
Facultat de Ciències Matemàtiques

Departament d’Estad́ıstica i Investigació Operativa

Programa de doctorat en Estad́ıstica i Optimització

Tesi Doctoral

Models and solution methods for some hub location problems

Juan José Peiró Ramada

Directors:
Dr. Ángel Corberán Salvador
Dr. Rafael Mart́ı Cunquero

Juliol 2016





N’Ángel Corberán Salvador i En Rafael Mart́ı Cunquero, Catedràtics d’Universitat
del Departament d’Estad́ıstica i Investigació Operativa de la Universitat de València,

CERTIFIQUEN que la present memòria d’investigació, titulada:

“Models and solution methods for some hub location problems”

ha estat realitzada sota la seua direcció per Juan José Peiró Ramada i constitueix la
seua tesi per optar al grau de Doctor per la Universitat de València Estudi General.

I perquè aix́ı conste, en compliment amb la normativa vigent, n’autoritzen la pre-
sentació davant la Facultat de Ciències Matemàtiques de la Universitat de València
perquè en puga ser tramitada la lectura i defensa pública.

Burjassot, 26 de juliol de 2016.

Ángel Corberán Rafael Mart́ı





Avaluació

Seguint el Reglament sobre depòsit, avaluació i defensa de la tesi doctoral de la Universi-
tat de València (CG 29-XI-2011. Modificat CG 28-II-2012. Modificat en CG 29-X-2013.
Modificat CG 28-VI-2016), la Comissió de Coordinació Acadèmica del Programa de Doc-
torat en Estad́ıstica i Optimització ha nomenat als següents sis experts per jutjar aquesta
tesi:

• Professor Dr. José Manuel Belenguer Ribera (Universitat de València)

• Professor Dr. Rafael Caballero Fernández (Universidad de Málaga)

• Professora Dra. Paola Festa (Università degli Studi di Napoli FEDERICO II)

• Professora Dra. Mercedes Landete Ruiz (Universidad Miguel Hernández de Elche)

• Professor Dr. Jose Antonio Lozano Alonso (Euskal Herriko Unibertsitatea)

• Professora Dra. Hande Yaman (Bilkent University)





Ajudes institucionals rebudes

Ajudes:

• Ministerio de Economı́a y Competitividad de España (MINECO/FEDER):

– Ayuda predoctoral para la formación de doctores BES-2013-064245.
– Ayuda a la movilidad predoctoral para la realización de estancias breves en

centros de I+D EEBB-I-15-09778.
– Ayuda a la movilidad predoctoral para la realización de estancias breves en

centros de I+D EEBB-I-16-11254.

Projectes d’investigació públics que han ajudat a obtindre resultats d’aquesta tesi:

• Ministerio de Economı́a y Competitividad de España (MINECO/FEDER):

– Projectes TIN2009-07516, TIN2012-35632-C02, TIN2015-65460-C02-01.
– Projectes MTM2009-14039-C06-02, MTM2012-36163-C06-02, MTM2015-68097.

• Generalitat Valenciana:

– Projecte Prometeo 2013/049.





Agräıments

Als professors Àngel Corberán i Rafa Mart́ı, per tota l’ajuda prestada aquests anys.
Cada u, amb el seu estil personal, m’ha ensenyat coses que mai haguera somiat aprendre.
Moltes gràcies per tot. També al professor Paco Montes, col.laborador necessari —que
dirien els jutges— del delicte de fer anar les coses endavant, faça sol o ploga.

A més a més, a totes les persones que formen el Departament d’Estad́ıstica i Inves-
tigació Operativa de la Universitat de València. A les que avui estan i a les que ja no
estan f́ısicament. També a tots els membres de la Facultat de Ciències Matemàtiques.

A les persones que formen la Universidade de Lisboa (Portugal), la Universidad
Miguel Hernández de Elche, la University of Colorado Boulder (Estats Units), la Uni-
versidad Rey Juan Carlos i la Hogskolen i Molde (Noruega), en especial a Francisco
Saldanha da Gama, Mercedes Landete, Manuel Laguna, Abraham Duarte i Arild Hoff,
per acollir-me com un membre més quan els he visitat.

A la societat que, a través del Ministeri d’Economia i Competitivitat d’Espanya,
m’atorgà l’ajuda rebuda amb el contracte predoctoral, les ajudes rebudes per fer les
estades fora del meu centre, i amb els projectes d’investigació que hem disfrutat en el
passat i que disfrutem avui. També a la Generalitat Valenciana pel suport a l’activitat
investigadora i docent que hem gaudit.

A tota la meua famı́lia, en especial als meus pares i a la meua germana, per l’ajuda
rebuda al llarg de la vida.

Als meus amics i a les meues amigues pels ànims que sempre m’han donat.





al meu amor Manel,
a Conchita i a Juan





Resum

En aquesta tesi doctoral estudiem alguns dels problemes de localització de concentra-
dors de tràfics (en anglès, hub location problems) en el context de les xarxes de transport.
Aquests són problemes d’optimització combinatòria que apareixen en situacions en què
existeix necessitat de transportar tràfics (també anomenats fluxos) com persones, articles
i informació, des de molts oŕıgens cap a moltes destinacions. En lloc d’enviar aquests
fluxos utilitzant un enviament directe entre tots els parells de nodes de la xarxa, un
subconjunt d’aquests nodes se selecciona per a ser utilitzat com a concentradors, amb
l’objectiu de consolidar i distribuir els fluxos. D’aquesta manera, els concentradors in-
dueixen una subxarxa que envia els tràfics d’una manera més eficient i amb menor cost,
ja que permeten aconseguir economies d’escala quan es transporten grans quantitats de
tràfics entre els nodes d’aquesta subxarxa.

Els problemes de localització de concentradors apareixen en un gran nombre d’aplica-
cions com, per exemple, les telecomunicacions, la loǵıstica i la distribució. Un exemple il-
lustratiu de l’ús de concentradors es troba en la indústria de transport aeri de passatgers.
En l’actualitat no existeixen vols directes entre tots els parells d’aeroports del món. Tot
el contrari, existeixen certs aeroports que són utilitzats com a punts de connexió. Si
algú desitja viatjar, per exemple, des de València (Espanya) a San Francisco (Estats
Units d’Amèrica), pot escollir entre diverses alternatives, com viatjar a Madrid i després
a Chicago, per a finalment arribar a San Francisco, o viatjar a Paŕıs i després a Atlanta
abans d’arribar a San Francisco. Els aeroports de Madrid, Paŕıs, Chicago i Atlanta s’estan
utilitzant, en aquest cas, com a punts de connexió entre la ciutat origen i la ciutat de
destinació. Als punts de connexió arriben vols des de molts oŕıgens i també parteixen
vols cap a moltes destinacions, i és en aquests punts de connexió on es concentren els
passatgers en la xarxa de transport.

Bons resums dels treballs realitzats en l’àrea de localització de concentradors i de
les seues aplicacions són el caṕıtol de Contreras [22] que forma part del llibre Location
Science [61], l’article de Alumur i Kara [6] i l’article de Campbell i O’Kelly [20]. Aquestes
publicacions, a més de les referències que contenen, mostren que actualment es poden
identificar diferents tipus de problemes dins d’aquesta famı́lia, cadascun d’ells amb les
seues caracteŕıstiques diferenciadores, les seues aplicacions potencials i el seu nivell de
complexitat.

En aquesta tesi estudiem diverses variants del problema de localització de concentra-
dors. Les variants estudiades tracten de modelitzar diferents situacions i caracteŕıstiques

ix



x

de la realitat. En totes elles desitgem minimitzar el cost d’enviar els tràfics per la xarxa
de transport.

Aquesta tesi es divideix en sis caṕıtols:

Caṕıtol 1 Aquest caṕıtol comença amb una breu introducció a l’optimització, on de-
finim, de manera general, un problema d’optimització. Proposem una classifica-
ció dels problemes d’optimització, atenent a diferents criteris, com l’espai de solu-
cions i la seua convexitat, la forma de la funció objectiu i de les restriccions del
problema, el domini de les seues variables, etc. Després es contextualitzen els pro-
blemes d’optimització combinatòria, realitzant un breu repàs a les diferents classes
d’aquests problemes, atenent a la seua complexitat computacional (problemes P,
NP, NP-complets i NP-durs). Açò ens permet classificar els problemes abordats
en aquesta tesi dins dels problemesNP-durs i emmarcar el seu contingut: el disseny
d’algorismes heuŕıstics que proporcionen bones solucions en un temps raonable per
a problemes d’aquest tipus.

Després ens endinsem en els problemes de localització d’instal.lacions (en anglès,
facility location problems), que són una famı́lia de problemes d’optimització combi-
natòria amb multitud d’aplicacions. Aquests problemes tracten de cercar la millor
localització per a instal.lar els serveis que es desitgen proveir a uns clients. Fem
un resum dels problemes de localització d’instal.lacions més notables: el problema
de la p-mitjana, el p-centre, la localització d’instal.lacions nocives, els problemes
de localització amb objectius d’equitat, els problemes d’instal.lació de concentra-
dors i els problemes de màxima cobertura de serveis. Després d’açò, ens detenim
per explicar amb més profunditat els problemes de localització de concentradors.
En justifiquem la importància, repassem la Literatura existent i proposem una
classificació d’aquests problemes, basada en la que proposa Farahani et al. [35].

Molts dels problemes de localització de concentradors clàssics són NP-durs, per la
qual cosa resulta natural trobar en la Literatura molts treballs que presenten al-
gorismes heuŕıstics per a la seua resolució. Per açò, repassem també la bibliografia
sobre aquest tema, atenent a les diferents variants del problema i de les metodolo-
gies emprades: problemes amb i sense restriccions de capacitat, problemes de tipus
p-hub amb diferents patrons d’assignació de terminals a concentradors, les versions
estocàstiques propostes, etc. Al llarg d’aquesta tasca, identifiquem les metodologies
metaheuŕıstiques proposades per resoldre les diferents variants.

Després, comentem molt breument les metodologies metaheuŕıstiques que utilitzem
en la tesi, classificades segons el paradigma:

• Algorismes evolutius, basats en mecanismes inspirats en l’evolució biològica.
Aquests algorismes construeixen poblacions de solucions i les transformen
seguint un procés com la selecció natural de les espècies. Dins d’aquest para-
digma són molt coneguts els algorismes genètics [49, 70, 99] i la cerca dispersa
[42, 45, 59].



xi

• Algorismes basats en el mostreig de l’espai de solucions, com per exemple
GRASP (greedy randomized adaptive search procedures) [36, 37, 40], que és
un mètode de multiarrencada que, bàsicament, construeix una solució factible
per a un problema d’optimització i després aplica un procés de millora fins
a aconseguir una solució òptima local. En cada iteració de l’algorisme, els
elements de la solució són seleccionats d’una manera aleatòria d’entre un
conjunt d’elements candidats escollits voraçment.

• Algorismes basats en trajectòries, com per exemple la cerca tabú (en anglès,
tabu search) [42, 44], que és una metodologia que cerca solucions sense detenir-
se quan troba una solució òptima local. Açò s’aconsegueix gràcies a inhibir
la possibilitat de tornar a una solució visitada anteriorment, després d’haver
guardat en memòria els atributs de les solucions visitades prèviament. La pro-
gramació de memòria adaptativa i l’oscil.lació estratègica també estan basades
en aquest paradigma.

Aquesta breu introducció es completa, dins de cada caṕıtol, amb una explicació més
detallada de la metodologia utilitzada.
Finalment, presentem les famı́lies d’instàncies que resolem utilitzant els mètodes
proposats en la tesi. Aquestes són tres:

• Civil Aviation Board. La instància original conté dades de passatgers de vols
entre 25 ciutats importants dels Estats Units, aix́ı com la distància entre
aquestes. Aquesta famı́lia d’instàncies va ser presentada per O’Kelly [76].

• Australian Post. La instància original arreplega dades sobre el servei de co-
rreus prestat en 200 localitats d’Austràlia. Va ser presentada per Ernst i
Krishnamoorthy [31].

• USA423, la grandària de la qual és de 423 nodes. La instància original conté da-
des sobre passatgers entre 423 ciutats d’Estats Units. Va ser presentada per
Peiró et al. [79].

Caṕıtol 2 En aquest caṕıtol estudiem la variant del problema de localització de con-
centradors en la qual els fluxos de cada client poden enviar-se a través d’un únic
concentrador i on les connexions entre concentradors tenen capacitats modulars. El
problema és conegut en anglès com el capacitated hub location problem with modu-
lar link capacities i va ser proposat per Yaman i Carello [104]. Aquest problema és
una variant del problema clàssic de localització de concentradors en el qual el cost
d’utilització d’arestes entre els concentradors de la xarxa no és lineal, sinó que és
escalonat. En la literatura trobem que el model de programació matemàtica pro-
posat per Yaman i Carello [104] per a aquest problema és no lineal i amb variables
senceres, la qual cosa el converteix en un problema molt dif́ıcil de resoldre.
Nosaltres ens enfrontem al problema amb dos algorismes heuŕıstics diferents:

• El primer algorisme que proposem està basat en la metodologia de l’oscil-
lació estratègica (en anglès, strategic oscillation), una metodologia original-



xii

ment presentada en el context de la cerca tabú. El mètode que proposem
incorpora diversos dissenys per a la construcció i destrucció de solucions,
aix́ı com diverses cerques locals per a intentar millorar les solucions facti-
bles oposades. L’esquema de l’algorisme permet balancejar els processos de
diversificació i d’intensificació d’aquesta cerca, amb la finalitat de fer-la més
efectiva.

• El segon algorisme està basat en el paradigma de la programació de memòria
adaptativa (en anglès, adaptive memory programming), una metodologia que
implementa estructures de memòria per a crear mètodes sofisticats per a
trobar bones solucions. Històricament, les estructures de memòria han sigut
àmpliament implementades en el context de la cerca tabú, usualment em-
begudes en els algorismes de cerca local. En aquest algorisme explorem un
disseny alternatiu en el qual les estructures de memòria constitueixen el cor
dels mètodes de construcció i del procés de postoptimització, aquest últim
dut a terme seguint un procés de reencadenament de trajectòries (en anglès,
path relinking).

Els resultats obtinguts amb els algorismes proposats mostren que aquests són ca-
paços d’aconseguir solucions de millor qualitat i de manera més eficient que els
algorismes de resolució heuŕıstics proposats anteriorment en la Literatura per a
aquest problema.

Caṕıtol 3 En aquest caṕıtol ens centrem en la variant del problema de localització de
concentradors en la qual cal trobar la ubicació de p concentradors i es permet con-
nectar cada client amb r d’aqueixos p concentradors (tant p com a r són valors
exògens). Aquest problema és conegut en anglès com el uncapacitated r-allocation
p-hub median problem i va ser proposat per Yaman [103], que va proposar la possibi-
litat de permetre assignar cada terminal fins a un màxim de r dels p concentradors
de la xarxa. Veiem que aquest problema generalitza dos problemes molt estudiats
en la Literatura: el problema de localització de hubs amb assignació única (en
anglès, single assignment p-hub location problem) quan r = 1, i el problema de
localització de hubs amb assignació múltiple (en anglès, multiple assignment p-hub
location problem) quan r = p.
Una diferència substancial amb el problema estudiat en el Caṕıtol 2 és que aquest
problema no contempla l’existència de capacitats dels concentradors ni de les con-
nexions utilitzades.
Per a resoldre el problema hem proposat dos algorismes diferents:

• Un algorisme basat en la metogoloǵıa GRASP, que realitza el procés de cons-
trucció de solucions en tres passos: localitza els p concentradors, assigna a
cada terminal r dels p concentradors, i envia els tràfics per la xarxa dissenya-
da en els passos previs. Considerem tres tipus de cerques locals: una basada a
canviar la localització dels concentradors i altres dos a canviar les assignacions
dels terminals.



xiii

La naturalesa combinatòria d’aquest problema pot portar-nos a entorns d’ex-
ploració molt grans i, amb açò, a temps de computació elevats, per la qual
cosa proposem també regles heuŕıstiques de filtrat de solucions que descar-
ten aquelles que no semblen ser candidates a millorar després d’aplicar-los
els mètodes de cerca local proposats. Aquestes regles fan que els temps de
computació milloren substancialment.

• El segon algorisme que proposem està basat en la metodologia de la cerca
dispersa (en anglès, scatter search). La cerca dispersa és una metodologia po-
blacional que ha resultat ser eficient en molts problemes d’optimització com-
binatòria. Aquesta metodologia utilitza diverses estratègies per a generar so-
lucions, combinar-les i millorar-les segons un esquema algoŕıtmic concret. En
particular proposa la utilització de mètodes de millora en les soluciones can-
didates a ser introdüıdes en el conjunt conegut com RefSet, aix́ı com diversos
mètodes generals de combinació de solucions. Nosaltres proposem algunes
modificacions a aquest esquema algoŕıtmic per accelerar el procés de cerca
sense perdre qualitat en les solucions. Espećıficament, proposem utilitzar els
mètodes de millora únicament al final de l’esquema original, que en uns casos
són aplicats a totes les solucions en el RefSet i en altres casos només a la
millor solució. A més, en lloc d’utilitzar els mètodes generals, utilitzem la me-
todologia del reencadenament de trajectòries com a mètode de combinació de
solucions.

Els resultats que obtenim amb els algorismes proposats en 465 instàncies mostren
que aquests són capaces d’aconseguir solucions de qualitat en un temps raonable.
Els resultats són comparats amb aquells obtinguts amb algorismes exactes, que
es mostren ineficients a l’hora de trobar solucions de qualitat en temps raonables
en instàncies de grandària mitjana/gran. A més, quan intentem resoldre les ver-
sions clàssiques del problema (assignació única i múltiple), els nostres algorismes
heuŕıstics són competitius amb els millors algorismes proposats prèviament per a
aquestes versions.

Caṕıtol 4 En aquest caṕıtol estudiem alguns models que tracten d’optimitzar la qua-
litat del servei que s’ofereix als clients d’una xarxa quan el transport es realitza a
través de concentradors. En particular estem interessats a estudiar els problemes
de localització que s’apliquen a situacions per les quals són importants alguns ele-
ments d’equitat i igualtat. Donada una xarxa, uns costos de transport i un conjunt
de nodes amb tràfics per transportar, pensem que és possible calcular (o conèixer
com un input del problema) un cost mı́nim ideal per a cada parella de nodes amb
tràfics. Assumim que desitgem trobar solucions que estiguen orientades a satisfer
als clients, les quals tenen com a cost real un valor proper al seu ideal. Les funcions
objectiu de la Literatura no produeixen aquest tipus de solucions, ja que algunes
estan enfocades a minimitzar el cost total de la xarxa i unes altres poden produir
algunes solucions que estiguin orientades a millorar el cost d’alguns tràfics, però
que no mesuren la desviació pel que fa al cost ideal de cadascuna de les possibles



xiv

parelles de nodes amb tràfic per transportar entre ells. Per això, nosaltres presen-
tem un model que busca minimitzar les grans desviacions entre els costos reals i
els costos ideals per a totes les parelles de nodes de la xarxa que tinguin tràfics
per transportar. Ja que els costos poden variar significativament entre parelles de
nodes, el model que proposem està basat a minimitzar les desviacions relatives.
Pensem que les persones que s’enfronten a tasques de decisió sobre la localització de
concentradors en situacions reals també estaran interessades a comparar solucions
que estiguen dissenyades per minimitzar el cost de la xarxa i per produir solucions
del grat dels clients. En aquest context creiem que una proposta raonable pot
ser un model biobjectiu que considere simultàniament solucions que milloren el
cost de la xarxa i que milloren la qualitat del servei que ofereixen als seus clients.
Per a això, presentem una variant del problema estudiat en el Caṕıtol 3, que
denominem en anglès the uncapacitated r-allocation p-hub median and equitable
center problem. Per a aquest problema proposem una formulació bi-objectiu per
construir un conjunt de solucions eficients.
Per resoldre el problema de millorar la qualitat del servei ofert als clients, proposem
un algorisme basat en la metodologia GRASP. A més, per al problema biobjec-
tiu, adaptem aquest algorisme per obtenir solucions aproximades de la frontera
d’eficiència. Els mètodes que proposem són capaços d’aconseguir solucions d’alta
qualitat, especialment si les comparem amb aquelles obtingudes amb diferents pa-
quets comercials de propòsit general (com CPLEX, LocalSolver i OptQuest).

Caṕıtol 5 En aquest caṕıtol estenem el uncapacitated r-allocation p-hub median pro-
blem (Caṕıtol 3) en dues direccions:

• considerant incertesa en la quantitat de tràfic a transportar i en els costos de
transport, i

• considerant la possibilitat de transportar tràfic directament entre dues termi-
nals (sense passar per concentradors), en cas que aquest tipus d’enviaments
resulte en un cost de transport menor.

En particular, la nostra primera proposta és un model determinista que inclou
costos fixos d’assignació i la possibilitat de transportar tràfics directes entre ter-
minals (en anglès, non-stop services). Després, enriquim el model amb la incor-
poració d’incertesa en els costos de transport i en les quantitats de tràfic per
transportar, construint un model estocàstic bietàpic, el qual denominem stochastic
uncapacitated r-allocation p-hub median problem with non-stop services.
Si assumim que la incertesa presentada pot ser capturada a través d’un conjunt
finit d’escenaris, cadascun amb una probabilitat d’ocurrència, és possible desenvo-
lupar una formulació compacta que ajude a resoldre-ho. No obstant això, fins i tot
per a instàncies xicotetes d’aquest problema, aquest model resulta ser massa gran
per a ser fàcilment tractable amb solvers de propòsit general. Aquest fet fa que siga
interessant que proposem el desenvolupament d’un procediment de resolució apro-
ximat. Aquest procediment utilitza com a punt de partida una solució factible



xv

del problema que resulta d’äıllar cadascun dels escenaris. Aquestes solucions són
embegudes en un procés, inspirat en la metodologia del reencadenament de tra-
jectòries, que gradualment incorpora atributs de les solucions de cada escenari, per
a construir una solució del problema estocàstic global.
L’estudi computacional mostra els resultats de l’algorisme proposat, els quals són
comparats amb els obtinguts utilitzant solvers de propòsit general. També els com-
parem amb els obtinguts per als models que no tenen en compte aquesta incertesa.
Els resultats computacionals mostren que el mètode proposat és capaç d’aconseguir
solucions d’alta qualitat en poc temps de computació, comparat amb els solvers
de propòsit general que necessiten de supercomputadores amb molts recursos per
a poder resoldre’ls.
A més, l’esquema algoŕıtmic que presentem per a resoldre aquest problema pot
utilitzar-se com un mètode per a resoldre altres problemes estocàstics amb carac-
teŕıstiques similars.

Caṕıtol 6 Finalment, en aquest caṕıtol presentem les conclusions generals i les ĺınies
futures de recerca, on es resumeixen els problemes de localització de concentradors
tractats i els resultats obtinguts.
Aquests problemes, com s’ha dit anteriorment, són problemes NP-durs, els quals
hem tractat de resoldre amb algorismes basats en metodologies metaheuŕıstiques.
Tots els algorismes proposats es basen en procediments de construcció de solucions
i en procediments de cerca local que intenten millorar aquestes solucions.
Els problemes de localització de concentradors poden ser entesos com una com-
binació de tres problemes d’optimització interrelacionats: un problema de loca-
lització d’instal.lacions, un problema d’assignació de clients a instal.lacions i un
problema de transport. Cada algorisme constructiu que hem proposat ha seguit
sempre la lògica d’aquesta interrelació: seleccionar els nodes que s’utilitzaran com
a concentradors, assignar clients a aquests nodes i transportar els tràfics utilitzant
la xarxa resultant. Depenent de la variant del problema que estiguem resolent,
cadascun d’aquests passos es realitza atenent unes regles heuŕıstiques que exploten
les caracteŕıstiques particulars de la variant.
També hem dissenyat diversos procediments de cerca local, cadascun associat a un
entorn:

• Els mètodes de cerca local que tenen com a objectiu millorar la localitza-
ció dels concentradors exploren l’espai de solucions factibles de cada problema
d’una manera més extensa, però cada solució vëına sol ser prou diferent com
perquè la seua avaluació siga computacionalment costosa. Açò fa que, amb
l’objectiu que els algorismes puguen ser utilitzats en un temps raonable, calga
proposar regles heuŕıstiques que guien les cerques d’aquest tipus d’entorns.
Referent a açò, el mètode LScluster que presentem en la Secció 2.5.2 mostra
que és possible explorar aquest tipus d’entorns amb un cost computacional
relativament baix.



xvi

• Els mètodes que exploren els vëınats resultants del problema d’assignació de
terminals a concentradors solen ser efectius per a trobar bones solucions. No-
saltres recomanem que s’apliquen cada vegada que es realitze un canvi en el
conjunt de nodes que utilitzem com a concentradors. En variants del proble-
ma on existisquen restriccions de capacitat en els concentradors, els entorns
basats en “intercanvis” solen funcionar millor que els basats en “insercions”.
La raó és que aquests últims solen produir més solucions infactibles que els
primers en assignar (inserir) terminals a concentradors que ja estan plens.
També recomanem els entorns basats en intercanvis que impliquen diversos
terminals, ja que permeten més opcions d’intercanvi en alliberar molt més
espai.

Les metodologies que hem utilitzat per a resoldre aquests problemes de localitza-
ció inclouen GRASP, la cerca tabu, l’oscil.lació estratègica, la cerca de memòria
adaptativa, la cerca dispersa i el reencadenament de trajectòries. Aquestes metodo-
logies han demostrat que poden ser implementades de manera senzilla per a aquest
tipus de problemes combinatoris i que són capaços d’explorar de manera eficient
l’espai de solucions factibles de cada variant, ja siga per si mateixes o combinades
amb altres mètodes.
També veiem a través de diversos experiments al llarg la tesi que els solvers de
propòsit general són bones eines per a resoldre els problemes de localització de
concentradors de grandària xicoteta. Per a problemes de grandària mitjana i gran,
que són els que solen trobar-se en situacions reals, aquests solvers no són eficients,
principalment perquè necessiten d’una gran quantitat de recursos de computació.
Per açò pensem que proposar mètodes heuŕıstics especialment dissenyats per a
cada variant és la forma adequada d’atacar el problema. Els algorismes que hem
presentat poden ser executats en ordinadors de sobretaula d’ús comú, a diferència
dels solvers comercials que generalment necessiten de servidors d’altes prestacions.
L’ús d’algorismes heuŕıstics té dos inconvenients: no garanteixen ni l’optimalitat
ni la qualitat de la solució obtinguda. No obstant això, els resultats obtinguts amb
els algorismes proposats han demostrat ser de gran qualitat quan ha sigut possible
comparar-los i, per açò, també poden ser utilitzats com a ajuda als mètodes exactes
en la tasca de cercar la solució òptima de cada problema.
Existeixen diversos problemes de localització de concentradors que ens agradaria
explorar en un futur pròxim com, per exemple, algunes variants on no s’assumeix
que els concentradors formen una subxarxa completa i per açò les decisions sobre
l’ús de connexions entre concentradors també són variables del problema. Aquests
problemes són coneguts en la literatura com “incomplete hub location problems”.
També creiem que els problemes d’optimització que combinen decisions de loca-
lització i de rutes de vehicles poden modelitzar moltes situacions reals que, avui
dia, estan sent modelitzades i resoltes de manera separada, produint solucions
subòptimes. Aquest tipus de problemes es coneixen en la Literatura com a proble-
mes de “Location–Routing” i també ens agradaria explorar-los.



xvii

Finalment, ja que molts problemes de localització que incorporen incertesa no han
sigut explorats, creiem que existeix la necessitat que siguen modelitzats, estudiats
i resolts. Aquests problemes semblen ser bastant dif́ıcils. No obstant això, pensem
que els models estocàstics reflecteixen molt millor els problemes de la vida real,
on per exemple existeixen canvis en els costos i en les demandes, per als quals els
models deterministes no descriuen igual de bé aquests canvis a futur.
Algunes de les principals contribucions d’aquesta tesi han sigut sotmeses o accep-
tades per a la seua publicació. Aquestes són:

• Corberán, Á., Peiró, J., Campos, V., Glover, F., and Mart́ı, R.
Strategic oscillation for the capacitated hub location problem with
modular links.
Journal of Heuristics, 22 (2): 221 – 244, 2016.

• Hoff, A., Peiró, J., Corberán, Á., and Mart́ı, R.
Adaptive memory programming for solving the capacitated hub
location problem with modular link capacities.
Universitat de València Technical report, June 2016. Submitted.

• Mart́ı, R., Corberán, Á., and Peiró, J.
Scatter search for an uncapacitated p-hub median problem.
Computers & Operations Research, 58: 53 – 66, 2015.

• Mart́ı, R., Corberán, Á., and Peiró, J.
The scatter search methodology: An experimental evaluation on
hub location problems.
To appear in Handbook of Heuristics. Springer International Publishing.

• Peiró, J., Corberán, Á., Laguna, M., and Mart́ı, R.
Models and solution methods for the uncapacitated r-allocation p-
hub equitable center problem.
Universitat de València Technical report, April 2016. Submitted.

• Peiró, J., Corberán, Á., and Mart́ı, R.
GRASP for the uncapacitated r-allocation p-hub median problem.
Computers & Operations Research, 43: 50 – 60, 2014.

• Peiró, J., Corberán, Á., Mart́ı, R., and Saldanha-da-Gama, F.
Heuristic solutions for the stochastic uncapacitated r-allocation p-
hub median problem with non-stop services.
Universitat de València Technical report, May 2016. Submitted.

http://dx.doi.org/10.1007/s10732-016-9308-7
http://www.uv.es
http://dx.doi.org/10.1016/j.cor.2014.12.009
http://www.springer.com/us/book/9783319071237
http://www.uv.es
http://dx.doi.org/10.1016/j.cor.2013.08.026
http://www.uv.es




Resumen

En esta tesis doctoral estudiamos algunos de los problemas de localización de concen-
tradores de tráficos (en inglés, hub location problems) en el contexto de las redes de
transporte. Éstos son problemas de optimización combinatoria que aparecen en situa-
ciones donde existe necesidad de transportar tráficos (también llamados flujos) como
personas, art́ıculos e información, desde muchos oŕıgenes hacia muchos destinos. En lu-
gar de enviar estos flujos utilizando un env́ıo directo entre todos los pares de nodos de la
red, un subconjunto de estos nodos se selecciona para ser utilizado como concentradores,
con el objetivo de consolidar y distribuir los flujos. De esta manera, los concentradores
inducen una subred que env́ıa los tráficos de una manera más eficiente y con menor
coste, ya que permiten conseguir economı́as de escala cuando se transportan grandes
cantidades de tráficos entre los nodos de esta subred.

Los problemas de localización de concentradores aparecen en un gran número de
aplicaciones como, por ejemplo, las telecomunicaciones, la loǵıstica y la distribución. Un
ejemplo ilustrativo del uso de concentradores se encuentra en la industria de transporte
aéreo de pasajeros. En la actualidad no existen vuelos directos entre todos los pares de
aeropuertos del mundo. Todo lo contrario. Existen ciertos aeropuertos que son utilizados
como puntos de conexión. Si alguien desea viajar, por ejemplo, desde Valencia (España)
a San Francisco (Estados Unidos de América), puede escoger entre varias alternativas,
como viajar a Madrid y después a Chicago, para finalmente llegar a San Francisco, o
viajar a Paŕıs y luego a Atlanta antes de llegar a San Francisco. Los aeropuertos de
Madrid, Paŕıs, Chicago y Atlanta se están utilizando, en este caso, como puntos de
conexión entre la ciudad origen y la ciudad destino. A los puntos de conexión llegan
vuelos desde muchos oŕıgenes y también parten vuelos hacia muchos destinos, y es en
estos puntos de conexión donde se concentran los pasajeros en la red de transporte.

Buenos resúmenes de los trabajos realizados en el área de localización de concentra-
dores y de sus aplicaciones son el caṕıtulo de Contreras [22] que forma parte del libro
Location Science [61], el art́ıculo de Alumur y Kara [6] y el art́ıculo de Campbell y
O’Kelly [20]. Estas publicaciones, además de las referencias que contienen, muestran que
actualmente se pueden identificar distintos tipos de problemas dentro de esta familia,
cada uno de ellos con sus caracteŕısticas diferenciadoras, sus aplicaciones potenciales y
su nivel de complejidad.

En esta tesis estudiamos diversas variantes del problema de localización de concentra-
dores. Las variantes estudiadas tratan de modelizar diferentes situaciones y caracteŕısti-

xix



xx

cas de la realidad. En todas ellas deseamos minimizar el coste de enviar los tráficos por
la red de transporte.

Esta tesis se divide en seis caṕıtulos:

Caṕıtulo 1 Este caṕıtulo comienza con una breve introducción a la optimización, donde
definimos, de manera general, un problema de optimización y proponemos una
clasificación de los problemas de optimización, atendiendo a diferentes criterios,
como el espacio de soluciones y su convexidad, la forma de la función objetivo
y de las restricciones del problema, el dominio de sus variables, etc. Después se
contextualizan los problemas de optimización combinatoria, realizando un breve
repaso a las diferentes clases de estos problemas, atendiendo a su complejidad
computacional (problemas P, NP, NP-completos y NP-duros). Ésto nos permite
clasificar los problemas abordados en esta tesis dentro de los problemas NP-duros
y enmarcar su contenido: el diseño de algoritmos heuŕısticos que proporcionen
buenas soluciones en un tiempo razonable para problemas de este tipo.
Después nos adentramos en los problemas de localización de instalaciones (en
inglés, facility location problems), que son una familia de problemas de optimiza-
ción combinatoria con multitud de aplicaciones. Estos problemas tratan de buscar
la mejor localización para instalar los servicios que se desean proveer a unos clien-
tes. Hacemos un resumen de los problemas de localización de instalaciones más
notables: el problema de la p-mediana, el p-centro, la localización de instalaciones
nocivas, los problemas de localización con objetivos de equidad, los problemas de
instalación de concentradores y los problemas de máxima cobertura de servicios.
Tras ello, nos detenemos para explicar con más profundidad los problemas de loca-
lización de concentradores. Justificamos su importancia, repasamos la Literatura
existente y proponemos una clasificación de estos problemas, basada en la que
propone Farahani et al. [35].
Muchos de los problemas de localización de concentradores clásicos son NP-duros,
por lo que resulta natural encontrar en la Literatura muchos trabajos que pre-
sentan algoritmos heuŕısticos para su resolución. Por ello, repasamos también la
bibliograf́ıa al respecto, atendiendo a las diferentes variantes del problema y de las
metodoloǵıas empleadas: problemas con y sin restricciones de capacidad, problemas
de tipo p-hub con diferentes patrones de asignación de terminales a concentradores,
las versiones estocásticas propuestas, etc. A lo largo de esta tarea, identificamos
las metodoloǵıas metaheuŕısticas propuestas para resolver las diferentes variantes.
Después, comentamos muy brevemente las metodoloǵıas metaheuŕısticas que uti-
lizamos en la tesis, clasificadas según su paradigma:

• Algoritmos evolutivos, basados en mecanismos inspirados en la evolución
biológica. Estos algoritmos construyen poblaciones de soluciones y las trans-
forman siguiendo un proceso como la selección natural de las especies. Dentro
de este paradigma son muy conocidos los algoritmos genéticos [49, 70, 99] y
la búsqueda dispersa [42, 45, 59]



xxi

• Algoritmos basados en el muestreo del espacio de soluciones, como por ejem-
plo GRASP (greedy randomized adaptive search procedures) [36, 37, 40], que
es un método multiarranque que, básicamente, construye una solución facti-
ble para un problema de optimización y luego aplica un proceso de mejora
hasta conseguir una solución óptima local. En cada iteración del algoritmo,
los elementos de la solución son seleccionados de una manera aleatoria de
entre un conjunto de elementos candidatos escogidos vorazmente.

• Algoritmos basados en trayectorias, como por ejemplo la búsqueda tabú (en
inglés, tabu search) [42, 44], que es una metodoloǵıa que busca soluciones sin
detenerse cuando encuentra una solución óptima local. Esto se consigue gra-
cias a inhibir la posibilidad de volver a una solución visitada anteriormente,
tras haber guardado en memoria los atributos de las soluciones visitadas pre-
viamente. La programación de memoria adaptativa y la oscilación entratégica
también están basadas en este paradigma.

Esta breve introducción se completa, dentro de cada caṕıtulo, con una explicación
más detallada de la metodoloǵıa utilizada.

Finalmente, presentamos las familias de instancias que resolvemos utilizando los
métodos propuestos en la tesis. Éstas son tres:

• Civil Aviation Board. La instancia original contiene datos de pasajeros de vue-
los entre 25 ciudades importantes de los Estados Unidos, aśı como la distancia
entre éstas. Esta familia de instancias fue presentada por O’Kelly [76].

• Australian Post. La instancia original recoge datos sobre el servicio de co-
rreos prestado en 200 localidades de Australia. Fue presentada por Ernst y
Krishnamoorthy [31].

• USA423, cuyo tamaño es de 423 nodos. La instancia original contiene datos
sobre pasajeros entre 423 ciudades de Estados Unidos. Fue presentada por
Peiró et al. [79].

Caṕıtulo 2 En este caṕıtulo estudiamos la variante del problema de localización de
concentradores en la que los flujos de cada cliente pueden enviarse a través de un
único concentrador y donde las conexiones entre concentradores tienen capacida-
des modulares. El problema es conocido en inglés como el capacitated hub location
problem with modular link capacities y fue propuesto por Yaman y Carello [104].
Este problema es una variante del problema clásico de localización de concentra-
dores en el que el coste de utilización de aristas entre los concentradores de la red
no es lineal, sino que es escalonado. En la literatura encontramos que el modelo de
programación matemática propuesto por Yaman y Carello [104] para este proble-
ma es no lineal y con variables enteras, lo que lo convierte en uno muy dif́ıcil de
resolver.

Nosotros nos enfrentamos al problema con dos algoritmos heuŕısticos diferentes:



xxii

• El primer algoritmo que proponemos está basado en la metodoloǵıa de la
oscilación estratégica (en inglés, strategic oscillation), una metodoloǵıa ori-
ginalmente presentada en el contexto de la búsqueda tabú. El método que
proponemos incorpora varios diseños para la construcción y destrucción de
soluciones para este problema, aśı como varias búsquedas locales para inten-
tar mejorar las soluciones factibles encontradas. El esquema del algoritmo
permite balancear los procesos de diversificación y de intensificación de esta
búsqueda, con el fin de hacerla más efectiva.

• El segundo algoritmo está basado en el paradigma de la programación de
memoria adaptativa (en inglés, adaptive memory programming), una metodo-
loǵıa que implementa estructuras de memoria para crear métodos sofisticados
para encontrar buenas soluciones. Históricamente, las estructuras de memo-
ria han sido ampliamente implementadas en el contexto de la búsqueda tabú,
usualmente embebidas en los algoritmos de búsqueda local. En este algorit-
mo exploramos un diseño alternativo en el cual las estructuras de memoria
constituyen el corazón de los métodos de construcción y del proceso de post-
optimización, este último llevado a cabo siguiendo un proceso de reencadena-
miento de trayectorias (en inglés, path relinking).

Los resultados obtenidos con los algoritmos propuestos muestran que éstos son
capaces de conseguir soluciones de mejor calidad y de manera más eficiente que
los algoritmos de resolución heuŕısticos propuestos anteriormente en la Literatura
para este problema.

Caṕıtulo 3 En este caṕıtulo nos centramos en la variante del problema de localización
de concentradores en la que hay que encontrar la ubicación de p concentradores y
se permite conectar cada cliente con r de esos p concentradores (tanto p como r
son valores exógenos). Este problema es conocido en inglés como el uncapacitated
r-allocation p-hub median problem y fue propuesto por Yaman [103], que propu-
so la posibilidad de permitir asignar cada terminal hasta un máximo de r de los
p concentradores de la red. Vemos que este problema generaliza dos problemas
muy estudiados en la Literatura: el problema de localización de hubs con asigna-
ción única (en inglés, single assignment p-hub location problem) cuando r = 1,
y el problema de localización de hubs con asignación múltiple (en inglés, multiple
assignment p-hub location problem) cuando r = p.
Una diferencia sustancial con el problema estudiado en el Caṕıtulo 2 es que este
problema no contempla la existencia de capacidades de los concentradores ni de
las conexiones utilizadas.
Para resolver el problema hemos propuesto dos algoritmos diferentes:

• Un algoritmo basado en la metogoloǵıa GRASP, que realiza el proceso de
construcción de soluciones en tres pasos: localiza los p concentradores, asigna
a cada terminal r de los p concentradores, y envia los tráficos por la red



xxiii

diseñada en los pasos previos. Consideramos tres tipos de búsquedas locales:
una basada en cambiar la localización de los concentradores y otras dos en
cambiar las asignaciones de las terminales.
La naturaleza combinatoria de este problema puede llevarnos a entornos de
exploración muy grandes y, con ello, a tiempos de computación elevados, por
lo que proponemos también reglas heuŕısticas de filtrado de soluciones que
descartan aquellas que no parecen ser candidatas a mejorar tras aplicarles los
métodos de búsqueda local propuestos. Estas reglas hacen que los tiempos de
computación mejoren sustancialmente.

• El segundo algoritmo que proponemos está basado en la metodoloǵıa de la
búsqueda dispersa (en inglés, scatter search). La búsqueda dispersa es una
metodoloǵıa poblacional que ha resultado ser eficiente en muchos problemas
de optimización combinatoria. Esta metodoloǵıa utiliza varias estrategias pa-
ra generar soluciones, combinarlas y mejorarlas según un esquema algoŕıtmico
concreto. En particular propone la utilización de métodos de mejora en las so-
luciones candidatas a ser introducidas en el conjunto conocido como RefSet,
aśı como varios métodos generales de combinación de soluciones. Nosotros
proponemos algunas modificaciones a este esquema algoŕıtmico para acelerar
el proceso de búsqueda sin perder calidad en las soluciones. Espećıficamente,
proponemos utilizar los métodos de mejora únicamente al final del esquema
original, que en unos casos son aplicados a todas las soluciones en el RefSet y
en otros casos sólo a la mejor solución. Además, en lugar de utilizar los méto-
dos generales, utilizamos la metodoloǵıa del reencadenamiento de trayectorias
como método de combinación de soluciones.

Los resultados que obtenemos con los algoritmos propuestos en 465 instancias
muestran que éstos son capaces de conseguir soluciones de calidad en un tiempo
razonable. Los resultados son comparados con aquellos obtenidos con algoritmos
exactos, que se muestran ineficientes a la hora de encontrar soluciones de calidad
en tiempos razonables en instancias de tamaño medio/grande. Además, cuando
intentamos resolver las versiones clásicas del problema (asignación única y múlti-
ple), nuestros algoritmos heuŕısticos son competitivos con los mejores algoritmos
propuestos previamente para estas versiones.

Caṕıtulo 4 En este caṕıtulo estudiamos algunos modelos que tratan de optimizar la
calidad del servicio que se ofrece a los clientes de una red cuando el transporte se
realiza a través de concentradores. En particular estamos interesados en estudiar
los problemas de localización que se aplican a situaciones para las cuales son im-
portantes algunos elementos de equidad e igualdad. Dada una red, unos costes de
transporte y un conjunto de nodos con tráficos a transportar, pensamos que es po-
sible calcular (o conocer como un input del problema) un coste mı́nimo ideal para
cada pareja de nodos con tráficos. Asumimos que deseamos encontrar soluciones
que estén orientadas a satisfacer a los clientes, las cuales tienen como coste real un
valor cercano a su ideal. Las funciones objetivo de la Literatura no producen este



xxiv

tipo de soluciones, ya que algunas están enfocadas a minimizar el coste total de
la red y otras pueden producir algunas soluciones que estén orientadas a mejorar
el coste de algunos tráficos, pero que no miden la desviación con respecto al coste
ideal de cada una de las posibles parejas de nodos con tráfico a transportar entre
ellos. Por ello, nosotros presentamos un modelo que busca minimizar las grandes
desviaciones entre los costes reales y los costes ideales para todas las parejas de no-
dos de la red que tengan tráficos que transportar. Ya que los costes pueden variar
significativamente entre parejas de nodos, el modelo que proponemos está basado
en minimizar las desviaciones relativas.
Pensamos que las personas que se enfrenten a tareas de decisión sobre la loca-
lización de concentradores en situaciones reales también estarán interesadas en
comparar soluciones que estén diseñadas para minimizar el coste de la red y para
producir soluciones del agrado de los clientes. En este contexto creemos que una
propuesta razonable puede ser un modelo bi-objetivo que considere simultáneamen-
te soluciones que mejoran el coste de la red y que mejoren la calidad del servicio
que ofrecen a sus clientes. Para ello, presentamos una variante del problema estu-
diado en el Caṕıtulo 3, que denominamos en inglés como uncapacitated r-allocation
p-hub median and equitable center problem. Para este problema proponemos una
formulación bi-objetivo en aras de construir un conjunto de soluciones eficientes.
Para resolver el problema de mejorar la calidad del servicio ofrecido a los clien-
tes proponemos un algoritmo basado en la metodoloǵıa GRASP. Además, para el
problema bi-objetivo, adaptamos este algoritmo para obtener soluciones aproxi-
madas de la frontera de eficiencia. Los métodos que proponemos son capaces de
conseguir soluciones de alta calidad, especialmente si las comparamos con aquellas
obtenidas con diferentes paquetes comerciales de propósito general (como CPLEX,
LocalSolver y OptQuest).

Caṕıtulo 5 En este caṕıtulo extendemos el uncapacitated r-allocation p-hub median
problem (Caṕıtulo 3) en dos direcciones:

• considerando incertidumbre en la cantidad de tráfico a transportar y en los
costes de transporte, y

• considerando la posibilidad de transportar tráfico directamente entre dos ter-
minales (sin pasar por concentradores), en caso de que este tipo de env́ıos
resulte en un coste de transporte menor.

En particular, nuestra primera propuesta es un modelo determinista que incluye
costes fijos de asignación y la posibilidad de transportar tráficos directos entre
terminales (en inglés, non-stop services). Después, enriquecemos el modelo con la
incorporación de incertidumbre en los costes de transporte y en las cantidades de
tráfico a transportar, construyendo un modelo estocástico bi-etápico, el cual deno-
minamos stochastic uncapacitated r-allocation p-hub median problem with non-stop
services.



xxv

Si asumimos que la incertidumbre presentada puede ser capturada a través de un
conjunto finito de escenarios, cada cual con una probabilidad de ocurrencia, es
posible desarrollar una formulación compacta que ayude a resolverlo. Sin embargo,
incluso para instancias pequeñas de este problema, este modelo resulta ser dema-
siado grande para ser fácilmente tratable con solvers de propósito general. Este
hecho hace que sea interesante que propongamos el desarrollo de un procedimiento
de resolución aproximado. Este procedimiento usa como punto de partida una so-
lución factible del problema que resulta de aislar cada uno de los escenarios. Estas
soluciones son embebidas en un proceso, inspirado en la metodoloǵıa del reencade-
namiento de trayectorias, que gradualmente incorpora atributos de las soluciones
de cada escenario, para construir una solución del problema estocástico global.

El estudio computacional muestra los resultados del algoritmo propuesto, los cuales
son comparados con los obtenidos utilizando solvers de propósito general. También
los comparamos con los obtenidos para los modelos que no tienen en cuenta esta
incertidumbre. Los resultados computacionales muestran que el método propuesto
es capaz de conseguir soluciones de alta calidad en poco tiempo de computación,
comparado con los solvers de propósito general que necesitan de supercomputado-
res con muchos recursos para poder resolverlos.

Además, el esquema algoŕıtmico que presentamos para resolver este problema pue-
de utilizarse como un método para resolver otros problemas estocásticos con ca-
racteŕısticas similares.

Caṕıtulo 6 Finalmente, en este caṕıtulo presentamos las conclusiones generales y las
ĺıneas futuras de investigación, donde se resumen los problemas de localización de
concentradores tratados y los resultados obtenidos.

Estos problemas, como se ha dicho anteriormente, son problemas NP-duros, los
cuales hemos tratado de resolver con algoritmos basados en metodoloǵıas me-
taheuŕısticas. Todos los algoritmos propuestos se basan en procedimientos de cons-
trucción de soluciones y en procedimientos de búsqueda local que intentan mejorar
estas soluciones.

Los problemas de localización de concentradores pueden ser entendidos como una
combinación de tres problemas de optimización interrelacionados: un problema de
localización de instalaciones, un problema de asignación de clientes a instalaciones
y un problema de transporte. Cada algoritmo constructivo que hemos propuesto
ha seguido siempre la lógica de esta interrelación: seleccionar los nodos que se
utilizarán como concentradores, asignar clientes a dichos nodos y transportar los
tráficos utilizando la red resultante. Dependiendo de la variante del problema que
estemos resolviendo, cada uno de estos pasos se realiza atendiendo a unas reglas
heuŕısticas que explotan las caracteŕısticas particulares de la variante.

También hemos diseñado varios procedimientos de búsqueda local, cada uno aso-
ciado a un entorno:



xxvi

• Los métodos de búsqueda local que tienen como objetivo mejorar la localiza-
ción de los concentradores exploran el espacio de soluciones factibles de cada
problema de una manera más extensa, pero cada solución vecina suele ser
lo suficientemente diferente como para que su evaluación sea computacional-
mente costosa. Esto hace que, con el objetivo de que los algoritmos puedan
ser utilizados en un tiempo razonable, haya que proponer reglas heuŕısticas
que gúıen las búsquedas de este tipo de entornos. A este respecto, el método
LScluster que presentamos en la Sección 2.5.2 muestra que es posible explorar
este tipo de entornos con un coste computacional relativamente bajo.

• Los métodos que exploran los vecindarios resultantes del problema de asigna-
ción de terminales a concentradores suelen ser efectivos para encontrar buenas
soluciones. Nosotros recomendamos que se apliquen cada vez que se realice
un cambio en el conjunto de nodos que utilizamos como concentradores. En
variantes del problema donde existan restricciones de capacidad en los con-
centradores, los entornos basados en “intercambios” suelen funcionar mejor
que los basados en “inserciones”. La razón es que estos últimos suelen producir
más soluciones infactibles que los primeros al asignar (insertar) terminales a
concentradores que ya están llenos. También recomendamos los entornos ba-
sados en intercambios que impliquen varios terminales, ya que permiten más
opciones de intercambio al liberar mucho más espacio.

Las metodologias que hemos utilizado para resolver estos problemas de localiza-
ción incluyen GRASP, la búsqueda tabu, la oscilación estratégica, la búsqueda de
memoria adaptativa, la búsqueda dispersa y el reencadenamiento de trayectorias.
Estas metodoloǵıas han demostrado que pueden ser implementadas de manera
sencilla para este tipo de problemas combinatorios y que son capaces de explorar
de manera eficiente el espacio de soluciones factibles de cada variante, ya sea por
śı mismas o combinadas con otros métodos.
También vemos a través de varios experimentos a lo largo la tesis que los solvers
de propósito general son buenas herramientas para resolver los problemas de loca-
lización de concentradores de tamaño pequeño. Para problemas de tamaño medio
y grande, que son los que suelen encontrarse en situaciones reales, estos solvers no
son eficientes, principalmente porque necesitan de una gran cantidad de recursos de
computación. Por ello pensamos que proponer métodos heuŕısticos especialmente
diseñados para cada variante es la forma adecuada de atacar el problema. Los algo-
ritmos que hemos presentado pueden ser ejecutados en ordenadores de sobremesa
de uso común, a diferencia de los solvers comerciales que generalmente necesitan
de servidores de altas prestaciones.
El uso de algoritmos heuŕısticos tiene, sin embargo, dos inconvenientes: no ga-
rantizan ni la optimalidad ni la calidad de la solución obtenida. No obstante, los
resultados obtenidos con los algoritmos propuestos han demostrado ser de gran
calidad cuando ha sido posible compararlos y, por ello, también pueden ser utili-
zados como ayuda a los métodos exactos en la tarea de buscar la solución óptima



xxvii

de cada problema.
Existen varios problemas de localización de concentradores que nos gustaŕıa ex-
plorar en un futuro próximo como, por ejemplo, algunas variantes donde no se
asume que los concentradores forman una subred completa y, por ello, las deci-
siones sobre el uso de conexiones entre concentradores también son variables del
problema. Estos problemas son conocidos en la literatura como “incomplete hub
location problems”.
También creemos que los problemas de optimización que combinan decisiones de
localización y de rutas de veh́ıculos pueden modelizar muchas situaciones reales
que, hoy en d́ıa, están siendo modelizadas y resueltas de manera separada, produ-
ciendo soluciones sub-óptimas. Este tipo de problemas se conocen en la Literatura
como problemas de “Location–Routing” y también nos gustaŕıa explorarlos.
Finalmente, ya que muchos problemas de localización que incorporan incertidum-
bre no han sido explorados, creemos que existe la necesidad de que sean modeli-
zados, estudiados y resueltos. Estos problemas parecen ser bastante dif́ıciles. Sin
embargo, pensamos que los modelos estocásticos reflejan mucho mejor los proble-
mas de la vida real, donde por ejemplo existen cambios en los costes y en las
demandas, para los que los modelos deterministas no describen igual de bien estos
cambios a futuro.
Algunas de las principales contribuciones de esta tesis han sido sometidas o acep-
tadas para su publicación. Éstas son:

• Corberán, Á., Peiró, J., Campos, V., Glover, F., and Mart́ı, R.
Strategic oscillation for the capacitated hub location problem with
modular links.
Journal of Heuristics, 22 (2): 221 – 244, 2016.

• Hoff, A., Peiró, J., Corberán, Á., and Mart́ı, R.
Adaptive memory programming for solving the capacitated hub
location problem with modular link capacities.
Universitat de València Technical report, June 2016. Submitted.

• Mart́ı, R., Corberán, Á., and Peiró, J.
Scatter search for an uncapacitated p-hub median problem.
Computers & Operations Research, 58: 53 – 66, 2015.

• Mart́ı, R., Corberán, Á., and Peiró, J.
The scatter search methodology: An experimental evaluation on
hub location problems.
To appear in Handbook of Heuristics. Springer International Publishing.

• Peiró, J., Corberán, Á., Laguna, M., and Mart́ı, R.
Models and solution methods for the uncapacitated r-allocation p-
hub equitable center problem.
Universitat de València Technical report, April 2016. Submitted.

http://dx.doi.org/10.1007/s10732-016-9308-7
http://www.uv.es
http://dx.doi.org/10.1016/j.cor.2014.12.009
http://www.springer.com/us/book/9783319071237
http://www.uv.es


xxviii

• Peiró, J., Corberán, Á., and Mart́ı, R.
GRASP for the uncapacitated r-allocation p-hub median problem.
Computers & Operations Research, 43: 50 – 60, 2014.

• Peiró, J., Corberán, Á., Mart́ı, R., and Saldanha-da-Gama, F.
Heuristic solutions for the stochastic uncapacitated r-allocation p-
hub median problem with non-stop services.
Universitat de València Technical report, May 2016. Submitted.

http://dx.doi.org/10.1016/j.cor.2013.08.026
http://www.uv.es


Summary

In this thesis, we study some hub location problems in the context of transportation
networks. These are combinatorial optimization problems appearing in situations where
there is a need of transporting some traffic (also called flows), like items, people, and
information, from many origins to many destinations. Instead of sending these flows
using a direct shipment between all pairs of nodes in the network, a subset of these
nodes is selected to use as hubs, with the aim of consolidating and distribute the flows.
Thus, hubs induce a subnetwork that sends the traffic more efficiently and at a cheaper
cost, allowing economies of scale when large amounts of traffic between nodes on this
subnet are transported.

Hub location problems appear in a large number of applications, like telecommuni-
cations, logistics, and distribution. An illustrative example of the use of hubs can be
found in the passenger air transportation industry. At present, there is not a direct
flight between all pairs of airports worldwide. Air lines make use of certain airports
as connecting points. If someone wishes to travel, for example, from Valencia (Spain)
to San Francisco (USA), there exist several alternatives from which to choose, such as
traveling to Madrid, and then to Chicago, to finally reach San Francisco, or traveling to
Paris, and then to Atlanta, before arriving in San Francisco. Madrid, Paris, Chicago,
and Atlanta airports are being used, in this example, as connection points between the
origin city and the destination city. We will assume that a connecting point receives
flights from many origins and also sends flights to many destinations, and it is there, in
this connection points, where passengers are concentrated in the transportation network.

Good summaries of the work done in hub location and its applications are the chapter
by Contreras ([22]) that is part of the book Location Science ([61]), the paper by Alumur
and Kara ([6]) and the paper by Campbell and O’Kelly ([20]). These publications, along
with references therein, show that nowadays we can identify different types of problems
within this family, each of it with its distinctive characteristics, its potential applications,
and its level of complexity.

In this thesis we study different variants of hub location problems. The studied
variants try to model several real world situations and characteristics. In all of them,
we aim to minimize the cost of sending traffic through the transportation network.

This thesis is divided into six chapters:
Chapter 1 is a brief introduction to hub location problems in transportation networks.

The problems are contextualized within the area of Combinatorial Optimization and,

xxix



xxx

specifically, as part of the family of the facility location problems. We also summarize
the methodologies we use to solve these problems.

In Chapter 2 we study the variant of the hub location problem in which flows of
each client can be sent through a single hub and where connections between hubs have
modular capabilities. The problem is known as the capacitated hub location problem with
modular link capacities. We solve this problem with two different algorithms, the first is
based on the strategic oscillation methodology and the second is based on the paradigm
of adaptive memory programming. The results obtained with the proposed algorithms
show that they are capable to get better quality solutions and more efficiently than the
algorithms previously proposed in the literature for this problem.

In Chapter 3 we focus on the variant of the hub location problem where we need to
find the location of p hubs and allow each node to be allocation to, at most, r of the p ubs
(both p and r are exogenous values). A substantial difference with the previous variant
is that this problem does not contemplate the existence of capacities of the hubs neither
the capacity of the links used. This problem is known as the uncapacitated r-allocation
p-hub median problem. To solve it we propose two different algorithms, a standard one
based on the GRASP methodology and a more sophisticated one based on the scatter
search methodology. The results we obtain with the proposed algorithms show that
they are able to find high quality solutions within a reasonable computing time when
compared with exact resolution techniques.

In Chapter 4 we study some models that try to optimize the quality of service offered
to customers when transport them using hub networks. To this end, we propose a
mathematical programming model that minimizes the relative cost of each route with
respect to the costs that customers consider the most reasonable. We have called this
problem the uncapacitated r-allocation p-hub equitable center problem. To solve it, we
propose a algorithm based on the GRASP methodology. In addition to this, we study
the problem of designing the transport network when you wish to optimize the total
cost of transport and, at the same time, the quality of service offered, resulting in a bi-
objective problem for which we also propose a solution method. our proposals are able
to achieve efficiently high quality solutions when compared with the solutions obtained
with different commercial solvers (CPLEX, LocalSolver, and OptQuest).

In Chapter 5 we present several mathematical models that introduce “uncertainty”
in hub location problems. Uncertainty, in our case, is presented in transportation costs
and in the amount of flows that travel through the network. We propose an algorithm
to solve the resulting stochastic programming problem (which we call the stochastic
uncapacitated r-allocation p-hub median problem with non-stop services). Furthermore,
this algorithm can be used as a method for solving other stochastic problems with similar
characteristics. The computational results show that the proposed method is capable
of achieving high quality solutions in a short computation time compared to general
purpose solvers, which need supercomputers with high amount of resources to solve it.

Finally, in Chapter 6, general conclusions and future research lines are presented.



Contents

1 Introduction 1
1.1 Optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 A classification of optimization problems . . . . . . . . . . . . . . . 2
1.1.2 Combinatorial optimization problems . . . . . . . . . . . . . . . . 2

1.2 Facility location problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Hub location problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Metaheuristic methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 The instances we will use . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 The capacitated single assignment HLP with modular link capacities 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 A non-linear programming formulation . . . . . . . . . . . . . . . . . . . . 15
2.3 Previous methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 A strategic oscillation algorithm . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Finding an initial feasible solution . . . . . . . . . . . . . . . . . . 20
2.4.2 Evaluation of a feasible solution . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Destruct and construct to improve the hub selection . . . . . . . . 21
2.4.4 Improvements on the assignments . . . . . . . . . . . . . . . . . . 22
2.4.5 Singular solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.6 Computational experiments . . . . . . . . . . . . . . . . . . . . . . 24

2.4.6.1 Test instances . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.6.2 Parameter calibration . . . . . . . . . . . . . . . . . . . . 25
2.4.6.3 Algorithm designs . . . . . . . . . . . . . . . . . . . . . . 26
2.4.6.4 Comparison with optimal values . . . . . . . . . . . . . . 27
2.4.6.5 Comparison with a tabu search algorithm . . . . . . . . . 28

2.4.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 An adaptive memory programming algorithm . . . . . . . . . . . . . . . . 34

2.5.1 Construction methods . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.2 Improvement methods . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.3 Path relinking post-process . . . . . . . . . . . . . . . . . . . . . . 41
2.5.4 Computational experiments . . . . . . . . . . . . . . . . . . . . . . 43

2.5.4.1 Scientific testing . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.4.2 Competitive testing . . . . . . . . . . . . . . . . . . . . . 50

xxxi



xxxii CONTENTS

2.5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 The uncapacitated r-allocation p-hub median problem 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 A mixed integer linear programming formulation . . . . . . . . . . . . . . 59
3.3 A GRASP algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Construction method . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.2 Solution representation . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.3 Improvement methods . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.4 Filtering mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.5 Computational experiments . . . . . . . . . . . . . . . . . . . . . . 67

3.3.5.1 Test problems . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.5.2 Scientific testing . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.5.3 Competitive testing . . . . . . . . . . . . . . . . . . . . . 73
3.3.5.4 Run time distribution . . . . . . . . . . . . . . . . . . . . 79

3.3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4 A scatter search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.1 The diversification generator method . . . . . . . . . . . . . . . . . 83
3.4.2 The reference set construction method . . . . . . . . . . . . . . . . 85
3.4.3 The subset generation method . . . . . . . . . . . . . . . . . . . . 86
3.4.4 The solution combination method . . . . . . . . . . . . . . . . . . 86
3.4.5 The reference set update method . . . . . . . . . . . . . . . . . . . 87
3.4.6 The improvement method . . . . . . . . . . . . . . . . . . . . . . . 87
3.4.7 Computational experiments . . . . . . . . . . . . . . . . . . . . . . 88

3.4.7.1 Scientific testing . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.7.2 Competitive testing . . . . . . . . . . . . . . . . . . . . . 92

3.4.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 The uncapacitated r-allocation p-hub equitable center problem 103
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2 A GRASP algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2.1 Construction methods . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.2 Improvement methods . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2.3 The Uncapacitated r-Allocation p-Hub Median and Equitable Cen-

ter Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2.4 Computational experiments . . . . . . . . . . . . . . . . . . . . . . 112

4.2.4.1 Problem instances . . . . . . . . . . . . . . . . . . . . . . 112
4.2.4.2 Scientific testing . . . . . . . . . . . . . . . . . . . . . . . 113
4.2.4.3 Competitive testing . . . . . . . . . . . . . . . . . . . . . 115

4.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



CONTENTS xxxiii

5 The stochastic r-allocation p-hub median problem w. non-stop services121
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2 The uncapacitated r-allocation p-hub median problem with non-stop ser-

vices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.1 Deterministic model . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.2 A two-stage stochastic model . . . . . . . . . . . . . . . . . . . . . 125
5.2.3 A minmax regret model . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 A greedy attributive scenario based constructive method . . . . . . . . . . 128
5.3.1 A heuristic for the UrApHMP-NSS . . . . . . . . . . . . . . . . . . 130

5.3.1.1 Constructive phase . . . . . . . . . . . . . . . . . . . . . 130
5.3.1.2 Improving a solution . . . . . . . . . . . . . . . . . . . . . 133

5.3.2 Constructing a feasible solution to the stochastic problem . . . . . 134
5.4 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4.1 Test instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.4.2 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 General conclusions and future research directions 147





List of Tables

2.1 Comparison of the two acceptance criteria for different values of δ . . . . 26
2.2 Comparison between SO1 and SO2 . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Comparison between CPLEX and SO1 on small-size instances . . . . . . . 28
2.4 Comparison between PrevTS and SO1 on the training set instances . . . . 28
2.5 Comparison between PrevTS and SO1 on the testing set instances . . . . 29
2.6 SO1 and PrevTS on small size instances . . . . . . . . . . . . . . . . . . . 30
2.7 SO1 and PrevTS on medium size instances . . . . . . . . . . . . . . . . . 31
2.8 SO1 and PrevTS on large instances up to 175 nodes . . . . . . . . . . . . 32
2.9 SO1 and PrevTS on large instances up to 250 nodes . . . . . . . . . . . . 33
2.10 Example of ordered nodes and possible hubs in CM1 . . . . . . . . . . . . 38
2.11 Average percentage deviation from the best solution (Dev) . . . . . . . . . 44
2.12 Average percentage deviation from best solution (Dev) . . . . . . . . . . . 45
2.13 Average percentage deviation for constructive methods . . . . . . . . . . . 45
2.14 Local search percentage reduction from construction . . . . . . . . . . . . 48
2.15 Path relinking contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.16 Average percentage reduction in truncating path relinking . . . . . . . . . 50
2.17 Comparison with best previous method . . . . . . . . . . . . . . . . . . . 51
2.18 Comparison of SO and AMP on small size instances . . . . . . . . . . . . 52
2.19 Comparison of SO and AMP on medium size instances . . . . . . . . . . . 53
2.20 Comparison of SO and AMP on large size instances . . . . . . . . . . . . 54
2.21 Comparison of SO and AMP on extra-large size instances . . . . . . . . . 55
2.22 Comparison of SO and AMP on huge size instances . . . . . . . . . . . . . 56

3.1 Constructive method with different β values . . . . . . . . . . . . . . . . . 69
3.2 Constructive method with different k values . . . . . . . . . . . . . . . . . 70
3.3 Comparison of GRASP variants . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4 Filtering GRASP constructions . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5 GRASP deviations from the optimal value . . . . . . . . . . . . . . . . . . 74
3.6 GRASP deviations from the assignment and routing optimal values on

AP instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.7 GRASP deviations from the assignment and routing optimal values on

the USA423 instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.8 GRASP vs. evolutionary method with r = p . . . . . . . . . . . . . . . . . 77

xxxv



xxxvi LIST OF TABLES

3.9 GRASP vs. GA with r = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.10 GRASP vs. VNS with r = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.11 Classification of the different diversification generation methods. . . . . . 85
3.12 Calibration of π for the DGM of SS. . . . . . . . . . . . . . . . . . . . . . 89
3.13 Calibration of ω for the DGM of SS. . . . . . . . . . . . . . . . . . . . . . 90
3.14 Calibration of ϕ through λ for the DGM of SS. . . . . . . . . . . . . . . . 90
3.15 Calibration of β for the DGM of SS. . . . . . . . . . . . . . . . . . . . . . 90
3.16 Computational results obtained with the four variants for the local search

procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.17 Computational results on the CAB and AP instances . . . . . . . . . . . . 93
3.18 Computational results on medium-sized hard instances . . . . . . . . . . . 94
3.19 Computational results on medium-sized hard instances (continuation) . . 95
3.20 Computational results on medium-sized hard instances (continuation) . . 96
3.21 Computational results on medium-sized hard instances (continuation) . . 97
3.22 Computational results on large-sized hard instances . . . . . . . . . . . . 98
3.23 Computational results on large-sized hard instances (continuation) . . . . 99
3.24 Computational results on the USA423 instances . . . . . . . . . . . . . . . 101
3.25 Computational results on AP instances for the multiple allocation version 102

4.1 Cost functions for all terminal-hub combinations . . . . . . . . . . . . . . 105
4.2 Deviation values obtained by solving the UrApHMP. . . . . . . . . . . . . 106
4.3 Smaller deviation values for an alternative solution. . . . . . . . . . . . . . 107
4.4 Dev values for C1 and C2 solutions of the training set instances . . . . . . 114
4.5 Performance of various GRASP (Algorithm 5) configurations. . . . . . . . 114
4.6 Performance comparison between SS and GRASP on UrApHMP and

UrApHECP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.7 Comparison between LocalSolver and GRASP on the UrApHECP . . . . 117
4.8 Comparison between LocalSolver and BGRASP on the UrApHMECP . . 119

5.1 Comparison of the heuristic for the UrApHMP-NSS with CPLEX on some
CAB instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2 Computational results on the 74 CAB instances. . . . . . . . . . . . . . . 140
5.3 Detailed results for the CAB instances with n = 15. . . . . . . . . . . . . 142
5.4 Detailed results for the CAB instances with n = 20 and 25. . . . . . . . . 143
5.5 Exact Expected Value of the Perfect Information for some CAB instances. 145



List of Figures

2.1 Different costs in the CSHLPMLC . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Boxplot of 100 iterations for instance 150-1000-69-60-80-1-69-USA . . . . 27
2.3 Search Profile for SO1 (dashed line) and PrevTs (plain line) . . . . . . . . 34
2.4 Box plot of different alternatives . . . . . . . . . . . . . . . . . . . . . . . 46
2.5 Search profile for the different local search methods . . . . . . . . . . . . . 49
2.6 Search profile of best methods . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Construction steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 Paths between i and j. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Search profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4 Time to target plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.5 Scheme of the proposed scatter search algorithm . . . . . . . . . . . . . . 82

4.1 Cost structure of demand from origin i to destination j. . . . . . . . . . . 104
4.2 Efficient frontier approximations for an instance in the training set. . . . . 115
4.3 Bi-objective solutions to an AP instance with n = 20. . . . . . . . . . . . 118

5.1 Beta evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xxxvii





List of Algorithms

1 Iterated Greedy pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2 LScluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3 LSall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 GRASP for a minimization problem . . . . . . . . . . . . . . . . . . . . . . 61

5 GRASP template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6 Construction procedure C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7 Solution improvement procedure LS1 . . . . . . . . . . . . . . . . . . . . . 110
8 Solution improvement procedure LS2 . . . . . . . . . . . . . . . . . . . . . 111
9 Bi-objective GRASP (BGRASP) . . . . . . . . . . . . . . . . . . . . . . . . 112

10 Main loop of the algorithm to solve P . . . . . . . . . . . . . . . . . . . . . 129
11 Construct (z, x, y)siter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
12 LSchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
13 LSreduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xxxix





Chapter 1

Introduction

Summary

In this chapter we briefly introduce optimization problems, particularly combinatorial
optimization problems. Then, we present the family of facility location problems, where
we focus on hub location problems. The chapter finishes by shortly summarizing some
metaheuristic methodologies that are used in this thesis, as well as the instances that
have been used in the computational experiments.

1.1 Optimization problems

Optimization is a fundamental discipline in Mathematics. An optimization problem
essentially consists of finding the best solution (called optimum) of a problem from a
set of feasible solutions by using an (objective) function whose maximum (or minimum)
value has to be obtained.

From a formal point of view, an optimization problem P consists of finding the
optimal value of a certain function f in a domain S. The problem P can be stated as:

P =
{

Maximize or minimize f(x)
Subject to x ∈ S ⊆ Rn, (1.1)

where,

• S corresponds to the set of feasible solutions of the problem, and

• f(x) : S −→ R is the objective function that assigns to any feasible solution x ∈ S
a value in R.

If P is a maximization problem, solving P deals with finding a solution x∗ ∈ S : f(x∗) ≥
f(x),∀x ∈ S. Similarly, if P is a minimization problem, solving P consists of finding a
solution x∗ ∈ S : f(x∗) ≤ f(x),∀x ∈ S. In both cases, x∗ is called an optimal solution
of P .

1



2 Chapter 1. Introduction

1.1.1 A classification of optimization problems

There are different types of optimization problems. Regarding different criteria, we
provide a possible classification here:

• The domain of the solution space

– The domain is not restricted: classical or unconstrained optimization prob-
lems.

– The domain is restricted: optimization problems with constraints.

• The convexity of the solution space

– The solution space is a convex set: convex optimization problems.
– The solution space is not a convex set: non-convex optimization problems.

• The form of the functions defining the objective and constraints of the problem (if
any)

– All functions are linear: linear optimization problems.
– Otherwise: non-linear optimization problems.

• The variables’ domain

– Variables can take any real value: continuous optimization problems.
– Variables are restricted to take integer values: discrete or integer optimization

problems.
– Some variables can take any real value while other take only integer values:

mixed integer optimization problems.

• The coefficients of the model

– All coefficients are known in advance: deterministic optimization problems.
– Some coefficients are not known in advance: stochastic optimization problems.

1.1.2 Combinatorial optimization problems

Combinatorial optimization is one of the youngest and most active areas of discrete math-
ematics [53]. It has its roots in Combinatorics, Operations Research, and Theoretical
Computer Science. Thousands of real-life problems can be formulated as combinatorial
optimization problems (COP). These problems are a class of problems in which an op-
timal solution is usually searched in a finite set of solutions. Generally, the number of
solutions of a combinatorial optimization problem is a huge number. Therefore, enu-
merating all the solutions and selecting the best one is not an appropriate method for
solving them, and more efficient methods are needed.



1.1 Optimization problems 3

Most combinatorial optimization problems can be formulated in a natural way in
terms of graphs and as (integer) linear programs. Let E be a finite set (called ground
set) with an associated cost function, and a family F (finite or countably infinite) of
subsets of E, called feasible solutions. The COP with linear objective function is defined
as the problem of finding a subset F ∗ ∈ F such that c(F ∗) = ∑

e∈F ∗ cexe is maximum
(or minimum), where xe denotes the number of times that e ∈ E appears in F ∗.

Since the early 1970s, the difficulty of combinatorial optimization problems has been
studied by many authors, resulting in a new and exciting research area called Compu-
tational Complexity. It was Edmonds who in mid 1960s started distinguishing among
“easy” and “difficult” problems and called an algorithm “efficient” if its running time is
bounded by a polynomial in the size of the problem representation. The shortest path
problem, the max flow problem, the assignment problem, and the linear programming
problem are examples of COPs for which an efficient algorithm exists. On the other
hand, no polynomial-time algorithm is known for the solution of the traveling salesman
problem or the uncapacitated facility location problem, to name just a few.

In order to obtain a more rigorous classification of problems according to their com-
putational complexity, we should consider first decision problems, i.e., those problems
whose instances have only two possible answers: “yes” or “no”. The class of decision
problems with the property that for any instance for which the answer is “yes” is called
NP. For example, the problem P : “given a graph G, does it contain Hamiltonian
cycle?” is a decision problem. Note that an instance I of P whose solution is “yes”
contains a Hamiltonian cycle and, knowing it, it is possible to check the “correctness” of
the solution in polynomial time (just checking that the answer is a Hamiltonian cycle).

Now we define the class of “easy problems”. P is the class of decision problems in
NP for which there exists a polynomial algorithm. Obviously, P ⊂ NP. The question
is P = NP? Nowadays, the answer to it is still an open problem that is among the most
important open problems in Mathematics and Computer Science, although it is widely
assumed that P ( NP.

Consider now two NP problems, P and Q. We say that P is polynomially reducible
to Q if any instance of P can be converted in polynomial time to an instance of Q. This
definition implies that if we know an algorithm for problem Q, it can be used to solve
problem P with an “overhead” that is polynomial in the size of the instance. The class of
NP-complete problems is the subset of problems P ⊂ NP such that for all Q ∈ NP, Q
is polynomially reducible to P . The above definition means that NP-complete problems
are the most difficult problems in NP. Moreover, it also gives a way of proving that a
problem is NP-complete. It has to belong to NP and another NP-complete problem
is polynomially reducible to it.

The problems we deal with in this thesis are COPs, which are not decision problems
(although they have decision versions that can be proved equivalent to the optimiza-
tion versions from the complexity point of view), and therefore cannot be NP-complete
problems. For these problems, it is commonly used the term NP-hard. Many combina-
torial optimization problems are NP-hard and, therefore, if we assume that P 6= NP,
we will not be able to find efficient (polynominal-time) algorithms for its solution. For



4 Chapter 1. Introduction

this reason, the research on NP-hard problems focuses on three branches:

• Study special versions of some NP-hard problems that can be solved in polynomial
time.

• The design of heuristic algorithms that, in short computing times, provide good
feasible solutions for NP-hard problems.

• The design of exact methods that are able to find the optimal solution on, usually,
small-medium instances.

There are many techniques to implement efficient algorithms for an approximate
solution of a problem P , being remarkable those known as heuristic and metaheuristic
techniques. These techniques, in which the speed of the search process is as important as
the quality of the obtained solution, provide a general framework to create new hybrid
algorithms in order to find good solutions, usually combining concepts from mathematics,
statistics and probability, artificial intelligence and biological evolution.

1.2 Facility location problems

Facility location problems are an important family of problems in combinatorial opti-
mization [60]. They refer to modeling, formulating, and solving the problems that can
be described, following ReVelle and Eiselt [85], as siting facilities in some given space.
We can find four components that characterize facility location problems:

1. Customers. They are the users of a given service. We assume that they are already
at points or in a route.

2. Facilities. They are the providers of a given service. We assume that they need to
be located.

3. A space in which customers and facilities are located.

4. A metric that usually indicates a distance (or a cost) between customers and
facilities.

A facility location problem consist of determining the “best” location for one or several
facilities or equipments in order to serve a set of demand points.

As stated by Owen and Daskin [77], the development or acquisition of a new fa-
cility is tipically a costly project. Before a facility can be purchased or constructed,
good locations have to be identified, appropriate facility capacity specifications must be
determined, and large amount of capital must be allocated. The high costs associated
with this process make almost any location project a long-term investment. Thus, facil-
ities which are located today are expected to remain in operation for an extended time.
Determining the best locations for new facilities is thus an important strategic challenge.



1.2 Facility location problems 5

Usually, researchers distinguish between problems in a n-dimensional real space and
in a network. Both cases can be also subdivided into continuous and discrete location
problems. In continuous problems, the points to be sited can generally be placed any-
where in the plane or in the network. An example of this case is placing an ambulance
in a street in order to give quick emergency medical service to a geographical region.
However, in discrete problems, the facilities can be placed only at a limited number of
points on the plane or network.

As it is very well explained in Laporte, Nickel, and Saldanha-da-Gama [60], the
papers [46, 47] by Hakimi are considered some of the first papers paying attention to
network-based problems, providing important research directions in facility location.
Hakimi introduced the concepts of absolute median and absolute center of a graph,
and presented the p-median problem. Hakimi also proved the existence of at least one
optimal solution which has all p facilities located solely at the nodes of the network, thus
reducing the set of optimal solutions from a potentially infinite set to a finite set. This
means that many network location problems can be cast into a discrete setting and thus
leading to the possibility of using integer programming and combinatorial optimization
techniques to tackle this family of problems.

During the following decades, researchers have focused on the study of theoretical
properties of the solutions of the facility location problems and on the developments of
solution procedures for them, especially on continuous, discrete, and network location
problems. Some of the most important problems are:

• p-median problems, which usually refer to problems that search for facilities that
minimize the transportation cost.

• p-center problems, whose objective is to minimize the largest customer–facility
distance.

• Location of noxious (or obnoxious) facilities problems, which objectives are to
locate undesirable facilities as far from the customers as possible. An example
is the problem of locating a nuclear plant in a territory, which is a facility most
people consider undesirable.

• Equity problems, whose objective is to locate facilities in such a way the customer–
to–facility distances are as similar to each other as possible.

• Hub location problems, which usually refer to problems of using facilities as con-
necting points (hubs). They gather and distribute traffics (clients and/or goods)
through these facilities instead of sending them from their origin to their destina-
tions using a direct link, with the objective of minimizing the cost of transportation.

• Maximal covering location problems, which seek to maximize the amount of de-
mand covered within an acceptable service distance by allocating a fixed number
of facilities.



6 Chapter 1. Introduction

In addition to the above problems, other research lines are being investigated by
researchers worldwide as, for example, location-routing problems, multi-period problems,
multi-criteria location problem, and location under uncertainty. The book [29] by Eiselt
and Marianov summarizes some works that are considered the basis of Location Science.
Other excellent review papers on facility location are [9, 16, 48, 85, 86, 87, 96]. Among
all location problems, we will focus on hub location problems.

1.3 Hub location problems

Among all combinatorial optimization problems, discrete facility location problems re-
lated to the design of transportation networks are among the most extensively studied
problems due to their variety and importance. In all of them, a network G = (V,E) is
given with a set of demand nodes V and a set of edges E. For each pair of nodes i and
j ∈ V , there is a traffic tij (of goods, people, deliveries, etc.) to be transported using the
network. Depending on each variant of the problem, additional specific characteristics
may be specified, such as a fixed cost of opening a facility at a potential location, or a
limitation on its capacity. The reader can find in [34, 57, 61, 68, 72, 85, 86] excellent
descriptions of facility location problems.

Hub-and-spoke architectures are usually deploy in transportation, communications,
and computer networks to efficiently route traffics (flows) between many origins and
many destinations in a network. Instead of shipping the traffic directly between nodes,
a subset of them is selected for becoming hubs, thus consolidating and distributing
the flow. This induces a transportation network that helps making the shipment more
efficient and cheaper. For instance, we can take advantage from economies of scale when
transporting large amounts of traffic between hubs.

In order to satisfy the demand of traffics with a fully connected network with |V | = n
nodes and with no hub node, the network should have n(n− 1) links to connect all the
traffics. However, as it is said in Farahani et al. [35], if a node is selected to be used as
a transshipment point and to connect all other nodes with each node, the network may
only need 2(n− 1) links to serve the traffics. This reduction in the number of links, that
can be understood as an efficiency, comes from the usage of these kind of transshipment
or consolidation points, commonly known as distribution centers, hub nodes, or simply
hubs. The rest of the nodes in the network are called terminal nodes, spokes, or simply
terminals. Hub-and-spoke architectures bring all the traffics from an origin to several
destinations to a consolidating point, and then these traffics are routed to the different
destinations by gathering all other flows from different origins to the same destination.

Applications of hub-and-spoke architectures can be found in transportation and com-
munication systems: passenger transportation, postal services, goods for delivery, air
freight, data packages on telecommunication services, etc. Goods, people, and com-
modities are transported using physical networks like airlines, vessels, trucks, trains,
optic fiber links, and co-axial cables. The nodes that act as hubs are facilities, like
airports and port terminals, sorting facilities in the case of postal services, and routers
in telecommunication. A practical example can be found in the airline industry, where



1.3 Hub location problems 7

passengers from any city do not usually travel using a direct flight to any destination
they desire to travel. Opposite to this, airlines transport passengers to a connecting
point where they transit to other flights to their destinations.

In this work we are interested in studying some variants of hub location problems
(HLPs), in which a set H of locations is selected from a given set of potential locations
V in order to be used as hubs for the network. In them, location and network design
decisions have to be taken, and interrelations between the two levels of decision are
involved. One level scrutinizes the selection of the set of nodes to locate the hubs, and
the other level studies the design of the hub-and-spoke network to decide the use of the
links to connect origins, destinations, and hubs, as well as the routing of flows through
the network. The goal on HLPs is to identify an optimal subset of hubs in order to
minimize a transportation cost function while satisfying a set of constraints. Generally,
it is assumed in HLPs that direct transportation between terminals is not possible and,
therefore, the traffic ti,j∈V travels along a path i → k → l → j, where i and j are
assigned to hubs k and l, respectively.

The study of hub location problems began with the work of O’Kelly [75] for con-
tinuous models, and O’Kelly [74, 76] for discrete models. The extensive work that has
been developed in this area, as well as the applications that have been studied, are very
well summarized in Contreras [22], and in Campbell [18], Alumur and Kara [6], and
Campbell and O’Kelly [20]. These works, and their references, show that nowadays, we
can identify several problem classes in this field.

Farahani et al. [35] propose a classification of hub location problems that we use
here to introduce their different characteristics. For instance, we find HLPs in which
the number of hubs is exogenously defined while, in others, this is an outcome of the
decision making process. Additionally, hubs may be capacitated (when there is some
limit for the traffic that can go through them) or uncapacitated. In fact, within the
context of hub location problems, many aspects can be isolated, each of which helping
in the characterization of the problem at hand. We can observe different variations of
the problem and how they are commonly known, regarding the following aspects:

• Possible domain of the candidate nodes to be hub

– The whole set V : network HLP
– Only a subset of nodes in V can be hubs: discrete HLP
– Any point in the plane or sphere generated by G: continuous HLP

• Form of the objective function

– It minimizes the total cost of installing the hubs, allocating terminals to hubs,
and routing traffics: min-sum HLP

– It minimizes the maximum cost of routing the traffics: min-max HLP

• Allocation pattern for the terminals

– Single allocation: a terminal is allocated to exactly one hub



8 Chapter 1. Introduction

– Multiple allocation: a terminal can be allocated to several hubs (without a
limit)

– r-allocation: a limit, r, is imposed on the maximum number of hubs to which
a terminal can be allocated

• Way of determining the number of hubs to be used

– The number of hubs (denoted by p) is given a priori or in a exogenous way:
p-HLP

– The number of hubs is not given a priori (it is determined as part of the
problem resolution): HLP

• Capacity constraints of the hubs

– If we do not consider any capacity constraint for the hubs: uncapacitated
HLP

– If hubs have a maximum capacity in terms of traffics: capacitated HLP

• Regarding the costs of instalation of hubs

– No costs are considered
– Fixed costs are considered
– Variable costs are considered

• Regarding the cost of connecting terminals to hubs

– No costs
– Fixed costs
– Variable costs

• The coefficients of the model are known or uncertain

– The coefficients are determined a priori: deterministic HLP
– The coefficients are uncertain: stochastic HLP

Most of the “classical” hub location problems define a challenging class of NP-hard
problems. Accordingly, the same holds for many of their extensions and, thus, it is
not surprising to find many articles presenting heuristic procedures in this field. Along
with the first mathematical formulation for the single allocation p-hub median problem,
O’Kelly [76] presented two specially tailored heuristics for obtaining feasible solutions
to the problem. Since then, many heuristics have been developed. The uncapacitated
single allocation p-hub median problem was further studied by Klincewicz [52] (who
proposed a tabu search and a GRASP), Campbell [19] (greedy procedure), Ernst and
Krishnamoorthy [31] (simulated annealing), Kratica et al. [55] (genetic algorithms),



1.3 Hub location problems 9

Smith et al. [97] (neural networks), and Ilic et al. [50] (variable neighborhood search
algorithm).

The capacitated version of the problem was investigated by Stanimirovic [98], who
proposed a genetic algorithm. The single allocation p-hub center problem was tackled
by Pamuk and Sepil [78] using tabu search and by Meyer et al. [69], who developed a
2-phase method based upon ant colony optimization.

The use of metaheuristics for approximating the optimal solution to hub location
problems goes much beyond the problems for which an exogenous number of hubs, p, is
imposed. In fact, the uncapacitated single allocation hub location problem was studied
by Abdinnour-Helm and Venkataramanan [2] whose genetic algorithms improved the
results presented by Abdinnour-Helm [1], who proposed a hybridization between genetic
algorithms and tabu search. Other heuristics for the problem include those developed
by Pirkul and Schilling [80] (lagrangean heuristic), and Cunha and Silva [26] (genetic
algorithms). The multiple allocation version of the problem was investigated by Kratica
et al. [56], who presented a genetic algorithm.

The capacitated single allocation hub location problem was first tackled heuristically
by Ernst and Krishnamoorthy [30] (using the simulated annealing methodology), and
afterwards by Chen [21] (combining simulated annealing with tabu search), Randall [81]
(ant colony optimization), Silva and Cunha [94] (tabu search method), and Contreras
et al. [24, 25] (lagrangean heuristics). The multiple allocation version of the problem
was considered by Kratika et al. [54] (genetic algorithms), and Rodŕıguez-Mart́ın and
Salazar-González [89] (iterative local search). We note that in these two works, unlike
the other works already quoted, the hub level network can be incomplete, i.e., it does
not need to be a complete graph. These are problems with (hub level) network design
decisions. Also considering incomplete hub networks we find the work by Calik et al. [17]
on a hub covering problem whose optimal solution is approximated using tabu search.
Other works containing heuristics for hub location problems include those by Marianov
et al. [66] on competitive hub location (tabu search was considered), Eiselt and Marianov
[28] (using heuristic concentration—[90]), and Lüer et al. [64] (genetic algorithm).

The variety of heuristics for hub location problems covered by the literature includes
other more specific hub location problems not quoted above. This is the case of the
papers by Yaman [104] (local search algorithm), Marianov and Serra [65] (tabu search),
Sasaki et al. [93] (a greedy approach that generalizes the procedures suggested by
Campbell [19]), and Alumur and Serper [8] (variable neighborhood search method).

As far as stochastic hub location problems are concerned, to the best of our knowl-
edge, the only contribution to the literature so far is the paper by Bollapragada et al.
[15]. The authors study a fixed-wireless network-planning problem with a two phase
planning horizon and a different budget for each phase. They consider different hub
types (regarding costs and capacities) and assume stochastic demands. A greedy al-
gorithm is proposed for maximizing the expected covered demand. The development
of metaheuristics for stochastic combinatorial optimization problems is not a new topic
as can be observed in the survey paper by Bianchi et al. [14]. Nevertheless, most of
the work it has been done on the stochastic traveling salesman problem, on stochastic



10 Chapter 1. Introduction

vehicle routing problems, and on stochastic scheduling problems.
Still today, there are certain instances of hub location problems whose solution using

exact methods is not possible. Therefore, we need to use approximate methods to solve
these instances. We believe that we can provide new techniques and methodologies, in
the framework of metaheuristic optimization, to solve some versions of HLPs efficiently.
This efficiency is related to the solving methods designed to provide high quality solutions
in runtimes that can be acceptable for the user.

We believe that algorithms that are based on metaheuristic frameworks may be good
candidates as generic resolution techniques in the context of HLP. As a result, we have
designed a set of heuristic methods to deal with some versions of this kind of problems.
We do a progressive and incremental approach to address different versions of HLPs.
We have started with simple greedy strategies and, at each step, we have provided a
new level of heuristic abstraction, using the characteristics of previous levels to enrich
them with different criteria to explore the solution space in a smarter way. Also, we
have designed hybrid methods that are capable of dealing with complex situations and
problems of considerable size.

1.4 Metaheuristic methodologies

In this section we briefly summarize the principles of the metaheuristic frameworks that
we have used to solve the problems studied in this thesis.

When speaking about heuristic optimization, constructive methods are algorithms
that build a solution for a problem P from scratch. The most basic constructive methods
are the greedy methods, which are guided by mechanisms to incrementally select an
element for the new solution s to solve P . Greedy methods always select the best option
available (the one with least cost in our case) from a set of unselected feasible elements.
Other constructive methods randomly select (according to a probability distribution) the
elements to incorporate to s. Those methods are called random constructive methods.

Local search methods start from a given solution s and try to improve it by succes-
sively applying small modifications to s until the solution cannot be further improved.
These methods often provide high-quality solutions and some of them might be opti-
mal. Nevertheless, in difficult problems, they can become prematurely trapped in local
optima.

Metaheuristic methodologies are high-level procedures that coordinate simple heuris-
tics to find high-quality solutions to difficult problems by going beyond the solution
obtained after applying a construction method and a local search method for P . These
metaheuristic methodologies are categorized depending on some paradigms:

• Genetic algorithms, evolutionary paradigm, ([49, 70, 99]) which are based
on the mechanisms inspired in biological evolution and natural selection. They
evolve populations of solutions that are combined to generate offsprings by applying
mutation processes that create solutions with new characteristics. Usually, the



1.5 The instances we will use 11

search process finishes after reaching a number of generations without improvement
of the best solution found so far for P .

• GRASP, space sampling paradigm ([36, 37, 40]), which stands for greedy
randomized adaptive search procedures, are multistart procedures that consist,
basically, in constructing and improving a solution at each global iteration. Each
construction is guided by a greedy mechanism and the selection of the next element
to incorporate to a solution is chosen randomly from a restricted candidate list
of elements previously filtered by the greedy mechanism. The guiding function
recognizes previous selections of elements already incorporated. We refer the reader
to [38, 39] for excellent annotated bibliographies on GRASP.

• Tabu search, trajectory paradigm ([42, 44]), which is a search procedure that
explores the solution space beyond local optimality. In basic terminology, it applies
a local search method until it finds a local optimum. At such points, instead of
stopping there, the algorithm moves to points of the solution space with worse
solutions quality (trying to escape from the local optimum) expecting that, after
some steps, a better solution will be found. To avoid cycling, the procedure makes
use of memory that contains attributes of recently visited solutions to prevent
visiting them and cycling. Usually, the search process finishes after reaching a
number of iterations without improving the best solution found so far.

1.5 The instances we will use

It is typical, when proposing any method for solving a combinatorial NP-hard problem,
to test it with some sets of instances (also known as examples). These tests give an
estimation of the behavior of the method proposed for solving any instance from the
universe of problems of this class. The scientific community has historically found and,
hence, proposed some instances that establish a challenging benchmark of instances to
be solved. In what follows, we describe the main characteristics of the three sets of
instances that we will use for testing our algorithms along this dissertation. The specific
list of instances used will be explained in detail in the computational section of each
chapter.

CAB (Civil Aviation Board) data set. It is based on airline passenger flows between
some important cities in the United States. It consists of a data file, presented by
O’Kelly [76] in 1987, with the distances and flows of a 25 nodes graph.

AP (Australian Post) data set. It is based on real data from the Australian postal
service and was presented by Ernst and Krishnamoorthy [31] in 1996. The size of
the original data file is 200 nodes. Smaller instances can be obtained using a code
from ORLIB [13]. These instances do not have symmetric flows, i.e., for a given
pair of nodes i and j, tij is not necessarily equal to tji. Moreover, flows from one
node to itself can be positive.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html


12 Chapter 1. Introduction

USA423 data set. This family of instances was introduced in [79] and is based on
real airline data provided by Data In, Information Out (DIIO), which is a world
leader firm in aviation business intelligence tools. The instance consists of a data
file concerning 423 cities in the United States, where real distances and passenger
flows for an accumulated three months period are considered.

The entire set of instances is available at OPTSICOM Project.

http://www.diio.net
http://www.optsicom.es


Chapter 2

Solution methods for the
capacitated single assignment hub
location problem with modular
link capacities

Summary

In this chapter we propose two heuristic algorithms to solve the capacitated single assign-
ment hub location problem with modular link capacities (CSHLPMLC). This problem
is a variant of the classical hub location problem in which the cost of using edges is not
linear but stepwise, and the hubs are restricted in terms of transit capacity rather than
in the incoming traffic.

We first propose a metaheuristic algorithm based on strategic oscillation, a methodol-
ogy originally introduced in the context of tabu search. Our method incorporates several
designs for constructive and destructive algorithms, together with associated local search
procedures, to balance diversification and intensification for an efficient search.

Then, we propose another metaheuristic algorithm based on adaptive memory pro-
gramming that implements memory structures to create advanced search methods. Mem-
ory structures have been widely implemented in the context of the tabu search method-
ology, usually embedded in local search algorithms. In this algorithm we explore an
alternative design in which memory structures constitute the core of the constructive
method and also of a path relinking post-processing.

Computational results on a large set of instances show that, in contrast to exact
methods that can only solve small instances optimally, our metaheuristics are able to
find high-quality solutions on larger instances in short computing times. In addition,
the new methods outperform the previous tabu search implementation.

13



14 Chapter 2. The capacitated single assignment HLP with modular link capacities

2.1 Introduction

Among the family of hub location problems, we focus here on a specific variant known
as the capacitated single assignment hub location problem with modular link capacities
(CSHLPMLC). This problem was formulated as a quadratic mixed integer programming
problem by Yaman and Carello [104]. These authors also proposed a branch-and-cut
algorithm to solve optimally the problem together with a metaheuristic to obtain good
initial solutions. As proved in [102], the CSHLPMLC is NP-hard. In what follows we
summarize the characteristics of this problem:

• G is a connected network. V is the set of demand nodes. For each pair of nodes i
and j, there is a traffic tij to be transported through the edges E.

• All the nodes in the network are demand points (i.e. terminal nodes), as well as
potential hub locations (i.e. hub nodes).

• Each node i is assigned to only one hub hi.
• Hubs can be located at any node i of the network, with an associated installation

cost Cii.
• The number of hubs used is not fixed a priori. A solution can have any number of

hubs (from 1 to |V |).
• All hubs have the same capacityQh, which limits the total traffic transiting through

them.
• Edges between hubs have capacity Qb. If the traffic between two hubs exceeds this

amount, additional edges with Qb capacity are added.

The CSHLPMLC consists of selecting a subset of nodes to be hubs and assigning
the rest of the nodes to them in such a way the transportation cost is minimized while
satisfying the capacity constraints.

Many heuristics and metaheuristics have been proposed to solve different variants
of hub location problems, including VNS [50], tabu search [104], and several complex
hybrid techniques.

In this chapter we first present a simple, easily adaptable and powerful algorithm,
based on the iterated greedy–strategic oscillation (SO) methodology [41, 44]. The pur-
pose of this paper is to investigate the SO proposal, which alternates between construc-
tive and destructive phases as a basis for creating a competitive method for this hub
location problem. We begin by summarizing the previous work by Yaman and Carello
[104], which as far as we know is the only published paper devoting attention to this
specific problem. The problem definition, the notation used, as well as the formulation
proposed in [104] are described in Section 2.2, while the previous heuristic method in
[104] is described in Section 2.3. We then describe in Section 2.4 the elements of our SO
method, including the memory structures employed in our implementation. Specifically,
Section 2.4.6 presents several experiments to determine the values of the critical search
parameters, a comparison between methods and optimal results. Computational out-
comes on a large set of instances show that, while only small instances can be optimally



2.2 A non-linear programming formulation 15

solved with exact methods, our metaheuristic is able to find high-quality solutions on
larger instances in short computing times, and outperforms the previous tabu search
implementation.

After, we propose a new heuristic based on Adaptive Memory Programming in Sec-
tion 2.5. We basically introduce memory structures to enhance the performance of
our methods. Memory-based strategies, which are the hallmark of the well-known tabu
search methodology [44], and coined under the term adaptive memory programming, are
founded on a quest for “integrating principles”, by which alternative forms of memory
are appropriately combined with effective strategies for exploiting them. Specifically,
we propose different construction methods in Section 2.5.1, and local search methods in
Section 2.5.2, and then we study the effectiveness of memory structures and compare
them with memory-less variants in Section 2.5.4. The experiments in Section 2.5.4.2
show that the adaptive memory features are capable of searching the solution space
economically and effectively. Since local choices are guided by information collected
during the search, these methods contrast with memoryless designs that heavily rely on
semi-random processes that implement a form of sampling. Statistical tests confirm the
superiority of our proposal with respect to other developments. Finally, we will present
some concluding remarks in Section 2.5.5.

2.2 A non-linear programming formulation

Let G = (V,E) be a network, where V = {1, . . . , n} is the set of nodes and E is the set
of edges. For any pair of nodes i, j ∈ V , tij denotes the traffic to be transported from i
to j.

Each node i is either a terminal node or a hub node (terminal and hub for short). A
terminal can only be assigned to a single hub. A hub is assigned to itself. The hubs and
the edges among them define a complete subgraph. Opening a hub at node i has a fixed
installation cost Cii. Each hub i has a capacity Qh limiting the total amount of traffic
transiting through i.

There are two types of edges between nodes: edges of the first type are used to
connect terminals with hubs, and we call them access edges in reference to the access
to the network they provide. Let mi be the number of access edges needed to route the
incoming and outgoing traffic at node i, and let Qa be the capacity an access edge allows
to transfer through it in each direction. So,

mi = max
{⌈∑

j∈V tij

Qa

⌉
,

⌈∑
j∈V tji

Qa

⌉}
.

The cost of installing mi edges between terminal i and hub k is denoted by Cik. Edges
of the second type are used to transfer traffics between hubs, and we call them backbone
edges. Each backbone edge has a maximum traffic capacity of Qb (in each direction).
We define A as the set of (directed) arcs associated with the (undirected) edges in E,
A = {(k, l) : k, l ∈ V, k 6= l}.



16 Chapter 2. The capacitated single assignment HLP with modular link capacities

If nodes k and l are hubs, the amount of traffic on arc (k, l), denoted as zkl, is
the traffic that has to be transported from nodes assigned to k to nodes assigned to l.
The capacity Qb of a given edge {k, l} cannot be less than the maximum traffic on its
corresponding arcs (k, l) and (l, k), and the cost of installing the edge is denoted by Rkl.
This edge capacity Qb can be understood, for example, as the capacity of an airplane.
If 2Qb ≥ zkl > Qb holds, two copies of the edge (two airplanes) are needed, even if the
second one transports less than Qb passengers, and a fixed cost Rkl for each airplane
has to be paid. This reflects the non-linear nature of the costs Rkl. This modular link
characteristic makes this model much more realistic than the linear cost version.

Three different costs have to be considered in this problem: The opening costs of
the hubs (Ckk), the assignment costs of terminals to hubs (Cik), and the traffic costs
between hubs. While cost Cik corresponds to that of transporting all the traffic involving
i through hub k, Rkl represents the cost of using only one backbone edge {k, l}. This
last cost has to be multiplied by the number of copies needed of the edge {k, l}. So, we
face to two types of decisions, the binary decision of assigning a terminal to a hub and
the integer decision associated with how many copies of the edges among hubs will be
used.

Binary decision

Integer decision Backbone edge capacity = Qb

Hub capacity = Qh

Access edge capacity = Qa

Hub nodes

Terminal nodes

Figure 2.1. Different costs in the CSHLPMLC

Figure 2.1 shows a diagram which represents the hubs as shaded squares, the termi-
nals as circles, the assignments of terminals to hubs in dashed lines, and the different
capacities involved.

The following variables are defined in [104] in order to provide the mathematical
programming model shown below:

• The assignment variable xik is equal to 1 if terminal i is assigned to hub k, and 0
otherwise. If node i receives a hub, then xii takes value 1.

• zkl is the traffic on an arc (k, l) ∈ A and wkl is the number of copies of the edge
{k, l} ∈ E.



2.2 A non-linear programming formulation 17

Then, the capacitated single assignment hub location problem with modular link
capacities can be formulated ([104]) as follows:

min
∑
i∈V

∑
k∈V

Cikxik +
∑
{k,l}∈E

Rklwkl (2.1)

subject to:∑
k∈V

xik = 1 ∀i ∈ V (2.2)

xik ≤ xkk ∀i ∈ V, ∀k ∈ V \ {i} (2.3)

∑
i∈V

∑
j∈V

(tij + tji)xik −
∑
i∈V

∑
j∈V

tijxikxjk ≤ Qhxkk ∀k ∈ V (2.4)

zkl ≥
∑
i∈V

∑
j∈V

tijxikxjl ∀(k, l) ∈ A (2.5)

Qbwkl ≥ zkl ∀{k, l} ∈ E (2.6)

Qbwkl ≥ zlk ∀{k, l} ∈ E (2.7)

xik ∈ {0, 1} ∀i, k ∈ V (2.8)

wkl ∈ Z+ ∀{k, l} ∈ E (2.9)

zkl ≥ 0 ∀(k, l) ∈ A. (2.10)

Constraints (2.2) imply that each node has to be assigned to only one hub. Con-
straints (2.3) force node k to be a hub if a node i is assigned to it. Constraints (2.4)
specify that the capacity of a given hub k cannot be less than the amount of traffic that
transits through it, thus prohibiting allocations to k beyond its maximum capacity Qh.
Note that the flow between two terminals assigned to the same hub is counted twice in
the first term of the inequalities, and hence it has to be subtracted once in the second
term. Constraints (2.5) add up the traffics through a given arc (k, l). Finally, constraints
(2.6) and (2.7) fix the number of copies needed of each edge.

We have tested this formulation on a small set of instances to check if our meta-
heuristic would be able to find the optimal solution obtained using exact methods on
this formulation. Results of this comparison can be found in Section 2.4.6.4.



18 Chapter 2. The capacitated single assignment HLP with modular link capacities

2.3 Previous methods

A metaheuristic and a branch-and-cut algorithm for the CSHLPMLC were proposed
in [104]. The metaheuristic consists of a tabu search (TS) to solve the hub location
subproblem and a local search for assigning terminals to hubs. The solution provided
by the metaheuristic is used as an initial upper bound in the branch-and-cut algorithm
and to limit the number of variables considered by the exact method. In addition to
the best solution, the metaheuristic produces also a subset of nodes that represents,
in a sense, the best potential locations for the hubs. The hubs selected in the best
solution belong to this subset, as well as the two other hubs which appear most often in
the best solutions found by the metaheuristic. This set is called the concentration set.
The resulting reduced problem, where hubs can be chosen only among the nodes of the
concentration set, is called the concentrated problem, and is the problem solved using
the branch-and-cut method.

A comparison between the metaheuristic proposed in [104], PrevTS, and the one we
describe in Section 2.4 is presented in Section 2.4.6.5.

2.4 A strategic oscillation algorithm

The structure of a neighborhood in tabu search goes beyond that used in local search
by embracing the types of moves used in constructive and destructive processes (where
the foundations for such moves are accordingly called constructive neighborhoods and
destructive neighborhoods). Following basic tabu search principles, memory structures
can be implemented within a constructive process to favor (or avoid) the inclusion of
certain elements in the solution previously identified as attractive (or unattractive). Such
expanded uses of the neighborhood concept reinforce a fundamental perspective of TS,
which is to define neighborhoods in dynamic ways that can include serial or simultaneous
consideration of multiple types of moves.

This dynamic neighborhood approach applies not only to the types of neighborhoods
used in “solution improvement methods” (sometimes called “local search methods”) but
also applies to constructive neighborhoods used in building solutions from scratch - as
opposed to transitioning from one solution to another. Although it is commonplace
in the metaheuristic literature to restrict the word “neighborhood” to refer solely to
transitions between solutions as embodied in improvement methods, constructive neigh-
borhoods have been proposed as an important ingredient of search processes from the
very beginning of the TS methodology, as documented by Glover and Laguna [44]. Nev-
ertheless, tabu search methods for exploiting constructive neighborhoods have rarely
been applied in computational studies.

The strategic oscillation methodology (SO) [41, 44] is closely linked to the origins of
tabu search, and operates by orienting moves in relation to a critical level, as identified
by a stage of construction. In particular, we consider a constructive/destructive type
of strategic oscillation, where constructive steps “add” elements and destructive steps
“drop” elements.



2.4 A strategic oscillation algorithm 19

More recently, constructive and destructive neighborhoods have been applied within
a simplified and effective method known as iterated greedy (IG) [51], which generates
a sequence of solutions by iterating over a greedy constructive heuristic which, like
strategic oscillation, uses two main phases: destruction and construction. IG is an easy-
to-implement memoryless metaheuristic that has exhibited state-of-the-art performance
in some settings (see for example [33, 63, 91]). We sketch the form of this method
because its simplicity gives a convenient foundation for embedding it in a more complete
strategic oscillation approach.

As shown in Algorithm 1, the IG method starts from a complete initial solution S
(Initialise()) and then iterates through a main loop. The loop first generates a partial
candidate solution Sp by removing a fixed number of elements (nh hubs and terminals
in our case) from the complete candidate solution S (Destruction-phase(S, nh)) and next
reconstructs a complete solution Sc starting with Sp (Construction-phase(Sp)). In the
local search phase (Local-Search-phase(Sc)), an improvement procedure is performed in
order to find better solutions near the reconstructed solution. Before continuing with
the next loop, an acceptance criterion (AcceptanceCriterion(S, Si)) decides whether the
solution returned by the local search procedure, Si, becomes the new incumbent solution.
The process iterates through these phases until a computation time limit tmax is reached.
The best solution, Sbest, generated during the iterative process is kept to provide the
final result.

Input: G, tmax, nh
Output: Sbest

1 S ← Initialise();
2 Sbest ← S;
3 while tmax is not reached do
4 Sp ← Destruction-phase(S, nh);
5 Sc ← Construction-phase(Sp);
6 Si ← Local-Search-phase(Sc);
7 if Si is better than Sbest then
8 Sbest ← Si;
9 if AcceptanceCriterion(S, Si) then

10 S ← Si;

Algorithm 1: Iterated Greedy pseudocode

We have considered two different acceptance criteria in the scheme shown in Algo-
rithm 1:

• Replace–if–better acceptance criterion. The new solution is accepted only if it
provides a better objective function value [105].

• Random–walk acceptance criterion. An IG algorithm using the replace–if–better
criterion may lead to stagnation situations of the search due to insufficient diver-



20 Chapter 2. The capacitated single assignment HLP with modular link capacities

sification [92]. At the opposite extreme is the random–walk acceptance criterion,
which always applies the destruction phase to the most recently visited solution,
irrespective of its objective function value. This criterion clearly favors diversifi-
cation over intensification, because it promotes a stochastic search in the space of
local optima.

The metaheuristic we propose for solving the capacitated single assignment hub lo-
cation problem with modular link capacities integrates the iterated greedy approach
within the strategic oscillation method by including simple recency and frequency mem-
ory strategies derived from tabu search, as proposed in the original SO methodology.

2.4.1 Finding an initial feasible solution

We define a feasible solution S to be an assignment of the terminal nodes to hubs in
such a way that traffic from every origin to every destination can be transferred using
these hubs.

Let h be a candidate location node for a hub. For any node j that can be assigned to
h, with cost Cjh, we have to consider that all the traffic from and to j has to be routed
through h. In order to evaluate the attractiveness of h as a hub, g(h), we consider first
the nodes with the lowest Cjh value, adding as many nodes as the capacity permits. Let
us assume, without loss of generality, that they are j1, . . . , ju(h). In mathematical terms,

g(h) = Chh
u(h) +

u(h)∑
s=1

Cjsh,

where the first term in the expression corresponds to the installation cost per assigned
node.

The hub h1 with lowest evaluation g(h) is selected as a hub and the terminals used
in the computation of g(h1) are assigned to it. Then, the attractiveness function is com-
puted again for the remaining nodes without considering the terminals already assigned
to h1. This iterative procedure is applied until we have selected enough hubs to assign
all the nodes in the network.

At this stage, a feasible solution S = (H,A) is available, where H is the set of hubs,
and A the set of assignments. We represent by (i, h) the assignment of terminal i to hub
h. The set A contains the n pairs reflecting these assignments. Since hub h is assigned
to itself, A contains the pair (h, h). Moreover, Ah denotes the set of nodes assigned to
h, i.e. Ah = {i ∈ V : (i, h) ∈ A}, and EB represents the set of backbone edges, defined
as EB = {{k, l} : k, l ∈ H, k < l}.

2.4.2 Evaluation of a feasible solution

Different costs are involved when evaluating S:

• The fixed cost of opening/installing hubs.



2.4 A strategic oscillation algorithm 21

• The fixed cost of assigning each terminal to its associated hub.

• The cost of installing the backbone edges needed to transfer the traffic between
hubs. This cost is computed as follows. Given two hubs k and l, the total amount
of traffic on the arc (k, l) ∈ A is obtained as

zkl =
∑
i∈Ak

∑
j∈Al

tij .

Then, the maximum amount of traffic that will travel through the edge {k, l} is
Tkl = max{zkl, zlk}. Since each edge {k, l} has a maximum capacity Qb, it will be
necessary to replicate this edge wkl =

⌈
Tkl

Qb

⌉
times. Given that Rkl is the cost of

installing a copy of edge {k, l}, the total cost is
∑

{k,l}∈EB

Rklwkl.

2.4.3 Destruct and construct to improve the hub selection

Following the strategy described in the iterated greedy approach, once a solution S is
constructed (using g(h) to guide the process), we partially deconstruct it by removing
some of its elements, obtaining Sp. In our context, it means that we deselect some of
its hubs, as well as some of the nodes assigned to the remaining selected hubs (these
deselected nodes are denoted by Ãh, h ∈ HSp). Note that the terminals that were
assigned to the unselected hubs are now unassigned. We call the unassigned nodes,
including the deselected hubs, orphan nodes, and the set of all of them, (⋃h∈HS\HSp

Ah)∪
(⋃h∈HSp

Ãh), is denoted as O.
The first step in our reconstruction process is to assign as many orphan nodes as

possible to the hubs belonging to Sp (thus removing them from set O). Afterwards,
we select as a new hub the node h∗ ∈ O with the lowest g(h) value and assign to it
the terminals used in the computation of g(h∗). We remove h∗ and its terminal nodes
from O, and iteratively perform more construction steps until all the nodes in O have
been assigned or selected as hubs, obtaining a new feasible solution Sc. This destructive-
constructive process is repeated until a stopping criterion is met, which in our algorithm
is simply a maximum number of iterations. A parameter δ indicates the percentage of
the total number of hubs (|H|), as well as the percentage of terminals assigned to the
still selected hubs, that will be destructed. For example, a value of 0.3 for δ would
mean that a 30% of the hubs are removed and that a 30% of the nodes assigned to the
remaining hubs are also removed. In our SO method, the hubs are removed from the
solution at random, while the removed terminals are selected according to its assignment
cost. Terminals with higher assignment costs to their associated non-removed hubs are
selected and destructed. Other alternatives to determine the terminals that will be
unassigned from the hubs have been tried and tested in a small subset of instances. They
were based on costs Cjh − Cj , Cjh/Cj , and Cjh/Ĉj , where Cj = min{Cjh, h ∈ HSp}
and Ĉj = min{Cjh, h ∈ HSp ∪ O}. However, in all the instances tested the results
obtained were worse than those associated with the proposed strategy based only on the
assignment costs Cjh.



22 Chapter 2. The capacitated single assignment HLP with modular link capacities

This procedure implies a diversification component in the search which balances
the intensification of our greedy constructive algorithm. In Section 2.4.6 we study the
performance of the proposed algorithm, denoted as SO1, for different values of δ.

We also consider a second SO algorithm, SO2, where we use a classic tabu list (the
customary type of recency memory). In SO2 we construct an initial solution and ran-
domly remove a percentage δ of the hubs. The removed hubs are added to a tabu list
and become tabu for a given number of iterations (constructions) denoted by τ (tabu
tenure). The same construction method as SO1 is applied to reconstruct the solution
by selecting new non-tabu hubs. In order to speed up the process and search for new
solutions, we have included a slight modification in the assignment of orphan nodes in
the SO2 procedure. In particular, when we check if an orphan node can be assigned to
a non-removed hub, we follow the order given by the tabu list. We first try to assign the
tabu nodes since they cannot be hubs in this iteration. Moreover, within the tabu nodes,
we try first those that recently gain the tabu status (those that we strongly forbid to
be hubs). As is usually done in tabu search implementations, we include an aspiration
criterion to override the tabu status by permitting, in this case, a tabu node to be a hub
if the capacity constraints would compel this in the assignment process (aspiration by
feasibility).

2.4.4 Improvements on the assignments

When a new feasible solution Sc = (H,A) is obtained, an improvement procedure on
the assignment of terminals to hubs is applied. Two neighborhoods, Npairs and Nalone,
are proposed to improve Sc:

Npairs implements a classical exchange in which two terminals i and j, assigned to
hubs k and l respectively, swap their corresponding hubs. This exchange can be done
when nodes i and j are not hubs, they are assigned to different hubs, and when the
new assignments do not violate the capacity constraints. To compute the cost of this
exchange:

• We update only the assignment costs of i and j: Cik + Cjl is subtracted from the
total assignment cost and the new assignment costs Cil + Cjk are added.

• The cost of the backbone edges also needs to be recomputed. Given a backbone
edge {p, q}, the new traffic T ′pq traversing {p, q} is T ′pq = max{z′pq, z

′
qp}, where the

values of z′pq and z
′
qp are computed as follows:

– If p 6= k or l and q 6= k or l, the traffic through backbone edge {p, q} does not
change, z′pq = zpq and z

′
qp = zqp.

– If exactly one end node of {p, q} is k or l, for instance p = k (q 6= l), in order
to compute the new traffic from hub p to hub q we modify the old one by
subtracting the traffic from i to all the terminals assigned to q and by adding
the traffic from j to the terminals assigned to q, i.e.:

z
′
pq = zpq −

∑
s∈Aq

tis +
∑
s∈Aq

tjs.



2.4 A strategic oscillation algorithm 23

Analogously,

z
′
qp = zqp −

∑
s∈Aq

tsi +
∑
s∈Aq

tsj .

– Similarly, if {p, q} = {k, l},

z
′
pq = zpq −

∑
s∈Al

tis −
∑

s∈Ak\{i}
tsj +

∑
s∈Al∪{i}

tjs +
∑
s∈Ak

tsi

and

z
′
qp = zqp −

∑
s∈Ak

tjs −
∑

s∈Al\{j}
tsi +

∑
s∈Ak∪{j}

tis +
∑
s∈Al

tsj .

From the new traffic T ′pq traversing the backbone edges {p, q} ∈ EB, we compute

the number of copies that are needed for each edge and its cost,
⌈
T
′
pq

Qb

⌉
×Rpq.

Only if the total cost of the new assignment is lower than the cost of the current
solution (first improvement strategy), the exchange is done. This procedure is performed
for each pair of terminals i and j, which are enumerated by means of a natural ordering.

Sometimes Npairs turns out to be a poor neighborhood as it is quite restrictive. For
this reason we also propose Nalone, which implements another classical movement: an
insertion. In Nalone, a terminal i, previously assigned to hub k, is now assigned to
another hub l. To compute the cost of the new assignment:

• Only the assignment cost of i needs to be updated from the total assignment cost:
Cik is subtracted from the total cost and Cil is added.

• The cost of the backbone edges also needs to be recomputed. Let i ∈ Ak. We try
to assign i to another hub l in order to get a cost reduction. As in Npairs, given
a backbone edge {p, q}, the values of z′pq and z

′
qp to obtain T

′
pq are computed as

follows:

– If p 6= k or l and q 6= k or l, the traffic through backbone edge {p, q} do not
change, z′pq = zpq and z

′
qp = zqp.

– If p = k or q = k, since hub k looses its assigned node i (suppose p = k),

z
′
pq = zpq −

∑
s∈Aq

tis and z
′
qp = zqp −

∑
s∈Aq

tsi.

– If p = l or q = l, since node i is assigned now to hub l (suppose p = l),

z
′
pq = zpq +

∑
s∈Aq

tis and z
′
qp = zqp +

∑
s∈Aq

tsi.



24 Chapter 2. The capacitated single assignment HLP with modular link capacities

– If p = k and q = l,

z
′
pq = zpq −

∑
s∈Al

tis +
∑
s∈Ak

tsi and z
′
qp = zqp −

∑
s∈Al

tsi +
∑
s∈Ak

tis.

As in Npairs, from the new traffic T ′pq we compute the cost of the copies needed for
each backbone edge.

Again, the exchange is done only if the new cost is lower than the cost of the current
solution.

2.4.5 Singular solutions

There are two types of singular solutions that have to be examined: solutions where
there is only one hub and all nodes are assigned to it, and solutions where all nodes
are hubs and each node is assigned to itself. These are singular solutions because in
both cases the assignment of terminals to hubs cannot be modified, rendering the above
local search procedures useless.

Once the whole process of destruction-construction ends, if such special cases cor-
respond to feasible solutions, we compare these to the best solution found during the
strategic oscillation process.

2.4.6 Computational experiments

In this section we describe the computational experiments performed to test the efficiency
of the proposed strategic oscillation metaheuristic. The metrics that we use to measure
the performance of the algorithms are:

• Value: Average objective value of the best solutions obtained with the algorithm
on the instances considered in the experiment.

• Dev: Average percentage deviation from the best-known solution (or from the
optimal solution, if available).

• Best: Number of instances for which a procedure is able to find the best-known
solution.

• CPU: Average computing time in seconds employed by the algorithm.

2.4.6.1 Test instances

To test the performance of the proposed metaheuristic, we have generated a new set of
170 instances from CAB, AP, and USA423 sets. Unfortunately, it has not been possible
to obtain the original instances used by Yaman and Carello [104]. A detailed description
of our instances follows:

1. The CAB (Civil Aviation Board) data set. From this original file, a total of 23
instances with 10, 15, 20 and 25 nodes have been generated.



2.4 A strategic oscillation algorithm 25

2. The AP (Australian Post) data set. We have extended this set of instances by
generating 70 instances with n ranging from 10 to 200. Regarding the flows between
nodes, these instances do not have symmetric flows (i.e., for a given pair of nodes
i and j, tij is not necessarily equal to tji). Moreover, in the original instance some
flows from one node to itself are positive (i.e., tii > 0 for a given i).

3. The USA423 data set. From the original data, 77 instances have been generated
with n ranging from 20 to 250.

Each original instance includes the traffic and the traveling cost-per-unit matrices.
From these two matrices, we have generated the matrices tij , Cij , Rkl, and the capacity
values Qa, Qb, Qh. While the tij traffic matrix is the original one, matrices Cij and Rkl
have been created to incorporate the assignment, installation, and inter-hub transporta-
tion costs.

The experiments that follow are divided into two main blocks. The first block (Sec-
tion 2.4.6.2) is devoted to study the behavior of the components of the solution procedure,
as well as to determine the best value for the search parameter δ. The second block of
experiments (Sections 2.4.6.4 and 2.4.6.5) has the goal of comparing our procedure with
the best published methods. To be able to test the effectiveness of our strategies, the
first set of experiments is performed on a subset of instances to test how well our choices
generalize to the entire set of problems.

From the 170 instances derived from the CAB, AP and USA423 data sets, the tuning
experiments are performed on the following subset of 36 instances: 3 instances from the
CAB set with 15 ≤ n ≤ 25, 21 instances with 10 ≤ n ≤ 195 from the AP set, and
12 instances with 20 ≤ n ≤ 150 from USA423. We refer to these 36 instances as the
training set and to the remaining 134 instances as the testing set.

2.4.6.2 Parameter calibration

We initially perform several experiments to study the constructive-destructive method
described in Section 2.4 with respect to solution quality and diversification power. In all
the preliminary experiments we executed the strategic oscillation method for 100 global
iterations.

We first compare in SO1 the random–walk (RW) and the replace–if–better (RIB)
acceptance criteria for different values of δ. The results are shown in Table 2.1. This
table reports the average percentage deviation of the solution values with respect to the
best value obtained in this experiment, Dev, as well as the number of best solutions
found, # Best. As can be seen, the best results are obtained with the values δ = 30%
and δ = 40% for the replace–if–better acceptance criterion, showing that replace–if–
better is significantly better than the random–walk criterion. In order to compare the
sets of results for the two selected values of δ, we have performed the Wilcoxon test, a
well-known non-parametric test for pairwise comparisons, which answers the question:
Do the two samples (the solutions obtained with both values of δ in our case) represent
two different populations? The resulting probability value of 0.06 indicates that there



26 Chapter 2. The capacitated single assignment HLP with modular link capacities

is no a significant difference between them. Despite this, from the results shown in the
table, we have chosen the value 30% for δ. Therefore, from now on, this variant (SO1
with replace–if–better strategy and δ = 30%, denoted SO1 for short, is the one selected
for the rest of experiments.

Table 2.1. Comparison of the two acceptance criteria for different values of δ

Dev # Best

Strategy Size # Inst 30 40 50 60 30 40 50 60

small 12 8.5% 5.9% 5.5% 6.0% 1 1 1 0
RW medium 12 11.9% 11.7% 9.7% 10.5% 0 0 0 0

large 12 9.8% 9.2% 10.3% 9.4% 0 0 0 0
summary 36 10.0% 8.9% 8.5% 8.6% 1 1 1 0

small 12 4.1% 1.7% 4.9% 3.1% 2 6 0 1
RIB medium 12 0.5% 4.8% 6.5% 7.1% 8 2 2 0

large 12 2.2% 3.6% 5.3% 4.6% 7 2 1 2
summary 36 2.3% 3.3% 5.6% 4.9% 17 10 3 3

The effectiveness of generating multiple solutions in our strategic oscillation method
has also been tested, since this algorithm relies on obtaining good and diverse solutions
to serve as starting points for the local search procedures. Figure 2.2 shows the box-
plot of the SO1 method with and without the local search on a representative instance
(150-1000-69-60-80-1-69-USA). The left boxplot shows the values of the 100 solutions
found without applying the local search procedures, while the one on the right shows
the results obtained after applying them. This plot clearly shows that different solutions
are obtained in most of the runs. As expected, the variant with the local search ob-
tains better solutions, as compared with the one without improvements, but with lower
dispersion.

Another experiment was carried out to calibrate the value of the tabu tenure param-
eter, τ , in SO2. Since we did not observe any significant differences among the tested
values, we do not report the obtained results. A default value for parameter τ of 4 has
been chosen.

2.4.6.3 Algorithm designs

In this section we compare the two strategic oscillation variants according to the memory
structure used. The results obtained in this experiment are summarized in Table 2.2,
where we report the number of best solutions found, out of 36, by each variant, as well
as the average computing time used. This table shows that SO1 obtains better solutions
than SO2. In particular, SO1 is able to match all the best known solutions, while SO2
only obtains 11 out of 36 instances, which represents an average percentage deviation
of 9.2%. As a result of this experiment, from now on we select SO1 as the focus of our



2.4 A strategic oscillation algorithm 27

Constructions Improvements

Figure 2.2. Boxplot of 100 iterations for instance 150-1000-69-60-80-1-69-USA

additional experiments.

Table 2.2. Comparison between SO1 and SO2

SO1 SO2

Dev # Best CPU Dev # Best CPU

small 0.0% 12 0.32 9.2% 4 0.24
medium 0.0% 12 6.57 13.2% 1 3.41

large 0.0% 12 181.65 5.3% 6 151.56
summary 0.0% 36 62.85 9.2% 11 51.74

2.4.6.4 Comparison with optimal values

In Section 2.2 we have described the formulation proposed in [104] for the CSHLPMLC,
which contains quadratic constraints. We used CPLEX to solve 30 instances with n
ranging from 10 to 30, and only 11 instances could be solved to optimality. As far as we
know, solving such an instance depends on the properties of its constraint matrix. The
results obtained with CPLEX for the optimally solved instances are reported in Table
2.3, as well as those obtained with the SO1 metaheuristic. In particular, it shows the
average percentage deviation with respect to the optimal solution obtained with CPLEX
and the computing time used by each method.

Table 2.3 shows that the SO1 method is able to obtain the optimal solution in all



28 Chapter 2. The capacitated single assignment HLP with modular link capacities

cases. As expected, CPLEX required much more computing time than SO1 to obtain
the optimal value. It is worth mentioning that CPLEX used the total number of cores
of the CPU (8 cores in our case) compared to only a few used by the SO1 algorithm.

Table 2.3. Comparison between CPLEX and SO1 on small-size instances

CPLEX SO1

Instance Value CPU Dev CPU

A1H 72710 24.02 0.0% 0.20
A2H 105477 254.30 0.0% 0.17
A3H 77516 23.69 0.0% 0.23
A4H 188200 139.00 0.0% 0.20
B1H 45636 75.80 0.0% 0.30
B2H 23818 4.66 0.0% 0.34
B3H 51387 31.08 0.0% 2.07
B4H 25410 4.71 0.0% 0.90
C1H 43526 4297.98 0.0% 0.50
C2H 43505 3304.48 0.0% 0.78
C3H 57905 33891.33 0.0% 1.08

2.4.6.5 Comparison with a tabu search algorithm

Since it was not possible to compare the SO1 procedure with CPLEX on larger instances,
in order to test its behavior we have compared SO1 with the implementation we have
done of the tabu search algorithm described in [104] (PrevTS). In this section we use
the instances in the training and testing sets. Table 2.4 shows the average percentage
deviation (Dev) with respect to the best solution known (obtained either with SO1 or
with PrevTS), the number of best solutions found (# Best), and the computing time
(CPU) of both methods on the 36 training set instances.

Table 2.4. Comparison between PrevTS and SO1 on the training set instances

PrevTS SO1

Type # Inst Dev # Best CPU Dev # Best CPU

small 12 13.1% 1 1.4 0.0% 12 0.9
medium 12 15.4% 0 18.6 0.0% 12 14.3

large 12 19.8% 3 240.5 0.8% 10 221.4
summary 36 16.1% 4 86.8 0.3% 34 78.8

Table 2.4 clearly shows that our SO1 method outperforms the previously proposed
tabu search approach. In particular, SO1 obtains the best known solution in 34 out of 36



2.4 A strategic oscillation algorithm 29

instances, while PrevTs is only able to do this in four cases. Furthermore, SO1 solutions
deviate from the best known solutions by an average of 0.3% while PrevTS solutions
deviate by 16.1%. On average, SO1 is also faster than PrevTS. It must be noted that, as
mentioned in [104], the objective of the authors when developing PrevTS was to obtain
relatively good initial solutions for their exact method, while our SO1 has been designed
to obtain high quality solutions in short running times.

We compare now the performance of SO1 and PrevTS on the testing set, to measure
the ability of our algorithm (SO1) to target instances not included in the training set. In
particular, we consider 134 instances classified according to their size into small, medium
and large. Note that the large set includes instances with n = 250. Table 2.5 shows

Table 2.5. Comparison between PrevTS and SO1 on the testing set instances

PrevTS SO1

Type # Inst Dev # Best CPU Dev # Best CPU

small 33 8.5% 7 1.0 0.0% 32 0.6
medium 25 10.9% 3 88.1 0.4% 22 41.1

large 76 11.7% 10 1263.1 0.6% 69 545.8
summary 134 10.8% 20 733.1 0.5% 123 317.4

the results of this experiment in terms of the average deviation with respect to the best
known value (Dev) and number of instances in which each method is able to match this
best value (# Best). Table 2.5 shows that SO1 obtains better results than PrevTS in
significantly lower running times. Specifically, PrevTS has an average deviation of 10.8%
obtained in 733.1 seconds, while SO1 has an average deviation of 0.5% obtained in 317.4
seconds. Tables 2.6, 2.7, 2.8 and 2.9 show the individual results of this experiment to
provide the reader with a detailed information for further experimentation.

In our last experiment, we compare SO1 and PrevTs over the time. Figure 2.3
shows the evolution throughout the search of the best value obtained with each method
on a representative instance. The search profile depicted in this figure shows that SO1
(dashed line) obtains better solutions than PrevTS from the very beginning of the search
and that PrevTS needs some time to reach relatively good solutions.

2.4.7 Concluding remarks

We have proposed a new metaheuristic based on strategic oscillation for the capacitated
single assignment hub location problem with modular link capacities. This problem was
introduced by Yaman and Carello [104] as an interesting variant of the classical hub lo-
cation problem in which the cost of using edges is not linear but stepwise, and the hubs
are restricted in terms of transit capacity rather than in the incoming traffic. Our pro-
posed method incorporates several designs for constructive and destructive algorithms,
together with associated local search procedures. The computational experiments show



30 Chapter 2. The capacitated single assignment HLP with modular link capacities

Table 2.6. SO1 and PrevTS on small size instances

PrevTS SO1

Instance Value Dev CPU Value Dev CPU

10 600 89 60 40 1 60 CAB 237701 0.0% 0.0 237701 0.0% 0.0
10 700 50 60 8 1 60 AP 302921 10.6% 0.0 273801 0.0% 0.0
10 700 50 60 8 1 60 CAB 243854 0.0% 0.0 243854 0.0% 0.0
10 700 69 40 8 1 50 CAB 246610 0.0% 0.0 246610 0.0% 0.0
10 800 60 60 6 1 69 AP 283138 15.3% 0.0 245513 0.0% 0.0
10 800 60 60 6 1 69 CAB 238144 0.0% 0.0 238144 0.0% 0.0
10 800 60 80 8 1 80 CAB 240872 0.0% 0.0 240872 0.0% 0.0
15 500 50 60 40 1 60 CAB 290334 0.3% 0.0 289339 0.0% 0.0
15 600 80 89 6 1 69 CAB 291191 0.0% 0.1 291780 0.2% 0.0
15 600 80 89 8 1 60 CAB 302735 0.0% 0.0 302735 0.0% 0.0
15 700 89 60 40 1 60 CAB 289953 0.0% 0.0 289953 0.0% 0.0
15 800 50 60 40 1 60 CAB 295521 1.9% 0.1 290026 0.0% 0.0
15 900 80 89 40 1 60 CAB 290970 0.3% 0.1 290134 0.0% 0.0
20 700 50 60 8 1 60 AP 405786 3.0% 0.2 393788 0.0% 0.1
20 700 50 60 8 1 60 CAB 205817 17.5% 0.2 175103 0.0% 0.1
20 700 50 60 8 1 60 USA 137854 8.5% 0.1 127058 0.0% 0.1
20 700 69 40 8 1 50 AP 432081 3.6% 0.3 417187 0.0% 0.1
20 700 69 40 8 1 50 CAB 214323 17.2% 0.2 182900 0.0% 0.3
20 800 60 60 6 1 69 CAB 191608 16.6% 0.2 164351 0.0% 0.3
20 800 60 80 8 1 80 AP 385461 4.5% 0.6 368951 0.0% 0.2
20 800 60 80 8 1 80 CAB 197141 14.3% 0.2 172460 0.0% 0.3
20 800 60 80 8 1 80 USA 130508 7.8% 0.2 121071 0.0% 0.0
20 900 80 89 40 1 80 CAB 157723 4.0% 0.1 151598 0.0% 0.1
25 600 80 60 6 1 40 CAB 245429 16.5% 0.5 210724 0.0% 0.4
25 600 80 89 6 1 69 CAB 223798 9.4% 0.4 204602 0.0% 0.1
25 600 80 89 8 1 60 CAB 242246 16.8% 0.5 207446 0.0% 0.4
25 650 69 69 6 1 50 CAB 235844 16.7% 0.4 202119 0.0% 0.1
25 650 69 69 6 1 70 CAB 221333 40.5% 0.8 157539 0.0% 0.5
25 800 89 60 40 1 80 CAB 182474 1.1% 0.2 180408 0.0% 0.3
25 900 80 89 40 1 80 CAB 190129 5.3% 0.2 180586 0.0% 0.3
30 600 80 89 8 1 60 AP 392149 6.9% 0.1 366726 0.0% 0.2
30 700 69 40 8 1 50 USA 246833 26.6% 0.8 194970 0.0% 0.2
35 600 80 89 8 1 60 AP 478595 10.1% 0.3 434611 0.0% 0.6
35 600 80 89 8 1 60 USA 232360 12.8% 1.3 206063 0.0% 0.9
35 700 80 50 8 1 69 AP 482376 7.9% 1.5 447032 0.0% 0.3
40 600 80 89 8 1 60 USA 339760 23.2% 1.5 275732 0.0% 0.4
40 700 80 50 8 1 69 AP 511799 10.4% 2.3 463568 0.0% 1.2
40 700 80 50 8 1 69 USA 330583 18.2% 3.1 279572 0.0% 2.5
45 600 80 89 8 1 60 AP 578870 7.8% 2.3 536953 0.0% 2.5
45 700 69 40 8 1 50 AP 611473 0.6% 2.5 607672 0.0% 1.8
45 700 69 40 8 1 50 USA 339338 5.7% 3.3 320991 0.0% 3.0
50 600 80 89 8 1 60 USA 518779 48.5% 3.2 349460 0.0% 3.4
50 700 69 40 8 1 50 AP 669803 7.7% 9.1 622172 0.0% 3.0
50 700 80 50 8 1 69 AP 608050 7.6% 5.3 565087 0.0% 2.5
50 700 80 50 8 1 69 USA 374127 12.9% 7.4 331514 0.0% 2.9



2.4 A strategic oscillation algorithm 31

Table 2.7. SO1 and PrevTS on medium size instances

PrevTS SO1

Instance Value Dev CPU Value Dev CPU

55 500 60 69 60 1 50 AP 525642 0.0% 8.7 542146 3.1% 3.7
55 500 60 69 60 1 50 USA 378822 15.6% 9.6 327659 0.0% 5.2
55 800 69 50 80 1 60 AP 609771 0.0% 7.1 633097 3.8% 4.8
55 800 69 50 80 1 60 USA 416346 18.4% 5.3 351759 0.0% 3.2
60 500 60 69 60 1 50 AP 643461 10.9% 1.9 580361 0.0% 4.1
60 500 60 69 60 1 50 AP 615449 11.0% 5.9 554635 0.0% 6.3
60 600 60 69 60 1 69 USA 391313 19.1% 18.1 328468 0.0% 5.1
60 800 69 50 80 1 60 AP 702917 7.0% 4.9 656894 0.0% 5.8
60 800 69 50 80 1 60 USA 424505 20.4% 18.9 352466 0.0% 7.7
65 500 60 69 60 1 50 AP 665600 10.6% 12.3 601984 0.0% 10.4
65 600 60 69 60 1 69 AP 616365 6.2% 4.1 580367 0.0% 7.0
65 600 60 69 60 1 69 USA 435220 26.3% 8.3 344542 0.0% 7.5
65 800 69 50 80 1 60 USA 402210 8.2% 19.0 371628 0.0% 9.1
70 500 60 69 60 1 50 AP 733741 11.3% 8.2 659281 0.0% 8.7
70 600 60 69 60 1 69 AP 658758 8.4% 22.7 607509 0.0% 8.6
70 600 60 69 60 1 69 USA 428069 15.8% 38.4 369507 0.0% 14.0
70 800 69 50 80 1 60 AP 728949 0.0% 27.7 742895 1.9% 14.5
75 500 60 69 60 1 50 USA 698370 25.7% 14.7 555545 0.0% 11.2
75 600 60 69 60 1 69 AP 747985 4.3% 14.6 717444 0.0% 13.4
75 600 60 69 60 1 69 USA 568456 15.8% 77.6 491048 0.0% 21.0
75 800 69 50 80 1 60 AP 868528 5.9% 37.0 820259 0.0% 20.7
80 500 60 69 60 1 50 AP 780236 11.5% 58.8 699835 0.0% 35.5
80 500 60 69 60 1 50 USA 724155 15.6% 92.9 626601 0.0% 30.1
80 800 69 50 80 1 60 AP 988201 15.6% 15.7 854957 0.0% 15.2
80 800 69 50 80 1 60 USA 690769 5.8% 94.4 653204 0.0% 32.4
85 500 60 69 60 1 50 AP 886289 14.7% 152.4 772714 0.0% 91.2
85 500 60 69 60 1 50 USA 948813 22.2% 38.5 776354 0.0% 17.9
85 800 69 50 80 1 60 AP 1003536 16.0% 96.6 865260 0.0% 104.7
90 500 60 69 60 1 50 USA 904709 23.7% 278.0 731210 0.0% 40.1
90 600 60 69 60 1 69 AP 840072 3.6% 33.0 810722 0.0% 27.2
90 600 60 69 60 1 69 USA 742016 5.6% 166.9 702336 0.0% 84.9
90 800 69 50 80 1 60 AP 1124161 20.0% 23.4 936606 0.0% 29.0
95 500 60 69 60 1 50 AP 972840 15.7% 68.4 841016 0.0% 70.9
95 500 60 69 60 1 50 USA 964716 20.6% 55.3 800139 0.0% 26.7
95 600 60 69 60 1 69 AP 859425 6.5% 86.8 807075 0.0% 89.3
95 600 60 69 60 1 69 USA 723454 7.1% 284.4 675503 0.0% 140.5
100 500 60 69 60 1 50 USA 877730 13.1% 516.4 776085 0.0% 171.0



32 Chapter 2. The capacitated single assignment HLP with modular link capacities

Table 2.8. SO1 and PrevTS on large instances up to 175 nodes

PrevTS SO1

Instance Value Dev CPU Value Dev CPU

110 500 60 69 60 1 50 AP 1451493 38.1% 67.4 1051407 0.0% 44.8
110 600 60 69 60 1 69 AP 1174251 25.2% 154.4 938250 0.0% 52.6
110 700 80 60 89 1 60 USA 1316582 13.4% 261.8 1161100 0.0% 67.7
110 800 69 50 80 1 60 USA 1296900 20.2% 103.6 1079127 0.0% 36.1
110 900 69 50 89 1 60 USA 1204417 4.6% 354.3 1151693 0.0% 61.2
120 500 60 69 60 1 50 AP 1349557 27.1% 113.1 1061782 0.0% 56.8
120 500 60 69 60 1 50 USA 1497383 28.6% 97.0 1164523 0.0% 48.2
120 700 80 60 89 1 60 USA 1247937 0.0% 281.2 1256590 0.7% 94.7
120 900 69 50 89 1 60 USA 1359133 10.9% 377.3 1226069 0.0% 100.7
125 500 60 69 60 1 50 AP 1498128 28.4% 208.4 1167146 0.0% 94.1
125 800 69 50 80 1 60 AP 1713025 23.8% 119.3 1383157 0.0% 66.4
130 600 60 69 60 1 69 AP 1426980 26.7% 146.0 1126476 0.0% 160.2
130 600 60 69 60 1 69 USA 1723043 35.0% 225.1 1276450 0.0% 74.8
130 800 69 50 80 1 60 USA 1663758 36.7% 537.6 1216964 0.0% 150.9
135 600 60 69 60 1 69 AP 1610997 33.0% 263.5 1211303 0.0% 209.3
135 800 69 50 80 1 60 USA 1584036 21.3% 4960.6 1306124 0.0% 180.1
140 500 60 69 60 1 50 AP 1691066 27.7% 579.7 1323974 0.0% 202.5
140 700 80 60 89 1 60 USA 1553768 0.0% 482.1 1561410 0.5% 185.0
140 800 69 50 80 1 60 AP 2130072 36.5% 293.3 1560792 0.0% 215.0
140 900 69 50 89 1 60 USA 1517790 0.0% 325.9 1517822 0.0% 179.4
145 600 80 69 60 1 50 AP 1825162 26.4% 379.8 1443675 0.0% 223.4
145 600 80 69 60 1 50 USA 609564 14.5% 256.3 532241 0.0% 233.0
145 800 69 50 80 1 60 AP 2114457 28.7% 381.0 1643198 0.0% 218.9
145 800 69 50 80 1 60 USA 715853 14.7% 227.1 624365 0.0% 230.2
150 1000 69 60 80 1 69 USA 614369 0.0% 299.1 666691 8.5% 278.6
150 800 69 50 80 1 60 AP 2200307 31.5% 698.3 1672925 0.0% 221.4
150 800 69 50 89 1 60 USA 594115 5.6% 437.9 562570 0.0% 257.6
150 900 69 50 89 1 60 AP 1822301 2.2% 232.0 1782301 0.0% 150.6
150 900 69 60 80 1 89 USA 584419 5.6% 272.3 553654 0.0% 258.1
155 1000 69 60 80 1 69 USA 727403 18.2% 430.0 615630 0.0% 232.5
155 500 60 69 60 1 50 AP 2061735 21.8% 166.2 1692582 0.0% 209.0
155 800 69 50 80 1 60 AP 2049217 28.1% 1408.1 1599216 0.0% 270.6
155 900 69 50 89 1 60 AP 2017260 14.0% 390.2 1769092 0.0% 226.9
155 900 69 50 89 1 60 USA 602944 2.5% 621.3 587975 0.0% 313.8
160 600 60 69 60 1 69 AP 711981 0.0% 183.6 721829 1.4% 363.1
160 800 69 50 80 1 60 AP 749451 0.0% 221.5 869439 16.0% 278.3
160 900 69 50 89 1 60 USA 636074 0.0% 270.2 636298 0.0% 333.4
160 900 80 50 60 1 69 AP 831947 6.7% 883.9 779805 0.0% 365.8
165 1000 69 60 80 1 69 USA 712118 8.5% 784.0 656114 0.0% 272.9
165 800 69 50 80 1 60 AP 1143618 16.9% 166.4 978268 0.0% 246.1
165 800 69 50 80 1 60 USA 767748 11.8% 838.5 686531 0.0% 302.7
170 500 60 69 60 1 50 AP 588784 0.0% 207.8 688647 17.0% 296.1
170 900 69 60 80 1 89 USA 623614 0.0% 872.5 623614 0.0% 298.3
170 900 80 50 60 1 69 AP 882645 6.8% 928.4 826445 0.0% 387.5
175 500 60 69 60 1 50 AP 889474 3.3% 615.2 860907 0.0% 315.0
175 600 60 69 60 1 69 AP 710911 5.2% 695.6 675774 0.0% 283.1
175 800 69 50 80 1 60 USA 790880 2.4% 1358.1 772340 0.0% 367.4
175 900 69 60 80 1 89 USA 652884 7.4% 1466.3 607724 0.0% 360.6



2.4 A strategic oscillation algorithm 33

Table 2.9. SO1 and PrevTS on large instances up to 250 nodes

PrevTS SO1

Instance Value Dev CPU Value Dev CPU

180 1000 69 60 80 1 69 USA 754360 8.2% 1536.1 697158 0.0% 379.5
180 600 60 69 60 1 69 AP 840658 10.0% 764.8 764080 0.0% 380.4
180 600 89 60 69 1 80 USA 594721 10.7% 1510.2 537212 0.0% 367.2
180 800 89 69 89 1 89 AP 1043978 17.8% 796.1 885947 0.0% 310.7
185 500 60 69 60 1 50 AP 885253 0.0% 282.6 885253 0.0% 486.7
185 600 80 89 89 1 89 AP 851397 8.0% 840.7 788688 0.0% 437.3
185 600 89 60 69 1 80 USA 522188 5.4% 782.2 495212 0.0% 417.0
185 800 69 50 80 1 60 AP 796454 0.0% 1595.3 885195 11.1% 510.2
185 900 69 60 80 1 89 USA 615474 0.0% 576.8 615474 0.0% 390.2
190 600 60 69 60 1 69 AP 970614 18.2% 558.1 821318 0.0% 311.4
190 600 80 89 89 1 89 AP 731291 0.0% 1648.0 731127 0.0% 590.1
190 600 89 60 69 1 80 USA 626170 16.5% 1491.6 537256 0.0% 571.5
190 700 89 69 89 1 89 USA 552331 0.0% 1276.5 552331 0.0% 577.8
190 800 69 50 80 1 60 AP 1212471 16.0% 631.8 1045263 0.0% 559.3
195 600 60 69 60 1 69 AP 759008 6.4% 1971.1 713616 0.0% 618.1
195 800 69 50 80 1 60 AP 1580425 35.3% 617.6 1168347 0.0% 491.6
195 900 89 89 89 1 69 AP 1254423 18.9% 1839.4 1055289 0.0% 623.6
200 500 60 69 60 1 50 AP 868511 25.3% 1641.4 693180 0.0% 766.3
200 700 80 60 89 1 60 USA 866749 6.4% 2353.8 814716 0.0% 660.6
200 800 69 50 80 1 60 AP 815087 6.8% 2419.5 763349 0.0% 745.8
205 800 69 50 80 1 60 USA 953836 8.4% 2046.4 879840 0.0% 780.3
205 900 69 60 80 1 89 USA 815563 15.9% 1604.0 703445 0.0% 750.3
210 800 69 50 80 1 60 USA 937597 6.8% 2462.5 878031 0.0% 873.7
210 900 69 60 80 1 89 USA 775547 8.5% 1055.2 714922 0.0% 840.8
215 800 69 50 80 1 60 USA 903526 2.2% 1784.6 884479 0.0% 825.8
215 900 69 60 80 1 89 USA 826507 11.2% 2103.9 743290 0.0% 907.4
220 800 69 50 80 1 60 USA 1035123 16.9% 1564.6 885251 0.0% 1001.0
220 900 69 60 80 1 89 USA 906900 14.7% 2169.7 790368 0.0% 980.5
225 800 69 50 80 1 60 USA 1094662 2.9% 1368.1 1063619 0.0% 1215.9
225 900 69 60 80 1 89 USA 921238 9.7% 2586.1 839675 0.0% 1160.4
230 800 69 50 80 1 60 USA 1212179 15.6% 2745.3 1048801 0.0% 1242.9
230 900 69 60 80 1 89 USA 977456 13.6% 3057.2 860244 0.0% 1246.3
235 800 69 50 80 1 60 USA 1089635 6.0% 2287.1 1028190 0.0% 1187.2
235 900 69 60 80 1 89 USA 1104375 13.7% 1489.5 971022 0.0% 1274.6
240 800 69 50 80 1 60 USA 1267953 7.7% 3489.7 1177217 0.0% 1283.2
240 900 69 60 80 1 89 USA 1097283 9.2% 2797.9 1004974 0.0% 1497.6
245 800 69 50 80 1 60 USA 1337769 7.6% 3465.0 1243498 0.0% 1596.0
245 900 69 60 80 1 89 USA 1119035 16.6% 1937.0 959396 0.0% 1533.6
250 800 69 50 80 1 60 USA 1219880 4.7% 4679.1 1165109 0.0% 1800.9
250 900 69 60 80 1 89 USA 1075868 9.5% 3418.4 982810 0.0% 1868.1



34 Chapter 2. The capacitated single assignment HLP with modular link capacities

0 50 100 150 200 250 300

0

20

40

60

80

100

CPU

P
er

ce
nt

ag
e 

of
 d

ev
ia

tio
n

Figure 2.3. Search Profile for SO1 (dashed line) and PrevTs (plain line)

that our algorithm is able to find high-quality solutions in short computing times, and
outperforms a previously published tabu search procedure.

We envision that future enhancements of our method may be possible by employing
additional strategies derived from the strategic oscillation and tabu search methodology,
such as replacing the recourse to randomization with more strategic elements (as by
removing hubs strategically using tabu search memory in the destructive phases).

2.5 An adaptive memory programming algorithm

In the previous section we have proposed a heuristic method based on a strategic oscilla-
tion over the search space to solve the CSHLPMLC. This method iteratively constructs
and partially destructs a solution. In this way, hubs are selected and deselected in search
for the optimal set of hubs. This procedure is coupled with two local searches, one based
on swapping the assignment of terminals to hubs, and another based on exchanges of
terminals to a different hub. The computational experimentation in Section 2.4.6 has
showed that this method outperforms the tabu search heuristic in [104], and it is able
to match, (see Section 2.4.6.4), the optimal solutions in the small size instances that
CPLEX is able to solve.

In this section we propose a new heuristic based on Adaptive Memory Program-
ming (AMP) methodology. We basically introduce memory structures to enhance the
performance of our methods. Memory-based strategies, which are the hallmark of the
well-known tabu search methodology [44], and coined under the term adaptive memory
programming, are founded on a quest for “integrating principles”, by which alterna-
tive forms of memory are appropriately combined with effective strategies for exploiting



2.5 An adaptive memory programming algorithm 35

them. Specifically, we propose different construction and local search methods and study
the effectiveness of memory structures, and compare them with memory-less variants.
Our experiments show that the adaptive memory features are capable of searching the
solution space economically and effectively. Since local choices are guided by informa-
tion collected during the search, these methods contrast with memoryless designs that
heavily rely on semi-random processes that implement a form of sampling.

2.5.1 Construction methods

A solution S for our problem consists of a set of hubs H and an assignment of each
terminal to a hub. Note that with this assignment, the routing of the traffics between
any pair of nodes is univocally determined through their respective hubs.

In Section 2.4 we have proposed a constructive method to obtain an initial solution
that selects nodes to be hubs in a greedy fashion. Specifically, we have considered an
evaluation function to discriminate among candidate nodes based on the costs. The
method iteratively selects the hub nodes until there are enough hubs (in terms of capac-
ity) to assign all the nodes in the network. An important characteristic of this method
is that, each time a node is selected as a hub, it performs the associated assignment of
terminals to this hub in a greedy fashion ignoring future hub selections. In this section,
we propose an alternative construction method that performs the assignment step after
the hub selection, thus taking into account the complete set of hubs.

Our construction method starts by estimating the number of hubs p that provides
enough capacity to assign all the terminals. We basically consider the total traffic be-
tween all pairs i, j of nodes, and divide it by the hub capacity Qh . In mathematical
terms:

p =
⌈∑

i,j∈V tij

Qh

⌉
.

Note that traffics tii can take a positive value in some applications, as in the case of
postal deliveries sent to a central hub for sorting.

Since, for example, nodes with large amount of traffics may not be assigned to the
same hub, the value of p above can underestimate the required number of hubs to route
all the traffic in the network. In particular, we compute the number of nodes for which
their traffic exceeds half of the hub capacity:

∑
j∈V \{i}

tij +
∑

j∈V \{i}
tji + tii >

Qh

2 .

It is likely that two nodes verifying the expression above do not share the same hub
since the sum of their traffics may be larger than Qh. Therefore, if the number of nodes
verifying this expression is larger than our estimation of p, we change p to be this number
of nodes.

The method we propose here is a multi-start algorithm. Many multi-start methods in
combinatorial optimization resort to randomization to perform multiple constructions.



36 Chapter 2. The capacitated single assignment HLP with modular link capacities

Among them, GRASP methodology [40] is probably one of the most popular. However,
we have developed our constructive algorithm under a different paradigm, the adaptive
memory programming. Instead of randomization, we apply frequency values, which
record past hub appearances to discourage their selection in future constructions.

To decide which hubs to open, we use an evaluation function, described in what
follows. Suppose that some nodes have already been selected as hubs. We denote them
by H ′. In order to select the next hub, the following four elements are considered:

Traffic value For each node i, we compute the traffic through it (incoming, outgoing,
and internal traffic) with origin or destination not in H ′ as

t (i) =
∑

j∈V \{i}
tij +

∑
j∈V \{i}

tji + tii −
∑
j\H′

tij −
∑
j\H′

tji.

We then compute the relative value as:

t (i)
maxj∈V \H′ t (j) .

Opening cost We compute the relative fixed installation cost for each node i as:

Cii
maxj∈V \H′ Cjj

.

Assignment cost For each node i we compute the m = n
p nodes (i.e. the average

number of terminals assigned to a hub) with lowest assignment cost to i. The
absolute assignment cost of node i, a(i), is defined as the sum of these m costs.
The relative assignment cost is computed as:

a(i)
maxj∈V \H′ a(j) .

Frequency value For each node i, we record in freq (i) the number of times (previous
solutions) in which i has been a hub. The relative frequency is:

freq (i)
maxj∈V \H′ freq (j) .

These four elements are merged into a single expression reflecting the attractiveness
of a node to be selected as a hub. Since we cannot establish a priori their relative
importance, we introduce some factors that will be empirically set. For each node i,
attractive(i) is defined as:

attractive (i) = +δ t (i)
maxj∈V \H′ t (j) − α

Cii
maxj∈V \H′Cjj

−β a (i)
maxj∈V \H′ a (j) − γ

freq (i)
maxj∈V \H′ freq (j) ,

(2.11)



2.5 An adaptive memory programming algorithm 37

where α, β, γ, δ ∈ [0, 1], and α + β + γ + δ = 1. Typically, a node with large traffics is
attractive to be selected as a hub, whereas a high opening cost or large assignment costs
discourages it. Regarding the frequencies, since we want to diversify the search, those
nodes that have been selected as hubs in previous solutions are penalized in posterior
constructions. In our computational experiments section, we will test different values
of these parameters, which permits to isolate the effect of each of the three elements
considered (apart from the frequency) and evaluate their contribution.

At each iteration, our multi-start constructive method selects the best hubs according
to the attractive values. Once the hubs are selected, we proceed to assign the terminals
to these hubs. Let H be the set of selected hubs. For each terminal i, we compute the
best assignment cost ci to the selected hubs as:

ci = min
h∈H

Cih.

Then, we order all the terminals according to the ci–values, where the terminal with
the minimum value comes first. Following this order, we assign each terminal to its best
hub (the one in H with the minimum cost) if it has enough capacity. If this hub does not
have enough capacity to route the traffics of terminal i because of previous assignments,
we consider the second best hub in H for i according to the assignment cost. We proceed
in this way, trying to assign terminal i to the best hub in H that can manage its traffic.

It may happen that none of the hubs in H can accommodate a given terminal. In
this case we add this terminal to a list of orphan nodes. When the assignment procedure
has explored all terminals, the orphan node with largest traffics is selected as a new hub
and we assign as many orphan nodes as possible to it. This procedure, which searches
among orphan nodes to select a new hub, is repeated until all nodes are assigned to a
hub.

The following example illustrates the constructive method described above, that we
call CM1. Suppose that we have a network with 15 nodes where we have estimated
p = 2. We have applied attractive (i) to all nodes and concluded that H = {3, 10}.
Column “Order” of Table 2.10 shows the order of the terminals in V for assigning to
hubs according to the ci–values. The assignment process starts by terminal 4 and assigns
it to hub 3, since it is the preferred hub for this terminal. The procedure continues by
assigning terminal 1 to hub 10; terminal 7 to hub 3; terminals 2, 15, and 14 to hub 10;
and terminal 9 to hub 3. By the time terminal 13 needs to be assigned, hub 10 is full
of traffics, so terminal 13 is assigned to hub 3 (second best hub for terminal 13). Then,
terminals 8, 11, and 5 are assigned to hub 3. At this point, hubs 3 and 10 are completely
full, hence they cannot accommodate any other terminal. Node 6 (next terminal in the
order) is then declared an orphan node. The same happens with node 12. Since no
more nodes remain to be assigned, the orphan node with largest traffics is selected as a
new hub. Suppose that this is the case of node 12. Therefore H ← H ∪ {12} and node
12 is assigned to itself. As there is still enough capacity in the new hub 12, terminal 6
is assigned to it. The assignment process finishes here because all terminals have been
assigned to a hub.



38 Chapter 2. The capacitated single assignment HLP with modular link capacities

Table 2.10. Example of ordered nodes and possible hubs in CM1

Order Terminal Ordered hubs

1st 4 3 10
2nd 1 10 3
3rd 7 3 10
4th 2 10 3
5th 15 10 3
6th 14 10 3
7th 9 3 10
8th 13 10 3
9th 8 3 10
10th 11 3 10
11th 5 3 10
12th 6 10 3
13th 12 10 3

Notice that the process implemented in CM1 is designed under the assumption that
the best assignment for a terminal is the hub for which its assignment cost is the lowest.
However, considering that this is a greedy process and that hubs are limited in terms
of their capacity, it is clear that in many cases we cannot assign all the terminals to
their preferred hub. For this reason, we also propose alternative construction methods
to implement different search strategies. Construction method CM2 orders the terminals
in non-increasing order of the ci–values (i.e., the terminal with the largest value comes
first). The rationale behind this rule is to assign first the terminal with highest minimum
assignment cost to the hubs. Constructive method CM3 computes the lowest and the
second lowest assignment cost for each terminal i. This is:

ci = minh∈H Cih, ci = minh∈H\{h∗}Cih, where h∗ = arg minh∈H Cih.
Then CM3 calculates the difference of the two values above, di = ci− ci, to evaluate

how “urgent” is to assign i to its best hub. It is clear that if di is large, we should try to
assign i to its best hub because otherwise the assignment cost will be greater. On the
contrary, if di is low, the assignment costs of i to its best and second best hubs are very
similar. CM3 orders the terminals according to the di–values in non-increasing order
and assigns them to their best available hub in this order. Once a solution S is obtained
with one of the three methods above, we evaluate it.

As it is customary in multi-start methods, once a solution is constructed, we proceed
to improve it. The improvement methods used are described in the next section.

2.5.2 Improvement methods

In the previous section, we consider two neighborhoods, Npairs and Nalone, to improve a
solution by changing the assignments of terminals to hubs. Recall that Npairs implements
a classical exchange in which two terminals i and j, assigned to hubs k and l respectively



2.5 An adaptive memory programming algorithm 39

(k 6= l), swap their corresponding hubs (i.e., the move assigns i to hub l, and j to hub
k). To do this, we proposed a local search method, LSpairs, which implements this
neighborhood with a first improvement strategy, i.e. by scanning the list of terminals
and applying this exchange every time terminals are assigned to different hubs and the
objective function is reduced (while the capacity limits are satisfied). Note that an
efficient computation of the objective value after a move requires a detailed study that
is explained in Section 2.4.4.

As said before, sometimes the Npairs neighborhood turns out to be too restrictive
due to the capacity constraints, so we complemented it with the Nalone neighborhood.
This second neighborhood performs a simple insertion move in which the assignment of
a terminal is changed from a hub to another hub. As in the previous neighborhood, we
proposed a local search method, LSalone, based on this move, which implements a first
improvement strategy.

The experimental testing in the Section 2.4.6.2 shows that the combination of the
two neighborhoods is able to significantly improve the constructed solutions. Here, we
want to go a step further by including the possibility of changing the hub selection of
a given solution in the neighborhood exploration. As a matter of fact, we believe that
further reductions in the objective function can be achieved by permitting the local
search method to test different sets of hubs.

However, including or removing a hub in a solution may cause a great change in
S, and consequently the evaluation of such a move can be very costly, especially the
computation of the number of backbone edges needed after any move. To overcome this
difficulty, we propose a new neighborhood, Ncluster, in which we consider that each hub,
together with its assigned terminals, form a set (also known as cluster) in the network.
This neighborhood explores the change of hub within each cluster. In this way, the hub
in a cluster changes its status to become a terminal and one of the terminals in this
cluster is now the new hub of the cluster. The rest of the terminals in the cluster remain
the same but assigned now to the new hub.

The proposed neighborhood Ncluster exhibits a tradeoff between search power and
computational cost. On the one hand, it considers changing the hub in a solution, which
is a major change that may lead to different types of solutions in the solutions’ space.
On the other, as it limits the exploration to changes within a cluster there is no need to
calculate the number of copies of the backbone edges to compute the value of the new
solution.

The associated procedure, LScluster, works as follows. Let Uh be a cluster of nodes
formed by a hub h and the set of its assigned terminals S, Uh = {h} ∪ S. We define
an evaluation function of the cluster of h, based on the opening cost of h and on the
assignment cost of its terminals, as follows:

eval (Uh) = Chh +
∑
j∈S

Cjh .

This evaluation function induces an order in which the set of clusters will be explored
in LScluster, where the cluster with the largest evaluation (the one with highest cost) is



40 Chapter 2. The capacitated single assignment HLP with modular link capacities

explored first, since we try to improve it in the first place. Steps 5 and 6 in Algorithm
2 show respectively the evaluation and ordering of the clusters.

Input: s
1 continue ← TRUE
2 while continue is TRUE do
3 continue ← FALSE
4 Define U = {Uh∈H}
5 Compute clusters’ eval(Uh) = Chh +∑

j∈Uh\{h}Cjh,∀h ∈ H : |Uh| ≥ 2
6 Order h ∈ H : |Uh| ≥ 2 by non-decreasing value of eval(Uh)
7 foreach h ∈ H : |Uh| ≥ 2 do
8 Compute nodes’ evaluation eval(i) = Cii +∑

j∈S\{i}Cji,∀i ∈ S
9 Order i ∈ S by non-decreasing value of eval(i)

10 foreach i ∈ S do
11 H̄ = H \ {h} ∪ i
12 S̄ = S \ {i} ∪ h
13 Ui = i ∪ S̄
14 Ū = {Uj∈H̄}
15 Compute cost solution value using Ū
16 if cost of solution using Ū < cost of solution using U then
17 H ← H̄
18 i↔ h
19 continue ← TRUE

Output: s
Algorithm 2: LScluster

Once a cluster is selected in line 7 of Algorithm 2, we explore its terminals for a
possible swapping with the current hub in the order given by their evaluation. Given an
element i in cluster Uh = {h} ∪ S, its evaluation is given by:

eval (i) = Cii +
∑

j∈S\{i}
Cji.

We explore the nodes in the cluster and perform the first improvement move. After we
have scanned all the clusters and eventually performed one or more moves, LSalone and
LSpairs are applied. It is clear that if the hub of a cluster changes, some of the nodes in
another cluster could be assigned to the new hub. As mentioned, Ncluster does not check
this point. Therefore, we consider the Nalone and Npairs neighborhoods to check these re-
assignments and eventually perform further changes after a hub move. The application
of LSalone and LSpairs may change a clusters’ composition. We perform further steps in
which we first go over the clusters with the Ncluster neighborhood exploration, and then
apply the LSalone and LSpairs, as long as the solution improves. Our local search ends
when no further improvement is possible.



2.5 An adaptive memory programming algorithm 41

2.5.3 Path relinking post-process

Path relinking (PR) was suggested as an approach to integrate intensification and di-
versification strategies in the context of tabu search [44]. This approach generates new
solutions by exploring trajectories that connect high-quality solutions by starting from
one of these solutions, called initiating solution, and generating a path in the neigh-
borhood space that leads toward the other solutions, called guiding solutions. This is
accomplished by introducing in the initiating solutions attributes contained in the guid-
ing ones. In this way, we generate a sequence of intermediate solutions that “connect”
the initiating solution with the guiding one.

The term relinking reflects the fact that this method links again two or more solutions
with a path in the search space. In the original tabu search design, two or more good
solutions are recorded during the search. Since tabu search describes a trajectory, these
solutions can be viewed as linked in the search space by the chain of moves which
originated them. After the tabu search execution, we can consider to create a new
trajectory, or chain of moves, to go from one of these high-quality solutions to another
one. This new trajectory is directed considering the target solutions, instead of the
objective function as in the initial application of tabu search. The method is therefore
called path relinking because it creates two paths joining two solutions.

Laguna and Mart́ı [58] adapted PR in the context of GRASP as a form of intensifi-
cation. The relinking, in the context of multi-start algorithms, consists of finding a path
between two solutions generated with the constructive method and, eventually, improve
the solution in the path with a local search. Therefore, the relinking concept has a
different interpretation within GRASP, since the solutions are not originally linked by a
sequence of moves. The authors, however, kept the original name of the methodology in
spite of the fact that the two solutions are linked for the first time. Resende et al. [82]
explored different implementations to hybridize these two methodologies:

Greedy Path Relinking In this method the moves in the path from a solution to
another are selected in a greedy fashion, according to the objective function value.

Greedy Randomized Path Relinking Here the method creates a candidate list with
the good intermediate solutions and randomly selects among them.

Truncated Path Relinking In this application of PR the path between two solutions
is not completed. It is applied, for example, in problems where good solutions are
found close to the end points (original solutions) in the path.

Evolutionary Path Relinking This method iterates over the set of high-quality so-
lutions, applying successively the relinking mechanism. It has many similarities
with the scatter search methodology [59].

In this chapter we explore a kind of Greedy Truncated Path Relinking to our problem
as a post-process method.

Let X and Y be two solutions to the CSHLPMLC, and let HX and HY be their
associated sets of hubs. The path relinking procedure PR(X,Y ) starts with X, and



42 Chapter 2. The capacitated single assignment HLP with modular link capacities

gradually transforms it into Y , by swapping out hubs in X with hubs in Y . The hubs in
both solutions, HXY , will remain as hubs in all the intermediate solutions generated in
the path between them. Let HX−Y be the hubs in X that are not hubs in Y . HY−X is
defined equivalently. Let PR0 (X,Y ) = X be the initiating solution in the path from X
to Y . To obtain the first solution PR1 (X,Y ) in this path, we remove a hub i ∈ HX−Y
and replace it with a hub j ∈ HY−X , thus obtaining

HPR1(X,Y ) = HPR0(X,Y ) \ {i} ∪ {j} .

In the PR variant implemented here, the selection of nodes i, j is the one minimizing
the objective function. In general, to obtain PRt+1 (X,Y ) from PRt (X,Y ), we evaluate
the different hubs i ∈ HPRt(X,Y )−Y to be removed and the hubs j ∈ HY−PRt(X,Y ) to be
selected. The move associated with the minimum cost option is performed.

At each intermediate solution in the path from X to Y , a restricted neighborhood
is explored to generate the next solution in the path. The neighborhood is restricted
because only moves removing hub i ∈ HPRt(X,Y )−Y and selecting hub j ∈ HY−PRt(X,Y )
are allowed. As the procedure moves from one intermediate solution to the next, the
cardinalities of sets HPRt(X,Y )−Y and HY−PRt(X,Y ) decrease by one element.

Consequently, as the procedure nears the guiding solution, there are fewer allowed
moves to explore. This is why Resende et al. [82] suggested that the search tends to be
less effective in the final stages. In truncated path relinking, a new stopping criterion
is used. Instead of continuing the search until the guiding solution is reached, only a
limited number of steps, PRsteps, are allowed, abandoning the path before reaching the
final solution. We consider PRsteps as a search parameter, and explore the performance
of the method with different values in the next section.

In our algorithm we first apply a constructive method (either CM1, CM2 or CM3 )
and the local search methods (Ncluster, Nalone, and Npairs) to populate a set with high-
quality solutions (elite set, ES).

Our PR mechanism is designed to work as a post–process method. For each pair of
solutions in ES, the cardinality of hubs and the objective values are compared in order to
decide which of them will be the starting and the guiding solution. In the case where the
cardinalities of their corresponding set of hubs are different, the solution with the highest
number of hubs is chosen as starting solution X, and the path relinking is performed
against the guiding solution Y . When all hubs in HY−X have been incorporated, there
are one or more hubs that should be removed in order to finally reach Y . The procedure
does not do this and stops at this step, so the whole path is not examined completely.
This is the reason to consider our procedure a Truncated PR. If HX and HY have the
same cardinality, the solution with poorest objective value is chosen as the starting
point and the path relinking is performed towards the better solution. The assignment
of terminals to the hubs of any intermediate solution explored during the path relinking
process is performed using the same strategy of the construction process.



2.5 An adaptive memory programming algorithm 43

2.5.4 Computational experiments

This section describes the computational experiments that we performed to test the
effectiveness and efficiency of the procedures discussed above. The metrics that we use
to measure the performance of the algorithms are:

1. Value: Average objective value of the best solutions obtained with the algorithm
on the instances considered in the experiment.

2. Dev: Average percentage deviation from the best-known solution.

3. Best: Number of instances for which a procedure is able to find the best-known
solution.

4. CPU: Average computing time in seconds employed by the algorithm.

We use the same benchmark of instances that has been proposed for the Strate-
gic Oscillation method of Section 2.4 from three well-known data sets CAB, AP, and
USA423.

The experimental part is divided into two main blocks. The first block (scientific
testing) is devoted to study the performance of the components of the algorithm, as
well as to determine the best values for the key search parameters. They have been
performed on the same training set of 36 instances used in Section 2.4.6.2. The second
block of experiments (competitive testing) has the goal of comparing our procedure with
the Strategic Oscillation method in Section 2.4.

2.5.4.1 Scientific testing

From the 170 instances derived from the CAB, AP and USA423 data sets, the preliminary
experiments are performed on the following set of 36 instances: 3 instances with 15 ≤
n ≤ 25 from the CAB set, 21 instances with 10 ≤ n ≤ 195 from the AP set, and 12
instances with 20 ≤ n ≤ 150 from the USA423 set. These instances have been classified
as small, medium, and large, with 12 instances in each group.

In our first experiment we have compared the combination of the different elements
of the attractive(i) function for the hub selection in the constructive method (see Section
2.5.1). Specifically, we have considered the following five alternative sets of parameter
values:

Alt1 = {α = 0.25;β = 0.25; γ = 0.25; δ = 0.25}

AllAlpha = {α = 1;β = 0; γ = 0; δ = 0}, only considers the opening costs

AllBeta = {α = 0;β = 1; γ = 0; δ = 0}, only considers the assignment costs

AllGamma = {α = 0;β = 0; γ = 1; δ = 0}, only considers the frequency values

AllDelta = {α = 0;β = 0; γ = 0; δ = 1}, only considers the traffics



44 Chapter 2. The capacitated single assignment HLP with modular link capacities

Note that Alt1 is the only alternative among the above ones including the four elements
in attractive(i). The other alternatives isolate the effect of each element, so they measure
their contribution to the complete evaluation.

Table 2.11. Average percentage deviation from the best solution (Dev)

Size # inst Alt1 AllAlpha AllBeta AllGamma AllDelta

small 12 6.60% 30.70% 35.40% 31.40% 17.30%
medium 12 0.40% 17.90% 10.50% 16.10% 9.10%

large 12 2.80% 50.60% 29.20% 27.00% 5.90%
summary 36 3.30% 33.10% 25.10% 24.90% 10.80%

Table 2.11 shows the average percentage deviation from the best solution obtained
with each alternative method when constructing 100 solutions on each instance. As
expected, the best alternative is Alt1, where the four elements are combined. AllDelta
(the alternative with δ = 1) is the best among the remaining alternatives, which seems
to indicate that the traffic through a node is a very important factor to choose it as a
hub. Both alternatives, Alt1 and AllDelta, produce better values for Dev than AllBeta,
which was the one used in the strategic oscillation method in Section 2.4, based on the
assignment costs of terminals to hubs.

The Friedman statistical test for multiple paired samples obtains a p-value lower than
0.0001, which confirms that there are differences among the five alternatives tested.
Additionally, the ranks obtained with this test are Alt1=1.49, AllAlpha=3.61, All-
Beta=3.76, AllGamma=3.64, and AllDelta=2.50, which are in line with the above re-
sults.

In the second experiment we extend the previous analysis by including other alter-
native sets of parameters in the constructive method. The new combinations are:

Alt2 = {α = 0.70;β = 0.10; γ = 0.10; δ = 0.10}

Alt3 = {α = 0.10;β = 0.70; γ = 0.10; δ = 0.10}

Alt4 = {α = 0.10;β = 0.10; γ = 0.70; δ = 0.10}

Alt5 = {α = 0.10;β = 0.10; γ = 0.10; δ = 0.70}

Alt6 = {α = 0.35;β = 0.20; γ = 0.10; δ = 0.35}

Alt7 = {α = 0.40;β = 0.10; γ = 0.10; δ = 0.40}

Alt8 = {α = 0.40;β = 0.15; γ = 0.05; δ = 0.40}

The results obtained using these alternatives are then compared against Alt1, where
the four parameters have the same weight. In Alt2, Alt3, Alt4, and Alt5, one of the
parameters receives a larger weight value, while the other coefficients get a smaller



2.5 An adaptive memory programming algorithm 45

weight. For Alt2 the highest weight is given to α, which is associated with the fixed cost
of opening a hub. Similarly, Alt3 gives more weight to the cost of assigning terminals
to hubs, while Alt4 penalizes the frequency of occurrence in previous iterations, and
Alt5 gives more weight to the amount of traffic through the node. The Alt6, Alt7, and
Alt8 alternatives try some other combinations of weights, where α and δ have higher
values than the other parameters. This is based on the initial findings indicating that
the opening costs and the traffics are the two most important elements when selecting
hubs. Table 2.12 shows the average percentage deviation from the best solution found
in this experiment after constructing 100 solutions on each instance.

Table 2.12. Average percentage deviation from best solution (Dev)

Size # inst Alt1 Alt2 Alt3 Alt4 Alt5 Alt6 Alt7 Alt8

small 12 11.30% 7.30% 14.00% 36.70% 10.60% 5.80% 4.80% 4.90%
medium 12 8.30% 1.10% 8.10% 19.80% 9.30% 7.50% 8.80% 8.40%

large 12 4.90% 5.40% 7.30% 24.60% 6.30% 4.60% 9.30% 10.70%
summary 36 8.20% 4.60% 9.80% 27.00% 8.70% 6.00% 7.60% 8.00%

Results in Table 2.12 clearly show that alternative Alt2 builds solutions with least
deviation, followed by alternative Alt6, which performs especially well on large instances.
We have performed the Friedman test with these alternatives and obtained a p-value <
0.0001, which confirms that there are significant differences between the alternatives.
The test returned the following ranges in line with the deviations in Table 2.12: Alt1 =
3.90, Alt2 = 2.54, Alt3 = 4.26, Alt4 = 7.68, Alt5 = 4.53, Alt6 = 3.97, Alt7 = 4.29, and
Alt8 = 4.82.

To complement the analysis above, we represent in Figure 2.4 the boxplots of the
percentage deviations of each alternative. These diagrams represent the 36 deviation
values obtained with each alternative on the instances of the training set. It can be seen
that Alt2 has the highest concentration of lower relative deviations, which means that
it produces the best solutions.

After analyzing the methods for selecting hubs, we study the methods of assign-
ing terminals to hubs (CM1, CM2, and CM3). Table 2.13 shows the results of this
experiment on the training set. For each construction method, the combinations of pa-
rameters that have been found to be best in the previous experiment have been tested.
In particular, Alt1, Alt2, Alt6, Alt7, and Alt8 are tested.

Table 2.13. Average percentage deviation for constructive methods

CM1 CM2 CM3

Alt1 Alt2 Alt6 Alt7 Alt8 Alt1 Alt2 Alt6 Alt7 Alt8 Alt1 Alt2 Alt6 Alt7 Alt8
small 15% 13% 14% 14% 11% 17% 16% 8% 11% 9% 15% 11% 9% 8% 8%

medium 23% 20% 22% 23% 23% 12% 6% 11% 12% 11% 13% 5% 12% 13% 13%
large 59% 39% 40% 44% 41% 10% 6% 10% 11% 14% 8% 9% 8% 13% 14%

summary 32% 24% 25% 27% 25% 13% 9% 9% 11% 12% 12% 8% 10% 11% 12%



46 Chapter 2. The capacitated single assignment HLP with modular link capacities

Figure 2.4. Box plot of different alternatives

Table 2.13 show that the lowest average percentage deviation (8%) is obtained with
CM3 and parameter combination Alt2. On the other hand, CM2 with Alt2 or Alt6
are close to it with a 9% deviation, while the CM1 strategy gives much poorer results
on all parameter combinations. A non-parametric Wilcoxon test performed to compare
CM2 and CM3 both using Alt2, gave a p-value of 0.789, which indicates that there is
no significant difference between these two configurations. We have chosen CM3 with
Alt2 as our configuration for our constructive method and will use it in the following
experiments.

In the fourth experiment, we study the contribution of the local search phase of the
algorithm applied to the solutions obtained with the constructive method CM3 (and
Alt2). In particular, we study five local search variants, as described in Section 2.5.2:

LSalone The method only applies the local search LSalone (Section 2.4.4).

LSpairs The method only applies the local search LSpairs (Section 2.4.4).

LSalone + LSpairs The method combines the two previous local searches.

LScluster The method only applies the new local search LScluster.



2.5 An adaptive memory programming algorithm 47

LSAllonce The three methods, LScluster, LSalone, and LSpairs are applied once in this
order.

It seems natural to ask whether we would be able to improve the solution further
after performing the three local searches defining LSAllonce. Since LSpairs and LSalone
can change the clusters, it might happen that another terminal could be a better hub in
the modified clusters. Similarly, when a hub is changed, it could be a better option to
assign some terminals to a different hub. We therefore consider a sixth variant, called
LSAll, in which these methods are repeatedly applied in a loop as shown in Algorithm 3.

Input: s
1 continue ← TRUE
2 while continue is TRUE do
3 continue ← FALSE
4 LScluster
5 LSpairs
6 if s improved after LSpairs then
7 continue ← TRUE
8 LSalone
9 if s improved after LSalone then

10 continue ← TRUE

Output: s
Algorithm 3: LSall

Table 2.14 reports the average percentage reduction from the constructed solution
value obtained with these six local search variants by running 50 iterations (construction
+ local search) on the instances in the training set. It shows that, on average, LSalone
improves the solution value by 4.7% with respect to the solutions obtained with the
constructive method, while LSpairs improves it by a 5.0% on average.

In line with the results of the strategic oscillation method (Section 2.4), Table 2.14
shows that a further reduction is achieved if both local searches are combined. In partic-
ular, LSalone+LSpairs exhibit an improvement of 8.2%. Considering these three previous
methods as a basis for comparison, we can observe from this table the good performance
of the new local search, LScluster, which obtains better results. Specifically, applying
LScluster only, improves by 11.5% on average the constructed solutions. Another ad-
vantage of this search is that it is very fast, since the amount of traffic between the
clusters is constant and the number of edges used in the backbone network (Wkl) do
not change. The LSAllonce column shows the result when applying LScluster first, then
LSalone + LSpairs. This process improves the solutions obtained considerably, reaching
a reduction of 24% on average on the large size instances, and of 17.8% for all instances
in the training set. Finally, The LSAll column shows the average results of the improve-
ments after applying the loop procedure described in Algorithm 3. Clearly, it shows that
changing the configuration of clusters gives further improvements, thus concluding that



48 Chapter 2. The capacitated single assignment HLP with modular link capacities

the LSAll is the best of the six alternatives. We have applied the Wilcoxon statistical
test for two paired samples to LSAllonce and LSAll, which returns a p-value lower than
0.0001, confirming the superiority of LSAll.

Table 2.14. Local search percentage reduction from construction

Size LSalone LSpairs LSalone + LSpairs LScluster LSAllonce LSAll

small -2% -2% -5% -9% -13% -18%
medium -5% -5% -8% -12% -17% -22%

large -7% -8% -12% -14% -24% -29%
summary -4.7% -5.0% -8.2% -11.5% -17.8% -22.8%

Figure 2.5 shows the search profile of the six methods described above. Specifically,
we represent the objective value of the best known solution on a 130-nodes instance
when applying different solution methods for 100 global iterations. We have added a
seventh method, labeled “Constructions”, which represents the best value obtained when
applying the constructive method without any local search. The other six lines repre-
sent the best solution value obtained with the application of the construction method
followed by each of the six local searches described above. Note that in addition to
the LSalone +LSpairs combination previously considered, we have also included an eight
method, LSpairs + LSalone, to study the application of these two methods in reverse
order.

The results in this diagram agree with those reported in Table 2.14, where the two
methods LSAllonce and LSAll present the best results, being LSAll the best one. It must
be noted that this method is able to obtain the best results from the very beginning of
the search process, and continues being the leader in the entire search horizon considered.

In the next experiment, we undertake to assess the performance of the PR post-
process. To do this, all the instances in the training set have been executed for 20
iterations to create the solutions in the ES that will be used during PR. The path
relinking procedure has been able to improve the previously obtained results in 22 out
of the 36 instances in the training set, with an average improvement of 1.4% (denoted
as -1.4% in the Summary row of Table 2.15). In this experiment we have also tested the

Table 2.15. Path relinking contribution

Size Deviation from best CPU

small -1.30% 33.30%
medium -0.70% 16.40%

large -2.30% 13.90%
Summary -1.40% 21.20%

strategy called two-sided path relinking [40], in which the best direction to create the



2.5 An adaptive memory programming algorithm 49

95
00

00

10
50

00
0

11
50

00
0

12
50

00
0

13
50

00
0

14
50

00
0

15
50

00
0

1
11

21
31

41
51

61
71

81
91

Co
ns
tr
uc
tio

ns

LS
al
on

e

LS
pa
irs

LS
al
on

e+
LS
pa
irs

LS
pa
irs
+L
Sa
lo
ne

LS
cl
us
te
rs

LS
Al
lO
nc
e

LS
Al
l

Figure 2.5. Search profile for the different local search methods



50 Chapter 2. The capacitated single assignment HLP with modular link capacities

path is determined. In particular, we have tested the reversal of the direction considered
so far in the PR process, moving from the best towards the poorer solution, and it has
not produced any significant difference in the results. In fact, in 26 of the instances, PR
gives the same best solution in the path independently of the direction. Table 2.15 shows
the results for the different groups of instances, together with the increase in the CPU
time for including PR. It can be seen that the increase in the computing time decreases
with the size of the instances and, in our opinion, the extra time consumed by PR is
worth, especially in the large size instances, where a 2.3% of improvement is obtained.

In our final experiment in the scientific testing, we explore the variant known as
Truncated Path Relinking [82]. As described in Section 2.5.3, this strategy considers the
early termination of the PR without reaching the guiding solution, thus performing only a
limited number of steps, PRsteps. Table 2.16 shows the average percentage improvement

Table 2.16. Average percentage reduction in truncating path relinking

PRsteps

Size 1 2 3 4 5 6

small -1.20% -1.30% -1.30% -1.30% -1.30% -1.30%
medium 0.00% -0.30% -0.40% -0.60% -0.70% -0.70%

large -0.90% -1.30% -1.90% -2.00% -2.30% -2.30%
Summary -0.70% -1.00% -1.20% -1.30% -1.40% -1.40%

CPU increment 2.90% 5.40% 7.00% 8.10% 10.00% 10.60%

(reduction with respect to the initiating solution) achieved at each step of the path.
As in previous tables, we divide the results according to the size of the instances and
summarize them in an additional row. We include a final row with the average increase
in the CPU time, due to the application of PR.

In line with Table 2.15, Table 2.16 clearly shows the overall contribution of PR.
Moreover, this table shows that we achieve in two steps the best possible result in the
small instances and, therefore, it is a good strategy to truncate the path at an early
stage. Medium and large instances require more steps to achieve the best results in
the path. At some point (step 5) the improvement stagnates and further steps do not
produce better results.

2.5.4.2 Competitive testing

Once we have established the key-search parameters and explored the different variants
of our method, we compare two variants of it with the best previous method. The two
variants, AMP10 and AMP20, correspond to a termination criteria of 10 and 20 global
iterations.

Table 2.17 reports the results of the comparison between the proposed procedure
and the Strategic Oscillation method, SO. We consider the full set of 170 instances, and
report the average percentage deviation (Dev), the running time in seconds (CPU), and



2.5 An adaptive memory programming algorithm 51

the number of best solutions found with each method (#Best). These instances have
been classified as small (10 ≤ n ≤ 50), medium (55 ≤ n ≤ 100), large (110 ≤ n ≤ 150),
extra-large (155 ≤ n ≤ 200) , and huge (205 ≤ n ≤ 250).

Table 2.17. Comparison with best previous method

Dev CPU # Best

Size # inst SO AMP10 AMP20 SO AMP10 AMP20 SO AMP10 AMP20
small 45 1.8% 0.9% 0.4% 3.0 0.3 0.8 13 23 33

medium 36 3.2% 1.1% 0.3% 37.8 11.2 24.8 6 8 30
large 27 10.6% 0.8% 0.0% 310.4 88.9 194.3 0 12 27

extra-large 37 13.2% 1.2% 0.0% 1606.3 185.8 397.8 0 17 37
huge 25 11.6% 1.2% 0.0% 4916.3 679.0 1403.7 0 12 25

Summary 170 7.4% 1.0% 0.2% 1130.7 156.9 329.3 19 72 152

Table 2.17 clearly shows the superiority of the proposed procedure with respect to
the previous SO method. Specifically, AMP20 is able to obtain 152 best solutions out
of the 170 instances considered, and shows an average computing time of 329.3 seconds.
This compares favorably with the 19 best solutions obtained with SO, which uses 1130.6
seconds on average. The average deviation (Dev) of 0.2% of AMP20 also compares well
with the 7.4% of SO. We have performed a Wilcoxon test and the resulting p-value <
0.0001 confirms these conclusions. Regarding the results obtained with AMP10, it can
be seen that, despite being much better than those produced by SO, they are worse than
those provided by AMP20, although only half of the computing time is used. Detailed
results of each instance are shown in Tables 2.18, 2.19, 2.20, 2.21, and 2.22.

To complement the information in Table 2.17, we have performed a final experiment
to compare the evolution of the best solution found by AMP20 and SO. Figure 2.6 reports
the ratio between the best solution found with both methods at each iteration and the
best value reported for the strategic oscillation, where a search horizon of 100 iterations
has been considered. This diagram confirms that our proposal consistently outperforms
the best previous published method.

2.5.5 Concluding remarks

In this chapter, we have studied a capacitated modular hub location problem that has
been modeled in the Literature as a Mixed Integer Non-linear Program, and for whose
solution we have proposed a strategic oscillation algorithm and an adaptive memory
programming algorithm. We have tested the effects of a variety of search strategies, as
those combining different constructive methods and neighborhood structures within a
multi-start memory based framework. We have also explored a Path Relinking post-
process to obtain improved outcomes. Our experiments show that the both algorithms
are capable of searching the solution space economically and effectively, outperforming
existing approaches.



52 Chapter 2. The capacitated single assignment HLP with modular link capacities

Table 2.18. Comparison of SO and AMP on small size instances

SO AMP 10 AMP 20

Instance Value Dev CPU Value Dev CPU Value Dev CPU

10 600 89 60 40 1 60 CAB 237701 1.5% 0.22 234243 0.0% 0.00 234243 0.0% 0.03
10 700 50 60 8 1 60 AP 273801 0.0% 0.23 278212 1.6% 0.00 278212 1.6% 0.03

10 700 50 60 8 1 60 CAB 253255 3.9% 0.22 243854 0.0% 0.00 243854 0.0% 0.03
10 700 69 40 8 1 50 CAB 257691 4.5% 0.22 246610 0.0% 0.00 246610 0.0% 0.03
10 800 60 60 6 1 69 AP 245513 0.0% 0.23 263198 7.2% 0.00 263198 7.2% 0.03

10 800 60 60 6 1 69 CAB 244417 2.6% 0.58 238144 0.0% 0.02 238144 0.0% 0.03
10 800 60 80 8 1 80 CAB 247078 2.6% 0.22 240872 0.0% 0.02 240872 0.0% 0.03
15 500 50 60 40 1 60 CAB 289339 1.1% 0.36 286201 0.0% 0.02 286201 0.0% 0.09
15 600 80 89 6 1 69 CAB 293075 0.8% 0.44 290734 0.0% 0.02 290734 0.0% 0.09
15 600 80 89 8 1 60 CAB 308168 2.5% 0.41 300776 0.0% 0.02 300776 0.0% 0.09
15 700 89 60 40 1 60 CAB 289953 0.7% 0.39 288078 0.0% 0.03 288047 0.0% 0.11
15 800 50 60 40 1 60 CAB 290026 1.3% 0.39 286358 0.0% 0.02 286358 0.0% 0.08
15 900 80 89 40 1 60 CAB 290134 1.3% 0.41 286408 0.0% 0.02 286408 0.0% 0.09

20 700 50 60 8 1 60 AP 406266 3.2% 0.98 393788 0.0% 0.05 393788 0.0% 0.20
20 700 50 60 8 1 60 CAB 176142 0.0% 1.03 176783 0.4% 0.03 176783 0.4% 0.16
20 700 50 60 8 1 60 USA 127058 7.7% 0.92 117986 0.0% 0.05 117986 0.0% 0.17
20 700 69 40 8 1 50 AP 408538 0.0% 1.03 417187 2.1% 0.06 417187 2.1% 0.22

20 700 69 40 8 1 50 CAB 187305 2.3% 0.84 183013 0.0% 0.05 183013 0.0% 0.17
20 800 60 60 6 1 69 CAB 164351 0.0% 0.73 165518 0.7% 0.05 165276 0.6% 0.19
20 800 60 80 8 1 80 AP 363247 0.0% 1.19 363247 0.0% 0.03 363247 0.0% 0.22

20 800 60 80 8 1 80 CAB 170069 1.2% 0.75 167993 0.0% 0.03 167993 0.0% 0.19
20 800 60 80 8 1 80 USA 121071 4.9% 0.87 115370 0.0% 0.03 115370 0.0% 0.17

20 900 80 89 40 1 80 CAB 151342 0.4% 0.80 150767 0.0% 0.03 150767 0.0% 0.16
25 600 80 60 6 1 40 CAB 210578 0.0% 1.70 210808 0.1% 0.06 210808 0.1% 0.36
25 600 80 89 6 1 69 CAB 192213 0.0% 1.39 192388 0.1% 0.06 192388 0.1% 0.36
25 600 80 89 8 1 60 CAB 214944 3.9% 1.64 206901 0.0% 0.06 206814 0.0% 0.39
25 650 69 69 6 1 50 CAB 210278 4.0% 1.84 202169 0.0% 0.08 202169 0.0% 0.37
25 650 69 69 6 1 70 CAB 162862 0.7% 2.14 165762 2.5% 0.09 161771 0.0% 0.36
25 800 89 60 40 1 80 CAB 179893 0.0% 1.86 180375 0.3% 0.08 180210 0.2% 0.34
25 900 80 89 40 1 80 CAB 181207 0.7% 1.61 180028 0.0% 0.08 180028 0.0% 0.34

30 600 80 89 8 1 60 AP 383188 8.5% 3.46 353148 0.0% 0.12 353148 0.0% 0.53
30 700 69 40 8 1 50 USA 211640 0.0% 2.93 214726 1.5% 0.25 214726 1.5% 0.83
35 600 80 89 8 1 60 AP 448064 2.5% 3.98 437119 0.0% 0.28 437119 0.0% 0.89

35 600 80 89 8 1 60 USA 206472 0.0% 4.40 207966 0.7% 0.30 207966 0.7% 0.64
35 700 80 50 8 1 69 AP 436550 0.2% 4.23 435489 0.0% 0.27 435489 0.0% 0.58

40 600 80 89 8 1 60 USA 288503 2.7% 6.19 306713 9.1% 1.14 281012 0.0% 2.86
40 700 80 50 8 1 69 AP 478470 0.0% 6.43 488152 2.0% 0.59 486523 1.7% 1.20

40 700 80 50 8 1 69 USA 282629 2.8% 6.01 277734 1.0% 1.03 275037 0.0% 2.07
45 600 80 89 8 1 60 AP 521958 1.5% 8.44 528549 2.7% 0.78 514433 0.0% 1.84
45 700 69 40 8 1 50 AP 589832 0.6% 8.63 592707 1.1% 0.89 586337 0.0% 1.97

45 700 69 40 8 1 50 USA 345335 1.5% 6.83 340367 0.0% 1.42 340367 0.0% 3.29
50 600 80 89 8 1 60 USA 347675 5.0% 12.34 337159 1.8% 2.39 331097 0.0% 4.99
50 700 69 40 8 1 50 AP 598636 0.0% 11.50 610081 1.9% 1.48 610081 1.9% 3.23
50 700 80 50 8 1 69 AP 562786 2.4% 11.23 552563 0.5% 1.42 549699 0.0% 2.85

50 700 80 50 8 1 69 USA 328853 0.5% 10.87 337165 3.0% 2.32 327249 0.0% 5.05



2.5 An adaptive memory programming algorithm 53

Table 2.19. Comparison of SO and AMP on medium size instances

SO AMP 10 AMP 20

Instance Value Dev CPU Value Dev CPU Value Dev CPU

55 500 60 69 60 1 50 AP 551996 4.9% 12.28 526290 0.0% 1.70 526290 0.0% 3.71
55 500 60 69 60 1 50 USA 356419 0.1% 11.51 355920 0.0% 3.28 355920 0.0% 7.39
55 800 69 50 80 1 60 AP 627685 1.4% 13.65 622691 0.6% 1.59 618881 0.0% 3.62

55 800 69 50 80 1 60 USA 356039 0.0% 10.31 367214 3.1% 3.45 367214 3.1% 7.36
60 500 60 69 60 1 50 AP 597551 10.4% 14.23 570095 5.3% 3.31 541254 0.0% 6.75

60 600 60 69 60 1 69 USA 324245 0.0% 14.34 339436 4.7% 4.71 339436 4.7% 9.38
60 800 69 50 80 1 60 AP 664374 0.0% 13.32 671543 1.1% 3.43 669005 0.7% 7.44

60 800 69 50 80 1 60 USA 375981 2.2% 14.96 375481 2.0% 4.56 368020 0.0% 10.25
65 500 60 69 60 1 50 AP 594968 0.5% 19.49 597554 0.9% 3.54 592242 0.0% 8.49
65 600 60 69 60 1 69 AP 596768 4.0% 19.06 574420 0.1% 3.78 573660 0.0% 8.07

65 600 60 69 60 1 69 USA 366133 6.1% 21.09 346628 0.5% 5.90 344968 0.0% 12.45
65 800 69 50 80 1 60 USA 405756 9.6% 21.08 370350 0.0% 7.47 370350 0.0% 14.24
70 500 60 69 60 1 50 AP 664745 4.7% 24.56 634622 0.0% 5.43 634622 0.0% 11.68
70 600 60 69 60 1 69 AP 615656 0.5% 22.25 612709 0.0% 4.60 612709 0.0% 11.17

70 600 60 69 60 1 69 USA 383492 1.8% 29.03 380610 1.0% 7.24 376830 0.0% 17.66
70 800 69 50 80 1 60 AP 769108 2.7% 27.27 754050 0.7% 4.88 748826 0.0% 10.47

75 500 60 69 60 1 50 USA 552080 0.0% 29.14 567428 2.8% 12.40 564299 2.2% 28.97
75 600 60 69 60 1 69 AP 665111 1.9% 35.23 656614 0.6% 6.13 652910 0.0% 13.74

75 600 60 69 60 1 69 USA 519474 3.9% 31.44 516299 3.3% 10.83 499866 0.0% 26.01
75 800 69 50 80 1 60 AP 828245 6.8% 32.87 784188 1.1% 6.65 775560 0.0% 14.40
80 500 60 69 60 1 50 AP 722632 2.5% 40.25 712368 1.1% 6.27 704828 0.0% 14.87

80 500 60 69 60 1 50 USA 632672 0.0% 35.09 641698 1.4% 16.58 638106 0.9% 33.81
80 800 69 50 80 1 60 AP 837210 1.4% 39.53 825392 0.0% 6.69 825392 0.0% 16.04

80 800 69 50 80 1 60 USA 673561 4.5% 36.57 644728 0.0% 14.90 644728 0.0% 34.76
85 500 60 69 60 1 50 AP 762920 1.7% 62.71 759237 1.2% 9.42 750455 0.0% 21.76

85 500 60 69 60 1 50 USA 777825 7.1% 53.17 738851 1.8% 20.47 725993 0.0% 48.85
85 800 69 50 80 1 60 AP 903683 4.2% 60.42 880568 1.5% 9.36 867232 0.0% 22.67

90 500 60 69 60 1 50 USA 804494 7.0% 53.98 752493 0.1% 32.56 751816 0.0% 68.49
90 600 60 69 60 1 69 AP 759377 0.3% 70.56 756916 0.0% 12.17 756916 0.0% 24.57

90 600 60 69 60 1 69 USA 708086 2.0% 54.34 694659 0.0% 26.97 694320 0.0% 54.07
90 800 69 50 80 1 60 AP 966669 4.6% 70.72 931584 0.8% 12.43 924069 0.0% 25.85
95 500 60 69 60 1 50 AP 905808 6.8% 75.52 848766 0.1% 15.60 848132 0.0% 30.09

95 500 60 69 60 1 50 USA 780646 4.1% 64.88 758687 1.2% 32.22 749775 0.0% 70.33
95 600 60 69 60 1 69 AP 826451 2.0% 82.84 814028 0.5% 13.04 810103 0.0% 28.94

95 600 60 69 60 1 69 USA 714260 3.7% 65.63 692781 0.6% 30.65 688970 0.0% 72.09
100 500 60 69 60 1 50 USA 792405 0.0% 77.82 794332 0.2% 40.48 794332 0.2% 91.62



54 Chapter 2. The capacitated single assignment HLP with modular link capacities

Table 2.20. Comparison of SO and AMP on large size instances

SO AMP 10 AMP 20

Instance Value Dev CPU Value Dev CPU Value Dev CPU

110 500 60 69 60 1 50 AP 996975 3.1% 150.65 970622 0.4% 26.99 967134 0.0% 60.89
110 600 60 69 60 1 69 AP 934826 2.3% 142.15 915806 0.2% 24.99 914181 0.0% 52.43

110 700 80 60 89 1 60 USA 1122255 13.6% 105.91 988074 0.0% 58.69 988074 0.0% 133.62
110 800 69 50 80 1 60 USA 1039753 13.1% 117.52 943367 2.6% 62.79 919493 0.0% 143.06
110 900 69 50 89 1 60 USA 1105052 8.6% 105.43 1025893 0.8% 52.98 1017557 0.0% 136.96
120 500 60 69 60 1 50 AP 1123004 8.0% 206.13 1053603 1.3% 43.59 1039932 0.0% 81.98

120 500 60 69 60 1 50 USA 1117652 14.3% 151.31 977587 0.0% 87.44 977587 0.0% 199.98
120 700 80 60 89 1 60 USA 1219108 11.5% 163.57 1093189 0.0% 74.66 1093189 0.0% 189.00
120 900 69 50 89 1 60 USA 1175745 8.8% 146.52 1103461 2.1% 83.34 1080591 0.0% 204.63
125 500 60 69 60 1 50 AP 1145428 4.7% 192.06 1093738 0.0% 66.02 1093577 0.0% 131.42
125 800 69 50 80 1 60 AP 1371476 9.9% 208.84 1265452 1.4% 45.52 1247724 0.0% 105.47
130 600 60 69 60 1 69 AP 1158759 8.5% 291.91 1067512 0.0% 67.16 1067512 0.0% 144.30

130 600 60 69 60 1 69 USA 1040651 6.3% 180.23 984860 0.6% 107.21 978893 0.0% 254.72
130 800 69 50 80 1 60 USA 1264063 14.2% 227.08 1106959 0.0% 117.71 1106959 0.0% 253.02
135 600 60 69 60 1 69 AP 1229722 9.9% 335.92 1118752 0.0% 66.55 1118752 0.0% 145.82

135 800 69 50 80 1 60 USA 1405752 24.8% 251.49 1126503 0.0% 132.34 1126503 0.0% 296.23
140 500 60 69 60 1 50 AP 1412597 11.1% 357.75 1271185 0.0% 71.54 1271185 0.0% 162.32

140 700 80 60 89 1 60 USA 1490007 21.6% 286.76 1225642 0.0% 165.41 1225642 0.0% 296.92
140 800 69 50 80 1 60 AP 1570932 8.9% 377.44 1442113 0.0% 83.24 1442113 0.0% 184.51

140 900 69 50 89 1 60 USA 1444192 16.2% 275.01 1242773 0.0% 136.96 1242773 0.0% 283.20
145 600 80 69 60 1 50 AP 1462902 7.8% 352.66 1368251 0.9% 90.17 1356427 0.0% 217.72

145 600 80 69 60 1 50 USA 596573 16.2% 710.75 519791 1.2% 112.31 513607 0.0% 239.69
145 800 69 50 80 1 60 AP 1603039 7.4% 357.12 1517218 1.6% 106.58 1493074 0.0% 230.67

145 800 69 50 80 1 60 USA 654681 8.4% 647.73 628893 4.1% 129.81 604117 0.0% 259.14
150 1000 69 60 80 1 69 USA 612031 5.8% 837.07 578217 0.0% 135.62 578217 0.0% 270.54

150 800 69 50 80 1 60 AP 1734477 11.1% 424.82 1584133 1.5% 114.37 1561333 0.0% 274.49
150 900 69 60 80 1 89 USA 606912 9.7% 775.96 562431 1.7% 136.29 553060 0.0% 293.43



2.5 An adaptive memory programming algorithm 55

Table 2.21. Comparison of SO and AMP on extra-large size instances

SO AMP 10 AMP 20

Instance Value Dev CPU Value Dev CPU Value Dev CPU

155 1000 69 60 80 1 69 USA 650419 13.9% 919.46 571084 0.0% 149.53 571084 0.0% 304.79
155 500 60 69 60 1 50 AP 1427231 16.5% 635.50 1240808 1.2% 124.74 1225509 0.0% 279.15
155 800 69 50 80 1 60 AP 1602365 13.6% 604.55 1442949 2.3% 127.36 1410360 0.0% 275.13
160 600 60 69 60 1 69 AP 685604 13.5% 950.80 613597 1.5% 58.83 604311 0.0% 126.61

160 700 80 60 89 1 60 USA 704872 24.3% 1010.66 588205 3.8% 194.77 566847 0.0% 369.32
160 800 69 50 80 1 60 AP 826772 9.0% 1042.87 786230 3.6% 82.48 758780 0.0% 176.89
160 900 80 50 60 1 69 AP 775178 7.2% 1008.39 741112 2.5% 79.78 722878 0.0% 159.69

160 900 89 50 60 1 69 USA 530376 12.4% 1048.41 481774 2.1% 163.12 471754 0.0% 339.01
165 1000 69 60 80 1 69 USA 665409 9.4% 1302.26 625185 2.8% 172.64 608228 0.0% 369.96

165 800 69 50 80 1 60 AP 876244 14.7% 1109.94 764063 0.0% 114.51 764063 0.0% 227.33
165 800 69 50 80 1 60 USA 704389 6.1% 1302.59 667884 0.6% 244.26 663785 0.0% 466.76
170 500 60 69 60 1 50 AP 714822 21.0% 1152.12 590908 0.0% 168.00 590908 0.0% 293.91

170 600 89 60 69 1 80 USA 551600 15.5% 1304.46 491632 2.9% 260.48 477564 0.0% 485.13
170 700 80 60 89 1 60 USA 609581 6.7% 1361.95 605758 6.0% 240.73 571293 0.0% 471.38
170 900 69 60 80 1 89 USA 613150 4.8% 1403.26 589807 0.8% 196.72 585232 0.0% 474.49
170 900 80 50 60 1 69 AP 754262 2.4% 1251.03 742642 0.8% 116.22 736391 0.0% 266.60
175 500 60 69 60 1 50 AP 649148 8.4% 1427.86 598789 0.0% 100.08 598789 0.0% 206.36
175 600 60 69 60 1 69 AP 648587 5.5% 1664.50 615051 0.0% 134.62 615051 0.0% 291.06

175 800 69 50 80 1 60 USA 716778 6.3% 1625.83 725441 7.6% 261.61 674337 0.0% 559.54
175 900 69 60 80 1 89 USA 602257 0.1% 1434.86 601938 0.0% 201.47 601938 0.0% 447.89
180 1000 69 60 80 1 69 USA 740453 9.8% 1970.72 674578 0.0% 238.30 674578 0.0% 480.79

180 600 60 69 60 1 69 AP 746918 19.5% 1804.62 625016 0.0% 168.64 625016 0.0% 377.00
180 600 89 60 69 1 80 USA 558479 11.8% 1739.88 501098 0.4% 284.38 499331 0.0% 599.79
180 800 89 69 89 1 89 AP 797621 8.8% 1921.67 738870 0.8% 151.14 733082 0.0% 334.86
185 500 60 69 60 1 50 AP 858506 36.3% 1872.10 629924 0.0% 113.62 629924 0.0% 336.56
185 600 80 89 89 1 89 AP 700282 5.5% 2029.67 663550 0.0% 192.09 663550 0.0% 424.61

185 600 89 60 69 1 80 USA 530783 5.9% 1880.00 501049 0.0% 272.53 501049 0.0% 656.61
185 800 69 50 80 1 60 AP 890070 9.5% 1971.64 813219 0.0% 147.86 813219 0.0% 334.44

185 900 69 60 80 1 89 USA 621650 7.4% 2158.96 579041 0.0% 264.73 579041 0.0% 511.57
190 600 60 69 60 1 69 AP 773840 20.5% 2200.58 642125 0.0% 163.49 642125 0.0% 354.57
190 600 80 89 89 1 89 AP 800719 20.5% 2288.98 667778 0.5% 216.77 664307 0.0% 426.08

190 600 89 60 69 1 80 USA 522508 5.4% 2190.87 506162 2.1% 386.28 495751 0.0% 818.66
190 700 89 69 89 1 89 USA 575933 10.9% 2177.05 531110 2.2% 355.05 519531 0.0% 720.86
190 800 69 50 80 1 60 AP 1031614 27.1% 2298.88 811776 0.0% 166.27 811776 0.0% 379.62
195 600 60 69 60 1 69 AP 774165 18.8% 2487.11 651750 0.0% 170.76 651750 0.0% 401.27
195 800 69 50 80 1 60 AP 1107739 34.2% 2431.53 825666 0.0% 249.33 825402 0.0% 500.46
195 900 89 89 89 1 69 AP 1093874 26.2% 2449.22 866814 0.0% 142.29 866814 0.0% 470.57



56 Chapter 2. The capacitated single assignment HLP with modular link capacities

Table 2.22. Comparison of SO and AMP on huge size instances

SO AMP 10 AMP 20

Instance Value Dev CPU Value Dev CPU Value Dev CPU

200 500 60 69 60 1 50 AP 661633 5.0% 2686.72 630174 0.0% 205.88 630174 0.0% 456.88
200 700 80 60 89 1 60 USA 743444 17.5% 2976.42 632652 0.0% 422.74 632652 0.0% 912.87
200 700 89 69 89 1 89 USA 608272 10.0% 2985.89 558004 0.9% 444.05 552794 0.0% 1046.31
200 800 69 50 80 1 60 AP 763358 5.0% 2731.83 726953 0.0% 202.12 726953 0.0% 450.04

200 800 89 69 89 1 89 USA 645449 11.9% 2995.71 577027 0.0% 429.62 577027 0.0% 860.19
205 800 69 50 80 1 60 USA 800686 10.7% 3086.01 723185 0.0% 494.43 723185 0.0% 1002.65
205 900 69 60 80 1 89 USA 670343 6.2% 3570.73 641338 1.6% 477.98 631462 0.0% 881.68
210 800 69 50 80 1 60 USA 811601 9.9% 3832.57 761961 3.2% 474.52 738677 0.0% 1027.60
210 900 69 60 80 1 89 USA 699431 8.9% 3743.74 642226 0.0% 455.71 642226 0.0% 994.66
215 800 69 50 80 1 60 USA 897348 18.7% 3927.14 776169 2.7% 508.17 756041 0.0% 1067.44
215 900 69 60 80 1 89 USA 736413 11.8% 3653.79 662574 0.6% 440.71 658439 0.0% 952.68
220 800 69 50 80 1 60 USA 872528 11.9% 4275.09 785013 0.7% 669.57 779880 0.0% 1414.82
220 900 69 60 80 1 89 USA 725843 8.8% 4485.24 667050 0.0% 661.34 667050 0.0% 1204.99
225 800 69 50 80 1 60 USA 978703 7.4% 4993.80 911123 0.0% 689.23 911123 0.0% 1399.77
225 900 69 60 80 1 89 USA 812905 9.6% 4668.05 752181 1.4% 711.43 741512 0.0% 1366.89
230 800 69 50 80 1 60 USA 994501 11.5% 6096.23 892018 0.0% 694.07 892018 0.0% 1562.39
230 900 69 60 80 1 89 USA 859790 14.3% 5934.23 765328 1.8% 742.37 751951 0.0% 1509.29
235 800 69 50 80 1 60 USA 1067897 7.5% 6223.85 1026170 3.3% 800.88 993119 0.0% 1734.28
235 900 69 60 80 1 89 USA 967918 20.0% 6017.28 835859 3.7% 768.59 806302 0.0% 1662.56
240 800 69 50 80 1 60 USA 1106592 12.2% 6079.38 1019676 3.4% 1122.78 985860 0.0% 2515.60
240 900 69 60 80 1 89 USA 914468 12.2% 6852.66 846005 3.8% 788.71 815008 0.0% 1769.56
245 800 69 50 80 1 60 USA 1209802 20.8% 7913.75 1001725 0.0% 1264.32 1001725 0.0% 2322.69
245 900 69 60 80 1 89 USA 913041 8.5% 7197.28 841321 0.0% 903.16 841321 0.0% 1799.31
250 800 69 50 80 1 60 USA 1132659 11.7% 7800.79 1045446 3.1% 1299.77 1013736 0.0% 2508.24
250 900 69 60 80 1 89 USA 991167 17.2% 8180.05 845767 0.0% 1302.52 845767 0.0% 2668.66

Figure 2.6. Search profile of best methods



Chapter 3

Solution methods for the
uncapacitated r-allocation p-hub
median problem

Summary

In this chapter we propose two heuristic algorithms to solve the uncapacitated r-allocation
p-hub median problem. In the classical p-hub location problem, given a set of nodes with
pairwise traffic demands, p of them must be selected as hub locations to route all traffics
through them at a minimum cost. An extension of this problem, called the r-allocation
p-hub median problem, was recently proposed by Yaman [103], in which every node is
assigned to r of the p selected hubs, r ≤ p, allowing to route the traffic of the nodes
through their associated r hubs.

In the algorithm that we propose to solve this problem, the constructive methods
have three phases: location, assignment, and routing. Specifically, we first propose a
heuristic algorithm based on the GRASP methodology in which we consider three local
search procedures. Sometimes, the combinatorial nature of this problem makes them
time-consuming. We therefore propose a filtering mechanism to discard low-quality
constructions and skip its improvement, saving its associated running time. We perform
several experiments to first determine the values of the key-search parameters of our
method and then to compare with previous algorithms.

The second algorithm that we propose is based on the Scatter Search methodology.
Scatter search is a population-based method that has been shown to yield high-quality
outcomes for combinatorial optimization problems. The methodology uses strategies for
combining solution vectors that have proved effective in a variety of problem settings.
In particular, we propose mechanisms to generate, combine, and improve solutions for
this problem. Special mention deserves the use of path-relinking as an extension of the
classical combination method.

Computational results on 465 instances show that while only small instances can be
optimally solved with exact methods, the heuristics that we propose are able to find high-

57



58 Chapter 3. The uncapacitated r-allocation p-hub median problem

quality solutions on larger instances in short computing times. Moreover, when targeting
the classical p-hub versions (with r = 1 and r = p), our heuristics are competitive with
the state–of–the–art methods.

3.1 Introduction

The p-hub median problem is a classical optimization problem [76] in which, given a set
of nodes with pairwise traffic demands, we have to choose p of them as hub locations
and route all the traffic through these hubs at a minimum cost. For each pair of nodes
i and j, there is a traffic tij that needs to be transported. It is generally assumed that
direct transportation between non-hub nodes is not possible, and the tij traffic travels
on a path i→ k → l→ j, where i and j are assigned to hubs k and l, respectively.

There are two extensively studied versions of the p-hub location problem regarding
the allocation strategy: the single allocation and the multiple allocation versions. In the
single allocation p-hub median problem, each node is assigned to one of the p hubs, only
allowing to send and receive traffic through this single hub. In the multiple allocation
p-hub median problem, each node can send and receive traffic through any of the p hubs.

Transporting the tij units flow through the path i → k → l → j has an associated
cost cij(k, l), usually computed as cij = tij (χdik + αdkl + δdlj), where dik is the distance
between i and k (similarly for the dkl and dlj), and χ, α and δ are unit rates for col-
lection (origin-hub), transfer (hub-hub) and distribution (hub-destination), respectively.
Generally, α is used as a discount factor to provide reduced unit costs on arcs between
hubs, so typically α < χ and α < δ. Therefore, a solution is determined by a set of
hubs, the node-to-hubs assignments, and the travel paths for each pair of nodes. The
sum of the cij(k, l) values for all (i, j) pairs is the solution cost or value. The problem
then consists of finding the hubs, assignments, and paths that minimize the total cost
of transportation.

During the last years p-hub location problems have been widely studied due to the
increase in the number of applications in telecommunications, transportation and logis-
tics. The p-hub network, based on transshipment nodes, provides a better utilization of
transporters. Different versions of the problem include, single and multiple hub alloca-
tions (as mentioned above), capacity constraints, fixed costs, and maximum travel time,
to mention the most common ones. The p-hub median problem belongs to the class of
NP-hard problems. Even when the set of hubs is given, the sub-problem of optimal
allocation of non-hub nodes to hubs is also NP-hard [62]. We refer the reader to the
excellent surveys on this topics by Alumur and Kara [6], and Campbell and O’Kelly [20].

A new evolutionary approach was presented by Milanovic [71] for solving the multi-
ple allocation version of the problem. Integer encoding of individuals was used to ensure
their feasibility, whose quality was evaluated using a fitness function. By applying ge-
netic operators of selection, crossover, and mutation, future generations were produced.
Duplicated individuals were removed from the population in the next generation, being
also limited to a certain percentage the individuals with the same objective value but
different genetic code. Fine grained tournament selection (FGTS) was used, as well as



3.2 A mixed integer linear programming formulation 59

standard one-point crossover operator and the idea of frozen bits to increase the diversity
of the genetic material. The results demonstrate the usefulness of the proposed approach
with new best solutions for three standard instances.

Also, a VNS approach was presented by Ilic et al. [50] for the single allocation
version of the problem. Three neighborhoods were proposed for the VNS scheme, using
the idea of hubs as clusters: allocate tries to change the allocations of every non-hub
node, leaving all other elements unchanged; alternate preserves all clusters, changing the
location of a hub from one node to other from the same cluster, assigning the remaining
nodes of the cluster to this new hub; new locate tries to increase the diversity of solutions
obtained selecting nodes from out of a cluster to be hub and then assigning the nodes
at the cluster to other hubs. The authors also presented how to efficiently update data
structures for calculating new total flow and cost in the network. Both sequential and
nested strategies of the VNS were proposed, outperforming the best-known heuristic in
terms of effort and quality solutions for the single allocation version.

Recently, Yaman [103] proposed a very interesting variant of this problem in which
each node can be connected to at most r of the p hubs, called the uncapacitated r-
allocation p-hub median problem (UrApHMP). The motivation of this variant comes
from the fact that the single allocation version, in which a node is assigned to a single
hub is too restricted for real-world situations, while the multiple allocation variant,
where each node can use any of the p hubs to route its traffic, results in high fixed
costs and complicated networks. The r-allocation p-hub median problem, being r ≤ p,
generalizes both versions of the p-hub median problem. When r = 1 we are at the
single allocation version, whereas if r = p, we have the multiple allocation version.
Yaman proposed in [103] a mixed integer programming formulation for this generalized
version and performed a computational study to first compare the r-allocation version
with the single and multiple variants, and then to optimally solve small and medium
size instances. She observed in instances with 50 and 75 nodes, and 3, 4, and 5 hubs,
that when a node is allowed to be allocated to two hubs, the solutions are significantly
cheaper than the single allocation solutions (about 2.0% on average) and slightly more
expensive than the multiple allocation version (about 0.3% on average).

3.2 A mixed integer linear programming formulation

The single allocation version of the p-hub median problem was formulated for the first
time by O’Kelly [76] as a quadratic integer program. This formulation resulted in a
very difficult problem to be solved. Campbell [18] formulated the p-hub median problem
as an integer program, but this formulation contained many variables and constraints
(O
(
n4)).
In [103] three different formulations for the UrApHMP are proposed. As with the

single and multiple allocation p-hub median problems, one of the formulations (the first
one presented in this paper) uses variables with up to four indexes but is the tighter
formulation. The other two use aggregate variables with at most three indexes. Although
these two other formulations have fewer variables, the bounds they produce are not as



60 Chapter 3. The uncapacitated r-allocation p-hub median problem

strong as those obtained with the first formulation. Here, the first one of the three
formulations, which will be the one that will be used in the computational results, is
described because, as it is stated in Yaman [103], it is the strongest.

Given a network G = (V,A) with a set of nodes V and a set of arcs A, let tij be the
amount of traffic to be routed from node i to node j, i.e., through the arc (i, j), and let
dij be its associated unit routing cost. The r-allocation p-hub median problem is then
formulated [103] in terms of the following variables:

• Given a node k ∈ V , zkk = 1 if the node is a hub (i.e., if a hub is set or located at
this node), and zkk = 0 otherwise.

• Given a non-hub node i ∈ V and a hub k ∈ V , zik = 1 if node i is assigned or
allocated to node k, and 0 otherwise.

• Finally, xijkl is the proportion of the traffic tij from node i ∈ V to node j ∈ V
that travels along the path i→ k → l→ j, where k and l are used as hubs.

With these variables, the problem can be formulated as follows:

min
∑
i∈V

∑
j∈V

∑
k∈V

∑
l∈V

tij(χdik + αdkl + δdlj)xijkl (3.1)

Subject to:∑
k∈V

zik ≤ r, ∀i ∈ V (3.2)

zik ≤ zkk, ∀i, k ∈ V (3.3)

∑
k∈V

zkk = p, (3.4)

∑
k∈V

∑
l∈V

xijkl = 1, ∀i, j ∈ V (3.5)

∑
l∈V

xijkl ≤ zik, ∀i, j, k ∈ V (3.6)

∑
k∈V

xijkl ≤ zjl, ∀i, j, l ∈ V (3.7)

xijkl ≥ 0, ∀i, j, k, l ∈ V (3.8)



3.3 A GRASP algorithm 61

zik ∈ {0, 1}, ∀i, k ∈ V. (3.9)

Constraints 3.2 ensure that each node is allocated to at most r hubs, where nodes are
assigned to hubs according to 3.3. In addition, constraint 3.4 limits to p the number of
hubs. Finally, constraints 3.5 to 3.7 are associated with the routing of the traffic between
each pair of nodes i, j through their corresponding hubs k, l.

In our computational experiments, we have tested this formulation and studied the
effectiveness of our heuristics in terms of their ability to find the optimal solution on
small size instances.

3.3 A GRASP algorithm

The GRASP (Greedy Randomized Adaptive Search Procedure) methodology was de-
veloped in the late 1980s by Feo and Resende [36] and the acronym was coined by Feo
and Resende [37]. Basically, each GRASP iteration consists in constructing a trial so-
lution with some greedy randomized procedure and then applying local search to the
constructed solution. The construction phase is iterative, randomized, greedy, and

1 x∗ ← ∅
2 f(x∗)←∞
3 while stopping criterion nos satisfied do
4 x← ∅
5 Compute C with the candidate elements that can be added to x
6 while C 6= ∅ do
7 Compute g(c), ∀c ∈ C
8 gmin = minc∈C g(c)
9 gmax = maxc∈C g(c)

10 RCL = {c ∈ C : g(c) ≤ (gmin + β(gmax − gmin)), β ∈ [0, 1]}
11 Select c∗ at random from RCL
12 x← x ∪ {c∗}
13 Update C with the candidate elements that can be added to x
14 if x is infeasible then
15 Apply a repair procedure to make x feasible
16 x← LocalSearch(x)
17 if f(x) < f(x∗) then
18 x∗ ← x

Output: x∗
Algorithm 4: GRASP for a minimization problem

adaptive. This two-phase process is repeated until some stopping condition is satisfied.



62 Chapter 3. The uncapacitated r-allocation p-hub median problem

A best local optimum found over all local searches is returned as the solution of the
heuristic. We refer the reader to [40] for a recent survey on this metaheuristic.

Algorithm 4 shows the pseudo-code of a generic GRASP for a minimization problem.
The greedy randomized construction seeks to produce a diverse set of good-quality so-
lutions from which to apply the local search phase. Let x be the partial solution under
construction in a given iteration and let C be the candidate set with all the remaining
elements that can be added to x. The GRASP construction uses a greedy function g(c)
to measure the contribution of each candidate element c ∈ C to the partial solution x. A
restricted candidate list RCL is the subset of candidate elements from C with good eval-
uations according to g. In particular, if gmin and gmax are the minimum and maximum
evaluations of g in C, respectively, then RCL = {c ∈ C : g(c) ≤ (gmin +β(gmax−gmin))}
where β ∈ [0, 1].

3.3.1 Construction method

To obtain a solution for the UrApHMP we first select the p hubs from V (step 1) and
then determine the assignments of each node to r of the p hubs (step 2). Finally (step 3),
for each pair of nodes, we identify the routing of their traffic through the appropriated
hubs. Figure 3.1 illustrates these steps. To do this, let h be a candidate location for a

Figure 3.1. Construction steps.

hub. For any node j that could be assigned to h in step 2 consider that all the traffic
from j to any other node i, could be routed through h, and in the objective function
we would have this traffic tji multiplied by djh. We therefore consider the evaluation of
this assignment, e(j, h), as: e (j, h) = djh

∑
i∈V tji. Note that, since we want to evaluate

the attractiveness of h to be a hub, we compute e (j, h) for every node j in the graph.
On the other hand, it is reasonable to assume that if h is a hub, only a fraction of the
nodes will be assigned to it. This is the reason to consider, for the evaluation g (h) of
h, only the k nodes with lowest e (j, h) value. Let us assume, without loss of generality,
that they are j1, . . . , jk. In mathematical terms, g (h) = ∑k

s=1 e (js, h).
We now apply the standard method in GRASP to construct a restricted candidate

list RCL with good hub locations according to this greedy evaluation g as described
above, computing gmin and gmax, minimum and maximum values respectively over all
h. As it is customary in GRASP, g is an adaptive function, i.e., once a hub h1 is selected,
in the following construction steps, when computing e (j, h) for a new candidate h, we do



3.3 A GRASP algorithm 63

not sum the term th1h since hubs do not need to be assigned to other hubs to route their
traffic. We finish step 1 when the p hubs have been selected. Let H = {h1, h2, . . . , hp}
be the set of these hubs.

In the step 2 of our constructive method, r of the p hubs are allocated to each node
i in the graph. Specifically, for each node i we evaluate its allocation value alloc (i, h) to
any hub h ∈ H. Note that for any node j to which we need to send traffic from i, this
traffic has to be sent through some of their hubs. In other words, to transport the tij
units, a path i → hi → hj → j will be used. To simplify the combinatorial problem of
determining simultaneously hi and hj , we compute alloc (i, h) as:

alloc (i, h) = dih
∑
j∈V

tij +
∑
j∈V

tijdhj ,∀i ∈ V,∀h ∈ H,

where the first term computes the cost associated with the arc from i to h, and the
second one estimates the cost associated with the arcs from h to all destinations j. We
then compute alloc (i, h) ,∀h ∈ H, and assign i to the r hubs with the best (minimum)
allocation values. Let Hi ⊆ H be the set of r hubs to which node i is assigned. Note that
in step 1 we select hubs in a greedy randomized fashion and in step 2 we assign them to
nodes in a greedy way without any random element. We have empirically found that the
randomization in step 1 is enough to obtain a diversified set of solutions in our problem.
Adding a randomized component in step 2 would result in lower quality solutions.

Finally, in step 3, we route all the traffics through the hub network at their minimum
cost. For each pair i and j, we have to determine the hubs hi ∈ Hi and hj ∈ Hj minimiz-
ing the routing cost. In mathematical terms, from the expression of the objective func-
tion, and given hi ∈ Hi and hj ∈ Hj , we denote cij(hi, hj) = tij

(
χdihi

+ αdhihj
+ δdhjj

)
.

The routing cost from i to j, cij , is then obtained by searching the hubs hi ∈ Hi and
hj ∈ Hj minimizing the expression above, i.e.

cij = min
hi∈Hi,hj∈Hj

cij(hi, hj).

Since there is a small number of hubs to which a node is assigned (r is expected to be a
small number in typical applications), an exhaustive exploration in this final step can be
performed. Specifically, for each pair (i, j) we consider the r2 associated pairs of hubs
to determine the minimum cost cij . It is specially important to note that even when Hi

and Hj have a common hub, it cannot be ensured that the best route will be through
that hub, and the computation of all the possibilities mentioned above is needed.

3.3.2 Solution representation

As described in Subsection 3.3.1, three steps are applied to construct a solution: location,
assignment and routing. Therefore, to represent a solution we need to specify these
three aspects. In particular, a solution S = (H,A,H1,H2) is given by a set of hubs H,
a matrix of assignments A, and two matrices of hubs H1 and H2 specifying the traffic
routes, where:

H = {h1, h2, . . . , hp} ⊂ V



64 Chapter 3. The uncapacitated r-allocation p-hub median problem

A = [aij ]i=1,...,n;j=1,...,r, aij ∈ Hi

H1 =
[
h1
ij

]
i=1,...,n;j=1,...,n

, h1
ij ∈ Hi

H2 =
[
h2
ij

]
i=1,...,n;j=1,...,n

, h2
ij ∈ Hj .

The set H specifies the p hubs in the solution. Each row i of matrix A contains the r
hubs assigned to node i, Hi. Finally, for each pair of nodes i and j, we need to represent
the path i→ hi → hj → j used to route the traffic. Matrix H1 provides the first hub in
the route and matrix H2 the second one, i.e. H1 (i, j) = hi and H2 (i, j) = hj .

Notice that the best hubs to route the traffic tij from i to j may be different than
those to route the traffic tji from j to i. As previously said, the best hubs to route
tij are those minimizing the cost expression cij(hi, hj) = tij

(
χdihi

+ αdhihj
+ δdhjj

)
,

which is not a symmetric expression in terms of i and j when the coefficients χ and δ
take different values. Since we need to specify the hubs in the path from i to j and the
hubs in the path from j to i, a solution is represented using two separated matrices.
Given a pair (i, j), hia, hib ∈ Hi = {hi1, . . . , hir} denote the hubs that node i is assigned
to in the two associated paths. Similarly, hjc, hjd ∈ Hj = {hj1, . . . , hjr} are the hubs for
j. In particular, H1 (i, j) = hia, H2 (i, j) = hjc, H1 (j, i) = hjd, and H2 (j, i) = hib. This

Figure 3.2. Paths between i and j.

is illustrated in Figure 3.2.

3.3.3 Improvement methods

Since the proposed method consists of three steps, and the last one is solved optimally, we
apply two types of improvements to the results obtained at step 1 and step 2: changing
the hubs selected, and changing the assignments of hubs to nodes.

Given a solution S = (H,A,H1,H2), we consider two neighborhoods, NH and
NA, to improve S. NH implements a classical exchange in which a hub node hi is
removed from H, and a non-hub node h′i ∈ V \ H becomes a hub, thus obtaining
H ′ = {h1, . . . , h

′
i, . . . , hp}. On the other hand, neighborhood NA does not affect H but

it only considers the nodes assignments. In particular, for a node i assigned to hubs



3.3 A GRASP algorithm 65

Hi = {hi1, . . . , hia, . . . , hir}, this neighborhood exchanges an assigned hub with a non-
assigned one. In mathematical terms, we replace hia ∈ Hi with h′ia ∈ H \Hi obtaining
H ′i = {hi1, . . . , h′ia, . . . , hir}.

In the first neighborhood (NH), the candidate element hi to be removed from H is
chosen by an evaluation cost that determines the most expensive hub in S in terms of its
contribution to the objective function. For a pair of nodes (i, j), we route its traffic tij in
S through the path i→ hi → hj → j with cost cij(hi, hj) = tij

(
χdihi

+ αdhihj
+ δdhjj

)
.

We split this cost into two parts:

c1
ij(hi) = tij

(
χdihi

+ α
1
2dhihj

)
and c2

ij(hj) = tij

(
α

1
2dhihj

+ δdhjj

)
.

We consider that c1
ij(hi) reflects the cost associated with the use of hi in the path

i→ hi → hj → j. Similarly, c2
ij(hj) provides an evaluation of the cost of using hj in this

path. In order to measure the total cost associated to a given hub, we sum these values
up for all pairs of nodes:

c1
h =

∑
i,j∈V

c1
ij(h) , c2

h =
∑
i,j∈V

c2
ij(h).

Hence, we express the evaluation of the cost associated with each hub h as costh = c1
h+c2

h.
Now, h∗ is selected as the hub such that costh∗ = maxh∈H {costh}. In other words, h∗
is, according to this estimation, the most expensive hub in the solution. Therefore, it
can be considered as a good candidate to be replaced.

The local search LSH performs moves in NH as long as the objective function im-
proves. At each iteration, it selects the hub with the largest contribution to the objective
function (according to the estimation above) and searches for a non-hub node to reduce
the solution value. We implement here the so-called first improvement strategy, in which
we perform the first improving move in the neighborhood (instead of scanning the entire
neighborhood to determine the best one). Starting from a random element, we examine
in increasing order the non-hub nodes searching for the first improving exchange. LSH
terminates when no improving move is found, and the current solution is returned as
the output of the procedure.

The evaluation of a move in LSH is quite time consuming. Given a solution S =
(H,A,H1,H2), any change in H affects the rest of components in S. Specifically, when
node hi is replaced by node h′i in H, it is needed to re-evaluate the hub assignment of
all the vertices assigned to hi, since they cannot use this hub anymore and could use
any other hub to route their traffic, not necessarily h′i. In mathematical terms, for any
vertex v such that hi ∈ Hv, the best hub h ∈ H \ {hi}

⋃
{h′i} replacing hi in Hv has to

be selected. Therefore, we have to scan all the vertices assigned to hi to compute the
value associated with this exchange and re-compute matrix A. Moreover, to evaluate
these assignments we need to compute and evaluate the routes (i.e., to re-compute H1

and H2). Note that even those routes not using hi have to be re-computed since the
new hub in Hv could provide a better route than the current one. Since the update of
A,H1 and H2 requires a significant computational effort, an alternative would be just



66 Chapter 3. The uncapacitated r-allocation p-hub median problem

to replace hi with h′i in Hv, remaining all the other elements in S the same. We explore
this alternative in the next neighborhood, but we can anticipate that, as expected, it
produces lower quality solutions in lower running times (as compared with the entire
exploration). The complete evaluation of any trial move has been implemented in LSH .

The second neighborhood NA only considers moves on A without changing H by
exploring the possibility of exchanging a hub hia to which node i is assigned, with one
of the hub nodes h′ia ∈ H \Hi to which i is not assigned. Based on this neighborhood,
we propose two local search procedures, LSA1 and LSA2. LSA1 implements a simple
exploration consisting of replacing hia with h′ia in all the routes from/to node i. As
mentioned above, this could lead to sub-optimal solutions since we are not exploring all
the assignments. Consider, for example, the update of the route i→ hia → hj → j when
we replace hia with h′ia in Hi. With LSA1 we would obtain the path i→ h′ia → hj → j.
Specifically, given a solution S = (H,A,H1,H2), when LSA1 performs a move changing
hia by h′ia, a new solution is obtained in which H remains unchanged, A only changes
in one element (hia with h′ia in row i), H1 changes hia with h′ia in row i (in all its
appearances), and similarlyH2 in column i. Note that this move can be done very quickly
but it does not consider whether any other hub in Hi can provide a better route from i
to j. The local search procedure LSA1 performs moves in NA as long as the objective
function improves, exploring the assignments in increasing order, and performing the
first improving move found. This local search terminates when no improving move is
found, and the current solution is returned as the output of the method.

Method LSA2 considers the exchanges of hub assignments of node i (as LSA1) but
also explores the other hubs in Hi \ {hia} to determine the best one for each particular
route starting and finishing at i. Given a solution S = (H,A,H1,H2), when LSA2
performs a move and changes hia with h′ia, a new solution is obtained in which H
remains unchanged, the matrix A only changes one element (hia with h′ia in row i),
but now H1 and H2 are completely recomputed. Since we cannot assure that any hub
in a route remains unchanged, routes are computed from scratch like in Step 3 of the
constructive method. It is clear that this move is computationally more expensive than
the one implemented in LSA1. However, as it will be shown in the comparison of both
methods in Section 5, the extra running time is justified in those cases in which we want
to match the optimal solution, since LSA1 is not able to reach it although it obtains very
good results. In order to reduce the computational effort of the algorithm, a filtering
mechanism to discard low-quality constructions is proposed. It is described in the next
section.

3.3.4 Filtering mechanism

After a number of iterations, it is possible to estimate the fractional improvement
achieved by the application of the improvement phase and use this information to in-
crease the efficiency of the search [58]. Let us define the fractional improvement in the
iteration t as:

P (t) = c (St)− c (S∗t )
c (St)



3.3 A GRASP algorithm 67

where St is the solution constructed at iteration t, c (St) is its value, and S∗t is the
improved solution obtained applying an improvement method to St (and c (S∗t ) its value).
This improvement method can be any of the three described in Section 3.3.3, LSH , LSA1
or LSA2, or any combination of them.

After tmax iterations, the mean µ̂P and standard deviation σ̂P of the improvement
P can be estimated as:

µ̂P =
∑tmax
t=1 P (t)
tmax

, σ̂P =

√∑tmax
t=1 (P (t)− µ̂P )2

tmax− 1 .

Then, these estimates can be used to determine, at a given iteration q > tmax, whether
it is “likely” that the improvement phase will be able to improve enough the current con-
struction to produce a better solution than the current best one, Sbest. If this is not the
case, we could discard the constructed solution and skip its improvement, saving its as-
sociated running time. In particular, we calculate the minimum fractional improvement
∆c (q) that is necessary for a construction Sq to be better than Sbest, as:

∆c(q) = c (Sq)− c (Sbest)
c (Sq)

.

If ∆c(q) is close to µ̂P , applying the improvement method to the current solution
Sq would probably produce a solution S∗q better than Sbest. Therefore, in order to save
computing time, the improvement method is only applied to the promising solutions Sq,
according to this estimation. We can formulate this filtering mechanism as:

∆c(q)
{
< µ̂P + λσ̂P , apply the improvement method to Sq ,
≥ µ̂P + λσ̂P , discard Sq.

where λ is a search parameter representing a threshold on the number of standard devia-
tions away from the estimated mean percentage improvement. Preliminary experiments
to test the effect of different λ values have been performed and are reported in Sec-
tion 3.3.5.2.

3.3.5 Computational experiments

In this section we describe the computational experiments performed to test the efficiency
of the GRASP heuristic. The procedures in our method have been implemented in C and
the mixed integer linear programming formulation described in Section 3.2 have been
solved using CPLEX 12.4, the most recent version of CPLEX when the experiments
were carried out. The results reported in this section have been obtained with an Intel
i7 @ 2.7 GHz and 4GB of RAM computer running Windows 7.

The metrics that we use to measure the performance of the algorithms are:

Value Average objective value of the best solutions obtained with the algorithm on the
instances considered in the experiment.



68 Chapter 3. The uncapacitated r-allocation p-hub median problem

Dev Average percentage deviation from the best-known solution (or from the optimal
solution, if available).

Best Number of instances in a set for which a procedure is able to find the best-known
solution.

CPU Average computing time in seconds employed by the algorithm.

3.3.5.1 Test problems

We have tested our algorithms on three sets of instances:

1. The CAB data set. From this original file, 75 instances with 25 nodes and
p ∈ {1, . . . , 5} and r ∈ {1, . . . , p} have been generated by several authors. The
following parameter values have been widely used: χ = 1, δ = 1, and α ∈
{0.2, 0.4, 0.6, 0.8, 1.0}.

2. The AP data set. The size of the original data file is 200 nodes. Smaller instances
can be obtained using a code from ORLIB. As with CAB, many authors have
generated different instances from the original file. We have extended this set of
instances by generating 360 instances with n = 40, 50, 70, 75, 80, 85, 90, 95, 100,
150, and 200 nodes. For those instances with 40 ≤ n ≤ 50, p ranges from 1 to 5. For
those with 70 ≤ n ≤ 95, p ranges from 1 to 8, and for those with 100 ≤ n ≤ 200,
p takes values between 1 and 20. In all these cases, r ∈ {1, . . . , p}. According
with previous articles, cost parameter values are χ = 3.00, α = 0.75, and δ = 2.
Regarding the flows between nodes, these instances do not have symmetric flows
(i.e., for a given pair of nodes i and j, tij is not necessarily equal to tji). Moreover,
flows from one node to itself can be positive (i.e., tii can be strictly positive for a
given i).

3. The USA423 data set. From the original data, 30 instances have been generated
with p ∈ {3, 4, 5, 6, 7} and 2 ≤ r ≤ p − 1. For each combination of parameters p
and r, two different values for χ, α, δ have been used: 0.10, 0.07, 0.09, and 0.09,
0.075, 0.08, respectively.

3.3.5.2 Scientific testing

From the set of 465 instances derived from the CAB, AP, and USA423 data sets described
before, we have used a subset of 45, with different sizes and values of p and r, to calibrate
the parameters in our method. Specifically, we have considered 15 instances in the
CAB set with n = 25 and p ∈ {3, 4, 5}, and 30 AP instances with 50 ≤ n ≤ 200 and
p ∈ {3, 4, 5, 6, 7}. For these experiments, the instances used have been classified as small
(25 ≤ n ≤ 45), medium (50 ≤ n ≤ 95), and large (100 ≤ n ≤ 200).



3.3 A GRASP algorithm 69

The constructive method In our first experiment we study the constructive method
described in Section 3.3.1 in terms of solution quality and diversification power. Clearly,
the performance of this solution generator depends on the value of its two parameters,
β, defining the size of the RCL, and k, determining the number of elements in which
the evaluation is based on. In order to determine the most effective values for these
parameters, we have created a measure of diversity for a set of solutions. We believe
that, to perform an effective exploration of the solution space, the constructive method
has to be able to generate solutions of a different structure which, in our specific problem,
can be interpreted in terms of using different hubs. Therefore, we compute the number of
different hubs used in a set of constructed solutions. Specifically, given a set of solutions
P = {S1, S2, . . . , Sq}, where H1, H2, . . . , Hq are their corresponding sets of hubs, the
diversity measure, div (P ) , is the number of elements in the set obtained as the union
of these sets of hubs. In mathematical terms,

div (P ) =
∣∣∣∣∣
q⋃
i=1

Hi

∣∣∣∣∣ .
This diversity metric can be easily interpreted as the number of different hubs in the set
of solutions. The larger this value is, the more diversity the algorithm is able to produce
in terms of hubs. In the first experiment we have generated q = 100 solutions with the
constructive method, k = 1.0, and different values of α.

Table 3.1. Constructive method with different β values

β Dev Best div CPU

0.1 11.0% 12 27 0.483
0.2 6.7% 12 41 0.486
0.3 6.7% 3 51 0.485
0.4 5.3% 6 56 0.484
0.5 5.4% 2 58 0.485
0.6 4.7% 3 61 0.489
0.7 4.6% 2 62 0.493
0.8 3.3% 13 64 0.485
0.9 3.3% 11 64 0.487

Random 3.5% 10 62 0.468

Table 3.1 shows the metrics described above: Dev, Best and CPU, as well as the av-
erage diversity measure, div, on the 45 instances of the training set. This table indicates
that the best solutions in terms of quality are obtained with β = 0.8, since the algorithm
is able to obtain an average percentage deviation of 3.3% and 13 best known solutions,
which compares favorably with the other results. Moreover, with β = 0.8, we also obtain
the best results in terms of diversity (div= 64), which is larger than or equal to the rest
of div values in this table. We therefore set β = 0.8 in the rest of the experiments.



70 Chapter 3. The uncapacitated r-allocation p-hub median problem

Table 3.2. Constructive method with different k values

µ Dev Best div CPU

0.8 1.4% 30 63 0.480
0.9 1.6% 28 63 0.462
1.0 1.1% 33 64 0.462
1.1 1.2% 28 63 0.462
1.2 0.9% 31 64 0.462
1.3 1.8% 27 63 0.461
1.4 2.0% 25 63 0.462
1.5 1.7% 26 63 0.461
1.6 1.9% 26 63 0.462
1.7 1.8% 27 63 0.462
1.8 1.6% 29 63 0.462
1.9 1.4% 26 63 0.462
2.0 1.5% 25 63 0.463

Table 3.2 shows the results of the second experiment in which we run the constructive
method with different values of the k parameter on the training set instances. We
compute the value of k as a function of the instance size, giving values to µ in the
expression k =

⌊
µnp

⌋
. Results in this table show that µ = 1.0 obtains the best values

in terms of quality (column Best) and diversity (column div). We therefore set β = 0.8
and µ = 1.0 in the rest of the experiments.

With the goal of supporting our conclusions about the performance of the proposed
procedures, we have performed the non-parametric Friedman test for multiple correlated
samples to the best solutions obtained by the proposed constructive method with each
parameter value in Tables 3.1 and 3.2. This test computes, for each instance, the rank
value of each method according to solution quality. Then, it calculates the average rank
value for each method across all instances. If the averages differ greatly, the associated p-
value or level of significance is small. The resulting p-values of 0.001 and 0.034 obtained
with the individual best values in Tables 3.1 and 3.2, respectively, indicate that there are
statistically significant differences among the variants tested. The ranks values produced
by these tests confirm the selection of β = 0.8 and µ = 1.0.

Algorithm designs With the search parameters set as indicated above, we proceed
to compare the relative merit of the GRASP variants. In particular, we explore the
contribution of the three local search algorithms proposed in Section 3.3.3, LSH , LSA1
and LSA2, when applied separately or in combination. Table 3.3 reports the results of
five different methods when solving the 45 instances in the training set by generating
100 solutions for each instance. The first one, C, is simply the constructive method
with no local search and it is considered as a baseline in this experiment. The next
two are GRASP algorithms formed with the constructive method plus either LSH or



3.3 A GRASP algorithm 71

LSA2, denoted C + LSH and C + LSA2, respectively. Finally, the last two GRASP
methods combine in their local search phase LSH with LSA1 or with LSA2. In particular,
in C + LSH + LSA1, each constructed solution is improved first with LSH , and the
resulting local optimum is then submitted to LSA1, which provides the output of the
entire method. Similarly, C + LSH +LSA2 applies LSA2 to the solutions obtained with
LSH . Table 3.3 shows the average results obtained according to the size of the instances,
classified as small (1 ≤ n ≤ 45), medium (50 ≤ n ≤ 95) , and large (100 ≤ n ≤ 200).

Table 3.3. Comparison of GRASP variants

Algorithm Size Dev CPU

C

small 6.32% 0.01
medium 10.81% 0.09

large 8.59% 0.21
Total 8.11% 0.09

C + LSH

small 0.46% 0.55
medium 0.06% 34.87

large 0.10% 179.16
Total 0.25% 61.90

C + LSA2

small 6.00% 0.33
medium 10.59% 18.99

large 8.38% 169.66
Total 7.85% 55.03

C + LSH + LSA1

small 0.35% 0.56
medium 0.06% 34.94

large 0.09% 181.17
Total 0.20% 62.52

C + LSH + LSA2

small 0.00% 0.81
medium 0.00% 45.48

large 0.00% 260.83
Total 0.00% 88.80

Results in Table 3.3 clearly show that C + LSH + LSA2 obtains the best solutions
overall (0.00% deviation from best), although it requires the longest running times of
the five methods (88.80 seconds on average). Comparing the 0.25% average deviation
achieved by C + LSH on 61.90 seconds with the 7.85% achieved by C + LSA2 on 55.03
seconds, we can confirm that LSH performs a more efficient exploration of the search
space than LSA2. However, LSH is not able to reach the best known solutions by
itself, and it needs the post-processing of LSA2 to match the best values (as shown with
C + LSH + LSA2).

We have applied the Friedman test for paired samples to the data used to generate



72 Chapter 3. The uncapacitated r-allocation p-hub median problem

Table 3.3. The resulting probability value of 0.000 obtained in this experiment clearly
indicates that there are statistically significant differences among the five methods tested.
A typical post-test analysis consists of ranking the methods under comparison according
to the average rank values computed with this test. According to this, we obtain that
the C + LSH + LSA2 method is the best overall with an average rank of 1.36, followed
by C + LSH + LSA1 with an average rank of 2.24 and C + LSH with 2.40. Finally,
we obtain the two methods with larger rank values (as compared with the previous
methods): C + LSA2 (4.09) and C (4.91).

We compare now the results of C + LSH and C + LSA2 shown in Table 3.3 with
two well-known non-parametric tests for pairwise comparisons: the Wilcoxon test and
the Sign test. The former one answers the question: Do the two samples (solutions
obtained with both methods in our case) represent two different populations? The re-
sulting probability value of 0.000 indicates that the values compared come from different
methods. On the other hand, the Sign test computes the number of instances on which
an algorithm supersedes another one. The resulting probability value of 0.000 indicates
that C + LSH is the clear winner between both methods.

We study now the search profile of the most interesting combinations of local searches.
Figure 3.3 shows the progression of the average deviation found by three methods for the
training set of instances during 120 iterations of search time. The figure shows how most
improvements on the best solution obtained with the C + LSH + LSA2 and C + LSH
methods are achieved early in the search (i.e., within 10% of the number of iterations).
After that point, both methods stagnate, and only exhibit a marginal improvement in
the next iterations. On the other hand, C + LSA2 performs worse, with an average
percentage deviation of several orders of magnitude larger than the other methods.

Figure 3.3. Search profile.



3.3 A GRASP algorithm 73

The filtering mechanism In our next experiment we test the efficiency of the filtering
mechanism described in Section 3.3.4. Table 3.4 reports the results obtained with the
C + LSH+LSA2 method when running with different values of the two filter parameters:
tmax, the number of initial iterations for which we compute the mean µ̂P and standard
deviation σ̂P of the improvement achieved with the local search, and λ, the value to
compute the filtering threshold µ̂P + λσ̂P . Specifically, it reports the average Dev and
CPU, as in the previous experiments, and the average number of solutions discarded for
improvement, # of skip, out of the 100 solutions constructed.

Table 3.4. Filtering GRASP constructions

tmax λ Dev CPU # of skip

10

-1 0.152% 15.0 76.0
0 0.135% 34.4 44.5
1 0.000% 53.9 16.3
2 0.000% 60.7 4.2
3 0.000% 62.4 1.1

20

-1 0.151% 21.3 67.8
0 0.151% 39.1 39.9
1 0.072% 53.9 14.8
2 0.000% 59.4 2.9
3 0.000% 60.3 0.6

Table 3.4 shows that, as expected, the larger the λ value, the longer the CPU time.
In other words, with low λ values the method discards more constructed solutions and
therefore requires less CPU time than with larger values (given that it saves the com-
putation of the local search associated with the discarded solutions). For example, with
λ = 0 and tmax = 20, an average of 39.9 out of the 100 solutions constructed are dis-
carded and the method only applies the local search to the remaining solutions. This
has two consequences: the first one is that the CPU time is 39.1, which is lower than the
88.80 reported in Table 3.3 in which no filtering was applied and the 100 constructed
solutions were submitted to the local search. The second one is that the average per-
centage deviation is 0.151% instead of the 0.00% of the unfiltered GRASP. On the other
hand, this table shows that there are small differences when tmax = 10 or 20 with a
slightly improvement in the former case. Therefore, in the following experiments we
set tmax = 10 and denote the method as GRASP(λ) selecting the λ value in each
experiment according to this trade-off between computing time and solution quality.

3.3.5.3 Competitive testing

Comparison with optimal solutions In Section 3.2 we have described the mixed
integer formulation proposed by Yaman [103] for the UrApHMP. We have used CPLEX
to solve 105 small instances with n ranging from 25 to 50, and p, r ∈ {1, 2, 3, 4, 5}.



74 Chapter 3. The uncapacitated r-allocation p-hub median problem

Table 3.5 reports the average percentage deviation with respect to the optimal solution

Table 3.5. GRASP deviations from the optimal value

CPLEX GRASP(0) GRASP(3)

n p # ins CPU Opt Dev CPU Opt Dev CPU

25

1 5 37.92 5 0.00% 0.04 5 0.00% 0.05
2 10 25.42 10 0.00% 0.12 10 0.00% 0.21
3 15 21.62 15 0.00% 0.22 15 0.00% 0.49
4 20 18.85 15 0.17% 0.42 15 0.17% 1.17
5 25 17.30 24 0.03% 0.92 24 0.03% 2.14

Total 75 21.04 69 0.06% 0.48 69 0.06% 1.15

40

1 1 682.36 1 0.00% 0.16 1 0.00% 0.27
2 2 226.71 2 0.00% 0.56 2 0.00% 1.04
3 3 283.05 3 0.00% 0.79 3 0.00% 2.18
4 4 198.89 4 0.00% 2.48 4 0.00% 5.75
5 5 166.31 4 0.04% 4.18 4 0.04% 9.10

Total 15 240.80 14 0.01% 2.30 14 0.01% 5.16

50

1 1 3730.80 1 0.00% 0.27 1 0.00% 0.50
2 2 843.34 2 0.00% 1.09 2 0.00% 1.85
3 3 818.61 3 0.00% 3.29 3 0.00% 5.22
4 4 786.44 4 0.00% 7.16 4 0.00% 11.46
5 5 596.66 5 0.00% 11.01 5 0.00% 19.77

Total 15 933.49 15 0.00% 6.40 15 0.00% 10.97

of GRASP(λ) with λ = 0, which filters many constructions as shown above, and λ = 3,
in which the filter is basically not applied. Note that in this experiment, instead of
reporting the number of best solutions found, we report the number of instances in
which the method is able to match the optimal solution (Opt). This table also includes
the average running time in seconds employed by CPLEX to obtain the optimal solutions.

Table 3.5 shows that the GRASP method is able to obtain the optimal solution in
most cases. Both the filtered variant, GRASP(0), and the unfiltered one, GRASP(3),
obtain 98 optimal values out of the 105 instances considered. As a matter of fact, the only
difference between the results obtained with the two methods is the running time. Since
the values reported in this table are average values, we complement its information with
the range of the deviation and running times for the 7 instances in which the heuristic
is not able to match the optimum value. Specifically, the CPU of GRASP(0) ranges
in these instances from 0.16 to 2.92 seconds, while its percentage deviation ranges from
0.21% to 0.95%. It is worth mentioning that CPLEX requires up to 2 hours of computing
time to obtain the optimal value on some of the instances with n = 50, and that larger
instances cannot be solved due to memory requirements. Therefore, we cannot provide
the optimal values for larger instances.



3.3 A GRASP algorithm 75

Comparison with optimal assignments As it has been described before, to obtain
a solution for this problem we face a three step process:

1. Selecting the p hubs,

2. Determining the assignments of each node to r of the p hubs, and

3. Identifying, for each pair of nodes, the optimal route through the appropriated
hubs.

In the previous section, we have considered the linear integer formulation in [103] to
obtain the optimal solution for the small instances of this problem. In order to measure
the quality of the results obtained with our method, and considering that we cannot solve
larger instances using this formulation, we have adapted this formulation to optimally
solve the assignment and routing subproblems (steps 2 and 3 above). In particular, we
first use our heuristic to select the set H of p hubs. Then, to assign the nodes to hubs
and compute the traffics among nodes, we solve the following integer problem:

min
∑
i∈V

∑
j∈V

∑
k∈H

∑
l∈H

tij (χdik + αdkl + δdlj)xijkl (3.10)

Subject to∑
k∈H

zik ≤ r, ∀i ∈ V (3.11)

∑
k∈H

∑
l∈H

xijkl = 1, ∀i, j ∈ V (3.12)

∑
l∈H

xijkl ≤ zik, ∀i, j ∈ V, ∀k ∈ H (3.13)

∑
k∈H

xijkl ≤ zjl, ∀i, j ∈ V, ∀l ∈ H (3.14)

∑
k∈H

xijkl ≤ zjl, ∀i, j ∈ V, ∀l ∈ H (3.15)

xijkl ≥ 0, ∀i, j ∈ V, ∀k, l ∈ H (3.16)

zik ∈ {0, 1} , ∀i ∈ V, ∀k ∈ H. (3.17)



76 Chapter 3. The uncapacitated r-allocation p-hub median problem

Table 3.6. GRASP deviations from the assignment and routing optimal values on AP
instances

Size n # instances Opt Dev

Medium

70 35 35 0.00%
75 35 35 0.00%
80 35 35 0.00%
85 35 35 0.00%
90 35 35 0.00%
95 35 35 0.00%

Total 210 210 0.00%

Large

100 36 36 0.00%
150 36 36 0.00%
200 36 36 0.00%

Total 108 108 0.00%

This formulation, in which the set of hubs is fixed, is a special case of the one described
in Section 3.2. We use it with CPLEX to obtain the optimal solution of the assignment
and routing subproblems for a specific set of hubs. It is clear that, since H has been
obtained heuristically, the optimality of the resulting solution cannot be guaranteed.
However, with this experiment, we are able to test whether our algorithm is obtaining
or not the optimal solution in steps 2 and 3 for a given solution of step 1.

Table 3.6 shows, for the 318 medium and large instances in the AP set, its number of
nodes (n), the number of instances (# instances) tested for each value of n, the number
of instances in which the GRASP obtains the optimal solution in steps 2 and 3 (Opt),
and the average percentage deviation with respect to the assignment and routing optimal
values (Dev). The results in this table clearly show that our GRASP algorithm is able
to match the optimal assignment and routing values in all the AP instances tested.

In order to study the behavior of our algorithm on larger instances, we have repeated
the above experiment on the set of 30 instances generated from the USA423 set. As it has
been mentioned, all the 30 instances have 423 nodes. Two different sets of values for the
cost parameters χ, α, δ have been used for each instance: 0.10, 0.07, 0.09 (denoted by A),
and 0.09, 0.075, 0.08 (denoted by B). The results are shown in Table 3.7. CPUGRASP

column denotes the maximum time allowed to the GRASP, while CPUCPLEX shows
the time needed by CPLEX to get the optimal allocation and routing values for the
set of p hubs obtained with the GRASP. All times are shown in minutes. Although
in these instances the GRASP algorithm cannot match the optimal assignment and
routing values, in our opinion the results shown in Table 3.7 are very good. They show
a deviation from the optimal values that never exceeds a 0.82% on average, and only in
two out of the 30 instances slightly exceeds 1%. CPLEX needs more than 20 hours of
computing time on average to solve these instances.



3.3 A GRASP algorithm 77

Table 3.7. GRASP deviations from the assignment and routing optimal values on the
USA423 instances

Cost parameters p # inst Dev CPUGRASP CPUCPLEX

A

3 1 0.00% 30 21.5
4 2 0.01% 30 224.5
5 3 0.12% 30 197.7
6 4 0.21% 60 148.1
7 5 0.82% 60 1232.1

B

3 1 0.00% 30 0.5
4 2 0.01% 30 52.6
5 3 0.20% 30 38.7
6 4 0.19% 60 627.5
7 5 0.78% 60 280.4

Comparison with previous heuristics As far as we know, there is no previous
heuristic for the UrApHMP, in which each node can be connected to at most r of the p
hubs. However, two particular cases of this general problem, the single and the multiple
allocation problems, have been extensively studied, so we can compare our method with
previously proposed heuristics for these two cases. In particular, in the uncapacitated
multiple allocation p-hub median problem, each node can send and receive traffic through
any of the p hubs, while in the uncapacitated single allocation p-hub median problem,
each node is assigned to one of the p hubs, only allowing sending and receiving traffic
through this single hub. Although we have designed our GRASP algorithm to solve the
general uncapacitated r-allocation p-hub median problem and it does not take advantage
of the specific characteristics of these two special cases, we can apply it to solve them and
to ascertain if the GRASP is able to compete with recently published methods specially
proposed for these multiple and single allocation versions.

Table 3.8. GRASP vs. evolutionary method with r = p

GRASP1 GRASP10 Evolutionary

n # inst Best Dev CPU Best Dev CPU Best Dev CPU

10 7 5 0.77% 0.00 7 0.00% 0.01 7 0.00% 0.05
20 7 6 0.27% 0.02 7 0.00% 0.10 7 0.00% 0.16
25 7 5 0.20% 0.04 7 0.00% 0.21 7 0.00% 0.24
40 9 7 0.28% 0.41 9 0.00% 1.94 9 0.00% 1.19
50 9 7 0.08% 0.83 8 0.00% 4.87 9 0.00% 7.36
100 11 6 0.22% 40.91 10 0.00% 321.00 10 0.01% 67.93
200 11 5 0.10% 780.42 9 0.00% 1879.25 9 0.08% 346.62

Total 61 41 0.25% 148.30 57 0.00% 373.12 58 0.01% 76.07



78 Chapter 3. The uncapacitated r-allocation p-hub median problem

Table 3.8 shows the results of our GRASP when solving the multiple allocation
version. This table shows the results obtained with the GRASP for a single iteration (one
construction plus the local search), denoted GRASP1, and for 10 iterations, GRASP10.
The table also reports the results of the evolutionary approach recently proposed by
Milanovic [71] for the multiple allocation version. The three algorithms are applied on
the 61 AP instances reported in that paper. Specifically, Table 3.8 shows the size and
number of instances in each row, and, for each method, the number of instances in which
it obtains the best known solution, the average percentage deviation with respect to this
best, and the CPU in seconds. Note that in GRASP10 the time reported corresponds to
the total CPU required for the 10 iterations. Results for the evolutionary method are
directly taken from Milanovic [71], and therefore running times are only indicative and
cannot be directly compared with GRASP computing times.

Results in Table 3.8 clearly show that the GRASP algorithm is able to obtain state–
of–the–art results for the multiple allocation problem. Even GRASP1, the version in
which only one solution is generated, performs remarkably well, obtaining results of
similar quality to those reported with the evolutionary method by Milanovic [71], specif-
ically designed for this problem. As expected, the GRASP10 variant, in which the
method is applied for 10 iterations, is more time consuming than GRASP1, and is able
to match, and in some cases surpass, the evolutionary method. In particular, it obtains
a new best known value of 92646.38 in the AP instance with n=200 and p=15 for which
the previously best known value was 92669.64.

Table 3.9. GRASP vs. GA with r = 1

GRASP1 GRASP10 GA

n p Dev CPU Dev CPU Dev CPU

100

2 0.04% 0.17 0.04% 0.98 0.00% 13.29
3 0.00% 0.41 0.00% 4.38 0.00% 16.64
4 0.03% 0.41 0.03% 4.40 0.00% 17.76
5 0.04% 0.91 0.04% 5.29 0.00% 22.11
10 0.00% 3.47 0.00% 34.80 0.00% 40.73
15 1.43% 8.42 0.26% 111.51 0.00% 57.54
20 0.04% 16.08 0.04% 67.89 0.00% 79.20

200

2 0.00% 1.82 0.00% 15.88 0.00% 100.72
3 0.07% 3.61 0.07% 43.48 0.00% 111.77
4 0.03% 5.78 0.03% 30.48 0.00% 131.16
5 0.45% 10.08 0.26% 54.43 0.08% 169.73
10 0.39% 39.63 0.39% 454.83 0.00% 259.14
15 1.07% 142.34 0.56% 1213.85 0.04% 313.02
20 1.88% 331.82 0.11% 3432.02 0.20% 374.75

Average 0.39% 40.35 0.13% 391.02 0.02% 121.97



3.3 A GRASP algorithm 79

Table 3.9 shows the results for the single allocation problem. As in the previous
experiment, we report the results with GRASP1 and GRASP10. We also report in this
table the results of the Genetic Algorithm (GA) described in Kratica et al. [55]. This
table shows the Dev and CPU values for each method on the 14 AP instances reported
in that paper. To complement this comparison, Table 3.10 reports the results of our
two GRASP variants and the VNS approach presented by Ilic et al. [50] on the 8 AP
instances reported in that paper. These are the hardest AP instances for this problem.

Tables 3.9 and 3.10 show that the GRASP variants are able to obtain good results
on the single allocation version, although they behave slightly worse than the specialized
algorithms for this problem. In particular, the GA by Kratica et al. [55] shows an average
percentage deviation of 0.02% obtained in 121.97 seconds, while GRASP1 and GRASP10
obtain an average percentage deviation of 0.39% and 0.13% in 69.06 and 671.83 seconds,
respectively. The VNS by Ilic et al. [50] performs remarkably well since it is able to
achieve an average percentage deviation of 0.00% in 6.12 seconds. However, the GRASP
algorithm is not designed to exploit the particular characteristics of the single allocation
version of this problem, as it does the VNS, and the objective of this comparison is to
show that it performs relatively well across different types of p-hub location problems.

Table 3.10. GRASP vs. VNS with r = 1

GRASP1 GRASP10 VNS

n p Dev CPU Dev CPU Dev CPU

100

5 0.04% 0.91 0.04% 5.29 0.00% 0.08
10 0.00% 3.47 0.00% 34.80 0.00% 0.67
15 1.43% 8.42 0.26% 111.51 0.00% 3.22
20 0.04% 16.08 0.04% 67.89 0.00% 3.57

200

5 0.45% 10.08 0.26% 54.43 0.00% 5.16
10 0.39% 39.63 0.39% 454.83 0.00% 5.60
15 1.07% 142.34 0.56% 1213.85 0.00% 17.66
20 1.88% 331.82 0.11% 3432.02 0.00% 12.98

Average 0.66% 69.09 0.21% 671.83 0.00% 6.12

3.3.5.4 Run time distribution

Aiex, Resende, and Ribeiro observed [3] that the variable time-to-target-value in GRASP
usually has an exponential distribution. Time-to-target (TTT) plots display on the
ordinate axis the probability that an algorithm will find a solution at least as good as a
given target value within a given running time, shown on the abscissa axis. TTT plots
are used to characterize the running times of stochastic algorithms for combinatorial
optimization. Specifically, for each instance/target pair, the running times are sorted in



80 Chapter 3. The uncapacitated r-allocation p-hub median problem

increasing order. We associate with the i-th sorted running time ti a probability

pi =
( i−1

2 )
n

and plot the points (ti, pi). The resulting diagram shows the cumulative probability dis-
tribution plot and permits to check whether a given algorithm has or not an exponential
distribution.

Figure 3.4. Time to target plot.

We ran 100 times our GRASP for the UrApHMP on a representative instance, stop-
ping when a solution is found with objective value equal to the best known for this
instance. For each run we recorded the running time. Each run is independent of the
other by using a different initial seed for the random number generator. With these
100 running times, we plot the time-to-target plot (run time distributions) shown in
Figure 3.4, in which we add the theoretical exponential distribution. This experiment
confirms the expected exponential runtime distribution for our GRASP. Therefore, linear
speed is expected if the algorithm is implemented in parallel.



3.3 A GRASP algorithm 81

3.3.6 Concluding remarks

We have developed in this section a heuristic procedure based on the GRASP methodol-
ogy that provides high quality solutions for the uncapacitated r-allocation p-hub median
problem. We have explored the critical issue of which solution-generation-method proves
effective to obtain a good set of solutions in terms of quality and diversity. We have
defined three neighbourhoods in the local search and a filtering mechanism to selectively
apply it. Overall experiments with 465 instances have been performed to assess the merit
of the procedures developed here. Our implementation has shown to be competitive in
a set of instances previously reported in the Literature. Moreover, the procedure has
been shown to be robust in terms of solution quality within a reasonable computational
effort. The proposed method has been also compared with the formulation implemented
in CPLEX and with previous heuristics for different p-hubs variants (single and multiple
allocation problems). The experimentation shows that the GRASP method is able to
obtain high quality solutions across different p-hub median problems.



82 Chapter 3. The uncapacitated r-allocation p-hub median problem

3.4 A scatter search algorithm

Scatter Search (SS) may be considered, from the standpoint of a metaheuristic classi-
fication, as a population-based algorithm [59] that constructs solutions by combining
others to efficiently solve NP-hard optimization problems. It derives its foundations
from strategies originally proposed for combining decision rules and constraints in the
context of integer programming [43, 45, 67]. Path-relinking (PR) was originally proposed
in the context of tabu search [42, 83, 88] as a method to find high quality solutions in
the path between two good solutions.

If solutions of a combinatorial optimization problem are seen as points in a space,
the exploration of this space is done in scatter search by evolving a set of reference
points. These points define a set, known as Reference Set (RefSet), and typically consist
of good solutions obtained by prior problem solving efforts. A given iteration of the SS
method generally consists of three main steps: to combine the solutions of RefSet, to
improve the solutions obtained, and to update RefSet with the resulting solutions that
are better than those currently in RefSet. In the next sections we explain how these
steps are adapted to solve the UrApHMP.

Figure 3.5. Scheme of the proposed scatter search algorithm

As shown in Figure 3.5, scatter search starts by generating a set Pop of diverse solu-



3.4 A scatter search algorithm 83

tions (further details will be given in Section 3.4.1). Then, it selects β of them to create
RefSet. The standard design selects the best β

2 solutions in Pop, and then the most
diverse β

2 solutions w.r.t. the solutions already in RefSet (for more details, see Section
3.4.2). The main loop of the method consists of applying the combination method to all
the pairs of solutions in RefSet. As it will be described in Section 3.4.4, path-relinking is
the method we will use to create new solutions from each pair of solutions selected from
RefSet. Path-relinking is an intensification strategy to explore trajectories connecting
good (also known as elite) solutions obtained by other heuristic methods. When hy-
bridizing both methodologies, SS and PR, it seems natural to consider path-relinking
as the method for combining the solutions in RefSet, generating paths between and be-
yond these reference points. Once a new solution has been obtained, the SS mechanism
decides whether it is included or not in RefSet. We have implement a standard RefSet
update method that only includes a solution in RefSet if it is better than the worst
solution and if it also provides sufficient diversity according to a “distance” between the
solution and RefSet. Finally, the improvement method we propose to apply to the solu-
tions found is described in Subsection 3.4.6. In what follows we describe the application
of the methods that conform of the scatter search methodology to solve the UrApHMP.

3.4.1 The diversification generator method

The diversification generator method (DGM) yields a population Pop of π initial feasible
solutions for the problem. It seeks to balance solutions’ quality, in terms of cost, and
diversity, in terms of attributes, and can be seen as the mechanism that creates the
first generation of solutions. If the attributes of this first generation of solutions are
good, there is some confidence of getting better solutions in the following iterations after
strategically combining them.

To create Pop, we have developed and tested seven different DGM for the UrApHMP.
Six of them are based on GRASP constructions that differ among them in the imple-
mentation designs and in the different expressions for the evaluations of hubs that will
be used in each of the solutions. The seventh is simply a random construction to provide
diversity to Pop.

As it is well known, in the semi-greedy implementation of GRASP, each element of
a solution is iteratively selected by evaluating all candidate elements with respect to a
greedy function g that measures their attractiveness. Only the q elements with best g
values are placed in a restricted candidate list (RCL), where q is a search parameter.
Then, an element in the RCL is randomly selected, according to a uniform distribution,
to become part of the solution. The values of g are updated at each iteration to reflect
the changes brought on by the selection of the previous element. An interesting variant
of the classic GRASP design has been recently proposed in [84]. It is based on a sampled
greedy that first builds a RCL by uniformly sampling q elements at random. Then, g is
evaluated over these q elements. The RCL element with the best g value is added to the
solution under construction. In both GRASP implementation, the value of q controls the
trade-off between greediness and randomness. In the first design, lower q values favor



84 Chapter 3. The uncapacitated r-allocation p-hub median problem

greedy selection (w.r.t. randomization), while this is obtained with large q values in the
second design.

In our implementation, we have based the g evaluation for the selection of the p hubs
on a cost criterion. Let h ∈ V be a candidate node to be used as hub. If h were a hub,
it would be used for the transportation of the traffics among some terminals, possibly
the ϕ terminals i1, . . . , iϕ with lower assignment cost to h, where ϕ is a given parameter.
We then compute g(h) as:

g(h) =
s=ϕ∑
s=1

cost(is, h), ∀h ∈ V,

where cost(i, h) represents the assignment cost of terminal i to hub h. We propose
several ways for computing cost(i, h). In all of them, let −→Ti = ∑

j∈V tij be the sum of
all the traffics from i to all nodes j. Similarly, let ←−Ti = ∑

j∈V tji be the sum of all the
traffics from all nodes j to node i. The different alternatives for computing the cost
functions are:

Type 1 Here, cost(i, h) is computed as the cost of sending−→Ti from i to h, i.e., cost(i, h) =
dih
−→
Ti . This evaluation cost is the one proposed in Section 3.3.1 and produces good

quality solutions.

Type 2 Now, we also consider the cost of receiving the incoming traffic ←−Ti for i from
h, hence cost(i, h) = dih

−→
Ti + dhi

←−
Ti .

Type 3 In addition to the costs of transporting the incoming an outgoing traffics,
we consider here some of the discounting factors that are usually present in the
UrApHMP. To do this, we enrich the cost expression as cost(i, h) = χdih

−→
Ti +

α+ δ

2 dhi
←−
Ti , where χ, α and δ are the unit rates for collection (origin-hub), transfer

(hub-hub), and distribution (hub-destination), respectively (see, for instance, [103]).

The three types of cost functions above, combined with the two GRASP designs (the
semi-greedy and the sampled greedy), are applied to populate Pop. As it will be shown
later, they have proven to be effective to obtain a balanced Pop set of good quality and
diverse solutions. We call these methods DGM1 to DGM6, as shown in Table 3.11. A
last method, called DGM7, is based on the notion of constructing solutions at random by
simply generating random sets of p hubs, helping to create a limited amount of solutions
not guided by an evaluation function to just bring diversity to Pop for avoiding premature
convergence of the algorithm.

Once the p hubs are selected for a solution, the following step is to allocate r of the
p hubs to each terminal. Let H i ⊆ H be the set of the r hubs assigned to terminal i in
a solution. For any terminal i we compute the following estimation of the assignment
cost of i to a hub h as:

assignment(i, h) = dih
−→
Ti +

∑
j∈V

dhjtij .



3.4 A scatter search algorithm 85

Table 3.11. Classification of the different diversification generation methods.

Semi-greedy Sampled greedy
Type 1 DGM1 DGM4
Type 2 DGM2 DGM5
Type 3 DGM3 DGM6

Then, we assign to i the hub ha with the lowest assignment cost. Then, ha ∈ H i. For
the remaining assignments to i, the above expression is updated to reflect the previous
assignments:

assignment(i, h) = dih
−→
Ti +

∑
j∈V \Hi

dhjtij −
∑
u∈Hi

diutiu, ∀h ∈ H \H i.

This process is done in a greedy way, selecting at each iteration the lowest assignment
cost. Note that the assignment expressions are an estimation, because they assume
that there is only one hub h in the path between any pair of nodes i and j, which is not
necessarily true. Finally, we route all the traffics at their minimum cost, like we have
previously explained in Section 3.3.1.

Once the p hubs have been located, r hubs have been assigned to each node and all
the traffics have been routed, we have a feasible solution for the UrApHMP. A solution
is denoted, based on Section 3.3.2, by s = (H,A) and its cost by f(s), where H =
{h1, . . . , hp} ⊆ V is the set of hubs in the solution and A = [aij ]i=1,...,n;j=1,...,r , aij ∈ H

i,
is a matrix whose rows contain the r hubs assigned to each node.

3.4.2 The reference set construction method

Using methods DGM1 to DGM7, we generate π feasible solutions, but only β of them,
the best ones, will become part of RefSet. The notion of best solution is not limited here
to its quality, as a measure given by the objective function, but also to the diversity that
each solution brings to RefSet in terms of its attributes.

The process to select the β solutions of Pop that will define RefSet is done as follows:
As the SS methodology specifies [59], we want to choose β

2 solutions attending their
quality. To do this, we order all solutions in Pop by ascending order of their costs and
introduce them, one by one, only if there is no other solution already introduced in
RefSet with the same cost. We stop this selection process after examining the 50% of
the solutions in Pop, even if they are less than β

2 solutions. The rest of the solutions
of RefSet will be selected from Pop by a diversity criterion process that tries to choose
those solutions of Pop that differ most from RefSet.

Given s /∈ RefSet and t ∈ RefSet, let C = {h : h ∈ Hs ∩Ht} be the set of common
hubs in solutions s and t. We define dH(s, t) = p − |C| as the number of hubs in s
not present in t (or viceversa). We can consider the lower the value of dH(s, t) is, the
closer s and t are. To select the solution s ∈ Pop to be included in RefSet, we define



86 Chapter 3. The uncapacitated r-allocation p-hub median problem

dist(s,RefSet) = mint∈RefSet dH(s, t). This distance is computed for all solutions in
Pop, and the solution s∗ with maximum value of dist(s,RefSet) is introduced in RefSet.
Another distance function, dA, has been defined to break a possible tie when two or
more solutions s1, . . . , sz ∈ Pop take the same dist value (dist(s1,RefSet) = . . . =
dist(sz,RefSet)). Distance dA is based on the assignments of terminals to the hubs in
C. Given s /∈ RefSet, t ∈ RefSet, and h ∈ C, let T hs be the set of terminals assigned
to hub h in solution s. Then |T hs ∩ T ht | gives the number of common assignments to h
in both solutions. We define dA(s, t) = minh∈C |T hs ∩ T ht |. If a tie occurs, we select the
solution with the maximum dA value.

3.4.3 The subset generation method

Once the RefSet has been created, the subset generation method (SGM) consists of
producing, at any iteration, different sets X ⊂ RefSet to serve as a basis for the appli-
cation of the combination method later on. The SGM we propose works by ordering
the solutions of RefSet in ascending order of their cost (from best to worst) and then
generating subsets defined by any two different solutions. To avoid the repetition of pre-
viously generated subsets at earlier iterations, each subset is generated only if at least
one of its solutions was introduced in RefSet in the preceding iteration. Suppose that
m subsets were not considered for this reason, then the number of resulting subsets at
each iteration for which the combination method will be applied is β2−β

2 −m.

3.4.4 The solution combination method

The solution combination method (SCM) is an element of scatter search that is context-
dependent. Although it is possible to design “generic” combination procedures, we
thought that it would be more effective to design the SCM based on the characteristics
of the UrApHMP. Our proposal for the SCM is a path-relinking implementation that is
applied to each subset generated in the previous step. As it has been mentioned, path-
relinking is an intensification procedure that explores paths (also called trajectories) in
the neighborhood space of two good solutions, generating intermediate solutions that
can eventually be better than the two being connected.

More formally, let G = (F,M) be the search space graph, where node set F is the
set of feasible solutions of the problem, and M is the set of edges associated with the
moves in the neighborhood structure. Given two solutions s, t ∈ F , a move is defined
as (s, t) ∈ M if and only if s ∈ N (t) and t ∈ N (s), where N is a given neighborhood
structure. The path-relinking operator explores a path P(s, t) that connects s and t
with the objective of finding solutions s∗ ∈ P(s, t) for which f(s∗) < min{f(s), f(t)}.
Let s be the “initial” solution of the path and t its “guiding” solution. This path is
generically accomplished by swapping out elements selected in s with elements in t,
generating a set of intermediate solutions. To obtain a first intermediate solution s′ in
the path P(s, t), we remove a hub v from Hs and replace it by a hub u in Ht, thus
obtaining Hs′ = Hs \ {v} ∪ {u}. Let ∆(s, t) be the set of attributes present in t but not
in s. In the UrApHMP, we define ∆(s, t) as the set of nodes that are hubs in t but not



3.4 A scatter search algorithm 87

in s. In mathematical terms, ∆(s, t) = {u : u ∈ Ht, u /∈ Hs}. Note that one or more
first intermediate solutions can be obtained when |∆(s, t)| > 1.

To combine the solutions in the subsets X generated from RefSet, the procedure we
have designed works as follows: For each subset X = {s, t}, we explore the path between
its two solutions. To do this, we consider as initial solution the one with worse value,
s. Then, we calculate ∆(s, t). If |∆(s, t)| ≥ 2, it means that at least two hubs of Ht are
not in Hs. If |∆(s, t)| ≤ 1, no path-relinking is necessary as there are no intermediate
solutions between s and t. Our PR generates m = |∆(s, t)|2 different solutions, and each
terminal node of these m solutions needs to be assigned to r of the hubs as a previous
step to know its value. The best of these m solutions, sδ, is saved and the remaining m−1
solutions are discarded as possible steps of this path. Replace s∗ by sδ if f(sδ) < f(s∗),
where s∗ is the best solution found in P(s, t) so far. This procedure is repeated while
|∆(s, t)| ≥ 2, and returns s∗ as the output. Note that f(s∗) is not necessarily better
than f(s) or f(t). All the generated solutions s∗ are stored in a set called Pool.

3.4.5 The reference set update method

The reference set update method (RSUM) is associated with each application of the
SGM. The update operation consists of maintaining a record of the β best solutions found
so far by the procedure. The issues related to this updating function are straightforward:
All the solutions in RefSet that are worse than those in the current Pool will be replaced
by these ones, with the aim of keeping in RefSet the β best and most different solutions
found so far. Let s ∈ Pool and w ∈ RefSet such that f(s) < f(w). In this case, s will
replace w if s is different from all other solutions in RefSet.

3.4.6 The improvement method

As mentioned in Section 3.4, three optimization subproblems arise when solving the
UrApHMP. Since we solve the routing subproblem optimally, we propose two improve-
ment procedures based on local search strategies for the other two subproblems: LSH
for the hub selection, and LSA for the terminal allocations. Both are based on the local
search procedures proposed in Section 3.3.3.

LSH implements a classical exchange procedure in which a hub hi is removed from H,
and a non-hub node h′i ∈ N \H replaces hi, thus obtaining H ′ = {h1, h2, . . . , h

′
i, . . . , hp}.

We have described in Section 3.3.3 a mechanism to determine the order of exploration of
the hubs in this procedure, but we have empirically checked that LSH performs better
in the scatter search scheme without this mechanism. Note that any change in H affects
the other components in s. Specifically, when hub hi is replaced by h′i, we need to re-
evaluate the hub assignment of at least all the vertices assigned to hi. Moreover, the
routes for the traffics are not necessarily optimal for the new set of hubs H ′. Hence,
since the solution structure changes that much, we evaluate all the routes from scratch.
As a classical local search procedure, LSH performs moves as long as the cost improves.
We have implemented here the so-called first strategy, in which the first improving move
is performed, instead of scanning the entire neighborhood to determine the best move.



88 Chapter 3. The uncapacitated r-allocation p-hub median problem

The local search procedure LSA is similar to LSH , but it considers changes in the as-
signment of terminals to hubs. In particular, for a node i withH i = {hi1, . . . , hia, . . . , hir},
this procedure exchanges an assigned hub with a non-assigned one. In mathematical
terms, we replace hia with h̄ia ∈ H \H i, thus obtaining H̄ i = {hi1, . . . , h̄ia, . . . , hir}.

3.4.7 Computational experiments

This section describes the computational experiments performed to test the efficiency
of the scatter search with path-relinking method we propose to solve the UrApHMP.
The procedure has been implemented in C and the results reported in this section have
been obtained with an Intel core i7–3770 at 3.40GHz and 16GB of RAM, under Ubuntu
14.04 GNU/Linux – 64 bits operating system. The metrics that we use to measure the
performance of the algorithms in a particular experiment are:

• Dev: Average percentage deviation with respect to the best solution found (or from
the optimal solution, if available).

• # Best: Number of best solutions found.

• CPU: Average computing time in seconds.

We use the same benchmark of instances that has been proposed for the GRASP method
of Section 3.3.5 from three well-known data sets: CAB, AP, and USA423.

The experiments are divided into two main blocks. The first block, described in
Section 3.4.7.1, is devoted to study the behavior of the components of the solution
procedure, as well as to determine the best values for the search parameters. The
second block of experiments, in Section 3.4.7.2, has the goal of comparing our procedure
with the best published methods.

3.4.7.1 Scientific testing

The first set of experiments to calibrate our method is performed on a subset of 47
instances: five instances from the CAB set with n = 25, and 42 instances with 40 ≤
n ≤ 200 from the AP set. We refer to these 47 instances as the training set and to the
remaining instances as the testing set.

The values of π, q and ϕ: We first study the values for the parameters used in
the diversification generator method: π (that determines how many solutions will be
constructed in Pop), q (that defines the size of the RCL in the DGM1–DGM6 methods),
and ϕ (that determines the number of elements in the evaluation for the selection of
hubs).

First, we have given parameter π two possible values: 100 and 150. For each instance
of the training set, we have constructed 0.15π solutions with each of the methods DGM1
to DGM6, to obtain a 90% of the initial solutions generated. The remaining solutions
(up to π) are obtained with DGM7, the random generator. In order to evaluate the



3.4 A scatter search algorithm 89

capacity of the DGM methods without taking into account the effect of the combination
and improvement methods, this experiment only considers the constructive phase, not
performing any of the subsequent elements of the scatter search procedure. The results
on the training set are shown in Table 3.12.

As expected (see Table 3.12), the best solutions in terms of quality are obtained with
π = 150. In this case, the algorithm obtains an average percentage deviation of 1.4% and
31 best known solutions. The CPU time for π = 150 is still reasonable, with virtually
no difference in small and medium instances. Although for the large instances, the CPU
values are slightly larger, we consider that the enhancement of the results worth the
CPU effort, so we set π = 150 in the rest of the experiments.

Table 3.12. Calibration of π for the DGM of SS.

Dev (%) # Best CPU

Size # inst 100 150 100 150 100 150

s (small) 8 2.1 0.0 2 8 0.0 0.0
m (medium) 27 2.2 0.6 8 19 0.2 0.3

l (large) 12 2.0 4.1 8 4 1.2 1.8
Summary 47 2.1 1.4 18 31 0.4 0.6

In the second experiment, we study the value of the parameter q that defines the
RCL size. To do this we have considered q = min{n2 , ωp}, where ω is another parameter
whose impact is studied next. For each instance of the training set, we have constructed
1
6π solutions with each DGM1 to DGM6 method but not with DGM7, because it is a
totally random procedure. As in the previous experiment, we have only considered the
constructive phase. The results for ω ∈ {2, 3, 4, 5} are presented in Table 3.13. Note
that the best solutions in terms of quality are obtained with ω = 5. With this value, we
have obtained an average percentage deviation of 1.4% and 26 best known solutions. In
order to compare the results, we have performed the well-known non-parametric Fried-
man test. The resulting probability value of 0.000006981 indicates that the compared
values come from different methods. Moreover, we do not appreciate differences in the
CPU times among the different values of ω, so we set ω = 5 from now on.

Now we study the value of ϕ, the number of terminals appearing in the computation
of g(h). This number is computed as ϕ = bλnp c, where λ ∈ {1.0, 1.2, 1.5, 1.7, 2.0}. Again,
we have constructed 1

6π solutions with methods DGM1 to DGM6 for each instance of
the training set, using only the constructive phase of SS. The results for the different
values of λ are shown in Table 3.14. It seems there is not a clear value of λ outperforming
the others, hence, we have compared the results using the Friedman test. The resulting
probability value of 0.1461 confirms that the compared values do not present significant
differences. Considering that the best average deviation was found for λ = 1, ϕ = bnp c
is the value we have finally chosen for the rest of the experiments.



90 Chapter 3. The uncapacitated r-allocation p-hub median problem

Table 3.13. Calibration of ω for the DGM of SS.

Dev (%) # Best CPU

Size # inst 2 3 4 5 2 3 4 5 2 3 4 5

s 8 2.1 1.7 1.8 0.6 5 1 3 4 0.0 0.0 0.0 0.0
m 27 7.4 5.0 3.6 1.3 3 4 4 16 0.2 0.2 0.2 0.2
l 12 8.9 3.3 3.4 2.4 1 2 3 6 1.1 1.1 1.2 1.2

Summary 47 6.9 4.0 3.2 1.4 9 7 10 26 0.4 0.4 0.4 0.4

Table 3.14. Calibration of ϕ through λ for the DGM of SS.

Dev (%) # Best CPU

Size # inst 1 1.2 1.5 1.7 2 1 1.2 1.5 1.7 2 1 1.2 1.5 1.7 2

s 8 1.4 3.1 3.1 3.1 3.0 4 1 0 3 1 0.0 0.0 0.0 0.0 0.0
m 27 3.1 4.3 3.8 2.9 2.6 7 3 3 9 7 0.2 0.2 0.2 0.2 0.2
l 12 3.0 1.5 5.0 4.5 3.0 3 3 1 4 4 1.3 1.3 1.3 1.3 1.3

Summary 47 2.7 3.4 4.0 3.3 2.8 14 7 4 16 12 0.5 0.4 0.4 0.4 0.4

The value of β: In order to study the size of RefSet (β), we have constructed 0.15π
solutions with DGM1 to DGM6 for each instance of the training set. The remaining
solutions up to π are obtained with DGM7. In this experiment, we include in the
algorithm all elements of scatter search except the local searches, to evaluate the power
of the combination method (SCM) without the effects of the improvement procedures.
As it can be seen in Table 3.15, the higher the value of β, the better are the results.
However, this obviously implies higher computing times. We have compared the results
using the Friedman test for all the values of β tested. The resulting probability value of
0.0000 indicates that the results obtained for the different values of β are significantly
different. An important issue is to know if a similar deviation to the one obtained with
β = 10 can be obtained in shorter times with a smaller size of β by using the improvement
methods. This issue is the subject of the next experiment.

Table 3.15. Calibration of β for the DGM of SS.

Dev (%) # Best CPU

Size # inst 5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10

s 8 1.0 0.0 0.0 0.0 0.0 0.0 5 8 8 8 8 8 0.1 0.1 0.2 0.2 0.4 0.4
m 27 3.7 2.0 1.3 0.5 0.4 0.1 3 6 7 8 13 20 1.2 2.1 3.1 4.5 6.2 8.1
l 12 4.4 1.9 1.9 0.3 0.2 0.1 0 2 2 4 8 7 4.9 8.0 12.1 15.7 23.3 29.0

Summary 47 3.4 1.6 1.2 0.4 0.3 0.1 8 16 17 20 29 35 2.0 3.3 4.9 6.6 9.6 12.2

The effect of local searches: Now we study the effect of the improvement procedures
described in Section 3.4.6. Recall that two local searches have been proposed, one for



3.4 A scatter search algorithm 91

the hub selection (LSH) and another for the terminal allocations (LSA).
The standard SS design specifies to apply the improvement method to all the so-

lutions resulting from the combination method. Some previous works have proposed a
selective implementation of the local search procedures, reducing their application to
only the best solutions obtained from the combination method in each global iteration.
Since, due to the combinatorial nature of this problem, the local searches we propose are
quite time consuming,we go a step further and limit the application of the improvement
method to only the best solutions across all the global iterations. Specifically we have
designed our procedure in such a way it applies LSH and/or LSA only to the solutions
of RefSet just before the end of the algorithm. To evaluate the effect of the proposed
local searches, we have studied the following four variants:

A: LSH and LSA are applied to all the solutions.

B: LSH and LSA are applied to the best solution only.

C: LSA is applied to all the solutions.

D: LSA is applied to the best solution only.

In what follows we compare each variant above for each value of β (from 5 to 10).
Table 3.16 shows the results obtained on the 47 instances of the training set. Variants
C and D exhibit the worst results in terms of the number of best solutions found and
the deviation with respect to the best solutions found in this experiment. The results

Table 3.16. Computational results obtained with the four variants for the local search
procedures.

Dev (%) # Best CPU

Var Size # inst 5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10

s 8 0.0 0.0 0.0 0.0 0.0 0.0 7 8 8 8 8 8 0.2 0.2 0.3 0.4 0.5 0.6
A m 27 0.1 0.0 0.0 0.1 0.1 0.0 21 22 24 18 21 24 4.6 6.0 7.4 9.1 11.5 14.0

l 12 0.0 0.0 0.2 0.0 0.0 0.1 8 10 10 11 10 7 33.3 43.7 51.8 64.8 81.4 91.3
Summary 47 0.1 0.0 0.1 0.1 0.1 0.0 36 40 42 37 39 39 11.2 14.6 17.5 21.8 27.5 31.4

s 8 0.1 0.1 0.1 0.1 0.1 0.1 7 7 7 7 7 7 0.1 0.1 0.2 0.2 0.3 0.4
B m 27 0.2 0.2 0.2 0.3 0.2 0.0 14 16 18 12 13 19 2.0 2.7 3.9 5.1 6.7 8.3

l 12 0.1 0.1 0.4 0.2 0.1 0.2 6 5 5 3 6 5 10.8 13.8 17.7 25.5 34.4 40.7
Summary 47 0.2 0.2 0.2 0.2 0.1 0.1 27 28 30 22 26 31 3.9 5.1 6.8 9.4 12.7 15.2

s 8 3.0 2.7 2.7 2.4 2.4 2.4 0 0 0 0 0 0 0.1 0.1 0.2 0.3 0.4 0.5
C m 27 3.6 2.6 2.3 1.7 1.5 1.6 0 0 0 2 3 2 2.5 3.3 4.7 6.1 8.0 9.8

l 12 7.6 6.7 5.7 5.2 4.9 4.6 0 0 0 0 0 0 16.1 22.9 27.3 37.8 52.1 61.7
Summary 47 4.5 3.7 3.3 2.7 2.5 2.5 0 0 0 2 3 2 5.6 7.8 9.7 13.2 18.0 21.4

s 8 3.0 2.7 2.7 2.4 2.4 2.4 0 0 0 0 0 0 0.1 0.1 0.2 0.2 0.3 0.4
D m 27 3.6 2.6 2.3 1.7 1.5 1.6 0 0 0 2 3 2 1.6 2.3 3.4 4.7 6.4 8.0

l 12 7.6 6.7 5.7 5.2 4.9 4.6 0 0 0 0 0 0 7.6 11.0 14.5 21.7 30.9 37.7
Summary 47 4.5 3.7 3.3 2.7 2.5 2.5 0 0 0 2 3 2 2.9 4.1 5.7 8.3 11.6 14.3

clearly indicate that applying LSH to the solutions in RefSet substantially improves
their value (from 2.5% to 4.5% on average). Variant A exhibits a larger number of best
solutions found compared to variant B, what confirms that applying LSH and LSA to



92 Chapter 3. The uncapacitated r-allocation p-hub median problem

all the solutions of RefSet is useful to match the best known solutions. Nevertheless,
note that this exhaustive application of the local search procedures to all the solutions
in RefSet results in much higher CPU times (from 11.15 to 31.45 seconds in variant A
versus 3.94 to 15.24 in variant B). Despite the fact that variant B is not able to get some
of the best known solutions, the average deviation is very small (from 0.1% to 0.2%).
This indicates that, for short computing times, variant B obtains very good solutions
in terms of average deviation of the cost and, hence, is also a very good option. Both
variants, A and B, are the ones chosen to compare in Section 3.4.7.2 the SS procedure
with the previously proposed GRASP method of Section 3.3 for the UrApHMP.

Regarding the β parameter, and considering only variants A and B, it can be observed
that the best results in terms of Dev are obtained with values β = 6 and β = 10. In
order to compare both sets of results, we have performed two well-known non-parametric
tests for pairwise comparisons: the Wilcoxon test and the Sign test. The Wilcoxon test
answers the question: Do the two samples (in our case, the solutions obtained with
β = 6 and β = 10) represent two different populations? The resulting probability value
of 0.50 indicates that there are not statistical differences, meaning that the compared
values do not come from different methods. The Sign test computes the number of
instances on which an algorithm beats the other one. The resulting probability value of
1.0 corroborates the previous result. As the CPU effort is clearly lower with β = 6 than
with β = 10, we select β = 6 from now on.

3.4.7.2 Competitive testing

After the calibration process described before, we now compare the performance of our SS
algorithm versus the GRASP procedure proposed in Section 3.3, which as far as we know
is the best heuristic algorithm for the UrApHMP. All the methods under comparison
are run in the same computer.

As a summary, our SS with PR procedure is set as follows: we generate 150 initial
solutions; the size of the RCL when constructing solutions with methods DGM1 to
DGM6 is defined by min{n2 , 5p}; b

n
p c terminals are considered for the evaluation of each

hub candidate; the size of RefSet is set to six solutions; and both local search procedures
LSH and LSA are applied to the solutions of RefSet, using variants A and B, just before
the end of the algorithm.

The results with the two versions of the algorithm corresponding to variants A and
B, denoted SSA and SSB respectively, are summarized in Table 3.17. This table clearly
shows that, except in the small size instances, our SS procedures outperform the previ-
ously proposed GRASP method. In particular, although SSA and SSB match 16 out of
30 small size instances while GRASP is able to match 25, and their deviation is 0.10%
versus 0.06% in GRASP, the CPU time used by the SS methods is much shorter. Regard-
ing the medium size instances, we can observe that the behavior of SSB and GRASP are
similar, although the former uses 1/5 of the GRASP computing time. In these instances,
SSA performs better than GRASP (108 best solutions found and Dev 0.02% versus 79
best and Dev 0.18%) using less than 1/2 of the GRASP computing time. Detailed re-
sults for each instance can be found in Tables 3.18, 3.19, 3.20, and 3.21. Finally, in what



3.4 A scatter search algorithm 93

refers to the large size instances, both SS versions clearly outperform GRASP in terms
of Dev (0.01% and 0.07% versus 0.23% on average). Moreover, SSA is able to find a
larger number of best solutions (40 against 26 of SSB and 29 of GRASP, respectively),
although at a bigger computing time. Detailed results for each instance can be found in
Tables 3.22 and 3.23.

Table 3.17. Computational results on the CAB and AP instances

Dev (%) # Best CPU

Size n # inst SSA SSB GRASP SSA SSB GRASP SSA SSB GRASP

25 18 0.1 0.1 0.1 11 11 15 0.1 0.1 0.4
s 40 6 0.1 0.1 0.0 1 1 5 0.3 0.2 3.2

50 6 0.0 0.0 0.0 4 4 5 0.6 0.3 9.4
summary 30 0.1 0.1 0.1 16 16 25 0.2 0.1 2.8

60 21 0.0 0.2 0.4 19 11 5 2.7 1.4 4.6
65 19 0.0 0.5 0.3 12 7 10 3.3 1.6 6.4
70 19 0.0 0.2 0.3 14 10 15 4.2 2.0 11.0
75 18 0.0 0.2 0.0 9 9 15 4.5 2.1 9.2

m 80 18 0.0 0.3 0.1 13 8 8 6.5 3.0 14.9
85 18 0.0 0.1 0.1 13 12 9 6.7 3.0 15.6
90 21 0.0 0.1 0.1 15 12 8 8.0 3.6 22.9
95 21 0.0 0.0 0.1 13 10 9 9.8 4.1 24.3

summary 155 0.0 0.2 0.2 108 79 79 5.8 2.6 13.8
100 21 0.0 0.0 0.1 13 10 9 11.7 4.9 4.8

l 150 20 0.0 0.0 0.3 13 10 12 40.5 13.7 20.6
200 21 0.0 0.2 0.2 14 6 8 86.1 27.5 58.9

summary 62 0.0 0.1 0.2 40 26 29 46.2 15.4 28.2

In order to compare the results obtained with SSA, SSB, and GRASP from a sta-
tistical point of view, we have performed first the non-parametric Friedman test. The
resulting probability value of 0.000 indicates that the results are significantly different.
The ranks values produced by this test are 1.77 for SSA, 2.09 for GRASP, and 2.15 for
SSB. Then, we have performed the non-parametric Wilcoxon and Sign tests for pairwise
comparisons. When comparing SSA with SSB and SSA with GRASP, the resulting prob-
ability values of 0.000 indicate that the compared results come from different methods.
When comparing SSB with GRASP, the resulting probability of 0.53 indicates that there
are no significant differences between the two methods regarding the results obtained.

To complement this analysis, we have carried out a final comparison on very large
size instances. Table 3.24 shows the result of SSA, SSB, and GRASP on the USA423
instances described in Section 3.3.5.1. Procedures SSA and SSB have been run with the
parameters specified at the beginning of this section, while GRASP parameters’ values
are specified in Section 3.3.5.2. As shown in this table, SSA and GRASP are run for the
same running time. This table confirms the superiority of SSA compared to GRASP,
since the former exhibits an average percent deviation of 0.3% and GRASP only achieves
a 4.5%. The resulting probability of 0.01 of the non-parametric pairwise Wilcoxon test
confirms this conclusion. Additionally, SSB is very competitive since it obtains slightly



94 Chapter 3. The uncapacitated r-allocation p-hub median problem

Table 3.18. Computational results on medium-sized hard instances

DEV (%) CPU

Inst p r χ α δ SSA SSB GRASP SSA SSB GRASP Best known

AP60 3 2 3 0.75 2 0.0 0.0 1.3 0.41 0.17 0.30 157493.38
AP60 4 2 3 0.75 2 0.0 0.3 1.8 0.62 0.27 0.48 142412.35
AP60 4 3 3 0.75 2 0.0 1.7 0.1 0.87 0.39 1.24 142268.41
AP60 5 2 3 0.75 2 0.0 0.2 0.0 0.90 0.44 1.06 130186.83
AP60 5 3 3 0.75 2 0.0 0.0 0.2 1.19 0.57 2.18 129680.76
AP60 5 4 3 0.75 2 0.0 0.0 0.1 1.52 0.72 2.86 129652.93
AP60 6 2 3 0.75 2 0.0 0.0 0.0 1.38 0.70 1.52 122365.30
AP60 6 3 3 0.75 2 0.0 0.3 0.3 1.93 0.96 1.63 122066.63
AP60 6 4 3 0.75 2 0.0 0.3 0.3 2.54 1.22 4.51 121979.40
AP60 6 5 3 0.75 2 0.0 0.3 0.0 3.11 1.51 4.55 121979.40
AP60 7 2 3 0.75 2 0.0 0.0 0.1 1.57 0.96 2.76 116380.78
AP60 7 3 3 0.75 2 0.0 0.2 0.5 2.45 1.24 3.22 116003.39
AP60 7 4 3 0.75 2 0.0 0.1 0.1 3.21 1.43 5.09 115959.96
AP60 7 5 3 0.75 2 0.0 0.1 0.1 4.20 1.89 7.31 115951.78
AP60 7 6 3 0.75 2 0.0 0.0 0.1 4.64 2.10 7.75 115951.78
AP60 8 2 3 0.75 2 0.0 0.0 1.1 2.05 1.30 2.98 110041.02
AP60 8 3 3 0.75 2 0.0 0.0 0.4 2.96 1.49 6.40 109888.11
AP60 8 4 3 0.75 2 0.0 0.0 0.5 3.65 2.06 6.82 109668.92
AP60 8 5 3 0.75 2 0.0 0.0 1.2 4.61 2.53 6.53 109651.38
AP60 8 6 3 0.75 2 0.0 0.0 0.0 6.73 3.62 11.39 109651.38
AP60 8 7 3 0.75 2 0.0 0.0 0.0 6.71 3.71 15.80 109651.38
AP65 3 2 3 0.75 2 0.0 2.1 0.0 0.43 0.21 0.69 157509.77
AP65 4 2 3 0.75 2 0.1 0.7 0.0 0.82 0.40 0.82 142702.65
AP65 4 3 3 0.75 2 0.0 0.0 0.3 0.94 0.43 1.18 142632.42
AP65 5 2 3 0.75 2 0.0 0.0 0.0 1.09 0.46 1.51 130848.81
AP65 5 3 3 0.75 2 0.0 0.0 0.0 1.47 0.57 4.16 130127.46
AP65 5 4 3 0.75 2 0.0 0.0 0.0 1.88 0.73 3.03 130094.52
AP65 6 2 3 0.75 2 0.0 0.0 1.7 1.75 0.92 1.81 123292.08
AP65 6 3 3 0.75 2 0.0 1.5 0.0 2.14 1.02 4.09 122959.75
AP65 6 4 3 0.75 2 0.0 1.4 0.1 3.09 1.31 4.40 122871.81
AP65 6 5 3 0.75 2 0.0 1.4 0.1 3.79 1.64 6.62 122871.81
AP65 7 2 3 0.75 2 0.1 0.1 0.0 2.58 1.18 2.76 116951.08
AP65 7 3 3 0.75 2 0.2 0.2 0.0 3.17 1.55 6.52 116665.46
AP65 7 4 3 0.75 2 0.0 0.0 0.8 4.21 1.96 8.41 116601.77
AP65 7 5 3 0.75 2 0.0 0.0 0.9 5.53 2.45 9.19 116590.58
AP65 7 6 3 0.75 2 0.0 0.0 0.9 6.48 2.99 14.49 116590.58
AP65 8 2 3 0.75 2 0.0 0.0 0.0 2.83 1.51 3.85 111622.72
AP65 8 4 3 0.75 2 0.0 1.0 0.0 4.43 2.41 12.57 111239.47
AP65 8 6 3 0.75 2 0.0 0.0 0.1 7.59 4.08 13.18 111231.25
AP65 8 7 3 0.75 2 0.0 1.0 0.1 9.41 4.30 22.31 111231.25



3.4 A scatter search algorithm 95

Table 3.19. Computational results on medium-sized hard instances (continuation)

DEV (%) CPU

Inst p r χ α δ SSA SSB GRASP SSA SSB GRASP Best known

AP70 3 2 3 0.75 2 0.0 0.0 2.0 0.62 0.26 0.56 158038.30
AP70 4 2 3 0.75 2 0.1 0.1 0.0 0.99 0.43 1.95 142720.05
AP70 4 3 3 0.75 2 0.0 0.0 1.0 1.22 0.53 1.70 142626.15
AP70 5 2 3 0.75 2 0.2 0.2 0.0 1.58 0.65 2.51 132562.81
AP70 5 3 3 0.75 2 0.0 0.0 0.0 1.96 0.76 4.56 132100.10
AP70 5 4 3 0.75 2 0.0 0.0 0.0 2.58 0.97 6.15 132055.96
AP70 5 3 3 0.75 2 0.0 0.0 0.0 3.40 1.59 6.29 123645.87
AP70 5 4 3 0.75 2 0.0 0.0 0.0 3.93 2.03 5.49 123601.74
AP70 5 5 3 0.75 2 0.0 0.0 0.0 4.82 2.54 7.18 123601.74
AP70 7 2 3 0.75 2 0.2 0.2 0.0 2.42 1.35 6.07 117996.74
AP70 7 3 3 0.75 2 0.0 0.0 0.0 3.32 1.75 11.29 117525.65
AP70 7 4 3 0.75 2 0.0 0.0 0.0 4.54 2.06 11.29 117485.79
AP70 7 5 3 0.75 2 0.0 0.0 0.0 5.65 2.71 12.06 117485.26
AP70 7 6 3 0.75 2 0.0 0.0 0.0 6.36 3.25 15.83 117485.26
AP70 7 3 3 0.75 2 0.0 0.7 0.0 4.19 1.94 8.58 112134.88
AP70 7 4 3 0.75 2 0.0 0.6 0.6 5.78 2.63 16.02 112098.09
AP70 7 5 3 0.75 2 0.0 0.6 0.0 7.23 3.11 16.82 112082.12
AP70 7 6 3 0.75 2 0.0 0.6 0.0 8.96 4.23 24.68 112082.12
AP70 7 7 3 0.75 2 0.0 0.6 1.1 10.24 5.04 49.23 112082.12
AP75 3 2 3 0.75 2 0.1 0.1 0.0 0.76 0.31 0.58 158171.28
AP75 4 2 3 0.75 2 0.0 0.0 0.0 1.45 0.58 2.14 142854.97
AP75 4 3 3 0.75 2 0.1 1.1 0.0 1.75 0.66 2.14 142668.41
AP75 5 2 3 0.75 2 0.0 0.0 0.0 2.00 0.79 3.37 132822.87
AP75 5 3 3 0.75 2 0.0 0.0 0.0 2.39 0.92 4.66 132387.75
AP75 5 4 3 0.75 2 0.0 0.0 0.0 3.10 1.20 7.07 132365.64
AP75 6 2 3 0.75 2 0.1 0.1 0.0 2.43 1.30 3.95 125657.15
AP75 6 3 3 0.75 2 0.0 0.0 0.0 3.32 1.59 7.01 125224.59
AP75 6 4 3 0.75 2 0.0 0.0 0.5 4.66 2.04 7.63 125184.65
AP75 6 5 3 0.75 2 0.0 0.0 0.1 5.82 2.55 14.15 125184.65
AP75 7 2 3 0.75 2 0.0 0.8 0.0 3.47 1.67 7.39 119237.88
AP75 7 3 3 0.75 2 0.0 0.0 0.0 5.08 2.28 10.08 118808.16
AP75 7 4 3 0.75 2 0.0 0.0 0.0 6.25 2.91 15.12 118786.38
AP75 7 5 3 0.75 2 0.0 0.0 0.0 7.95 3.65 13.32 118786.38
AP75 7 6 3 0.75 2 0.0 0.0 0.0 9.32 4.47 15.73 118786.38
AP75 8 2 3 0.75 2 0.0 0.0 0.2 3.68 2.19 4.18 114690.98
AP75 8 4 3 0.75 2 0.0 0.6 0.0 6.60 3.28 22.15 113400.50
AP75 8 7 3 0.75 2 0.0 0.0 0.0 11.16 5.56 24.54 114086.67



96 Chapter 3. The uncapacitated r-allocation p-hub median problem

Table 3.20. Computational results on medium-sized hard instances (continuation)

DEV (%) CPU

Inst p r χ α δ SSA SSB GRASP SSA SSB GRASP Best known

AP80 3 2 3 0.75 2 0.1 0.1 0.0 0.92 0.37 1.44 158202.73
AP80 3 3 3 0.75 2 0.0 0.0 0.0 1.95 0.70 2.12 143102.38
AP80 5 2 3 0.75 2 0.0 0.0 0.0 2.08 0.89 3.17 132915.50
AP80 5 3 3 0.75 2 0.0 0.0 0.0 2.82 1.14 4.85 132446.27
AP80 5 4 3 0.75 2 0.0 0.0 0.0 3.63 1.44 6.71 132424.08
AP80 6 2 3 0.75 2 0.1 0.1 0.0 3.25 1.60 5.83 125743.83
AP80 6 3 3 0.75 2 0.0 0.0 0.0 4.27 2.03 8.36 125284.10
AP80 6 4 3 0.75 2 0.0 0.0 0.1 5.66 2.64 11.12 125258.38
AP80 6 5 3 0.75 2 0.0 0.0 0.1 7.18 3.31 9.75 125258.38
AP80 7 2 3 0.75 2 0.0 0.6 0.6 4.02 2.06 4.35 119597.86
AP80 7 3 3 0.75 2 0.0 0.0 0.0 5.87 2.61 12.48 119132.73
AP80 7 4 3 0.75 2 0.0 0.0 0.8 7.61 3.52 17.05 119112.52
AP80 7 5 3 0.75 2 0.0 0.0 0.1 9.90 4.55 25.55 119105.55
AP80 7 6 3 0.75 2 0.0 0.0 0.1 11.76 5.43 21.25 119105.55
AP80 7 3 3 0.75 2 0.0 1.9 0.6 6.27 3.35 19.47 113787.42
AP80 7 5 3 0.75 2 0.0 1.2 0.1 10.58 5.48 26.02 114404.95
AP80 7 6 3 0.75 2 0.0 1.2 0.4 13.59 6.03 32.28 114404.95
AP80 7 7 3 0.75 2 0.0 1.2 0.0 15.65 7.34 55.93 114404.95
AP85 3 2 3 0.75 2 0.0 0.0 0.0 1.35 0.45 1.62 158274.33
AP85 4 2 3 0.75 2 0.0 0.1 0.0 1.76 0.73 3.11 142919.25
AP85 4 3 3 0.75 2 0.0 0.0 0.0 2.36 0.95 3.96 142822.33
AP85 5 2 3 0.75 2 0.2 0.2 0.0 2.77 1.34 6.08 133552.92
AP85 5 3 3 0.75 2 0.0 0.0 0.0 3.71 1.67 6.13 133110.33
AP85 5 4 3 0.75 2 0.0 0.0 0.0 4.63 2.16 10.08 133081.65
AP85 6 2 3 0.75 2 0.0 0.0 0.0 4.86 1.72 5.82 126462.13
AP85 6 3 3 0.75 2 0.0 0.0 0.4 5.18 2.33 7.05 125925.59
AP85 6 4 3 0.75 2 0.0 0.0 0.1 6.20 2.22 18.55 125849.01
AP85 6 5 3 0.75 2 0.0 0.0 0.1 8.59 3.74 18.91 125849.01
AP85 7 2 3 0.75 2 0.0 0.3 0.0 4.55 2.32 6.68 120735.00
AP85 7 3 3 0.75 2 0.1 0.1 0.0 6.02 2.80 15.98 119872.79
AP85 7 4 3 0.75 2 0.0 0.0 0.6 8.04 3.56 15.41 119852.39
AP85 7 5 3 0.75 2 0.0 0.0 0.0 10.17 4.47 31.81 119837.13
AP85 7 6 3 0.75 2 0.0 0.0 0.1 12.01 5.40 38.39 119837.13
AP85 8 2 3 0.75 2 0.2 0.7 0.0 5.77 3.02 12.15 114508.00
AP85 8 5 3 0.75 2 0.0 0.0 0.1 14.49 6.68 26.24 114966.55
AP85 8 6 3 0.75 2 0.0 0.0 0.1 17.65 8.30 53.54 114966.55



3.4 A scatter search algorithm 97

Table 3.21. Computational results on medium-sized hard instances (continuation)

DEV (%) CPU

Inst p r χ α δ SSA SSB GRASP SSA SSB GRASP Best known

AP90 3 2 3 0.75 2 0.0 0.0 0.0 1.28 0.44 1.94 157612.16
AP90 4 2 3 0.75 2 0.1 0.1 0.0 1.83 0.76 2.92 142465.46
AP90 4 3 3 0.75 2 0.0 0.0 0.0 2.65 1.07 7.77 142342.85
AP90 5 2 3 0.75 2 0.1 0.1 0.0 3.79 1.47 5.43 132771.23
AP90 5 3 3 0.75 2 0.0 0.0 0.0 4.35 1.79 8.05 132486.47
AP90 5 4 3 0.75 2 0.0 0.0 0.0 5.62 2.28 11.28 132422.07
AP90 6 2 3 0.75 2 0.1 0.1 0.0 3.86 1.74 9.31 125465.09
AP90 6 3 3 0.75 2 0.0 0.0 0.1 5.47 2.25 11.34 125176.85
AP90 6 4 3 0.75 2 0.0 0.0 0.1 6.51 2.65 18.00 125055.28
AP90 6 5 3 0.75 2 0.0 0.0 0.1 7.90 3.27 17.64 125055.28
AP90 7 2 3 0.75 2 0.1 0.1 0.0 5.72 2.72 10.30 119666.91
AP90 7 3 3 0.75 2 0.0 0.0 0.4 7.55 3.51 16.32 119379.94
AP90 7 4 3 0.75 2 0.0 0.0 0.2 10.04 4.48 41.87 119198.08
AP90 7 5 3 0.75 2 0.0 0.0 0.1 12.39 5.28 36.33 119190.81
AP90 7 6 3 0.75 2 0.0 0.0 0.1 14.94 6.84 58.77 119190.81
AP90 8 2 3 0.75 2 0.0 0.0 0.0 6.07 3.44 10.55 114099.35
AP90 8 3 3 0.75 2 0.0 0.0 1.1 8.03 4.17 27.21 113872.57
AP90 8 4 3 0.75 2 0.0 0.0 0.2 11.06 5.07 19.20 113776.78
AP90 8 5 3 0.75 2 0.0 0.0 0.4 13.60 6.36 38.81 113732.39
AP90 8 6 3 0.75 2 0.0 0.0 0.1 16.91 7.47 47.03 113732.39
AP90 8 7 3 0.75 2 0.0 0.8 0.1 18.50 9.25 81.84 113732.39
AP95 3 2 3 0.75 2 0.0 0.0 0.0 1.67 0.53 1.50 157684.46
AP95 4 2 3 0.75 2 0.1 0.1 0.0 2.17 0.86 3.60 142538.31
AP95 4 3 3 0.75 2 0.1 0.1 0.0 2.55 1.06 5.49 142457.05
AP95 5 2 3 0.75 2 0.1 0.1 0.0 3.51 1.38 6.49 133014.42
AP95 5 3 3 0.75 2 0.0 0.0 0.0 4.79 1.76 14.01 132763.09
AP95 5 4 3 0.75 2 0.0 0.0 0.0 6.19 2.27 12.57 132686.94
AP95 6 2 3 0.75 2 0.0 0.0 0.0 5.28 1.99 6.35 125700.19
AP95 6 3 3 0.75 2 0.0 0.0 0.1 6.59 2.58 11.73 125435.39
AP95 6 4 3 0.75 2 0.0 0.0 0.1 8.63 3.22 24.37 125311.86
AP95 6 5 3 0.75 2 0.0 0.0 0.1 10.54 3.98 17.80 125311.86
AP95 7 2 3 0.75 2 0.0 0.1 0.0 6.38 3.23 11.90 119897.57
AP95 7 3 3 0.75 2 0.0 0.0 0.1 8.06 3.81 20.17 119628.97
AP95 7 4 3 0.75 2 0.0 0.2 0.0 10.96 4.70 30.11 119422.38
AP95 7 5 3 0.75 2 0.0 0.1 0.1 13.88 5.88 37.85 119422.38
AP95 7 6 3 0.75 2 0.0 0.1 0.1 16.18 7.11 36.05 119422.38
AP95 8 2 3 0.75 2 0.0 0.0 0.4 8.32 4.22 15.76 114236.69
AP95 8 3 3 0.75 2 0.0 0.0 0.0 10.01 4.52 25.82 114351.51
AP95 8 4 3 0.75 2 0.0 0.0 0.4 14.33 5.87 37.18 113900.72
AP95 8 5 3 0.75 2 0.0 0.0 0.0 18.42 7.34 53.85 113890.35
AP95 8 6 3 0.75 2 0.0 0.0 1.0 21.56 8.83 85.85 113868.30
AP95 8 7 3 0.75 2 0.0 0.0 0.0 25.07 10.85 51.21 113868.30



98 Chapter 3. The uncapacitated r-allocation p-hub median problem

Table 3.22. Computational results on large-sized hard instances

DEV (%) CPU

Inst p r χ α δ SSA SSB GRASP SSA SSB GRASP Best known

AP100 3 2 3 0.75 2 0.0 0.0 0.0 1.99 0.60 0.45 158043.08
AP100 4 2 3 0.75 2 0.0 0.0 0.0 2.78 1.01 1.12 143208.40
AP100 4 3 3 0.75 2 0.0 0.0 0.0 4.00 1.41 1.21 143086.43
AP100 5 2 3 0.75 2 0.1 0.1 0.0 4.24 1.74 2.11 133815.35
AP100 5 3 3 0.75 2 0.0 0.0 0.0 5.73 2.21 1.53 133569.22
AP100 5 4 3 0.75 2 0.0 0.0 0.0 6.91 2.83 1.57 133483.00
AP100 6 2 3 0.75 2 0.1 0.1 0.0 6.30 2.45 3.36 126523.14
AP100 6 3 3 0.75 2 0.0 0.0 0.0 8.60 3.18 2.46 126228.60
AP100 6 4 3 0.75 2 0.0 0.0 0.1 11.44 4.11 5.26 126107.94
AP100 6 5 3 0.75 2 0.0 0.0 0.1 14.13 5.17 3.59 126107.94
AP100 7 2 3 0.75 2 0.1 0.1 0.0 7.60 3.40 4.14 120697.19
AP100 7 3 3 0.75 2 0.0 0.0 0.0 10.37 4.40 6.02 120471.47
AP100 7 4 3 0.75 2 0.0 0.2 0.2 13.67 5.55 6.62 120187.66
AP100 7 5 3 0.75 2 0.0 0.0 0.2 18.03 7.21 5.34 120164.59
AP100 7 6 3 0.75 2 0.0 0.1 0.1 19.49 9.52 8.97 120234.75
AP100 8 2 3 0.75 2 0.0 0.1 0.0 9.73 4.63 3.18 114709.50
AP100 8 3 3 0.75 2 0.1 0.1 0.0 11.67 5.23 6.27 114439.93
AP100 8 4 3 0.75 2 0.0 0.0 0.1 15.68 6.68 9.50 114315.28
AP100 8 5 3 0.75 2 0.0 0.0 1.2 20.19 8.42 7.40 114298.12
AP100 8 6 3 0.75 2 0.0 0.0 1.1 24.68 10.28 7.98 114296.13
AP100 8 7 3 0.75 2 0.0 0.0 0.0 27.87 12.15 12.93 114296.13
AP150 3 2 3 0.75 2 0.0 0.0 0.0 4.95 1.79 1.68 158742.05
AP150 4 2 3 0.75 2 0.1 0.1 0.0 8.66 3.33 3.57 143811.40
AP150 4 3 3 0.75 2 0.0 0.0 0.0 10.70 3.82 2.94 143696.46
AP150 5 2 3 0.75 2 0.0 0.0 1.6 13.06 5.02 6.93 134590.93
AP150 5 3 3 0.75 2 0.0 0.1 1.8 17.36 5.93 9.85 134053.76
AP150 5 4 3 0.75 2 0.0 0.0 0.0 20.77 6.89 9.59 134022.43
AP150 6 2 3 0.75 2 0.1 0.1 0.0 19.62 6.95 8.39 127219.49
AP150 6 3 3 0.75 2 0.0 0.0 0.0 25.01 8.73 14.03 126935.58
AP150 6 4 3 0.75 2 0.0 0.0 0.0 29.01 10.38 11.20 126871.13
AP150 6 5 3 0.75 2 0.0 0.0 0.0 39.97 13.43 16.45 126871.13
AP150 7 2 3 0.75 2 0.1 0.1 0.0 27.73 9.20 18.00 121297.48
AP150 7 3 3 0.75 2 0.0 0.0 0.2 33.58 11.11 26.64 121101.93
AP150 7 4 3 0.75 2 0.0 0.0 0.0 48.84 15.48 19.35 120922.63
AP150 7 5 3 0.75 2 0.0 0.0 0.3 58.01 17.32 21.78 120965.44
AP150 7 6 3 0.75 2 0.0 0.0 0.0 68.40 20.69 27.71 120965.44
AP150 8 2 3 0.75 2 0.0 0.0 1.0 33.95 13.09 20.70 115486.83
AP150 8 3 3 0.75 2 0.0 0.0 0.6 45.65 16.29 33.58 115609.81
AP150 8 5 3 0.75 2 0.0 0.0 0.0 83.73 28.37 43.13 115108.06
AP150 8 6 3 0.75 2 0.0 0.0 0.0 102.16 34.79 61.19 115105.52
AP150 8 7 3 0.75 2 0.0 0.0 0.7 118.18 41.23 55.18 115105.52



3.4 A scatter search algorithm 99

Table 3.23. Computational results on large-sized hard instances (continuation)

DEV (%) CPU

Inst p r χ α δ SSA SSB GRASP SSA SSB GRASP Best known

AP200 3 2 3 0.75 2 0.0 0.0 0.0 10.93 3.96 5.67 159987.41
AP200 4 2 3 0.75 2 0.0 0.0 0.0 24.46 7.55 11.99 144755.16
AP200 4 3 3 0.75 2 0.0 0.0 0.0 33.80 9.03 12.00 144611.12
AP200 5 2 3 0.75 2 0.0 0.0 0.0 36.78 10.49 21.50 137408.43
AP200 5 3 3 0.75 2 0.0 0.4 0.3 43.53 11.50 22.56 136914.54
AP200 5 4 3 0.75 2 0.0 0.2 0.2 64.65 16.60 33.38 136777.91
AP200 6 2 3 0.75 2 0.0 0.0 0.0 38.48 14.40 37.03 130235.76
AP200 6 3 3 0.75 2 0.0 1.2 0.0 50.76 16.11 44.05 129883.62
AP200 6 4 3 0.75 2 0.0 0.0 0.0 76.71 23.27 54.33 129817.47
AP200 6 5 3 0.75 2 0.0 0.0 1.2 93.25 28.60 30.80 129817.47
AP200 7 2 3 0.75 2 0.0 0.2 0.6 57.63 18.31 49.65 123989.21
AP200 7 3 3 0.75 2 0.1 0.2 0.0 78.94 23.21 56.82 123670.80
AP200 7 4 3 0.75 2 0.0 0.2 0.2 110.69 30.88 73.03 123661.35
AP200 7 5 3 0.75 2 0.0 0.2 0.2 139.14 38.47 89.25 123658.33
AP200 7 6 3 0.75 2 0.0 0.2 0.0 163.59 45.90 63.66 123658.33
AP200 8 2 3 0.75 2 0.0 0.1 0.5 89.36 33.12 61.56 118125.17
AP200 8 3 3 0.75 2 0.0 0.2 0.5 106.03 41.38 79.85 117828.62
AP200 8 4 3 0.75 2 0.0 0.0 0.0 104.03 36.42 136.11 117719.51
AP200 8 5 3 0.75 2 0.0 0.0 0.4 142.68 46.31 121.85 117709.98
AP200 8 6 3 0.75 2 0.0 0.0 0.6 162.28 56.19 118.79 117709.98
AP200 8 7 3 0.75 2 0.0 0.0 0.4 180.24 65.34 112.22 117709.98



100 Chapter 3. The uncapacitated r-allocation p-hub median problem

better results than GRASP in shorter computing times.
As a final test, we compare the performance of SSA and SSB with the results of the

evolutionary approach recently proposed by Milanovic [71] for the multiple allocation
version of the p-hub median problem. The proposed SS procedures are applied on 40
AP instances of different sizes, where r = p. Table 3.25 shows, in each row, the size
and the value of p on each instance, and, for each method, the value of the objective
function, the average percentage deviation with respect to the best known solution, and
the CPU time. Results for the evolutionary method are directly taken from [71], and
therefore running times are only indicative and cannot be directly compared with the
SS computing times.

Results in Table 3.25 show that SS obtains high-quality solutions for the multiple
allocation version, although they are slightly worse than those obtained by the evolu-
tionary approach. In particular, SSA and SSB exhibit an average percent deviation of
0.1%, while the evolutionary approach is able to obtain a 0.0% in similar running times.
Additionally, SSA matches 35 best known solutions, and SSB matches 30 out of 40 in-
stances. The evolutionary method is able to match all the best known solutions. It must
be noted however, that SS is designed to obtain good solutions in all the variants of this
problem (i.e., for the different values of r), while the evolutionary method is suited for
one specific variant.

3.4.8 Concluding remarks

In this section, we have proposed a metaheuristic algorithm based on scatter search for
the uncapacitated r-allocation p-hub median problem. This problem was introduced by
Yaman [103] as a generalization of the classical single allocation and multiple allocation
p-hub median problem. The proposed scatter search procedure incorporates several de-
signs for the diversification generator method, a path-relinking procedure for combining
solutions, and two local search procedures as the improvement method. The computa-
tional experiments on a large set of instances from the literature show that our algorithm
is able to find high-quality solutions in short computing times, and outperforms the pre-
viously introduces GRASP procedure of Section 3.3.

It is worth mentioning that our scatter search design only applies the improvement
method at the end of the search. This selective application reduces the CPU time without
sacrifying the final solution quality, making our method competitive in both quality of
solutions and speed.



3.4 A scatter search algorithm 101
T

ab
le

3.
24

.
C

om
pu

ta
tio

na
lr

es
ul

ts
on

th
e

U
SA

42
3

in
st

an
ce

s

So
lu

ti
on

va
lu

e
D

ev
(%

)
C

P
U

p
r

χ
α

δ
SS

A
SS

B
G

R
A

SP
SS

A
SS

B
G

R
A

SP
SS

A
SS

B
G

R
A

SP

3
2

0.
1

0.
07

0.
09

33
72

74
12

95
9

40
57

62
60

06
2

43
86

70
93

58
5

0.
0

20
.3

30
.1

99
.0

30
.3

10
0

4
2

0.
1

0.
07

0.
09

31
55

59
33

76
3

31
55

59
33

76
3

31
54

02
32

35
2

0.
0

0.
0

0.
0

16
9.

1
47

.0
17

0
4

3
0.

1
0.

07
0.

09
31

37
85

16
08

5
31

37
85

16
08

5
41

50
05

38
13

3
0.

0
0.

0
32

.3
25

9.
3

63
.3

26
0

5
2

0.
1

0.
07

0.
09

29
36

16
90

39
8

29
36

16
90

39
8

29
42

86
03

26
3

0.
0

0.
0

0.
2

22
7.

4
73

.9
23

0
5

3
0.

1
0.

07
0.

09
29

01
25

00
63

6
29

01
25

00
63

6
29

00
51

34
36

1
0.

0
0.

0
0.

0
33

7.
1

98
.3

34
0

5
4

0.
1

0.
07

0.
09

28
99

30
57

99
3

28
99

30
57

99
3

35
76

82
87

69
5

0.
0

0.
0

23
.4

44
3.

5
14

5.
5

44
5

6
2

0.
1

0.
07

0.
09

28
76

13
33

28
5

29
64

80
09

93
6

29
81

34
68

00
7

0.
0

3.
1

3.
7

34
8.

0
11

6.
0

35
0

6
3

0.
1

0.
07

0.
09

28
14

01
75

76
4

28
63

68
03

83
0

27
99

90
28

06
9

0.
5

2.
3

0.
0

47
4.

8
11

8.
9

47
5

6
4

0.
1

0.
07

0.
09

27
95

25
73

75
8

28
44

92
16

97
3

27
69

06
57

69
7

0.
9

2.
7

0.
0

54
5.

6
14

4.
3

55
0

6
5

0.
1

0.
07

0.
09

27
93

72
97

01
8

27
93

72
97

01
8

27
68

88
45

10
2

0.
9

0.
9

0.
0

66
0.

6
21

2.
5

66
5

7
2

0.
1

0.
07

0.
09

28
07

63
60

66
3

28
07

63
60

66
3

30
79

98
12

59
7

0.
0

0.
0

9.
7

41
6.

6
12

2.
9

42
0

7
3

0.
1

0.
07

0.
09

26
69

25
07

21
0

27
72

43
15

37
1

26
75

14
72

18
0

0.
0

3.
9

0.
2

56
1.

4
17

9.
4

56
5

7
4

0.
1

0.
07

0.
09

26
25

87
68

16
5

26
25

87
68

16
5

27
53

79
36

67
5

0.
0

0.
0

4.
9

71
7.

9
20

7.
6

72
0

7
5

0.
1

0.
07

0.
09

26
25

50
12

77
4

26
25

50
12

77
4

26
98

93
69

64
5

0.
0

0.
0

2.
8

94
4.

1
24

7.
9

94
5

7
6

0.
1

0.
07

0.
09

26
25

50
10

93
4

26
25

50
10

93
4

26
25

50
10

93
4

0.
0

0.
0

0.
0

11
15

.1
30

9.
1

11
20

3
2

0.
09

0.
07

5
0.

08
30

17
61

27
83

2
36

33
80

55
07

6
30

17
61

27
83

2
0.

0
20

.4
0.

0
11

2.
1

34
.2

11
5

4
2

0.
09

0.
07

5
0.

08
28

37
36

52
48

1
28

37
36

52
48

1
30

53
01

37
28

5
0.

0
0.

0
7.

6
17

3.
5

61
.3

17
5

4
3

0.
09

0.
07

5
0.

08
28

12
51

64
29

6
28

12
51

64
29

6
28

12
51

64
29

6
0.

0
0.

0
0.

0
29

7.
7

70
.3

30
0

5
2

0.
09

0.
07

5
0.

08
26

45
11

14
26

7
26

45
11

14
26

7
26

49
29

13
72

9
0.

0
0.

0
0.

2
23

2.
3

82
.8

23
5

5
3

0.
09

0.
07

5
0.

08
26

08
80

80
20

3
26

08
80

80
20

3
26

07
96

65
62

6
0.

0
0.

0
0.

0
36

0.
6

11
1.

8
36

5
5

4
0.

09
0.

07
5

0.
08

26
06

18
06

93
0

26
06

18
06

93
0

27
24

97
91

19
7

0.
0

0.
0

4.
6

47
1.

3
13

8.
6

47
5

6
2

0.
09

0.
07

5
0.

08
26

52
54

21
60

1
26

52
54

21
60

1
26

01
62

95
68

5
2.

0
2.

0
0.

0
31

8.
7

11
8.

7
32

0
6

3
0.

09
0.

07
5

0.
08

24
97

10
43

35
1

25
44

91
49

34
2

25
78

88
38

77
9

0.
0

1.
9

3.
3

49
7.

9
15

5.
3

50
0

6
4

0.
09

0.
07

5
0.

08
25

26
59

04
57

1
25

26
59

04
57

1
24

82
87

38
29

1
1.

8
1.

8
0.

0
63

1.
6

20
3.

9
63

5
6

5
0.

09
0.

07
5

0.
08

25
24

39
65

93
0

25
24

39
65

93
0

25
38

55
65

29
3

0.
0

0.
0

0.
6

85
3.

8
26

4.
2

85
5

7
2

0.
09

0.
07

5
0.

08
25

90
65

07
43

9
29

26
47

46
88

8
26

59
28

82
07

9
0.

0
13

.0
2.

6
41

3.
9

13
0.

5
41

5
7

3
0.

09
0.

07
5

0.
08

24
78

44
71

47
3

25
57

83
17

73
5

24
06

61
30

75
4

3.
0

6.
3

0.
0

63
6.

6
19

2.
6

64
0

7
4

0.
09

0.
07

5
0.

08
23

58
63

98
61

2
24

97
16

05
18

6
23

61
90

10
15

9
0.

0
5.

9
0.

1
76

5.
5

22
0.

9
77

0
7

5
0.

09
0.

07
5

0.
08

23
57

75
54

53
2

24
90

57
55

62
1

24
22

04
06

57
0

0.
0

5.
6

2.
7

10
85

.4
7

32
6.

35
10

90
7

6
0.

09
0.

07
5

0.
08

23
57

75
43

90
0

24
88

77
07

33
4

25
01

76
77

54
2

0.
0

5.
6

6.
1

13
56

.7
1

50
0.

71
13

60
0.

3
3.

2
4.

5
51

7.
6

15
7.

6
52

0.
1



102 Chapter 3. The uncapacitated r-allocation p-hub median problem

Table 3.25. Computational results on AP instances for the multiple allocation version

Solution value Dev (%) CPU

n p SSA SSB Evo SSA SSB Evo SSA SSB Evo

2 173415.5 173415.5 173415.5 0.0 0.0 0.0 0.1 0.0 0.1
3 155458.1 155458.1 155458.1 0.0 0.0 0.0 0.2 0.1 0.0
4 140682.2 140682.2 140682.2 0.0 0.0 0.0 0.4 0.2 0.4
5 130384.1 130384.1 130384.1 0.0 0.0 0.0 0.6 0.4 0.5

40 6 122170.2 122170.2 122170.2 0.0 0.0 0.0 1.1 0.6 5.9
7 116035.9 116035.9 116035.9 0.0 0.0 0.0 1.5 0.9 7.1
8 109971.1 109971.1 109971.1 0.0 0.0 0.0 2.1 1.5 8.4
9 104211.5 104211.5 104211.5 0.0 0.0 0.0 2.6 1.6 9.6
10 99451.8 99451.8 99451.8 0.0 0.0 0.0 4.2 2.6 12.5
2 174390.6 174390.6 174390.6 0.0 0.0 0.0 0.1 0.1 0.1
3 156014.6 156014.6 156014.5 0.0 0.0 0.0 0.3 0.1 0.3
4 141154.3 141154.3 141154.3 0.0 0.0 0.0 0.7 0.3 0.6
5 129414.2 129507.4 129414.2 0.0 0.1 0.0 1.0 0.5 0.8

50 6 121673.6 121673.6 121673.6 0.0 0.0 0.0 2.2 1.3 8.5
7 115913.4 115913.4 115911.6 0.0 0.0 0.0 3.0 1.5 10.3
8 111139.4 111139.4 109927.6 1.1 1.1 0.0 3.9 2.4 12.5
9 104968.8 104968.8 104968.8 0.0 0.0 0.0 6.7 3.9 15.2
10 100509.3 100645.4 100509.2 0.0 0.1 0.0 9.7 6.3 18.0
2 176246.8 176246.8 176246.8 0.0 0.0 0.0 0.7 0.3 5.1
3 157870.9 157870.9 157870.9 0.0 0.0 0.0 2.2 0.8 13.3
4 143004.4 143086.4 143004.3 0.0 0.1 0.0 3.8 1.3 18.5
5 133483.0 133483.0 133483.0 0.0 0.0 0.0 7.6 2.6 23.8
6 126107.9 126107.9 126107.9 0.0 0.0 0.0 16.0 6.3 31.3

100 7 120164.6 120164.6 120164.6 0.0 0.0 0.0 24.5 10.9 41.3
8 115144.7 115144.7 114295.9 0.7 0.7 0.0 25.7 14.4 57.0
9 109449.1 109449.1 109449.1 0.0 0.0 0.0 38.7 20.2 68.7
10 104800.8 104800.8 104794.3 0.0 0.0 0.0 71.6 45.3 87.2
15 88882.5 89273.6 88882.5 0.0 0.4 0.0 226.9 148.0 167.1
20 79453.7 79453.7 79191.6 0.3 0.3 0.0 564.9 385.1 233.9
2 178094.0 178094.0 178094.0 0.0 0.0 0.0 5.0 1.9 44.2
3 159725.1 159725.1 159725.1 0.0 0.0 0.0 13.8 5.0 73.9
4 144508.2 144508.2 144508.2 0.0 0.0 0.0 36.1 11.9 95.5
5 136761.8 136761.8 136761.8 0.0 0.0 0.0 56.2 16.8 156.2
6 129556.5 130739.0 129556.5 0.0 0.9 0.0 124.7 24.6 185.7

200 7 123608.9 124132.2 123608.9 0.0 0.4 0.0 153.6 51.0 226.3
8 117879.5 117879.5 117710.0 0.1 0.1 0.0 231.8 85.9 285.0
9 112374.5 112374.5 112374.5 0.0 0.0 0.0 389.1 123.0 366.9
10 107846.8 108913.6 107846.8 0.0 1.0 0.0 485.7 201.3 432.7
15 92806.9 92920.7 92669.6 0.1 0.3 0.0 1566.4 965.0 816.4
20 83385.9 83385.9 83385.9 0.0 0.0 0.0 3857.5 2422.7 1130.0

0.1 0.1 0.0 198.6 114.2 116.8



Chapter 4

Models and solution methods for
the uncapacitated r-allocation
p-hub equitable center problem

Summary

In this chapter we study the uncapacitated r-allocation p-hub center problem (with
1 < r < p) and explore alternative models and solution procedures for this problem.
In particular, we are interested in studying a version of the uncapacitated r-allocation
p-hub center problem that applies to situations for which an element of equity or fairness
is important. Given a network with link costs and a set of o-d demands, it is possible to
calculate (or know as an input) an ideal minimum cost for each pairwise demand. We
will assume that it is desired to find customer-oriented solutions for which the actual cost
for each demand remains relatively close to their ideal minimum cost. As we will see,
objective function of the UrApHMP (Equation (3.1)) is clearly not equipped to produce
customer-oriented solutions since it focuses on minimizing the total cost of the com-
pany. Other objective functions that we will see may produce some customer-oriented
solutions but do not directly measure deviations from the ideal minimum costs. Hence,
we introduce a model that seeks to minimize large deviations between actual and ideal
cost for all demands. Since cost basis may be significantly different from one demand to
another, we focus on the following model based on relative deviations. Decision makers
facing hub network design problems may be interested in comparing solutions that trade
off cost and customer service. In this context, a bi-objective problem formulation is
the appropriate approach to search for solutions that simultaneously consider cost and
service. We propose a variant that we have called the Uncapacitated r-Allocation p-Hub
Median and Equitable Center Problem with a bi-objective formulation with the goal to
construct the set E of efficient solutions to this bi-objective problem.

103



104 Chapter 4. The uncapacitated r-allocation p-hub equitable center problem

4.1 Introduction

As shown in Yaman’s literature review [103], published work has focused on the p-hub
median problem. Both the single and multiple allocation versions of these problems have
been studied extensively, see for example the papers by Ilic et al. [50] and Milanovic
[71]. The cost-minimizing solutions found with p-hub median models, however, might
include routes for origin and destination (o-d) demand pairs that are unreasonably long,
calling into question the quality of the service that the network design will provide to
some of its customers. The p-hub center problem addresses this issue by minimizing a
function of the cost of meeting individual o-d demands. The typical cost structure for a
given i→ k → l → j path in a hub network is represented in Figure 4.1, where i is the
origin, j is the destination, and k and l are hubs.

χcik δclj
αckl

Figure 4.1. Cost structure of demand from origin i to destination j.

Figure 4.1 shows the collection cost cik from a terminal i (origin) to a hub k, the
transfer cost ckl from hub k to hub l, and the distribution cost clj from hub l to terminal
j (destination). Discount factors, if applicable, are associated with each cost: χ for the
origin to hub cost, α for the hub to hub cost, and δ for the hub to destination cost. The
total cost of sending one unit of traffic from origin i to destination j via hubs k and l
is given by Cijkl = χcik + αckl + δclj . Since xijkl is the fraction of the traffic tij from i
to j routed via hubs k and l, then the objective function for a basic model of the p-hub
median problem has the following form:

min
∑
i∈V

∑
j∈V

∑
k∈V

∑
l∈V

tijCijklxijkl. (4.1)

Note that (4.1) is a more compact representation of (3.1) but both objective functions
are the same, i.e., they attempt to minimize the total cost. In contrast, in the p-hub
center problem, xijkl is equal to 1 if the demand tij from origin i to destination j is
routed via hubs k and l, and it is equal to 0 otherwise. The objective function for a
basic model of the p-hub center problem has the following mathematical form:

min max
i,j,k,l∈V

Cijklxijkl. (4.2)

This objective function is relevant in hub networks where the flow involves time-sensitive
commodities, e.g. people, live animals, and perishable items. In this context, cost refers



4.1 Introduction 105

to time, and α may be interpreted as a time discount factor due to higher speed on the
inter-hub links [18]. An alternative objective function for the p-hub center problem has
the following form:

min max
i,j,k,l∈V

{max {χcik, αckl, δclj}xijkl} . (4.3)

In (4.3) the cost also refers to time and the function is of interest in situations where
the maximum travel time in any link is important. For instance, the model would be
applicable to networks where items require some special processing that is only available
at the hubs.

We are interested here in studying a version of the uncapacitated r-allocation p-hub
center problem that applies to situations for which an element of equity or fairness is
important. In particular, given a network with link costs and a set of o-d demands, it is
possible to calculate an ideal minimum cost for each pairwise demand. We assume that
it is desired to find customer-oriented solutions for which the actual cost for each demand
remains relatively close to its ideal minimum cost. Objective function (4.1) is clearly not
equipped to produce customer-oriented solutions since it focuses on minimizing the total
cost of the company. Objective functions (4.2) and (4.3) may produce some customer-
oriented solutions but do not directly measure deviations from the ideal minimum costs.
Table 4.1 shows the four cases associated with the calculation of the cost to fulfill the
demand from origin i to destination j. Each case depends on whether or not the origin
or destination is chosen as a hub. The cost equations assume that when the origin is
a terminal then the collection occurs via hub k. Likewise, when the destination is a
terminal then the distribution occurs via hub l.

Table 4.1. Cost functions for all terminal-hub combinations

Case Origin (i) Destination (j) Cost
1st Terminal Terminal χcik + αckl + δclj
2nd Hub Terminal αcil + δclj
3rd Terminal Hub χcik + αckj
4th Hub Hub αcij

For our model, we first must determine the minimum cost to fulfill the demand from
an origin i to a destination j via hubs k and l. This minimum cost, denoted by Ĉij , is
calculated as follows:

Ĉij = min
k,l∈V,k 6=i,l 6=j

(χcik + αckl + δclj) , ∀i, j ∈ V. (4.4)

A customer-oriented solution is defined as one that seeks to minimize large deviations
between actual and ideal cost for all demands. Since cost basis may be significantly
different from one demand to another, we focus on the following model based on relative
deviations:

min max
i,j∈V,i 6=j,tij>0

{
(∑k∈V

∑
l∈V Cijklxijkl)− Ĉij

Ĉij

}
(4.5)



106 Chapter 4. The uncapacitated r-allocation p-hub equitable center problem

Subject to:
(3.2) – (3.7), (3.9), and
xijkl ∈ {0, 1} , ∀i, j, k, l ∈ V. (4.6)

We refer to this problem as the Uncapacitated r-Allocation p-Hub Equitable Center
Problem, which we abbreviate as UrApHECP. This problem arises in competitive envi-
ronments, such as in the airline industry. For instance, an airline interested in minimizing
total cost, might design a network for which some itineraries could offer low value to
their customers. Value in this context could be interpreted as the relationship between
cost and trip duration. That is, a long itinerary (with several stops) with a high cost
may be perceived as offering low value. We assume that, all things being equal (e.g.,
airfare), travelers would typically prefer a short trip duration (e.g., a direct flight).

To illustrate this point, consider the network with 55 nodes in the Australian Post
(AP) instance introduced by Ernst and Krishnamoorthy [31]. The network and demands
correspond to the Australian post services that operate from five hubs (i.e., p = 5) and
in which terminals may be assigned to no more than two hubs (i.e., r = 2). The solution
procedures developed in Sections 3.3 and 3.4 are designed to minimize the total cost
f(s) of a solution s, calculated as given by the objective function (3.1) of UrApHMP.
The best solutions obtained by the application of both procedures include o-d pairs for
which their cost is significantly larger than their minimum cost. Table 4.2 shows five o-d
pairs, their associated hubs, as well as the relative difference D,

Dij = 100 Cijkl − Ĉij
Ĉij

(4.7)

between the minimum cost and the solution cost obtained with the procedure of Sec-
tion 3.4. As the costs are related to distance, the customers associated with the five

Table 4.2. Deviation values obtained by solving the UrApHMP.

Origin (i) Destination (j) Hub (k) Hub (l) Dij

30 29 36 40 493.90%
30 20 36 40 467.40%
30 19 36 16 449.60%
33 32 40 40 433.30%
33 44 40 40 417.90%

o-d demands in Table 4.2 will most likely find their assigned routing unacceptable and
might choose to hire a different service. Table 4.3 shows a different set of assignments
for the o-d pairs in Table 4.2. The relative difference between the actual costs and the
minimum costs has decreased across all o-d pairs.

The change of hub assignments from Table 4.2 to Table 4.3 causes a 0.82% increase in
total cost in terms of the objective function of the UrApHMP (Equation (3.1)). Clearly,
AP must consider the tradeoff between total cost increase and customer satisfaction and
retention. With that in mind, we now develop a method to solve the UrApHECP.



4.2 A GRASP algorithm 107

Table 4.3. Smaller deviation values for an alternative solution.

Origin (i) Destination (j) Hub (k) Hub (l) Dij

30 29 20 20 114.60%
30 20 20 20 5.20%
30 19 20 20 34.16%
33 32 20 20 240.33%
33 44 20 20 269.30%

4.2 A GRASP algorithm

As mentioned in Section 3.3, the GRASP methodology was developed in the late 1980s
by Feo and Resende [36]. Algorithm 5 shows the pseudocode of the GRASP framework
that we will use to minimize the objective function g(s) associated with a solution s to the
UrApHECP. Such a solution is characterized by the hub selection, the hub assignment,
and the traffic routing. Each GRASP iteration consists of constructing a trial solution
with a greedy randomized procedure (line 4 in Algorithm 5) and then applying local
search to the constructed solution (line 5 in Algorithm 5). This two-phase process is
repeated until some stopping condition is satisfied (lines 3 to 7 in Algorithm 5). The best
solution (s∗) found over all constructions and local searches is returned as the GRASP
solution.

Input: stopping criterion
1 s∗ ← ∅
2 g(s∗)← +∞
3 while stopping criterion is not satisfied do
4 s← ConstructSolution()
5 s← ImproveSolution(s)
6 if g(s) ≤ g(s∗) then
7 s∗ ← s

Output: s∗
Algorithm 5: GRASP template

As indicated in Algorithm 5, the design of GRASP entails the customization of
the ConstructSolution and the ImproveSolution functions. Constructing solutions in the
context of the UrApHECP includes three major steps: the selection of the p hubs, the
allocation of each terminal to at most r hubs, and the routing of all the traffic. In
this chapter we focus on GRASP designs where the hub selection and the initial hub
allocation and routing occur in ConstructSolution and where a search for improved hub
allocations within the same hub selection occurs in ImproveSolution. The next sections
describe our efforts to create effective construction and improvement functions within
the GRASP framework.



108 Chapter 4. The uncapacitated r-allocation p-hub equitable center problem

4.2.1 Construction methods

Our construction procedures require the ideal (minimum) costs for each o-d pair. These
calculations are somewhat onerous but they are performed only once and therefore they
can be done off-line before the search procedure is executed. Note that for a given o-d
pair, all combinations of hubs must be considered in order to find the minimum cost.
As part of this process, we record the number of times q(h) that a node h is selected as
the ideal hub for any of the terminals. For instance, if the ideal path for a demand from
a terminal i to a terminal j traverses hubs k̂ and l̂ (i.e., Ĉij = χcik̂ + αck̂l̂ + δcl̂j) then
both counts q(k̂) and q(l̂) are increased by one. If the origin or destination is a hub then
only the count for the ideal hub connected to the terminal is incremented. That is, the
q count does not include the instances when a node is both a hub and a terminal in the
minimum cost. Counting those instances does not add information to the attractiveness
of a node to be selected as a hub from the point of view of being used by the terminal
nodes in the network.

1 CL← V
2 // Stage 1: Select p hubs
3 while |H| < p do
4 qmax ← maxh∈CL q(h)
5 Randomly select h∗ ∈ RCL = {h : h ∈ CL, q(h) ≥ β1qmax}
6 H ← H ∪ {h∗}
7 CL← CL \ {h∗}
8 // Stage 2: Assign terminals to r hubs
9 Calculate qi(h),∀i ∈ V \H,h ∈ H

10 Let Hi∀i ∈ V \H be the set of r hubs with the largest qi(h) values
11 // Stage 3: Route traffic through the network
12 For all (i, j) with tij > 0, let r(i,j) be the path i→ k ∈ Hi → l ∈ Hj → j that

minimizes Cijkl. Let Π = {π(i,j), ∀(i, j) : tij > 0}
Output: s = {H,Hi∀i,Π}

Algorithm 6: Construction procedure C1

Algorithm 6 shows the pseudo-code for C1, the first of the two solution construction
procedures that we have developed for this application. The hub selection is based on
q counts. That is, the greedy function is the maximization of q, which is employed as a
measure of the node attractiveness. In the first stage, the procedure calculates qmax as
the maximum value of q for all the nodes in the candidate list (CL). The candidate list
contains all nodes in the graph that have not been chosen as hubs in any of the previous
iterations of the construction procedure and therefore CL = V at the beginning of the
construction. A restricted candidate list (RCL) is then constructed with those candidate
nodes whose q values are “close to” qmax, where proximity is determined by the value of
the parameter β1. The next hub is chosen randomly among those nodes in RCL. The
selection steps (lines 3 to 7 in Algorithm 6) are repeated p times to produce a set H of



4.2 A GRASP algorithm 109

hubs with the specified cardinality.
The second stage of the construction consists of assigning terminals to the chosen

set of hubs. Once the set H of hubs has been determined, the ideal costs for all the
terminal nodes are recalculated taking into account the hubs defining H. Then, values
qi(h), representing the number of times that hub h ∈ H appears in the ideal cost for
terminal i, when i is either an origin or a destination, are computed. The r hubs with
the largest qi(h) values define the set Hi.

In the third and last stage of the construction the traffic is routed through the
network configured by the choices made in the first two stages. Since the links in the
network have no capacity limits, a greedy routing is optimal for the chosen hubs and
hub allocations. Therefore, each tij is routed through k ∈ H and l ∈ H in order to
minimize Cijkl = χcik +αckl + δclj . Finding the set Π of min-cost paths for all o-d pairs
requires a computational effort of O(n2r2). The hub selection H, the hub allocation Hi

for all i ∈ V \H, and the set of paths Π for all o-d pairs represent a solution s to the
problem (see line 12 in Algorithm 6). i.e., s = {H,Hi∀i,Π}. The objective function
value is g(s) = Dmax = max(i,j):tij>0Dij . Note that the calculation of Dij , as shown in
(4.7), depends on s.

A variant of C1 (referred to as C2) is obtained by modifying the process in which
the q values are calculated. The goal of C2, in contrast to C1, is to avoid the selection of
inferior hubs. That is, C2 tries to select hubs that are not going to produce large costs.
For this purpose, we define Čij as the largest cost associated with the traffic pair (i, j).
The Čij values are obtained by simply changing min to max in expression (4.4).

Hubs k and l are “acceptable” as hubs for terminals i and j (tij > 0), respectively,
if:

Cijkl ≤ Ĉij + β2
(
Čij − Ĉij

)
,

where β2 ∈ [0, 1]. In this case, q(h) counts the number of times a node h is selected
as “acceptable” for any of the terminals. As in C1, the hub selection step (see line 5
in Algorithm 6) gives preference to candidate nodes with large q values. Note that if
β2 = 0, C2 coincides with C1, while β2 = 1 makes that all p hubs have the same q values
(turning the hub selection into a totally random process).

4.2.2 Improvement methods

We designed and tested two solution-improvement procedures, LS1 and LS2. Both of
these procedures are local searches, meaning that they stop upon reaching the first local
optimal point. Also, both procedures are based on changing the allocation of terminals
to hubs, while maintaining the same set of hubs. That is, the hub selection is not changed
from the one given by the starting solution generated by one of the construction methods
in Section 4.2.1. LS1 attempts to find an improved solution with respect to objective
function (4.5) by identifying the (i, j) pair for which Dij = Dmax (see line 4 in Algorithm
3). This is the traffic pair that determines the value of the objective function. Let k and l
be the hubs that terminals i and j are currently using to route tij . Then, a neighborhood
search is launched to identify at least one allocation change for i or j that would reduce



110 Chapter 4. The uncapacitated r-allocation p-hub equitable center problem

Dij without increasing the D value for the traffic in o-d pairs (i, ∗), (∗, i), (∗, j), and
(j, ∗), where ∗ represents any terminal different from i and j. The complete procedure
is shown in Algorithm 7.

Input: s
1 Compute Dij for all (i, j) pairs such that tij > 0
2 repeat
3 improve ← FALSE
4 Identify the path π(i,j) for which Dij = Dmax

5 Find a new path π′(i,j) through k′ /∈ Hi or l′ /∈ Hj such that Di∗, D∗i, D∗j ,
Dj∗ < Dmax, where ∗ is any terminal node different from i and j

6 if new path found then
7 Update Hi and/or Hj and Π
8 Update Di∗, D∗i, D∗j , Dj∗ and Dmax

9 improve ← TRUE
10 until improve is FALSE;

Output: s
Algorithm 7: Solution improvement procedure LS1

Line 5 in Algorithm 7 performs the neighborhood search consisting of evaluating
different paths for (i, j). If a new path is found, then the relevant sets and values are
updated (lines 7 and 8 in Algorithm 7), and the improve flag is set to TRUE. If no new
path is found, then the procedure terminates.

The second improvement procedure (LS2), summarized in Algorithm 8, does not
tackle Dmax directly as it focuses on minimizing the total cost of the objective func-
tion (3.1). The neighborhood search consists of evaluating the exchanges k ∈ Hi ↔ k′ /∈
Hi for all i such that tij > 0 or tji > 0, i, j ∈ V, (lines 4 to 13 in Algorithm 8). This is
done in order to minimize the cost of routing the traffic between i and j (lines 8 and 9 in
Algorithm 8). For each exchange, all paths using hub k are recomputed by redirecting
the corresponding traffic through the least expensive available route (line 8 in Algorithm
8).

A hub allocation for the terminal under consideration (i.e., node i) is changed to
improve the routing cost (line 11 in Algorithm 8). The procedure ends when no change
in the hub allocation for any of the terminal nodes is able to reduce the current cost of
at least one traffic in the network.

4.2.3 The Uncapacitated r-Allocation p-Hub Median and Equitable
Center Problem

Decision makers facing hub network design problems are interested in comparing solu-
tions that trade off cost and customer service. In this context, a bi-objective problem
formulation is the appropriate approach to search for solutions that simultaneously con-
sider cost and service. We propose the Uncapacitated r-Allocation p-Hub Median and



4.2 A GRASP algorithm 111

Input: s
1 Compute Dij for all (i, j) pairs such that tij > 0
2 repeat
3 improve ← FALSE
4 foreach i ∈ V do
5 foreach k ∈ Hi do
6 foreach k′ ∈ H \Hi do
7 Replace k with k′

8 Find new paths Π′ for all (i, j) and (j, i) for which k ∈ p(i,j) or p(j,i)
9 Compute the cost of routing all (i, j) and (j, i) traffic through Π′

10 if cost has improved then
11 Hi ← Hi \ {k} ∪ {k′}
12 Update Π, D and Dmax

13 improve ← TRUE

14 until improve is FALSE;
Output: s

Algorithm 8: Solution improvement procedure LS2

Equitable Center Problem (UrApHMECP) with the following formulation:
Objective 1: (3.1)
Objective 2: (4.5)
Subject to: (3.2) – (3.7), (3.9), and (4.6).
The goal is to construct the set E of efficient solutions to this bi-objective problem.

Efficient solutions are defined in the traditional sense, that is, as those for which it is
not possible to decrease the value of one of the objectives without increasing the value
of the other objective. (Note that both objectives attempt to minimize a function of the
solution.) The outcome of a heuristic approach is an approximation Ê of the efficient
frontier E. We propose a BGRASP solution method (see Algorithm 9) that builds
upon the strategies introduced earlier. The procedure alternates between C1 and C2 to
construct solutions and then sequentially applies LS1, LS2, and again LS1 (lines 3 to 6
in Algorithm 9). The starting solution for each local search is the best solution found in
the previous step. Since LS1 uses g(s) to measure solution quality and LS2 uses f(s),
the application of both methods is expected to result in a set of solutions that, taken as
a whole, produces a reasonable approximation Ê for the UrApHMECP.

Although the updating of Ê is shown in line 7 of Algorithm 9, this set of non-
dominated solutions is maintained and updated throughout the application of all pro-
cedures, that is, after the completion of C1 or C2 (which produces s) as well as during
all the neighborhood searches associated with LS1 and LS2. Maintaining and updating
Ê includes the clean-up processes needed to eliminate solutions that become dominated
by the inclusion of new solutions in the set. The second call to LS1 (see line 6 in Algo-
rithm 9) has been added after preliminary experiments that have showed that additional



112 Chapter 4. The uncapacitated r-allocation p-hub equitable center problem

Input: stopping criterion
1 Ê ← ∅
2 while stopping criterion is not satisfied do
3 s← C1() or C2()
4 s′ ← LS1(s)
5 s′′ ← LS2(s′)
6 s′′′ ← LS1(s′′)
7 Update Ê

Output: Ê
Algorithm 9: Bi-objective GRASP (BGRASP)

non-dominated solutions can be found in the trajectory from s′′ to s′′′.

4.2.4 Computational experiments

This section describes both the scientific and the competitive testing of our proposed
solution method. Scientific testing refers to experiments designed to fine-tune the pro-
cedure and also to identify the contribution of the various components of the procedure.
The goal of these experiments is to determine what makes the procedure perform well
(or not) and why. We then engage in the traditional competitive testing to compare
performance against alternative methods to search for solutions to the uncapacitated r-
allocation p-hub center problem. The procedures in our method have been implemented
in C and the integer linear programming formulations have been solved using CPLEX
12.6.1. All the results reported in this section have been obtained by running our codes
on an Intel Core i5-4200U PCU @ 1.6 GHz and 8GB of RAM laptop computer with the
Ubuntu Linux 14.04.02–64bits operating system. For the single-objective problems, we
use the following metrics to measure performance:

• V alue: Average objective value of the best solutions obtained by the procedure on
the instances considered in the experiment.

• Dev: Average percentage deviation from a reference solution, where the reference
solution depends on the testing (i.e., scientific or competitive).

• Best: Number of instances in a set for which a procedure is able to match the ref-
erence solution, where the reference solution depends on the testing (i.e., scientific
or competitive).

• CPU : Average computing time in seconds employed by the algorithm.

4.2.4.1 Problem instances

The following two sets of instances have been used:



4.2 A GRASP algorithm 113

1. The CAB (Civil Aviation Board) data set. As in other chapters, we have used
this network to generate 91 instances with p ∈ {3, . . . , 5}, and r ∈ {2,. . . , p− 1}.
The following discount factors have been widely used: χ = 1, δ = 1, and α =
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.

2. The AP (Australian Post) data set. As with CAB, many authors have generated
various instances from the original network data. We have extended this set of
instances by generating 56 more with n = 30, 40, 50, 60, 75, 80, 90, and 100 nodes.
For these instances, p ∈ {3, . . ., 7} and r ∈ {2, . . . , p− 1}. Discount factors are
set to χ= 3, α= 0.75 and δ= 2. These instances have asymmetric flows between
the nodes (i.e., for a given pair of nodes i and j, tij is not necessarily equal to
tji). Moreover, flows from one node to itself can be positive (i.e., tii can be strictly
positive for a given i).

4.2.4.2 Scientific testing

From the complete set of 147 instances corresponding to the CAB and AP data sets
described above, we have created a training set of 20 instances of various sizes and
values of p and r. Specifically, the training set contains 10 instances from the CAB set,
with n = 20 p ∈ {3, 4, 5} and r ∈ {2, 3, 4} , and 10 AP instances with 30 ≤ n ≤ 90,
p ∈ {5, 6, 7} , and r ∈ {2, 3, 4, 5}. The goal of scientific testing is to assess the merit of the
various elements included in a solution procedure. Since the tests isolate these elements,
it is not expected that the quality of the solutions obtained by these partial procedures
will rival those of the best-known (or optimal) solutions that were found with complete
search processes. Therefore, for the purpose of scientific testing, it is customary to use as
reference solutions in the calculation of Dev the best solutions that the elements being
tested are able to produce. This enables the detection of statistical differences between
the performance of specific configurations of the elements under study.

In the first experiment, we study the construction methods described in Section 4.2.1
to assess their merit in terms of solution quality in the context of the UrApHECP. The
performance of this solution generators depends on the values of their corresponding
parameters, β1 for C1 and β2 for C2, which determine the size of the RCL in each
construction method. Table 4.4 shows the Dev values corresponding to C1 and C2 for
β1 and β2 values varying from 0.1 to 1.0.

Each Dev value is calculated over the 20 best solutions constructed by C1 and C2,
one for each instance in the training set. The best solution for a problem instance is
selected among 100 solutions generated by each method and parameter setting. For
example, C1 with β1 = 0.1 is used to generate 100 solutions for the first instance in
the training set. The best solution out of these 100 is selected. The process is repeated
19 more times for all instances in the training set. Then, Dev = 22.9% is the result of
averaging the deviation against the reference solution of the 20 best solutions found (one
for each problem instance).

With the goal of detecting differences among the various parameter values, we applied
the non-parametric Friedman test for multiple correlated samples. The test has been



114 Chapter 4. The uncapacitated r-allocation p-hub equitable center problem

Table 4.4. Dev values for C1 and C2 solutions of the training set instances

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
β1 22.90% 27.90% 18.90% 20.00% 33.10% 42.90% 61.70% 74.30% 87.70% 94.90%
β2 17.70% 28.40% 26.20% 32.60% 33.20% 33.10% 32.60% 17.80% 22.60% 21.50%

performed on the set of best solutions obtained by each construction method and each
parameter value in Table 4.4. This test computes, for each instance, the rank of each
method according to solution quality. Then, it calculates the average rank for each
method across all instances. If the averages differ greatly, the associated p-value or
level of significance is small. For C1, the Friedman test results in a p-value of 0.000,
indicating that there are statistically significant differences among the average solution
quality obtained by employing different β1 values. We then have performed a paired
sample test (Wilcoxon) for the best solutions obtained by C1 with β1 = 0.3 and β1 = 0.4,
which are the settings that result in the smallest Dev values. The resulting p-value of
0.53 indicates that there is no significant difference between setting β1 to 0.3 or 0.4. We
chose β1 = 0.3 for the rest of experiments.

The Friedman test for the best solutions obtained by C2 with the 10 settings of β2
shown in Table 4.4 yielded a p-value of 0.13. This result does not provide evidence that
there is a significant difference in performance of C2 among all the β2 values that were
tested. Although not supported from a statistical point of view, the values β2 = 0.1 and
β2 = 0.8 resulted in the smallest deviations, and therefore we decided to use β2 = 0.1.

We now search for the most effective combination of construction and improvement
within GRASP in Algorithm 5. To that end, we test all combinations of construction and
improvement procedures, i.e., C1 (β1 = 0.3) with LS1 and LS2 as well as C2 (β2 = 0.1)
with LS1 and LS2. The stopping criterion is set to 100 GRASP iterations for each
instance in our training set. Table 4.5 shows the performance measures associated with
each combination. The Dev values in Table 4.5 may be compared with the Dev values

Table 4.5. Performance of various GRASP (Algorithm 5) configurations.

Combination Value Dev Best CPU
C1 (β1 = 0.3) + LS1 183.0 0.0679 10 0.8
C1 (β1 = 0.3) + LS2 183.6 0.0862 8 13.7
C2 (β2 = 0.1) + LS1 186.6 0.1119 11 3.7
C2 (β2 = 0.1) + LS2 190.7 0.1541 8 16.6

in Table 4.4 for the corresponding β1 and β2 settings to measure the contribution of the
local search. On average, LS1 and LS2 improve the initial C1 solutions by 12.11% (18.9%
- 6.79%) and 10.28% (18.9% - 8.62%), respectively. Likewise, LS1 and LS2 improve the
initial C2 solutions by 6.51% (17.7% - 11.19%) and 2.29% (17.7% - 15.41%) respectively.
The results in Table 4.5 indicate that the most effective combination consists of pairing
C1 with LS1.



4.2 A GRASP algorithm 115

We are also interested in identifying the contribution of the local search procedures
within BGRASP. Of particular interest is the marginal improvement obtained by the
order in which the local search procedures are applied (as shown in Algorithm 9). Using
a termination criterion of 100 iterations, for each instance in the training set we calculate
Ê after the construction step (line 3 in Algorithm 9), then after the completion of LS1
and LS2 (lines 4 and 5 in Algorithm 9), and finally after the completion of the additional
call to LS1 (line 6 in Algorithm 9). Figure 4.2 illustrates the outcome of this experiment
on one of the training instances.

120000 125000 130000 135000 140000

10
0

20
0

30
0

40
0

50
0

60
0

g(s)

f(
s)

Figure 4.2. Efficient frontier approximations for an instance in the training set.

Figure 4.2 shows that each of the local search stages contribute to finding a better
approximation Ê (by moving the points toward the left and the bottom of the graph).
While this depiction of the local search contributions is only for one of the problem
instances in the training set, we have observed a similar behavior in the remaining
instances in the set.

4.2.4.3 Competitive testing

As mentioned in Section 4.1, we have delevoped in Chapter 3 a solution procedure,
based on the scatter search methodology, for the UrApHMP. We argued, through an
illustrative example, that a solution procedure designed for the UrApHMP is not capable
of producing high quality solutions for the UrApHECP. We now provide experimental
evidence to support this argument. The experiment consists of applying the scatter
search procedure (labeled as SS) of Section 3.4 in Chapter 3 and our GRASP (Algorithm
5 with C1 and LS1) to all problems in our test set. The stopping criterion, for both



116 Chapter 4. The uncapacitated r-allocation p-hub equitable center problem

procedures, is set to a maximum number of 1000 iterations for each problem instance.
Table 4.6 shows the average objective function value (i.e., V alue) and the Dev values
calculated against the best-known solutions as the reference points. The set of instances
has been divided in six subsets according to the number of nodes.

Table 4.6. Performance comparison between SS and GRASP on UrApHMP and
UrApHECP

UrApHMP UrApHECP CPU seconds
Set n #inst Value (SS) Dev (GRASP) Value (GRASP) Dev (SS) SS GRASP

CAB 15 27 15059746 7.60% 48.4 84.00% 0.1 0.6
CAB 25 54 6.826E+09 14.20% 128.1 179.70% 0.9 13.5
AP 40 6 138422.4 6.20% 121.5 37.80% 2.8 46.8
AP 60 10 132012.9 15.30% 271.5 28.70% 11.2 305.3
AP 80 15 129413.6 18.60% 392.1 141.40% 49.9 837.5
AP 100 15 130146.4 23.40% 674.3 56.60% 102.3 2757.5

Total/Average 127 2.905E+09 14.10% 217.8 121.70% 19.4 660.2

The procedures perform as expected. SS finds the best-known solutions for all in-
stances when solving the UrApHMP. That is, a Dev column for SS under UrApHMP
would consists of all zeros. The third column of Table 4.6 shows the average objective
values of the best-known solutions for UrApHMP. The GRASP solutions to these prob-
lems are, on average, 14.1% away from the best-known solutions, as indicated by the
values in the Dev (GRASP) column in Table 4.6. When solving the UrApHECP on the
same instances, the performance of SS and GRASP is exactly the opposite to the previ-
ous case. That is, GRASP finds all the best-known solutions and the SS solutions are,
on average, 121.7% away from these reference points. These results provide empirical
evidence that UrApHMP and UrApHECP are significantly different problems, requiring
specialized procedures and hence justifying our current work. We point out that the
computational effort of GRASP is about an order of magnitude larger than the effort
employed by SS. This is due to the complexity of the calculations associated with the
optimization of the UrApHECP, which we illustrated in Section 4.2.1.

In our next competitive experiment, we have attempted to obtain solutions for the
UrApHECP by solving the MIP formulation in Section 4.1. The well-known commercial
MIP solver CPLEX 12.6.1 was unable to provide any feasible integer solutions to prob-
lems with n > 20. Therefore, we eliminated the possibility of comparing the performance
of our method against this optimization package. We then have attempted a comparison
of our GRASP for the UrApHECP with two general-purpose metaheuristic optimizers,
LocalSolver and OptQuest1. As a preliminary experiment, both of these optimizers have
been tried on a small AP instance with n = 20, p = 4, r = 2, χ= 3, α= 0.75 and δ= 2.
The best-known solutions for UrApHMP and UrApHECP have objective function val-
ues of f(s) = 132263 and g(s) = 50.65%, respectively. These solutions have been found

1 LocalSolver is a product of Innovation 24 (localsolver.com) and OptQuest is a product of OptTek
Systems (opttek.com).



4.2 A GRASP algorithm 117

in a fraction of a CPU second by SS (for UrApHMP) and GRASP (for UrApHECP).
LocalSolver was able to match these solutions within 20-minute runs. However, Op-
tQuest was only able to find a solution for UrApHMP with an objective function value
of f (s) = 136704.72 and a solution for UrApHECP with an objective function value of
g (s) = 84.44%. Similar results were found with additional small problems and therefore
we have decided to continue our competitive testing only with LocalSolver.

Given the general nature of LocalSolver, we have allowed it to run for 20 minutes
for each problem instance, which represents about twice the computational effort of our
GRASP. LocalSolver has run into memory issues on problems with n > 60, therefore
our experiments are limited to the 35 instances summarized in Table 4.7.

Table 4.7. Comparison between LocalSolver and GRASP on the UrApHECP

LocalSolver GRASP
Set n # inst Value Dev Best Value Dev Best

CAB 15 9 60.8 0.00% 9 61.1 0.58% 8
CAB 25 10 235.5 14.40% 2 207.2 0.56% 9
AP 40 6 132.3 15.50% 1 113.5 0.31% 5
AP 60 10 402.5 47.70% 0 271.5 0.00% 10

Total/Average 35 220.6 20.40% 12 172 0.36% 32

The quality of the solutions that LocalSolver finds decreases with the size of the
problem. For the CAB instances, LocalSolver’s performance is somewhat comparable to
GRASP. However, the gap widens when tackling the larger AP instances.

To the best of our knowledge, the Literature does not include a procedure specifically
developed for the UrApHMECP. Once again, we have started by executing both Local-
Solver and OptQuest on a small AP problem with n = 20. The narrow multiobjective
capabilities of LocalSolver limit our analysis. LocalSolver is not designed to search for
an approximation of an efficient frontier. If more than one objective is defined within a
LocalSolver model, the system treats them lexicographically. The objectives are consid-
ered in the order that they are declared. The execution of LocalSolver produces a single
solution that is the best approximation of the lexicographic optimization of the objec-
tives. For each problem instance, we attempt to produce four non-dominated solutions
in the efficient frontier:

1. minimize f(s) (modelNumber = 1).

2. minimize g(s) (modelNumber = 2).

3. minimize g(s) and then f(s) (modelNumber = 3).

4. minimize f(s) and then g(s) (modelNumber = 4).

Given the heuristic nature of the LocalSolver, there is no guarantee that the four solutions
will be non-dominated and therefore we remove those that are dominated.



118 Chapter 4. The uncapacitated r-allocation p-hub equitable center problem

OptQuest has a multiobjective setting in which the procedure searches for an ap-
proximation of the efficient frontier associated with the objective functions defined in
the optimization model. Figure 4.3 shows the non-dominated solutions for the biobjec-
tive mode (3.1), (4.5), (3.2) – (3.7), (3.9), and (4.6) found by BGRASP, LocalSolver,
and OptQuest on an AP problem with n = 20.

The BGRASP solutions in Figure 4.3 dominate two of the LocalSolver solutions,
the ones found using the lexicographical multiobjective functionality of LocalSolver.
The solution found using the multiobjective OptQuest search is also dominated by the
GRASP solutions. In addition, one of the LocalSolver solutions dominates the OptQuest
solution. Since similar results were found with other smaller instances, we focused our
competitive testing on LocalSolver.

130000 135000 140000 145000

40
60

80
10

0
12

0

g(s)

f(
s)

Figure 4.3. Bi-objective solutions to an AP instance with n = 20.

We employ the same 35 instances in Table 4.7 to run BGRASP for 1000 iterations
and LocalSolver for 20 minutes. The comparison is done in terms of the hypervolume.
This metric was developed by Zitzler and Thiele [106] and measures the size of the space
covered, which approximates the volume where the dominated points reside. Hence, the
larger the hypervolume the better. The number of points in Ê is another measure of
interest in multiobjective optimization. Table 4.8 reports both the average hypervolume
and the average number of points found by BGRASP and LocalSolver for each subset



4.3 Concluding remarks 119

of problems.

Table 4.8. Comparison between LocalSolver and BGRASP on the UrApHMECP

Hypervolume Number of points
Set n Instances BGRASP LocalSolver BGRASP LocalSolver

CAB 15 9 0.29 0.11 1.89 1.78
CAB 25 10 0.84 0.15 6.7 2.5
AP 40 6 0.77 0.03 3.67 1.83
AP 60 10 0.71 0.2 4.4 1.8

Total/Average 35 0.65 0.13 4.29 2

The nondominated solutions that BGRASP finds result in a hypervolume that on
average is about 5 times larger than the hypervolume corresponding to the LocalSolver
solutions. Also on average, half of the solutions that LocaSolver finds for each prob-
lem instance are dominated (as indicated by the value of 2.00 in the last row of the
LocalSolver column under the Number of points heading).

4.3 Concluding remarks

We have studied in this chapter two hub-network design problems that have not been
addressed in the Literature, the Uncapacitated r-Allocation p-Hub Equitable Center
Problem (UrApHECP) and the Uncapacitated r-Allocation p-Hub Median and Equitable
Center Problem (UrApHMECP). Modeling equity as a relative deviation from an ideal
value (e.g., cost) is applicable in contexts where solutions for which some of the demand
is fulfilled using routes that are far from ideal are not desirable. We argue that the
airline industry is such that if routes connecting two terminal nodes (i.e., an origin
and a destination) are far from ideal (e.g., a direct flight) it could result in a loss of
customers to the competition. In order to keep operational costs in perspective, we
suggest to formulate the problem as a bi-objective optimization model that accounts for
both cost-efficiency and service.

The UrApHECP is a so-called minimax model, since it seeks to minimize the max-
imum deviation from the ideal values. These problems create “flat” objective function
spaces because many solutions share the same objective function value. Empirical evi-
dence points to multistart methods as an effective way of searching these spaces. This
is the reason the selection of GRASP as the underlying methodology for our solution
procedure. A careful scientific testing has been performed to identify a high-performing
configuration of our search method. This has been followed by a competitive testing
designed to show the need for a specialized procedure for both the UrApHECP and the
UrApHMECP. Although our tests are limited to problem sizes that LocalSolver is able
to handle, the proposed GRASP and BGRASP are scalable and able to tackle problems
of realistic size.





Chapter 5

Models and solution methods for
the stochastic r-allocation p-hub
median problem with non-stop
services

Summary

In this chapter we extend the uncapacitated r-allocation p-hub median problem in two
directions: (i) by considering uncertainty in the traffics and in the shipping costs, and
(ii) by considering the possibility of shipping traffic directly between terminals (non-
stop services) in case this renders savings in the overall cost. In particular, we associate
uncertainty with the traffics to be shipped between nodes and with the transportation
costs. If we assume that such uncertainty can be captured by a finite set of scenarios, each
of which having some known occurrence probability, it is possible to develop a compact
formulation for the deterministic equivalent problem. However, even for small instances
of the problem, the model becomes too large to be easily tackled by a general purpose
solver. This fact motivates the development of an approximate procedure, whose starting
point is the determination of a feasible solution to every (deterministic) single-scenario
problem. These solutions are then embedded into a process inspired by Path Relinking:
gradually an initial solution to the overall problem is transformed by the incorporation
of attributes from some guiding solutions. In our case, the guiding solutions are those
found for the single-scenario problems.

We report and discuss the results of the computational experiments performed using
instances randomly generated for the new problem using the well-known CAB data set.

121



122 Chapter 5. The stochastic r-allocation p-hub median problem w. non-stop services

5.1 Introduction

An important aspect concerning hub location is related with the shipment of the traffic
originated at each node. Most of the literature assumes that all traffic must be routed
via at least one hub which prevents direct shipments between terminals. However, in
some applications (e.g., in Logistics) it may be possible (and even advantageous) to
make direct shipments between terminals. This is the case, for instance, if the volume of
traffic between the nodes is high and no specialized facility or equipment is required for
processing that traffic. Some authors have noticed the practical relevance of considering
these “non-stop” services. This is the case with Aykin [10, 11, 12], Nickel et al. [73],
Sung and Jin [100], and Wagner [101]. Nevertheless, the literature capturing this feature
is still much scarce.

Another aspect that is increasingly attracting the attention of academicians and
practitioners concerns embedding uncertainty in optimization models. This is not a new
topic. However, the technological developments we have observed in the past decades
(e.g., the huge increase in computing power) made possible to give more relevance to
that aspect. This has led to more comprehensive and, from a practical point of view,
more relevant models. Hub location has not been ignored in this trend. In fact, sev-
eral works can already be found in the literature capturing uncertainty in optimization
models developed for hub location problems. To the best of our knowledge, the paper
by Marianov and Serra [65] is the first work dealing with uncertainty within the context
of hub location. Sim et al. [95] introduce the stochastic p-hub center problem. Often,
the uncertain parameters are related with the amount of traffic to ship. This is the case,
for instance, with the work by Bollapragada et al. [15] . However, other possibilities, as
uncertainty in the costs, have been studied (the reader should refer to Contreras et al.
[23], and Alumur et al. [7]).

Most of the “classical” hub location problems are NP-hard. Accordingly, the same
holds for many of their extensions and thus it is not surprising to find much literature
presenting heuristic procedures in this field.

In this chapter we will extend the uncapacitated r-allocation p-hub median problem
in two directions: (i) by considering uncertainty in the traffics and in the shipping costs,
and (ii) by allowing non-stop services.

We assume that uncertainty can be represented by a stochastic random vector with
some known probability distribution. This leads to the adoption of a two-stage stochastic
modeling framework for the problem: the first-stage decisions refer to the network design
(selection of hubs and allocation of terminals to the hubs); the second-stage decision is
dependent on how uncertain is revealed and regards the transportation of the traffics
through the network.

When the underlying random vector above mentioned has a finite support, it is
possible to derive a compact mixed-integer linear programming formulation for the de-
terministic equivalent problem. Nevertheless, this is a large-scale optimization model
even for small instances of the problem, which motivates the development of a heuristic
algorithm for obtaining high-quality feasible solutions. The procedure we propose is in-



5.2 The uncapacitated r-allocation p-hub median problem with non-stop services 123

spired on the Path Relinking methodology ([44]). In particular, it progressively changes
an initial solution to the problem by incorporating attributes from a set of guiding so-
lutions. In our case, the guiding solutions are feasible solutions previously obtained to
the single-scenario problems (one for each).

The development of metaheuristics for stochastic combinatorial optimization prob-
lems is not a new topic as we can observe in the survey paper by Bianchi et al. [14].
Nevertheless, we can also conclude that most of the work was developed on stochastic
traveling salesman problems, on stochastic vehicle routing, and on stochastic schedul-
ing. Within the context of facility location, no much work can be found. The paper by
Albareda-Sambola et al. [4] is a good exception. The authors introduced a so-called fix-
and-relax-coordination procedure for a multi-period location–allocation problem under
uncertainty. This is a specialization of the fix-and-relax heuristic ([27], [32]) embedding
a branch-and-fix coordination two-stage solution algorithm ([5]).

The new methodology we propose in this chapter represents a contribution to the
development of heuristic approaches for stochastic hub location problems that can be
easily extended to other stochastic discrete optimization problems.

This chapter is organized as follows: in Section 5.2 we present a mathematical model
for the deterministic version of the problem we are investigating. Afterwards, we extend
the model to a setting in which the traffics and shipping costs are stochastic. In Sec-
tion 5.3 we introduce the new heuristic procedure. In particular, Section 5.3.1 is devoted
to developing a heuristic to the deterministic (single-scenario) version of the problem.
Finally, in Section 5.4, we present the computational tests performed in order to assess
the quality of the new heuristic.

5.2 The uncapacitated r-allocation p-hub median problem
with non-stop services

In this section we start by summarizing the most important results concerning the (deter-
ministic) uncapacitated r-allocation p-hub median problem introduced by Yaman [103],
as well as the special case in which non-stop services ([100]) are allowed. Then, we
introduce a stochastic version, which, as far as we know, is the first time it has been
considered in the Literature.

5.2.1 Deterministic model

Consider a network G = (V,E) with a set of demand nodes V and a set of edges E, and
let tij be the amount of traffic to be sent between each pair of nodes i and j. Recall
that in the uncapacitated r-allocation p-hub median problem (UrApHMP), traffic tij
has to be routed along a path i → k → l → j, where nodes k and l ∈ V are used as
intermediate points for this transportation (see Chapter 3). The UrApHMP consists of
choosing a set H of p nodes that are used as intermediate transfer points between any
pair of nodes in G, allocating each terminal to at most r of the p hubs, and such that



124 Chapter 5. The stochastic r-allocation p-hub median problem w. non-stop services

the total transportation cost is minimized. The traffic to and from each terminal can be
routed via one or several hubs among the ones to which the terminal is allocated.

Yaman [103] pointed out the possibility of considering non-stop services between
origin–destination pairs. Non-stop services refers to the possibility of sending traffics
between any pair of nodes using a direct edge, at a given cost, rather than going through
their corresponding hubs. The direct transportation via such a direct edge is called a
non-stop service. The problem we study in this chapter is the UrApHMP with non-
stop services, where fixed assignment costs of terminals to hubs are also considered. We
call this problem the Uncapacitated r-Allocation p-Hub Median Problem with non-stop
services (UrApHMP-NSS).

In order to formulate the problem as a mixed-integer linear optimization problem,
we define the following variables:

• Given a node k ∈ V , zkk = 1 if node k is set to be a hub and zkk = 0, and
otherwise. Given a non-hub node i ∈ V , zik = 1 if node i is assigned to node k
and zik = 0 otherwise.

• Moreover, we define xijkl as the proportion of the traffic tij from node i to node j
that travels along the path i → k → l → j, where k and l are the nodes that will
be used as hubs.

• Finally, for two nodes i, j ∈ V , yij = 1 if tij is routed on a non-stop service, and
yij = 0 otherwise.

We formulate the UrApHMP-NSS as follows.
min

∑
i,k∈V,i 6=k

aikzik +
∑

i,j,k,l∈V
tij(χcik + αckl + δclj)xijkl

+
∑
i,j∈V

(tijdij + bij)yij (5.1)

Subject to
∑
k∈V

zkk = p (5.2)
∑
k∈V

zik ≤ r, ∀i ∈ V (5.3)

zik ≤ zkk, ∀i, k ∈ V (5.4)∑
l∈V

xijkl ≤ zik, ∀i, j, k ∈ V (5.5)
∑
k∈V

xijkl ≤ zjl, ∀i, j, l ∈ V (5.6)
∑
k∈V

∑
l∈V

xijkl + yij = 1, ∀i, j ∈ V : tij > 0 (5.7)

xijkl ≥ 0, ∀i, j, k, l ∈ V (5.8)
yij ∈ {0, 1}, ∀i, j ∈ V (5.9)
zik ∈ {0, 1}, ∀i, k ∈ V. (5.10)



5.2 The uncapacitated r-allocation p-hub median problem with non-stop services 125

The objective function (5.1) represents the total cost. It consists of the allocation cost
of terminals to hubs and the transportation cost of the traffics. The first term refers to
the assignment cost, aik, of each node i ∈ V to a particular hub k ∈ V , regardless of
the amount of traffic node i sends or receives through k. The second term represents
the cost of transporting all traffics tij through the hubs, where χ, α, and δ are unit
rates for collection (origin-hub), transfer (hub-hub) and distribution (hub-destination),
respectively. In this term, cik, ckl, and clj denote the cost of shipping all the traffic
tij via the edges (i, k), (k, l), and (l, j), respectively. The last term of the objective
function describes the cost of transporting traffics using non-stop services. In this term,
dij denotes the cost of shipping the traffic tij using a non-stop service. Note that there
is also a fixed cost, bij , associated with the use of this direct edge between i and j.

Constraint (5.2) imposes to use exactly p nodes as hubs, while constraints (5.3)
restrict any node to be assigned to at most r of the p hubs. Constraints (5.4) assure
that if node k is not a hub, node i cannot be assigned to it. Moreover, constraints (5.5)
and (5.6) guarantee that if nodes i and j are not assigned to hubs k and l, no traffic
can be sent between i and j through those hubs. Constraints (5.7) ensure that all traffic
of the network is routed, either using the hub connections or non-stop services. Finally,
the variables domains are stated in constraints (5.8) – (5.10).

5.2.2 A two-stage stochastic model

We introduce here a stochastic version of the above problem. In particular, we assume
that demands and transportation costs are not known in advance but can be captured
by a probability distribution. This is motivated by the following observations:

1. A hub location problem has embedded a network design problem (locating the
hubs and allocating the terminals to the hubs) whose related decisions often have
a long-lasting effect. Hence, these are intrinsically strategic decisions typically
made before having perfect information about the future. On the other hand,
the decisions about transportation of the traffics are often operational decisions
that can be made just in time, when precise information is available, i.e., after
uncertainty is revealed.

2. What is more, transportation costs are often related to the price of resources
like electricity or oil, and therefore they are quite difficult to predict. However,
the actual transportation costs incurred will depend on how the network design
decisions were made since the latter condition the former.

These observations motivate the use of a two-stage stochastic programming optimization
model in which the here-and-now decisions (first-stage) concern the network design and
the recourse decisions (second-stage) regard the transportation of the traffics. The latter
are called “recourse decisions” because they are made in such a way that the best response
is given (depending on the occurring scenario) to the setting defined by the first-stage
decisions. This modeling framework is not new within the context of hub location. In
the works by Contreras et al. [23] and by Alumur et al. [7] we can observe stochastic hub



126 Chapter 5. The stochastic r-allocation p-hub median problem w. non-stop services

location problems with the network design decisions separated from the transportation
decisions.

We call scenario a complete realization of all the uncertain parameters. The number
of possible scenarios can be either finite or infinite, depending on the supports of the
random variables involved in the problem. In fact, if, for every i, j ∈ V , the traffic tij
is assumed to be a random variable, the same happening with the costs cij and dij ,
(i, j) ∈ E, then the random vector underlying the problem is

ξ =
[
[tij ]i,j∈V , [cij ](i,j)∈E , [dij ](i,j∈E), [bij ](i,j∈E)

]
.

Each realization of this random vector is a scenario. We assume that it is possible to
compute or estimate accurately the probability associated with each scenario (we refer
the reader to [7] for a deeper discussion on this issue).

We introduce a stochastic version of the UrApHMP-NSS as follows:

min
∑

i,k∈V,i 6=k
aikzik +Q(z) (5.11)

Subject to: (5.2)− (5.4), (5.10),

where Q(z) = Eξ[Q(z, ξ)] is the mathematical expectation with respect to ξ, and

Q(z, ξ) = min
∑

i,j,k,l∈V
tij(χcik + αckl + δclj)xijkl

+
∑
i,j∈V

(tijdij + bij)yij (5.12)

Subject to
∑
l∈V

xijkl ≤ zik, ∀i, j, k ∈ V (5.13)
∑
k∈V

xijkl ≤ zjl, ∀i, j, l ∈ V (5.14)
∑
k∈V

∑
l∈V

xijkl + yij = 1, ∀i, j ∈ V : tij > 0 (5.15)

xijkl ≥ 0, ∀i, j, k, l ∈ V (5.16)
yij ∈ {0, 1}, ∀i, j ∈ V. (5.17)

If the support, say Ξ, of the random vector ξ is finite, we can index the scenarios in
the set S = {1, . . . , |Ξ|}. Accordingly, we can also index the stochastic parameters and
the second-stage decision as follows: for s ∈ S, tijs is the traffic to be sent from i to
j under scenario s, ciks, ckls, and cljs correspond to the cost of shipping all the traffic
tijs via the edges (i, k), (k, l), and (l, j), respectively, under scenario s, dijs denotes
the cost of shipping the traffic tijs using a non-stop service under scenario s, xijkls is
the the proportion of the traffic tij from node i to node j that travels along the path
i → k → l → j, where k and l are the nodes that will be used as hubs, and yijs is a



5.2 The uncapacitated r-allocation p-hub median problem with non-stop services 127

binary variable equal to 1 if a non-stop service is used in scenario s for shipping the
traffic tijs and 0 otherwise.

Using this new notation and representing by πs the probability associated with sce-
nario s ∈ S, we can present the so-called extensive form of the deterministic equivalent:

min
∑

i,k∈V,i 6=k
aikzik

+
∑
s∈S

πs

 ∑
i,j,k,l∈V

tijs(χciks + αckls + δcljs)xijkls

+
∑
i,j∈V

(tijsdijs + bijs)yijs

 (5.18)

Subjec to: (5.2)− (5.4), (5.10)∑
l∈V

xijkls ≤ zik, ∀i, j, k ∈ V, s ∈ S (5.19)
∑
k∈V

xijkls ≤ zjl, ∀i, j, l ∈ V, s ∈ S (5.20)
∑
k∈V

∑
l∈V

xijkls + yijs = 1, ∀i, j ∈ V, s ∈ S (5.21)

xijkls ≥ 0, ∀i, j, k, l ∈ V, s ∈ S (5.22)
yijs ∈ {0, 1}, ∀i, j ∈ V, s ∈ S. (5.23)

The above model will be denoted by P. We note that the non-anticipativity principle
is implicit in this model since the choice to be made for the z-variables should will result
the same no matter the occurring scenario. In other words, the challenge here is to select
a set of hubs and assign the terminals to these hubs in a way that performs well in every
possible situation (scenario).

5.2.3 A minmax regret model

The stochastic model just presented lies on the assumption that the probabilities πs
are known. If this is not the case, then, alternatives are necessary for formulating the
problem. One possibility explored within the context of hub location by Alumur et al. [7]
is to consider a min-max regret model. We can propose the same type of model for the
UrApHMP-NSS under uncertainty.

We first notice that model (5.2) – (5.4), (5.10), (5.18) – (5.23) can be solved for a
subset of scenarios and, in particular, the model can be solved for a single scenario s ∈ S
by setting πs = 1. The resulting solution is the optimal solution for scenario s whose
value we can denote by Vs.



128 Chapter 5. The stochastic r-allocation p-hub median problem w. non-stop services

After having computed the values Vs, s ∈ S, we can compute the so-called regret of
some solution (x,y, z) with respect to a scenario s. This is done as follows:

Rs =
∑

i,k∈V,i 6=k
aikzik +

 ∑
i,j,k,l∈V

tijs(χciks + αckls + δcljs)xijkls

+
∑
i,j∈V

(tijsdijs + bijs)yijs

 − Vs, s ∈ S. (5.24)

The problem consists of finding the solution (x,y, z) that minimizes the maximum
regret we can observe according to:

min
{

max
s∈S

Rs

}
(5.25)

s.t. (5.2)− (5.4), (5.10), (5.19)− (5.23),

Rs =
∑

i,k∈V,i 6=k
aikzik +

 ∑
i,j,k,l∈V

tijs(χciks + αckls + δcljs)xijkls

+
∑
i,j∈V

(tijsdijs + bijs)yijs

− Vs, s ∈ S. (5.26)

5.3 A greedy attributive scenario based constructive method

In this section we present an algorithm for the stochastic UrApHMP-NSS. Since problem
P is a mixed integer linear program with a large number of binary variables even for
small instances, it is a very hard task to solve it to optimality. Hence, we propose a
heuristic algorithm for finding high-quality feasible solutions to the problem. The idea
is to iteratively build solutions to P using the solutions of single-scenario problems.

For each scenario s ∈ S, let us denote by Ps the problem associated with s:
min

∑
i,k∈V,i 6=k

aikzik +
∑

i,j,k,l∈V
tijs(χciks + αckls + δcljs)xijkls

+
∑
i,j∈V

(tijsdijs + bijs)yijs (5.27)

s.t. (5.2)− (5.4), (5.10),∑
l∈V

xijkls ≤ zik, ∀i, j, k ∈ V (5.28)
∑
k∈V

xijkls ≤ zjl, ∀i, j, l ∈ V (5.29)
∑
k∈V

∑
l∈V

xijkls + yijs = 1, ∀i, j ∈ V (5.30)

xijkls ≥ 0, ∀i, j, k, l ∈ V (5.31)
yijs ∈ {0, 1}, ∀i, j ∈ V. (5.32)



5.3 A greedy attributive scenario based constructive method 129

The solutions for problems Ps, s ∈ S, may render different network designs, i.e.,
distinct hubs selected as well as distinct allocations of terminals. Even, the number of
hubs to which a terminal is assigned to may be different for one scenario to another.
Moreover, problems Ps are also NP-hard (they have the classical multiple allocation hub
location problem as a particular case) and thus they can hardly be solved to optimality
even using a specially tailored algorithm. Accordingly, we can also resort to heuristics
in order to find good feasible solutions.

The algorithm we proposed next is based upon the idea that good solutions for the
single-scenario problems Ps, s ∈ S, may contain information about the good attributes
of a good solution (possibly optimal) to P. Furthermore, a well-known feature of the
optimal solutions to stochastic programming problems is that they represent a trade-
off between the solutions for the different scenarios (for the different realizations of the
uncertainty).

These facts motivate our method, which aims at combining the information provided
by the single-scenario problems to obtain a solution for P. The full procedure, whose
pseudo-code is shown in Algorithm 10, is performed until a previously defined number
of iterations or time limit is reached. The final solution is the best found throughout
the process.

Input: G, tmax, itermax
1 Initialize β∗ ← +∞ and βs ←∞,∀s ∈ S
2 while tmax is not reached do
3 foreach s ∈ S do
4 value of (z, x, y)s ← +∞
5 for iter ← 1 to itermax do
6 Construct (z, x, y)siter
7 LSchange((z, x, y)siter)
8 LSreduce((z, x, y)siter)
9 // Update the incumbent solution

10 if value of (z, x, y)siter < value of (z, x, y)s then
11 (z, x, y)s ← (z, x, y)siter
12 update βs;

13 Obtain (z, x, y)P from (z, x, y)s, for all s ∈ S ;
14 if value of (z, x, y)P < β∗ then
15 β∗ ← value of P
16 (z, x, y)∗ ← (z, x, y)P

Output: (z, x, y)∗
Algorithm 10: Main loop of the algorithm to solve P



130 Chapter 5. The stochastic r-allocation p-hub median problem w. non-stop services

5.3.1 A heuristic for the UrApHMP-NSS

In this section we describe the heuristic method devised to obtain feasible solutions to a
problem Ps, s ∈ S, which turns out to be a heuristic for the UrApHMP-NSS. It consists
of a constructive phase followed by a local search phase.

5.3.1.1 Constructive phase

A solution to the UrApHMP-NSS is fully determined by (i) selecting the p hubs, (ii)
allocating each terminal to at most r hubs, and (iii) transporting the traffics. Each of
this components can be looked at as a subproblem. The constructive procedure (denoted
by Construct (z, x, y)siter in Algorithm 10, line 6) is outlined in Algorithm 11.

Selecting p hubs

In order to determine the set H containing the p nodes that will be selected as hubs
(lines 1 to 17 in Algorithm 11) we start by selecting q (q < p) nodes; afterwards we
select the remaining p− q nodes.

Initially, we compute the values

Ti =
∑
j∈V

(tij + tji), ∀i ∈ V,

representing the total traffic originated and destined to each node i ∈ V . Defining
T = ∑

i∈V Ti we can compute the weights wi = Ti
T
∈ [0, 1] and such that ∑i∈V wi = 1.

One node, say h, is randomly selected according to the values (probabilities) wi and we
set H ← {h}. For selecting the following q − 1 hubs, we update T as T = ∑

i∈V \H Ti
and the weights wi, ∀i ∈ V \H, accordingly, and proceed as before until we get |H| = q.
This way of selecting the first q hubs gives advantage to the nodes having the largest
amount of traffics. The remaining p− q hubs are now selected using a different criterion:
for each h ∈ H, we compute

chmax = max
i∈V \H

{chi + cih
2 } and chmin = min

i∈V \H
{chi + cih

2 },

and define a threshold T as

T =
∑
h∈H

(
chmax + chmin

)
|H|

.

Now, the set of terminals with average transporting cost to and from the hubs less than
or equal to the computed threshold is defined:

D =
{
i ∈ V \H :

∑
h∈H(cih + chi)
|H|

≤ T
}
.

SetD would correspond to those nodes that, if they were selected as hubs, the transporta-
tion costs between them and the hubs already in H would be small. This is motivated



5.3 A greedy attributive scenario based constructive method 131

Input: q, λ
1 // Choose the first q hubs
2 foreach i ∈ V do
3 Ti ←

∑
j∈V (tij + tji)

4 H ← ∅
5 while |H| < q do
6 T ←

∑
i∈V \H Ti

7 wi ← Ti/T . i ∈ V \H
8 select h ∈ V \H in V \H according to the discrete probability distribution

induced by the values wi, i ∈ V \H
9 H ← H ∪ {h}

10 // Choose the remaining p− q hubs
11 while |H| < p do
12 foreach h ∈ H do
13 chmin ← mini∈V \H{(chi + cih)/2} chmax ← maxi∈V \H{(chi + cih)/2}

14 T ← λ

∑
h∈H(ch

max+ch
min)

|H|

15 D ←
{
i ∈ V \H |

∑
h∈H

(cih+chi)
|H| ≤ T

}
16 select h ∈ D according to a uniform distribution in V \H
17 H ← H ∪ {h}
18 // Assign each terminal to a single hub
19 foreach i ∈ V \H do
20 bestMeasure(i) ← +∞;
21 foreach h ∈ H do
22 Compute Measure(i, h)
23 if Measure(i, h) ≤ bestMeasure(i) then
24 bestMeasure(i) ← Measure(i, h)
25 h∗ ← h ;

26 Hi ← {h∗}
27 // Increase of the terminals assignments
28 foreach i ∈ V \H do
29 repeat
30 Compute c(Ti)
31 Let h∗ = arg minh∈H\Hi

{aih}
32 Compute c′(Ti)
33 if c′(Ti) + aih∗ ≤ c(Ti) then
34 Hi ← Hi ∪ h∗
35 else
36 continue ← FALSE;
37 until (|Hi| = r) or (continue is FALSE) ;
38 // Traffic transportation
39 Solve optimally the routing problem to obtain (z, x, y)siter

Output: (z, x, y)siter
Algorithm 11: Construct (z, x, y)siter.



132 Chapter 5. The stochastic r-allocation p-hub median problem w. non-stop services

by the fact that most of the traffics of the network will traverse the arcs among the hubs;
thus the inter-hubs transportation costs are desirably small. Once set D is defined, a
first node h is selected at random from this set and inserted into H. If |H| < p, chmax
and chmin are updated for all h ∈ H, T and D to choose another hub. Although q has
been thought as a search parameter, we think that for the values of p we consider in our
computational experiments (3 ≤ p ≤ 5), a fixed value of 2 for q is reasonable, and this
is the value we have used in all the experiments.

Allocating terminals to hubs

We are interested in finding a good feasible solution as earliest as possible. This is
guaranteed by allocating each terminal to (at least) a single hub. Accordingly, in order
to find an assignment of terminals to hubs, we assume as a starting point that all the
outgoing/ingoing traffics from/to a terminal are transported through a single hub.

With this purpose, we considered three different measures to help making a decision
about the allocation allocating of a terminal i to a hub h (Measure(i,h), line 22 in
Algorithm 11).

The first measure is simply defined by the assignment cost aih of terminal i to hub
h; the second one takes into account the unitary transportation cost. It is defined as
follows:

χcih + δchi + α

(∑
`∈H\{h} ch`

|H| − 1

)
. (5.33)

In the above expression, the third term is motivated by the fact that it is expected that
most of the traffic will be routed through the hub subnetwork. In particular, we are
considering the average unitary cost between hub h and all the other hubs. A drawback
of measure (5.33) is that is does not take into account the cost associated with non-stop
services.

The third measure attempted, overcomes this issue; it captures in a single value the
promising features of the previous measures:

aih + χcih
∑
j∈V

tij + δchi
∑
j∈V

tji + Tiα

(∑
`∈H\{h} ck`

|H| − 1

)
. (5.34)

Each terminal i is allocated to the hub k∗ yielding the lowest value of the adopted
measure. At this point, we have |Hi| = 1,∀i ∈ V \H.

After the initial allocation of terminals is performed, we check whether it compensates
to increase the number of hubs to which each terminal is allocated. For every terminal
i ∈ V \H, define c(Ti) as the cost associated with the transportation of all the traffics
to and from i via Hi and through the hub network induced by H. It is evident that
is convenient allocating i to another hub h∗ ∈ H \ Hi if c′(Ti) + aih∗ ≤ c(Ti), where
c′(Ti) represents the cost of transporting all the traffics to and from i in the network
defined by H, where Hi := Hi ∪ h∗ and all the other subsets Hj , ∀j 6= i, have not
been modified. Since computing all the possibilities is too much time consuming, not



5.3 A greedy attributive scenario based constructive method 133

all hubs h∗ ∈ H \ Hi are tried, only the hub h∗ for which aih∗ = minh∈H\Hi
{aih}. If

c′(Ti)+aih∗ ≤ c(Ti), we set Hi := Hi∪h∗ and repeat the procedure for the same terminal
i, while |Hi| ≤ r; otherwise, we proceed with another terminal j. The whole allocation
procedure is summarized in lines 18 to 37 in Algorithm 11.

Traffics transportation

Once the set of hubs is known, as well as the allocation of terminals to hubs, the prob-
lem of finding the optimal route for the traffics among any pair of nodes is solved by
computing the shortest paths and considering non-stop services as well. Note that for a
given pair of nodes i and j, the optimal route for the traffic tij may be different to the
one associated with traffic tji.

When the optimal routes for sending the traffics have been computed, we have a feasi-
ble solution to the UrApHMP-NSS, or, taking into account the context of the stochastic
problem, to a single-scenario problem Ps, s ∈ S.

5.3.1.2 Improving a solution

Two local search procedures are devised for improving the solution obtained using the
constructive algorithm. They correspond to lines 7 and 8 in Algorithm 10, and are
based on changing the subsets Hi, i ∈ V \H, as well as on reducing their size, for some
terminals i. These two procedures (denoted by LSchange and LSreduce in Algorithm 11),
are described next.

Changing the assignments of terminals to hubs (LSchange)

Consider a terminal i ∈ V \ H as well as the set of hubs, Hi, to which it is currently
allocated. The procedure LSchange iteratively explores the possibility of replacing one
hub ` ∈ Hi by another hub `′ ∈ H \ Hi. It should be noticed that in order to check
whether such a move “improves” the current solution, we need to recompute the cost
associated with the transportation of all the traffics involving node i, and not just those
transported through hub `. We start by computing

R(i) =
1
|Hi|

∑
k∈Hi

aik

Ti
, i ∈ V \H.

Note that the numerator of R(i) is the average allocation cost of i to its associated hubs.
Hence, R(i) is a ratio between that cost and all the traffic to and from i. Therefore, we
obtain a unitary traffic average cost involving terminal i. The values of R(i) are now
sorted non-increasingly. This induces a sequence for nodes in V \H that we denote by
(i1, . . . , i|V \H|). The improvement procedure takes the terminals iteratively, according
to this sequence. For each terminal i ∈ V \H, all the possible pairs (`, `′), with ` ∈ Hi

and `′ ∈ H \Hi are tested. The pseudo-code associated with this procedure is detailed
in Algorithm 12.



134 Chapter 5. The stochastic r-allocation p-hub median problem w. non-stop services

Input: (z, x, y)siter
1 continue ← TRUE;
2 while continue is TRUE do
3 continue ← FALSE
4 compute R(i), ∀i ∈ V \H
5 find a sequence (i1, . . . , i|V \H|) induced by sorting the values R(i) (i ∈ V \H)

non-increasingly
6 foreach j = 1, ..., |V \H| do
7 foreach ` ∈ Hij do
8 foreach `′ ∈ H \Hij do
9 if (cost using `′) < (cost using `) then

10 replace ` by `′ in Hij

11 continue ← TRUE

Output: (z, x, y)siter
Algorithm 12: LSchange

Reducing the number of allocations to hubs (LSreduce)

This procedure, which is detailed in Algorithm 13, aims at reducing the cardinality of
some subsets Hi, |Hi| ≥ 2, i ∈ V \H, in case we conclude that this is advantageous from
a cost perspective. In order to accomplish this, we compute

R′(i) =
∑
k∈Hi

aik

Ti

for all terminals i ∈ V \H, which is the average allocation cost of i per traffic unit. As
before, a sequence of terminals is induced by sorting the values R′(i) non-increasingly.
The terminals are them analyzed according to this sequence.

For a terminal i ∈ V \H such that |Hi| ≥ 2, we check the possibility of decreasing
|Hi| by choosing the hub ` ∈ Hi that appears the least in the paths associated with
traffics Ti (that we denote by Paths(i)). If the total cost decreases by removing the
allocation of node i to hub `, then we do so. In order to check whether the costs
decreases, we only need to recompute the paths in Paths(i∗) that make use of hub `.
Note that removing ` from Hi increases the transportation cost but decreases the total
cost by ai`. This process, that attempts to remove one allocation, is performed for all
terminals in V \ H. Afterwards, R′(i) is recomputed for the terminals i for which the
cardinality of Hi has been reduced and the procedure restarts but considering only such
terminals. The process continues until no decrease in the cost can be achieved.

5.3.2 Constructing a feasible solution to the stochastic problem

In this section we introduce a mechanism that allows the combination of attributes from
solutions to the single-scenario problems in order to build a feasible solution to the



5.3 A greedy attributive scenario based constructive method 135

Input: (z, x, y)siter
1 continue ← TRUE;
2 while continue is TRUE do
3 continue ← FALSE
4 Compute R′(i), ∀i ∈ V \H : |Hi| ≥ 2
5 find a sequence (i1, . . . , iL) induced by sorting non-increasingly the values

R′(i), i ∈ V \H : |Hi| ≥ 2
6 foreach j = 1, . . . , L do
7 Select ` ∈ Hij as the hub used less times in Paths(ij)
8 Compute Cost as the cost of routing traffics Tij using Hij

9 Compute Cost as the cost of routing traffics Tij using Hij \ {`}
10 if Cost < Cost+ aij` then
11 Hij ← Hij \ {`}
12 continue ← TRUE

Output: (z, x, y)siter
Algorithm 13: LSreduce

overall problem P.
We denote by β = (β1, . . . , β|S|) the vector containing the value of the best solution

found for the single-scenario problems, Ps, s ∈ S. Additionally, let zsik be the values of
the z-variables in the solution found for Ps, s ∈ S. Furthermore, consider the |V | × |V |
matrix, denoted by U , whose generic entry is uij = π1z

1
ij+π2z

2
ij+. . .+π|S|z

|S|
ij = ∑

s πsz
s
ij

, i, j ∈ V . Let Uj be the j-th column of U (j ∈ V ). Taking into account that zij = 1 if
terminal i is assigned to hub j, and uij contains the same information averaged across
the different scenarios, when we examine matrix U we have to consider that each row i
represents a terminal node and each column j a potential hub.

In order to quantify the “attractiveness” of a node to become a hub in the solution
for the overall problem P, we compute the marginal vector, u, resulting from summing
all rows of U , i.e., a vector whose generic component is uj = ∑

i∈V uij , j ∈ V .
The starting point for building a feasible solution to U is to randomly select a sce-

nario s∗ according to the probabilities π1, . . . , π|S|. Then, a process inspired on the Path
Relinking methodology ([44]) that gradually transforms an initiating solution by incor-
porating to it attributes of some guiding solutions is devised. In particular, we propose
here to consider the attributes of the best solutions obtained in each scenario averaged
according to their probability. This information is contained in matrix U . The steps of
the process can be summarized as follows:

(i) Consider the set of p hubs, Hs∗ , in the feasible solution obtained for Ps∗ .

(ii) Find the p indices associated with the larges values of uj for j ∈ V \Hs∗ .

(iii) Denote by J=(j1, ..., jp) a sequence of the indices found in (ii) resulting from sorting
the corresponding values of uj non-increasigly.



136 Chapter 5. The stochastic r-allocation p-hub median problem w. non-stop services

(iv) Set ` = j1.

(v) For each h ∈ Hs∗ ,

(a) denote by H ′s∗(h) the set of hubs resulting from replacing h by `;
(b) for each k ∈ H ′s∗(h) and for each i ∈ V , if uik > 0 set zik = 1, i.e., allocate

node i to hub k.
(c) for each node i ∈ V check whether the allocations set for the terminal are

feasible. If not, repair them. Three cases can be distinguished:
c1. terminal i has been assigned to more than r hubs (i.e., |Hi| > r). In

this case, the |Hi| − r assignments of i to the hubs in H ′s∗(h) having the
smallest values uij are discarded by setting the corresponding z-variables
to 0.

c2. terminal i has not been assigned to any hub (i.e., |Hi| = 0). This may
be the case of a node i assigned only to hub h. The assignment of i to
the existing hubs is evaluated at each scenario using the measure (5.34)
described in Section 5.3.1.1, and the number of times a hub is identified
as the best for i is calculated. The hub k appearing most is the one
selected for allocating i to.

c3. node i is a hub and was allocated to other hubs. In this case, all the
assignments of i to other hubs are removed.

(d) consider H ′s∗(h) as the set of operating hubs together with the allocations zik
resulting from (b) and (c). For each scenario s ∈ S do the following:

1. compute the cost under scenario s, if we implement such feasible network
design for that particular scenario. Denote that cost by ĉsh.

2. compute the value rsh = ĉs
h−βs

βs
. This value represents a sort of relative “regret”

if the network design implemented in scenario s is the one induced by H ′s∗(h)
instead of the best network design known so far for that scenario. (Recall
that the incumbent upper bound on the optimal value for scenario s is βs.).

3. compute rmax
h = maxs∈S{rsh} as the maximum relative “regret” across all

scenarios if we take the network design induced by H ′s∗(h) with the allocations
resulting from (b) and (c).

(vi) p sets of p nodes result from (v), since ` is replacing in turn every hub h ∈ Hs∗ .
The next step is to compare those sets of hubs and decide for one of them. To do
so, we use the values rmax

h computed in (v)(d)(3.). In particular, we select the hub
set Hs∗(h′) such that

h′ ∈ arg min
h∈Hs∗

{rmax
h }.

(vii) Setting the network design induced by Hs∗(h′) as explained above for the overall
problem P, we can now easily solve the resulting transportation problem and
eventually get a complete feasible solution to the stochastic problem. Accordingly,



5.4 Computational experiments 137

we should update the best incumbent solution for P if the cost found is smaller
than the cost of the incumbent (in case some already exists).

(viii) This mechanism proceeds now by setting ` = j2 and analyzing the p − 1 ways of
replacing a column in Hs∗ \ {j1} by `.

(ix) When, finally, we set ` = jp there is only one possible replacement in Hs∗ \
{j1, . . . , jp−1} which is the only one attempted.

(x) The best solution for P is updated each time a new solution with less cost is
obtained.

The above mechanism can (and should) be repeated several times since the starting
point is randomized.

The steps (i)–(x) above, define the heuristic procedure we propose for obtaining
feasible solutions to the stochastic UrApHMP-NSS. Note that if in step (v)(d) we find
a negative “regret” for some scenario, this means that we have found a feasible solution
under that scenario better than the best one known so far. In this case, we should update
the corresponding value of βs in accordance to the new upper bound found.

It is worth noticing that the above presented scheme is quite flexible. In fact, it
is modular in the sense that some parts can simply be replaced without the need of
changing the global structure. For instance, if a different approach is considered for
tackling the single-scenario problems, the above structure can be adopted exactly as
presented.

5.4 Computational experiments

In this section we describe the characteristics of the instances tested and the computa-
tional results obtained with the above proposed algorithm.

5.4.1 Test instances

Since the Stochastic UrApHMP-NSS has been introduced in this paper, there are no
benchmark instances available. Hence, we have generated a set of instances in order
to evaluate the behavior of our new method. To generate instances for the Stochastic
UrApHMP-NSS we have followed a similar reasoning as the one proposed by Alumur
et al. in [7] taking as starting point the CAB25 data set. From the original CAB data
file, which contains information on distances and traffics between 25 major cities in the
USA, we have generated a total of 74 instances with:

• |V | ∈ {15, 20, 25};

• p ∈ {3, 4, 5};

• r ∈ {2, . . . , p− 1}.



138 Chapter 5. The stochastic r-allocation p-hub median problem w. non-stop services

As it is often done when using the CAB data, the traffics are scaled (by dividing them
by the total traffic) so that the total demand is equal to 1. The values for parameters
χ and δ, representing the unit rates for collection (origin-hub) and distribution (hub-
destination), are set to 1. Parameter α (the unit rate for transfer hub-hub) takes values
in the set {0.2, 0.4, 0.6, 0.8, 1.0}. The other parameters are generated according to the
following:

• From the traffics τij in the original CAB instances, we have generated traffics tij
for each scenario as follows:

(i) a number w is randomly generated in the interval [1, 100];
(ii) if w ≤ 66, tij is randomly selected in the interval [0.01τij , 5τij ];

otherwise, tij is randomly selected in ]5τij , 10τij ].

• The assignment costs, aik, i, k ∈ V have been randomly generated in the interval
[10 log∑j∈V tij , 20 log∑j∈V tij ].

• For each scenario, the costs cij , have been randomly generated in the interval
[0.5γij , 1.5γij ], where γij (i, j ∈ V ) represent the original costs.

• The non-stop transportation costs dij have been randomly selected in the interval
[0.2(χ+ α+ δ)γij , 0.8(χ+ α+ δ)γij ].

• The costs bij have been randomly chosen in [10 log(tij + tji), 20 log(tij + tji)].

Nine scenarios have been considered for all the instances, and the probabilities πs asso-
ciated with the scenarios have been randomly generated.

5.4.2 Computational results

In this section we report the computational results obtained with the method we pro-
posed in Section 5.3 for solving the Stochastic UrApHMP-NSS. The procedure has been
implemented in C. The results of the proposed method reported in this section have
been obtained with an Intel core i7–3770 at 3.40GHz using a single thread and 16GB
of RAM, under Ubuntu 14.04.03 GNU/Linux – 64 bits operating system, while those
corresponding to CPLEX have been obtained with a SGI Altix UV 10001 system with
20 processors (out of 64) at 2.67 GHz, 120 cores, and 120GB of RAM.

The heuristic for a single scenario A relevant component in the heuristic procedure
described in Section 5.3.2 is the algorithm proposed for the deterministic (single-scenario)
problems. For this reason, we start by analyzing the quality of the feasible solutions
obtained by that algorithm. The information can be found in Table 5.1, where each row
contains average results for the 9 single-scenario instances generated for each combination
of n, p, r, α.

1Supercomputer Vives del Servei d’Informàtica de la Universitat de València



5.4 Computational experiments 139

T
ab

le
5.

1.
C

om
pa

ris
on

of
th

e
he

ur
ist

ic
fo

r
th

e
U

rA
pH

M
P-

N
SS

w
ith

C
PL

EX
on

so
m

e
C

A
B

in
st

an
ce

s.

C
PL

EX
Co

ns
tr

uc
t

Co
ns

tr
uc

t
+

LS
ch

an
ge

Co
ns

tr
uc

t
+

LS
ch

an
ge

+
LS

re
du

ce

O
pt

.
10

0
ite

r
10

00
ite

r
10

0
ite

r
10

00
ite

r
10

0
ite

r
10

00
ite

r
n

p
r

α
C

PU
D

ev
(%

)
C

PU
D

ev
(%

)
C

PU
D

ev
(%

)
C

PU
D

ev
(%

)
C

PU
D

ev
(%

)
C

PU
D

ev
(%

)
C

PU
15

4
2

1.
00

2.
17

56
.1

0.
00

53
.6

0.
03

53
.6

0.
02

50
.9

0.
18

4.
2

0.
02

1.
5

0.
19

15
4

2
0.

80
2.

32
56

.8
0.

00
52

.6
0.

03
55

.1
0.

02
51

.4
0.

17
3.

8
0.

02
1.

7
0.

18
15

4
2

0.
60

2.
22

57
.6

0.
00

51
.2

0.
03

56
.4

0.
02

50
.2

0.
17

3.
7

0.
02

1.
6

0.
17

15
4

2
0.

40
1.

36
58

.3
0.

00
51

.1
0.

03
56

.8
0.

02
50

.1
0.

16
4.

1
0.

02
1.

7
0.

15
15

4
2

0.
20

1.
22

59
.6

0.
00

53
.5

0.
03

58
.9

0.
01

52
.9

0.
15

4.
2

0.
01

1.
3

0.
15

20
4

2
1.

00
56

.6
8

39
.1

0.
00

36
.1

0.
05

33
.1

0.
04

30
.9

0.
40

4.
5

0.
04

2.
2

0.
39

20
4

2
0.

80
64

.0
2

39
.3

0.
01

36
.4

0.
05

34
.6

0.
04

31
.7

0.
37

3.
3

0.
04

1.
6

0.
36

20
4

2
0.

60
44

.9
1

42
.0

0.
01

37
.0

0.
05

38
.3

0.
04

34
.1

0.
35

4.
1

0.
03

1.
4

0.
34

20
4

2
0.

40
26

.3
3

44
.0

0.
01

36
.7

0.
05

41
.7

0.
03

35
.4

0.
31

3.
8

0.
03

1.
2

0.
31

20
4

2
0.

20
12

.1
3

44
.4

0.
01

38
.2

0.
05

42
.7

0.
03

37
.1

0.
28

3.
6

0.
03

0.
8

0.
28

20
5

2
1.

00
66

.9
4

36
.5

0.
01

34
.4

0.
05

29
.9

0.
05

28
.6

0.
52

3.
7

0.
05

2.
3

0.
50

20
5

2
0.

80
64

.9
4

37
.8

0.
01

34
.4

0.
05

32
.7

0.
05

30
.1

0.
49

3.
4

0.
05

1.
4

0.
48

20
5

2
0.

60
36

.7
7

41
.7

0.
01

37
.9

0.
05

37
.5

0.
05

33
.8

0.
45

4.
7

0.
05

1.
8

0.
44

20
5

2
0.

40
16

.6
9

46
.0

0.
00

39
.5

0.
05

43
.5

0.
04

37
.1

0.
41

5.
8

0.
04

2.
1

0.
40

20
5

2
0.

20
8.

75
49

.7
0.

00
42

.1
0.

05
48

.6
0.

04
41

.3
0.

37
6.

1
0.

03
2.

1
0.

35
25

5
2

1.
00

70
1.

98
40

.7
0.

01
37

.0
0.

07
34

.3
0.

09
32

.6
0.

87
4.

6
0.

09
2.

6
0.

86
25

5
2

0.
80

45
4.

14
43

.5
0.

01
40

.8
0.

07
38

.4
0.

08
36

.5
0.

81
4.

2
0.

08
2.

9
0.

82
25

5
2

0.
60

11
6.

36
47

.0
0.

01
43

.1
0.

07
43

.6
0.

08
40

.3
0.

76
4.

3
0.

08
2.

8
0.

76
25

5
2

0.
40

56
.8

5
50

.2
0.

01
46

.4
0.

07
47

.8
0.

07
44

.7
0.

69
3.

9
0.

07
2.

3
0.

69
25

5
2

0.
20

28
.3

7
54

.4
0.

01
49

.8
0.

07
53

.1
0.

06
49

.0
0.

63
4.

6
0.

06
2.

9
0.

62
Av

er
ag

e
88

.2
6

47
.2

0.
01

42
.6

0.
05

44
.0

0.
04

39
.9

0.
43

4.
2

0.
04

1.
9

0.
42



140 Chapter 5. The stochastic r-allocation p-hub median problem w. non-stop services

In this table, the column headed with “CPLEX” contains the average CPU time (sec-
onds) required to solve the instances to optimality using this solver. We then observe
3 groups of columns (4 columns each). The first group contains the results (percentage
deviation w.r.t. optimum and CPU time when 100 or 1000 iterations were performed) for
the feasible solutions provided by Algorithm 11. The second and third groups of columns
contain the results obtained when Algorithm 12 (second group) and Algorithm 12 fol-
lowed by 13 (third group) were performed for improving the initial feasible solution.

Observing Table 5.1 we conclude that the complete procedure (Algorithms 11–13) is a
very efficient tool for obtaining high-quality solutions to the (deterministic) UrApHMP-
NSS. In particular, we observe that running the whole procedure 1000 times renders
extremely sharp upper bounds at the expenses of a negligible increase in the computa-
tional effort. The results obtained indicate that Algorithm 10 is a good element to put
at the core of the overall procedure for the stochastic problem.

Table 5.2. Computational results on the 74 CAB instances.

CPLEX Heur 1000 Heur 2000
n p # inst CPU Dev (%) CPU Dev (%) CPU

15 3 5 271.5 1.0 9.5 1.0 18.8
15 4 10 65.3 3.2 18.2 2.2 36.1
15 5 15 44.7 1.9 29.6 1.3 58.9
20 3 5 16261.2 1.6 18.8 1.2 37.2
20 4 10 10479.9 2.2 37.0 1.4 72.7
20 5 15 10080.7 2.9 61.9 1.8 123.2
25 5 14? 129615.7 3.9 104.3 3.8 207.2
Summary 74 29116.4 2.6 47.7 2.0 94.6

The heuristic for the stochastic UrApHMP-NSS Table 5.2 reports the results
obtained using the procedure developed in Section 5.3.2 for the Stochastic UrApHMP-
NSS. The information presented in each row corresponds to the average values obtained
for all the instances with the characteristics described. First two columns show the num-
ber of nodes of the group of instances and the number of hubs to be open, respectively.
As mentioned before, one instance was generated for each value of p, r ∈ {2, . . . , p− 1},
and α ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. The number of instances in each group is shown in col-
umn “# inst”. For n = 25 and p = 5 we report results for 14 out of the 15 CAB instances
considered. This is marked with “?”. The omitted instance (corresponding to r = 4 and
α = 0.6), has been removed from the table since CPLEX was unable of providing even
a lower bound after 5 days of computing time.

All the instances reported have been solved to optimality with CPLEX and heuris-
tically with our algorithm. The CPU time (seconds) required by CPLEX as well as by
two alternatives for our method (1000 and 2000 iterations in total) and the average per-



5.4 Computational experiments 141

centage deviation with respect to the optimal solution are reported in columns “CPU”
and “Dev (%)”.

The results obtained give strong evidence to the high efficiency of the new heuristic
proposed. In particular, we can observe an average deviation of 2.6% after 1000 runs of
the procedure in less than 50 seconds (on average), while the average deviation reduces
to 2% when 2000 runs are performed which is accomplished in less that 100 seconds.
Additionally, it is worth noticing that for 1000 runs, a deviation smaller than 1% was
obtained for 15 out of the 74 instances, and a maximum deviation of 7.1% was observed;
when 2000 runs were performed, the method led to a deviation smaller than 1% in 23
out of the 74 instances, while the maximum deviation obtained was 5.5%. Note that
the average CPU time required by CPLEX for solving the instances in the last group
is approximately 36 hours, while in some of the instances it takes up to 5 days to find
the optimal solution with the SGI Altix UV 1000 system. The detailed results (for each
instance tested) are reported in Tables 5.3 and 5.4.

One important element in the heuristic algorithm proposed in Section 5.3.2 for the
Stochastic UrApHMP-NSS concerns the vector β1, . . . , β|S| that contains the best known
upper bound for each of the |S| single-scenario problems. During the process, the changes
performed in the solutions to the stochastic problem may allow finding better solutions
for some single-scenario problems, which leads to changes in the above vector. In Fig-
ure 5.1 we represent the evolution of the 9 βs, each one for one scenario, considered in
the instance with n = 25, p = 5, r = 2, and α = 1.00. In this figure, we also represent the
evolution of the value of the best known solution to the stochastic problem. The figure
shows that changing the values of the β is something that the process takes advantage
from. Moreover, at least for this instance, we can observe larger improvements in an
earlier stage of the process, which also indicates that the overall procedure seems to be
effective not only when it comes to finding a good solution to the stochastic problem,
but also in terms of sharpening the best upper bounds known for the single-scenario
problems.

The revelance of the stochastic modeling framework Finally, we conclude the
analysis of the results by evaluating the relevance of considering the stochastic modeling
framework proposed for the UrApHMP-NSS instead of using a simplified deterministic
model. We accomplish this analysis by computing the so-called Expected Value of Perfect
Information (EVPI) that quantifies the amount that the decision maker would be willing
to pay to access the perfect future information. A high EVPI indicates that the decision
maker perceives as quite relevant having access to the perfect information which indicates
that uncertainty may be a relevant factor in the problem. The EVPI is obtained as
follows:

• First, the Wait-and-See value is computed according to WS = ∑
s∈S πsVs, where

Vs is the optimal value of problem Ps.

• Second, the stochastic problem P is solved to optimality. Let V its value.

• Finally the EVPI is computed as: EVPI = V −WS.



142 Chapter 5. The stochastic r-allocation p-hub median problem w. non-stop services

Table 5.3. Detailed results for the CAB instances with n = 15.

CPLEX Heur 1000 Heur 2000
n p r α Value CPU (scs) Value Dev (%) CPU (scs) Value Dev (%) CPU (scs)

0.2 2782.5 50.6 2842.3 2.1 8.5 2842.3 2.1 16.9
0.4 2920.2 90.4 2962.9 1.5 9.0 2958.0 1.3 17.8

15 3 2 0.6 3057.8 362.6 3057.9 0.0 9.6 3057.9 0.0 18.9
0.8 3187.1 668.4 3187.1 0.0 10.0 3187.1 0.0 19.8
1.0 3233.6 185.7 3278.8 1.4 10.5 3278.8 1.4 20.6
0.2 2393.1 36.4 2514.4 5.1 12.9 2410.8 0.7 25.6
0.4 2542.0 44.3 2542.0 0.0 13.9 2542.0 0.0 29.4

15 4 2 0.6 2690.8 77.0 2754.7 2.4 15.0 2754.7 2.4 29.5
0.8 2839.6 44.9 2941.2 3.6 15.8 2845.6 0.2 31.3
1.0 2957.6 187.0 3077.2 4.0 16.6 3048.8 3.1 32.8
0.2 2393.1 35.7 2522.8 5.4 19.1 2522.8 5.4 38.0
0.4 2542.0 41.6 2542.0 0.0 20.5 2542.0 0.0 40.9

15 4 3 0.6 2690.8 30.9 2807.5 4.3 21.7 2786.3 3.5 43.1
0.8 2839.6 35.2 2961.7 4.3 23.5 2961.7 4.3 44.7
1.0 2957.6 119.8 3029.9 2.4 23.2 3029.9 2.4 46.0
0.2 2119.8 29.8 2128.7 0.4 15.9 2128.7 0.4 31.9
0.4 2274.8 29.3 2274.8 0.0 17.3 2274.8 0.0 34.3

15 5 2 0.6 2429.8 27.8 2459.7 1.2 20.8 2459.7 1.2 51.4
0.8 2584.8 30.6 2584.8 0.0 20.2 2584.8 0.0 41.3
1.0 2733.8 61.4 2760.6 1.0 21.1 2736.2 0.1 42.0
0.2 2119.8 32.8 2194.8 3.5 29.4 2161.2 2.0 56.7
0.4 2274.8 38.2 2365.3 4.0 31.5 2274.8 0.0 61.3

15 5 3 0.6 2429.8 69.5 2459.7 1.2 34.2 2459.7 1.2 65.7
0.8 2584.8 41.0 2627.6 1.7 35.0 2627.6 1.7 69.3
1.0 2733.8 106.4 2814.9 3.0 36.2 2794.6 2.2 71.6
0.2 2119.8 29.5 2179.4 2.8 32.8 2162.4 2.0 64.0
0.4 2274.8 24.6 2325.5 2.2 34.7 2325.1 2.2 68.9

15 5 4 0.6 2429.8 47.4 2510.6 3.3 37.1 2474.1 1.8 72.6
0.8 2584.8 36.2 2635.7 2.0 38.7 2635.7 2.0 75.0
1.0 2733.8 66.0 2805.1 2.6 38.8 2796.1 2.3 76.9



5.4 Computational experiments 143

Table 5.4. Detailed results for the CAB instances with n = 20 and 25.

CPLEX Heur 1000 Heur 2000
n p r α Value CPU (scs) Value Dev (%) CPU (scs) Value Dev (%) CPU (scs)

0.2 5970.6 90.0 5998.07 0.5 16.3 5998.07 0.5 32.2
0.4 6353.9 481.7 6495.68 2.2 17.7 6495.68 2.2 35.1

20 3 2 0.6 6737.2 4558.3 6737.15 0.0 19.1 6737.15 0.0 37.5
0.8 7120.4 51470.9 7250.2 1.8 20.1 7120.44 0.0 39.8
1.0 7435.7 24705.1 7690.44 3.4 21.0 7690.44 3.4 41.5
0.2 5135.8 276.0 5135.81 0.0 25.6 5135.81 0.0 50.3
0.4 5705.3 762.1 5740.23 0.6 28.3 5740.23 0.6 56.0

20 4 2 0.6 6214.0 4745.1 6350.84 2.2 31.4 6242.07 0.5 61.0
0.8 6654.4 18544.3 6801.44 2.2 33.5 6729.13 1.1 65.1
1.0 7037.4 29172.6 7165.38 1.8 35.1 7165.38 1.8 69.0
0.2 5135.8 199.9 5135.81 0.0 37.6 5135.81 0.0 74.1
0.4 5705.3 1229.2 5771.89 1.2 40.9 5771.89 1.2 80.7

20 4 3 0.6 6214.0 5750.7 6377.65 2.6 43.4 6248.07 0.5 86.0
0.8 6654.4 24547.4 6959.13 4.6 46.2 6863.92 3.1 90.8
1.0 7037.4 19571.9 7492.79 6.5 48.2 7398.64 5.1 93.8
0.2 4499.1 93.1 4648.9 3.3 32.5 4499.1 0.0 64.7
0.4 5126.4 98.3 5234.8 2.1 36.8 5126.4 0.0 72.8

20 5 2 0.6 5753.8 2443.2 5826.4 1.3 40.3 5826.4 1.3 80.9
0.8 6304.2 16982.8 6381.2 1.2 43.6 6381.2 1.2 88.6
1.0 6696.2 34889.4 6947.0 3.7 45.9 6903.6 3.1 91.3
0.2 4499.1 72.1 4507.8 0.2 59.3 4507.8 0.2 117.4
0.4 5126.4 78.8 5260.6 2.6 65.5 5260.6 2.6 129.8

20 5 3 0.6 5753.8 2875.6 5826.4 1.3 71.0 5818.3 1.1 141.4
0.8 6304.2 19990.1 6471.3 2.7 75.0 6381.2 1.2 151.3
1.0 6696.2 33709.4 7028.3 5.0 78.7 6894.7 3.0 156.4
0.2 4499.1 168.0 4507.8 0.2 66.2 4507.8 0.2 134.5
0.4 5126.4 211.0 5305.3 3.5 72.0 5214.5 1.7 142.9

20 5 4 0.6 5753.8 1214.8 6019.3 4.6 78.1 5959.0 3.6 151.7
0.8 6304.2 25392.8 6623.8 5.1 81.0 6483.2 2.8 159.0
1.0 6696.2 12991.4 7119.9 6.3 83.5 7039.9 5.1 164.7
0.2 5313.3 11385.8 5528.21 4.0 56.4 5528.21 4.0 111.7
0.4 5961.2 17156.0 6140.71 3.0 63.2 6140.71 3.0 125.2

25 5 2 0.6 6568.8 124321.0 6796.78 3.5 68.7 6796.78 3.5 136.4
0.8 7159.2 221453.3 7365.45 2.9 74.2 7365.45 2.9 147.3
1.0 7735.8 415802.1 8122.09 5.0 78.5 8099.9 4.7 156.3
0.2 5313.3 30176.6 5505.8 3.6 102.5 5505.8 3.6 203.9
0.4 5961.2 54987.0 6076.01 1.9 112.7 6076.01 1.9 226.9

25 5 3 0.6 6568.8 25439.3 6917.3 5.3 121.0 6908.77 5.2 240.4
0.8 7159.2 137703.5 7436.9 3.9 129.0 7436.9 3.9 255.2
1.0 7735.8 306435.3 8040.74 3.9 135.1 8040.74 3.9 267.7
0.2 5313.3 7166.7 5470.89 3.0 114.6 5470.89 3.0 227.7
0.4 5961.2 33398.2 6113.35 2.6 123.6 6113.35 2.6 246.1

25 5 4 0.8 7159.2 217706.7 7539.48 5.3 136.5 7539.48 5.3 272.5
1.0 7735.8 211488.1 8287.62 7.1 144.3 8162.45 5.5 282.9



144 Chapter 5. The stochastic r-allocation p-hub median problem w. non-stop services

Figure 5.1. Beta evolution

A more informative measure is the relative EVPI: 100V−WS
V , since the corresponding

result (in percentage) ignores the magnitude of the values involved in the problem. The
results obtained for the test instances we have considered can be observed in Table 5.5.
A first aspect emerging from this table is the increase of the relative EVPI with α. This
is not surprising since small values of α induce small inter-hub costs, which makes the
impact of the decisions associated with the hubs smaller and thus the relevance of the
uncertainty also decreases.

Overall, we observe percentages that are always positive and ranging up to 5.19%.
Taking into account that we are working with fairly small instances (up to 25 nodes)
this values show that considering stochasticity in our problem may be of great relevance.

5.5 Concluding remarks

In this chapter we have investigated a stochastic version of the r-allocation p-hub me-
dian problem with non-stop services. We have started by extending the already existing
r-allocation p-hub median problem in order to capture non-stop services. Afterwards we
have developed a stochastic programming modeling framework for the problem. Due to
the difficulty in solving the problem to optimality, we have derived a heuristic approach
for the new stochastic problem. A side contribution is the development of a heuristic
approach for the deterministic (single-scenario) version of the problem. We have per-
formed computational tests using instances generated from the well-known CAB data



5.5 Concluding remarks 145

Table 5.5. Exact Expected Value of the Perfect Information for some CAB instances.

Wait-and-see Optimal value of the Relative
n p r α optimal value Stochastic UrApHMP-NSS EVPI
15 4 2 0.2 2386.3 2393.1 0.28%
15 4 2 0.4 2533.1 2542.0 0.35%
15 4 2 0.6 2678.4 2690.8 0.46%
15 4 2 0.8 2795.4 2839.6 1.56%
15 4 2 1.0 2878.4 2957.6 2.68%
20 4 2 0.2 5078.3 5135.8 1.12%
20 4 2 0.4 5584.6 5705.3 2.12%
20 4 2 0.6 6050.5 6214.0 2.63%
20 4 2 0.8 6430.6 6654.4 3.36%
20 4 2 1.0 6672.3 7037.4 5.19%
20 5 2 0.2 4458.4 4499.1 0.91%
20 5 2 0.4 5053.2 5126.4 1.43%
20 5 2 0.6 5619.3 5753.8 2.34%
20 5 2 0.8 6077.5 6304.2 3.60%
20 5 2 1.0 6366.5 6696.2 4.92%
25 5 2 0.2 5256.0 5313.3 1.08%
25 5 2 0.4 5877.9 5961.2 1.40%
25 5 2 0.6 6443.6 6569.8 1.92%
25 5 2 0.8 6974.6 7159.2 2.58%
25 5 2 1.0 7469.8 7735.8 3.44%

Average 5134.2 5264.5 2.17%

set. The results show the effectiveness of our new heuristic for obtaining high-quality
feasible solutions to the problem with a small CPU time.

One important aspect of our heuristic is its modularity. For instance, in case a dif-
ferent algorithm is devised for finding feasible solutions to the single-scenario problems,
the methodology described in Section 5.3.2 is still valid. Another possibility is to change
the attribute matrix U . Again, the procedure would be valid as presented.

The high quality of the results obtained in this work encourages the application of
the same type of heuristic methodology to other stochastic hub location problems and
even to consider more comprehensive models from a practical point of view.





Chapter 6

General conclusions and future
research directions

In this thesis we have studied the following variants of hub location problems in the
context of transportation networks:

• The capacitated single assignment hub location problem with modular link capac-
ities (Chapter 2).

• The uncapacitated r-allocation p-hub median problem (Chapter 3).

• The uncapacitated r-allocation p-hub equitable center problem (Chapter 4).

• The stochastic uncapacitated r-allocation p-hub median problem with non-stop
services (Chapter 5).

We have proposed solution algorithms based on metaheuristic methodologies to solve
theseNP-hard problems. The proposed algorithms are based on construction procedures
that find feasible solutions and on local improvement procedures aiming to improve the
solutions found.

As it has already been discussed throughout this thesis, hub location problems can be
understood as a combination of three optimization subproblems that are interconnected:
a facility location problem, an assignment problem, and a transportation problem. We
have proposed constructive algorithms for each problem studied here. All of them follow
a logical three-steps structure: finding the hubs needed to obtain a feasible solution,
assigning terminals to the hubs, and transporting traffics through the hub network.
Depending on the variant in hand, each of these steps is performed following heuristic
rules that are based on strategies that exploit the particular characteristics of the variant,
with the exception of the transportation step that we always solve to optimality.

We have also designed some local search procedures to improve the solutions found
through the exploration of their neighborhoods. Regarding the local optimizer methods
designed for the facility location subproblem, they often explore the solution space in
a more extensive way, but the evaluation of each neighbor solution is computationally

147



148 Chapter 6. General conclusions and future research directions

costly. From the experiments carried out along this thesis, we have learned that there is
a need of finding neighborhoods that are easy to explore in this context as, for example,
LScluster procedure presented in Section 2.5.2 for the CSHLPMLC. This procedure can
efficiently explore the neighborhood when we make changes on the set H of hubs. For
problems where we do not know an efficient way to perform this exploration, other
heuristic rules inducing an order for scanning the possibilities of exploration are also
very useful.

Regarding the neighborhoods of the assignment problem of terminals to hubs, it
seems natural to explore them after changing the set H and not before. The procedures
designed to explore these neighborhoods tend to find good solutions, but with a rate of
improvement lower than the ones produced by the exploration of neighborhoods based
on changing the set of hubs. In the variants where capacity constraints are involved, the
neighborhoods based on “exchanges”, opposite to the ones based on “insertions”, work
quite well because the latter often produce infeasible solutions when trying to insert
terminals to hubs where there is no capacity left for acceptance of new assignments.
Neighborhoods based on exchanging several terminals at the same time help terminals
to be allocated to other hubs without violating too many times the capacity constraints.

The methodologies we have used to solve these hub location problems include GRASP,
that has proved to be easy to implement and, at the same time, capable of exploring
efficiently the solution space. Using GRASP as a general framework, we have been able
to particularly adapt it to each problem variant and still be able to find different feasible
solutions serving as starting points for local optimization search methods. We would also
like to highlight the methodologies based on tabu search principles, such as the strategic
oscillation, the adaptive memory programming, and the path relinking. By their own,
and in combination with other methods, these methodologies have resulted to be good
frameworks for an effective exploration of the solution space.

Throughout this thesis we have performed several experiments that have shown that
general purpose solvers are a good tool to solve hub location problems when the size
of the instance to be solved is small. For real sizes instances, these solvers have proven
to be ineffective, mainly because they need a large amount of computational resources.
Hence, we have proposed specially tailored heuristic algorithms for each HLP variant.
They can be deployed and run on desktop computers, and are based on paradigms of
artificial intelligence rather than on (generically much slower) mathematical program-
ming techniques. Very good results have been found by the exploration of the solution
space using these heuristics, with the drawback that we cannot guarantee neither the
optimality nor the quality of the solutions found. Nevertheless, the heuristics proposed
here should be also used, given their small computational cost, to help exact procedures
to try to obtain the optimal solutions.

There are several hub location problems that we would like to explore in the future
as, for example, some variants where it is not assumed that the hubs form a complete
subnetwork and, therefore, the decision regarding the use of a connection between a pair
of hubs is also a variable of the problem. These variants are known in the Literature
as “incomplete hub location problems”. We also believe that optimization problems



149

combining location and vehicle routing decisions may model many real situations that
are nowadays being modeled and solved separately, thus producing suboptimal solutions.
This field is known in the Literature as “Location–Routing”, and we would also like to
explore it.

Finally, since hub location problems involving stochasticity have not been much
explored, we think that there is a need of studying more variants and solution methods.
These problems are very difficult due to the huge amount of variables they contain
and because their solutions depend on how the future is presented. Nevertheless, we
believe that stochastic models reflect much better real-life problems, where changes in
cost or demands, for example, vary from one time period to the next and, therefore,
deterministic models do not describe well the changing future.

Derived works

Some of the main contributions appearing in this dissertation have been submitted or
accepted for publication. They are the following:

• Corberán, Á., Peiró, J., Campos, V., Glover, F., and Mart́ı, R.
Strategic oscillation for the capacitated hub location problem with mod-
ular links.
Journal of Heuristics, 22 (2): 221 – 244, 2016.

• Hoff, A., Peiró, J., Corberán, Á., and Mart́ı, R.
Adaptive memory programming for solving the capacitated hub location
problem with modular link capacities.
Universitat de València Technical report, June 2016. Submitted.

• Mart́ı, R., Corberán, Á., and Peiró, J.
Scatter search for an uncapacitated p-hub median problem.
Computers & Operations Research, 58: 53 – 66, 2015.

• Mart́ı, R., Corberán, Á., and Peiró, J.
The scatter search methodology: An experimental evaluation on hub
location problems.
To appear in Handbook of Heuristics. Springer International Publishing.

• Peiró, J., Corberán, Á., Laguna, M., and Mart́ı, R.
Models and solution methods for the uncapacitated r-allocation p-hub
equitable center problem.
Universitat de València Technical report, April 2016. Submitted.

• Peiró, J., Corberán, Á., and Mart́ı, R.
GRASP for the uncapacitated r-allocation p-hub median problem.
Computers & Operations Research, 43: 50 – 60, 2014.

http://dx.doi.org/10.1007/s10732-016-9308-7
http://www.uv.es
http://dx.doi.org/10.1016/j.cor.2014.12.009
http://www.springer.com/us/book/9783319071237
http://www.uv.es
http://dx.doi.org/10.1016/j.cor.2013.08.026


150 Chapter 6. General conclusions and future research directions

• Peiró, J., Corberán, Á., Mart́ı, R., and Saldanha-da-Gama, F.
Heuristic solutions for the stochastic uncapacitated r-allocation p-hub
median problem with non-stop services.
Universitat de València Technical report, May 2016. Submitted.

http://www.uv.es


Bibliography

[1] Abdinnour-Helm, S. A hybrid heuristic for the uncapacitated hub location
problem. European Journal of Operatiomal Research 106 (1998), 489–499.

[2] Abdinnour-Helm, S., and Venkataramanan, M. Solution approaches to hub
location problems. Annals of Operations Research 78 (1998), 31–50.

[3] Aiex, R. M., Resende, M. G. C., and Ribeiro, C. C. TTT plots: A perl
program to create time-to-target plots. Optimization Letters 1, 4 (2007), 355–366.

[4] Albareda-Sambola, M., Alonso-Ayuso, A., Escudero, L., Fernández,
E., and Pizarro, C. Fix-and-relax-coordination for a multi-period loca-
tion–allocation problem under uncertainty. Computers & Operations Research 40
(2013), 2878–2892.

[5] Alonso-Ayuso, A., Escudero, L., and Ortuño, M. BFC, a branch-and-fix
coordination algorithmic framework for solving stochastic 0–1 programs. European
Journal of Operational Research 151 (2003), 503–519.

[6] Alumur, S., and Kara, B. Y. Network hub location problems: The state of
the art. European Journal of Operational Research 190, 1 (2008), 1–21.

[7] Alumur, S., Nickel, S., and Saldanha-da-Gama, F. Hub location under
uncertainty. Transportation Research B 46 (2012), 529–543.

[8] Alumur, S., and Serper, E. The design of capacitated intermodal hub networks
with different vehicle types. Transportation Research B 86 (2016), 51–65.

[9] Avella, P., Benati, S., Cánovas-Martinez, L., Dalby, K., Di Girolamo,
D., Dimitrijevic, B., Giannikos, I., Guttman, N., Hultberg, T. H.,
Fliege, J., Muñoz-Márquez, M., Ndiaye, M. M., Nickel, S., Peeters,
P., Pérez-Brito, D., Policastro, S., Saldanha-da-Gama, F., and Zidda,
P. Some personal views on the current state and the future of locational analysis.
European Journal of Operational Research 104 (1998), 269–287.

[10] Aykin, T. Lagrangian relaxation based approaches to capacitated hub-and-spoke
network design problem. European Journal of Operational Research 79 (1994),
501–523.

151



152 BIBLIOGRAPHY

[11] Aykin, T. The hub location and routing problem. European Journal of Opera-
tional Research 83 (1995), 200–219.

[12] Aykin, T. Networking policies for hub-and-spoke systems with application to the
air transportation system. Transportation Science 29 (1995), 201–221.

[13] Beasley, J. E. OR-Library: distributing test problems by electronic mail. Jour-
nal of the Operational Research Society 41, 11 (1990), 1069–1072.

[14] Bianchi, L., Dorigo, M., Gambardella, L., and Gutjahr, W. A survey
on metaheuristics for stochastic combinatorial optimization. Natural Computing 8
(2009), 239–287.

[15] Bollapragada, R., Camm, J., Rao, U., and Wu, J. A two-phase greedy algo-
rithm to locate and allocate hubs for fixed-wireless broadband access. Operations
Research Letters 33 (2005), 134–142.

[16] Brandeau, M., and Chiu, S. S. An overview of representative problems in
location research. Management Science 35 (1989), 645–674.

[17] Calık, H., Alumur, S. A., Kara, B., and Karasan, O. A tabu-based heuris-
tic for the hub covering problem over incomplete hub networks. Computers &
Operations Research 36, 12 (2009), 3088–3096.

[18] Campbell, J. F. Integer programming formulations of discrete hub location
problems. European Journal of Operational Research 72, 2 (1994), 387–405.

[19] Campbell, J. F. Hub location and the p-hub median problem. Operations
Research 44 (1996), 923–935.

[20] Campbell, J. F., and O’Kelly, M. E. Twenty-five years of hub location
research. Transportation Science 46, 2 (2012), 153–169.

[21] Chen, J. A hybrid heuristic for the uncapacitated single allocation hub location
problem. Omega 35 (2007), 211–220.

[22] Contreras, I. Hub location problems. In Location Science, G. Laporte, S. Nickel,
and F. Saldanha-da-Gama, Eds. Springer, 2015, pp. 311–344.

[23] Contreras, I., Cordeau, J.-F., and Laporte, G. Stochastic uncapacitated
hub location. European Journal of Operational Research 212 (2011), 518–528.

[24] Contreras, I., D́ıaz, J., and Fernández, E. Lagrangean relaxation for the
capacitated hub location problem with single assignment. OR Spectrum 31 (2009),
483–505.

[25] Contreras, I., D́ıaz, J., and Fernández, E. Branch and price for large-scale
capacitated hub location problems with single assignment. INFORMS Journal in
Computing 23 (2011), 41–55.



BIBLIOGRAPHY 153

[26] Cunha, C. B., and Silva, M. A genetic algorithm for the problem of configuring
a hub-and-spoke network for a LTL trucking company in Brazil. European Journal
of Operational Research 179 (2007), 747–758.

[27] Dillenberger, C., Escudero, L., Wollensak, A., and Zang, W. On prac-
tical resource allocation for production planning and scheduling with period over-
lapping setups. European Journal of Operational Research 75 (1994), 275–286.

[28] Eiselt, H., and Marianov, V. A conditional p-hub location problem with
attraction functions. Computers & Operations Research 36 (2009), 3128–3135.

[29] Eiselt, H., and Marianov, V. Foundations of location analysis. Springer, New
York, 2011.

[30] Ernst, A., and Krishnamoorthy, M. Solution algorithms for the capacitated
single allocation hub location problem. Annals of Operations Research 86 (1999),
141–159.

[31] Ernst, A. T., and Krishnamoorthy, M. Efficient algorithms for the unca-
pacitated single allocation p-hub median problem. Location Science 4, 3 (1996),
139–154.

[32] Escudero, L., and Salmerón, J. Fix-and-relax partitioning. an algorithmic
framework for large-scale resource constrained project selection and scheduling.
Annals of Operations Research 140 (2005), 163–188.

[33] Fanjul-Peyro, L., and Ruiz, R. Iterated greedy local search methods for
unrelated parallel machine scheduling. European Journal of Operational Research
207, 1 (2010), 55–69.

[34] Farahani, R. Z., and Hekmatfar, M. Facilities location: Concepts, models,
algorithms and case studies. Springer-Verlag, 2009.

[35] Farahani, R. Z., Hekmatfar, M., Arabani, A. B., and Nikbakhsh, E.
Hub location problems: A review of models, classification, solution techniques,
and applications. Computers & Industrial Engineering 64, 4 (2013), 1096–1109.

[36] Feo, T. A., and Resende, M. G. C. A probabilistic heuristic for a computa-
tionally difficult set covering problem. Operations Research Letters 8, 2 (1989),
67–71.

[37] Feo, T. A., and Resende, M. G. C. Greedy randomized adaptive search
procedures. Journal of Global Optimization 6, 2 (1995), 109–133.

[38] Festa, P., and Resende, M. G. C. Essays and Surveys in Metaheuristics.
Springer US, Boston, MA, 2002, ch. GRASP: An Annotated Bibliography, pp. 325–
367.



154 BIBLIOGRAPHY

[39] Festa, P., and Resende, M. G. C. An annotated bibliography of grasp–part
ii: Applications. International Transactions in Operational Research 16, 2 (2009),
131–172.

[40] Festa, P., and Resende, M. G. C. GRASP: Basic components and enhance-
ments. Telecommunication Systems 46, 3 (2011), 253–271.

[41] Glover, F. Heuristics for integer programming using surrogate constraints. De-
cision Sciences 8, 1 (1977), 156–166.

[42] Glover, F. Tabu search and adaptive memory programing – advances, applica-
tions and challenges. In Interfaces in Computer Science and Operations Research
(1996), Kluwer, pp. 1–75.

[43] Glover, F. A template for scatter search and path relinking. In Artificial Evo-
lution (1998), J. K. Hao, E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers,
Eds., Lecture Notes in Computer Science 1363, Springer, pp. 13–54.

[44] Glover, F., and Laguna, M. Tabu search. Kluwer, Norwell, MA, 1997.

[45] Glover, F., Laguna, M., and Mart́ı, R. Fundamentals of scatter search and
path relinking. Control and Cybernetics 29, 3 (2000), 652–684.

[46] Hakimi, S. L. Optimal location of switching centers and the absolute centers and
medians of a graph. Operations Research 12 (1964), 450–459.

[47] Hakimi, S. L. Optimal distribution of switching centers in a communication net-
work and some related graph theoretic problems. Operations Research 13 (1965),
462–475.

[48] Hale, T. S., and Moberg, C. R. Location science research: a review. Annals
of Operations Research 123 (2003), 21–35.

[49] Holland, J. H. Adaptation in natural and artificial systems. MIT Press, Cam-
bridge, MA, 1975.

[50] Ilić, A., Urošević, D., Brimberg, J., and Mladenović, N. A general vari-
able neighborhood search for solving the uncapacitated single allocation p-hub
median problem. European Journal of Operational Research 206, 2 (2010), 289–
300.

[51] Jacobs, L. W., and Brusco, M. J. A local-search heuristic for large set-covering
problems. Naval Research Logistics 42, 7 (1995), 1129–1140.

[52] Klincewicz, J. Avoiding local optima in the p-hub location problem using tabu
search and GRASP. Annals of Operations Research 40 (1992), 283–302.



BIBLIOGRAPHY 155

[53] Korte, B., and Vygen, J. Combinatorial Optimization: Theory and Algorithms.
Algorithms and Combinatorics. Springer Science & Business Media, Berlin Heidel-
berg, 2012.

[54] Kratica, J., Milanović, M., Stanimirović, Z., and Tošić, D. An
evolutionary-based approach for solving a capacitated hub location problem. Ap-
plied Soft Computing 11 (2011), 1858–1866.

[55] Kratica, J., Stanimirović, Z., Tošić, D., and Filipović, V. Two genetic
algorithms for solving the uncapacitated single allocation p-hub median problem.
European Journal of Operational Research 182, 1 (2007), 15–28.

[56] Kratica, J., Stanimirović, Z., Tošić, D., and Filipović, V. Genetic algo-
rithm for solving uncapacitated multiple allocation hub location problem. Com-
puting and Informatics 24 (2012), 415–426.

[57] Kress, D., and Pesch, E. Sequential competitive location on networks. Euro-
pean Journal of Operational Research 217, 3 (2012), 483–499.

[58] Laguna, M., and Mart́ı, R. GRASP and path relinking for 2-layer straight line
crossing minimization. INFORMS Journal on Computing 11 (1999), 44–52.

[59] Laguna, M., and Mart́ı, R. Scatter Search: Methodology and Implementations
in C. Kluwer Academic Publishers, 2003.

[60] Laporte, G., Nickel, S., and Saldanha-da-Gama, F. Introduction to loca-
tion science. In Location Science, G. Laporte, S. Nickel, and F. Saldanha-da-Gama,
Eds. Springer, 2015, pp. 1–18.

[61] Laporte, G., Nickel, S., and Saldanha-da-Gama, F. Location Science.
Springer International Publishing, 2015.

[62] Love, R., Morris, J., and Wesolowski, G. Facilities location: Models and
methods. Elsevier Science Publishing Co., New York, 1988.

[63] Lozano, M., Molina, D., and Garćıa-Mart́ınez, C. Iterated greedy for the
maximum diversity problem. European Journal of Operational Research 214, 1
(2011), 31–38.

[64] Lüer-Villagra, A., and Marianov, V. A competitive hub location and pricing
problem. European Journal of Operational Research 231 (2013), 734–744.

[65] Marianov, V., and Serra, D. Location models for airline hubs behaving as
M/D/c queues. Computers & Operations Research 30 (2003), 983–1003.

[66] Marianov, V., Serra, D., and ReVelle, C. Location of hubs in a competitive
environment. European Journal of Operational Research 114 (1999), 363–371.



156 BIBLIOGRAPHY

[67] Mart́ı, R., Laguna, M., and Glover, F. Principles of scatter search. European
Journal of Operational Research 169, 2 (2006), 359–372.

[68] Melo, M. T., Nickel, S., and Saldanha-da-Gama, F. Facility location and
supply chain management - a review. European Journal of Operational Research
196, 2 (2009), 401–412.

[69] Meyer, T., Ernst, A. T., and Krishnamoorthy, M. A 2-phase algorithm
for solving the single allocation p-hub center problem. Computers & Operations
Research 36, 12 (2009), 3143–3151.

[70] Michalewicz, Z. Genetic algorithms + Data structures = Evolution programs.
Artificial intelligence series. Springer-Verlag, Berlin, Germany, 1992.

[71] Milanović, M. A new evolutionary based approach for solving the uncapacitated
multiple allocation p-hub median problem, vol. 75 of Advances in Intelligent and
Soft Computing. Springer-Verlag, Berlin, 2010.

[72] Nickel, S., and Puerto, J. Location Theory: A unified approach. Springer,
2005.

[73] Nickel, S., Schobel, A., and Sonneborn, T. Hub location problems in urban
traffic networks. In Mathematics Methods and Optimization in Transportation
Systems, J. Niittymaki and M. Pursula, Eds. Kluwer Academic Publishers, 2001,
pp. 1–12.

[74] O’Kelly, M. E. Activity levels at hub facilities in interacting networks. Geo-
graphical Analysis 18, 4 (1986), 343–356.

[75] O’Kelly, M. E. Location of interacting hub facilities. Transportation Science
20, 2 (1986), 92–106.

[76] O’Kelly, M. E. A quadratic integer program for the location of interacting hub
facilities. European Journal of Operational Research 32, 3 (1987), 393–404.

[77] Owen, S. H., and Daskin, S. Strategic facility location: A review. European
Journal of Operational Research 111 (1998), 423–447.

[78] Pamuk, F., and Sepil, C. A solution to the hub center problem via a single-
relocation algorithm with tabu search. IIE Transactions 33 (2001), 399–411.

[79] Peiró, J., Corberán, A., and Mart́ı, R. GRASP for the uncapacitated r-
allocation p-hub median problem. Computers & Operations Research 43, 1 (2014),
50–60.

[80] Pirkul, H., and Schilling, D. An efficient procedure for designing single
allocation hub and spoke systems. Management Science 44 (1998), S235–S242.



BIBLIOGRAPHY 157

[81] Randall, M. Solution approaches for the capacitated single allocation hub lo-
cation problem using ant colony optimization. Computational Optimization and
Applications 39 (2008), 239–261.

[82] Resende, M. G. C., Gallego, M., Duarte, A., and Mart́ı, R. GRASP
and path relinking for the max-min diversity problem. Computers & Operations
Research 37 (2010), 498–508.

[83] Resende, M. G. C., Ribeiro, C. C., Glover, F., and Mart́ı, R. Scatter
search and path-relinking: Fundamentals, advances, and applications. In Handbook
of Metaheuristics, M. Gendreau and J. Y. Potvin, Eds., International Series in
Operations Research & Management Science 146. Springer, 2010, pp. 87–107.

[84] Resende, M. G. C., and Werneck, R. F. A hybrid heuristic for the p-median
problem. Journal of Heuristics 10, 1 (2004), 59–88.

[85] ReVelle, C. S., and Eiselt, H. A. Location analysis: A synthesis and survey.
European Journal of Operational Research 165, 1 (2005), 1–19.

[86] ReVelle, C. S., Eiselt, H. A., and Daskin, M. S. A bibliography for some
fundamental problem categories in discrete location science. European Journal of
Operational Research 184, 3 (2008), 817–848.

[87] ReVelle, C. S., and Laporte, G. The plant location problem: new models
and research prospects. Operations Research 44 (1996), 864–874.

[88] Ribeiro, C. C., and Resende, M. G. C. Path-relinking intensification methods
for stochastic local search algorithms. Journal of Heuristics 18, 2 (2012), 193–214.

[89] Rodŕıguez-Mart́ın, I., and Salazar-González, J. J. An iterated local search
heuristic for a capacitated hub location problem. Lecture Notes in Computer Sci-
ence 4030 (2006), 70–81.

[90] Rosing, K., and ReVelle, C. Heuristic concentration: Two stage solution
construction. European Journal of Operational Research 97 (1997), 75–86.

[91] Ruiz, R., and Stützle, T. An iterated greedy heuristic for the sequence depen-
dent setup times flowshop problem with makespan and weighted tardiness objec-
tives. European Journal of Operational Research 187, 3 (2008), 1143–1159.

[92] Ruiz, R., and Stützle, T. A simple and effective iterated greedy algorithm for
the permutation flowshop scheduling problem. European Journal of Operational
Research 177, 3 (2008), 2033–2049.

[93] Sasaki, M., Suzuki, A., and Drezner, Z. On the selection of hub airports for
an airline hub-and-spoke system. Computers & Operations Research 26 (1999),
1411–1422.



158 BIBLIOGRAPHY

[94] Silva, M., and Cunha, C. New simple and efficient heuristics for the uncapac-
itated single allocation hub location problem. Computers & Operations Research
36 (2009), 3152–3165.

[95] Sim, T., Lowe, T., and Thomas, B. The stochastic p-hub center problem
with service-level constraints. Computers & Operations Research 36, 12 (2009),
3166–3177.

[96] Smith, H. K., Laporte, G., and Harper, P. R. Locational analysis: highlights
of growth to maturity. Journal of Operational Research Society 60 (1996), S140–
S148.

[97] Smith, K., Krishnamoorthy, M., and Palaniswami, M. Neural versus tra-
ditional approaches to the location of interacting hub facilities. Location Science
4 (1996), 155–171.

[98] Stanimirovic, Z. A genetic algorithm approach for the capacitated single allo-
cation p-hub median problem. Computing and Informatics 29 (2010), 117–132.

[99] Storn, R., and Price, K. Differential evolution - a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization 11,
4 (1997), 341–359.

[100] Sung, C., and Jin, H. Dual-based approach for a hub network design problem
under non-restrictive policy. European Journal of Operational Research 132 (2001),
88–105.

[101] Wagner, B. An exact solution procedure for a cluster hub location problem.
European Journal of Operational Research 178 (2007), 391–401.

[102] Yaman, H. Concentrator Location in Telecommunication Networks. PhD thesis,
Université Libre de Bruxelles, Brussels, Belgium, December 2002.

[103] Yaman, H. Allocation strategies in hub networks. European Journal of Opera-
tional Research 211, 3 (2011), 442–451.

[104] Yaman, H., and Carello, G. Solving the hub location problem with modular
link capacities. Computers & Operations Research 32, 12 (2005), 3227–3245.

[105] Ying, K. C., and Cheng, H. M. Dynamic parallel machine scheduling with
sequence-dependent setup times using an iterated greedy heuristic. Expert Systems
with Applications 37, 4 (2010), 2848–2852.

[106] Zitzler, E., and Thiele, L. Multiobjective evolutionary algorithms: A com-
parative case study and the strength pareto approach. IEEE Transactions on
Evolutionary Computation 3, 4 (1999), 257–271.


	1 Introduction
	1.1 Optimization problems
	1.1.1 A classification of optimization problems
	1.1.2 Combinatorial optimization problems

	1.2 Facility location problems
	1.3 Hub location problems
	1.4 Metaheuristic methodologies
	1.5 The instances we will use

	2 The capacitated single assignment HLP with modular link capacities
	2.1 Introduction
	2.2 A non-linear programming formulation
	2.3 Previous methods
	2.4 A strategic oscillation algorithm
	2.4.1 Finding an initial feasible solution
	2.4.2 Evaluation of a feasible solution
	2.4.3 Destruct and construct to improve the hub selection
	2.4.4 Improvements on the assignments
	2.4.5 Singular solutions
	2.4.6 Computational experiments
	2.4.6.1 Test instances
	2.4.6.2 Parameter calibration
	2.4.6.3 Algorithm designs
	2.4.6.4 Comparison with optimal values
	2.4.6.5 Comparison with a tabu search algorithm

	2.4.7 Concluding remarks

	2.5 An adaptive memory programming algorithm
	2.5.1 Construction methods
	2.5.2 Improvement methods
	2.5.3 Path relinking post-process
	2.5.4 Computational experiments
	2.5.4.1 Scientific testing
	2.5.4.2 Competitive testing

	2.5.5 Concluding remarks


	3 The uncapacitated r-allocation p-hub median problem
	3.1 Introduction
	3.2 A mixed integer linear programming formulation
	3.3 A GRASP algorithm
	3.3.1 Construction method
	3.3.2 Solution representation
	3.3.3 Improvement methods
	3.3.4 Filtering mechanism
	3.3.5 Computational experiments
	3.3.5.1 Test problems
	3.3.5.2 Scientific testing
	3.3.5.3 Competitive testing
	3.3.5.4 Run time distribution

	3.3.6 Concluding remarks

	3.4 A scatter search algorithm
	3.4.1 The diversification generator method
	3.4.2 The reference set construction method
	3.4.3 The subset generation method
	3.4.4 The solution combination method
	3.4.5 The reference set update method
	3.4.6 The improvement method
	3.4.7 Computational experiments
	3.4.7.1 Scientific testing
	3.4.7.2 Competitive testing

	3.4.8 Concluding remarks


	4 The uncapacitated r-allocation p-hub equitable center problem
	4.1 Introduction
	4.2 A GRASP algorithm
	4.2.1 Construction methods
	4.2.2 Improvement methods
	4.2.3 The Uncapacitated r-Allocation p-Hub Median and Equitable Center Problem
	4.2.4 Computational experiments
	4.2.4.1 Problem instances
	4.2.4.2 Scientific testing
	4.2.4.3 Competitive testing


	4.3 Concluding remarks

	5 The stochastic r-allocation p-hub median problem w. non-stop services
	5.1 Introduction
	5.2 The uncapacitated r-allocation p-hub median problem with non-stop services
	5.2.1 Deterministic model
	5.2.2 A two-stage stochastic model
	5.2.3 A minmax regret model

	5.3 A greedy attributive scenario based constructive method
	5.3.1 A heuristic for the UrApHMP-NSS
	5.3.1.1 Constructive phase
	5.3.1.2 Improving a solution

	5.3.2 Constructing a feasible solution to the stochastic problem

	5.4 Computational experiments
	5.4.1 Test instances
	5.4.2 Computational results

	5.5 Concluding remarks

	6 General conclusions and future research directions

