheme, i.e., a
scheme with a local truncation error of order R + 1, based on the Taylor
expansion of the solution u from time tn to the next time tn+1:

un+1
i =

R∑
l=0

∆tl

l!
u

(l)
i,n +O(∆tR+1).

To achieve this we aim to define corresponding approximations

ũ
(l)
i,n = u

(l)
i,n +O(hR+1−l),

f̃
(l)
i,n = f

(l)
i,n +O(hR−l),

by recursion on l, assuming (for a local truncation error analysis) that
ũ0
i,n = u

(0)
i,n = u(xi, tn).

The fact that u solves the system of conservation laws implies that
the time derivatives u

(l)
i,n, 1 ≤ l ≤ R, can be written in terms of spatial

derivatives of some functions of u(j)
i,n, j < l,

f
(l−1)
i,n = Fl−1(uni , u

(1)
i,n , . . . , u

(l−1)
i,n ), (5.1)

following the Cauchy-Kowalewski (or Lax-Wendroff for second order) pro-
cedure:

∂lu

∂tl
=

∂l−1

∂tl−1

(
ut
)

= − ∂l−1

∂tl−1

(
f(u)x

)
= −

[
∂l−1f(u)

∂tl−1

]
x

, (5.2)

and Faà di Bruno’s formula stated in Theorem 2.
Specifically, to approximate the first time derivative, ut = −f(u)x, we

use the Shu-Osher finite difference scheme [42] with upwinded WENO
spatial reconstructions [26] of order 2r − 1 in the flux function:

u
(1)
i,n = ut(xi, tn) = −[f(u)]x(xi, tn) = −

f̂n
i+ 1

2

− f̂n
i− 1

2

h
+O(h2r−1). (5.3)

Much cheaper centered differences are used instead for the next deriva-
tives. We expound the general procedure for a third order accurate
scheme (R = 3) for a scalar one-dimensional conservation law.
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Assume we have numerical data, {ũni }
M−1
i=0 , which approximates u(·, tn)

and want to compute an approximation for u(·, tn+1) at the same nodes,
namely, {ũn+1

i }M−1
i=0 .

First, we compute an approximation of ut by the procedure stated
above:

ũ
(1)
i,n = −

f̂n
i+ 1

2

− f̂n
i− 1

2

h
,

with
f̂n
i+ 1

2

= f̂(ũni−r+1, . . . , ũ
n
i+r)

the numerical fluxes, which are obtained through upwind WENO spatial
reconstructions of order 2r − 1, with r = dR+1

2 e = 2.
Once the corresponding nodal data is obtained for the approximated

values of ut, we compute

utt = [ut]t = [−f(u)x]t = −[f(u)t]x = −[f ′(u)ut]x,

where f ′(u)ut is now an approximately known expression for the required
nodes. We use then a second order centered difference in order to obtain
the approximation:

ũ
(2)
i,n = −

f̃
(1)
i+1,n − f̃

(1)
i−1,n

2h
,

where
f̃

(1)
i,n = F1(ũ

(0)
i,n , ũ

(1)
i,n) = f ′(ũ

(0)
i,n)ũ

(1)
i,n ,

Finally, we approximate the third derivative:

uttt = [ut]tt = [−f(u)x]tt = −[f(u)tt]x = −
(
f ′′(u)u2

t + f ′(u)utt

)
x
,

where again the function f ′′(u)u2
t +f ′(u)utt is approximately known at the

nodes and therefore uttt can be computed by second order accurate cen-
tered differences (note that in this case it would be required only a first
order accurate approximation; however, the order of centered approxi-
mations is always even):

ũ
(3)
i,n = −

f̃
(2)
i+1,n − f̃

(2)
i−1,n

2h
,

where

f̃
(2)
i,n = F2(ũ

(0)
i,n , ũ

(1)
i,n , ũ

(2)
i,n) = f ′′(ũ

(0)
i,n) · (ũ(1)

i,n)2 + f ′(ũ
(0)
i,n) · (ũ(2)

i,n)2.
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Once all the needed data is obtained, we advance in time by replacing
the terms of the third order Taylor expansion in time of u(·, tn+1) by their
corresponding nodal approximations:

ũn+1
i = ũni + ∆tũ

(1)
i,n +

∆t2

2
ũ

(2)
i,n +

∆t3

6
ũ

(3)
i,n .

As we shall see, the above example can be extended to arbitrarily high
order time schemes through the computation of the suitable high order
central differences of the nodal values

f̃
(l)
i,n = Fl(ũ

(0)
i,n , ũ

(1)
i,n , . . . , ũ

(l)
i,n) = f

(l)
i,n +O(hR−l+1).

The generalization to multiple dimensions is straightforward, since now
the Cauchy-Kowalewski procedure, being based on the fact that ut =
−∇ · f(u), yields

∂lu

∂tl
= −∇ ·

(∂l−1f(u)

∂tl−1

)
= −

d∑
i=1

∂

∂xi

(
∂l−1f i(u)

∂tl−1

)
and that the spatial reconstruction procedures are done separately for
each dimension. For the case of the systems of equations, the time
derivatives are now computed through tensorial products of the corre-
sponding derivatives of the Jacobian of the fluxes and Faà di Bruno’s
formula in Theorem 2 describes a procedure to compute them. The gen-
eral procedure for systems and multiple dimensions is thus easily gen-
eralizable and further details about the procedure can be found in [39].

5.1
The approximate Lax-Wendroff procedure

As reported by the authors of [39], the computation of the exact nodal
values of f (k) can be very expensive as k increases, since the number of
required operations increases exponentially. Moreover, implementing it
is costly and requires large symbolic computations for each equation.

We now present an alternative, which is much less expensive for large
k and agnostic about the equation, in the sense that its only requirement
is the knowledge of the flux function. This procedure also works in the
multidimensional case and in the case of systems as well (by working
componentwise). This technique is based on the observation that ap-
proximations f̃ (l−1) ≈ f (l−1) can be easily obtained by a clever use of
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suitable finite differences, rather than using the exact expression Fl−1 in
(5.1).

5.1.1
Scheme formulation and theoretical results

We next introduce some notation which will help in the description of
the approximate fluxes technique along this section. We assume a one-
dimensional system for the sake of simplicity.

For a function u : R→ Rm, we denote the function on the grid defined
by a base point a and grid space h by

Ga,h(u) : Z→ Rm, Ga,h(u)i = u(a+ ih).

We denote by ∆p,q
h the centered finite differences operator that approxi-

mates p-th order derivatives to order 2q on grids with spacing h. For any
u sufficiently differentiable, it satisfies:

∆p,q
h Ga,h(u) = u(p)(a) + αp,qu(p+2q)(a)h2q +O(h2q+2), (5.4)

see Proposition 4 for more details.
We aim to define approximations ũ(k)

i,n ≈ u
(k)
i,n , k = 0, . . . , R, recursively.

We start the recursion with

ũ
(0)
i,n = uni ,

ũ
(1)
i,n = −

f̂n
i+ 1

2

− f̂n
i− 1

2

h
,

(5.5)

where f̂n
i+ 1

2

are computed by applying upwind WENO reconstructions to

split fluxes obtained from the data (uni ) at time step n (see [42, 11, 26] for
further details)

Associated to fixed h, i, n, once obtained ũ
(l)
i,n, l = 0, . . . , k, in the recur-

sive process we define the k-th degree approximated Taylor polynomial
Tk[h, i, n] by

Tk[h, i, n](ρ) =

k∑
l=0

ũ
(l)
i,n

l!
ρl.

By recursion, for k = 1, . . . , R− 1, we define

f̃
(k)
i,n = ∆

k,dR−k2 e
δ

(
G0,δ

(
f(Tk[h, i, n])

))
,

ũ
(k+1)
i,n = −∆

1,dR−k2 e
h f̃

(k)
i+·,n,

(5.6)
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where we denote by f̃ (k)
i+·,n the vector given by the elements (f̃

(k)
i+·,n)j = f̃

(k)
i+j,n,

recall that δ = ∆t and, as previously mentioned, ũ(0)
i,n = uni is the data at

the n-th time step. With all these ingredients, the proposed scheme is:

un+1
i = uni +

R∑
l=1

∆tl

l!
ũ

(l)
i,n. (5.7)

Proposition 3. The scheme defined by (5.6) and (5.7) is R-th order accu-
rate.

Proof. For the accuracy analysis of the local truncation error, we take

ũ
(0)
i,n = u(xi, tn). (5.8)

We now use induction on k = 0, . . . , R to prove that

ũ
(k)
i,n = u

(k)
i,n + ck(xi, tn)hR−k+1 +O(hR−k+2), (5.9)

for continuously differentiable functions ck. The result in (5.9) for k = 1
immediately follows from the fact that WENO finite differences applied to
the exact data in (5.8) yield approximations

f̂i+ 1
2
,n − f̂i− 1

2
,n

h
= f(u)x(xi, tn) + c̃1(xi, tn)h2r−1 +O(h2r), r = dR+ 1

2
e.

From the definition in (5.5) we deduce

ũ
(1)
i,n = −

f̂i+ 1
2
,n − f̂i− 1

2
,n

h
= u

(1)
i,n − c̃

1(xi, tn)h2r−1 +O(h2r), 2r ≥ R+ 1,

thus proving the case k = 1, by taking c1 = −c̃1 if 2r = R + 1 or c1 = 0 if
2r > R+ 1.

Assume now the result to hold for k and aim to prove it for k + 1 ≤ R.
For this purpose we first prove the following estimate:

f̃
(k)
i,n = f

(k)
i,n + ak(xi, tn)hR−k + bk(xi, tn)hR−k+1 +O(hR−k+2), (5.10)

for continuously differentiable functions ak, bk.
From (5.6) and (5.4), with q =

⌈
R−k

2

⌉
and the notation v = Tk[h, i, n]:

f̃
(k)
i,n = (f(v))(k)(0) + αk,q(f(v))(k+2q)(0)h2q +O(h2q+2). (5.11)
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Now, Faà di Bruno’s formula (2.23) yields:

(f(v))(k)(0) =
∑
s∈Pk

[
k
s

]
f (|s|)(v(0))

(
Dsv(0)

)
,

Dsv(0) =

[
s1︷ ︸︸ ︷

v(1)(0)
1! . . . v(1)(0)

1!
. . .

sk︷ ︸︸ ︷
v(k)(0)
k! . . . v(k)(0)

k!

]
,

Dsv(0) =

[ s1︷ ︸︸ ︷
ũ

(1)
i,n

1! . . .
ũ

(1)
i,n

1!
. . .

sk︷ ︸︸ ︷
ũ

(k)
i,n

k! . . .
ũ

(k)
i,n

k!

]
.

(5.12)

Since v = Tk[h, i, n] is a k-th degree polynomial, v(j) = 0 for j > k. There-
fore, in the same fashion as before,

(f(v))(k+2q)(0) =
∑

s∈Pkk+2q

[
k
s

]
f (|s|)(v(0))

(
Dsv(0)

)
, (5.13)

where Pkk+2q = {s ∈ Pk+2q/sj = 0, j > k}.
On the other hand, another application of Faà di Bruno’s formula to

f(u), yields:

f
(k)
i,n = f(u)(k)(xi, tn) =

∑
s∈Pk

[
k
s

]
f (|s|)(u(xi, tn))

(
Dsu(xi, tn)

)
,

Dsu(xi, tn) =

[
s1︷ ︸︸ ︷

u(1)(xi,tn)
1! . . . u(1)(xi,tn)

1!
. . .

sk︷ ︸︸ ︷
u(k)(xi,tn)

k! . . . u(k)(xi,tn)
k!

]
,

Dsu(xi, tn) =

[ s1︷ ︸︸ ︷
u

(1)
i,n

1! . . .
u

(1)
i,n

1!
. . .

sk︷ ︸︸ ︷
u

(k)
i,n

k! . . .
u

(k)
i,n

k!

]
.

(5.14)
We have v(0) = ũ

(0)
i,n = u(xi, tn) and, by induction,

ũ
(l)
i,n = u

(l)
i,n + cl(xi, tn)hR−l+1 +O(hR−l+2), l = 1, . . . , k. (5.15)

For any s ∈ Pk, Dsv(0) is a m × |s| matrix, and for any µ ∈ {1, . . . ,m} and
ν ∈ {1, . . . , |s|}, we have from (2.24), (5.12), (5.14) and (5.15) that

(Dsv(0)−Dsu(xi, tn))µ,ν =
(ũ

(l)
i,n − u

(l)
i,n)µ

l!
=
clµ(xi, tn)

l!
hR−l+1 +O(hR−l+2),

(5.16)
for some l = l(s, ν) ≤ k. From the definition of the set Pk, the only k-tuple
s ∈ Pk such that sk 6= 0 is s∗ = (0, . . . , 1). Therefore, from the definition of
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the operator Ds in (2.24) (or (5.14) (5.12)), the only s ∈ Pk, ν ≤ |s|, such
that l(s, ν) = k is s∗, ν = |s∗| = 1. We deduce from (5.16) that

(Dsv(0)−Dsu(xi, tn))µ,ν = O(hR−k+2), ∀s ∈ Ps, s 6= s∗,∀µ ≤ m,∀ν ≤ |s|,
(5.17)

(Ds∗v(0)−Ds∗u(xi, tn))µ,1 =
ckµ(xi, tn)

k!
hR−k+1 +O(hR−k+2).

(5.18)

We deduce from (5.16), (2.25), (5.12), (5.14), (5.17) that

f(v)(k)(0)− f(u)(k)(xi, tn) =

[
k
s∗

]
f (|s∗|)(u(xi, tn))

(
Ds∗v(0)−Ds∗u(xi, tn)

)
+

∑
s ∈ Pk
s 6= s∗

[
k
s

]
f (|s|)(u(xi, tn))

(
Dsv(0)−Dsu(xi, tn)

)
,

f(v)(k)(0)− f(u)(k)(xi, tn) =
m∑
µ=1

∂f

∂uµ
(u(xi, tn))ckµ(xi, tn)hR−k+1 +O(hR−k+2).

(5.19)

With a similar argument, taking into account that k + 1 ≤ R, we deduce
from (5.13) and (5.16) that

(f(v))(k+2q)(0) = ek,q(xi, tn) +O(hR−k+1) = ek,q(xi, tn) +O(h2),

ek,q(x, t) =
∑

s∈Pkk+2q

[
k
s

]
f (|s|)(v(0))

(
Dsu(x, t)

)
. (5.20)

Now, (5.11), (5.14), (5.20) and (5.19) yield:

f̃
(k)
i,n − f

(k)
i,n =

m∑
µ=1

∂f

∂uµ
(u(xi, tn))ckµ(xi, tn)hR−k+1 +O(hR−k+2)

+ ek,q(xi, tn)h2q +O(h2q+2).

Since 2q = R− k or 2q = R− k + 1, we deduce (5.10) with

ak(x, t) =

{
ek(x, t) 2q = R− k
0 2q = R− k + 1

bk(x, t) =

{∑m
µ=1

∂f
∂uµ

(u(x, t))ckµ(x, t) 2q = R− k∑m
µ=1

∂f
∂uµ

(u(x, t))ckµ(x, t) + ek,q(x, t) 2q = R− k + 1.
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To prove (5.9) for k + 1, we apply the linear operator −∆1,q
h , for q =⌈

R−k
2

⌉
, to both sides of the already established equality (5.10), taking

into account (5.4) and that 2q ≥ R− k:

ũ
(k+1)
i,n = −∆1,q

h f̃
(k)
i+·,n

= −∆1,q
h f

(k)
i+·,n − h

R−k∆1,q
h Gxi,h(ak(·, tn))− hR−k+1∆1,q

h Gxi,h(bk(·, tn))

+O(hR−k+1)

= −∆1,q
h Gxi,h

(
f(u)(k)(·, tn)

)
− hR−k(∂a

k

∂x
(xi, tn) +O(h2q))

− hR−k+1(
∂bk

∂x
(xi, tn) +O(h2q)) +O(hR−k+1)

= −[f(u)(k)]x(xi, tn)− α1,q ∂
k+2q+1f(u)

∂x2q+1∂tk
(xi, tn)h2q +O(h2q+2)

− hR−k ∂a
k

∂x
(xi, tn) +O(hR−k+1)

= u(k+1)(xi, tn) + ck+1(xi, tn)hR−k +O(hR−k+1),

where

ck+1(x, t) = −∂a
k

∂x
(x, t)−

{
0 2q > R− k
α1,q ∂

k+2q+1f(u)
∂x2q+1∂tk

(x, t) 2q = R− k.

The local truncation error is given by

u
(0)
i,n+1 −

R∑
l=0

(∆t)l

l!
ũ

(l)
i,n,

where ũ(l)
i,n are computed from ũ

(0)
i,n = u(xi, tn). Taylor expansion of the first

term and the estimates in (5.9) yield that the local truncation error is:

R∑
l=1

(∆t)l

l!
(u

(l)
i,n − ũ

(l)
i,n) +O(hR+1)

=

R∑
l=1

(∆t)l

l!
O(hR−l+1) +O(hR+1) = O(hR+1),

since ∆t is proportional to h.

The following result yields optimal central finite difference approxi-
mations to derivatives of any order.
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Proposition 4. For any p, q ∈ N, there exist βp,ql , l = 0, . . . , s := bp−1
2 c + q

such that

∆p,q
h v =

1

hp

s∑
l=0

βp,ql (vl + (−1)pv−l) (5.21)

verifies (5.4).

Proof. We set

∆p,q
h v =

1

hp

s∑
l=−s

βp,ql vl, s =

⌊
p− 1

2

⌋
+ q (5.22)

for βp,ql to determine such that

ψ(h) = ψp,q(h) =

s∑
l=−s

βp,ql u(a+ lh),

satisfies

ψ(r)(0) = 0, r = 0, . . . , 2s, r 6= p, ψ(p)(0) = p!u(p)(a). (5.23)

Since

ψ(r)(0) =
s∑

l=−s
βp,ql lru(r)(a),

(5.23) is equivalent to the system of 2s+1 equations and 2s+1 unknowns

s∑
l=−s

βp,ql lr = 0, r = 0, . . . , 2s, r 6= p,

s∑
l=−s

βp,ql lp = p!,

(5.24)

whose coefficient matrix is a Vandermonde invertible matrix, and it thus
have a unique solution. We see now that if p is even then βp,q−l = βp,ql ,
l = 1, . . . , s and if it is odd then βp,q−l = −βp,ql , l = 0, . . . , s. For the first case
(5.24) yields

s∑
l=−s

βp,ql lr = 0, r = 1, 3, . . . , 2s− 1,

s∑
l=1

(βp,ql − β
p,q
−l )l

r = 0, r = 1, 3, . . . , 2s− 1,
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which is a homogeneous system of s equations with s unknowns, with
an invertible (Vandermonde) matrix, therefore βp,ql − β

p,q
−l = 0, l = 1, . . . , s.

The case for odd p is handled similarly.
With this, we have from a Taylor expansion of ψ that:

∆p,q
h Ga,hu =

1

hp
ψ(h) =

1

hp
(
ψ(p)(0)

p!
hp +

∞∑
r=2s+1

ψ(r)(0)

r!
hr)

= u(p)(0) +

∞∑
r=2s+1

s∑
l=−s

βp,ql lr
u(r)(a)

r!
hr−p

= u(p)(0) +

∞∑
r=2s+1

s∑
l=1

(βp,ql + (−1)rβp,q−l )l
r u

(r)(a)

r!
hr−p.

Now, if p is even, then βp,ql = βp,q−l and, therefore, the only remaining terms
are those with even r:

∞∑
r=2s+1

s∑
l=1

(βp,ql + (−1)rβp,q−l )l
r u

(r)(a)

r!
hr−p

=

∞∑
m=s+1

αp,qm u(2m)(a)h2m−p, αp,qm =
2

(2m)!

s∑
l=1

βp,ql l2m.

On the other hand, if p is odd, then βp,q−l = −βp,ql and, therefore, the only
remaining terms are those with odd r:

∞∑
r=2s+1

s∑
l=1

(βp,ql + (−1)rβp,q−l )l
r u

(r)(a)

r!
hr−p

=

∞∑
m=s

αp,qm u(2m+1)(a)h2m+1−p, αp,qm =
2

(2m)!

s∑
l=1

βp,ql l2m+1.

One can check that the definition of s gives that the smallest exponent
in the remainder terms is 2q. The result follows easily if one redefines
βp,q0 = βp,q0 /2 for even p (for odd p it is 0).

Finally, we next present a result which ensures that our scheme,
being based on approximations of flux derivatives, is conservative.

Theorem 3. The scheme resulting of the flux approximation procedure can
be written in conservation form, namely,

un+1
i = uni −

∆t

h

(
ĝn
i+ 1

2

− ĝn
i− 1

2

)
. (5.25)
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Proof. The key to (5.25) is to express ∆1,q
h v in (5.22) in a conservative way:

∆1,q
h v :=

1

h

q∑
l=−q

β1,q
l vl =

1

h

 q−1∑
l=−q

γql vl+1 −
q−1∑
l=−q

γql vl


=

1

h

γqq−1vq +

q−1∑
l=−q+1

(γql−1 − γ
q
l )vl − γ−qv

q
−q

 ,

(5.26)

with γql to be determined. Since the latter ought to be satisfied by any v,
we deduce that

γqq−1 = β1,q
q ,

γql−1 − γ
q
l = β1,q

l , l = −q + 1, . . . q − 1,

−γq−q = β1,q
−q .

This is a system of 2q + 1 equations with 2q unknowns:



−1 0 0 . . . . . . 0
1 −1 0 . . . . . . 0
0 1 −1 . . . . . . 0
...

. . . . . .
...

...
. . . . . .

...
0 . . . . . . 0 1 −1
0 . . . . . . 0 1





γq−q
γq−q+1

...

...
γqq−2

γqq−1


=



β1,q
−q

β1,q
−q+1
...
...
...

β1,q
q−1

β1,q
q


. (5.27)

The subsystem formed by the first 2q equations has a lower triangular
invertible matrix, hence the first 2q equations can be uniquely solved.
Elimination of the elements in the subdiagonal from those in the diagonal
yields the determinant of the matrix:

det



−1 0 0 . . . . . . 0 β1,q
−q

1 −1 0 . . . . . . 0 β1,q
−q+1

0 1 −1 . . . . . . 0
...

...
. . . . . .

...
...

...
. . . . . .

...
...

0 . . . . . . 0 1 −1 β1,q
q−1

0 . . . . . . 0 1 β1,q
q


= (−1)2q

q∑
l=−q

β1,q
l .
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By (5.24) with r = 0,
∑q

l=−q β
1,q
l = 0, therefore system (5.27) has a unique

solution.
From (5.6), (5.7) and (5.26) we deduce:

un+1
i = uni −

∆t

h
(f̂n
i+ 1

2

− f̂n
i− 1

2

)−
R−1∑
l=1

(∆t)l+1

(l + 1)!
∆

1,dR−l2 e
h f̃

(l)
i+·,n

= uni −
∆t

h
(f̂n
i+ 1

2

− f̂n
i− 1

2

)

−
R−1∑
l=1

(∆t)l+1

(l + 1)!

1

h

( dR−l2 e−1∑
s=−dR−l2 e

γ
dR−l2 e
s f̃

(l)
i+s+1,n −

dR−l2 e−1∑
s=−dR−l2 e

γ
dR−l2 e
s f̃

(l)
i+s,n

)
= uni −

∆t

h
(f̂n
i+ 1

2

− f̂n
i− 1

2

)

− ∆t

h

R−1∑
l=1

(∆t)l

(l + 1)!

( dR−l2 e−1∑
s=−dR−l2 e

γ
dR−l2 e
s f̃

(l)
i+s+1,n −

dR−l2 e−1∑
s=−dR−l2 e

γ
dR−l2 e
s f̃

(l)
i+s,n

)
and we deduce equation (5.25) with

ĝn
i+ 1

2

= f̂n
i+ 1

2

+
R−1∑
l=1

(∆t)l

(l + 1)!

dR−l2 e−1∑
s=−dR−l2 e

γ
dR−l2 e
s f̃

(l)
i+s+1,n. (5.28)

Remark 1. From (5.6) and (5.21) we may deduce that for each i = 0, . . . ,

M − 1, the computation of the coefficients ũ(l)
i,n, for l = 2, . . . , k, requires R2

2 +

O(R) flux evaluations, and 3R2

2 +O(R) floating point operations. Therefore,
the time step can be performed with one extra WENO reconstruction for ũ(1)

i,n

and about 2R more floating point operations to evaluate the polynomial in
(5.7).

5.2
Fluctuation control

Now we focus on the computation of the approximate nodal values of the
first order time derivative. Tipically, one would simply take the approxi-
mations obtained through the upwinded reconstruction procedure in the
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Shu-Osher’s finite difference approach, that is,

ũ
(1)
j,n = −

f̂j+ 1
2
,n − f̂j− 1

2
,n

h
.

In fact, this is what it was done in the Qiu-Shu work [39]. However,
taking directly these values as the first derivative used to compute the
next derivatives through weightless procedures, namely, assuming that
the data is smooth, is not safe because the data is not actually smooth;
in fact, it will include O(h−1) terms wherever there is a discontinuity,
which we will call from now on fluctuations. These terms will appear
provided f̂j− 1

2
,n and f̂j+ 1

2
,n come from different sides of a discontinuity

(or some of them has mixed information of both sides due to a previous
flux splitting procedure to reconstruct the interface values), since in that
case f̂j+ 1

2
,n − f̂j− 1

2
,n = O(1).

Such fluctuations are necessary to make a discontinuity move at the
right speed, corresponding to an upwind procedure, and thus must be
used as a first order term of the Taylor expansion to advance in time; but
if we want to compute the next time derivatives using smooth data, we
have to find an alternative approximation of the first derivative with fully
smooth data, and this is what is going to be discussed in this section.

As stated previously, if careful enough control is not performed and
we neglect the fact that big values are generated at the discontinuities,
the scheme may turn too dissipative, or even unstable, in terms of severe
CFL restrictions or even unconditional failure of the numerical scheme
under some circumstances. From now on we will omit the time depen-
dence, since in this section we only focus on spatial affairs.

Let us first clarify why this phenomena happens and what are exactly
the interfaces and cells involved, assuming we have an entirely sharp
discontinuity. Assume the nodes xi and xi+1 contain a discontinuity
between them, so that ui+1 − ui = O(1). Then, denoting fj = f(uj) and
assuming f(uL) 6= f(uR), with uL and uR the left and right states of the
discontinuity, respectively, we have fi+1 − fi = O(1) as well.

Now, the resulting numerical fluxes at the interfaces depend on the
reconstruction technique used. In any case, the value f̂i− 1

2
is recon-

structed using essentially only the data at the left side of the disconti-
nuity, while the value f̂i+ 3

2
is reconstructed through essentially only the

data at its right side. As for the central interface value f̂i+ 1
2
, if the upwind

technique is based on an spectral decomposition, then its value will be
based on the left data if the eigenvalues both at xi and xi+1 are positive,
the right side if both are negative or mixed information from both sides
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otherwise or, more generally, if the upwind is based on a flux-splitting
technique. The last case can be considered the worst case scenario and
will generate two fluctuations, since

f̂i+ 1
2
− f̂i− 1

2
= O(1),

f̂i+ 3
2
− f̂i+ 1

2
= O(1),

where the values both at left at right neighborhood, assuming there is no
other discontinuity close, are O(h).

Hence we have

u
(1)
i = −

f̂i+ 1
2
− f̂i− 1

2

h
= O(h−1),

u
(1)
i+1 = −

f̂i+ 3
2
− f̂i+ 1

2

h
= O(h−1),

where the values both at left and right cell neighborhoods are O(1).
Therefore, if one works with this approximation of the first time deriva-

tive in order to compute approximations of the next time derivatives,
these O(h−1) terms will be dragged to the next derivatives and, what is
worse, even more cells will be contaminated with such incorrect infor-
mation; the longer the stencils for the central differences are, the more
cell values will be corrupted.

In practice, this implies that the k-th derivative, 1 ≤ k ≤ R, will have
terms of magnitude O(h−k), therefore, the term which appears on the
Taylor expansion term, which is multiplied by ∆tk

k! , a term of magnitude
O(hk), will be ultimatelly O(1). That is, each derivative will include O(1)
terms at each time integration, the more terms of that kind as the longer
the degree of the derivative is, which results in undesired diffusion, os-
cillations or even a complete failure of the scheme in some cases.

As Qiu and Shu stated in [39], there is no apparent need to control
these spurious oscillations, since in the experiments shown therein they
end up stabilized at the ending time. However, we have noticed several
failures in experiments such as the Shu-Osher problem in 1D or the dou-
ble mach reflection test in 2D using for instance the Donat-Marquina [11]
upwind reconstruction scheme, yielding severe CFL stability restrictions
when, in particular, high order linearizations are used to reconstruct
data at the cell interfaces in order to compute the two sided spectral
decompositions for the flux Jacobians.

All the reasons stated above motivate the need of computing an al-
ternative nodal approximation of the first derivative with fully smooth
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data, that we will call ˜̃u(1)

j , which will be used only to compute the next
derivatives, but not as a first order term of the Taylor expansion to ad-
vance in time, where the Shu-Osher conservative upwind approximation

of the first derivative, ũ(1)
j = −

f̂j+ 1
2
− f̂j− 1

2

h
, will be used instead in order to

preserve the upwind features of our scheme (and thus the stability). We
detail below the whole procedure to compute the alternative approxima-
tion of the first derivative, to be used only to obtain the approximations
of the next derivatives.

5.2.1
Central WENO reconstructions

Let us assume that our spatial scheme is (2r − 1)-th order accurate
WENO. After all the operations performed for the reconstruction of the
interfaces, the stencil of points that is used in order to approximate the
derivative at the node xi is the following set of 2r + 1 points:

{xi−r, . . . , xi, . . . , xi+r}, (5.29)

whose corresponding flux values, fj = f(uj), are

{fi−r, . . . , fi, . . . , fi+r}.

The procedure that we next expound only uses information from the
stencil

S2r−1
i+r−1 := {i− r + 1, . . . , i, . . . , i+ r − 1}, (5.30)

thus ignoring the flux values fi−r, fi+r at the edges of the stencil in (5.29).
For fixed i, let qrk be the interpolating polynomial of degree ≤ r − 1

such that qrk(xj) = fj , j ∈ Sri+k := {i + k − r + 1, . . . , i + k, }, 0 ≤ k ≤ r − 1.
After the previous discussion, our goal is to obtain an approximation of
the flux derivative f(u)x(xi) from the stencil S2r−1

i+r−1 which is (2r − 1)-th
order accurate if the nodes in the stencil lie within a smoothness region
for u or is O(1) otherwise. We use Weighted Essentially Non Oscillatory
techniques to achieve this purpose.

Lemma 3. There exists a set of constants {crk}rk=1 satisfying 0 < crk < 1, for
0 ≤ k ≤ r − 1,

∑r−1
k=0 c

r
k = 1, such that

r−1∑
k=0

crk(q
r
k)
′(xi) = (q2r−1

r−1 )′(xi).



5. High order accurate time discretizations 109

Proof. We show by induction on s = 1, . . . , r−1 that there exist ar,sp,l ∈ (0, 1),
p = s, . . . , r − 1, l = 0, . . . , s, such that

∑s
l=0 a

r,s
p,l = 1 and

s∑
l=0

ar,sp,l(q
r
p−l)

′(xi) = (qr+sp )′(xi), (5.31)

the stated result being the final case s = p = r − 1, for crk = ar,r−1
r−1,r−1−k.

The case s = 1 is obtained by Neville’s algorithm and the fact that
qrp(xi) = qrp−1(xi) = fi, as long as 1 ≤ p ≤ r − 1:

qr+1
p (x) =

qrp(x)(x− xi+p−r)− qrp−1(x)(x− xi+p)
xi+p − xi+p−r

,

(qr+1
p )′(xi) =

(qrp)
′(xi)(xi − xi+p−r)− (qrp−1)′(xi)(xi − xi+p) + qrp(xi)− qrp−1(xi)

xi+p − xi+p−r
,

(qr+1
p )′(xi) =

r − p
r

(qrp)
′(xi) +

p

r
(qrp−1)′(xi),

so the result for s = 1 is obtained.
Assume now that (5.31) holds and aim to prove it for s+ 1, assuming

s + 1 ≤ p ≤ r − 1. To achieve this, we use again Neville’s algorithm and
the previous argument to get

(qr+s+1
p )′(xi) =

r + s− p
r + s

(qr+sp )′(xi) +
p

r + s
(qr+sp−1)′(xi).

The induction hypothesis now yields:

(qr+s+1
p )′(xi) =

r + s− p
r + s

s∑
l=0

ar,sp,l(q
r
p−l)

′(xi) +
p

r + s

s∑
l=0

ar,sp−1,l(q
r
p−1−l)

′(xi)

=
s+1∑
l=0

ar,s+1
p,l (qrp−l)

′(xi),

for the coefficients given by:

ar,s+1
p,l =


r+s−p
r+s ar,sp,0 l = 0
r+s−p
r+s ar,sp,l + p

r+sa
r,s
p−1,l−1 l = 1, . . . , s

p
r+sa

r,s
p−1,s l = s+ 1,

which clearly satisfy ar,s+1
p,l ∈ (0, 1) and, by induction, also satisfy

s+1∑
l=0

ar,s+1
p,l =

r + s− p
r + s

s∑
l=0

ar,sp,l +
p

r + s

s∑
l=0

ar,sp−1,l =
r + s− p
r + s

+
p

r + s
= 1.
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If fj = f(u(xj , tn)), for smooth enough u and fix tn, then

(qrk)
′(xi) = f(u)x(xi, tn) + drk(xi)h

r−1 +O(hr), k = 0, . . . , r − 1, (5.32)

(q2r−1
r−1 )′(xi) = f(u)x(xi, tn) + d2r−1

r−1 (xi)h
2r−2 +O(h2r−1). (5.33)

for continuously differentiable drk, d
2r−1
r−1 . The goal is to obtain the accu-

racy in (5.33) by a suitable nonlinear convex combination of (5.32)

r−1∑
k=0

wrk(q
r
k)
′(xi) = f(u)x(xi, t) + d̃2r−1

r−1 (xi)h
2r−2 +O(h2r−1), (5.34)

where wrk = crk(1 +O(hr−1) if the whole stencil xi−r+1, . . . , xi+r−1 lies within
a smoothness region for u and wrk = O(hr−1) if the k-th stencil crosses a
discontinuity and there are at least another stencil which does not. We
follow Weighted Essentially Non Oscillatory classical techniques [35, 26].
From now on we drop the superscript r in qrk.

Furthermore, we need the approximation in (5.34) to be in conser-
vation form. To achieve this we use the polynomial pk of degree r − 1
satisfying

1

h

∫ x
j+ 1

2

x
j− 1

2

pk(x)dx = fj , i− r + 1 + k ≤ j ≤ i+ k, 0 ≤ k ≤ r − 1,

and p̃k(x) a primitive of it. Then the polynomial

q̃k(x) =
p̃k(x+ h

2 )− p̃k(x− h
2 )

h
,

can be seen to have degree ≤ r−1 and q̃k(xj) = fj, j = i−r+1+k, . . . , i+k,
and must therefore be qk. It therefore follows that

q′k(xj) =
(p̃k)

′(xj+ 1
2
)− (p̃k)

′(xj− 1
2
)

h
=
pk(xj+ 1

2
)− pk(xj− 1

2
)

h
.

Now, let us define the following Jiang-Shu smoothness indicators us-
ing the definition of pk:

Ik =

r−1∑
`=1

∫ x
i+ 1

2

x
i− 1

2

h2`−1p
(`)
k (x)2dx, 0 ≤ k ≤ r − 1 (5.35)

so that we can define the weights as follows:

ωk =
αk∑r
l=1 αl

, αk =
ck

(Ik + ε)m
, (5.36)
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with ε > 0 a small positive quantity, possibly depending on h. Following
the techniques in [2], since p(`)

k − p
(`)
j = O(hr−`) at regions of smoothness,

whereas
∫ xi+ 1

2
x
i− 1

2

(p′k)
2dx = O(h−2) if the corresponding stencil Srk crosses

a discontinuity, the smoothness indicators satisfy Ik − Ij = O(hr+1) at
regions of smoothness and Ik 6→ 0 if the k-th stencil crosses a discon-
tinuity. Therefore, the definition (5.36) satisfies the requirements men-
tioned above in order to achieve maximal order even at smooth extrema,
if the parameter ε > 0, besides avoiding divisions by zero, is chosen as
ε = λh2, with λ ∼ f(u)x, and the exponent m in (5.36) makes the weight
ωk = O(hr−1) if there is a discontinuity at that stencil. Since one wants
to attain the maximal possible order in such case, which corresponds to
the value interpolated from a smooth substencil, which is O(hr), then it
suffices to set m = d r2e.

Finally, we define ˜̃u(1)

i,n, the smoothened approximation of ut(xi, tn), as
the result of the following convex combination:

˜̃u(1)

i,n = −
r∑

k=1

ωkq
′
k(xi).

5.3
Boundary conditions

In order to keep a stencil of M + 1 points after each time integration, we
need to impose boundary conditions and fill r ghost cells at both sides of
each line.

In case of LW/LWA schemes, we need to fill these amount of ghost
cells after each computation of the successive time derivatives of u. De-
pending on the nature of the boundary condition, we will have to proceed
in one way or another. So, in case of outflow or periodic boundary condi-
tions, there are no changes in the way we impose the boundary condition
in the nodes approximating each derivative.

However, in case of time dependent inflow boundary conditions, given
by g(t), if we work with the k-th order derivative nodes we will have to
use the inflow condition g(k)(t).

The techniques used for high order numerical boundary conditions
have been studied in the literature and can be found in works such as
[45], [46], [4] and [5].
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Note that the domain of dependence for a fifth order WENO spatial
scheme with a third order Lax-Wendroff type time discretization is com-
posed by 9 points at most, meanwhile the domain of dependence has
a total of at most 17 points if a fifth order Lax-Wendroff type time dis-
cretization is used instead. On the other hand, the domain of depen-
dence for a RK3 time scheme has a length of at most 19 points. The
upper bound is always achieved when a flux splitting technique, such as
LLF, is used. If the fluctuation control with central WENO reconstruc-
tions is used on the Lax-Wendroff technique, the number of points in the
domain of dependence is reduced by 2 units.

5.4
Numerical scheme examples

For the sake of illustration, we next detail the specific numerical scheme
we use for the numerical experiments that will be shown in the next
section, detailing how the aforementioned recursive procedure is per-
formed. In order to simplify as most as possible the notation, we only
show it for the scalar 1D case, as in the case of systems it consists on
working through components and the multidimensional case working
through each line and respective flux, yielding a rather simple general-
ization. We use a fifth order accurate in space scheme (r = 3), with fifth
order accurate time discretizations (R = 5), yielding a fifth order accurate
scheme.

The scheme to obtain the upwinded approximation of the first deriva-
tive, u(1), is based on the Shu-Osher finite differences of cell interfaces,

ũ
(1)
i,n = −

f̂i+ 1
2
,n − f̂i− 1

2
,n

h
, 0 ≤ i < M,

where each interface value f̂i− 1
2
,n, 0 ≤ i < M , is computed through up-

winded fifth order WENO reconstructions. In order to obtain the last
three approximations from both corners we need three additional ghost
cell values at each side of the stencil, u−3,n, u−2,n, u−1,n and uM,n, uM+1,n,
uM+2,n, which are obtained through the suitable numerical boundary
conditions, involving the computational domain and the boundary con-
ditions themselves, if any.

Below it is expounded how to obtain the next derivatives through the
flux approximation procedure.



5. High order accurate time discretizations 113

First, we compute v(1)
i , 0 ≤ i < M , whose value depends on the usage

or not of the fluctuation control:

v
(1)
i =

{˜̃u(1)

i if fluctuation control,

ũ
(1)
i if no fluctuation control,

where ˜̃u(1)

i are the smoothened first derivative approximation cell val-
ues through the technique expounded in Section 5.2.1, where, following
the notation therein, we have the following sided approximations of the
first time derivative at xi,

(q3
0)′(xi) =

fi−2 − 4fi−1 + 3fi
2h

,

(q3
1)′(xi) =

fi+1 − fi−1

2h
,

(q3
2)′(xi) =

−3fi + 4fi+1 − fi+2

2h
,

with the corresponding ideal weights

c0 =
1

6
, c1 =

2

3
, c2 =

1

6
,

where the associate smoothness indicators are

I0 =
fi−2(4fi−2 − 19fi−1 + 11fi) + fi−1(25fi−1 − 31fi) + 10f2

i

3
,

I1 =
fi−1(4fi−1 − 13fi + 5fi+1) + fi(13fi − 13fi+1) + 4f2

i+1

3
,

I2 =
fi(10fi − 31fi+1 + 11fi+2) + fi+1(25fi+1 − 19fi+2) + 4f2

i+2

3
.

Then we define ˜̃u(1)

i = ω0q
′
0(xi) + ω1q

′
1(xi) + ω2q

′
2(xi),

where
ωk =

αk
α0 + α1 + α2

, αk =
ck

(Ik + ε)2
, 0 ≤ k ≤ 2,

with ε = 10−100.
Once the above step is performed, we compute nodal approximations

of the second order time derivative of u, ũ(2), by performing the following
operation:

f̃
(1)
i,n = ∆

1,d 5−1
2 e

δ (G0,δ

(
f(T1[h, i, n]))

)
= ∆1,2

δ (G0,δ

(
f(T1[h, i, n]))

)
=
ϕ1
i,n(2δ)− 8ϕ1

i,n(δ) + 8ϕ1
i,n(−δ)− ϕ1

i,n(−2δ)

12δ
, −2 ≤ i < M + 2,
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where
ϕ1
i,n(ρ) = f(ũni + ρv

(1)
i,n ).

We need thus to apply previously boundary conditions in order to obtain
two ghost cell values at both sides, v(1)

−2, v
(1)
−1 and v

(1)
M , v

(1)
M+1.

We can now define the approximation of the second time derivative of
u as the following fourth order accurate central divided difference

ũ
(2)
i = −

f̃
(1)
i−2,n − 8f̃

(1)
i−1,n + 8f̃

(1)
i+1,n − f̃

(1)
i+2,n

12h
.

The nodal approximations of u(3) are obtained in a similar fashion:

f̃
(2)
i,n = ∆

2,d 5−2
2 e

δ (G0,δ

(
f(T2[h, i, n]))

)
= ∆2,2

δ (G0,δ

(
f(T2[h, i, n]))

)
=
−ϕ2

i,n(2δ) + 16ϕ2
i,n(δ)− 30ϕ2

i,n(0) + 16ϕ2
i,n(−δ)− ϕ2

i,n(−2δ)

12δ2
,

− 2 ≤ i < M + 2,

where

ϕ2
i,n(ρ) = f(ũni + ρv

(1)
i,n +

ρ2

2
ũ

(2)
i,n),

by previously having computed through boundary conditions ũ
(2)
−2, ũ

(2)
−1

and ũ
(2)
M , ũ

(2)
M+1 and, again, use a fourth order central divided difference to

approximate the third time derivative of u:

ũ
(3)
i = −

f̃
(2)
i−2 − 8f̃

(2)
i−1 + 8f̃

(2)
i+1 − f̃

(2)
i+2

12h
.

Since for the fourth and fifth time derivative of u it is only required ap-
proximations of second and first order, respectively, we approximate the
corresponding time derivatives of the flux through second order central
differences and perform as well second order central differences between
them.

On the one hand, we have

f̃
(3)
i,n = ∆

3,d 5−3
2 e

δ (G0,δ

(
f(T3[h, i, n]))

)
= ∆3,1

δ (G0,δ

(
f(T3[h, i, n]))

)
=
ϕ3
i,n(2δ)− 2ϕ3

i,n(δ) + 2ϕ3
i,n(−δ)− ϕ3

i,n(−2δ)

2δ3
, −1 ≤ i < M + 1,

with

ϕ3
i,n(ρ) = f(ũni + ρv

(1)
i,n +

ρ2

2
ũ

(2)
i,n +

ρ3

6
ũ

(3)
i,n),
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where ũ
(3)
−1 and ũ

(3)
M have been computed using the adequate numerical

boundary conditions.
Then we define

ũ
(4)
i,n = −

f̃
(3)
i+1,n − f̃

(3)
i−1,n

2h
.

On the other hand,

f̃
(4)
i,n = ∆

4,d 5−4
2 e

δ (G0,δ

(
f(T4[h, i, n]))

)
= ∆4,1

δ (G0,δ

(
f(T4[h, i, n]))

)
=
ϕ4
i,n(2δ)− 4ϕ4

i,n(δ) + 6ϕ4
i,n(0)− 4ϕ4

i,n(−δ) + ϕ4
i,n(−2δ)

δ4
, −1 ≤ i < M + 1,

with

ϕ4
i,n(ρ) = f(ũni + ρv

(1)
i,n +

ρ2

2
ũ

(2)
i,n +

ρ3

6
ũ

(3)
i,n +

ρ4

24
ũ

(4)
i,n),

where ũ(4)
−1 and ũ

(4)
M are obtained through numerical boundary conditions.

We then define

ũ
(5)
i,n = −

f̃
(4)
i+1,n − f̃

(4)
i−1,n

2h
.

The next time step is then computed through the fifth order Taylor ex-
pansion replacing the derivatives with their corresponding approxima-
tions:

ũn+1
i = ũni + ∆tũ

(1)
i,n +

∆t2

2
ũ

(2)
i,n +

∆t3

6
ũ

(3)
i,n +

∆t4

24
ũ

(4)
i,n +

∆t5

120
ũ

(5)
i,n .

5.5
Alternative approach

In this section we present an alternative approach for time discretiza-
tions pursuing the same idea consisting on avoiding the computation of
large terms for high order time derivatives, as expounded in the original
work of Qiu and Shu. The following result provides a relationship in-
volving unmixed spatial and time derivatives for 1D scalar conservation
laws.

Theorem 4. For any 1D scalar conservation law

ut + f(u)x = 0
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and ∀n ∈ N such that the function (f ′)n admits antiderivative, it holds

∂nu

∂tn
=
∂nFn(u)

∂xn
,

where Fn(u) is a primitive of the function (−1)nf ′(u)n, namely, Fn is a real
function such that F ′n(u) = (−1)nf ′(u)n.

Proof. We proceed by induction on n.
For n = 1 we have F ′1(u) = −f ′(u), being F1(u) = −f(u) a primitive.

Therefore, the result is true since by the conservation law itself it holds
that

∂u

∂t
= −∂f(u)

∂x
=
∂F1(u)

∂x
.

Let us now assume that the result is true for n and it will be proven for
n+ 1. Indeed,

∂n+1u

∂tn+1
=

∂

∂t

[
∂nu

∂tn

]
=

∂

∂t

[
∂nFn(u)

∂xn

]
=

∂n

∂xn
[Fn(u)t] =

∂n

∂xn
[
F ′n(u)ut

]
=

∂n

∂xn
[
(−1)nf ′(u)nut

]
=

∂n

∂xn
[
(−1)nf ′(u)n(−f(u)x)

]
=

∂n

∂xn
[
(−1)n+1f ′(u)nf(u)x

]
=

∂n

∂xn
[
(−1)n+1f ′(u)nf ′(u)ux

]
=

∂n

∂xn
[
(−1)n+1f ′(u)n+1ux

]
.

Let Fn+1(u) be a function such that F ′n+1(u) = (−1)n+1f ′(u)n+1. Then
Fn+1(u)x = F ′n+1(u)ux = (−1)n+1f ′(u)n+1ux. Hence,

∂n+1u

∂tn+1
=

∂n

∂xn
[
(−1)n+1f ′(u)n+1ux

]
=

∂n

∂xn
[Fn+1(u)x] =

∂n+1Fn+1(u)

∂xn+1
.

Remark 2. When computing the primitive, the integration constant does
not affect the procedure since at least one spatial derivative is computed
for Fn(u) in the equation (to be exact, n, n ≥ 1), where it vanishes.

Example 1. For the linear advection equation

ut + ux = 0

we have f(u) = u and thus f ′(u) = 1. Therefore

Fn(u) =

∫
(−1)nf ′(u)ndu =

∫
(−1)n1ndu = (−1)nu.
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Example 2. For the Burgers equation

ut + f(u)x = 0,

where f(u) = 1
2u

2, we have f ′(u) = u. Hence

Fn(u) =

∫
(−1)nf ′(u)ndu = (−1)n

∫
undu =

(−1)n

n+ 1
un+1.

This formulation can be useful to build easily high order numerical
schemes with a small domain of dependence for 1D scalar conserva-
tion laws and cheap in terms of computational cost. Unfortunately, this
previous result cannot be generalized to systems unless very restrictive
compatibility conditions are hold. Moreover, the extension to 2D would
involve crossed derivatives, which would suppose an additional and un-
desirable computational load.

5.6
Numerical experiments

In this section we present some 1D and 2D experiments both for scalar
and system of equations involving comparisons of the fifth order both
in space (r = 3) and time (R = 2r − 1 = 5) exact and approximate Lax-
Wendroff schemes, together with the results obtained using the third
order TVD Runge-Kutta time discretization.

From now on we will refer as WENO[]-LW[] to the exact Lax-Wendroff
procedure, WENO[]-LWA[] to the approximate Lax-Wendroff procedure,
WENO[]-LWF[] if a fluctuation control is used in the exact procedure,
WENO[]-LWAF[] if the fluctuation control comes together with the ap-
proximate procedure and WENO[]-RK[] when a Runge-Kutta method is
used. In each case, the first bracket stands for the value of the spatial
accuracy order and the second one for the time accuracy order.

5.6.1

One-dimensional experiments

We start with some tests involving 1D conservation laws.
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1D Linear advection equation

Smooth initial conditions: We set as initial condition u(x, 0) = 0.25 +
0.5 sin(πx), periodic boundary conditions at both sides, which leads to
a problem wose exact solution is u(x, t) = 0.25 + 0.5 sin(π(x − t)), using
both the exact and approximate Lax-Wendroff procedure (without and
with fluctuation control) with fifth order accuracy both in space and time
(WENO5-LW5, WENO5-LWA5 and WENO5-LWAF5, respectively) and run
the simulation up to t = 1, with CFL = 0.5 (except for RK3, where we set
k = h

5
3 in order to achieve fifth order accuracy in time), and for resolu-

tions n = 20 · 2n points, 1 ≤ n ≤ 5, obtaining the results shown in Tables
5.1-5.4.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 1.13E−5 − 2.39E−5 −
80 3.49E−7 5.02 7.17E−7 5.06
160 1.09E−8 5.00 2.25E−8 4.99
320 3.41E−10 5.00 6.77E−10 5.06
640 1.15E−11 4.89 2.23E−11 4.93
1280 3.51E−12 1.71 8.32E−12 1.42

Table 5.1: Error table for linear advection equation, t = 1. WENO5-RK3.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 1.09E−5 − 2.37E−5 −
80 3.29E−7 5.05 7.00E−7 5.08
160 1.02E−8 5.01 2.21E−8 4.98
320 3.19E−10 5.00 6.65E−10 5.06
640 9.96E−12 5.00 2.02E−11 5.04
1280 3.12E−13 4.99 6.12E−13 5.04

Table 5.2: Error table for linear advection equation, t = 1. WENO5-LW5.

From the results, we can conclude that all the proposed schemes
achieve the fifth order accuracy. We must remark that the loss of ac-
curacy appreciable in the last row of the RK3 version with ∆t = h

5
3 is

due to accumulation of machine errors because of a major number of
required iterations (produced by the time-space re-scaling performed to
achieve the fifth order accuracy). On the other hand, the results obtained
through the approximated scheme, WENO5-LWA5, are almost identi-
cal than those obtained through the original version, WENO5-LW5, as
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n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 1.09E−5 − 2.37E−5 −
80 3.29E−7 5.05 7.00E−7 5.08
160 1.02E−8 5.01 2.21E−8 4.98
320 3.19E−10 5.00 6.65E−10 5.06
640 9.96E−12 5.00 2.02E−11 5.04
1280 3.12E−13 5.00 6.12E−13 5.04

Table 5.3: Error table for linear advection equation, t = 1. WENO5-LWA5.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 5.17E−6 − 1.27E−5 −
80 1.46E−7 5.15 3.87E−7 5.04
160 4.34E−9 5.07 1.09E−8 5.14
320 1.33E−10 5.03 3.44E−10 4.99
640 4.13E−12 5.01 1.04E−11 5.05
1280 1.31E−13 4.98 3.02E−13 5.10

Table 5.4: Error table for linear advection equation, t = 1. WENO5-
LWAF5.

should be expected, since in this case (linear flux) both the exact and
the approximate formulation yield theoretically the same results. On the
other hand, we can see that the fifth order accuracy is also achieved by
the approximate Lax-Wendroff scheme with fluctuation control, WENO5-
LWAF5, providing even more accurate results. One of the reasons may
be the fact that in this case an essentially central approximation of the
first derivative is used to compute the (also central) approximations of
the next degree derivatives.

1D Burgers equation

Smooth initial conditions: We perform an accuracy test in this equa-
tion with the same setup (initial and boundary conditions as well as the
spatial resolutions) as in the previous example, except that now we set
the end time to t = 0.3 with CFL = 0.5. The results for WENO5-LW5,
WENO5-LWA5 and WENO5-LWAF5 are presented in Tables 5.5-5.7.

In this case, we can see again that the fifth order accuracy is achieved
and the errors both in ‖·‖1 and ‖·‖∞ of the exact and approximate version
are very close as well.

Discontinuous solution: If we now change the final time to t = 12,
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n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 2.38E−5 − 2.09E−4 −
80 7.93E−7 4.91 9.44E−6 4.47
160 2.45E−8 5.01 3.01E−7 4.97
320 7.48E−10 5.04 9.13E−9 5.05
640 2.32E−11 5.01 2.81E−10 5.02
1280 7.22E−13 5.00 8.69E−12 5.01

Table 5.5: Error table for Burgers equation, t = 0.3. WENO5-LW5.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 2.38E−5 − 2.09E−4 −
80 7.94E−7 4.91 9.46E−6 4.47
160 2.46E−8 5.01 3.02E−7 4.97
320 7.50E−10 5.04 9.15E−9 5.05
640 2.32E−11 5.01 2.81E−10 5.02
1280 7.23E−13 5.00 8.71E−12 5.01

Table 5.6: Error table for Burgers equation, t = 0.3. WENO5-LWA5.

the wave breaks at t = 1.1 and a shock is then formed. We compare the
WENO5-LW5 and WENO5-LWA5 techniques with WENO5-RK3, whose
results are shown in Figure 5.1. We run this simulation using a resolu-
tion of n = 80 points.

One can conclude from the results shown in Figure 5.1 that even in
the discontinuous case the approximate formulation results are quite
close to those obtained through the exact version. It can be seen as well
that the version with fluctuation control captures better the discontinuity
and is less oscillatory around the discontinuity.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 2.98E−5 − 3.01E−4 −
80 1.06E−6 4.82 1.24E−5 4.60
160 3.22E−8 5.04 4.19E−7 4.88
320 9.75E−10 5.05 1.29E−8 5.02
640 2.99E−11 5.03 3.96E−10 5.02
1280 9.26E−13 5.01 1.23E−11 5.01

Table 5.7: Error table for Burgers equation, t = 0.3. WENO5-LWAF5.
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Euler equations

We now work with 1D Euler equations of gas dynamics (2.10).
Smooth solution: We set as initial conditions

ρ(x, t) = 0.75 + 0.5 sin(πx)
ρv(x, t) = 0.25 + 0.5 sin(πx)
E(x, t) = 0.75 + 0.5 sin(πx)

, x ∈ (−1, 1),

and periodic boundary conditions for all the quantities. For t = 0.1 the
characteristic lines do not cross so that the solution remains smooth.
We compute a reference solution at that time with a very fine mesh and
perform an order test with WENO5-LW5, WENO5-LWA5 and WENO5-
LWAF5 using CFL = 0.5 for the same spatial resolutions as the previous
examples.

Both the errors and order quantities presented in the tables are an
average of the three unknowns of u. The obtained results are presented
in Tables 5.8-5.10. In this case it can be seen that the results shown

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 2.98E−4 − 4.70E−3 −
80 3.36E−5 3.15 5.49E−4 3.10
160 1.60E−6 4.39 4.59E−5 3.58
320 5.53E−8 4.85 1.78E−6 4.69
640 1.76E−9 4.98 6.01E−8 4.89
1280 5.65E−11 4.96 1.84E−9 5.03

Table 5.8: Error table for 1D Euler equation, t = 0.1. WENO5-LW5.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 2.98E−4 − 4.70E−3 −
80 3.36E−5 3.15 5.49E−4 3.10
160 1.60E−6 4.39 4.59E−5 3.58
320 5.53E−8 4.85 1.78E−6 4.69
640 1.76E−9 4.98 6.01E−8 4.89
1280 5.65E−11 4.96 1.84E−9 5.03

Table 5.9: Error table for 1D Euler equation, t = 0.1. WENO5-LWA5.

in the tables are identical at the accuracy in which the errors have been
displayed. This again indicates that the approximate version provides
essentially the same results than the exact version. For instance, the
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n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 2.93E−4 − 4.89E−3 −
80 3.25E−5 3.17 5.95E−4 3.04
160 1.71E−6 4.25 4.69E−5 3.66
320 6.15E−8 4.80 1.92E−6 4.61
640 2.00E−9 4.94 6.31E−8 4.93
1280 6.47E−11 4.95 1.95E−9 5.01

Table 5.10: Error table for 1D Euler equation, t = 0.1. WENO5-LWAF5.

global average error (‖·‖1) including all three components and cells of the
numerical solution at t = 0.1 at the resolution n = 1280 of the approximate
flux approach with respect to the exact flux approach is 2.82E−15. It can
be clearly seen that the fifth order is achieved as well by the scheme with
fluctuation control.

Shu-Osher problem: We now consider the interaction with a Mach 3
shock and a sine wave. The spatial domain is now given by Ω := (−5, 5),
with initial conditions

ρ(x, t) = 3.857143

v(x, t) = 2.629369

p(x, t) = 10.33333

 if x ≤ −4

ρ(x, t) = 1.0 + 0.2 sin(5x)

v(x, t) = 0

p(x, t) = 1

 if x > −4

with left inflow and right outflow boundary conditions.
We run one simulation until t = 1.8 and compare the results obtained

with WENO5-RK3, WENO5-LW5, WENO5-LWA5 and WENO5-LWAF5, n =
400 cells, CFL = 0.5 with a reference solution computed with 16000 grid
points. The results are shown in Figure 5.2. We can see from the re-
sults that again the version with approximate fluxes yields essentially
the same results than the version with exact fluxes and that the version
equipped with a fluctuation control captures slightly better the shock.

Blast wave: Now the initial data is the following one, corresponding
to the interaction of two blast waves:

u(x, 0) =


uL 0 < x < 0.1,
uM 0.1 < x < 0.9,
uR 0.9 < x < 1,
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where ρL = ρM = ρR = 1, vL = vM = vR = 0, pL = 103, pM = 10−2, pR = 102.
Reflecting boundary conditions are set at x = 0 and x = 1, simulating
a solid wall at both sides. This problem involves multiple reflections of
shocks and rarefactions off the walls and many interactions of waves
inside the domain. We use here the same node setup as in the previous
tests.

We compute a reference solution, this time using a resolution of n =
16000 points and compare the performance of the results setting n = 800
with the WENO5-RK3, WENO5-LW5, WENO5-LWA5 and WENO5-LWAF5
schemes with CFL = 0.5. The results of the density field are shown in
Figure 5.3, where the conclusions are the same than those obtained in
the previous experiments.

5.6.2
Two-dimensional experiments

To illustrate that these techniques work as well in the multidimensional
case, we next show some results involving two-dimensional experiments.

2D Euler equations

We now show some experiments involving 2D Euler equations.
Smooth solution: In order to test the accuracy of our scheme in the

general scenario of a multidimensional system of conservation laws, we
perform a test using the 2D Euler equations with smooth initial condi-
tions, given by

u0(x, y) = (ρ(x, y), vx(x, y), vy(x, y), E(x, y))

=

(
3

4
+

1

2
cos(π(x+ y)),

1

4
+

1

2
cos(π(x+ y)),

1

4
+

1

2
sin(π(x+ y)),

3

4
+

1

2
sin(π(x+ y))

)
,

where x ∈ Ω = [−1, 1]× [−1, 1], with periodic boundary conditions.
In order to perform the smoothness analysis, we compute a reference

solution in a fine mesh and then compute numerical solutions for the
resolutions n × n, for n = 10 · 2k, 1 ≤ k ≤ 5, obtaining the results shown
in Tables 5.11-5.13 at the time t = 0.025 for CFL = 0.5. We can see
thus that our scheme achieves the desired accuracy even in the general
scenario of a multidimensional system of conservation laws, which is
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n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 1.80E−5 − 2.74E−4 −
80 1.09E−6 4.05 1.80E−5 3.93
160 3.89E−8 4.80 7.36E−7 4.61
320 1.29E−9 4.92 2.49E−8 4.88
640 4.11E−11 4.97 8.07E−10 4.95
1280 1.23E−12 5.06 2.43E−11 5.06

Table 5.11: Error table for 2D Euler equation, t = 0.025. WENO5-LW5.

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 1.80E−5 − 2.74E−4 −
80 1.09E−6 4.05 1.80E−5 3.93
160 3.89E−8 4.80 7.36E−7 4.61
320 1.29E−9 4.92 2.49E−8 4.88
640 4.11E−11 4.97 8.07E−10 4.95
1280 1.23E−12 5.06 2.43E−11 5.06

Table 5.12: Error table for 2D Euler equation, t = 0.025. WENO5-LWA5.

consistent with our theoretical results. Also, we can see that again the
results obtained through the approximate Lax-Wendroff procedure are
almost the same than those obtained using the exact version.

Double Mach Reflection: This experiment uses the Euler equations
to model a vertical right-going Mach 10 shock colliding with an equilat-
eral triangle. By symmetry, this is equivalent to a collision with a ramp
with a slope of 30 degrees with respect to the horizontal line.

For the sake of simplicity, we consider the equivalent problem in a
rectangle, consisting on a rotated shock, whose vertical angle is π

6 rad.
The domain we consider in this problem is the rectangle Ω = [0, 4]× [0, 1],

n Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖∞ Order ‖ · ‖∞
40 2.63E−5 − 2.97E−4 −
80 1.58E−6 4.06 2.01E−5 3.89
160 6.66E−8 4.57 1.06E−6 4.24
320 2.33E−9 4.84 4.08E−8 4.70
640 7.60E−11 4.94 1.34E−9 4.93
1280 2.35E−12 5.02 4.06E−11 5.04

Table 5.13: Error table for 2D Euler equation, t = 0.025. WENO5-LWAF5.
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whose initial conditions are

u0(x, y) =

{
C1 y ≤ 1

4 + tan(π6 )x,

C2 y > 1
4 + tan(π6 )x,

where

C1 = (ρ1, v
x
1 , v

y
1 , E1)T = (8, 8.25 cos(

π

6
),−8.25 sin(

π

6
), 563.5)T ,

C2 = (ρ2, v
x
2 , v

y
2 , E2)T = (1.4, 0, 0, 2.5)T .

We impose inflow boundary conditions, with value C1, at the left side,
{0} × [0, 1], outflow boundary conditions both at [0, 1

4 ] × {0} and {4} ×
[0, 1], reflecting boundary conditions at ]1

4 , 4] × {0} and inflow boundary
conditions at the upper side, [0, 4] × {1}, which mimics the shock at its
actual traveling speed:

u(x, 1, t) =

{
C1 x ≤ 1

4 + 1+20t√
3
,

C2 x > 1
4 + 1+20t√

3
.

We run different simulations until t = 0.2 at a resolution of 2048 × 512
points for CFL = 0.4 and a different combination of techniques, involving
WENO5-RK3, WENO5-LW5 and WENO5-LWA5.

The results are presented as a Schlieren plot of the turbulence zone
and they are shown in Figure 5.4. From Figure 5.4 it can be con-
cluded that the results obtained through the exact and approximate
Lax-Wendroff techniques are again quite similar, and that the results ob-
tained through the technique with fluctuation control provides a slightly
sharper profile.

Finally, in order to illustrate that the LW techniques are more efficient
than the RK time discretization, we show a performance test involving the
computational time required by each technique by running the Double
Mach Reflection problem for the resolution 200 × 50. The results are

shown in Table 5.14, where the field “Efficiency” stands for
tRK3

tLW*
.

We can see from Table 5.14 that even the fifth order Lax-Wendroff
technique is more efficient than the third order accurate Runge-Kutta
scheme. One of the main reasons is that fact that only a spectral decom-
position per time step is needed to be performed at the LW technique,
whereas three are needed by the RK3 scheme, one per stage.

On the other hand, we see that the version with approximate fluxes
has a better performance than the main formulation, since less com-
putations are required for high order derivatives. On the other hand, if
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Method Efficiency
WENO5-LW5 1.44

WENO5-LWA5 1.54

WENO5-LWF5 1.33

WENO5-LWAF5 1.44

Table 5.14: Performance table.

the fluctuation control is used then the performance is lower, since an
additional step where smoothness indicators are computed is required.
However, the combination of the approximate fluxes with the fluctua-
tion control yields a fifth order accurate with approximately the same
efficiency than the original formulation, but providing better results.

As a final remark, it must be pointed out that the schemes without
fluctuation control fail whenever a high order WENO linearization for
the computation of the two sided Jacobian matrices fail unless the first
time steps are shortened in the Shu-Osher, blast wave and Double Mach
Reflection problems. This is due to the fact that initial conditions in
these cases are sharp discontinuities, which aggravates the phenomena
introduced by the propagation of the fluctuations through the adjacent
cells of these discontinuities involving the nodal approximations of the
derivatives of degree two and higher. This issue disappears in each case
when the fluctuation control is used.
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(a) Global results.
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(b) Enlarged view. (c) Enlarged view.

Figure 5.1: Discontinuous solution for Burgers equation, t = 12.
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(a) Density field. (b) Density field (zoom).
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(c) Density field (zoom). (d) Density field (zoom).

Figure 5.2: Shu-Osher problem.
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(c) Density field (zoom). (d) Density field (zoom).

Figure 5.3: Blast wave results.
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(a) WENO5-RK3 (b) WENO5-LW5

(c) WENO5-LWA5 (d) WENO5-LWAF5

Figure 5.4: Double Mach Reflection results. Density field.



6
Conclusions and further

work

6.1

Conclusions

In this thesis we have presented some techniques for data extrapolation
to handle boundary conditions for finite difference numerical methods for
hyperbolic conservation laws. We have obtained some successful simu-
lations in non rectangular domains. This illustrates that Lagrange ex-
trapolation is a viable technique for filling-in auxiliary data at the ghost
cells, as long as sufficient care is taken for accounting for possible dis-
continuities.

Furthermore, these techniques are designed to avoid an order loss
at the boundary of complex domains in methods that require Cartesian
meshes, a loss that can propagate to the rest of the data, thus notably
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decreasing the simulation quality. The results that have been obtained
with these techniques entail an improvement that solves the previous
problem without a significant increase in computational time at not ex-
cessively low resolutions.

The extrapolation techniques proposed in this work have the advan-
tage of letting a regulation of the tolerance to some variations at the
boundary by using a threshold parameter. This, besides being data scale
independent, is useful in simulations with strong turbulence or, in gen-
eral, with wide regions where the data is not smooth. However, the need
of tuning the thresholding parameters to the particular problem repre-
sents a drawback of the method.

To overcome this issue, we have introduced some possible weighted
extrapolations akin to WENO reconstructions capable of keeping high
order accuracy for the global scheme, which entails an improvement with
respect to the techniques based on thresholding parameters. On the
other hand, as stated in [45], straight Lagrange extrapolation may lead
to a mildly unstable scheme for multidimensional problems with some
complex domains.

We have seen that an appropriate and efficient option to achieve good
results both on smooth and non-smooth problems is to combine least
squares with an unique weight design to reduce to the constant extrapo-
lation (copying the value of the closest node) if there is a discontinuity in
the extrapolation stencil. The results obtained with that technique are
satisfactory and robust, with a weight design that, unlike those defined
in [45], is dimensionless and scale independent.

From the experiments, it can be concluded that the WLS-GAW tech-
nique is better than WLS-UW without having to be scaled artificially
(“magnetize” the weights to 1) in order to obtain a less diffusive pro-
file. We have seen that the results of WLS-GAW are better than WLS-UW
even for quite negative λ values.

On the other hand, we have presented an alternative method based
on the Lax-Wendroff and Cauchy-Kowalewski procedure through approx-
imations of the derivatives of the flux. The scheme is, on the one hand,
capable of dealing in a more general scenario, with less implementation
and computational cost than the one originally proposed by Qiu and Shu
in [39]; on the other hand, generates smooth data to approximate deriva-
tives of degree two and higher, so that large terms are not propagated
through these approximations of the derivatives, solving the issue of the
original formulation.

This scheme is less costly than the original version in terms of the
approximations of the fluxes. On the other hand, the control of fluctu-
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ations requires additional computational resources, mainly due to the
computation of Jiang-Shu smoothness indicators. However, combined
with the flux approximation technique yields a scheme with similar cost
than the original version and generally better results.

6.2
Further work

Since we now have a fully developed boundary extrapolation strategy and
a cheap time discretization procedure, our next purpose is to develop
a parallelized AMR code [3], exploiting the main benefits of using this
global scheme in the above terms. The extension of all the mentioned
techniques to 3D is also under consideration.

We also plan to extend all these combination of techniques to more
challenging and physically relevant problems, such as polydisperse sed-
imentation, transport in porous media, traffic models and problems with
non-local fluxes.
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