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Preface

In this doctoral thesis we have focused on the phenomenology of the minimal
extensions of the Standard Model (SM) that can explain neutrino masses and are
potentially testable in the next generation experiments, the so called low-scale
Seesaw Models. These models add two or three extra singlet (sterile) fermions to
the SM, with masses below the electroweak scale. The main goal of this thesis is
to study the impact of these extra states in the Early Universe.

The thesis is divided in two parts, the first one covers a lengthy introduction
and background material for understanding the original results of this work, that
have been published in [1–4].

The plan of this thesis is as follows: In Chapter 1 we motivate the need for
new physics (NP) beyond the SM. In Chapter 2 we give a brief review of the
SM, the theory that has been experimentally confirmed at the highest energies
probed by current collider experiments. On the other hand, neutrinos were as-
sumed massless in the SM while oscillation experiments have demonstrated that
neutrinos have non vanishing masses. In Chapter 3 we give a list of the most
popular extensions of the SM that can explain light neutrino masses. In Chapter
4, we summarize what is known about the lepton flavor sector of the SM, focusing
particularly on the phenomenology of the low-scale Seesaw Models. In Chapter
5 we give the motivation for the mass scale of the extra fermions in these mod-
els, the parametrization of the models and the current and future experimental
constraints on the model parameters. In Chapter 6 we give a brief review of the
Standard Cosmological Model (ΛCDM), and in Chapter 7 we discuss the ther-
modynamics of the Early Universe plasma. In Chapter 8 we focus on the sterile
neutrino evolution before the electroweak phase transition (EWPT), where they
can seed the observed matter-antimatter asymmetry in the Universe. The evolu-
tion of the sterile neutrinos after the EWPT and their impact on the cosmological
parameters is given in Chapter 9. Finally, in Chapter 10 we summarize the main
scientific results in this work, divided in four publications, that are reproduced
in full in Part II of the thesis.
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Chapter 1

Introduction

The belief that matter is made of smaller components goes back to the VIth
century B.C., while the term “atom” was firstly used by Democritus, as the
smallest indivisible particle. More than 20 centuries later, the first elementary
particle, the electron, was detected, which launched an avalanche of progress
both in theoretical and experimental sub-atomic physics. Quantum mechanics
and special relativity emerged as the theory ruling the microscopic word, and a
zoo of particles was discovered.

It is interesting to mention that just before the discovery of quantum me-
chanics and the theory of relativity, many physicists believed that the classical
physics was the ultimate theory that could explain all physical phenomena. In
1900 Lord Kelvin said: “There is nothing left to be discovered in physics. All
that remains is more and more precise measurement“, and he could not be more
wrong.

A particle of particular interest in this thesis, the neutrino, was postulated
in 1930 by W. Pauli in order to explain the continuous spectra of beta decay.
However, at that time introducing an “invisible” particle was a manner of bad
taste, and the theory was not accepted very well, Bohr being its most prominent
opponent. The neutrino was experimentally confirmed 26 years later, in the
experiment of Cowan and Reines.

Today, all the particles observed are well accommodated in the Standard
Model (SM), together with the basic forces. However, there are both experimental
and theoretical hints that the SM can not be a complete theory and that New
Physics is needed. Some of the theoretical problems are:

3



4 Chapter 1. Introduction

• The flavor-puzzle, i.e., why are there three copies of particles differing only
by their mass. Most of the free parameters 1 in the SM are linked to this
puzzle. They have been measured, but their values do not follow any clear
pattern and their origin remains elusive.

• The strong CP problem, that is, why the CP symmetry is conserved in the
strong interactions in the SM, which is not ensured by any gauge symmetry.

• How to combine quantum mechanics with general relativity, since the at-
tempts to do this lead to non-renormalizable theories. Furthermore, gravity
necessarily introduces a new scale, the Planck scale, which leads to the hi-
erarchy problem.

• The hierarchy problem: why is the electroweak scale so much smaller than
the Planck mass. If there were new particles heavier than the electroweak
scale, their coupling with the Higgs boson would induce quantum correc-
tions to the Higgs mass naturally of the order of those higher masses.

On the other hand, there are also experimental hints for physics beyond the
SM:

• Neutrinos were assumed massless in the SM but the well established phe-
nomena of neutrino oscillations implies that they are massive, and the SM
has to be modified.

• The dominance of baryons over antibaryons in the Universe can not be
explained within the SM.

• The origin of Dark Matter that accounts for ∼ 25 % of the gravitating
matter in the Universe. A solution to this problem might lie in the existence
of a new weakly-interating particle that is not yet discovered.

• The dark energy, a force responsible for the Universe’s accelerating expan-
sion, contributes to ∼ 70% of the total energy in the Universe. The nature
of this energy is unknown.

Two of the mentioned hints, non-zero neutrino masses and the baryon asym-
metry, will be addressed in the thesis in the context of the low-scale Seesaw
Models.

1There are at least 25 free parameters in the SM with massive neutrinos, 20 of them corre-
sponding to masses and mixings.



Chapter 2

Standard Model in a nutshell

The Standard Model (SM) is a quantum field theory (QFT) that describes
the interactions of all the known particles [5–15]. In this chapter we will briefly
review main features of the SM.

2.1 Gauge symmetries of SM
The gauge group of the SM is based on the symmetry group

SU(3)c × SU(2)L × U(1), (2.1)

which describes strong, weak and electromagnetic interactions respectively via
the exchange of 8 massless gluons, 1 massless photon and 3 massive bosons (W ±

and Z). The matter content of one family of the SM and their charges under
the gauge group is summarized in Table 2.1. Leptons and quarks come in three
families that have the same properties under gauge transformations and only
differ in their couplings to the Higgs boson.

lL =
�

νL

eL

�
eR QL =

�
uL

dL

�
uR dR Φ

SU(3)c 1 1 3 3 3 1
SU(2)L 2 1 2 1 1 2
U(1)Y −1

2 −1 1
6

2
3 −1

3
1
2

Table 2.1: Gauge charges of the particles in one SM family
.
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6 Chapter 2. Standard Model in a nutshell

The transformation properties under the gauge symmetries are implemented
by replacing derivatives in the Lagrangian with covariant derivatives:

Dµ = ∂µ − igs
λa

2 Ga
µ − igτaW a

µ − ig�Bµ, (2.2)

where τa are the generators of the three dimensional SU(2) group, represented
with the Pauli matrices, while λa are the generators of the eight-dimensional
SU(3) group, represented with the Gell-Mann matrices. The allowed terms in
the Lagrangian that are invariant under this symmetry are

• kinetic term for all fermions:

L =
�

f

iψ
f
γµDµψf , (2.3)

• kinetic terms for the gauge bosons:

L = −1
4Ga

µνGµν
a − 1

4W a
µνW µν

a − 1
4BµνBµν , (2.4)

where the field strength tensors are:

Ga
µν ≡ ∂µGa

ν − ∂νGa
µ + gsfabcGb

µGc
ν , (2.5)

W a
µν ≡ ∂µW a

ν − ∂νW a
µ + g�abcW b

µW c
ν , (2.6)

Bµν ≡ ∂µBν − ∂νBµ, (2.7)

and fabc(�abc) are the structure constants for SU(3)(SU(2)) groups. The con-
served charges for SU(3), SU(2) and U(1) are called color, isospin and hyper-
charge.

2.2 Higgs mechanism
The electroweak group is spontaneously broken to the electromagnetic group:

SU(2)L × U(1)Y → U(1)Q. (2.8)
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The mechanism of this spontaneous symmetry breaking (SSB), called Brout–
Englert– Higgs mechanism, is achieved by adding complex scalar field

Φ =
�

Φ+

Φ0

�
, (2.9)

which is a doublet under SU(2) transformations, as shown in Table 2.1. The
Lagrangian of this scalar field consists of kinetic term and a potential:

LHiggs = (DµΦ)†DµΦ + µ2Φ†Φ − λ(Φ†Φ)2. (2.10)

The ground state is given by the minimum of the potential, which, in the case of
positive µ2 is

|Φ| =

�
µ2

2λ
≡ v√

2
. (2.11)

v is called the Higgs vacuum expectation value (VEV) and is measured to be
v � 246 GeV [16].

There is a degeneracy of the vacua since eq. 2.11 is invariant under a U(1)
field redefinition Φ → eiαΦ, i.e. there is infinitive number of vacua that are the
minima of the potential. The Higgs field, H, is introduced as the perturbation
around this ground state:

Φ = exp
�

iθa σa

2v

��
0

v+H√
2

�
, (2.12)

with a = 1, 2, 3. Using the so called “unitary gauge”, the θa fields are gauged
away, and the kinetic piece of the scalar Lagrangian leads, after diagonalization,
to the mass term of the gauge bosons:

(DµΦ)†DµΦ → 1
2∂µH∂µH + (v + H)2

�
g2

4 W +
µ W µ− + g2

cos θW
ZµZµ

�
. (2.13)

The physical W ±, Z and A fields are linear combination of the original W and
B fields:

W ± ≡ 1√
2

(W1 ∓ iW2) , (2.14)

Zµ ≡ − sin θW Bµ + cos θW W 3
µ , (2.15)

Aµ ≡ cos θW Bµ + sin θW W 3
µ , (2.16)
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where θW is the Weinberg angle

tan θW = g�

g
. (2.17)

The three Goldston bosons, θa fields, reappear as the longitudinal components
of W ± and Z that became massive:

mW = gv

2 , mZ = v
�

g2 + g�2

2 . (2.18)

The photon remains massless as dictated by the unbroken U(1)Q symmetry.

2.3 Fermion masses and mixings
The mass term for a Dirac fermion is of the form:

Lmass = −mψLψR + h.c., (2.19)

which in the SM is forbidden by the SU(2) symmetry, since left and right com-
ponents n Table 2.1 have different SU(2) charges. However, mass terms can be
obtained via SSB from the so called Yukawa terms:

LY uk = −
�

i,j

�
lLiY

(l)
ij ΦlRj + QLi

�
Y

(d)
ij ΦdRj + Y

(u)
ij Φ̃uRj

��
, (2.20)

where the Y matrices are general complex matrices and the field Φ̃ ≡ iσ2Φ∗

carries hypercharge −1/2.
After SSB, the Higgs field gets a VEV and the Lagrangian becomes:

LY uk = −
�

1 + H

v

��
uLMuuR + dLMddR + lLMllR + h.c.

�
, (2.21)

where u, d and l are the quarks and charged leptons fields in the so-called flavour
basis. Neutrinos remain massless because no Yukawa term can be writen for
them in the absence of right-handed components.

The matrices M are not diagonal, but can be taken to a diagonal form with
two unitary matrices U and W

Mu = U †
uDuWu, Md = U †

dDdWd, Ml = U †
l DlWl, (2.22)
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so that matrices D are diagonal. By redefining the fields we get the mass eigen-
states of the quarks and lepton fields

d�
L = UddL, u�

L = UuuL, l�L = UllL,

d�
R = WddR, u�

R = WuuR, l�R = WllR. (2.23)

This transformation on the fields introduces flavour mixing in the charged current
(CC) interactions

LCC = − g

2
√

2



W +

µ


�

ij

ū�
iγ

µ(1 − γ5)Vijd�
j +

�

l

ν̄ �
lγ

µ(1 − γ5)l�

 + h.c



 ,

(2.24)
where matrix V ≡ UuU †

d is the Cabibbo-Kobayashi-Maskawa (CKM) matrix
[17,18].

In the SM there is no leptonic mixing matrix, since the neutrino field can be
redefined as ν �

L = UlνL so that ν̄LlL = ν̄LU †
l l�L = ν̄ �

Ll�L. Note that this is only
due to the vanishing neutrino mass, and will not be the case in the models that
accommodate massive neutrinos, that will be discussed in the next chapters.





Chapter 3

Neutrino masses

Even though the SM was constructed with massless neutrinos, oscillation
experiments have shown that neutrinos are massive. In this section a simple
introduction to basic models that give rise to neutrino mass terms is presented.
For further details the reader is referred to the reviews [16,19–24] or the book [25].

3.1 Neutrino mass models
There are two simple ways to extend the SM in order to accommodate neutrino

masses. As we have seen that a mass term couples states of different chiralities
(see eq. (2.3)), one needs therefore to identify the right-handed component of the
neutrino field.

3.1.1 Dirac mass
The most straightforward way to give neutrinos a mass in the SM is by adding

3 right-handed singlets νR with charges (1,1,0) under SU(3) × SU(2) × U(1)Y .
With these extra states, the neutrino mass can be generated in the same way as
the charged leptons, via the Yukawa term:

LY uk = −l̄LiΦ̃Yν ijνRj + h.c. . (3.1)

This solution implies that neutrinos are Dirac particles, i.e., they are 4-component
spinors. In this way all the symmetries of the SM are preserved, but the drawback
is that it does not seem natural that neutrinos are so lighter that the other charged
fermions. The Yukawa matrix should satisfy mν = Yνv/

√
2 which leads to the

11



12 Chapter 3. Neutrino masses

coupling at least 11 orders of magnitude smaller than the top quark coupling, for
neutrino masses in the eV range.

3.1.2 Majorana mass
A more economical way of introducing the neutrino mass matrix is by using

only the two component Weyl neutrino that already exists in the SM, and adding
a Majorana mass term:

LMaj = −m

2 (ψ̄Lψc
L + h.c), (3.2)

where
ψc

L = Cψ̄L
T

. (3.3)

C is the charge conjugation matrix which in the Dirac representation of the γ
matrices is given by

C = iγ0γ2. (3.4)

When dealing with interacting particles one has to take care of the conserved
charges. Obviously the Majorana mass term is allowed only for electrically neutral
particles since otherwise it would violate charge conservation. Therefore, the only
candidates to have a Majorana mass in the SM are neutrinos. Furthermore, the
eq. (3.2) for the neutrino field as it stands would break also UY (1) hypercharge
symmetry, however, this mass term can be obtained via the so called Weinberg
operator [26]:

LW einberg = − 1
Λ(l̄LiΦ̃)Yij(Φ̃T lL

c) + h.c.. (3.5)

Here Y is a complex symmetric matrix and Λ is unknown energy scale of new
physics.

After the Higgs field gets a VEV this term becomes a Majorana mass term
for the neutrinos:

LMajorana = −1
2 ν̄LMννc

L + h.c., (3.6)

where
Mν = Y

v2

Λ . (3.7)

The Weinberg operator obeys all the symmetries of the SM, but leads to a
non-renormalizable theory, hence, the theory with the Weinberg operator must
be seen as a low-energy effective field theory, and needs an ultraviolet (UV)
completion.
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One of the popular ways for the UV completion is the Seesaw mechanism.

3.2 Seesaw mechanism
The three most popular extensions of the SM that are UV complete involve

the addition of extra singlet fermions, a scalar triplet or fermionic triplets and
are called seesaw of Types I,II and III respectively. Another popular model, the
so called “inverse seesaw” is a subset of the Type I seesaw, when an approximate
global U(1) symmetry is imposed.

3.2.1 Type I seesaw
This model assumes no new physics except a number of right-handed singlet

fermions (NR). The only additional terms in the Lagrangian allowed by the gauge
symmetries are the Majorana mass terms for the new right-handed fermions, and
their Yukawa interaction:

− LTypeI = l̄LΦ̃YνNR + 1
2N̄ c

RMRNR + h.c. . (3.8)

For energies much smaller than the Majorana mass, MR, the exchange of the
right-handed neutrinos resembles a contact interaction like that in the Weinberg
operator, see Fig. 3.1.

After SSB this term can be written as

− LType I = 1
2N̄ c

RMRNR + ν̄LmDNR + h.c. + ... . (3.9)

Defining ν = (νL, N c
R) this can be represented in a matrix notation:

− LType I = 1
2 ν̄Mνc + h.c. , (3.10)

where
M =

�
0 mD

mT
D MR

�
. (3.11)

In the case MR � mD the neutrinos would be predominately Dirac particles. In
the opposite case where MR � mD the mass eigenstates are approximately:

MN � MR,

mν � −mD
1

MR
mT

D . (3.12)
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This is the original seesaw formula proposed in Refs. [25, 27–29]. More details
about allowed parameter space and its phenomenology will be explained in Chap-
ter 5.

Yν Yν

Nνν ν

�φ� �φ�

N

Figure 3.1: Seesaw Type I

3.2.2 Type II seesaw
As proposed in Refs. [30–32] the neutrino masses in the SM can be explained

with additional scalar triplet, that carries hypercharge 1 and lepton number −2:

χ = 1√
2

�χ · �σ , (3.13)

where σ are the Pauli matrices. The allowed Lagrangian is :

− LType II = lcLYχχlL + h.c. + V (φ, χ) , (3.14)

with Y being a generic symmetric complex matrix. In order for neutrinos to
obtain mass, the scalar triplet must get a VEV. The potential is

V (φ, χ) = m2
χTr[χ†χ] − µΦ̃†χΦ + h.c. + ... , (3.15)

where µ coupling term explicitly violates lepton number and induces VEV of χ
field, via the VEV of the Higgs field (v):

�χ� ≡ vχ � µv2

2m2
χ

. (3.16)

This procedure leads to light majorana neutrino masses:

mν = 2Yχvχ = Yχ
µv2

m2
χ

. (3.17)
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If µ � mχ the light neutrino masses come out naturally, since in the limit
µ → 0 lepton number is recovered. The current constraints demand vχ ≤ 6
GeV [33]. The diagram giving the Weinberg interaction is presented in Fig. 3.2.

ν ν

Yχ

χ

�φ� �φ�

µ

Figure 3.2: Seesaw Type II

3.2.3 Type III seesaw
Instead of adding right handed fermion singlets, neutrino masses can be ob-

tained with right-handed SU(2)L fermionc triplets, �TF , with zero hypercharge
[34–36] :

− LType III = l̄cLYT �σ · �TF Φ + 1
2

�T c
F MT

�TF + h.c. , (3.18)

where YT is the Yukawa coupling of the triplet to the SM leptons and the Higgs,
and MT the Majorana mass for the triplet. As in the Type I seesaw, after SSB
the light neutrino mass matrix is

mν = −mT
D

1
MT

mD, (3.19)

where mD = YT v.
The triplet has a charged component and has been strongly constrained in

collider experiments, thus this model is more constrained than the Type I seesaw,
and the Majorana mass has to be higher than several hundreds of GeV [37, 38].
The Weinberg operator arises as in Type I from the exchange of the heavy triplet
instead of the singlet.

3.2.4 Inverse seesaw
In the inverse seesaw (IS) models, for each right-handed neutrino, NR, another

singlet fermion, S, with opposite lepton number is added to the SM [39, 40]. In
the original proposal the Majorana mass of the NR fields was omitted and the
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relevant part of the Lagrangian is

− LIS = l̄LΦ̃YνNR + 1
2 S̄cMSS + S̄cMRNR + h.c. . (3.20)

The full mass matrix is then

M =




0 mD 0
mT

D 0 MR

0 MT
R MS


 , (3.21)

which after the diagonalization leads to the light neutrino masses

mν = −mD
1

MT
R

MS
1

MR
mT

D . (3.22)

Small neutrino masses can be explained in this case even if the scale MR is at
the electroweak scale and Yukawa couplings of O(1) if MS is sufficiently small.
This can be understood because in the limit MS → 0, there is an exact global
lepton number symmetry, the light neutrinos remain massless while the heavy
spectrum consists of Dirac neutrinos. The inverse seesaw model is equivalent
of a Type I model with an even number of right-handed neutrinos and specific
textures of the Yukawa matrix.

3.3 Neutrino mixing matrix
Independently of the specific mechanism that gives neutrinos a mass, neutri-

nos mix. The neutrino mass matrix in general will not be diagonal in the flavor
basis.

In the case of Dirac neutrinos, the diagonalization is performed as in the case
of the charged leptons, by two unitary matrices:

Dν = UνMνW †
ν . (3.23)

The W and U matrices can be absorbed in the field redefinition:

N �
R= WνNR, l�R = WllR,

ν �
L = UννL, l�L = UllL, (3.24)
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so that the CC interactions in the mass basis is non-diagonal :

LCC = − g√
2

ν̄ �
LUP MNSγµl�LW +

µ + h.c. (3.25)

The matrix UP MNS , the so called Pontecorvo–Maki–Nakagawa–Sakata (PMNS)
matrix [41,42],

UP MNS = UνU †
l , (3.26)

is the analogue of the CKM matrix in the quark sector.
UP MNS depends on a number of physical parameters. A generic unitary ma-

trix of dimension n can be parametrized in terms of n(n−1)
2 angles and n(n+1)

2
phases. However, rephasing left-handed fields can remove (2n − 1) phases1 which
can be absorbed in the right handed field in order to leave the Lagrangian invari-
ant. This means that the total number of physical parameters for n = 3 are 3
angles and 1 phase. The usual parametrization is

UP MNS =




1 0 0
0 c23 s23
0 −s23 c23







c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13







c12 s12 0
−s12 c12 0

0 0 1


 ,

(3.27)

where sij(cij) = sin(θij)(cos(θij)).
If the neutrinos are Majorana particles, the mass term is symmetric and can

be diagonalized with only one unitary matrix:

Dν = U †
νMνU∗

ν , (3.28)

so that the fields in the mass basis are

N �
R= U∗

ν NR, l�R = WllR,

ν �
L = UννL, l�L = UllL. (3.29)

Again, the mixing matrix is

UP MNS = UνU †
l , (3.30)

1The rephasing of the fields would naively remove 2n phases, but the global phase redefinition
of the mass eigenstate would leave UP MNS invariant, hence the number of phases that can be
removed is 2n − 1.
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but the number of physical phases is different. In this case only n phases can be
removed since the Lagrangian is no longer invariant under neutrino field rephas-
ing. Therefore, the mixing matrix can be parametrized as

UP MNS =




1 0 0
0 c23 s23
0 −s23 c23







c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13







c12 s12 0
−s12 c12 0

0 0 1




×




1 0 0
0 eiφ1 0
0 0 eiφ2 ,


 (3.31)

where the two phases φ1 and φ2 are the CP violating Majorana phases. Hence,
3ν models with Majorana neutrinos would have 2 additional phases compared to
Dirac neutrinos.

3.4 Neutrino oscillations in vacuum
A consequence of non-zero neutrino masses and CC mixing matrix brings in

the phenomenon of neutrino oscillations.
In neutrino oscillation experiments, neutrinos are produced and detected via

CC interaction processes, i.e. in the flavor eigenstates. After production, the
states propagate undisturbed, and, since the mass eigenstate have slightly dif-
ferent phase velocities, the detected state might have different flavor than the
produced one.

There are many ways to calculate the oscillation probability, here the simple
one using plane waves approximation will be briefly described.

A neutrino flavor α produced at t0 will be a superposition of mass eigenstates:

|να(t0)� =
�

i

U∗
αi |νi(p)� , (3.32)

where the mass eigenstates are the eigenstates of the free Hamiltonian

Ĥ |νi(p)� = Ei(p) |νi(p)� , Ei(p) = p2 + m2
i . (3.33)

After time t the state α will evolve to

|να(t)� = e−iĤ(t−t0) |να(t0)� =
�

i

U∗
αie

−iEi(p)(t−t0) |νi(p)� . (3.34)
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The probability that the state changed to |νβ� = �
i Uβk |νk(p)� is

P (να → νβ)(t) = | �νβ |να� |2 =
�

i,j

UβiU
∗
αiU

∗
βjUαje−i(Ei(pi)−Ej(pj))(t−t0), (3.35)

where we used the orthogonality relation for the states �νk|νi� = δik. Assuming
equal-momentum pi = pj = p, for ultrarelativistic neutrinos the energy difference
is

Ei(pi) − Ej(pj) � 1
2

m2
i − m2

j

|p| + O(m4), (3.36)

which leads to the famous oscillation probability formula:

P (να → νβ) =
�

i,j

U∗
βjUαjUβiU

∗
αie

−i
Δm2

ij
L

2|Eν | , (3.37)

with Δm2
ij ≡ m2

i − m2
j .

It is important to note that plane-wave derivation does not take into account
two mandatory ingredients for this phenomenon:

• quantum coherence in propagation over macroscopically large distances,
and

• sufficient uncertainty in momentum at production and detection, so that a
coherent state can be produced,

which show up explicitly in the more precise wave packet derivation [43,44].
The probability can be divided in the CP conserving and CP violating part

(it has opposite sign for neutrinos and antineutrinos):

Pαβ = δαβ − 4
�

i<j

Re[U�
βjUαjUβiU

�
αi] sin2

�
Δm2

ijL

2Eν

�
(3.38)

± 2
�

i<j

Im[U�
βjUαjUβiU

�
αi] sin

�
Δm2

ijL

2Eν

�
. (3.39)

It is common to express the macroscopic length L in meters (m) so that the
phase factor becomes 1.27Δm2

ij

eV 2
L/E

m/MeV . Eq. (3.39) shows that the probability is
oscillatory function of the distance L with the period

Losc = 4πEν

Δm2
ij

. (3.40)
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The oscillation probability is not sensitive to Majorana phases, which is expected,
since the neutrino oscillations is a lepton number conserving process.

In the case of just 2 neutrino families the mixing matrix simplifies to :

V =
�

cos θ sin θ
− sin θ cos θ

�
, (3.41)

and the oscillation probability becomes

Pαβ = sin2 2θ sin2
�

Δm2
ijL

2Eν

�
, α �= β. (3.42)

If the length L is too large the wave packet can become decoherent. When this
happens the neutrinos do not oscillate any more and the transition probability
becomes independent of L:

Pαβ = 1
2 sin2 2θ. (3.43)

It is interesting to note that the smearing in L and Eν produces the same effect
when L � Losc, i.e. any real experiment would measure the average �Pαβ� =
1
2 sin2 2θ.

3.5 Neutrino oscillations in matter
When neutrinos propagate in a dense medium the oscillations will be modified

due to (i) incoherent interaction and (ii) forward scattering. The incoherent
interactions are very suppressed due to the low cross section, but are important
in the really dense medium, such as Early Universe plasma. Here, only the effect
of the forward scattering will be described.

Recall that the plane wave solutions satisfy Schrödinger equation:

i
d

dt
ν = Hν. (3.44)

The coherent scattering of the neutrinos on the particles in the plasma will induce
corrections to the Hamiltonian, H = H0+Vmat, where H0 = 1

2E Diag(m2
1, m2

2, m2
3).

For neutrinos propagating through a matter such as the Earth, Sun, etc only
electron neutrinos interact via the charged current, while any flavour can interact
via the neutral current, as presented in Fig. 3.3. Note that this is not the case
in the Early Universe plasma, where the muons and taus are as abundant as
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electrons. The effective charged current interaction in matter is

VCC =
�

H
(e)
CC

�
=

�
2
√

2GF [ēγµPLνe] [ν̄eγµPLe]
�

= 2
√

2GF �[ēγµPLe] [ν̄eγµPLνe]�

=
√

2GF neν̄eγ0(1 − γ5)νe ≡ ν̄V
(e)

CCγ0(1 − γ5)ν, (3.45)

where ne is a number density of electrons.

Figure 3.3: Charged and neutral current interactions of neutrinos in the matter.

Similarly, the neutral interactions effective potential can be derived

VNC =
√

2
2 GF

�
−ne(1 − 4 sin2 θW ) + np(1 − 4sin2θW ) − nn

�
, (3.46)

with nn and np being neutron and proton densities. For neutrally charged matter
proton and neutron contributions in the neutral current potential cancel, and the
sum of two potential, including all families, is

Vmat = VNC + VCC =




GF√
2 (ne − nn

2 ) 0 0
0 GF√

2 (−nn
2 ) 0

0 0 GF√
2 (−nn

2 )


 . (3.47)

The effect of matter results in an effective mass matrix:

M̃2
ν = M2

ν ± 4EVmat, (3.48)

where
M̃2

ν = Ũ∗Diag(m̃2
1, m̃2

2, m̃2
3)ŨT , (3.49)

and
M̃2

ν = Ũ∗Diag(m2
1, m2

2, m2
3)ŨT ± 2EVmat. (3.50)
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In the case of 2 families, the effective mass and angle are

Δm̃2 =
�

(Δm cos 2θ ∓ 2EVmat)2 + (δm2 sin 2θ)2 (3.51)

sin2 2θ̃ = (Δm2 sin 2θ)2

(Δm̃2) , (3.52)

where ± sign stands for neutrinos and antineutrinos. The corresponding oscilla-
tion amplitude has a resonance when neutrino energy satisfies:

Δm cos 2θ ∓ 2EVmat = 0 → sin2 2θ̃ = 1, (3.53)

i.e. the mixing becomes maximal independently of the value of the vacuum
mixing angle. This is the Mikheyev-Smirnov-Wolfenstein (MSW) resonance [45,
46], relevant to explain the solar neutrino flavour transition.

In the next chapter we will review experimental evidence for neutrino oscilla-
tions, as well as other experiments that put constraints on the neutrino parame-
ters.
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Standard 3-neutrino picture

In this chapter we will review the experimental results that have determined
neutrino masses and mixings in the standard 3 neutrino paradigm.

4.1 Oscillation experiments
Based on the origin of neutrinos, neutrino oscillation experiments can be

divided into four groups: atmospheric, solar, reactor and accelerator. From the
eq. (3.39) we see that the oscillation probability depends on the ratio L/E, i.e.,
the mass difference that experiments are sensitive to depends on the experimental
setup. The experiments based on the mass difference that they are most sensitive
to are summarized in Fig 4.1.

4.1.1 Atmospheric neutrinos
Atmospheric neutrinos are produced in the atmosphere through collisions of

cosmic rays with nuclei leading to a hadron shower containing mainly pions. Pions
further decay via the processes :

π+ → µ+ + νµ,

µ+ → ν̄µ + e+ + νe, (4.1)
π− → µ− + ν̄µ,

µ− → νµ + e− + ν̄e. (4.2)

The fluxes of produced neutrinos can be predicted within 10-20% accuracy, but
many of the uncertainties cancel when considering the ratio of muon over electron

23
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Figure 4.1: Summary of neutrino oscillation experiments based on the mass split-
ting they are sensitive on (L) versus the energy of the neutrino Eν plane, from
Refs. [47, 48].
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neutrinos. This ratio was first measured by Kamiokande [49], IMB [50], Soudan2
[51] and Macro [52], and a discrepancy with he expectation for massless neutrinos
was found.

It was SuperKamiokande in 1998 that finally clarified the puzzle [53]1. Beside
being able to distinguish between electron and muon events, they were also able
to predict the incoming neutrino angle through measurements of the outgoing
lepton angle. By doing so, they could measure how the neutrino flux depends on
a distance they travelled.

The events for the electron neutrino were in the rough agreement with pre-
diction, while muon events showed strong dependence on the zenith angle: there
is almost twice more neutrinos coming from above (θ = 0) than the ones coming
from below (θ = π). Fitting the data with the two neutrino oscillations hypothe-
sis a value of Δm2 � 3 × 10−3eV2 and maximal mixing, gives a good description
of the data. The schematic view of detector position, as well as the best fit for
electron and muon like events is given in Fig. 4.2.
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Figure 4.2: Left: Distance travelled by atmospheric neutrino as a function of
zenith angle. Right: Ratio of the data to the predicted MC events in the case of
no oscillations versus L/Eν for electron like and muon like events. The dashed
curves are the best-fit expectation for νµ ↔ ντ oscillations (from Ref. [53]).

More recent data of Super Kamiokande can be found in [54,55].
1The 2015 Nobel Prize was awarded to Takaaki Kajita on behalf of SK group, and to Arthur

B. McDonald, the founder of SNO group.
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4.1.2 Solar neutrinos
Solar neutrinos are produced in the chain of nuclear reactions, resulting in

the overall fusion of protons into 4He:

4p →4 He + 2e+ + 2νe + γ. (4.3)

The spectrum of the solar neutrino flux is given in Fig. 4.3, that is the result of
simulations of the Sun interior, the so-called standard solar model (SSM) [56].

Figure 4.3: Solar neutrino fluxes as a function of their energy for different reac-
tions, as well as the threshold of several experiments, from Ref. [57].

The first result on the detection of solar neutrinos was announced by Ray
Davis Jr. and his collaborators from Brookhaven in 1968 [58] where they mea-
sured less neutrinos than theoretically predicted [59]. This became the "solar neu-
trino problem", that was later-on confirmed in Gallex/GNO [60], SAGE [61] and
already mentioned Super Kamiokande [62–64] experiments. These experiments
were sensitive to the total number of electron neutrinos, and their interpretation
depends on the solar neutrino flux normalization that was extracted from the
standard model of the sun interior [59].

Sudbury Neutrino Observatory (SNO) Cherenkov water detector [65,66] was
designed to give a model independent explanation of the solar neutrino problem.
They could distinguish between CC (involves only electron neutrino) , and NC
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(involves all neutrino flavors) interactions, hence could measure the rate of elec-
tron neutrinos over the total number of neutrinos coming from the Sun, which
is independent of the flux normalization. They found a deficit in the CC in-
teraction, but no deficit in the NC interactions, which was a definite proof of
solar neutrinos flavor transitions. Note that this is not the effect of neutrino
oscillation, but flavour mixing. The measurements demonstrate that there are
approximately twice more νµ and ντ coming from the Sun than νe, and that the
total neutrino flux is consistent with the SSM. The flux of muon and tau neutri-
nos, versus the one of the electron neutrino is given in the left panel of Fig. 4.4,
which demonstrated also that the standard solar model predicts the correct total
solar neutrino flux.

Solar neutrino data can be interpreted in terms of mass and mixing, with
Δm� � 7 − 8 × 10−5 eV and θ� ≈ 0.56, as shown on the right panel of Fig. 4.4.
It should be stressed that the sensitivity of solar neutrinos to the mass difference
is a result of the MSW effect which can explain the energy dependence of the effect
as seen in the different electron neutrino fluxes measured in radiochemical exper-
iments, that are sensitive to the lowest energy spectrum, and SuperKamiokande
or SNO that are sensitive to the higher end. The experiment that has got closer
to the resonant energy which determines the transition between the high and low
energy regimes is the recent Borexino experiment [67–69]. Their recent results
are in a good agreement with oscillation interpretation of other solar data, as
presented in Fig. 4.5.
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Figure 4.4: Left: Flux of tau and muon neutrinos versus electron one, as measured
from three reactions in the SNO experiments. The dashed line is the prediction of
the SSM (from Ref. [65]). Right: Fit of SNO measurements in terms of oscillation
parameters (from Ref. [70]).



28 Chapter 4. Standard 3-neutrino picture

���������������!

��������!

��������!

�������������!

������������!

�
��
!

������������������!

�
ν
"

Figure 4.5: Electron neutrino survival probability as a function of neutrino energy
according to MSW model calculated for 8B solar neutrinos (purple band) with
the data from Borexino and other solar and reactor experiments (from Ref. [69]).

4.1.3 Reactor neutrinos
Nuclear reactors produce electron antineutrino beam with energies ∼ MeV.

Since this energy is under muon and tau mass, these experiments can measure
only electron (anti)neutrino and are necessarily disappearance experiments.

In the KamLAND experiment [71] electron antineutrinos are coming from
nuclear plants around Kamiokande mine in Japan, and are detected in 1 kton
liquid scintillator detector via inverse beta decay after travelling �L� = 175 km.
The L/Eν ratio in KamLAND experiment is in the regime of solar neutrino
oscillations. In Fig. 4.6 the KamLAND fit of oscillation parameters is presented,
together with the results of solar experiments.

Another set of reactor experiments with L/Eν in the atmospheric neutrino
oscillations regime, where the baseline is O(1km): CHOOZ [73], DoubleCHOOZ
[74], Palo Verde [75], DayaBay [76], RENO [77] had been extremely important in
establishing that the atmospheric oscillation also affects electron neutrinos and
not only muons as seen in atmospheric neutrino experiments.

4.1.4 Accelerator neutrinos
Using well controlled νµ beams from pion decays produced in fixed-target

experiments in proton accelerators, and choosing the right baseline, accelerator
neutrino experiments are able to measure the atmospheric oscillation parameters
with high precision. The experiments MINOS [78–81] (L = 730 km) and K2K
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Figure 4.6: KamLAND fit of the oscillation parameters together with the solar
neutrino oscillation experiments result (from Ref. [72]).

(L = 250 km) [82, 83] measured the disappearance of muon neutrinos were the
first to confirm the atmospheric oscillation in an accelerator neutrino beam. The
experiment OPERA [84] (L = 730 km) confirmed that the leading channel in
atmospheric oscillations is νµ → ντ , by explicitly measuring the appearance of
ντ . The T2K experiment has been able to measure for the first time the νe

appearance in a νµ beam [85]. Finally the NOvA experiment has measured the
appearance of νe at O(1000) km distance [86].

4.1.5 Neutrino Observatories
Currently running IceCube experiment [87], ANTARES [88] and planned

KM3Net [89] have measured the high energy tail of atmospheric neutrinos and
are optimized to search for astrophysical neutrinos at very high energies Eν ∼
O(PeV). IceCube has recently presented evidence for a PeV neutrino component
in the astrophysical neutrino flux [90], whose origin is still not understood.
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4.1.6 Global fit
Two mass differences in the neutrino mass matrix are conventionally assigned

to solar and atmospheric mass splitting as:

Δm2
13 = m2

3 − m2
1 = Δm2

atm, Δm2
12 = m2

2 − m2
1 = Δm2

�. (4.4)

The strong hierarchy between them |Δm2
�| � |Δm2

atm| and the smallness of
sin θ13 allow us to write 3 neutrino probabilities as 2-by-2 mixing phenomena,
depending on which term is dominating in the oscillation probability formula.

For Eν/L ∼ |Δm2
atm|, the solar mass splitting can be neglected and the oscil-

lation probabilities n vacuum are:

P (νe → νµ) � s2
23 sin2 2θ13 sin2

�
Δm2

13L

4Eν

�
(4.5)

P (νe → ντ ) � c2
23 sin2 2θ13

�
Δm2

13L

4Eν

�
(4.6)

P (νµ → ντ ) � c4
13 sin2 θ23 sin2

�
Δm2

13L

4Eν

�
(4.7)

P (νe → νe) = P (ν̄e → ν̄e) � sin2 2θ13 sin2
�

Δm2
13L

4Eν

�
. (4.8)

If we further take θ13 → 0 only P (νµ → ντ ) survives, hence the atmospheric
and accelerator experiments are mostly sensitive to θ23 angle and can be identified
(Δm2

atm, θatm) → (Δm2
23, θ23). The reactor neutrino experiments measure νe

disappearance and are sensitive to the θ13 angle, that was the last one to be
measured [91].

In the solar regime Eν/L ∼ |Δm2
�|, the atmospheric oscillations are too fast

and get averaged out:

P (νe → νe) = P (ν̄e → ν̄e) � c4
13

�
1 − sin2 2θ12 sin2

�
Δm2

12L

4Eν

��
+ s4

13. (4.9)

Again, in the limit θ13 → 0 we can therefore identify (Δm2
�, θ�) → (Δm2

12, θ12).
Since the sign of the mass difference is not measured there are two possibility

for neutrino mass patterns, as shown in Fig. 4.7:

• Normal hierarchy where the difference between the lightest neutrino (m1)
and the second one is the solar mass splitting, while the third one is much
heavier (i.e. the atmospheric mass splitting)
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• Inverted hierarchy with one light state (m3) and two heavier quasi-degenerate
ones separated by the solar splitting.

Figure 4.7: Schematic view of normal and inverted hierarchy (from Ref. [92]).

However, the fact that θ13 �= 0 implies that a proper analysis of 3-by-3 mixing
is needed [93–96]. Results of the global fit preformed by NuFit group [96] are
given in Table 4.1.

4.1.7 Neutrino Anomalies
Not all the oscillation experiments data can be explained in terms of only two

mass differences. First to observe hints for physics beyond the standard 3ν picture
was LSND experiment [97] which measured excess in the appearance channel
ν̄µ → ν̄e at E/L ∼ 1eV2 . This anomaly was further explored by the MiniBooNe
[98–100], where no significant excess in the higher energy was observed, but the
yet to be explained excess in the lower energy appeared. Radioactive source
experiments SAGE [101] and GALLEX [102] have observed somehow smaller
event rate than expected which can be explained by disappearance of νe due to
the oscillations to a new state that provides a new mass splitting Δm2 ≥ 1 eV [103]
(Gallium anomaly). Re-analysis of the neutrino flux emitted by nuclear reactors
[104, 105] gave further hints on new 1eV mass splitting [106]. It is important to
notice that these results are in tension with νµ disappearance results [107–109].
Recent analysis of IceCube experiment [110] shows no hint of sterile neutrinos.
For recent reviews about eV neutrinos look at [111,112].
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Table 4.1: Best fit of 3ν oscillation parameters, for normal and inverted hierarchy
(from Ref. [94,96]).

NuFIT 3.0 (2016)

Normal Ordering (best fit) Inverted Ordering (Δχ2 = 0.83) Any Ordering

bfp ±1σ 3σ range bfp ±1σ 3σ range 3σ range

sin2 θ12 0.306+0.012
−0.012 0.271 → 0.345 0.306+0.012

−0.012 0.271 → 0.345 0.271 → 0.345

θ12/
◦ 33.56+0.77

−0.75 31.38 → 35.99 33.56+0.77
−0.75 31.38 → 35.99 31.38 → 35.99

sin2 θ23 0.441+0.027
−0.021 0.385 → 0.635 0.587+0.020

−0.024 0.393 → 0.640 0.385 → 0.638

θ23/
◦ 41.6+1.5

−1.2 38.4 → 52.8 50.0+1.1
−1.4 38.8 → 53.1 38.4 → 53.0

sin2 θ13 0.02166+0.00075
−0.00075 0.01934 → 0.02392 0.02179+0.00076

−0.00076 0.01953 → 0.02408 0.01934 → 0.02397

θ13/
◦ 8.46+0.15

−0.15 7.99 → 8.90 8.49+0.15
−0.15 8.03 → 8.93 7.99 → 8.91

δCP/
◦ 261+51

−59 0 → 360 277+40
−46 145 → 391 0 → 360

Δm2
21

10−5 eV2 7.50+0.19
−0.17 7.03 → 8.09 7.50+0.19

−0.17 7.03 → 8.09 7.03 → 8.09

Δm2
3�

10−3 eV2 +2.524+0.039
−0.040 +2.407 → +2.643 −2.514+0.038

−0.041 −2.635 → −2.399

�
+2.407 → +2.643
−2.629 → −2.405

�
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It is important to mention that an eV sterile neutrino with mixings that can
explain these anomalies (|Uα4|2 ∼ O(10−2)) is incompatible with the Standard
Cosmology [113,114].

4.2 Kinematic Constraints from Weak Decays
The standard method of measuring the electron neutrino mass is looking at

the end-point of the electron energy spectrum in beta decays:

n → p + e− + ν̄e. (4.10)

The energy spectrum of emitted electron is given by

dN

dEe
= Cp(E+me)(E0−Ee)

�
(E0 − Ee)2 − m2

νF (Ee) = R(E)
�

(E0 − Ee)2 − m2
ν ,

(4.11)
where p, Ee, me is electron energy and mass, mν is neutrino mass and E0 is the

maximum energy electron can get, the so-called "end-point" energy. F is the Fermi
function that takes into account electromagnetic interactions of emitted electron
with daughter nucleus. C is a normalization constant and R(E) is conveniently
defined so it does not depend on neutrino mass. A non-zero neutrino mass has
the effect of changing the slope of electron energy spectra, and the end-point
energy. The effect of 1 eV mass in the tritium beta decay spectrum is shown in
Fig. 4.8.

The preferred elements are the ones that have low end-point energy, the most
used being tritium with E0 = 18.4 keV.

Figure 4.8: Neutrino mass effect on the tritium beta decay spectrum (from Ref.
[115]).
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Lepton mixing would modify eq. (4.2) as:

dN

dEe
= R(E)

�

i

|Uei|2
�

(E0 − Ee)2 − m2
i , (4.12)

which in the realistic limit of E0 − Ee � mi simplifies to

dN

dEe
= R(E)

�

i

|Uei|2(E0 − Ee)
�

1 − m2
i

2(E0 − Ee)

�
, (4.13)

and can be parametrized with a single parameter

m2
β =

�

i

|Uei|2m2
i , (4.14)

as
dN

dEe
= R(E)

�
(E0 − Ee)2 − m2

β . (4.15)

The best limits on mβ are obtained in Mainz and Troisk experiments with mβ <
2.3eV [116–118]. KATRIN should reach sensitivity of 0.2eV [115], and there are
other proposals Project 8 [119], MARE [120], ECHo [121]. A recent review on
the experimental status of direct neutrino mass measurement is Ref. [122].

The only way of directly measuring muon and tau neutrino masses are through
decays of pions and taus. Muon neutrino mass is bounded from pion decay at
rest π+ → µ+ + νµ to be mνµ < 190 keV, while the tau neutrino was searched for
in tau decays at the LEP e+e−collider

e− + e+ → τ− + τ+;
τ → ντ + 5π±(π(0)), (4.16)

which gives mντ <18.2 MeV.

4.3 Neutrinoless double beta decay
Certain isotopes cannot decay through the standard beta decay because the

mass of such isotope is smaller than the mass of the daughter isotope, but they
are allowed to decay through simultaneous double beta decay:

(A, Z) → (A, Z + 2) + 2e− + 2ν̄e. (4.17)
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In the case of neutrinos being Majorana particles, the emitted right handed an-
tineutrino from one nucleus can be absorbed as left handed neutrino in the second
nucleus, and the whole process will have no neutrinos in the final state. Such
a process obviously violates lepton number by 2 units, and is sensitive both to
Majorana phases of neutrinos and their absolute mass scale. In Fig. 4.9 the
schematic process of neutrinoless double beta decay (0νββ) is shown.

e−

e−

ν

W

W

p

p

n

n

Figure 4.9: Neutrinoless double beta decay process.

The half-life of the decay is expressed as

T −1
0ν = G0ν

�����M
0ν(mi)

�
i U2

eimi

me

�����

2

, (4.18)

where G0ν is a known phase-space integral, me is electron mass and M0ν is a
nuclear matrix element. The largest theoretical uncertainty comes from calculat-
ing the nuclear matrix element, for reviews on the different methods to estimate
these matrix elements see Refs. [123–126]. For neutrino masses � 100MeV the
dependence of the amplitude on the neutrino masses and mixings factorizes into
the effective 0νββ neutrino mass:

mββ =
�

i

U2
eimi. (4.19)

Beside determining the nature of neutrinos, another interesting consequence
of this measurement is that it could distinguish between inverted and normal
hierarchy if the lightest neutrino mass is below 0.1 eV. In Fig. 4.10 , the dark
bands are the prediction of the effective mass from the best fit oscillation data,
and in the lighter bands the known oscillation parameters are varied within the 3σ
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allowed regions. The strongest upper bound have been obtained recently by the
KamLand-ZEN experiment [127] using the 136Xe isotope, while previous bounds
are represented with grey shadings. Also, the bound depending on the nucleus is
given on the side-panel of the plot.
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Figure 4.10: Effective neutrino mass as a function of the lightest neutrino mass.
The shaded regions are the predictions for NH and IH based on best fit oscilla-
tion data. The grey regions are exclusions from experiments, and blue band is
KamLand-Zen result. The side-panel shows corresponding nucleus for each band
(from Ref. [127]).

4.4 Neutrino masses from cosmology
The strongest bound on the absolute neutrino mass is at present given by

cosmological measurements. The current bound for the sum of neutrino masses
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obtained by the Planck collaboration is �
mν < 0.23 eV [128], though some

stronger bounds have been derived using different data sets [129–131].

4.5 Open questions
Even though three neutrino paradigm seems to fit the data well, there are

still some unresolved issues:

• The neutrino mass hierarchy, whether it is inverted or normal. Due to
MSW effect in the propagation of GeV neutrinos through the Earth, the
accelerator experiment NOvA [132] and the future DUNE (former LBNE)
project [133,134] are sensitive to the mass ordering. The detector upgrades
of IceCube and KM3Net, PINGU [135] and ORCA [136] could also pin down
the hierarchy from the measurement of the atmospheric neutrino flux. Fi-
nally, measuring very precisely the reactor neutrinos spectrum at a baseline
around 50 km, the atmospheric oscillation can be seen on top of the solar
one, with a different pattern for the different mass orderings. This is the
strategy of the proposed JUNE experiment [137].

• Leptonic CP violation requires a value of the CP phase δ different from
0, π. At present there is only a slight preference for it to be above 180◦, but
in the future it can be measured much more precisely in DUNE [133, 134]
and Hyper-Kamiokande [138] experiments, by comparing fluxes of neutrinos
and antineutrinos.

• Neutrinoless double beta decay experiments are most likely to establish
whether neutrinos are Majorana particles.

• The absolute mass scale is not known and for now there are only upper
limits. Important progress is expected from β decay experiments and more
precise cosmological measurements.

There are also many open theoretical questions: what is the origin of neu-
trino masses, are there sterile neutrinos, as predicted by some seesaw models,
and, if so, what is their mass scale ? Could these extra states explain the ob-
served dark matter ? Can CP violation in the leptonic sector be the cause of the
matter-antimatter asymmetry observed in the Universe ? Why are the PMNS
matrix angles much larger than the CKM ones ? Some of these questions will be
addressed in this thesis.
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Low-scale seesaw Models

One of the ways to implement neutrino masses in the SM is Type I Seesaw
mechanism. As mentioned in Chapter 3 this mechanism predicts heavy Majorana
neutrinos. In this section we will review the phenomenology of the Type I Seesaw
for the masses of right handed neutrinos below the EW scale.

5.1 The scale of New Physics
Originally, Type I Seesaw [27] assumed that masses of heavy sterile neutrinos

are MR = 1012−15 GeV, what corresponds to light neutrino masses of order of the
atmospheric mass splitting, and coefficients in the Yukawa matrix of order 1. This
is very appealing since it hints at a scale near the Grand Unification Scale [139],
but the drawback is that this model requires a fine tuning in stabilizing the
Higgs mass since quantum corrections to the Higgs mass in this model gives
quadratic corrections in MR. Furthermore, those scales would be impossible to
test experimentally.

In the other extreme, MR = 0, neutrinos are Dirac particles, which would
recover lepton number symmetry but would imply Yukawa couplings of yν ∼
O(10−12) which is 6 orders of magnitude smaller than the electron one. At-
tempts to naturally obtain these couplings using extra dimension can be found
in Refs. [140, 141]. In the case of small but nonzero Majorana masses (pseudo
Dirac), solar neutrino oscillation data constrain these masses to be smaller than
MR < 10−9 eV [142].

Anywhere between the two scales, (10−9 eV-1015 GeV), the right handed neu-
trino masses are possible by adjusting Yukawa couplings in the range 10−12 - 1.

39
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Masses of 1 eV might explain short baseline anomalies. If the mass is at keV
scale, the right-handed neutrinos could be a good warm dark matter candidate.
Leptogenesis could be explained via the decay of sterile neutrinos at a mass scale
above 107 GeV, or via oscillations if they are at O(GeV).

5.2 The Model
The model is an extension of the SM with N right handed neutrinos:

L = LSM −
�

α,i

L̄αY αiΦ̃N i
R −

N�

i,j=1

1
2N̄ ic

R M ij
R N j

R + h.c.,

where Y is N × N complex matrix. We will examine the number of parameters
of this model following Ref. [143]. The general rule for a number of physical
parameters is

NP hys = Ngeneral − Nbroken. (5.1)

Ngeneral are all the parameters in a generic Yukawa representation. Nbroken is
the difference of the numbers of parameters that define the symmetry groups
for vanishing, and non-zero Yukawa couplings. We will also separate parameters
on real (R), that will become angles and masses, and imaginary (I), that will
describe phases. The matrices in the neutrino sector are 3 × 3 charged leptons
Yukawa matrix, 3 × N neutral leptons Yukawa matrix and N × N symmetric
mass matrix of right-handed states. The number of free parameters is 1:

Igeneral = Rgeneral = 9 + 3N + N
N + 1

2 . (5.2)

In the case of vanishing Yukawa matrices the symmetry group is U(3) for the left
doublets, U(N) for the right handed neutrinos, and U(3) for the right handed
charged leptons. After introducing non-zero masses there is no symmetry remain-
ing so the total number of Nbroken is :

Rbroken = 3 + 3 + N
N − 1

2 , Ibroken = 6 + 6 + N
N + 1

2 , (5.3)

1A general complex matrix of dimension n × m has has I = R = n × m parameters, a
symmetric complex one of dimension n has I = R = n n+1

2 , while a unitary matrix of dimension
n has R = n n−1

2 and I = n n+1
2
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that gives the total number of physical parameters:

Rphys = 3 + 4N, Iphys = 3(N − 1). (5.4)

The number of zero modes in neutrino mass matrix is 3 − N (for N ≤ 3) so the
total number of mass parameters is:

Rmass = 3 + N + 3 − (3 − N) = 3 + 2N, (5.5)

and the angles are the remaining real parameters:

Rangles = 2N. (5.6)

All imaginary parameters are represented with phases:

Nphases = 3(N − 1). (5.7)

The model with only one extra right handed state can not describe observed
neutrino oscillations data [143], hence N = 2, 3 or higher. The number of param-
eters for this two models are summarized in Table 5.1, where the mass parameters
of the charged leptons have been taken out.

Table 5.1: Number of parameters for Type I Seesaw Models

Model # zero modes # m # Angles # Phases
3 + 2 1 4 4 3
3 + 3 0 6 6 6

5.3 Parametrization
One of the popular parametrization of this model is the Casas-Ibarra parametriza-

tion [144], that uses as input parameters the masses and mixings of the light
neutrino sector, the masses of the heavy sector and a generic complex orthogonal
matrix of dimensions N . The drawback of this parametrization is that it is valid
only in the regime MR � mY , or up to a non-unitarity effects. Here the more
general parametrization from Ref. [145] will be described, which also accounts for
non-unitarity effects.
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The complete mass matrix of the neutrino sector after the electroweak sym-
metry breaking is, according to eq. (3.11):

Mν =
�

0 mY

mT
Y MR

�
, (5.8)

with mY ≡ Y v.
It can be diagonalized with one unitary matrix

Mν = U∗Diag(ml, Mh)U †, (5.9)

where ml and Mh are mass eigenstates of the light mostly active and the heavy
mostly sterile neutrinos. If we write matrix U in terms of block matrices

U =
�

Uaa Uas

Usa Uss

�
, (5.10)

it can be shown, in all generality, that they can be parametrized as

Uaa = UP MNSH (5.11)
Uas = iUP MNSHm

1/2
l R†M−1/2

h (5.12)
Uas = iUP MNSHm

1/2
l R†M−1/2

h (5.13)
Uss = H̄. (5.14)

The matrix R is a generic orthogonal complex matrix that has one complex
angle in the case of N = 2, or three complex angles in the case N = 3.

Matrices H and H̄ are given in terms of mass eigenstates and R matrix

H−2 = I + m
1/2
l R†M−1

h Rm
−1/2
l

H
−2 = I + M

1/2
h RmlR

†M−1/2
h . (5.15)

UP MNS is a generic unitary matrix, which in the case of sufficiently heavy
sterile neutrinos so that non-unitarity effects can be neglected ( H → I+O

�
ml
Mh

�
),

can be identified with the standard PMNS matrix from eq. (3.31). This limit
gives the Casas-Ibarra original parametrization.
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5.4 Experimental constraints
If the heavy neutrinos are at electroweak scale they can be accessible in present

experiments. Generally we can consider two types of experiments: the ones with
the heavy neutrino as a final state particle, i.e. direct searches, and the ones
where the heavy neutrino is a virtual off-shell particle, i.e. indirect searches. For
now there is no experimental evidence for heavy neutrino states and the current
experimental data can be translated in bounds on the active-sterile neutrino
mixing angles, Uα4 depending on the heavy neutrino mass M1 2. The most
constraining bounds are presented in Figs. 5.2, 5.3, 5.4 and 5.5. For recent
reviews on experimental constraints look at Refs. [146–149].

5.4.1 Kink searches
For masses roughly between 10 eV and 1 MeV, the most sensitive probe is the

search for kinks in the β decay spectra. The electron energy is sensitive to the
admixture of sterile neutrinos with the SM neutrinos, what induces a kink at the
energy

Ek = Ee − M1, (5.16)

where Ee is the end point energy 3. An example for unrealistically large mixing
sin2 θ = 0.2 is presented in Fig. 5.1.

The bounds from different nuclei (187Re [151], 3Ht [152] , 63Ni [153] , 35S [154],
20F [155]) are presented in Fig. 5.2. The limits are at 95% C.L, except the one
from Ref. [155] which are at 90% C.L.

5.4.2 Peak searches
If the mass of the heavy neutrino M1 is smaller than the mass of the pion

and kaons, it can be produced in their leptonic decays. In that case the lepton
spectrum would show the monochromatic line :

El = m2
H + m2

l − M2
1

2mH
, (5.17)

where mH and ml are the meson and lepton masses. The branching ratio of this
decay compared to the branching ratio of the decay to the light SM neutrino is

2Even though we always discuss the bounds in the Uα4 vs M1 plane, they apply to all the
extra states

3See section 4.2 for more details.
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Figure 5.1: The kink in electron spectra induced by sterile neutrino compared to
the spectra with no additional neutrinos (from Ref. [150])
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Figure 5.2: Bounds on |Ue4|2 versus M1 in the mass range 10 eV–10 MeV. The
lines labeled as 187Re, 3 H, 63 Ni, 35S, 20F and Fermi2 [155] are bounds from
kink searches, while π → eν bound is coming from peak searches [156]. The lines
labeled as Borexino and Bugey are excluded at 90% C.L. by searches of heavy
neutrinos decays from the Borexino Counting Test facility [157] and Ref. [158]
respectively. The bound from Michel spectrum is at 99% C.L.



46 Chapter 5. Low-scale seesaw Models

proportional to the mixing angle. Bounds coming from pion and kaons decays
[156,159,160] are presented in Figs. 5.3, 5.4.

5.4.3 Beam dump experiments
Beam dump experiments are performed as follows : the proton beam is

"dumped" in a fixed target, where a heavy neutrino, sufficiently light, might
be produced in a decay of mesons. If no other interactions of the heavy neutrinos
are assumed, its decay length is long enough that it does not decay inside the
target, and placing the detector on a macroscopic distance from the target the
decay of the heavy neutrino to the charged particles could be detected. Since
no such decay has been observed, various experiments have placed a bound on
the mixing angles PS191 [161], NuTeV [162], CHARM [163], CHARM II [164],
NA3 [165], BEBC [166], FMMF [167] and NOMAD [168]4.

5.4.4 Production in the gauge boson decays
If the heavy neutrino is lighter than the Z boson, it can be produced in LEP

experiments:
e+e− → Z → N1ν. (5.18)

Those particles would decay as in the beam dump experiments, and the absence
of their decay product can put a bound on the mixings with the active neutrinos.
The bounds from DELPHI [170] and L3 [171] are presented in Figs. 5.3 and 5.4.
If M1 is heavier than the Z boson, it will be kinetically forbidden, but the total
Z boson decay width to invisibles particles will be sensitive to extra neutrinos
presence through nonunitarity of the U matrix [172].

5.4.5 Lepton number violating decays
Existence of Majorana neutrinos necessarily means that the lepton number is

violated and that they can mediate lepton number violating decays [173–175]. In
Ref. [146] the bounds from lepton number violating (LNV) decays are discussed,
but in the case of more than one heavy neutrino the application of these bounds
is not straightforward. Namely, in the case of the inverse seesaw, which corre-
sponds to a special pattern of R matrix, such that an approximate lepton number
symmetry exists, these bounds can always be avoided. One example of this is the
popular νMSM [176,177] with two neutrinos in GeV and one in keV mass range.

4In Ref. [169] it was pointed that using neutral current constraints from CHARM and PS191
stronger bounds on combination of mixings can be obtained.
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In Ref. [178] LNV processes were shown to be sub-leading, further confirmed in
Ref. [179]. For this reason, in all the work done for this thesis, the LNV bounds
are not applied.

5.4.6 Lepton universality test
In the SM the coupling of the charge current interaction to the three lep-

ton families is universal, i.e. ge = gµ = gτ . Heavy neutrinos would change
these couplings and the effect can be measured via the decays of mesons, bosons
and leptons [180–183]. Even though these decays depend on hadronic effects,
the uncertainties cancel to a high degree when ratios of decays are considered:
Γ(M→lανα)
Γ(M→lβνβ) . The conservative bounds when M1 > MW , calculated in Ref. [149],
are |Ue4|2 < 5.9 × 10−3, |Uµ4|2 < 2.5 × 10−3 and |Uτ4|2 < 5.9 × 10−3.

5.4.7 Dipole moment
In Ref. [184] the impact of sterile neutrinos on charged lepton electric dipole

moments was studied and they concluded that a significant contribution could
be found if the sterile neutrino masses are above the electroweak scale. This
measurement however does not provide model independent bounds at present.

5.4.8 Michel Spectrum
A heavy neutrino produced in a muon decay could change the electron energy

spectra [185,186]:

dΓ(µ → eν̄ν)
dx

=
G2

F m5
µ

192π3
�
1 − |Ue4|2 − |Uµ4|2

�
f(x, 0, ρ)+

�
|Ue4|2 + |Uµ4|2

�
f(x, δ, ρ)+rad.cor.,

(5.19)
where x ≡ 2Ee/mµ, δ ≡ M1/mµ, ρ is the Michel parameter predicted to be 3/4

in the SM and f is a function that describes the kinematics of the process and
does not depend on the heavy neutrino mixing.

In Ref. [149], the TWIST data [187] is used to put a bound on the sum of
two mixing matrix elements. Their bounds for the choice |Ue4|2 = |Uµ4|2 are
presented in Figs. 5.3 and 5.4 at 99% C.L.

5.4.9 Neutrino oscillation experiments
The strongest bounds for very light sterile neutrinos (∼ O(1) eV) are coming

from the neutrino oscillation experiments. The experiments that have observed
a hint for an eV sterile neutrino are explained in Chapter 4.
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5.4.10 Electroweak precision tests
Heavy sterile neutrino can effect processes below their mass due to the mixings

with the active ones [188,189]. The effective muon decay is modified if the heavy
neutrino mass is below muon mass

Gµ = GF

�
(1 − |UµI |2)(1 − |UµI |2). (5.20)

Furthermore, the bounds can be taken from the unitarity of the PMNS matrix
and flavour changing neutral currents such as µ → eγ, µ → ee+e− or µ − e
conversions. However, those bounds are not competitive with direct searches in
the mass regime we are interested in [146,148].

5.4.11 Colider searches
Both ATLAS [190] and CMS [191] have performed a search for heavy neutrinos

above 50 GeV looking for a same sign leptons pair and high pT jet final state
products, in the run

√
s = 8TeV . The ATLAS analysis is performed for both

electrons and muons, while CMS has put the bound on Uµ4 only.

5.4.12 Future experiments
By increasing the flux of initial hadrons, the beam dump experiments can

provide stronger bounds in the mass scale below the meson mass. One of proposed
experiment is SHiP [192], that would use high intensity proton beam at CERN
to search for sterile neutrinos in charmed meson decays. Another opportunity to
improve present bounds is provided by the DUNE project (former LBNE) [133]
where heavy neutrinos would be produced in the charmed mesons decays. For
higher masses (10 − 80 GeV) the proposed FCC [193–195] a high luminosity
Z-factory can provide bounds up to |U |2 ∼ 10−12. These future bounds are
summarized and compared in Fig. 5.6.

5.4.13 Neutrinoless double beta decay
A new particle would change the half-life of the neutrinoless double beta decay

process by adding additional states in the sum

T −1
0ν = G0ν

�����
�

i

M0ν(mi)
U2

eimi

me
+

�

I

M0ν(MI)U2
eIMI

me

2����� , (5.21)
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Figure 5.3: Bounds on |Ue4|2 versus M1 in the mass range 10 MeV–100 GeV. The
contours labelled π → eν and K → eν are the bounds from peak searches [156,
159]. Limits for contours PS191, N13 and CHARM are at 90 % C.L , limits
from DELPHI and L3 are at 95% C.L., and the limits from Michel spectrum and
invisible Z decay are at 99% C.L.
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Figure 5.4: Limits on |Uµ4|2 versus M1 in the mass range 1 MeV–100 GeV come
from peak searches and from νh decays. The area with the contour labelled
K → µν [160] is excluded by peak searches. The bounds indicated by contours
labelled by PS191, NA3, BEBC , FMMF, NuTeV and CHARMII are at 90% C.L.,
DELPHI and L3 are at 95% C.L., and the limits from Michel spectrum and
invisible Z decay are at 99% C.L.
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Figure 5.5: Bounds on |Uτ4|2 versus M1 from searches of decays of heavy neutrinos
from CHARM, NOMAD (90% C.L.) and DELPHI (95 % C.L.) and invisible Z
decay limit is at 99% C.L taken from Ref. [149]
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Figure 5.6: Predicted bounds for |Ue4|2 (up), |Uµ4|2 (middle) and |Uτ4|2 (down)
versus M1 for SHiP [192], DUNE [133] and FCC [193–195] experiments, where
DUNE curve depends on the light neutrino ordering.
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where capital I denotes additional mass states, while i stands for standard light
neutrinos. The dependence of nuclear matrix element on the mass of the sterile
neutrinos has been calculated in the Ref. [196] and is presented in Fig. 5.7 for
different nuclei. After factorizing a factor of the neutrino mass, the amplitude
for this process contains a residual dependence on the neutrino mass through the
neutrino propagator, i.e. ∼ 1

p2+m2
ν
, where p is the momentum of the propagating

neutrino. Since the preferred momentum for the virtual neutrino in this process is
100 MeV [123,197], the behaviour of the curves is easy to understand. For masses
below this value, the dominant term in the propagator is the momentum, hence
the nuclear matrix element is almost independent on the neutrino mass. As the
mass grows, it becomes dominant in the propagator, and the M(mν) decreases
as ∼ m−2

ν . The amplitude can be expressed as in eq. (4.3) with modified mββ :

mββ =
�

i

U2
eimi +

�

I

U2
eIMI

M0ν(MI)
M0ν(0) ; (5.22)

where we assumed M0ν(mi) ∼ M0ν(0) since mi � 100 MeV. The parameter space
where heavy neutrinos can dominate this process has been studied in [198–201].
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Figure 5.7: Nuclear matrix element versus neutrino mass for different nuclei (from
Ref [196]).



54 Chapter 5. Low-scale seesaw Models

As already mentioned, cosmology can be sensitive to the both the light and
the extra heavy neutrinos. In the next chapters we will review the standard
cosmological model, and, in particular, the neutrinos role in it.



Chapter 6

Overview of the Standard
Cosmological model

In this chapter we will briefly review the Standard Cosmological Model. For
more detailed discussion interested reader is referred to the standard books [202,
203].

6.1 The homogeneous and isotropic Universe
Originally the assumption of an isotropic (rotational invariant) and homoge-

neous (translational invariant) Universe was made to simplify the mathematical
analysis. However, observations have confirmed the validity of this assumption:
the difference of the cosmic microwave background temperature between any two
points in the sky normalized by the averaged temperature is approximate 10−5,
so an homogeneous and isotropic Universe is indeed a good first order approxi-
mation.

With this simplification, the metric gµν can be written as

ds2 ≡ gµνdxµdxν = −dt2 + a2(t)
�

dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)
�

, (6.1)

which is the so-called Friedman-Robertson-Walker (FRW) metric. Here, t is a
physical time, and r, θ and φ are spatial comoving coordinates1. The scale factor
a(t) parametrizes the evolution of space-time and is defined up to an arbitrary

1Comoving coordinates do not “feel” the expansion of the Universe, the real physical distance
is obtained multiplying comoving distances by the scale factor a.

55
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constant rescaling. The parameter k represents the spatial curvature, and can
take values k = 0, +1, −1 by suitable redefinition of the coordinate r. These
three values corespond to a flat 3-dimensional plane, a positive curvature (i.e. a
sphere) and a negative curvature space (i.e. hyperbolic), respectively. The value
of the curvature today is very close to 0.

It is also convenient to define a conformal time τ as

dτ ≡ dt

a(t) , (6.2)

since the metric simplifies to a static Minkowski metric multiplied by a time
dependent conformal factor:

ds2 = a2(τ)
�
−dτ2 + dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)
�

. (6.3)

Expressed in terms of the conformal time, the light cone (ds2 = 0) corresponds
to straight lines, as in a static space-time.

Free falling particles in the gravitatory field obeys the geodesic equation

d2xµ

d2λ
+ Γµ

νρ

dxν

dλ

dxρ

dλ
= 0, (6.4)

where Γµ
νρ is the affine connection (or Christoffel symbols) which are related to

first derivatives of the metric:

Γµ
νρ = gµσ

2

�
∂gσρ

∂xν
+ ∂gνσ

∂xρ
− ∂gνρ

∂xσ

�
. (6.5)

For a massive particle, a 4-vector momentum can be defined as P µ = mdxµ

dλ , that
satisfies the mass shell condition :

gµνP µP ν = −m2. (6.6)

where λ is a function of the proper time dλ = dτ/m ≡ �−gµνdxµdxν/m. From
P 0 ≡ dt/dλ follows

P 0 dP µ

dt
+ Γν

νρP νP ρ = 0, (6.7)

which in case of a flat Universe becomes:

E

�
dP i

dt
+ 2 ȧ

a
P i

�
= 0. (6.8)
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The ratio ȧ/a ≡ H will often appear in the calculations and is called Hubble
parameter. Its value today, the Hubble constant, H0, is usually expressed in
terms of a dimensionless parameter h as

H0 = 100 h km s−1Mpc−1, (6.9)

where h ∼ 0.7, depending on the different experimental datasets used to deter-
mine it.

One can also define physical momentum (such that −E2 + p2 = −m2):

pi = a(t)P i. (6.10)

Then eq. (6.8) gives:
ṗi + ȧ

a
pi = 0, (6.11)

and the scaling of the two momenta are therefore

P i ∼ a−2, pi ∼ a−1. (6.12)

In the case of massless particles2 eq. (6.7) still holds provided gµνP µP ν = 0 ,
and leads to the relation between the observed and emitted photon wavelengths:

λobs

λem
= Eobs

Eem
= a(tobs)

a(tem) ≡ 1 + z. (6.13)

The parameter z is called redshift. When representing a redshift of a given object,
a(tobs) is the scale factor today:

z = a0
aem

− 1. (6.14)

The change in the metric in the presence of matter is described by Einstein’s
field equations of General Relativity:

Rµν − 1
2gµνR + Λgµν = 8πGTµν . (6.15)

The Ricci tensor (Rµν) and scalar (R = gµνRµν) are expressed through the affine
connections:

Rµν =
∂Γσ

µν

∂xσ
− ∂Γσ

µσ

∂xν
+ Γσ

ρσΓρ
µν − Γσ

ρνΓρ
µσ. (6.16)

2Note that in the case of massless particles λ can not be chosen as proper time.
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G is the Newton constant and defines a mass scale (the Planck mass) in natural
units:

MP l = G−1/2 = 1.22 × 1019GeV. (6.17)

The cosmological constant Λ causes the observed accelerated expansion of the
Universe3. Finally the energy-momentum tensor (Tµν) gets a contribution from
all the matter species that fill the Universe. It is symmetric and is covariantly
conserved:

∇µT νµ = ∂T µν

∂xµ
+ Γν

µρT ρµ + Γµ
µρT νρ = 0. (6.18)

Eq. (6.15) can be derived via the principle of least action (δS = 0) from the
Hilbert-Einstein action:

S =
�

d4x
�

−detgµν

� 1
16πG

(R − 2Λ) + Lm

�
, (6.19)

where Lm is the matter Lagrangian whose variation with respect to the metric
gives rise to the energy-momentum tensor Tµν .

In many applications it is a good approximation to describe the primordial
plasma as a perfect fluid with no viscosity:

Tµν = (ρ + p)uνuµ + pgµν , (6.20)

where ρ and p are the fluid energy density and pressure, and uµ is a 4-component
velocity vector of the fluid. If the fluid has zero velocity in the comoving frame
(uµ = (1, 0, 0, 0)), the energy tensor is of the form

T µ
ν = Diag(−ρ, p, p, p). (6.21)

The energy conservation law (setting µ = 0 in eq. ( 6.18)) gives:

0 = dρ

dt
+ 3ȧ

a
(ρ + p) , (6.22)

which can be easily solved for an equation of the state in the form p = ωρ,

ρ ∝ a−3(1+ω), (6.23)

where ω is time independent.
For example, cold matter (e.g. dust) has ωmatter = 0 and the energy density

is ρmatter ∝ a−3, while hot matter (e.g. radiation) has ωrad = 1
3 which gives

3Historically the cosmological constant term was introduced to explain a “static” Universe.
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ρrad ∝ a−4. Note that cosmological constant term can also be redefined as a
term in the stress-energy tensor:

Tµν,Λ = − Λ
8πG

gµν , (6.24)

so that ρΛ = −pΛ (ωΛ = −1) and eq. (6.23) gives ρΛ = constant.
Eqs. (6.1),(6.20), (6.15) determine the dynamics of the evolution. The 0-0

and spatial components of the eq. (6.15) give4:

−2k

a2 − 2ȧ2

a2 − ä

a
= −4πG(ρ − p);

3ä

a
= −4πG(3p + ρ). (6.25)

Adding three times the first equation to the second leads to the familiar Fried-
mann equation:

ȧ2

a2 + k

a2 = 8πG

3 ρ. (6.26)

Note that the cosmological constant term is embedded in the Tµν term as in eq.
(6.24), i.e. ρ appearing here is ρ = ρmatter + ρrad + ρΛ.

If there is a single dominant contribution to ρ and in the case of a flat Universe
(k = 0) the solution of eq. (6.26) is simple:

a(t) =





t
2

3(1+ω) ω �= −1,

eH̄t ω = −1,
(6.27)

where H̄ is a constant. Hence, for the radiation dominated Universe a ∝
√

t and
for matter dominated Universe a ∝ t2/3.

The Friedman equation can also be written in terms of a critical density

ρc ≡ 3H2

8πG
, (6.28)

as
Ω(a) − 1 = k

H2a2 , (6.29)

where Ω(a) ≡ ρ/ρc. We can also define ΩK ≡ − k
H2a2 .

4Ri0 is a three-vector and must vanish due to the isotropy of the metric so those equations
are not relevant.
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An important concept in cosmology are horizons. An event horizon defines
a set of points from which a signal sent at time τ will never be observed in the
future.

A particle horizon is the maximum comoving distance that a given particle
can propagate in the time interval t − ti:

χp(t) =
� t

ti

dt�

a(t�) . (6.30)

The physical size of a particle horizon is

dp(t) = a(t)χp. (6.31)

It is usual to choose ti = 0, which determines the beginning of the Universe (“The
Big Bang”):

χp(t) =
� t

0

dt�

a(t�) =
� a(t)

0

da

Ha2 =
� ∞

z

dz�

H(z�) , (6.32)

where z is the redshift.
The relation between conformal time (comoving distance) with the observ-

ables luminosity distance (for point like sources) and angular distance (for ex-
tended objects) is

dL = a0χ2
p(1 + z), (6.33)

dA =
a0χ2

p

(1 + z)2 , (6.34)

(6.35)

where a flat Universe is assumed5.

6.2 Expansion stages
In this section we will review expansion stages of the Universe, from popular

inflation theories until the present time.

6.2.1 Inflation
The conventional Big Bang Theory confronts two main problems, the so-called

flatness and horizon problems. The flatness problem is related to the curvature
5In the case of k �= 0 instead of χ2 will be sinh2 χ for k = −1 and sin2 χ for k = +1.
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contribution to the total energy (6.29) which increases in time if ä < 0. At
sufficiently early times, the curvature contribution to the total energy in front of
the one from the radiation and matter in eq. (6.26) can be neglected since the
radiation and matter contribution grows as a → 0:

ΩK = − |k|
a2H2 ∼ |k|a1+3ω. (6.36)

Observations show that the density today is close to the critical one, which implies
ΩK is close to 0. If 1+3ω > 0, which is the case of matter and radiation dominated
evolution, one should fine tune the curvature radius in the early Universe to
extremely small-scale. To put some numbers, if ΩK < 1 today then at the
temperatures ∼ 1010 K, ΩK has to be smaller than 10−16.

The second problem refers to the homogeneity of the Universe. As will be dis-
cussed later at a redshift of z ∼ 103 the Universe became transparent to photons,
and formed the Cosmic Microwave Background (CMB), which is homogeneous
up to very small fluctuations δT/T ∼ 10−5 over all 4π solid angle. Since the
comoving particle horizon is a growing function of time:

χp ∼ a(1+3ω)/2, (6.37)

the horizon distance of the photons at the last scattering surface assuming the
Universe was radiation and matter dominated would be seen today at around
1.6◦. This means that the photons coming from larger angles were never casually
connected, and the smoothness of the CMB cannot be explained.

In the pioneering work of Starobinsky [204] and Guth [205], it was proposed to
solve these problems by assuming a period of accelerated expansion prior to the
radiation dominated Universe. In this case the comoving Hubble radius ((aH)−1)
is decreasing, ΩK from eq. (6.36) will be driven to small values, i.e. to a flat
Universe. Eq. (6.32) can be rewritten in terms of comoving Hubble radios as
χp(t) =

� a
0 d ln a

�
1

aH

�
, which mean that if at some point Ha was decreasing, the

particle horizon today could be much larger than Ha today, ie that the particles
can not communicate now, but were causally connected in the past. The sketch
of how accelerated expansion solves horizon problem is given in Fig. 6.1. The
three equivalent conditions for inflation are decreasing Hubble radios, accelerated
expansion and negative pressure:

d

dt

� 1
aH

�
< 0 ⇒ −ä

(Ha)2 < 0 ⇒ ä > 0 ⇒ (3p + ρ) < 0. (6.38)
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The negative pressure is usually modeled with a scalar field with potential energy
much greater than the kinetic energy (“slow roll inflaton”). The scalar field is
usually coupled with ordinary mater, and when the inflation finishes (when the
kinetic energy becomes comparable to the potential one), the decay products are
ordinary radiation. This period is called reheating. A review on inflation theories
can be found at [206].

‘comoving’

smooth patch

now end

Hubble length
start

Comoving 
 Horizon

Time [log(a)]

Inflation Hot Big Bang

Comoving Scales  

horizon exit horizon re-entry

density fluctuation

Figure 6.1: Left: The comoving Hubble radios before and after inflation. Right:
At sufficiently early times all scales relevant for cosmology were inside the Hubble
radios, ie casually connected. Similarly, at relatively recent times the scales come
back within the Hubble radius(from Ref. [206]).

6.2.2 Radiation and matter dominated
After inflation is over, the energy density of the Universe becomes dominated

by radiation ρR ∼ a−4, and later on, by matter ρM ∼ a−3. The thermodynamics
of this period will be explained in the next chapter. Here we will just list the
phenomena that are relevant for this period:

• Baryon asymmetry generation. The present dominance of matter over an-
timatter can be understood if some baryon number violating process took
place in the early Universe. The temperature of this process is not known
but is likely to exceed electroweak phase transition T ∼ 100GeV, at least
in the popular models of baryogenesis through leptogenesis.

• Electroweak phase transition. At around T ∼ 100 GeV the SM gauge group
was spontaneously broken and particles became massive. Before this period
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lepton and baryon number were broken through non-perturbative sphaleron
processes.

• Quark-gluon transition. At around ΛQCD ∼ 200 MeV quarks hadronize
and become confined in baryons and mesons. This process is still not fully
understood theoretically.

• Primordial nucleosynthesis. At around T ∼ MeV weak interactions are no
longer efficient and neutrinos decouple from the plasma, which leads to an
almost constant value of proton-to-neutron ratio.

• As temperature drops below the electron mass all antibaryons have disap-
peared and the parameter

ηB = nB − nB

nγ
∼ nB

nγ
, (6.39)

remains constant as long as the photon density scale as 1/a3. The baryon
fractional density can be expressed as :

ΩB = mN nB

ρc,0
= ηB

mN nγ,0
ρc,0

∼ 0.365 × 108ηBh−2. (6.40)

• Matter-radiation equality. Since the temperature is decreasing with time,
eventually most of the particles will become non relativistic and the energy
density will be dominated by matter, which happens at T ∼ 0.7 eV.

• At around T ∼ 0.1 eV the matter becomes transparent to radiation, and
photons move almost unperturbed along null geodesics. This moment is
called last scattering, and gives the image of the CMB that is seen today.
The CMB image is not completely homogeneous, and anisotropies can be
explained adding primordial perturbations to the metric.

• Once the Universe is matter-dominated the large scale structures (LSS)
start forming. The primordial perturbations, amplified by gravitational
instabilities, lead to the formation of clusters and galaxies.

6.2.3 Dark Energy dominated
Two independent experimental groups found that the expansion of the Uni-

verse today (at small redshifts z ≤ 1 ) is accelerated [207, 208]. The evidence
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came from observing the luminosity distance of Type I supernovae (the “stan-
dard candles” since the wavelength of emitted photons is known), which showed
that they appear fainter than expected in typical matter dominated expansion.
This observation can be explained by the acceleration of the expansion at late
times. From eq. (6.26) this condition leads to p ≤ −ρ/3, and a cosmological
constant with p = −ρ is a very good fit. The combined analysis of CMB spectra
and supernova data fit the current energy content of the Universe to be a large
fraction of Dark Energy ΩΛ = 0.694, smaller fraction of cold matter ΩC = 0.258,
and even smaller baryon content ΩB = 0.048, while ΩK � 0 [128]. The origin of
Dark Energy and cold non-baryonic matter (conventionally named Dark Matter)
are yet to be explained. The most popular models for Dark Matter are the ones
including a weakly interacting massive particle (WIMP) that would be produced
and decoupled early in the history of the Universe, giving the right abundance
today, but such a particle has not yet been detected.

The evolution of the Universe is summarized in Fig. 6.2.

3 min Time [years] 380,000 13.7 billion10 -34 s
Redshift 026251,10010 4
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Figure 6.2: Graphical representation of the evolution of the Universe (from Ref.
[206]).



Chapter 7

Thermodynamics of the Early
Universe

After inflation the Universe contained a very hot plasma made of all the
particles known. Before reviewing useful thermodynamical quantities we will
briefly discuss the meaning of the thermal equilibrium condition in an expanding
Universe.

7.1 Equilibrium Thermodynamics
Equilibrium is reached by interactions that are either scatterings processes

(that redistribute particle momenta and are essential for kinetic equilibrium)
and interactions that do not conserve the number of a given species and are
responsible for chemical equilibrium. A more precise way of evolving particles in
the expanding Universe is by using kinetic theory, but a useful rule of thumb to
ensure that a given species is in thermal equilibrium is to compare its interaction
rate (Γ(T )) with the rate of expansion of the Universe, given by the Hubble
parameter (H(T )). As long as

Γ(T ) > H(T ), (7.1)

holds, the particle is in thermal equilibrium. If at some temperature, the inter-
action rate falls below the Hubble rate the species decouples from the plasma.
This happens at the so called decoupling temperature (Td) that satisfies

Γ(Td) = H(Td). (7.2)

65
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Note that even when decoupling will always extend over some range of tempera-
tures, the approximation of instantaneous decoupling already gives good results,
as will be demonstrated in the example of neutrino decoupling.

The number density n, energy density ρ and pressure p of a diluted weakly-
interacting gas are:

n = g

(2π)3

�
f(p)d3p (7.3)

ρ = g

(2π)3

�
E(p)f(p)d3p (7.4)

p = g

(2π)3

�
p2

3E
f(p)d3p. (7.5)

Here, g is the number of internal degrees of freedom, f(p) is a phase space dis-
tribution function and E2 = p2 + m2.

The momentum distribution of fermions/bosons in kinetic equilibrium is the
Fermi-Dirac/Bose-Einstein distribution:

f(p) = 1
eE−µ ± 1 , (7.6)

where +1 stands for Fermi-Dirac and -1 for Bose-Einstein. µ is the chemical
potential of the species. Chemical equilibrium implies that the sum of chemical
potentials of species that interact is the same as the sum of chemical potentials of
the products of the interaction. For example, in the interaction of species i, j, k
and l

i + j ↔ k + l, (7.7)

the relation between chemical potentials is

µi + µj = µl + µk. (7.8)

Note that whenever reaction of type particle + antiparticle ↔ γ + γ occurs, the
chemical potential of particles and antiparticles will have equal magnitude and
opposite sign1.

1Chemical potential of photon gas in equilibrium is always 0.
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Replacing eq. (7.6) in (7.5) gives:

n = g

2π2

� ∞

m

(E2 − m2)1/2

e(E−µ)/T ± 1
EdE, (7.9)

ρ = g

2π2

� ∞

m

(E2 − m2)1/2

e(E−µ)/T ± 1
E2dE, (7.10)

p = g

6π2

� ∞

m

(E2 − m2)3/2

e(E−µ)/T ± 1
dE, (7.11)

and the integral for µ = 0 and m � T leads to

ρ = 3p =
�

π2

30 gT 4 (BOSE),
7
8

π2

30 gT 4 (FERMI),
(7.12)

n =
�

ζ(3)
π2 gT 3 (BOSE),

3
4

ζ(3)
π2 gT 3 (FERMI).

(7.13)

The average energy per particle in this case is

�E� ≡ ρ

n
= π4

30ζ(3)T � 2.701(BOSE), (7.14)

�E� ≡ ρ

n
= 7π4

180ζ(3)T � 3.151(FERMI). (7.15)

For relativistic fermions and for |µ| � T the approximate formulas are

n = 3
4

ζ(3)
π2 gT 3

�
1 + π2

9ζ(3)
µ

T
+ ln(4)

3ζ(3)
µ2

T 2 + ...

�
, (7.16)

ρ = 3p = 7
8

π2

30gT 4
�

1 + 540ζ(3)
7π4

µ

T
+ 30

7π2
µ2

T 2 + ...

�
. (7.17)

For relativistic bosons and m < |µ| � T 2:

n = ζ(3)
π2 gT 3

�
1 + π2

6ζ(3)
µ

T
+ ...

�
(7.18)

ρ = 3p = π2

30gT 4
�

1 + 90ζ(3)
π4

µ

T
+ ...

�
. (7.19)

2If the chemical potential of boson gas is smaller than its mass it means that the Bose-Einstein
condensate forms, a case that has to be studied separately.
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The difference between particles and antiparticles is an often used quantity

n − n̄ =
�

g
3T 2µ (BOSE),
g
6T 2µ (FERMI).

(7.20)

In the non-relativistic limit (m � T ) the distribution of fermions and bosons are
the same and reduce to the Maxwell-Boltzmann one:

n = g

�
mT

2π

�3/2
e− m−µ

T , (7.21)

ρ = mn, (7.22)
p = nT � ρ, (7.23)

and the average energy is
�E� = m + 3

2T. (7.24)

Note that the number and energy density of non-relativistic particle in thermal
equilibrium in the case of vanishing chemical potential is Boltzmann suppressed
∼ e−m/T . However, this is not the case for species that carry conserved charge,
such as lepton and baryon number at low temperatures, that have a chemical
potential associated to a conserved charge.

It is convenient to express total energy density and pressure of all species in
equilibrium in terms of photon temperature T :

ρT = T 4 �

i

�
Ti

T

�4 gi

2π2

� ∞

xi

(u2 − xi)1/2u2du

eu−ξi ± 1 , (7.25)

pT = T 4 �

i

�
Ti

T

�4 gi

6π2

� ∞

xi

(u2 − xi)3/2du

eu−ξi ± 1 , (7.26)

where xi and ξi are mass and chemical potential normalized to the photon tem-
perature: xi ≡ mi

T and ξi ≡ µ
T . The summation includes all species that obey

Fermi-Bose distribution, taking into account that their temperature (Ti) might
be different to the photon one if they are decoupled, as for example, the neutrino
temperature that will be discussed later.

For further discussion we will neglect chemical potential of all species.
Since for non-relativistic particles the energy density and pressure are expo-

nentially suppressed (∼ e−mi/Ti) it is a good approximation to assume that the
main contribution to the total energy density and pressure will be the one of the
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relativistic particles, i.e. radiation. In that case eq. (7.25) simplifies to:

ρR = 3pR = π2

30g∗T 4, (7.27)

where g∗ counts all effectively massless degrees of freedom:

g∗ =
�

i=bosons

gi

�
Ti

T

�4
+ 7

8
�

i=fermions

gi

�
Ti

T

�4
. (7.28)

Another important thermodynamic quantity is entropy. In equilibrium con-
ditions entropy in a comoving volume is constant:

s(T )a3 = constant. (7.29)

From the second law of thermodynamics the entropy density is3:

s = ρ + p

T
. (7.30)

Again, the entropy density will be dominated by the relativistic particles

s = 2π2

45 g∗ST 3, (7.31)

where
g∗S =

�

i=bosons

gi

�
Ti

T

�3
+ 7

8
�

i=fermions

gi

�
Ti

T

�3
. (7.32)

Eqs. (7.29) and (7.31) imply that whenever g∗S is kept unchanged, the tempera-
ture scales as T ∼ 1/a. When a particle becomes non-relativistic and disappears
(when m � T ), the number and energy density are exponentially suppressed, eq.
(7.21) and g∗S will change. When g∗S changes the temperature evolves as:

T ∝ g
1/3
∗S a−1. (7.33)

If a massless particle that was initially in thermal equilibrium decouples from
the plasma it will not “share” its energy with the plasma any more, the phase-
space distribution will remain as the equilibrium one and the expansion of the
Universe will just redshift momenta with the scale factor. In practice this is

3It is straightforward to include chemical potential, in that case T dS = d(ρV )+pdV −µd(nV )
and s = (ρ + p − µn)/T ).
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equivalent to saying that the temperature of the species after decoupling scales
as T ∝ a−1, independently of how the temperature of the plasma evolves from
that point.

During the evolution of the Universe, almost all the particles have stayed
in the equilibrium until they became non-relativistic, leading to g∗S = g∗. The
only exception were neutrinos, that decoupled at the temperature TD ∼ 1 MeV,
i.e. while still being relativistic. The process of decoupling of neutrinos triggers
light elements production, the so called Big Bang Nucleosynthesis (BBN). As
previously discussed, the momentum distribution of neutrinos will remain as the
equilibrium one, and the temperature Tν will scale as 1/a. After neutrino decou-
pling the only relativistic particles in equilibrium are photons and electrons, at
the same temperature as decoupled neutrinos, with

g∗S = 2 + 7
8 × 4 = 11

2 . (7.34)

When temperature drops below electron mass, only photons remain, hence g∗S =
2. From the entropy conservation in the plasma before and after electrons become
non-relativistic, it follows:

T

Tν
=

�11
4

�1/3
, (7.35)

where T is the temperature of the photons. Today the temperature of the photons
is 2.725 K, leading to Tν � 1.95 K. The evolution of g∗ and g∗S as a function of
temperature is given in Fig. 7.1.

During the radiation dominated expansion, the Hubble expansion is

H(T ) =

�
8πG

3 g∗
π2

30T 4 ∼ √
g∗

T 2

Mpl
. (7.36)

7.2 Boltzmann equation
A way to describe non-equilibrium production or decoupling of particles is

to use the Boltzmann kinetic equation that describes the evolution of the phase
space distribution f [p, x]:

L̂[f ] = C[f ], (7.37)

where L̂ is the Liouville operator and C is the collision integral.
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Figure 7.1: Evolution of g� (solid line) and g�S (dashed line) as a function of
temperature.
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The relativistic form of Liouville operator is

L̂ = pα ∂

∂xα
− Γα

βγpβpγ ∂

∂pα
. (7.38)

For the FRW metric and spatially homogeneous and isotropic phase space the
Boltzmann equation is

L̂[f(E, t)] = E
∂f

∂t
− H|p|2 ∂f

∂E
. (7.39)

The collisional integral accounts for all the processes where a given particle is
produced or annihilated. For example, in the case of a + b → c + d scattering,
the collision integral for production/ annihilation of particle a would be:

C[fa] = 1
Ea

�
dπ(pb)dπ(pc)dπ(pd)(2π)4δ(4)(pa + pb − pc − pd) × (7.40)

�
|Mcd,ab|2fc(pc, t)fd(pd, t)(1 ± fa(pa, t))(1 ± fb(pb, t)) (7.41)

− |Mab,cd|2fa(pa, t)fb(pb, t)(1 ± fc(pc, t))(1 ± fd(pd, t))
�

. (7.42)

The relativistic measure is dπ(p) ≡ d3p
(2π)32E(p) , and the Dirac delta ensures con-

servation of energy and momentum. |Mcd,ab| and |Mab,cd| are amplitudes for the
processes c+d → a+b and a+b → c+d, and if the processes are invariant under
the time reversal the amplitudes are the same and the expression has simpler
form. Finally ± sign is the consequence of different statistics of fermions (minus
sign, consequence of Pauli blocking) and bosons (plus sign). In the case of a
diluted system and negligible chemical potential the gas obeys classical statistics
and those factors become unities.

Note that this form of collisional integral is a consequence of molecular chaos,
that the particle momenta is uncorrelated to their position. In that case the total
number of particles of type a and type b is given simply by the product of two
one-particle phase space distributions, i.e. there are no two-particle correlation
functions (fab).

Written in terms of number density the Boltzmann equation is:

dn

dt
+ 3Hn = g

(2π)3

�
C[f ]d

3p

E
. (7.43)

This equation is a good tool for describing particle freeze-out. As mentioned
in the previous section a massive particle that remained in thermal equilibrium
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would have negligible abundance (∝ exp(−m/T )), but if the particle freezes-out
at the temperature T ≥ m it can have a significant relic abundance. Looking
again at the a + b ↔ c + d process, under the simplification that the amplitudes
for the direct and inverse processes are the same, and that the particles b,c and d
are in thermal equilibrium with small chemical potential, the Boltzmann equation
for the density of particle a becomes

Ha
dna

da
+ 3Hna =

�
dπ(pb)dπ(pc)dπ(pd)(2π)4δ(4)(pa + pb − pc − pd) × (7.44)

|Mab,cd|2[e−(Ec+Ed)/T eµc/T eµd/T − e−(Ea+Eb)/T eµa/T eµb/T ]. (7.45)

Using
�

|Mab,cd|2(2π)4δ(4)(pa + pb − pc − pd)dπ(pa)dπ(pb) = σ
�

(pa · pb)2 − (mamb)2

= σvEaEb (7.46)

the equation becomes

a−2 d

da
(naa)3 = < σ|v| > nb

H
na

�
exp

�
µc + µd − µa − µb

T

�
− 1

�
. (7.47)

The interaction rate Γ ≡< σ|v|nb > is the thermal averaged product of the
cross section and relative velocity and the number density of the particles b, there-
fore the scale dependence of the number density is controlled with the familiar
ratio Γ/H factor. If this factor is small, the densities do not evolve, while they
evolve quickly

7.3 Density matrix formalism
Since this thesis will focused on the non-equilibrium evolution of neutrino dis-

tribution functions, here we will describe a proper formalism to include both the
quantum effect of neutrino oscillations, and non-equilibrium processes, following
the Raffelt-Sigl [209] derivation. Assuming that neutrinos are only in left (or
right) helicity state their wave function can be written as

ψ(x) =
�

dp
�
ap(t)up + b†

−p(t)v−p

�
eipx. (7.48)

This assumption is fine as long as M/T � 1. In the same manner we refer to
antiparticles as particles with opposite helicity.
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The starting point is the definition of the so-called density matrices, ρp and
ρ̄p:

�
a†

j(p)ai(p�)
�

= (2π)3δ(3)(p − p�)(ρp)ij (7.49)
�
b†

i (p)bj(p�)
�

= (2π)3δ(3)(p − p�)(ρp)ij , (7.50)

where the indices refer to different flavours. The diagonal terms are therefore one
particle number densities. Note the reverse order of indices in the definition of
(anti)neutrino matrices which ensures that both matrices transform in the same
way under unitary transformations.

In the absence of interactions, annihilation and creation operators satisfy

ap(t) = ap(0) exp(−iΩ0
pt), bp(t) = bp(0) exp(−Ω0

pt), (7.51)

where Ω0
p ≡ (p2 + M2)1/2, and evolution of ρ(ρ̄) is found to be

ρ̇p = −i
�
Ω0

p, ρp

�
, ρ̇p = i

�
Ω0

p, ρp

�
. (7.52)

The solution describes the usual vacuum oscillations in the density formalism.
Including an interaction Hamiltonian Hint(B, ψ) that describes the interaction

of the neutrinos with some background field B and taking the expectation value
the equation for the density matrix becomes:

ρ̇p = −i
�
Ω0

p, ρp

�
+ i

�
[Hint(B, ψ), a+

p ap]
�

. (7.53)

Assuming that interaction is weak enough, the equation can be solved perturba-
tively. In the first order of perturbation (the fields on the right hand side obey
vacuum evolution eq. (7.51)), and factorizing medium and neutrino part in the
expectation value, the result is just a forward scattering.

As explained in Sec. 3.5, forward scattering can always be represented in
terms of a matter potential, and added to the free oscillating Hamiltonian.

The second order in perturbation will lead to the collision term. Under the
assumption that the medium is not changed by the neutrino interactions, and
that the duration of one collision is much smaller than the time over which the
density matrix varies substantially, the evolution can be written as

ρ̇p = −i
�
Ω0

p, ρp

�
− i

�
Ω0

p, ρp

�
+ (ρ̇p)CC + (ρ̇p)NC + (ρ̇p)S , (7.54)
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where CC, NC and S stands for collisions produced in charged and neutral current,
and self interactions.

If the charged current Hamiltonian is given by

HCC = GF�
(2)

�
d3xξ̄(x)ψ(x) + h.c (7.55)

then the (ρ̇)CC can be written as

(ρ̇)CC = {Pp, (1 − ρp)} − {Ap, ρp}. (7.56)

Pp and Ap are matrices describing production and annihilation processes for each
neutrino flavour and have simple form in the case of diluted media. In the previous
example the production and annihilation of particle a in the a + b → c + d
scattering are

Pp =
�

dπ(pb)dπ(pc)dπ(pd)(2π)4δ(4)(pa + pb − pc − pd)

× |Mcd,ab|2fc(pc, t)fd(pd, t)(1 ± fb(pb, t)) (7.57)

Ap =
�

dπ(pb)dπ(pc)dπ(pd)(2π)4δ(4)(pa + pb − pc − pd)

× |Mab,cd|2fb(pb, t)(1 ± fc(pc, t))(1 ± fd(pd, t)). (7.58)

Note that right hand side of eq. (7.56) is for one flavour the same as the collision
term in the Boltzmann equation.

When solving eq.(7.56) it is convenient to do a change of variables

(t, p) → (x ≡ ma(t), y ≡ p

T
), (7.59)

where m is an arbitrary mass scale constant, so that the total time derivative
becomes

d

dt
→ xHu(x) ∂

∂x
ρ(x, y)

����
fixed y

(7.60)

In the next chapters we will provide explicit examples of sterile neutrino
evolution in the primordial plasma, in the context of low-scale Seesaw Models. We
will focus on the period before electroweak symmetry breaking, where the sterile
neutrinos can explain observed baryon asymmetry, and on their evolution after
the electroweak phase transition, where bounds from cosmological observables
can constraint significantly the parameter space of the models.





Chapter 8

Neutrinos before the
electroweak phase transition -
Baryogenesis

In this chapter we will briefly review baryogenesis and focus on baryogenesis
via leptogenesis. For further details good references are the book [203], or reviews
such as [210,211]. The papers III and IV focus on the mechanism of leptogenesis
via neutrino oscillations.

8.1 Sakharov conditions
Observations show that matter is far more abundant than the antimatter in

the Universe. The baryon to photon ratio (ηB) is an important quantity that
affects both BBN and CMB, and it has been measured to be the same at the
corresponding epochs.

The firstly proposed solution to explain this difference was to assume an initial
asymmetry at the Big Bang, but in the context of inflatory models, the period
of inflation would erase all pre-existing asymmetries, hence, the asymmetry has
to be dynamically produced after inflation. The three necessary conditions to
produce an asymmetry were firstly pointed out in 1967 by Sakharov [212]:

• B-violating interactions,

• C and CP symmetry violating interactions and

• non-equilibrium processes.

77
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The necessity of the first condition is quite obvious, if all the interaction were
baryon number preserving the total baryon number would always keep its initial
vanishing value. A process of type X → Y + B, where Y and X do not have
baryon number, and B �= 0, must exist.

Looking at the decay of the X state, if the charge conjugation symmetry, C,
is conserved, the decay of its antiparticle X̄ will be the same

Γ(X → Y + B) = Γ(X̄ → Ȳ + B̄). (8.1)

This means that even if baryon number was produced it would be erased in the
C conjugated process and no net baryon asymmetry would be created.

To explain the need for CP violation we can consider a hypothetical process
of an X boson where the C conjugated channels have different decay rates. For
example, the decay in a pair of left or right handed quarks X → qLqL, X → qRqR.
If the CP is a symmetry then

Γ(X̄ → q̄Rq̄R) = Γ(X → qLqL) and Γ(X̄ → q̄Lq̄L) = Γ(X → qRqR). (8.2)

Thus, even though the rates of C conjugated processes are not the same, the total
rate of production of baryons and antibaryons is the same

Γ(X → qLqL) + Γ(X → qRqR) = Γ(X̄ → q̄Lq̄L) + Γ(X̄ → q̄Rq̄R). (8.3)

Note that in the standard model both C and CP are violated, C is maximally vi-
olated by SU(2)L gauge symmetry, and the source of CP asymmetry are complex
angles in CKM and PMNS matrices 1.

If the third condition is not satisfied, the particles will obey standard Fermi-
Dirac or Bose-Einstein distribution. With the baryon number violating processes
in equilibrium, the chemical potential vanishes and the phase-space distribution
of baryons and antibaryons must be the same, because the mass of particles and
antiparticles is the same by CPT.

8.2 B number violation in the Standard Model
Baryon number in the SM is conserved classically, while quantum corrections

violate this symmetry [213, 214]. Today baryon number violating processes are
negligible, since they happen only due to quantum tunneling, but at high enough
temperatures they were fast enough to lead to substantial baryon number vio-

1The PMNS complex angles are still not measured, see Chapter 4 for details.
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lation. These processes are called sphalerons and play a essential role in two
mechanisms for generating the baryon asymmetry:

• In electroweak baryogenesis all three Sakharov conditions are fulfilled in the
process of sphaleron freeze out [215]. However, this would require an elec-
troweak phase transition to be of first order, which in the SM cannot hap-
pen, since it would require the Higgs mass to be below 80 GeV [216]. This
mechanism needs therefore beyond standard model physics, as provided
in sypersymmetry theories, or to assume composite Higgs, or an extended
Higgs sector, etc...

• In baryogenesis through leptogenesis, the asymmetry originates in the lep-
ton sector and then gets transfered to the baryons through efficient sphaleron
processes [217].

Sphalerons are a consequence of anomalies in gauge theories, the currents
associated to certain global symmetries are broken at the quantum level. In the
SM theory, both lepton and baryon number symmetries are anomalous:

∂µJ (B)µ = ∂µJ (L)µ = Nf

32π2

�
g2WaρσW̃ ρσ

a + g�2BρσB̃ρσ
�

, (8.4)

where Nf is the number of generations. W ρσ
a and Bρσ are the field strength of the

SU(2) and UY (1) gauge groups and W̃ ρσ
a , B̃ρσ their corresponding dual tensors

(W̃ ρσ ≡ 1/2�µνρσWρσ, B̃ρσ ≡ 1/2�µνρσBρσ where � is antisymmetric Levi-Civita
tensor ). It is important to notice that even though B + L is violated, B − L is
still a conserved charge. Integration of eq. (8.2) relates baryon number with the
so-called Chern-Simons number

B(tf ) − B(ti) = Nf (Ncs(tf ) − Ncs(ti)), (8.5)

where the Chern-Simons number take value 0, ±1, ±2..etc, and are related to the
probabilities of transition from one non abelium vacuum to another. At small
energies this probability occurs via tunneling, the so called instantons, and is
very tiny since it is suppressed by a factor exp(−16π2/g2) ∼ 10−160.

However in the early Universe, with temperatures high enough, kinetic ener-
gies can overcome the potential barrier and the transition is no longer suppressed.
This solution is known as a sphaleron [218].

The schematic difference between instantons and sphalerons is shown in Fig.
8.1.
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Figure 8.1: Schematic Yang-Mills vacuum structure. At zero temperatures the
tunneling between vacua happens via instantons that are suppressed, while at
finite temperatures these transitions can proceed via sphalerons.

A rough estimate of sphalerons transition rate [219] is

Γ ∼
�

g2

4π
T

�4

. (8.6)

A more precise calculation was performed in Ref. [220], where they find that
sphalerons are in equilibrium up to very high temperatures ∼ 1012 GeV. The
precise temperature of sphalerons freeze-out is studied in [221], where they obtain
that the freeze-out occurs at ∼ 130 GeV.

To relate baryon and lepton number we have to look at all the processes that
are fast in the early Universe:

• At high temperatures all gauge SU(3)C × SU(2)L × U(1)Y interactions
are in equilibrium, which means that all the particles in the same group
representation have the same chemical potential, and the chemical potential
of bosons are zero.

• Sphaleron processes involving 12 particles leads to

Σα (3µQαL
+ µLαL

) = 0, (8.7)
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• Left and right handed quarks interact via SU(3)C instanton effects
�

α

2µQαL
− µqU

αR
− µqD

αR
= 0. (8.8)

• The Yukawa interactions give the relation among left and right handed
fermions, and Higgs chemical potential

µQαL
− µΦ − µqD

αR
= 0,

µQαL
+ µΦ − µqU

αR
= 0,

µLαL
− µΦ − µlαR

= 0. (8.9)

• Finally, the conservation of hypercharge implies
�

α

µQαL
+ 2µqU

αR
− µqD

αR
− µLαL

− µlαR
= 2µΦ. (8.10)

Using eq. (7.20) the total baryon and lepton numbers are related

B = 8Nf + 4
22Nf + 13(B − L)

L = −14Nf + 9
8Nf + 4 B, (8.11)

which for Nf = 3 gives B = 28/79(B −L). Even though these result is valid only
for T � v at lower temperature they differ only by a small correction [222].

Note that after the electroweak phase transition, sphaleron processes decouple
and baryon and lepton numbers are conserved.

8.3 Standard leptogenesis (Majorana neutrinos)
The first mechanism proposed to produce a net lepton asymmetry in seesaw

models is through the out-of-equilibrium heavy Majorana neutrino decay [217].
The Yukawa couplings provide the necessary source of CP violation, and can
naturally lead to ensure a non-equilibrium decay.

The Type I seesaw Lagrangian (eq. 3.8) is:

− LT ypeI =
�

i,j

�
l̄LiΦ̃Yν ijNRj + 1

2N̄ c
RiMRijNRj + h.c.

�
. (8.12)
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If M1 � M2, M3 the asymmetry possibly produced in the out of equilibrium
decay of the two heavier states would be washed-out by the still fast Yukawa
interactions of N1, hence it is enough to consider only the decay of the lightest
state.

At tree level, N1 can decay via N1 → laΦ, and, being a Majorana spinor, to
the CP conjugate process. The total decay width is then

ΓD3 = M1
8π

(Y †
ν Yν)11. (8.13)

The CP asymmetry arise from interference of the three level diagram, and loop
corrections presented in Fig. 8.2:

� =
�

α[Γ(N1 → lαΦ) − Γ(N1 → l̄αΦ̄)]
�

α[Γ(N1 → lαΦ) + Γ(N1 → l̄αΦ̄)]

� 1
8π

1
(Y †

ν Yν)11

�

i=2,3
Im

�
(Y †

ν Yν)1i

�
f

�
M2

i

M2
1

�
+ g

�
M2

i

M2
1

���
, (8.14)

where f(x) and g(x) are function coming from the vertex loop correction and self
energy correction:

f(x) =
√

x

�
1 − (1 + x) ln

�1 + x

x

��

g(x) = 6
√

1 − x. (8.15)

Nk

li

H
∗

Nk

ll

H

Nj

H
∗

li

Nk

ll

H

Nj

H
∗

li

Figure 8.2: Decays of Majorana neutrino relevant for the CP asymmetry.
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The washout effects can be parametrized with a dimensionless parameter k
and the total produced asymmetry � as

YL ≡ nL − n̄L

s
= k

�

g∗
. (8.16)

If k � 1 all lepton number violating reactions are in equilibrium so no asymmetry
can be produced. The case k = 1 corresponds to TD � M1. A more precise
prediction requires solving the Boltzmann equation including the relevant lepton-
generating and washout processes

• the already mention decay and inverse decay of N1

• 2-2 scattering

ΔL = 1 s − channel : N1lα → tq̄, N1 l̄α → tq̄

ΔL = 1 t − channel : N1t → ql̄α, N1t̄ → lαq̄

ΔL = 2 : lΦ → l̄Φ̄, ll → Φ̄Φ̄, l̄l̄ → ΦΦ. (8.17)

The Boltzmann equations for the RH neutrino number density and B−L number
density [223] are

dNN1

dz
= −(D + S)(NN1 − N eq

N1
) (8.18)

dNB−L

dz
= −�1D(NN1 − N eq

N1
) − WNB−L , (8.19)

where
(D, S, W ) ≡ (ΓD, ΓS , ΓW )

Hz
, z = M1

T
. (8.20)

ΓD accounts for decay and inverse decay, ΓS for ΔL = 1 scattering processes,
while ΓW represents a washout term and includes inverse decay and ΔL = 1, 2
process. The Boltzmann equation should be solved numerically, and an example
solution is given in Fig. 8.3

For strongly hierarchical right handed neutrinos, there is so called “Davidson-
Ibarra” bound [224]:

|�1| ≤ 3
16π

M1
√

Δmatm

v2 , (8.21)

which leads to M1 ≥ 2 × 109 GeV.
Including flavor effects [225–228] the bound can also be reduced by 2-3 orders

of magnitude [229,230].
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Figure 8.3: The evolution of the number density of the N1 neutrino (purple), the
equilibrium distribution (blue dotted) and the B − L number density as function
of time (inverse temperature)( from Ref. [210])

.
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If the neutrinos are almost degenerate a very small difference between two
Majorana neutrinos may enhance the contribution of the self energy diagram
from Fig. 8.2 and lead to the resonant decay [231]. The mass scale of such
neutrinos should be in TeV range.

8.3.1 Leptogenesis via neutrino oscillations
Another leptogenesis mechanism that works in the the Type I seesaw model,

but for much smaller masses of the right-handed neutrinos, is the so-called lep-
togenesis via neutrino oscillations, first proposed in [232] and pursued in refer-
ences [176,177,233–237].

Since this mechanism will be the main topic of the paper III and IV, here
we will just sketch the basic idea. At least 2 heavy neutrinos must be in the
GeV scale, while the third one can be lighter. For such light neutrinos, Majorana
effects are negligible before electroweak phase transition, and B − L is approx-
imately conserved. Since sphalerons couple only to the left handed fermions, a
lepton asymmetry can be created during the out of equilibrium production of the
right handed neutrinos. As long as the right handed neutrinos do not reach ther-
mal equilibrium before the electroweak phase transition temperature, TEW , the
asymmetry created in the lepton and baryon sector will not be washed out. The
required CP phases are coming, as in standard leptogenesis, from the complex
Yukawa matrices. A sketch of the evolution of the energy density of one of the
neutrinos, and the produced baryon asymmetry is given in Fig. 8.3.1.

In type I seesaw models with majorana masses below the GeV, the thermal-
ization of the sterile states takes place after the EWPT. The evolution equations
of the sterile states change in this regime, as explained in the next chapter.
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Figure 8.4: The evolution of the energy density normalized to the equilibrium one
of one neutrino (red curve), and the produced baryon asymmetry (blue curve).
Notice that once the equilibrium is reached the asymmetry starts to wash out.



Chapter 9

Neutrinos after electroweak
phase transition

In this chapter we will focus on the evolution of sterile neutrinos after the
Higgs field obtain its vacuum expectation value. Since the SU(2)L × U(1)Y

breaks to U(1)Q the dominant channel of sterile neutrino interactions is via the
mixings with the active ones.

We will briefly revisit the evolution of the neutrinos in this period and discuss
constraints coming from BBN, CMB and LSS measurements, as well as from X-
ray searches if one assumes that sterile neutrino is a warm dark matter candidate.
Sterile neutrino evolution in this epoch and how the mentioned constraints reflect
in the constraints on the sterile neutrino parameter space is the topic of the papers
I and II.

9.1 Kinetic equations of sterile neutrinos below EW
phase transition

As mentioned, after the EWPT the production/annihilation of sterile states
happens mainly via the mixing with the active ones. A naive estimate suggests
that the interaction rate of the sterile neutrinos should be proportional to that
of the active ones times the probability of the active neutrino to oscillate into a
sterile, which is true up to a factor of 1/2, appearing after the proper consideration

87
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of kinetic equations for neutrino density 6 × 6 matrix [238]1

Γsj � 1
2
�

a

�P (νa → νsj )� × Γνα . (9.1)

�P (να → νsj )� is the time-averaged probability να → νsj

�P (να → νsj )� =
�

M2
j

2pVα(T ) − M2
j

�2

| (Uas)αj |2, (9.2)

where Uas describes the mixing between active state a and sterile state s. p and
Mj are the momentum and mass of the neutrino and Vα is the matter potential
induced by coherent scattering in the plasma. These potentials depend strongly
on whether there is or not a large lepton asymmetry2. Note that only active
neutrinos have non-zero matter potential since sterile ones do not interact with
other particles in the plasma. In papers I and II the sterile neutrinos evolution
was studied neglecting primordial lepton asymmetries, and the bound on neutrino
phase space was put based on two cosmological parameters : Neff and ΩC .

Recall that the total density of radiation can be written in terms of g∗ (eqs.
(7.27),(7.28)), where it is useful to separate the neutrino contribution together
with any other possible extra radiation as parameter Neff

g∗ =
�

i=bosons

gi

�
Ti

T

�4
+ 7

8
�

i

gi

�
Ti

T

�4
+ 7

8Neff , (9.3)

or defining
ΔNeff ≡ Neff − Nν , (9.4)

where Nν is just the contribution of the SM neutrinos3 ΔNeff can also be seen
as a ratio of energy density of extra radiation normalized to the radiation of one
massless neutrino:

ΔNeff ≡ �ν

�0
ν

. (9.5)

1The calculation is explained in more details in the appendix of Paper II.
2Lepton asymmetries of the same order of magnitude as the baryon one give a negligible

contribution to the matter potential.
3Neff of the SM neutrinos is 3.046 (instead of naively expected 3 in the instantaneous de-

coupling approximation used in Sec. 7.1) due to neutrino interactions when electron/positron
annihilation began.
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ΔNeff is bounded both in BBN and CMB measurements. To calculate the contri-
bution of a decoupled state to the ΔNeff , we have to take into account a dilution
factor, i.e., if the decoupling temperature of the state (Tdi

) is much higher than the
BBN temperature the temperatures of those decoupled state and the active neu-
trino ones will be different due to the change in g∗. From entropy conservation we
estimate that each sterile states that reached thermal equilibrium and decoupled
while being relativistic contributes with ΔNeffsi(TBBN) = (g∗(TBBN)/g∗(Tdi

))4/3.
Also, if the sterile neutrino stays in thermal equilibrium with plasma after the

temperature drops below its mass, its density would be exponentially suppressed4,
so the contribution of such a state to both matter or energy density would be
negligible.

A massive particle would contribute to the matter density:

Ωsi = Mini

ρcr
≤ ΩC , (9.6)

where si is the i-th specie of sterile neutrino, Mi its mass, ni the number den-
sity, and ΩC is the density of cold matter. Expressed with the number density
normalized to the Fermi-Dirac number density (n0) the bound becomes

Mi

eV
ni/n0
94.1 ≤ ΩC . (9.7)

Another important factor to take into account is whether he sterile neutrino
decays and, if it does, at which period in the history of the Universe this happens.
A neutrino that decays before BBN could have no impact on the observables. In
the other extreme, a very long-lived sterile neutrino could be a candidate for
warm dark matter, however the strong constraints on the sterile neutrino mixing
from astrophysical X-ray measurements implies that a large enough contribution
to dark matter can only be achieved if the sterile neutrino is produced in the
presence of large leptonic asymmetries [239, 240]. The decay of neutrinos after
BBN would effect the CMB radiation properties, since they would predominantly
decay to the SM relativistic neutrinos and contribute as extra radiation in the
last scattering epoch. For revisited bounds on sterile neutrino see [241].

4See Chapter 7 for details.
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9.2 Bounds from BBN
Big Bang nucleosynthesis is the epoch in the early Universe where primordial

light elements (2H, 3He,4He and 7Li) were synthesized 5.
The process starts with the decoupling of neutrinos. The interactions that

keep neutrino in equilibrium are mainly scatterings over electrons/positrons and
pair conversion e+e− ↔ ναν̄α , with the interaction rate of the order

Γν ∼ G2
F T 2ne ∼ G2

F T 5, (9.8)

where ne is relativistic electron/positron number density.
The decoupling temperature is defined as

Γν = H(TD) =⇒ TD =
� √

g�

G2
F mP l

�1/3

∼ g
1/6
� MeV ∼ 1MeV. (9.9)

Shortly after, at around TF ∼ 0.7 MeV, the neutron to proton conversion rate
becomes ineffective, and the neutron to proton number density freeze-out at its
equilibrium value

Xn

Xp
= e−Q/TF ∼ 1

6 , (9.10)

where Q = 1.293 MeV is the neutron-proton mass difference and Xi is the ratio
of the number density of a given species over the total number density of all
baryons6

Xi ≡ ni

nB
, nB = np + nn +

�

i

ni. (9.11)

However, the neutron to proton ratio does not stay constant due to neutron
decay, that suppresses neutron abundance as exp(−t/τn), where τn is the neutron
lifetime. The ratio eventually becomes stable when neutrons get trapped inside
nuclei.

The first link in the nucleosynthetic chain is the deuterium production p+n →
d + γ, that is efficient enough to lead deuterium to its equilibrium abundance

Xd ∼ ηB

�
T

mN

�
eBd/T , (9.12)

5 Heavier nuclei are only synthesized in stars.
6Note that at this epoch there are only protons and neutrons in the plasma
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where mN is a common nucleon mass7, and, as defined before, ηB = nB
nγ

. The
binding energy of deuterium is Bd ∼ 2.2 MeV, but even after the photon temper-
ature drops below this value, the deuterium abundance is small due to a small
baryon to photon ratio. This is the so-called deuterium bottleneck, which is
overcame at around Td ∼ 0.07 MeV.

As soon as deuterium forms, it is transformed into 4He that has the highest
binding energy among light nuclei. By that time neutron to proton ratio dropped
to n/p ∼ 1/7. Assuming that all neutrons end up bound in 4He, its mass fraction
is

Yp ≡ 4n4He

nB
∼ 4(nn/2)

nn + np
∼ 0.25. (9.13)

The prediction is in a good agreement with the measured value, Y exp
p = 0.245 ±

0.004 [242].
A more precise way of calculating light element abundance is to solve he set of

coupled Boltzmann equations for all light nuclei, kinetic equations involving the
oscillations for neutrinos, and taking into account baryon number conservation,
charge neutrality, covariant conservation of the total energy density and Hubble
dependence on the energy density during the radiation dominated period. The
final abundance of light nuclei will depend on the ηB, the neutron lifetime τn

and the Neff encoded in the Hubble parameter. The publicly available numerical
codes are given in [243–245], and the most used one being [246,247].

Measured abundances are in a good agreement with the predicted ones, except
for the still unexplained disagreement of lithium abundance, as shown in Fig. 9.1
from [16].

In the standard BBN model, the only free parameter is η10 ≡ 1010ηB, while
Neff = 3.046.

The dependence of light element abundance on both Neff and η is shown in
Fig. 9.2 for some particular values of Neff , from [248]. Note that the element
most sensitive on Neff is 4He, while the best prediction for ηB is coming from the
deuterium abundance.

The best fit of Neff coming only from BBN predictions is Neff = 3.01+0.95
−0.76 at

95% C.L. [249]. Combining ηB prediction from CMB with BBN measurements
gives stronger bounds on Neff .

7In the pre-exponential factors the difference between mp and mn is not important, and we
can mark it as common nucleon mass mN .
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Figure 9.1: The primordial abundances of 4He, D,3He, and 7Li as a function
of ηB. Boxes indicate the observed light element abundances. Vertical bands
indicate the CMB and the BBN measures of the cosmic baryon density (from
Ref. [16])
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Figure 9.2: BBN abundance predictions as a function on ηB varying Neff from 2
to 7. The bands are 1σ errors (from Ref. [248]).
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9.3 Other cosmological bounds
After electrons decoupled and stable nuclei formed, the Universe became al-

most transparent to free streaming photons. The energy density, together with
the polarization modes of the photons last scattering remained imprinted in CMB.

CMB temperature anisotropy is given in terms of the two point correlation
function of the temperature fluctuations in the sky,

�
δT

T̄
(n̂)δT

T̄
(n̂�)

�
=

∞�

l=0

(2l + 1)
4π

ClPl(n̂ ˙̂n�), (9.14)

where Pl(x) are Legendre polynomials, n̂ is the direction in the sky and T̄ is the
average temperature. A similar expressions can be found for the correlations be-
tween the different polarization modes called TE,EE,BB and EB power spectrum,
where T stands for the temperature, and E and B for two modes of polarization.

The most precise measurement of CMB anisotropies is given by Planck col-
laboration [128] presented on Fig. 9.3, where ΔDl ≡ l(l + 1)Cl/2π.
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Figure 9.3: CMB power spectrum, for TT, EE and TE correlation functions. The
theoretical prediction curve in the upper panels are computed from the best-fit
ΛCDM model, while the lower ones are residuals with respect to this model (from
Ref. [128])

The primordial power spectrum can be parametrized as many inflatory models
suggest:

PR = As(k/k0)ns−1, (9.15)

where As is the amplitude and ns spectral index.
Evolution of primordial perturbations involves a complicated set of coupled

Einstein and Boltzmann equations, and is well beyond the scope of this thesis,
The other important observable related to the deviations from homogene-

ity and isotropy is large scale structure (LSS), a measure of the matter power
spectrum at redshifts much closer to us. The total matter power spectrum is de-
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Table 9.1: Best fit for the standard ΛCDM model extended with massive neutri-
nos and extra radiation. All the constraints except for the mν and Neff (that are
at 95% C.L) are at 68% C.L.

Parameter Value Description
H0 67.64 ± 0.48 Hubble constant
Ωbh

2 0.0222 ± 0.0002 Baryon density
Ωch

2 0.119 ± 0.001 Dark matter density
τ 0.065 ± 0.012 Optical reionization depth
ln(1010As) 3.062 ± 0.023 Amplitude of the primordial scalar perturbations
ns 0.9667 ± 0.0053 Spectral index of the primordial scalar perturbations
Neff 3.2 ± 0.5 Effective relativistic degrees of freedom�

mν (eV) < 0.32 Sum of the neutrino masses

fined as the Fourier transform of the two point correlation function of the matter
density fluctuations after averaging over all directions

Pmatter(k, z) =
�
|δmatter(ki, z)|2

�
=

�����
1

(2π)3

�
ρ(x) − ρ̄

ρ̄
exp(−ikix)

����
�

, (9.16)

where ρ(x) and ρ̄ are local and averaged matter density. The measurement of
the matter power spectrum can be done by studying distributions of galaxies
[250–252], or through the absorption or inverse scattering of the light coming
from known galaxy sources, such as Lyman-alpha-forest [253–255] or the Sunyaev
Zeldovich spectrum [256].

The CMB temperature and polarization is also sensitive to the LSS due to
gravitational lensing [128].

Part of the LSS data already enters in the region where the non linear effects
may become relevant and a more conservative approach is to use only the data
related to the imprint of the baryonic acoustic oscillations (BAO) in the total
matter power spectrum [257,258].

Other significant data are from type Ia supernovae [259, 260], that can con-
strain significantly the equation of the state of dark energy, and the direct mea-
surement of the Hubble constant [261].

The parameters of the standard ΛCDM model extended with massive neutri-
nos and extra radiation are given in the Table 9.1. The data are combination of
Planck TT,TE,EE +lowP +BAO, from Ref. [128].
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Focusing again on Neff parameter, there is a a good agreement between BBN
and CMB measurements as shown in Fig. 9.4.
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Figure 9.4: Comparison of BBN and CMB measurements. The BBN bounds
are taken for 4He from ref [262],mostly sensitive to Neff , and deuterium from
ref [263], mostly sensitive to baryon density (from Ref. [128]).

When combining Planck+BAO data with Helium or Deuterium abundance
measurements the bound on extra radiations is even more constraining [128]:

Neff = 2.99 ± 0.39 He + PlanckTT, TE, EE + lowP (9.17)
Neff = 2.91 ± 0.37 D + PlanckTT, TE, EE + lowP. (9.18)

(9.19)

9.4 Bounds from X-ray searches
If a sterile neutrino was abundant in the Universe, its decay product would be

potentially testable. A sub-dominant radiative decay Ns → νγ would produce an
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active neutrino, and a photon of energy E = Ms/2 with the decay width [239,264]:

ΓN→γνa = 9αG2
F

256 × 4π4 sin2 2θ M5
s = 5.5 × 10−22θ2

�
Ms

keV

�5
s−1, (9.20)

where θ is the mixing angle with the active neutrino. Assuming that the sterile
neutrino abundance is the one required for the DM, the lack of a such X-ray
signal can put the bounds in θ vs Ms plane8. The summarized constrain are
given in Fig. 9.5.
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Figure 9.5: The constrains on the sterile neutrino mass and mixing based on
structure formation (blue region) and X-ray astrophysical non-observation (pur-
ple, green and orange region), and NuStar bound (red hatched region). The
region between solid black line can explain DM abundance, where the upper
one assumes non-resonant production, and the lower one assumes large lepton
asymmetry (from Ref. [265]).

8It is important to stress out that this bounds applies only if a sterile neutrino accounts for
all the DM in the Universe.
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How these cosmological measurements set bounds in low-scale seesaw models
is the main topic of papers I and II.



Chapter 10

Summary of the scientific
research and conclusions

In this chapter we will summarize the main results and conclusions of the sci-
entific research we have carried out, referring for details to the previous chapters
or the full articles collected in the second part of the thesis. The research focus
on the type I seesaw models with two or three right handed neutrinos (3+2 MM
and 3+3 MM) with masses below the electroweak scale and, particularly, on their
impact on cosmology.

The first two papers studied the constrains on the parameter space of the
models from cosmological measurements using the methods described in Chap-
ter 9. The topic of the third and the fourth paper is the generation of baryon
asymmetry in the Universe via neutrino oscillations, introduced in Chapter 8

10.1 Paper I
As mentioned in Chapter 9, a new particle abundant enough in the Early Uni-

verse could change the radiation and/or matter densities and modify therefore
the properties of BBN, CMB and LSS. In this work we evaluated the contribu-
tion of the two extra neutrino states of the minimal low scale seesaw model to
the radiation and matter densities in all generality, that is for any value of the
unconstrained parameters of the model: the complex angle of the R matrix, two
heavy masses and two CP phases. For details about the motivation, parametriza-
tion and current direct searches constraints of the model we refer the reader to
Chapter 5.
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After the electroweak phase transition sterile neutrinos can only be produced
via their mixing with the active ones, hence, the interaction rate of the sterile
neutrino can be estimated as the product of the interaction rate of the active
neutrinos times the probability of the active neutrino oscillating into a sterile

Γsi � 1
2
�

a

�P (νa → νsi)� × Γa, (10.1)

where the factor 1/2 will be explained later. The time-averaged probabilities in
the primeval plasma is approximately

�P (νa → νsi)� = 2
�

M2
i

2pVa − M2
i

�2

|Uasi |2 + O
�
U4

as

�
,

(10.2)

where p is the neutrino momentum and Va ≡ AaT 4p, is the matter potential,
where we assumed no significant lepton asymmetries. The interaction rate of the
active neutrinos is given by

Γ = Diag(Γe, Γµ, Γτ , 0, 0) = ya
180ζ(3)

7π4 G2
F T 4pDiag(ye, yµ, yτ ). (10.3)

The coefficients ya and Aa depend on the temperature. This is due to the fact
that the charged leptons decouple from plasma at different temperatures, which
makes the charged current interaction of the corresponding neutrino flavor less
efficient. So we have Ae = A, while Aµ/τ = B for T below the µ/τ threshold
(T � 20/180 MeV) or Aµ/τ = A for higher T � 20/180 MeV, with

B ≡ −2
√

2
�7ζ(4)

π2

�
GF

M2
Z

,

A ≡ B − 4
√

2
�7ζ(4)

π2

�
GF

M2
W

. (10.4)

Similarly the coefficients ya are ye = 3.6, and yµ = yτ = 2.5 below the corre-
sponding µ and τ thresholds, or yµ = yτ = ye = 3.6 above the thresholds [266].

A more detailed description is provided by the density matrix formalism,
described in Sec. 7.3. Separating the equations for the density matrix into the
active A and sterile S blocks, assuming that the collisions of the active ones
are fast enough to equilibrate ρAA and ρAS , and hierarchical heavy masses, it is
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possible to show that the equations for each species approximately decouple as

ρ̇ss = −
�

H†
AS

�
ΓAA

(HAA − Hss)2 + Γ2
AA/4

�
HAS

�

ss

ρ̃ss

� −1
2
�

a

�P (νs → νa)�Γaρ̃ss, (10.5)

which proves eq. (10.1) and explains the factor 1/2.
To estimate whether a state thermalize or not we define a thermalization

function
fs(T ) ≡ Γs(T )/H(T ). (10.6)

The function has a maximum at some temperature Tmax, so if f(Tmax) ≥ 1 the
state reaches thermal equilibrium. Using averaged momentum p = 3.15T , the
Tmax can be shown to be bounded as

�
M2

i

59.5|Ae|

�1/6

≤ Tmax ≤
�

M2
i

59.5|Aτ |

�1/6

. (10.7)

Since fsi(Tmax) ∝ |Uasi |2T 3
max, the naive seesaw scaling r |Uasi |2 ∼ O(ml/Mi)

then implies that fsi(Tmax) is roughly independent of Mi.
We confirmed the analytical approximation by numerical minimization of the

f(Tmax) over the free parameters. We concluded that the two sterile neutrinos
reach thermalization, for both inverted and normal light neutrino ordering, and
is almost independent of the heavy neutrino mass in the range (1 eV- 1 GeV).
The numerical minimization of f(Tmax) is presented in Fig. 10.1. It is important
to stress that the result is a consequence of the constraint imposed by the light
neutrino masses i.e. individual mixings with electron, muon or tau neutrino can
get unlimitedly small, but not simultaneously if the light neutrino masses are to
be accounted for.

The effect of these states in cosmology depends furthermore on whether:

• The state decouples while being relativistic.

• The state decouples late enough not to be completely diluted 1.

• The state does not decay before the BBN.
1The energy density is proportional to the temperature of the decoupled specie, that can be

very different than the photon temperature if the state decouples much before the BBN (see
Sec. 9.1 for details).
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The decoupling temperature Td can be calculated as the minimum temperature
for which thermalization function has value 1, and, using constraints on the
mixing elements discussed in details in Chapter 5, we obtain that the decoupling
temperature is always higher than the mass of the neutrinos for neutrino masses
below ∼ 100 MeV, as presented in Fig. 10.2. So for these range of masses, the
neutrinos decouple while being relativistic.

Figure 10.1: Min[fsi(Tmax)] for the lighter sterile state as function of Mi for a
light neutrino spectrum with a NH (blue line) or IH (red line). The dashed line
at 1 corresponds to the minimum value for thermalisation.

By evolving numerically eq. (10.5) we concluded the states with the masses
below ≤ 10 keV would decouple late enough not to be significantly diluted, and
the 2 σ constrains from BBN are sufficient to exclude these states.

More massive neutrinos would get diluted. Their impact however depends on
when they decay. Neutrinos heavier than 10 MeV could decay before BBN for
some range of parameters, which would make them invisible to the BBN/CMB
data. The effect of the neutrinos in the range [10 MeV,140 MeV] has been studied
in [267–269] and the bounds from BBN and accelerators exclude this possibility
[169]. Below 10 MeV, the neutrinos could decay after BBN but above CMB
and contribute too much extra radiation at the CMB time, since they would
predominately decay to the already decoupled active neutrinos. If neutrino decay
after CMB, the dilution is not enough to suppress their contribution to the matter
density and are excluded by Planck measurements. For more details on the
cosmological measurements look at Chapter 9.

The main conclusion of the paper is summarized in the Fig. 10.3 where the
shaded region is the allowed mass scale of sterile neutrinos in the minimal seesaw
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Figure 10.2: Td as function of the the sterile mass for the NH (blue line), IH (red
line) for parameters that minimize fs(Tmax) (dashed), those that minimize Td

(dotted) and those that minimize Td while being compatible with bounds from
direct searches (solid). The single dashed line satisfies T = Mi.

model. Note that the sub-eV region, barely acceptable when our publication
appeared, is now excluded at 2σ by the latest Planck 2015 analysis [128].

10.2 Paper II
The next to minimal model of light neutrino masses is a Type I seesaw with

three additional states. The unconstrained parameters of the model are three
complex angle of the R matrix, three heavy masses, three CP phases and the
lightest neutrino mass. Even if the parameter space is larger, a similar analysis
can also be done in this case.

Comparing to the previous work we also updated the interaction rate for the
active neutrinos, Γνα(T ) which can be accurately parametrized in terms of Cα(T )
as

Γνα � Cα(T )G2
F T 4p, (10.8)

where Cα(T ) are calculated in Ref. [270].
As in the previous work, we defined the thermalization function that has a

maximum at temperature Tmax, which, in the same approximations as before, is
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Figure 10.3: The allowed region for sterile neutrino masses in the 3+2 MM.

bounded by

T τ
max ≡

�
M2

j

59.5 |A|

�1/6

≤ Tmax ≤
�

M2
j

59.5 |B|

�1/6

, (10.9)

where A and B are defined in the previous section.
Working out analytical approximation a lower bound on the maximum of

thermalization function we find

fsj (Tmax) ≥
�

α | (Uas)αj |2Mj

3.25 · 10−3eV , (10.10)

and using the Casas-Ibarra parametrization where
�

α

| (Uas)αj |2Mj ≥ m1. (10.11)

we obtain that the maximum of thermalization only depends on one parameter,
the lightest neutrino mass:

fsj (Tmax) ≥ 1 for m1 ≥ mth ≡ 3.25 · 10−3 eV. (10.12)

In Fig. 10.4 we show the contour plots of the minimum of fs1(Tmax) (varying
the unconstrained parameters in R and the CP phases in the full range), as a func-



Chapter 10. 10.2 Paper II 105

10

1

0.1

� 6 � 4 � 2 0 2
� 5

� 4

� 3

� 2

� 1

Log10 �M1 �MeV��

L
og

10
�m 1�e

V
��

Figure 10.4: Contours of Min[fs1(Tmax)]=0.1, 1, 10 on the plane (M1, m1).

tion of m1 and M1. The three lines correspond to Min[fs1(Tmax)] = 10−1, 1, 10.
As expected the minimum is strongly correlated with m1 and is roughly inde-
pendent of M1. Values of m1 below the contour line at 1 correspond to non-
thermalization giving the threshold mth

1 ≤ O(10−3eV) for M1 ∈ [1eV-100MeV].
Note that the condition

�

α

| (Uas)αj |2Mj ≥ mth
1 (10.13)

is always satisfied for at least two states to account for the atmospheric and solar
mass splittings. This means that the two neutrinos will always thermalize, while
the thermalization of one state depends on the lightest neutrino mass.

We can then distinguish two different scenarios

• m1 ≥ mth, and

• m1 ≤ mth.

In the first case, all three neutrinos reach thermal equilibrium and the conclu-
sion from the first paper applies. The allowed mass spectra of the sterile states
is summarized on the bottom plot in Fig. 10.5.

In the second case, the evolution of the non-thermalized sterile neutrino has
to be studied more carefully. On the other hand, we checked that the evolution
of the other two neutrinos is the same as in the 3+2 case, i.e. it is approximately
independent on m1 and M1, so that the bounds on the two thermalized states
apply as in the previous paper. The allowed mass range is then the one in the
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Figure 10.5: Allowed spectra of the heavy states Mi for m1 ≥ mth
1 (up) and

m1 ≤ mth
1 (down).
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upper plot of Fig. 10.5, where we have completely neglected the contribution of
the nonthermal state to the energy density.

We examined the case of one non-thermal neutrino and two heavier than 100
MeV more thoughtfully. Assuming that two other neutrinos are above 100 MeV
and do not have influence on BBN physics we calculated the distribution function
of the non-thermal state as a function of M1 and m1 fixing other parameters to
minimize fs1 . In Fig. 10.6 we plotted the allowed parameter space, compatible
with the cosmological bounds. Also, the recent X-ray constrained2 exclude the
possibility that the non-thermal neutrino can be a warm dark matter candidate
in this model. Only in more complex models where a large leptonic asymmetry
could be generated this is still possible.

Finally, we looked for a possible signal at neutrinoless double beta decay
experiments, since the nonthermal neutrino below 100 MeV could contribute to
mββ . However, for the parameters compatible with cosmology, this contribution
is always negligible.

10.3 Paper III
Neutrinos heavier than ∼ 100 MeV may have no impact on BBN, CMB or

LSS, but they might seed the baryon asymmetry. In this work we studied the right
handed neutrinos evolution before the electroweak phase transition, and analyzed
the lepton asymmetry that might be generated. The main idea, firstly proposed
in Ref. [232] is that the lepton asymmetry is created by the right handed neu-
trino oscillations, and transmitted to the baryons via sphaleron processes. Since
the asymmetry is created during the production of the sterile neutrinos, their
Yukawa couplings must be small enough to ensure that the created asymme-
try is not washed out before the electroweak phase transition temperature Tew.
This condition, together with the constraints coming from the active neutrino
mass measurements, forces the sterile neutrino mass to be below the electroweak
scale, unlike in the standard leptogenesis scenario via the decay of very heavy
sterile neutrinos. Furthermore, since the created asymmetry is stored in the ster-
ile sector, at least one of the states must not reach thermal equilibrium before
Tew. What happens afterwards would not modify the baryon asymmetry since
sphalerons are not active.

The baryon asymmetry, being a CP odd observable, should necessarily be
proportional to the CP odd rephasing invariants [271]. The spectrum of this
theory has six massive Majorana neutrinos, and the mixing is described in terms

2For recent constraints see Chapter 9.
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Figure 10.6: Contour plots for ΔN
(1)BBN
eff = 10−1, 10−2, 10−3 defined by the ratio

of the energy density of the j = 1 sterile state and one standard neutrino as a
function of m1 and M1. The solid (dashed) lines correspond to the contours of the
ratio of sterile to active number (energy) densities. The shaded region corresponds
to Ωs1h2 ≥ 0.1199 and the dashed straight line is roughly the one corresponding
to decay at recombination. The area left from this curve is excluded from N CMB

eff

constraints. The heavier neutrino masses have been fixed to M2,3=1GeV, 10GeV
and the unconstrained parameters have been chosen to minimize f1(Tmax) and
f2(Tmax). The light neutrino spectrum has been assumed to be normal (NH).
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of six angles and six CP phases generically, which accounts for six independent
invariants [272], However, since the Majorana nature of the neutrinos is irrelevant
at such high temperatures, we neglect those that correspond to Majorana phases,
hence, there are only four independent invariants. At lowest order in the yukawas,
they can be expressed via the two unitary matrices that diagonalize the Yukawa
matrix Y ≡ V †Diag(y1, y2, y3)W as:

I
(2)
1 = −Im[W ∗

12V11V ∗
21W22]

I
(3)
1 = Im[W ∗

12V13V ∗
23W22] (10.14)

I
(3)
2 = Im[W ∗

13V12V ∗
22W23]

JW = −Im[W ∗
23W22W ∗

32W33] (10.15)

A generic expectation for the CP-asymmetry relevant for leptogenesis (that
does not involve lepton number violation) is

ΔCP =
�

α,k

|Yαk|2 Δα, (10.16)

with
Δα =

�

i

�L
iα =

�

i,j

Im[YαiY
∗

αj(Y †Y )ij ]f(Mi, Mj). (10.17)

and f an arbitrary function.
In the limit of vanishing y3 (a generic restriction to ensure one non-thermal

sterile neutrino), the asymmetry simplifies to

ΔCP = y2
1y2

2(y2
2 − y2

1)
�

i,j

Im[W ∗
1iW1jW ∗

2jW2i]f(Mi, Mj)

+ y1y2(y2
2 − y2

1)
��

(y2
2 − y2

1)I(2)
1 − y2

2I
(3)
1

�
[f(M1, M2) − f(M2, M1)]

+ I
(3)
2 [g(M1) − g(M3)]

�
. (10.18)

The original proposal [232] contained only the Jarlskog invariant JW , while
the famous νMSM model [176, 177] with two neutrinos in GeV and one in keV
regime contains only I

(2)
1 and I

(3)
1 invariants since the third state is completely

decoupled in that case.
A precise calculation of the produced asymmetry involves solving a set of

kinetic equations for sterile neutrino sector. Following the formalism of [209] we
derived the evolution equations of the CP-even and CP-odd parts of the neutrino
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densities: ρ± ≡ ρN ±ρ̄N
2 and the lepton chemical potentials, µα, to linear order in

µα, ρ−:

ρ̇+ = −i[Hre, ρ+] + [Him, ρ−] − γa
N + γb

N

2 {Y †Y, ρ+ − ρeq}

+iγb
N Im[Y †µY ]ρeq + i

γa
N

2
�
Im[Y †µY ], ρ+

�
,

ρ̇− = −i[Hre, ρ−] + [Him, ρ+] − γa
N + γb

N

2
�
Y †Y, ρ−

�

+γb
N Re[Y †µY ]ρeq + γa

N

2
�
Re[Y †µY ], ρ+

�
,

µ̇α = −µα

�
γb

νTr[Y Y †Iα] + γa
ν Tr

�
Re[Y †IαY ]r+

��

+(γa
ν + γb

ν)Tr
�
Re[Y †IαY ]r−

�
(10.19)

where Hre ≡ Re[H], Him ≡ Im[H], Iα is the projector on flavor α. γa,b
N , γa,b

ν

are the rates of production/annihilation of a sterile neutrino or a lepton doublet,
after factorizing the flavor structure in the Yukawas,

γ
a(b)
N(ν) ≡ 1

2k0

�

i

�

p1,p2,p3
ρeq(p1)|M(a(b))

N(ν),i|2(2π)4δ(k + p1 − p2 − p3), (10.20)

where k is the momentum of the N or ν and

γb
N,Q = 2γa

N,Q = 2γb
ν,Q = 4γa

ν,Q = 3
16π3

y2
t T 2

k0
. (10.21)

In this work we only included top quark scattering in the calculation of the
interaction rates.

In order to achieve some analytical understanding of the solutions of these
complex equations, we proposed an analytical approach based on perturbation
theory in the mixing angles of the V and W matrices. This analytical approxi-
mation allowed us to derive analytical solution also in the strong washout regime.
For y3 =, the asymmetry in the lepton sector can be written in the form:

Tr[µ](t) =
�

ICP

ICPAICP(t). (10.22)

Note that all the four CP invariants appear, ICP =
�

JW , I
(2)
1 , I

(3)
1 , I

(3)
2

�
.
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The functions AICP(t) depend only on the Yukawa matrix eigenvalues and the
mass differences of the sterile states. For explicit expression a reader is referred
to the paper. Here we present the general behavior of those functions, each one
for three cases: no degenerate sterile neutrino masses, two almost degenerate
states, and the case where all three states are almost degenerate. The functions
are given in Figs. 10.7,10.8.

The comparison of the analytic curves with the numerical ones in the case
where only non-zero invariants are I

(2)
1 or I

(3)
1 is given if Fig. 10.9 where we chose

highly degenerate case and the mixing angles of (O)(10−2).
The generated asymmetry in the lepton sector is transfered to the baryons so

that the baryon asymmetry is given by 3

YB = 28
79YB−L, (10.23)

which, neglecting spectator processes, is related to the chemical potentials as

YB � 3 × 10−3 Tr[µ(t)]|tEW
. (10.24)

As an example, we can estimate the asymmetry generated if the naive seesaw
scaling with only two sterile neutrinos in the GeV range, and assume the lightest
neutrino mass is in the eV range. If we choose y2

1 = y2
2/2 = 10−14, we get

Tr[µ](tEW ) � 7 × 10−10 I
(2)
1 − 2I

(3)
1

|ΔM2
12(GeV2)|2/3 . (10.25)

This means that even if the CP invariants are O(1), the generation of the asym-
metry would demand a large degree of degeneracy of the heavy neutrinos.

The analytic formulas allowed us to scan the parameter space for both 3+2
MM and 3+3 MM models. We obtained that in the case of the 3+2 models a
mild degeneracy ΔM/M ∼ 10−1 is needed for an inverted ordering of the light
neutrinos, while it needs to be stronger for the normal ordering. In the case of
3 additional neutrinos no degeneracy is needed. However the approach based
on the analytical approximation required that we restrict somewhat the allowed
parameter space. The analytical approach should fail at sufficiently large times
t−1 ∼ O(θ2

i3y2
i γa,b

N ) for i = 1, 2, where θi3 are the mixing angles of he V, W
matrices, so we impose constraints to avoid that this happened before or at the
EW transition.

3For more details of the process look Chapter 9.
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Figure 10.7: Functions A
I

(2)
1

(t) (top) and A
I

(3)
1

(t) (bottom) assuming the rates
are dominated by top quark scattering, and taking y2/

√
2 = y1 = 10−7, for two

choices of ΔM12 = 1GeV2 (dashed) and ΔM 2
12 = 10−6 GeV2 (solid). tEW is the

electroweak phase transition time, corresponding to TEW � 140GeV.
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Figure 10.8: Functions A
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(3)
2

(t) (top) and AJW
(t) (bottom) assuming the rates

are dominated by top quark scattering, and taking y2/
√

2 = y1 = 10−7, for three
choices of [ΔM2

12, ΔM2
13] = [1, 2], [10−6, 2] and [10−6, 2 × 10−6] in GeV2 (dashed,

dotted and solid). tEW is the electroweak phase transition time, corresponding
to TEW � 140GeV.
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It is interesting to examine if the CP phases, or the neutrinoless double beta
decay amplitude, could be affected by constraining the model to explain the
baryon asymmetry. A precise numerical study of this question will be one of the
topics of the next project.

10.4 Paper IV
In this work we pursued the possibility of explaining the baryon asymmetry

in the context of the low scale seesaw models, with significant refinements

• We have included the contribution to the interaction rates of the gauge
boson as well as the resumed 1 → 2 processes [273, 274]. These rates
have been calculated in the previous literature assuming that the chemical
potentials vanish. In our work, we have added the effect of the leptonic
chemical potentials to linear order.

• We used consistently Fermi-Dirac or Bose-Einstein distributions through-
out, as well as the spectator effects.

• We have optimized the numerical solution of the kinetic equations using
the public software Squids [275] and Multinest [276–278]. This allowed
us to explore the full parameter space of the 3+2MM model without any
restrictions and analyze the Bayesian posterior probabilities assuming the
model explains the baryon asymmetry within the experimental precision.

The processes in equilibrium involving the spectators, that do not appear
explicitly in the kinetic equations, have the effect of redistributing the asymme-
try generated in the lepton sector to the other particles in the plasma, without
modifying the total B/3 − Lα number. Is therefore consistent to exclude these
interactions if instead of the leptonic chemical potential, one includes the evolu-
tion of the densities, nB/3 − nLα or the corresponding chemical potential. The
new equations for the density matrices normalized to the equilibrium density,
rN ≡ ρN /ρF and rN̄ ≡ ρN̄ /ρF , describing the evolution with respect to the scale
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factor x = aT are:

xHu
drN

dx
= −i[�H�, rN ] − �γ(0)

N �
2 {Y †Y, rN − 1}

+�γ(1)
N �Y †µY − �γ(2)

N �
2

�
Y †µY, rN

�
,

xHu
drN̄

dx
= −i[�H∗�, rN̄ ] − �γ(0)

N �
2 {Y T Y ∗, rN̄ − 1}

−�γ(1)
N �Y T µY ∗ + �γ(2)

N �
2

�
Y T µY ∗, rN̄

�
,

xHu

dµB/3−Lα

dx
=

�
k

ρF�
k

ρ�
F

�
�γ(0)�

N

2 (Y rN Y † − Y ∗rN̄ Y T )αα

+ µα

�
�γ(2)

N �
2 (Y rN Y † + Y ∗rN̄ Y T )αα − �γ(1)

N �Tr[Y Y †Iα]
��

,

µα = −
�

β

CαβµB/3−Lβ
, (10.26)

where µB/3−Lα
is defined to be

nB/3−Lα
≡ −2µB/3−Lα

�

k
ρ�

F = 1
6µB/3−Lα

T 3. (10.27)

and the matrix C is dictated by the fast interactions in the plasma 4:

Cαβ = 1
711




221 −16 −16
−16 221 −16
−16 −16 221


 , (10.28)

The interaction rates are averaged in the momentum space and their values can
be found in the published article reproduced in part II.

We have performed a Bayesian analysis of the posterior probability distri-
butions in the model parameters assuming that the model explains the baryon
asymmetry. For this we have used the public software codes Squids [279] and
MultiNest [278]. An important consideration are the priors in the parameters.
We have considered flat priors in all the Casas-Ibarra parameters except the
masses where we have assumed two hypothesis: 1) flat prior in log10

�
M1,2
GeV

�
,

within the range M1,2 ∈ [0.1GeV, 102GeV], and 2) a flat prior in log10
�

M1
GeV

�
and

4For details look at Chapter 8
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in log10
� |M2−M1|

GeV

�
in the range M2 − M1 ∈ [10−8GeV, 102GeV], that does not

penalize the highly degenerate solutions. The results on the planes (|Uαs|2, M1)
for α = e, µ, τ are shown in Figs.10.10, where we also include he present and
future constraints. The blue regions corresponds to the first prior hypothesis,
while the red corresponds to the second. The conclusion from this study is that
the less degenerate solutions (achieved with the first hypothesis on the priors) are
possible only for masses smaller than 1 GeV. This is precisely the region where
he experiment SHiP reaches its maximum sensitivity.

Interestingly, the mild level of degeneracy in the masses of the blue contours
is also correlated with a relatively large mixing, and a sizable contribution to
the amplitude of neutrinoless double beta decay. These correlations are shown in
Figs. 10.11.
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Figure 10.10: Comparison of the posterior probability contours at 68% and 90%
on the planes mixings with e, µ, τ versus masses, with the present [146], [147]
(shaded region) and future constraints from DUNE [133], SHiP [192] and FCC
[193] for NH (up) and IH (down).

A very interesting question is whether the baryon asymmetry can be predicted
if the sterile neutrinos were discovered in a putative measurement in ShiP, the
CP phase in neutrino oscillations, δ, measured or neutrinoless double beta decay
observed.

To answer this question, as a proof of principle we have studied the posterior
probabilities for a hypothetical measurement of SHiP, corresponding to the point
marked by a star in the plot 10.10 for IH. Assuming very optimistic errors for
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Figure 10.11: Posterior probabilities for the amplitude of neutrinoless dou-
ble beta decay (left), electron mixing (middle) and the mass degeneracy versus�

α=e,µ,τ |Uα4|2M1 (right).

this experiment in determining the mixings and masses at the 0.1% and 1% level
respectively (red region), as well as a putative δ measurement, with the error of
0.17 rad (blue region), we found a strong correlation between mββ and YB, which
is presented in Fig 10.12. If a precise measurement of mββ was possible (which
is challenging due to the uncertainty in the nuclear matrix elements), this plot
shows that it might be possible to predict the baryon asymmetry up to a sign.
For NH, the expectations would be dimmer since mββ is much smaller in this
case.

Another interesting observation that resulted from this work is that, indepen-
dently of whether the baryon asymmetry can be explained or not, the discovery
in SHiP of the extra neutrinos in the 3+2 MM model and the measurement
of the ratio of the mixing to electron and muon could allow the determina-
tion with high precision a combination of the two CP violating phases in the
PMNS matrix. The posterior probability of such a measurement on the plane of
these two phases is shown in Fig. 10.13. At leading order of small parameter
O (�) : r ≡

�
Δm2

sol

Δm2
atm

∼ θ13 ∼ e− γ
2 ,, the ratio of the electron and muon mixing is

expected to be well approximated by:

IH : |Ue4|2
|Uµ4|2 � 1

c2
23

1 + sin φ1 sin 2θ12
1 − sin φ1 sin 2θ12

+ O(�). (10.29)

This analytical expectation is the line on the same plot.
This measurement provides a new method to discover leptonic CP violation,

using CP even observables.
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Figure 10.12: Posterior probabilities in the |mββ | vs YB plane from a putative
measurement at SHiP, assuming 0.1%, 1% uncertainty (red) and an additional
measurement of δ (blue), where the vertical green line denotes the observed
baryon asymmetry.

The case of three additional neutrinos has more free parameters and is more
difficult to analyse, both analytically and numerically and is left for future work.

10.5 Final remarks
This thesis was devoted to the study of low scale seesaw models with addi-

tional 2 and 3 right handed neutrinos, and their impact on cosmological observ-
ables. The main original results have been to demonstrate that BBN and CMB
physics severely constrain the allowed value of the Majorana neutrino masses in
the range below 100 MeV, and to show that in the range of 1-10 GeV, the sterile
neutrinos might naturally explain the baryon asymmetry of the Universe and do
so in a testable way, giving a strong theoretical motivation for future accelerator
experiments that can significantly improve the searches of sterile neutrinos in this
range of masses.

My personal opinion is that the more precise measurements that will come
from cosmology and the possibility to discover sterile neutrinos in the GeV range
makes this a very interesting period to work on the phenomenology of these
models.



120 Chapter 10. Summary of the scientific research and conclusions

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1

3

2

1

0

1

2

3



Figure 10.13: Posterior probabilities from a SHiP measurement of the masses and
mixings with e, µ on the plane (φ1, δ) compared with the result of the analytical
ratio (red line) for parameters in the test point.



Chapter 11

Resumen de la Tesis

11.1 Objetivos
El modelo estándar (SM) es la teoría que explica las tres interacciones funda-

mentales: electromagnetismo y las fuerzas fuerte y débil. El contenido del SM se
compone de tres familias de quarks y leptones, que se difieren sólo por sus masas,
mientras que las interacciones se describen con tres bosones masivos W ±, Z y
uno boson sin masa, el fotón, para el caso electrodébil, y ocho gluones sin masa
para la interacción fuerte. Las masas de los bosones y fermiones se obtienen a
través de su interacción con el campo escalar del Higgs, donde los términos de
interacción se denominan términos de interacción de Yukawa, y el acoplamiento
correspondiente se llama acoplamiento de Yukawa.

Los neutrinos son los únicos leptones sin masa en el modelo estándar, simple-
mente porque cuando se construyó la teoría se creía que los neutrinos no tenían
masa. Sin embargo, los experimentos de oscilaciones han demostrado que esta
hipótesis no es correcta. El premio Nobel de 2015 fue concedido conjuntamente a
Takaaki Kajita a la cabeza de la colaboración SuperKamiokande (SK) y a Arthur
B. McDonald, el fundador del Sudbury Neutrinos Observatory (SNO), por “el de-
scubrimiento de las oscilaciones de neutrinos, lo que demuestra que los neutrinos
tienen masa”. Las oscilaciones son un fenómeno cuántico que implica que un
neutrino producido en un sabor puede ser detectado como uno de otro sabor
diferente después de viajar una distancia macroscópica. Esto es debido que los
autoestados del Hamiltoniano libre (autoestados de masa) y los del Hamiltoniano
de interacciones (autoestados de sabor) no son los mismos. La probabilidad de
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oscilación viene dada por:

P (να → νβ) =
�

i,j

U∗
βjUαjUβiU

∗
αie

−i
Δm2

ij L

2|Eν | , (11.1)

y depende del matriz de mezcla (U), las diferencias de masas de los neutrinos
(Δm2

ij ≡ m2
j − m2

i ) , la distancia (L) y la energía de neutrinos Eν . Por lo
tanto, las experimentos de oscilaciones de neutrinos no son sensibles a las masas
absolutas de los neutrinos sino sólo a sus diferencias. Los resultados de varios
experimentos con neutrinos solares, atmosféricos o bien neutrinos producidos en
reactores o aceleradores puedes explicarse en términos de la oscilación de tres
familias de neutrinos, que dependen de dos diferencias de masas, Δm� � 10−5

eV, Δmatm � 10−3 eV y una matriz de mezcla determinada por tres ángulos, que
ya han sido medidos, y una fase de CP, que permanece indeterminada. Los datos
actuales no permiten distinguir entre la dos posibles jerarquías, normal (NH) e
invertida (IH), representadas en la Fig.11.1.

Figure 11.1: Representacion schematica de las jerarquías normal (NH) e invertida
(IH).

La determinación de todos estos parámetros requiere un análisis global de
todos los experimentos como el que es regularmente actualizado en [96].

La masa absoluta se puede medir en los experimentos de búsqueda directa,
como la desintegración beta. Por ahora existe solo límite superior de la masa
absoluta ≤ 2.3 eV [118]. Los límites más fuertes provienen de análisis cosmológicos
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que han permitido constreñir la suma de masas de los neutrinos en el rango ≤ 0.23
eV [128].

El mecanismo más directo para dar masas a los neutrinos en el modelo es-
tándar es de añadir neutrinos dextrógiros y sus correspondientes interacciones de
Yukawa a los dobletes leptónicos y al Higgs. Sin embargo, como la masa de los
neutrinos es al menos 106−7 veces más pequeña que la masa del electrón, esto
implicaría que el acoplamiento de Yukawa de los neutrinos ha de ser 6-7 órdenes
de magnitud más pequeño que el de electrón, lo cual no es natural. Otra opción,
más económica es utilizar sólo los neutrinos que ya existen en el modelo estándar
y generar un término de masa de Majorana. Una partícula de Majorana es igual
a su antipartícula y su existencia supone la violación del número leptónico, una
de las simetrías globales accidentales del modelo estándar. La manera de generar
una masa de Majorana para los neutrinos en el modelo estándar es a través del
operador de Weinberg

LW einberg = 1
Λ(l̄LiΦ)Yij(ΦT lL

c), (11.2)

donde Y es matriz de Yukawa y Λ tiene unidades de masa. En el vacío este
término es una masa de Majorana para los neutrinos. Es, sin embargo, un oper-
ador no es renormalizable, y esa teoría necesita ser completada a altas energías.
Para completar la teoría, la extensión más popular es el seesaw tipo I, donde
se añaden singletes, un número, nR ≤ 3, de fermiones diestros de Majorana,
NR = (N1

R, ..NnR
R ), también llamados neutrinos estériles, dado que no tienen

ninguna carga gauge. Las interacciones permitidas por la simetría gauge para
estos nuevos campos son, a parte de su término cinético:

− LMν = L̄Φ̃YνNR + 1
2N̄ c

RMRNR + h.c. , (11.3)

donde el primer termino es el termino de Yukawa, y el segundo es la masa Majo-
rana de los neutrinos diestros. Después de la rotura de la simetría electrodébil, el
campo de Higgs obtiene su valor esperado de vacío, v, y si asumimos que la masa
de los neutrinos diestros es mucho mas grande que la masa Dirac (mD = v/

√
2Yν),

el espectro de la teoría contiene nR neutrinos ligeros de masa:

Mν � − mD
1

MR
mT

D . (11.4)
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y nR pesados con masas:

MN � MR, (11.5)

Hay además 3 − nR neutrinos sin masa. Para acomodar dos diferencias de masas
diferentes, es necesario que nR ≥ 2, mientras que para que los tres neutrinos
más ligeros sean masivos nR ≥ 3. Tanto los neutrinos ligeros como los pesados
son combinaciones de los neutrinos activos y los estériles, aunque los ligeros son
predominantemente activos y los pesados estériles.

Esto significa que si la masa de Majorana, MR, es suficiente alta, 1012−15 GeV,
los acoplamientos de Yukawa pueden ser de O(1) y aun así explicar las masas
tan diminutas de los neutrinos. Sin embargo, esta escala podría también tener
un valor menor que la escala electrodébil y ello sería técnicamente natural, dado
que en el límite MR → 0 se recupera la simetría leptónica.

La señal mas prometedora para descubrir si los neutrinos son de Majorana es
la desintegraciones beta doble sin neutrinos (0νββ), representado en la Fig. 11.2.
La amplitud de este proceso es proporcional a la masa efectiva de la desintegra-

e−

e−

ν

W

W

p

p

n

n

Figure 11.2: El proceso de la desintegracion beta doble sin neutrinos.

ciones beta doble sin neutrinos:

mββ =
�

i

U2
eimi, (11.6)

que depende de la matriz de mezcla y la masa de los neutrinos suficientemente
ligeros (mi < 100 MeV). En el caso de que haya sólo tres neutrinos ligeros,
la matrix U depende de tres fases de CP, de las cuales sólo una, δ, se puede
determinar en oscilaciones de neutrinos, las otras sin embargo modifican mββ .
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Los neutrinos pesados, dependiendo de su masa, pueden tener efectos no
triviales en la cosmología estándar. A la escala GeV, podrían explicar la asimetría
observada de materia-antimateria. Un neutrino en el rango de keV podría ser un
buen candidato para la materia oscura (DM) . Neutrinos con masas por debajo del
GeV afectan la producción de nucleos ligeros durante Big Bang Nucleosynthesis
(BBN), las propiedades de la radiación de fondo de microondas (CMB) o la
formación de la estructura a gran escala (LSS).

En esta tesis, hemos estudiado las implicaciones cosmológicas de que exis-
tan neutrinos pesados en el modelo seesaw con masas por debajo de la escala
electrodébil.
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11.2 Metodología
En esta sección vamos a revisar el modelo seesaw y su parametrización.

Además introduciremos el formalismo de evolución cuántica de la función de
distribución de los neutrinos en la universo temprano, lo cual nos permitirá de-
terminarar sus efectos en el historia del Universo, antes y después de transición
de fase electrodébil.

11.2.1 El Modelo
En esta tesis vamos a considerar el modelo seesaw tipo I mínimo con dos o

tres neutrinos diestros añadidos, nR = 2, 3 (3 + 2 MM y 3+3 MM) 1

El Lagrangiano de esos modelos es

L = LSM −
�

α,i

L̄αY αiΦ̃N i
R −

nR�

i,j=1

1
2N̄ ic

R M ijN j
R + h.c.,

donde Y es 3 × nR (nR = 2, 3) matriz compleja y M es el matriz nR × nR real
diagonal.

Una parametrización muy conveniente es el de Casas-Ibarra [144], donde la
matriz de Yukawa se puede escribir en términos de los parámetros accesibles a
bajas energías (las diferencias de masas y mezclas de los neutrinos ligeros):

Y = −iU∗
PMNS

√
mlightR(zij)T

√
M

√
2

v
, (11.7)

donde mlight es el matriz de masas de los neutrinos ligeros, UPMNS(θ12, θ13, θ23, δ, φ1, φ2)
es la matriz de Pontecorvo–Maki–Nakagawa–Sakata (PMNS) [41,42] que describe
la combinación de los neutrinos ligeros que se acoplan a los leptones cargados. M
es la matriz de las masas de los neutrinos pesados, y R es una matriz ortogonal
compleja, que depende de uno (tres) ángulo(s) complejo(s) zij para el caso de
nR = 2 (nR = 3).

En el modelo 3+2 MM, hay un neutrino sin masa y depende por tanto de seis
parámetros aun sin determinar: dos fases de CP en UPMNS, dos masas pesadas
en M , y un ángulo complejo en R (cinco parámetros libres). En el modelo 3 + 3
MM, todos los neutrinos son masivos y el número de parámetros desconocidos es

1La extensión del SM con solo un neutrino diestro no puede puede explicar dos diferencias
de masa observadas en los experimentos de oscilaciones [143].
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significativamente mayor: 3 fases de CP en UPMNS, y la masa del neutrino más
ligero, tres masas pesadas y tres ángulos complejos en R (13 parámetros libres).

Otra parametrizacion que vamos a usar es en término de dos matrices unitarias
que diagonalizan el matriz de Yukawa (cada una de ellas con tres ángulos y tres
fases de CP):

Y ≡ V †Diag(y1, y2, y3)W, (11.8)

esta parametrizacion es muy útil para calcular los invariantes CP del modelo.
Los neutrinos pesados en modelos seesaw de baja escala pueden dar lugar a

efectos observables en diversas búsquedas directas o indirectas. En el capítulo
5 hemos resumido los principales resultados de dichas búsquedas, que restrin-
gen fuertemente el espacio de parámetros. Las medidas más sensibles provienen
acualmente de búsquedas directas en desintegraciones de mesones de piones y
kaones, o en desintegraciones del Z en el colisionador e+e−, LEP, representa-
dos en las Figs. 5.2,5.3,5.4 y 5.5. Además la contribución de estos neutrinos, si
Mi ≤ 100 MeV, a la masa efectiva de 0νββ:

mββ = eiαm1c2
12c2

13 + eiβm2c2
13s2

12 + m3s2
13 +

�

i

(Uei+3)2 Mi, (11.9)

permite imponer cotas muy fuertes en las mezclas de estos neutrinos pesados.

11.2.2 Evolución de neutrinos estériles en el Universo Temprano
La termodinámica de los neutrinos en el universo temprano se describe medi-

ante el formalismo de la matriz densidad, primero propuesto por Raffelt-Sigl [209].
Este formalismo permite determinar la evolución de las matrices densidad, ρp y
ρ̄p, definidas como el valor esperado de los operadores número para partículas y
antiparículas:

�
a†

j(p)ai(p�)
�

= (2π)3δ(3)(p − p�)(ρp)ij (11.10)
�
b†

i (p)bj(p�)
�

= (2π)3δ(3)(p − p�)(ρp)ij , (11.11)

donde a†
i (p) and b†

(p) son los operadores de creación de un neutrino/antineutrino
i con momento p. A pesar de que los neutrinos son de Majorana, estamos in-
teresados en el régimen en que Mi/T � 1 y por tanto es posible considerar que
el estado partícula es un estado de helicidad dado y el de antipartícula el de
helicidad opuesta.
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Asumiendo que el plasma de partículas es un medio diluido, que las inter-
acciones son de suficiente corto alcance y que las interacciones de los neutrinos
no cambian el estado del plasma, se puede derivar la evolución de la matriz de
densidad:

ρ̇p = −i
�
Ω0

p, ρp

�
+ (ρ̇p)colision, (11.12)

donde el primer término incluye el efecto del Hamiltoniano libre, que da lugar a
las oscilaciones, mientras que el segundo término representa las colisiones.

Si el Hamiltoniano de interacción es de la forma

Hint = GF�
(2)

�
d3xξ̄i(x)Ni(x) + h.c (11.13)

entonces (ρ̇)colision se puede escribir como

(ρ̇)colision = {Pp, (1 − ρp)} − {Ap, ρp}. (11.14)

Pp y Ap son matrices que describen los procesos de producción y la aniquilación de
cada sabor de neutrinos y tienen forma sencilla en el caso de los medios diluidos.
Por ejemplo, en el caso de colisiones de partículas Ni + b ↔ c + d, producción y
aniquilación del neutrino Ni es

Pp =
�

dπ(pb)dπ(pc)dπ(pd)(2π)4δ(4)(p + pb − pc − pd)

× |Mcd,ib|2fc(pc, t)fd(pd, t)(1 ± fb(pb, t)) (11.15)

Ap =
�

dπ(pb)dπ(pc)dπ(pd)(2π)4δ(4)(p + pb − pc − pd)

× |Mib,cd|2fb(pb, t)(1 ± fc(pc, t))(1 ± fd(pd, t)). (11.16)

Dependiendo de las interacciones que pueden producir/aniquilar neutrinos es-
tériles, en el universo temprano hay dos épocas diferentes: antes y después de
transición de fase electrodébil. En primer caso los neutrinos estériles son princi-
palmente producidos/anihilados con los colisiones del boson de Higgs, mientras,
cuando el Higgs obtiene su VEV los interacciones principales vienen de la mezcla
con los neutrinos activos que ya existen en la plasma.
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11.2.3 Neutrinos estériles antes de la transacción de fase elec-
trodébil

La observación del universo muestra que la materia es más abundante que la
antimateria. La fracción de bariónes a fotones, ηB ∼ 6 × 10−10, es la misma en
BBN y CMB . Una solución posibles es asumir que la asimetría existe desde el
principio, pero si esto fuera así la inflacción borraría dicha asimetría, entonces,
la asimetría tiene que ser producida de forma dinámica trás el periodo inflac-
cionario. Los tres condiciones necesarias para producir un asimetría a partir de
una situación con simetría entre materia y antimateria fueron establecidas por
Sakharov [212];

• las interacciones deben violar la conservación del numero de baryones (B),

• deben violar las simetría discretas C y CP

• dichas interacciones deben estar fuera del equilibrio

La asimetría podría producirse en primer lugar en el sector leptónico en un pro-
ceso denominado leptogénesis. Si esto ocurre por encima de la transición de
fase electrodébil, la asimetría leptónica produciría una bariónica a través de los
esfalerones. Los esfalerones son la consecuencia de la estructura no trivial del
vacío electrodébil. La transición entre los distintos vacíos conlleva un cambio el
número leptónico y bariónico que mantiene constante la diferencia. A bajas en-
ergías estas transiciones sólo pueden ocurrir debido al efecto túnel, descrito por
los instantones, y están por lo tanto muy suprimidas. Sin embargo a energías
suficientemente altas como en el universo temprano la energía cinética de las
partículas es lo suficientemente alta para superar la barrera y el proceso puede
ocurrir eficientemente hasta la transición de fase electrodébil T > TEW .

La leptogńenesis estándar asume neutrinos muy pesados que alcazan el equi-
librio térmico a muy altas temperaturas y se desintegran fuera del equilbrio de
forma ligeramente asimétrica en leptones y antileptones [217] Este mecanismo
requiere que la escala se Majorana del modelo seesaw sea mucho mayor que la
escala electrodébil. Sin embargo en el caso de que esta escala sea mucho menor,
del orden del GeV, otro mecanismo de leptogénesis es posible. En este caso, el
valor de los yukawas es tan pequeño que alguno de los neutrinos estériles puede
no llegar al equilibrio térmico antes de la transición de fase. En este caso una
asimetría leptónica puede aparecer durante la producción de los neutrinos die-
stros, ser transmitida a los bariones por los esfalerones y sobrevivir hasta la
transición de fase electrodébil [232].
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11.2.4 Neutrinos estériles después de electroweak phase transi-
tion

Neutrinos suficiemente ligeros pueden contribuir a la densidad de radiación,
o la densidad de materia, durante las épocas de BBN o CMB, medidas con los
parámetros Neff y ΩC . La densidad total de radiación se parametriza en términos
número de grados de libertad relativistas, g∗,

ρR = π2

30g�T 4. (11.17)

Neff mide la contribución de los neutrinos a la densidad de radiación:

g� =
�

i=bosons

gi

�
Ti

T

�4
+ 7

8
�

i=fermions−neutrinos

gi

�
Ti

T

�4
+ 7

8Neff , (11.18)

donde
Neff = Nν + ΔNeff ≡ Neff , (11.19)

y Nν = 3.046 es la contribución de los tres neutrinos estándar, mientras que
ΔNeff mide la contribución de los neutrinos extra 2.

Para calcular la contribución de un neutrino adicional a ΔNeff , tenemos que
tener en cuenta un factor de dilución, es decir, si la temperatura de desacoplo
de dicho estado (Tdi

) es mucho mayor que la temperatura BBN las temperat-
uras de los estado desacoplado y los neutrinos activos serán diferentes debido
a la variación de g∗ entre esas dos temperaturas. De la conservación de la en-
tropía se estima que cada uno de los estados estéril contribuye, por tanto, con
ΔNeffsi(TBBN) = (g∗(TBBN)/g∗(Tdi

))4/3.
Si los neutrinos se descoplan siendo no relativistas su densidad está exponen-

cialmente suprimida ni ∝ exp −Mi/Tdi
, donde Mi es su masa y Tdi

la temperatura
de plasma durante el desacoplo, y por lo tanto, su contribución a la expansión
del universo es despreciable en este caso.

Una partícula masiva contribuye a la densidad de materia

Ωsi = Mini

ρcr
≤ Ωc, (11.20)

donde si es el i-ésima especie de neutrino estéril, Mi su masa, ni la numero de
partículas por unidad de volumen y Ωc = 0.119±0.001 es la densidad de la materia

2El Nν no es exactamente 3 porque los distribuciones de spectra de momento de los neutrinos
no son exactamente los de equilibrio.
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oscura [128]. Expresado en términos de la densidad del número normalizada a la
densidad del número de la distribución de Fermi-Dirac (n0) la condición de que
la contribución no supere el total de la materia oscura es

Mi

eV
ni/n0
94.1 ≤ Ωc. (11.21)

Neutrinos estériles estables podrían ser un candidato para la materia oscura
templada sólo si una asimetría leptónica fundamentación está presente en el
plasma [239, 240], que es la consecuencia de las curvas de exclusión de rayos
X.

Otro factor importante a tener en cuenta es si el neutrino estéril decae y, si
lo hace, en que momento de la evolución del universo esto sucede. Un neutrino
que se desintegra antes de BBN no tiene ningún impacto en estos observables,
porque g� sería el mismo que en el modelo estándar. La desintegración después de
BBN afectaría el contenido de la radiación durante el CMB. Los límites actuales
para neutrinos estériles como función de su masa y mezcla se pueden encontrar
en [241].

Las medidas de BBN dependen fuertemente de g� en esta epoca, lo cual
constriñe NBBN

eff = 3.01+0.95
−0.76 at 95% C.L. [249]. Por otra parte la medida de las

perturbaciones en la radiación de fondo de microondas permite determinar con
precisión NCMB

eff = 3.2 ± 0.5.
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11.3 Resultados
En esta sección vamos a resumir los principales resultados de nuestra investi-

gación, contenidos en los artículos de la parte II de esta tesis.

11.3.1 Articulo I
Una nueva partícula lo suficientemente abundante en el Universo temprano

podría cambiar la densidad de la radiación / materia en el momento de BBN y
CMB, así como la estructura a gran escala LSS. En este trabajo calculamos la
contribución a la densidad de radiación / materia de los dos estados adicionales
del modelo de seesaw tipo I mínimo con dos neutrinos estériles.

Si sus masas son menores que 1GeV o así, estos neutrinos se producen sólo
después de la transición de fase electrodébil a través de la mezcla con los activos,
por lo tanto, la frecuencia de interacción de los neutrino estériles es proporcional
a la de interacción de los neutrinos de sabor a multiplicada por la probabilidad
que un neutrino de sabor a oscile a un estéril

Γsi � 1
2
�

a

�P (νa → νsi)� × Γa. (11.22)

La probabilidad promediada en el tiempo en el plasma es

�P (νa → νsi)� = 2
�

M2
i

2pVa − M2
i

�2

|Uasi |2 + O
�
U4

as

�
,

(11.23)

donde Va es el potencial debido a la interacción coherente con las partículas del
plasma, que depende de la temperatura [266].

La frencuencia de la interacción de los neutrinos de sabor es

Γ = Diag(Γe, Γµ, Γτ , 0, 0) = 180ζ(3)
7π4 G2

F T 4pDiag(ye, yµ, yτ ), (11.24)

donde los coeficientes ya fueron calculados a temperaturas cercanas a BBN en
[266], y también dependen de la temperatura.

La evolución de los neutrinos estériles se calcula con el formalismo de matrices
de densidad, y después de separar el matriz en los sectores de neutrinos activos
(A) y estériles (S), y asumir que las interacciones son suficientemente rápidas
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para equilibrar ρAA y ρAS , podemos obtener la eq. (11.22)

ρ̇ss = −
�

H†
AS

�
ΓAA

(HAA − Hss)2 + Γ2
AA/4

�
HAS

�

ss

ρ̃ss

� −1
2
�

a

�P (νs → νa)�Γaρ̃ss, (11.25)

que justifica la estimación eq. 11.22, corregido por un factor 1/2.
Para calcular si un neutrino está termalizado o no, podemos definir la función

de termalización
fs(T ) ≡ Γs(T )/H(T ). (11.26)

Esta función tiene un máximo a la temperatura Tmax. Sólo si f(Tmax) ≥ 1 el
estado puede alcanzar una distribución térmica. Usando el momento promediado
p = 3.15T , se puede demostrar que Tmax está acotado entre

�
M2

i

59.5|Ae|

�1/6

≤ Tmax ≤
�

M2
i

59.5|Aτ |

�1/6

, (11.27)

y para |Uasi |2 ∼ O(ml/Mi) significa que fsi(Tmax) es casi independiente de la
masa del neutrino estériles Mi. Los funciones A y B són [266]

B ≡ −2
√

2
�7ζ(4)

π2

�
GF

M2
Z

,

A ≡ B − 4
√

2
�7ζ(4)

π2

�
GF

M2
W

. (11.28)

Además de la estimación analítica, la minimización numérica de los f(Tmax)
sobre los parámetros libres del modelo demostró que los dos neutrinos pesados
del modelo siempre alcanzan la termalización tanto en el caso de NH y IH, y es
casi independiente en la masa de los neutrinos pesados en el rango (<1 GeV).

Es importante hacer hincapié en que el resultado es consecuencia de que
debido a la necesidad de explicar las diferencias de masas de los neutrinos ligeros,
y la relación inversa entre la masa y la mezcla de los neutrinos pesados con los
tres sabores electrones, muones o tau neutrinos, estas mezclas no pueden ser
simultaneamente lo suficientemente pequeñas para evadir la termalización.

Aunque los estados termalicen, el efecto del estado en los observables Neff

y/o Ωc depende además de si

• el estado desacopla mientras que es relativista.
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• el estado desacopla lo suficientemente tarde como para no sea completa-
mente diluido.

• el estado no se desintegra antes de BBN.

La temperatura de desacoplo Td se puede calcular como la temperatura mín-
ima para la cual la función termalization tiene valor mayor 1, y, usando los límites
experimentales sobre las mezcla que vienen de los experimentos de busqueda di-
recta de los neutrinos pesados, se obtiene que la temperatura de desacoplo es
siempre mayor que la masa de los neutrinos para la masas por debajo de ∼ 100
MeV.

Al evolucionar numéricamente eq. (11.25) encontramos que para las masas
por debajo de ∼ 10 keV, la contribución de cada neutrino pesado es ΔN BBN

eff � 2,
por lo que las medidas de BBN son suficientes para excluir esta posibilidad

Los neutrinos más pesados de 10 MeV, podrían decaer antes de BBN para
cierto rango del espacio de parámetros (por ejemplo en el caso del patrón de see-
saw inverso de la matriz de Yukawa). El efecto de los neutrinos en el intervalo [10
MeV, 140 MeV] se ha estudiado en [267–269] y los límites de BBN y aceleradores
a de excluir esta posibilidad [169].

Los neutrinos por debajo de 10MeV se desintegran después de BBN y con-
tribuirían a la densidad de radiación adicional en el momento CMB, ya que
añadirían una componente de radiación en forma de neutrinos activos, resul-
tantes de la desintegración, ya desacoplados. Tanto si los neutrinos decaen como
si son estables hasta CMB, la contribución extra a la densidad de energía está
excluida por las medidas de Neff y Ωc de Planck.

La conclusión principal de este trabajo se resume en la figura. 11.3 donde la
región sombreada es la escala de masas de los neutrinos estériles permitido trás
imponer las restricciones que se derivan de nuestro estudio. Es importate recalcar
que esto es independiente del valor de los parámetros desconocidos del modelo.

11.3.2 Articulo II
En este trabajo analizamos el modelo seesaw tipo I con tres estados adi-

cionales, que como hemos dicho, tiene 13 parámetros libres aún sin determinar.
En comparación con el trabajo previo también hemos actualizado la frecuencia
de interacción de los neutrinos activos que ha sido calculada con mayor pre-
cisión [270]. Γa(T ) que se puede parametrizar con precisión en términos de lo
Ca(T ) como

Γa � Ca(T )G2
F T 4p. (11.29)
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Figure 11.3: La región permitida para masas de los neutrinos estériles para 3+2
MM

Como en el trabajo previo definimos la función de la termalización que tiene
el máximo en una temperatura Tmax, que se puede acotar por

T τ
max ≡

�
M2

j

59.5 |A|

�1/6

≤ Tmax ≤
�

M2
j

59.5 |B|

�1/6

. (11.30)

.
El máximo de la función de termalización puede acotarse

fsj (Tmax) ≥
�

α | (Uas)αj |2Mj

3.25 · 10−3eV , (11.31)

y usando la parametrización de Casas-Ibarra :
�

α

| (Uas)αj |2Mj ≥ m1, (11.32)

se obtiene que la termalización de los neutrinos estériles depende de solo un
parámetro: la masa de el neutrino activo mas ligero (m1)

fsj (Tmax) ≥ 1 for m1 ≥ mth ≡ 3.25 · 10−3 eV. (11.33)

Podemos distinguir entre dos escenarios diferentes
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Figure 11.4: La región permitida para masas de los neutrinos estériles Mi para
m1 ≥ mth

1 (izquierda) y m1 ≤ mth
1 (derecha).

• m1 ≥ mth, and

• m1 ≤ mth.

En el primer caso, los tres neutrinos alcanzan el equilibrio térmico y la con-
clusión del primer artículo aplica. Los espectros de masas permitido de los estados
estériles se resume en el panel derecho de la figura. 11.4.

En el segundo caso, uno de los estados puede no alcanzar el equilibrio y por
tanto su masa podría tomar cualquier valor para m1 lo suficientemente pequeño,
mientras que los otros dos se comportan con el modelo mínimo 3+2 MM y ter-
malizan siempre, por lo que los límites sobre la masa de estos estados es igual
que en el caso anterior. El intervalo de masa permitido es entonces la de la panel
de la izquierda de la figura. 11.4, donde asumimos que el neutrino cuya masa
no está constreñida tiene una contribución aceptable a la densidad de energía, lo
cual siempre se pued garantizar en un rango del espacio de parámetros.

Por último, hemos estudiado el impacto de los neutrinos pesados en los ex-
perimentos de desintegración beta doble sin neutrinos. Dado que el neutrino que
no termaliza puede tener una masa por debajo de los 100 MeV, podría contribuir
a la amplitud de doble desintegración beta sin neutrinos. Hemos probado que
para los parámetros compatibles con cosmología, esta contribución es siempre
despreciable.

11.3.3 Articulo III
En este trabajo nos centramos en estudiar la evolución de los neutrinos pesa-

dos suponiendo que tienen una masa por encima de los 100 MeV para evadir las
fuertes cotas cosmológicas. La producción de estos neutrinos antes de la transición
de fase electrodébil puede dar lugar a la producción de asimetrías leptónicas. Esta



Chapter 11. 11.3 Resultados 137

posibilidad fue propuesta por primera vez en Ref. [232]. La asimetría se produce
en la oscilación de los neutrinos estériles, mientras estos no alcacen el equilibrio,
y se transmite a los bariones a través de los esfalerones. Al menos un yukawa
tiene que ser suficientemente pequeño para asegurar que uno de los estados no
llegue a termalizarse antes de la transición de fase electrodébil. Si esto es así
lo que pase después no modificará la asimetría bariónica porque los esfalerones
se desacoplan y ya no es posible violar el número bariónico. El tamaño de los
yukawas es natural en el contexto de los modelos seesaw para neutrinos de masa
alrededor del GeV.

La asimetría bariónica es un observable impar bajo CP que debe ser invariante
bajo reparametrizaciones de las fases. Es posible clasificar los invariantes de este
tipo y establecer tantos invariantes independientes como número de fases de CP
físicas haya. El espectro de esta teoría tiene seis neutrinos de Majorana masivos,
y la mezcla se describe en términos de seis ángulos y seis fases CP. Sin embargo,
dado que la naturaleza de los neutrinos de Majorana es irrelevante, en tanto en
cuanto la generación de la asimetría ocurre a temperaturas tales que Mi � T , hay
dos fases que se pueden despreciar, por lo que el resultado va a depender de cuatro
invariantes independientes. Expresados en términos de las dos matrices unitarias
que diagonalizan la matriz de Yukawa Y ≡ V †Diag(y1, y2, y3)W se pueden elegir
los siguientes invariantes:

I
(2)
1 = −Im[W ∗

12V11V ∗
21W22]

I
(3)
1 = Im[W ∗

12V13V ∗
23W22], (11.34)

I
(3)
2 = Im[W ∗

13V12V ∗
22W23]

JW = −Im[W ∗
23W22W ∗

32W33] (11.35)

El cálculo de la asimetría requiere resolver el conjunto de ecuaciones cinéticas
para las densidades de neutrinos/antineutrinos estériles y los potenciales químicos
para los tres leptones cargados, µα, que se asumen en equilibrio cinético. En
términos de partes CP-even y CP-odd, ρ± ≡ ρN ±ρ̄N

2 y a primer orden en µα, ρ−,
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las ecuaciones que se derivan del formalismo de Raffelt-Sigl tienen la forma:

ρ̇+ = −i[Hre, ρ+] + [Him, ρ−] − γa
N + γb

N

2 {Y †Y, ρ+ − ρeq}

+iγb
N Im[Y †µY ]ρeq + i

γa
N

2
�
Im[Y †µY ], ρ+

�
,

ρ̇− = −i[Hre, ρ−] + [Him, ρ+] − γa
N + γb

N

2
�
Y †Y, ρ−

�

+γb
N Re[Y †µY ]ρeq + γa

N

2
�
Re[Y †µY ], ρ+

�
,

µ̇α = −µα

�
γb

νTr[Y Y †Iα] + γa
ν Tr

�
Re[Y †IαY ]r+

��

+(γa
ν + γb

ν)Tr
�
Re[Y †IαY ]r−

�
, (11.36)

donde H es el Hamiltoniano libre de los neutrinos estériles, que incluye el po-
tencial inducido por el plasma, y Hre, Him, sus partes real e imaginaria. Iα es
el proyector en sabor α y γa,b

N , γa,b
ν son la tasas de producción/aniquiilación de

neutrinos estériles, N , o los dobletes leptónicos, ν, y después de factorizar los
Yukawas:

γ
a(b)
N(ν) ≡ 1

2k0

�

i

�

p1,p2,p3
ρeq(p1)|M(a(b))

N(ν),i|2(2π)4δ(k + p1 − p2 − p3), (11.37)

donde k es el momento de N o ν y

γb
N,Q = 2γa

N,Q = 2γb
ν,Q = 4γa

ν,Q = 3
16π3

y2
t T 2

k0
, (11.38)

donde sólo se ha incluido la contribución de la interacción con el top quark a
través del Higgs.

En este trabajo, propusimos un nuevo método para resolver estas complejas
ecuaciones analíticamente mediante una expansión perturbativa en los ángulos
de mezcla de las matrices V y W , que permite acceder al régimen donde algunos
de los neutrinos han termalizado. Anterioremente las aproximaciones analíticas
en una expansión en Yukawas no permitían acceder a este régimen. Con esta
aproximación obtuvimos la solución para los potenciales leptónicos en términos
de los invariantes CP esperados de la forma:

Tr[µ](t) =
�

ICP

ICPAICP(t), (11.39)
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donde ICP =
�

JW , I
(2)
1 , I

(3)
1 , I

(3)
2

�
y las funciones AICP(t) dependen solo de los

autovalores de los Yukawas y las masas de los neutrinos estériles. El compor-
tamiento general de estas funciónes se muestra en las figuras 10.7,10.8, y para
la fórmula explícita remitimos al lector al artículo completo, reproducido en la
parte II.

A partir de los potenciales químicos, la asimetría bariónica se puede estimar
como

YB � 3 × 10−3 Tr[µ(t)]|tEW
. (11.40)

Las fórmulas analíticas nos permitieron escanear el espacio de parámetros
para los modelos de 3 + 2 y 3 + 3, a pesar del gran número de parámetros libres
involucrados, aunque ello nos obligó a restringir ciertos rangos para asegurar que
la aproximación analítica era lo suficientemente buena. Concluimos que en el
caso de los modelos de 3 + 2 una degeneración leve de los dos neutrinos pesados,
ΔM/M ∼ 10−1, es necesaria para explicar la asimetría bariónica del universo en
el caso de IH, mientras que para NH es necesaria una degeneración mayor. En el
caso de 3 neutrinos adicionales no se necesita ninguna degeneración.

11.3.4 Articulo IV
En este trabajo estudiamos de nuevo la posibilidad de explicar la asimetría

bariónica en el contexto de los modelos de seesaw tipo I de baja escala, con los
siguientes refinamientos importantes.

• Hemos incluido en las tasas de interacción de los neutrinos las contribución
debidas a la dispersión por bosones gauge, además de las desintegraciones
y procesos inversos para los que es necesario hacer una resumación [273,
274]. Estos efectos han sido calculados en la literatura asumiendo que los
potenciales químicos para los leptones se anulan. En nuestro cálculo, hemos
añadido el efecto de estos potenciales químicos a primer orden.

• Hemos empleado las distribuciones de equilibrio cuánticas de Fermi-Dirac/Bose-
Einstein en todos los pasos y hemos incluído los efectos de los espectadores.

• Hemos optimizado la solución numérica de las ecuaciones cinéticas imple-
mentadolas en el código público [275]. Hemos explorado el espacio de
parámetros completo sin restricciones en el modelo 3+2 y hemos realizado
la inferencia bayesiana de las distribuciones de probabilidad posteriores,
asumiendo que el modelo explica la asimetría bariónica.
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Las interacciones en equilibrio con los espectadores, que no aparecen explici-
tamente en las ecuaciones, tienen el efecto de redistribuir la asimetría generada
en el sector de leptones a otras sectores en el plasma, pero no de modifican el
número B/3 − Lα. Es consistente por tanto no incluir estas interacciones si en
lugar del número leptónico se considera la evolución de la densidad nB/3 − nLα

o el potencial químico correspondiente. Las nuevas ecuaciones para las matrices
densidad normalizadas a la densidad de equilibrio, rN = ρN /ρF y rN̄ = ρN̄ /ρF ,
en términos del factor de escala x son:

xHu
drN

dx
= −i[�H�, rN ] − �γ(0)

N �
2 {Y †Y, rN − 1}

+�γ(1)
N �Y †µY − �γ(2)

N �
2

�
Y †µY, rN

�
,

xHu
drN̄

dx
= −i[�H∗�, rN̄ ] − �γ(0)

N �
2 {Y T Y ∗, rN̄ − 1}

−�γ(1)
N �Y T µY ∗ + �γ(2)

N �
2

�
Y T µY ∗, rN̄

�
,

xHu

dµB/3−Lα

dx
=

�
k ρF�
k ρ�

F

�
�γ(0)�

N

2 (Y rN Y † − Y ∗rN̄ Y T )αα

+ µα

�
�γ(2)

N �
2 (Y rN Y † + Y ∗rN̄ Y T )αα − �γ(1)

N �Tr[Y Y †Iα]
��

,

µα = −
�

β

CαβµB/3−Lβ
, (11.41)

donde µB/3−Lα
es

nB/3−Lα
≡ −2µB/3−Lα

�

k
ρ�

F = 1
6µB/3−Lα

T 3. (11.42)

y C viene dado por:

Cαβ = 1
711




221 −16 −16
−16 221 −16
−16 −16 221


 , (11.43)

Las tasas de interacción son promediadas en momentos y se pueden encontrar en
el artículo reproducido en la parte II.
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Hemos realizado un ánalisis bayesiando de las distribuciones de probabilidad
posteriores asumiendo que el modelo explica la asimetría bariónica. Una consid-
eración importante son los priors en los paámetros. Hemos considerado priors
planos en todos los parámetros de Casas-Ibarra, excepto las masas, donde hemos
considerado dos hipótesis: 1) prior planos en log10

�
M1,2
GeV

�
, dentro del rango de

M1,2 ∈ [0.1GeV, 102GeV], 2) prior plano en log10
�

M1
GeV

�
y en log10

� |M2−M1|
GeV

�

en el rango de M2 − M1 ∈ [10−8GeV, 102GeV], que no penaliza las soluciones
más degeneradas en las masas. Los resultados en el plano |Uαs|2 vs M1,2 para
α = e, µ, τ se muestran en las figuras Figs. 11.5. Las regiones azules corresponden
a la primera hipótesis para los priors, mientras que las regiones rojas corresponden
a la segunda. La conclusión de este estudio es que las soluciones menos degen-
eradas son posibles sólo para masas menores que 1 GeV. Esta es justamente la
región donde el experimento SHiP [192] tiene su máxima sensitividad.

Las Figs. 11.5muestran la región de la mezcla versus la masa en comparación
con las restricciones presentes y futuras de neutrinos. Hasta la fecha, este es el
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Figure 11.5: La comparación de las curvas de nivel de probabilidad posterior a
68 % y 90 % en los planos mezclas con e, µ, τ frente a las masas, con el presente
(región sombreada) y las limitaciones futuras de DUNE, FCC y SHiP para el NH
(arriba) e IH (abajo).

único escaneo de parámetros completo realizado sin ningún tipo de aproxima-
ciones.
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Una cuestión muy interesante es si la asimetría bariónica se podría predecir si
los neutrinos estériles se descubrieran en las mediciones futuros en experimentos
como SHiP o si se midieran la fase de CP δ en oscilaciones de neutrinos o si se
detectara la señal de la desintegracón doble-beta sin neutrinos.

Para responder a esta pregunta y como una prueba de principio, hemos es-
tudiado las probabilidades posteriores para una hipotética medición de la SHiP,
que corresponde al punto marcado en las figuras 11.5 por una estrella, es decir
para el caso de IH. Asumiendo errores muy optimistas para este experimento en
su determinación de las mezclas y masas de 0.1 % y un 1 % de los dos estados
pesados, así como una medida futura de δ con un error de 0.17 rad, notamos una
fuerte correlación entre mββ y YB, que se presenta en el panel izquierdo de la
figura 11.6. Si fuera posible una medida precisa de mββ (lo cual es dificil debido
a la incertidumbre en los elementos de matriz nucleares para este proceso), sería
posible predecir en este modelo la asimetría bariónica salvo por un signo.

Para NH, las expectativas son más pesimistas, ya que la medida de mββ sería
mucho más dificil al ser la contribución mucho menor.

Otra observación interesante, que ha resultado de este trabajo, es que inde-
pendientemente de si se explica o no la asimetría bariónica, el descubrimiento en
SHiP de los neutrinos estériles en el modelo 3+2 y la medida de la razón entre
su mezcla con el electrón y el muón, permitiría determinar con mucha precisión
una combinación de las dos fases de CP de la matriz PMNS. La probabilidad
posterior en el plano de estas dos fases se muestra en la figura 11.6. Esta sería un
método alternativo de descubrir la violación de CP leptónica mediante la medida
de observables pares bajo CP como son los valores absolutos de los elementos de
la matriz de mezcla.

Todos estos resultados se pueden entender muy bien con aproximaciones
analíticas. Este análisis se puede encontrar en el artículo completo de la parte II.

El caso de los tres neutrinos adicionales tiene mucho mas parámetros libre
y es más difícil de analizar, tanto analítica y numéricamente y se deja para el
trabajo futuro.

11.3.5 Observaciones finales
Esta tesis se ha centrado en las implicaciones cosmológicas de los modelos mín-

imos de seesaw tipo I con 2 y 3 neutrinos estériles adicionales de masas menores
que la escala electrodébil. Un resultado importante de este trabajo ha sido el
de excluir la posibilidad de que dos de los neutrinos tengan masas en el rango
< 100 MeV, donde la física de BBN y las medidas del CMB y de la estructura
a gran escala se verían (LSS) fuertemente modificadas con respecto al modelo
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Figure 11.6: Izquierda: Probabilidades posteriores en el plano |mββ | vs YB de una
medición futura en SHiP, suponiendo la incertidubre 0, 1%, 1% y una medición
adicional de δ, junto con las líneas de predicciones analíticas. Derecha: Probabil-
idades posteriores de una medición en ShIP de la masas y mezclas con e, mu en
el plano ( phi1, delta) en comparación con el resultado de la relación analítica
(línea roja) para los parámetros en el punto de prueba.

estándar cosmológico. El segundo resultado importante de este trabajo es que los
neutrinos estériles en estos modelos con masas alrededor del GeV pueden explicar
la asimetría bariónica observada en el universo, y que esta hipótesis podría ser
testeable con futuros experimentos. El número elevado de parámetros libres de
esos modelos obliga a que sea necesaria la combinación de varios test experimen-
tales. En particular, hemos demonstrado, en el contexto del modelo mínimo 3+2,
que la sinergía entre las medidas de busqueda directa de los neutrinos estériles en
experimentos como SHiP, junto con la medida de la fase CP de la matriz PMNS
en futuros experimentos de oscilaciones de neutrinos y la determinación precisa
de la amplitud del proceso de desintegración doble-beta sin neutrinos, podría
permitir la predicción cuantitativa de la asimetría bariónica sin hipótesis teóricas
adicionales, algo que no se pensaba posible hasta la fecha.

Mi opinión personal es que la cosmología de precisión, así como las potenciales
medidas futuras de las masas y mezclas de neutrinos adicionales en el rango del
GeV hace que este periodo sea muy interesante para trabajar en la fenomenología
de estos modelos.
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I. INTRODUCTION

The simplest extension of the standard model (SM) that
can account for the observed neutrino masses is a type I
seesaw model with N ≥ 2 extra singlet Majorana fermions.
The Majorana masses, that we globally denote as M,
constitute a new scale of physics, that we will refer to as
seesaw scale, and which is presently unknown. Since the
light neutrino masses are a combination of the Yukawa
couplings, the electroweak scale and the seesaw scale, the
latter can be arbitrary if the Yukawas are adjusted accord-
ingly. As a result, the seesaw scale is presently uncon-
strained to lie anywhere above OðeVÞ up to Oð1015 GeVÞ
[1]. The determination of this scale is one of the most
important open questions in neutrino physics. Although it
is often assumed that the seesaw scale is very high, above
the electroweak scale, in the absence of any other hint of
new physics beyond the SM, the possibility that the seesaw
scale could be at the electroweak scale or lower should be
seriously considered. As far as naturalness goes, the model
with a low scale is technically natural, since in the limit
M → 0, a global lepton number symmetry is recovered:
neutrinos becoming Dirac particles by the pairing up of the
Majorana fermions.
The generic feature of type I seesaw models is that there

exist sterile neutrinos with masses at the seesaw scale, and
that their mixing with the active neutrinos is strongly
correlated with that scale (the naive seesaw scaling being
jUasj2 ∼M−1). The possibility that such sterile states could
be responsible for any of the anomalies found in various
experiments is of course very interesting, since this could
open a new window into establishing the origin of neutrino
masses.
Models with extra light sterile neutrinos with masses

in the range of Oð1 eVÞ could provide an explanation to
some of the neutrino anomalies [2], such as the appearance
signal ν̄μ → ν̄e of the LSND experiment [3], undisproved
by the MiniBOONE [4] experiment, or the deficit of
neutrinos (ν̄e → ν̄e) in short-baseline reactor experiments,

the so-called reactor neutrino anomaly [5]. Sterile species
in the keV range could still be valid candidates for warm
dark matter [6], while species in the GeV range could
account for the baryon asymmetry in the Universe [7].
The explanation of the neutrino anomalies with N extra

sterile neutrinos is usually considered in the context of
phenomenological models with a generic neutrino mass
matrix of size 3þ N, without specifying whether neutrinos
are Dirac or Majorana. In the former case, a renormalizable
Lagrangian representing such a model would require the
addition of 3þ 2N extra singlet Weyl fermions to the
minimal SM so that they can be paired up into 3þ N Dirac
neutrinos. In the case of 3þ N Majorana neutrinos,
renormalizable Majorana couplings among the three dou-
blet neutrinos are forbidden by gauge symmetry, and
therefore the 3þ N mass matrix is not generic, i.e. it
has a vanishing 3 × 3 block [8]. We have in this case
precisely a standard 3þ N type I seesaw model with a low
seesaw scale. These are the so-called mini-seesaw [9] or
minimal models [10]. These models are much more
constrained/predictive than the phenomenological models
with the same neutrino spectrum because, as mentioned
above, the active-sterile mixings are not independent of the
ratio of neutrino masses.
The possibility to explain the neutrino anomalies in these

minimal models if N ¼ 2 has been studied in [11]. The
order of magnitude for the active-sterile mixing for a
seesaw scale of Oð1 eVÞ is in the right ballpark to explain
the neutrino anomalies, which is remarkable. As a result the
minimal models provide similar fits to the data as the
phenomenological ones. Minimal models with N ¼ 3, and
a much higher seesaw scale, have also been proposed
as candidates to explain dark matter and the baryon
asymmetry [12].
It is well known that light sterile neutrinos with signifi-

cant active-sterile mixing can be strongly constrained by
cosmological measurements. The energy density of the
extra neutrino species, ϵs, is usually quantified in terms of
Neff (when they are relativistic) defined by
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Neff ≡ ϵs þ ϵν
ϵ0ν

; (1)

where ϵ0ν is the energy density of one SM massless neutrino
with a thermal distribution [below eÆ annihilation it is
ϵ0ν ≡ ð7π2=120Þð4=11Þ4=3T4

γ at the photon temperature Tγ].
In the minimal SM with massless neutrinos Neff ¼ 3.046 at
CMB [13]. One fully thermal extra sterile state that
decouples being relativistic contributes ΔNeff ≃ 1 when
it decouples.
Neff at big bang nucleosynthesis (BBN) strongly influ-

ences the primordial helium production. A recent analysis
of BBN bounds [14] gives NBBN

eff ¼ 3.68ð3.80Þ0.80−0.70 at 2σ,
where the central value depends on the choice for the
neutron lifetime, and assumes no lepton asymmetry. Neff
also affects the anisotropies of the cosmic microwave
background (CMB). Recent CMB measurements from
Planck give NCMB

eff ¼ 3.30Æ 0.27ð1σÞ [15], which includes
WMAP-9 polarization data [16] and high multipole mea-
surements from the South Pole Telescope [17] and the
Atacama Cosmology Telescope [18].
The contribution of extra sterile states to Neff within

phenomenological models has been extensively studied
[19–22]. For recent analyses see [23–26]. In particular the
models that could accommodate the neutrino anomalies
seem to be in strong tension with cosmology, especially
those with two extra species. We expect a similar con-
clusion for the minimal models withM ∼OðeVÞ, since the
spectrum and active-sterile mixings that best fit these
neutrino anomalies are very similar in both cases [11].
The purpose of this paper is to evaluate Neff as a function

of the seesaw scale in the minimal models. Interestingly in
spite of the fact that the active-sterile mixings decrease with
increasing seesaw scale, the rate of thermalization of the
sterile neutrinos is roughly independent of that scale.
Following the well-known results of [19], it can be shown
that the rate of thermalization of a sterile neutrino of mass
M, in the approximation of two active-sterile neutrino
mixing, depends on the combination jUasj2M. Therefore,
the naive seesaw scaling would imply that the thermal-
ization rate is roughly independent of the seesaw scale, M.
We will show that this naive expectation does actually hold
for the 3þ 2 minimal model. Cosmological bounds on the
seesaw scale are therefore very strong in a wide range of
scales.

II. THERMALIZATION IN MINIMAL
3þ N MODELS

The minimal models are described by the most general
renormalizable Lagrangian including N extra singlet Weyl
fermions, νiR:

L ¼ LSM −
X

α;i

L̄αYαi ~ΦνiR −
XN

i;j¼1

1

2
ν̄icRM

ij
Nν

j
R þ H:c:;

where Y is a 3 × N complex matrix andMN a diagonal real
matrix. The model with N ¼ 1, that contains only two
massive states, cannot explain the measured neutrino
masses and mixings [10]. For N ¼ 2, the spectrum contains
four massive states and one massless mode, whose mixing
is described by four angles and three physical CP phases.
For N ¼ 3, there are six massive states and the mixing is
described in terms of six angles and six CP phases. We will
concentrate on the simplest model that can explain neutrino
data, i.e. N ¼ 2. The case with N ¼ 3 will be considered
elsewhere.
We assume that the eigenvalues of MN are significantly

larger than the atmospheric and solar neutrino mass
splittings, which implies a hierarchy MN ≫ Yv and there-
fore the seesaw approximation is good. A convenient
parametrization in this case is provided by that of Casas-
Ibarra [27], or its extension to all orders in the seesaw
expansion as described in [11] (for an alternative see [28]).
The mass matrix can be written as

Mν ¼ UÃDiagðml;MhÞU†; (2)

where ml is a diagonal matrix with a zero and the two
lighter masses, and Mh contains the N heaviest. Denoting
by a the active/light neutrinos and s the sterile/heavy
species, the unitary matrix can be written as

U ¼
�
Uaa Uas

Usa Uss

�
; (3)

with

Uaa ¼ UPMNS

�
1 0

0 H

�
; Uss ¼ H̄;

Usa ¼ i
�
0 H̄M−1=2

h Rm1=2
l

�
;

Uas ¼ iUPMNS

�
0

Hm1=2
l R†M−1=2

h

�
; (4)

where UPMNS is a 3 × 3 unitary matrix, R is a generic
2 × 2 orthogonal complex matrix, while H and H̄ are
defined by

H−2 ¼ I þm1=2
l R†M−1

h Rm1=2
l ;

H̄−2 ¼ I þM−1=2
h RmlR†M−1=2

h : (5)

At leading order in the seesaw expansion, i.e. up to
Oðml

Mh
Þ, H ≃ H̄ ≃ 1, and we recover the Casas-Ibarra

parametrization.
The measured neutrino masses and mixings fix most of

the parameters in these models. The only free parameters
are two CP phases of UPMNS (the third one is unphysical
because the lightest neutrino is massless), that are presently
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unconstrained, the matrix R that depends on a complex
angle and the two heavy masses in Mh.
The active neutrinos in the minimal SM are in thermal

equilibrium in the early Universe at temperatures above
Oð1 MeVÞ. The presence of extra singlets can modify the
value of Neff because the active-sterile mixing can also
bring the singlets into thermal equilibrium. Obviously the
thermalization process depends very strongly on the mixing
parameters and the neutrino masses. We assume throughout
that neutrinos are relativistic.
In [19] a simple estimate for the thermalization of one

sterile neutrino was given as follows. Assuming that the
active neutrinos are in thermal equilibrium with a collision
rate given by Γa, the collision rate for the sterile neutrinos
can be estimated to be

Γsi ≃
1

2

X

a

hPðνa → νsiÞi × Γa; (6)

where hPðνa → νsÞi is the time-averaged probability
νa → νs (the factor 1=2 results from a more detailed
analysis, see below). This probability depends strongly
on temperature because the neutrino index of refraction in
the early Universe is modified by coherent scattering
of neutrinos with the particles in the plasma [29].
Thermalization will be achieved if there is any temper-
ature where this rate is higher than the Hubble expansion
rate, i.e. ΓsðTÞ ≥ HðTÞ. One can therefore define the
function fsðTÞ, which measures the sterile production
rate in units of the Hubble expansion rate,

fsðTÞ≡ ΓsðTÞ
HðTÞ : (7)

This function reaches a maximum at some temperature,
Tmax, and if this maximum is larger than one, thermal-
ization will be achieved. We can estimate the contribution
to Neff as

Neff ≃ NSM
eff þ

X

i

ð1 − expð−αfsiðTi
maxÞÞÞ; (8)

at decoupling, where α is an Oð1Þ numerical constant.
Provided fsiðTi

maxÞ is sufficiently larger than one, Neff
saturates to the number of thermalized species, up to
exponentially small corrections. The Hubble expansion

rate is HðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3gÃðTÞ

45

q
T2

MPlanck
, where gÃðTÞ is a function

of the temperature.
The calculation of the neutrino oscillation probabilities

in the primeval plasma requires to consider the full 3þ 2
mixing. This means that obtaining a manageable expression
can be complicated. The method described in Ref. [30]
simplifies enormously this task, reducing the hardcore
computation to the calculation of the eigenvalues of the
Hamiltonian which characterizes the neutrino propagation.

Employing this method and expanding over ml=Mh and
the active-sterile mixing, we find the time-averaged
probabilities to be approximately

hPðνa → νsiÞi ¼ 2

�
M2

i

2pVa −M2
i

�
2

jUasi j2 þOðU4
asÞ;

(9)

where p is the neutrino momentum and Va ≡ AaT4p,
with Ae ¼ A, while Aμ=τ ¼ B for T below the μ=τ thres-
hold (T ≲ 20=180 MeV) or Aμ=τ ¼ A for higher
T ≳ 20=180 MeV, where

B≡ −2
ffiffiffi
2

p �
7ζð4Þ
π2

�
GF

M2
Z
;

A≡ B − 4
ffiffiffi
2

p �
7ζð4Þ
π2

�
GF

M2
W
: (10)

Note that there is no resonant mixing in this model, and that
we have assumed no primordial lepton asymmetry.
A more detailed description is provided by the quantum

density matrix formalism [31–34]:

_ρ ¼ −i½Ĥ; ρ� − 1

2
fΓ; ρ − ρeqIAg; (11)

where Ĥ is the Hamiltonian describing the propagation of
relativistic neutrinos in the plasma, which in the flavor basis
is given by

Ĥ ¼ UÃDiag

�
m2

l

2p
;
M2

h

2p

�
UT þ DiagðVe; Vμ; Vτ; 0; 0Þ; (12)

and the collision term Γ ¼ DiagðΓe;Γμ;Γτ; 0; 0Þ

Γa ¼ ya
180ζð3Þ
7π4

G2
FT

4p; (13)

with ye ¼ 3.6, and yμ ¼ yτ ¼ 2.5 below the corre-
sponding μ and τ thresholds, becoming equal to ye above
[35]. Finally ρeq is the Fermi-Dirac distribution and
IA ¼ Diagð1; 1; 1; 0; 0Þ.
Separating the equations into the active A and sterile S

blocks and assuming that ΓaðTÞ ≫ HðTÞ, collisions are
then fast enough to equilibrate ρAA and ρAS, i.e. _ρAA ¼
_ρAS ¼ 0 (the so-called static approximation [20], see also
[36,37]). If we assume hierarchical heavy masses, and take
into account the seesaw expansion, it is possible to show
that the thermalization of the different sterile states approx-
imately decouples, and the equation for each species
simplifies to
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_ρss ¼ −
�
H†

AS

�
ΓAA

ðHAA −HssÞ2 þ Γ2
AA=4

�
HAS

�

ss

~ρss

≃ −
1

2

X

a

hPðνs → νaÞiΓa ~ρss; (14)

where ~ρss ≡ ρss − ρeq. This equation justifies the estimate
of Eq. (6).
Tmax is the value of the temperature at which

ΓsðTÞ=HðTÞ is maximum. Taking p≃ 3.15T, it is easy
to see that for each sterile state of mass Mi, Tmax can be
bounded by

�
M2

i

59.5jAej

�
1=6

≤ Tmax ≤
�

M2
i

59.5jAτj

�
1=6

; (15)

so it depends significantly on Mi but weakly on the
mixings. Taking into account the seesaw scaling
jUasi j2 ∼Oðml=MiÞ, it follows that fsiðTmaxÞ is roughly
independent of Mi.

III. Neff IN MINIMAL 3þ 2 MODELS

In Fig. 1 we show the numerical results for the minimal
value of fsðTmaxÞ (almost identical for both species)
scanning the whole parameter space for the two sterile
states, assuming their masses differ a factor 10 or more. The
light neutrino masses and mixings (i.e. the two nonzero
eigenvalues of ml and the three mixing angles in UPMNS)
have been fixed to their best fit values from oscillation
experiments. We need to distinguish between the normal
(NH) and inverted (IH) light neutrino hierarchies at this
point. Varying Mi ∈ ½1 eV; 1 GeV�, we find an almost
constant value which is significantly larger than 1,
which means that both species thermalize, contributing
ΔNeff ≃ 2 when they decouple. This is the case for both
neutrino hierarchies normal and inverted (NH/IH), but

Min½fsðTmaxÞ� is significantly larger for IH. The depend-
ence on Mi is mostly due to the change in gÃðTmaxÞ.
We note that the thermalization is still possible for values

of Mi ≫ 1 MeV. At some point however, the decoupling
temperature of the sterile species will be below their mass. In
this case, the contribution to Neff requires a different
treatment and will be Boltzmann suppressed. We can
estimate this decoupling temperature, Td, from the require-
ment fsðTdÞ ¼ 1 for Td < Tmax. In Fig. 2 we show the value
of Td as a function of Mi (again the same for both species)
for three cases: the parameters that minimize fsðTmaxÞ
(dashed lines), the parameters that minimize Td (dotted)
and the ones that minimize Td after taking into account
direct search constraints on active-sterile mixings (solid).We
see that there are regions of parameter space for allMi where
sterile neutrinos remain in equilibrium until Oð1 MeVÞ.
However, as Mi increases this is only possible for very
special textures, inverse-seesaw–like, where neutrino masses
are suppressed due to an approximate global symmetry. In
any case, large mixings are strongly constrained by direct
searches [38–40], when those bounds are included, we find
that Td is well above Mi for Mi ≤ Oð1 GeVÞ. If neutrinos
are below this mass they decouple when they are still
relativistic, as we have assumed, and therefore contribute
one unit to ΔNeffðTdÞ, but above this mass, they become
nonrelativistic before decoupling and the contribution is
suppressed by the Boltzmann factor.
After decoupling of the sterile species, however, two

important effects could modify ΔNeff before the active
neutrino decoupling at TW [41]: dilution and decay.
First a dilution occurs if the sterile species decouple at

Td ≫ TW , due to the change in gÃðTÞ. The dilution can be
estimated to be ΔNeffðTWÞ ¼ ðgÃðTWÞ=gÃðTd1ÞÞ4=3 þ
ðgÃðTWÞ=gÃðTd2ÞÞ4=3 provided they are still relativistic at
TW [41].
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FIG. 1 (color online). Min½fsiðTmaxÞ� for the ith sterile state as a
function ofMi for a light neutrino spectrum with a NH (thick line)
or IH (thin line). The dashed line at 1 corresponds to the
minimum value for thermalization.
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FIG. 2 (color online). Sterile neutrino decoupling temperature,
Td, as function of the sterile mass for the NH (solid thick line), IH
(solid thin line) and for oscillation parameters that minimize
fsðTmaxÞ (dashed lines), those that minimize Td (dotted) and
those that minimize Td while being compatible with bounds from
direct searches (solid). The single dashed line satisfies T ¼ Mi.

P. HERNÁNDEZ, M. KEKIC, AND J. LÓPEZ-PAVÓN PHYSICAL REVIEW D 89, 073009 (2014)

073009-4



In order to numerically solve the kinetic equations,
Eq. (11), we rewrite them, as is common practice, in terms
of the new variables [34]

x ¼ m0aðtÞ; y ¼ paðtÞ; (16)

where m0 is an arbitrary scale (fixed to be 1 MeV) and aðtÞ
is cosmic scale factor. Equation (11) becomes

HðxÞx ∂
∂x ρðx; yÞjy ¼ −i½Ĥðx; yÞ; ρðx; yÞ�

−
1

2
fΓðx; yÞ; ρðx; yÞ − ρðx; yÞeqIAg:

(17)

Since we consider a range of temperatures where gÃðTÞ is
varying, entropy conservation gÃðTðxÞÞT3ðxÞx3 ¼ constant
implies that temperature does not simply scale as 1

aðtÞ and

we take this into account. In order to simplify the
calculation we use the static approximation (i.e. impose
the constraint _ρAA ¼ _ρSA ¼ 0). This has been shown to give
a very good approximation when the production of sterile
neutrinos occurs at a T where the collision term, Eq. (13), is
large compared to the Hubble expansion [20], which is the
case here.
We have checked that, for several choices of mass

matrix parameters, the simple estimate above gives a
reasonable approximation to the numerical solution of the
Boltzmann equations. The difference comes from the
continuous change in gÃðTÞ, that we can only take into
account numerically. In Fig. 3 we show the evolution of
the ratio of the sterile number density to that of one
active neutrino as T varies, at fixed y ¼ 5 and for two
widely different values of Mi. We observe a double
upward step reaching a value near 2 corresponding to the
thermalization of the two species and a dilution at lower

temperatures, significant only for masses above keV.
The dependence on y of the ratio is significant due to
the dilution effect and we take it into account in the
definition of ΔNeffðTWÞ which involves the integrated
energy density. We have considered numerically the case
with degenerate heavy masses M1 ¼ M2. The only
difference appears to be that the thermalization curve
does not show a double step but a single one.
In Fig. 4, we show the constant ΔNeffðTWÞ lines for

the mixing parameters that minimize fs1ðTmaxÞ, as well
as those corresponding to the relativistic component,
ΔNrel

effðTWÞ≡ ðϵs − ϵms Þ=ϵ0ν, where ϵms is the contribution
of the sterile species to the matter density. We only
consider masses that remain relativistic at BBN, because
more massive species would quickly dominate the energy
density as cold dark matter, unless they decay before
BBN. These results show that dilution allows one to
relax the BBN bounds for masses in the range 10 keV–
10 MeV, however these particles give a huge contribution
to the energy density when they become nonrelativistic at
later times, modifying in a drastic way CMB and
structure formation. The only way BBN and CMB
bounds could be evaded in this range is if the sterile
states decay before BBN. We come back to this
point later.
We note that the analysis might not be accurate for

T ≳ TQCD [42,43], however we do not expect the con-
clusions to change drastically even if hadronic uncertainties
are included.
It is important to stress that the approximate inde-

pendence of thermalization on the heavy masses Mi
results from the approximate seesaw scaling of the
mixings jUasi j2Mi ∼ml, which is only approximate since
there is dependence on several unknown parameters, see
Eq. (4). Figure 5 shows the values of jUesi j2Mi and
ðjUμsi j2 þ jUτsi j2ÞMi within the full range of the uncon-
strained parameters for the normal hierarchy. We note
that jUesi j2Mi can get extremely small. Had we only
considered the oscillations to electron neutrinos in this
case, we would have found that for those parameters
fsðTmaxÞ ≪ 1, but ðjUμsi j2 þ jUτsi j2ÞMi is in the expected
ballpark and therefore the thermalization takes place
through the oscillation to μ and τ. A similar pattern is
observed for the IH, both combinations do not get very
small simultaneously.
For sufficiently high mass the sterile neutrino could

decay before BBN and our analysis is not valid for this
situation. The lifetime is in the range τ ∼ 6 ×

1011½MeV
Mi

�4½ 0.05 eV
jUasi

j2Mi
�s (for a recent analysis see [38,39]),

below the π0 threshold, which means they decay after BBN
below this threshold, for natural choices of mixings.
However, the mixings might reach values significantly
larger (see Fig. 5). For extreme mixings of Oð1Þ, neutrinos
as light as 10 MeV could decay before BBN. The bounds
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FIG. 3 (color online). Evolution of the ratio of the number
density of sterile species over that of one active massless neutrino
for y ¼ 5 for ðM1;M2Þ≃ ð2 × 10−5; 10−3Þ (solid) and (0.1, 10)
(dashed) in MeVand mixing parameters that minimize fs1ðTmaxÞ
for NH (thick) and IH (thin).
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on short-lived sterile neutrinos with masses in the range
[10 MeV, 140 MeV] have been studied in [41,44,45]. Very
strong bounds have been found combining BBN and direct
accelerator searches, essentially excluding this possibility
in the minimal model [40].
It should be stressed that in the generic seesaw models

that we are considering, such short lifetimes result only
from very specific textures in which an approximate global
symmetry (and not small Yukawa couplings) suppresses
light neutrino masses in front of the seesaw scale. The
flavor structure of these models is even more constrained,
but large active-sterile mixings can be reached. Note that in
these corners of parameter space, thermalization will be
more efficient and Td will be closer to TW , so dilution is
less relevant.

IV. CONCLUSIONS

We have studied the contribution to ΔNeff of the
extra sterile states in minimal type I seesaw models
as a function of the seesaw scale. We have found that
the extra states do thermalize independently of the scale
of the Majorana masses up to Oð100 MeVÞ. This
implies very strong constraints from cosmology on
low-scale models. The following conclusions can
be drawn.

(i) M1;2 ≲Oð100 MeVÞ: ΔNeffðTdÞ≃ 2 and decay
after BBN, which is incompatible with the present
BBN or/and CMB constraints independently of the
mass of the sterile states. These models are therefore
strongly disfavored. The minimal 3þ 2 model with
eV Majorana masses that could alleviate the tension
with the LSND and reactor anomalies is in this
category.

(ii) M1≲Oð100MeVÞ, M2 ≳OðGeVÞ: ΔNeffðTdÞ≃ 1,
while the heavy state is Boltzmann suppressed at
decoupling or decays before TW. BBN constraints
can accommodate this case ifM1 is still relativistic at
BBN. However CMB and LSS measurements close
this window all the way down to M1 ≤ 0.36 eV or
so at 95% C.L. [46]. Whether this very hierarchical
option could also improve the agreement with
LSND and reactor anomalies is under study.

(iii) M1;2 ≳Oð1 GeVÞ survive at present cosmological
constraints on Neff , because they decouple while
being nonrelativistic and therefore ΔNeffðTdÞ is
Boltzmann suppressed, or because they decay well
before TW.

In the range 100 MeV–1 GeV we expect that BBN
bounds will depend significantly on the other unknown
mixing parameters, and exploring this regime requires a
more detailed study.
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FIG. 5 (color online). Distribution of ðjUμsi j2 þ jUτsi j2ÞMi
versus jUesi j2Mi varying all the unconstrained parameters for
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We evaluate the contribution to Neff of the extra sterile states in low-scale type I seesaw models (with
three extra sterile states). We explore the full parameter space and find that at least two of the heavy states
always reach thermalization in the early Universe, while the third one might not thermalize provided the
lightest neutrino mass is below Oð10−3 eVÞ. Constraints from cosmology therefore severely restrict the
spectra of heavy states in the range 1 eV–100 MeV. The implications for neutrinoless double beta decay are
also discussed.
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I. INTRODUCTION

The simplest extension of the standard model (SM) that
can account for the observed neutrino masses is a type I
seesaw model [1] with N ≥ 2 extra singlet Majorana
fermions. The Majorana masses, that we globally denote
as M, constitute a new scale of physics (the seesaw scale)
which is presently unknown. Since the light neutrino
masses are a combination of the Yukawa couplings, the
electroweak scale and the seesaw scale, the latter can be
arbitrary if the Yukawas are adjusted accordingly. As a
result, the seesaw scale is presently unconstrained to lie
anywhere above OðeVÞ up to Oð1015 GeVÞ [2]. The
determination of this scale is one of the most important
open questions in neutrino physics.
It is often assumed that the seesaw scale is very high,

above the electroweak scale. However, in the absence of
any other hint of new physics beyond the SM, the
possibility that the seesaw scale could be at the electroweak
scale or lower should be seriously considered. As far as
naturalness goes, the model with a low scale is technically
natural, since in the limit M → 0, a global lepton number
symmetry is recovered: neutrinos becoming Dirac particles
by the pairing of the Majorana fermions.
The spectra of N ¼ 3 type I seesaw models contain six

Majorana neutrinos: the three lightest neutrinos, mostly
active, and three heavier, mostly sterile. The coupling of
the latterwith the leptons,Uas, is strongly correlatedwith their
masses (the naive seesaw scaling being jUasj2 ∝ M−1). The
possibility that such neutrino sterile states could be respon-
sible for any of the anomalies found in various experiments
is of coursevery interesting, since it could open a newwindow
into establishing the new physics of neutrino masses.

Models with extra light sterile neutrinos with masses in
the range of OðeVÞ could provide an explanation to the
LSND/MiniBOONE [5,6] and reactor anomalies [7].
Sterile species in the OðkeVÞ range could still be valid
candidates for warm dark matter [8–11]. The recent
measurement of an x-ray signal [12,13] might be the first
experimental indication of such possibility. Species in the
OðGeVÞ range could account for the baryon asymmetry in
the Universe [14,15] (for a recent review see [16]).
There are important constraints on low-scale models

from direct searches and rare processes such as μ → eγ
and μe conversion. Recent results can be found in [17–19].
The constraints are strongly dependent on M for M≲
Oð100 GeVÞ.
It is well known that if light sterile neutrinos with

significant active-sterile mixing exist they can contribute
significantly to the energy density of the Universe.
Mechanisms to reduce this contribution have been
proposed, such as the presence of primordial lepton asym-
metries [20] or new interactions [21,22], which however
typically require new physics beyond that of the sterile
species. The energy density of the extra neutrino species, ϵs,
is usually quantified in terms of ΔNeff (when they are
relativistic) defined by

ΔNeff ≡ ϵs
ϵ0ν
; ð1Þ

where ϵ0ν is the energy density of one SM massless neutrino
with a thermal distribution [below eÆ annihilation it is ϵ0ν ≡
ð7π2=120Þð4=11Þ4=3T4

γ at the photon temperature Tγ]. One
fully thermal extra sterile state that decouples from the
thermal bath being relativistic contributesΔNeff ≃ 1when it
decouples.
Neff at big bang nucleosynthesis (BBN) strongly

influences the primordial helium production. A recent
analysis of BBN bounds [23] gives NBBN

eff ¼ 3.5Æ 0.2.
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Neff also affects the anisotropies of the cosmic microwave
background (CMB). Recent CMB measurements from
Planck give NCMB

eff ¼ 3.30Æ 0.27 [24], which includes
WMAP-9 polarization data [25] and high multipole mea-
surements from the South Pole Telescope [26] and the
Atacama Cosmology Telescope [27]. Recent global analy-
ses, including the BICEP2 results [28,29], seem to prefer
larger values of NCMB

eff [30–32].
The contribution of extra sterile neutrinos to Neff has

been extensively studied in phenomenological models,
where there is no correlation between masses and mixing
angles [33–35]. For recent analyses of eV scale neutrinos,
with and without lepton asymmetries, see [36–42]. In [43]
we explored systematically the contribution to Neff of the
minimal type I seesaw models with just two extra singlets,
N ¼ 2. We found that whenever the two heavier states are
below Oð100 MeVÞ, they contribute too much energy/
matter density to the Universe, while the possibility of
having one state ≲ eV and another heavier than 100 MeV
may not be excluded by cosmological and oscillation data
constraints, but requires further scrutiny.
The purpose of this paper is to perform the same study in

the next-to-minimal seesawmodel whereN ¼ 3. This is the
standard type I seesaw model with a low scale, and is also
often referred to as the neutrino Minimal Standard Model
(νMSM). This model has been extensively studied in the
literature, concentrating on regions of parameter space
where the lightest sterile state could be a warm dark matter
particle, and the two heavier states could be responsible for
the baryon asymmetry in the Universe [15]. What we add in
this paper is a systematic study of the full parameter space
to understand the constraints on the seesaw scale(s) from
the modifications to the standard cosmology induced by the
three heavy neutrino states. We will assume that primordial
lepton asymmetries are negligible. Although the model in
principle satisfies the Sakharov conditions to generate a
lepton asymmetry, previous works indicate that significant
lepton asymmetries can only be generated when at least
two of the sterile states are heavy enough, OðGeVÞ, and
extremely degenerate [44]. Here we will concentrate on
studying the bounds from cosmology when such an extreme
degeneracy of the sterile neutrino states is not present. We
show that, in spite of the large parameter space, the
thermalization of the sterile states in this model is essentially
controlled by one parameter: the lightest neutrino mass.
The paper is organized as follows. In Sec. II we review

the estimates of the thermalization rate of the sterile states
as derived in [43], which allow us to efficiently explore
the full parameter space of the model. In Sec. III we
derive analytical bounds for the thermalization rate and in
Sec. IV we correlate ΔNeff with the lightest neutrino mass.
In Sec. V we present numerical results from solving the
Boltzmann equations and finally in Sec. VI we analyze
the impact on neutrinoless double beta decay. In Sec. VII
we conclude.

II. THERMALIZATION OF STERILE NEUTRINOS
IN 3þ 3 SEESAW MODELS

The model is described by the most general renormaliz-
able Lagrangian including N ¼ 3 extra singlet Weyl
fermions, νiR:

L ¼ LSM −
X

α;i

L̄αYαi ~ΦνiR −
X3

i;j¼1

1

2
ν̄icRM

ij
Nν

j
R þ H:c:;

where Y is a 3 × 3 complex matrix and MN a diagonal real
matrix. The spectrum of this theory has six massive
Majorana neutrinos, and the mixing is described in terms
of six angles and six charge parity (CP) phases.
We assume that the eigenvalues of MN are significantly

larger than the atmospheric and solar neutrino mass
splittings, which implies a hierarchy MN ≫ Yv and there-
fore the seesaw approximation is good. A convenient
parametrization in this case is provided by that of
Casas-Ibarra [45], or its extension to all orders in the
seesaw expansion as described in [46] (for an alternative
see [47]). The mass matrix can be written as

Mν ¼ UÃDiagðml;MhÞU†; ð2Þ

whereml¼Diagðm1;m2;m3Þ andMh¼DiagðM1;M2;M3Þ.
Denoting by a the active/light neutrinos and s the sterile/
heavy species, the unitary matrix can be written as

U ¼
�
Uaa Uas

Usa Uss

�
; ð3Þ

with

Uaa ¼ UPMNSH;

Uss ¼ H̄;

Usa ¼ iH̄M−1=2
h Rm1=2

l ;

Uas ¼ iUPMNSHm1=2
l R†M−1=2

h ; ð4Þ

where UPMNS is a 3 × 3 unitary matrix and R is a generic
3 × 3 orthogonal complex matrix, while H and H̄ are
defined by

H−2 ¼ I þm1=2
l R†M−1

h Rm1=2
l ;

H̄−2 ¼ I þM−1=2
h RmlR†M−1=2

h : ð5Þ

At leading order in the seesaw expansion, i.e. up to Oðml
Mh
Þ,

H≃ H̄≃ 1, and we recover the Casas-Ibarra parametriza-
tion. In this approximation UPMNS is the light neutrino
mixing matrix measured in oscillations.
Neutrino oscillation data fix two of the three eigenvalues

in ml and the three angles in UPMNS; however all the heavy

P. HERNÁNDEZ, M. KEKIC, AND J. LOPEZ-PAVON PHYSICAL REVIEW D 90, 065033 (2014)

065033-2



masses in Mh, the lightest neutrino mass in ml, the three
complex angles in R and the three CP violating phases in
UPMNS are presently unconstrained [48].
In [49] a simple estimate for the thermalization of one

sterile neutrino in the early Universe, neglecting primordial
lepton asymmetries, was given as follows. Assuming that
the active neutrinos are in thermal equilibrium with a
collision rate given by Γνα, the collision rate for the sterile
neutrinos can be estimated to be

Γsj ≃
1

2

X

a

hPðνa → νsjÞi × Γνα ; ð6Þ

where hPðνα → νsjÞi is the time-averaged probability
να → νsj . This probability depends strongly on temperature
because the neutrino index of refraction in the early
Universe is modified by coherent scattering of neutrinos
with the particles in the plasma [50]. Thermalization will
be achieved if there is any temperature where this rate is
higher than the Hubble expansion rate, i.e. ΓsjðTÞ ≥ HðTÞ.
In a radiation-dominated universe,HðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3gÃðTÞ

45

q
T2

MPlanck
,

with gÃðTÞ being the number of relativistic degrees of
freedom.
One can therefore define the function fsjðTÞ, which

measures the sterile production rate of the species sj in
units of the Hubble expansion rate,

fsjðTÞ≡
ΓsjðTÞ
HðTÞ : ð7Þ

It reaches a maximum at some temperature, Tmax [49]. If
fsjðTmaxÞ ≥ 1, the sterile state will reach a thermal abun-
dance at early times. We can estimate the contribution to
Neff as

Neff ≃ NSM
eff þ

X

j

ð1 − expð−αfsjðT
j
maxÞÞÞ; ð8Þ

at decoupling if they are still relativistic, where α is anOð1Þ
numerical constant. Provided fsjðT

j
maxÞ is sufficiently

larger than one, Neff saturates to the number of thermalized
species, up to exponentially small corrections.
In [43], this result was also derived from the Boltzmann

equations [51–54], in the assumption of no primordial
large lepton asymmetries. As shown in Appendix A, in
spite of the complex 6 × 6 mixing, the thermalization of
the sterile state j is roughly given by the sum of three
2 × 2 mixing contributions in agreement with the naive
expectation of Eq. (6),

fsjðTÞ ¼
X

α¼e;μ;τ

ΓναðTÞ
HðTÞ

�
M2

j

2pVαðTÞ−M2
j

�2

jðUasÞαjj2; ð9Þ

where p is the momentum, VαðTÞ is the potential induced
by coherent scattering in the plasma [50] and ΓναðTÞ is the

scattering rate of the active neutrinos. Both Vα and Γα

depend on the temperature since the number of scatters
increases with T [10,55,56]. While the former varies only
when the lepton states become populated, the latter depends
significantly on the quark degrees of freedom and there-
fore changes significantly at the QCD phase transition.
The quark contribution to Γνα is however rather uncertain;
we therefore neglect this contribution, since this is a
conservative assumption if we want to minimize thermal-
ization: any contribution that will increase Γνα would help
increase the thermalization rate.
The most complete calculation of Γνα has been presented

in [56], where a full two-loop computation of the imaginary
part of the neutrino self-energy was presented. The results
for the leptonic contribution to ΓναðTÞ can be accurately
parametrized in terms of CαðTÞ as

Γνα ≃ CαðTÞG2
FT

4p ð10Þ

that can be extracted from the numerical results of [56],
recently made publicly available in Ref. [57].
For temperatures above the different lepton thresholds,

the results can be approximated by
(τ) T ≳ 180 MeV: Ce;μ;τ ≃ 3.43 and Vα ¼ AT4p for
α ¼ e; μ; τ;
(μ) 20 MeV≲ T ≲ 180 MeV: Ce;μ ≃ 2.65, Cτ ≃ 1.26,
Ve ¼ Vμ ¼ AT4p and Vτ ¼ BT4p;
(e) T ≲ 20 MeV: Ce ≃ 1.72, Cμ;τ ≃ 0.95, Ve ¼ AT4p
and Vμ ¼ Vτ ¼ BT4p,
with

B≡ −2
ffiffiffi
2

p �
7ζð4Þ
π2

�
GF

M2
Z
;

A≡ B − 4
ffiffiffi
2

p �
7ζð4Þ
π2

�
GF

M2
W
:

ð11Þ

In Fig. 1 we show CαðTÞ=
ffiffiffiffiffiffiffiffiffiffiffi
gÃðTÞ

p
as a function of the

temperature. We include the T dependent normalization
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FIG. 1 (color online). Leptonic contribution to CαðTÞ=
ffiffiffiffiffiffiffiffiffiffiffi
gÃðTÞ

p

taken from Refs. [56,57] for α ¼ e (top/blue), μ (middle/magenta),
τ (bottom/yellow).
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factor,
ffiffiffiffiffiffiffiffiffiffiffi
gÃðTÞ

p
, coming from HðTÞ. Note that the depend-

ence on the temperature of this factor is small.
Let Tmax be the value of the temperature at which fsjðTÞ

is maximum [58]. For p ¼ 3.15T, and neglecting the T
dependence of Cα=

ffiffiffiffiffi
gÃ

p
, Tmax is bounded by

Tτ
max ≡

�
M2

j

59:5jAj

�1=6

≤ Tmax ≤
�

M2
j

59:5jBj

�1=6

: ð12Þ

Thermalization will take place provided fsjðTmaxÞ ≥ 1. In
the next section we derive an analytical lower bound on this
quantity, which can be translated therefore into a sufficient
condition for thermalization.

III. ANALYTICAL BOUNDS

For a given set of mixing and mass parameters we have
the following general lower bound for fsjðTÞ:

fBðTÞ≡Min
�
CτðTÞffiffiffiffiffiffiffiffiffiffiffi
gÃðTÞ

p
�
G2

FpT
4

ffiffiffiffiffiffiffiffiffiffiffi
gÃðTÞ

p

HðTÞ

�
M2

j

2pVe −M2
j

�2

×
X

α¼e;μ;τ

jðUasÞαjj2 ≤ fsjðTÞ: ð13Þ

This results from the fact that jVej ≥ jVαj and Cα ≥ Cτ for
all α ¼ e; μ; τ. The minimization of Cτ=

ffiffiffiffiffi
gÃ

p
as a function

of T gets rid of the T dependence of this factor.
The function fBðTÞ is maximized at Tτ

max, defined in
Eq. (12). It then follows that

fBðTτ
maxÞ ≤ fsjðTτ

maxÞ ≤ fsjðTmaxÞ: ð14Þ

In summary, taking the average momentum, p ¼ 3.15T,
fsjðTmaxÞ is bounded by

fsjðTmaxÞ ≥ fBðTτ
maxÞ ¼

P
αjðUasÞαjj2Mj

3.25 × 10−3 eV
: ð15Þ

Using Eq. (4) in the Casas-Ibarra limit, the dependence on
the parameters of the model in the above equation can be
simplified to the following combination:

X

α

jðUasÞαjj2Mj ¼
X

α

ðUPMNSm
1=2
l RÞαjðR†m1=2

l U†
PMNSÞjα

¼ ðR†mlRÞjj ≡ hj: ð16Þ

Therefore the analytical lower bound does not depend
on the angles and CP phases of the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix. It depends only on the
undetermined Casas-Ibarra parameters and the light neu-
trino masses. The lower bound can be further simplified
using

hj¼
X

α

jRαjj2mα≥ j
X

α

R2
αjmαj≥ j

X

α

R2
αjm1j¼m1; ð17Þ

where in the last step we have used the orthogonality of
the R matrix and assumed a normal hierarchy of the
light neutrinos (NH). The result for an inverted hierarchy
(IH) is the same substituting m1 → m3. Finally using
Eqs. (16) and (17) in Eq. (15) we obtain

fsjðTmaxÞ ≥
hj

3.25 × 10−3 eV
≥

m1

3.25 × 10−3 eV
≡ m1

mth
1

;

ð18Þ

which defines mth
1 .

IV. LIGHTEST NEUTRINO MASS VERSUS
THERMALIZATION

The thermalization of jth heavy sterile state will occur
provided fsjðTÞ ≥ 1 for some T. Therefore a sufficient
condition is that fsjðTmaxÞ ≥ 1 or using Eq. (18) m1 ≥ mth

1 .
From the analytical bound we therefore deduce that
thermalization of the three states will occur if

m1 ≥ 3.25 × 10−3 eV; ð19Þ

for any value of the unconstrained parameters in R and the
CP phases. We note that a more restrictive upper bound on
the lightest neutrino mass was derived in [11,56] under the
assumption that M1 was a warm dark matter candidate in
the keV range.
In Fig. 2 we show the contour plots of the minimum of

fs1ðTmaxÞ (varying the unconstrained parameters in R and
the CP phases in the full range), as a function of m1 and
M1. The three lines correspond to Min½fs1ðTmaxÞ� ¼
10−1; 1; 10. As expected the minimum is strongly corre-
lated with m1 and is roughly independent of M1. Values of
m1 below the contour line at 1 correspond to nontherm-
alization; therefore we read

m1 ≤ Oð10−3 eVÞ; ð20Þ

for M1 ∈ ½1 eV–100 MeV�. The numerical bound is
slightly stronger than the analytical bound given by

10
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FIG. 2. Contours of Min½fs1ðTmaxÞ� ¼ 0.1, 1, 10 on the plane
ðM1; m1Þ.
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Eq. (19). Had we considered any other of the heavy states
j ¼ 2; 3 the results would be the same [i.e. the same
minimum of fsjðTmaxÞ would be obtained for different
values of the unconstrained parameters].
A less stringent (sufficient) condition for thermalization

of the state j is

hj ≥ mth
1 ð21Þ

as it follows from Eq. (18). It turns out that this condition is
always satisfied for at least two of the three heavy
neutrinos, independently of m1 or the Casas-Ibarra param-
eters. In Fig. 3 we show the minimization of h2 in the full
parameter space within each bin of h1, shown in the x-axis,
for fixed values of m1. Although either h1 or h2 can always
be below the mth

1 line (shown as dashed line) if m1 ≤ mth
1 ,

the other one is always significantly above it. The same
pattern is observed with any pair of hj. This shows that at
most one of the sterile states might not thermalize, and to
have one not thermal requires that m1 ≤ mth

1 .
It is easy to see how hj can reach its lower bound, m1,

without contradicting present neutrino data. One can
always choose Rαj ¼ 0 for α ≠ j. For j ¼ 1, the orthogonal
matrix reduces to the form

R ¼
�
1 0

0 R2×2

�
; ð22Þ

where R2×2 is an orthogonal two-dimensional matrix that
depends on one complex angle. For j ¼ 2; 3 the matrix is
analogous with the appropriate permutation of the heavy
states. The model therefore reduces in this limit to a
3þ 2þ 1, where one sterile state is essentially decoupled.
When m1 ≤ mth

1 , the latter might thermalize or not depend-
ing on the unknown parameters, while the other two states
always thermalize, as in the minimal 3þ 2 model already
considered in Ref. [43].
In the next section we evaluate the implications for Neff

in both cases.

V. NEFF IN THE 3þ 3 MODEL

A. m1 ≥ mth
1

In this case, the three sterile states thermalize, each of

them contributing with ΔNðjÞ
eff ðTdjÞ ≈ 1 at their decoupling

temperature, Tdj (provided they are still relativistic). This
contribution gets diluted later on, due to the change of
gÃðTÞ between Tdj and the active neutrino decoupling,
TBBN, when BBN starts. The dilution factor is relevant only
for masses larger than Mj ≳ 1 keV [43].
If they are still relativistic at TW , we can therefore

estimate

ΔNBBN
eff ¼

X

j

�
gÃðTBBNÞ
gÃðTdjÞ

�
4=3

; ð23Þ

where the sum runs over the three heavier states.
For Mj ≥ Oð100Þ MeV, the contribution to the energy

density could be significantly suppressed with respect to
the estimate Eq. (23), because either they decay sufficiently
early before BBN and/or become nonrelativistic at Tdj and
therefore get Boltzmann suppressed. Additional constraints
will be at work in some regions of parameter space even for
those larger masses, but they are likely to depend on the
unknown mixing parameters, so we concentrate on the case
where at least one of the three heavy neutrinos has a mass
below this limit.
We consider in turn the following possibilities.
(i) For all j, Mj ≲ 100 MeV
After recent measurements, the BBN constraints men-

tioned in the introduction give ΔNBBN
eff ≤ 0.9 at 2σ. From

the results of [43] in the 3þ 2 model, we estimate that
Mj ≲ 10–100 keV would be excluded from BBN bounds
in this case. For larger masses, dilution is sufficiently strong
to avoid BBN bounds, but the contribution to the energy
density after BBN is anyway too large. When they become
nonrelativistic, their contribution to the energy density can
be estimated to be [59]

Ωsjh
2 ¼ 10−2MjðeVÞΔNðjÞBBN

eff ; ð24Þ

where ΔNðjÞBBN
eff is estimated from the ratio of number

densities of the jth state and one standard neutrino at BBN.
If they do not decay before recombination, Planck con-
straint on Ωmh2 would completely exclude such high
masses. On the other hand, if they decay, they transfer
this energy density to radiation. The case in which they
decay at BBN or before (only for masses above 10 MeVor
so) has been considered in detail in [60,61] and essentially
BBN constraints, combined with direct search constraints
[18,19,62], exclude the range 10–140 MeV. If they decay
after BBN, they transfer the energy density mostly to the
already decoupled light neutrinos, a contribution that can
be parametrized in terms of ΔNeff which is enhanced with

FIG. 3 (color online). Minimum of h2 in bins of h1 in the full
allowed parameter space with fixed m1 ¼ 10−½5−2� eV. The
dashed line corresponds to the analytical bound mth

1 ¼
3.25 × 10−3 eV.
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respect to that at BBN, Eq. (23), by a factor ∝ Mj

TðjÞ
dec

,

where TðjÞ
dec is the decay temperature of the jth species.

This temperature can be estimated by the relation

HðTðjÞ
decÞ ¼ τ−1sj , where

τ−1sj ≃G2
FM

5
j

192π3
X

α

jðUasÞαjj2 ð25Þ

(for Mj below any lepton or hadron threshold). We are not
aware of a self-consistent global cosmological analysis of
such a scenario. Assuming that CMB constraints on extra
radiation ΔNeff roughly apply to it, the large mass region,
still allowed by BBN due to dilution, is anyway excluded

by CMB measurements, because the ratio Mj=T
ðjÞ
dec is very

large. Recent analyses on dark radiation from decays can be
found in [63–65].

(i) M1;M2 ≲ 100 MeV ≪ M3

In this case, the results of the 3þ 2 model apply directly
and the conclusion is the same as before: BBN constraints
force the masses to be large to enhance dilution, but such
heavy states contribute too much energy density either in
the form of matter or extra radiation.

(i) M1 ≲ 100 MeV ≪ M2;M3

In this case, any value ofM1 could be barely compatible
with BBN constraints, since ΔNeff ≤ 1. CMB constraints
would however force the state to be very light, sub-eV,
which implies ΔNeff ≃ 1 and therefore some tension with
BBN. On the other hand, constraints from oscillations are
important in this range [4].
The allowed ranges of the Mj are qualitatively depicted

in Fig. 4.

B. m1 ≤ mth
1

If the lightest neutrino mass is below mth
1 , one of the

states might not thermalize [66], we will take it to be the
lightest sterile state although it could be any other. As
shown above, this can happen in a region of parameter
space with effective decoupling of the first state. A more

precise estimate of ΔNBBN
eff is given from solving the

Boltzmann equations reviewed in Appendix A. We con-
sider two cases:

(i) The unknown mixing parameters (i.e. the Casas-
Ibarra parameter of the matrix R and the CP phases)
are fixed by minimizing fs1ðTmaxÞ and fs2ðTmaxÞ as
a function of m1 andM1, and for fixed values ofM2

and M3.
(ii) The unknown parameters correspond to those that

satisfy fs1ðTmaxÞ ¼ 10Min½fs1ðTmaxÞ� (i.e. the light-
est sterile state does not thermalize, but the thermal-
ization rate is ten times larger than its minimum) and
minimize fs2ðTmaxÞ.

In Fig. 5 we show the contribution
P

j¼2;3ΔN
ðjÞBBN
eff for

the NH (IH) cases. It is approximately the same as that
found in the 3þ 2 model [67] and independent of m1

and M1. On the other hand, the contribution ΔNð1ÞBBN
eff

depends strongly on m1 and it is roughly ten times larger
in the second case than in the first, as expected from
Fig. 2. Assuming that the contribution of the nonthermal
state is negligible, the model is still strongly disfavored
if M2;M3 ≲ 100 MeV, as explained above. The case with
M2 ≲ 100 MeV ≪ M3 could be barely compatible with
BBN and CMB constraints ifM2 ≲ eV. The allowed ranges
of the Mj are qualitatively depicted in Fig. 6.
WhenM2;M3 are above 100 MeV, the only contribution

to ΔNeff would be that of the lighter state. In Fig. 7 we

show the contour levels for ΔNð1ÞBBN
eff as obtained from the

Boltzmann equations from the ratio of energy (number)
densities of the j ¼ 1 sterile state and one standard neutrino
at BBN [see Eqs. (A18) and (A19) in the appendix], versus
m1 andM1, assuming no lepton asymmetries. In the case of
degenerate heavier states significant lepton asymmetries
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FIG. 4 (color online). Allowed spectra of the heavy states Mi
for m1 ≥ mth

1 .

FIG. 5 (color online).
P

j¼2;3ΔN
ðjÞBBN
eff for m1 ≤ mth

1 , as a
function of M2 and M3. The thick lines correspond to present
BBN bounds.
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can be produced [68], which can modify significantly the
production of the lighter state [68–70]. We will explore
systematically that region of parameter space in a future
work, but here we consider only the nondegenerate case
where asymmetries are not expected to be of relevance.
In the figure we also included the line, enclosing the

shaded region, corresponding to Ωs1h
2 ¼ Ωmh2 ¼ 0.1199,

which is the result from the PLANCK collaboration in a
ΛCDM model [24]. In the shaded region the sterile state
contributes too much to the matter density and therefore is
excluded. Further constraints from Lyman-α and x rays can
be found in the recent review [16], and based on the Pauli

exclusion principle and Liouville’s theorem in [71]. The
almost vertical dashed line corresponds to decay roughly at
recombination, which means that in the region to the right
of this curve, the j ¼ 1 state decays before, and contributes

as extra radiation, roughly ΔNð1ÞBBN
eff × M1

Tð1Þ
dec

, which is much

larger than one in the whole plane and is therefore
excluded.
We note that for M1 in the keV range, where it could

be a warm dark matter candidate, the allowed region
requires m1 ≲Oð10−5 eVÞ, which is in good agreement
with the bound derived in [15].
We have also studied the case where it is the j ¼ 2 state

that does not reach thermalization, with M1 ¼ 0.5 eV,

M3 ¼ 1 GeV. The contribution of the j ¼ 2 state, ΔNð2Þ
eff

is essentially the same as that shown in Fig. 7. In this

case the contribution of the lighter state is ΔNð1ÞBBN
eff ≃ 1,

because dilution is very small for such light masses.
All the results we have shown are for a normal hierarchy

of the light neutrino spectrum, but the results for IH are
almost identical if we exchange m1 → m3.

VI. IMPACT ON NEUTRINOLESS
DOUBLE BETA DECAY

In the 3þ 3 seesaw models studied here the light and
heavy neutrinos are Majorana particles and, therefore, they
can contribute to lepton number violating processes such as
the neutrinoless double beta (ββ0ν) decay. The spectra of
Fig. 6, allowed if m1 ≤ mth

1 , will have important implica-
tions for this observable for two reasons: (1) the contribu-
tion of the light neutrinos to the amplitude of this process,
mββ, depends strongly on the lightest neutrino mass and
(2) sterile states with masses below 100 MeV could also
contribute significantly to this amplitude. The contribution
of states with masses well above 100 MeV would be
generically subleading [72,73].
If the three heavy states are well above 100 MeV, mββ is

the standard result for the three light Majorana neutrinos. It
is shown by the well-known colored bands on Fig. 8 as a
function of the lightest neutrino mass, for the two neutrino
hierarchies. If one of the states, for example j ¼ 1, is in the
range [1 eV, 100MeV], we have seen that it cannot have the
thermal abundance which requires an upper bound on
the lightest neutrino, m1 ≤ 10−3 eV, shown by the vertical
dashed grey line. In this case, the sterile state can give a
relevant contribution to the amplitude of the process and
mββ reads

mββ ¼ eiαm1c212c
2
13 þ eiβm2c213s

2
12 þm3s213 þ ðUasÞ2e4M1:

ð26Þ

The maximum value of the extra term (with the constraints
that the corresponding sterile state does not thermalize, i.e.
fs1ðTmaxÞ ≤ 1, and it does not contribute too much to the
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FIG. 6 (color online). Allowed spectra of the heavy states Mi
for m1 ≤ mth

1 . The unconstrained mass could be any i ¼ 1; 2; 3.

FIG. 7 (color online). Contour plots for ΔNð1ÞBBN
eff ¼

10−1; 10−2; 10−3 defined by the ratio of the energy density of
the j ¼ 1 sterile state and one standard neutrino as a function of
m1 and M1. The solid (dashed) lines correspond to the contours
of the ratio of sterile to active number (energy) densities. The
shaded region corresponds to Ωs1h

2 ≥ 0.1199 and the dashed
straight line is roughly the one corresponding to decay at
recombination. The heavier neutrino masses have been fixed
toM2;3 ¼ 1 GeV, 10 GeVand the unconstrained parameters have
been chosen to minimize f1ðTmaxÞ and f2ðTmaxÞ. The light
neutrino spectrum has been assumed to be normal (NH).
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energy density, Ωs1h
2 ≤ 0.12) is shown by the lines for

M1 ¼ 1 eV, 100 eVand 1 keV, as a function of the lightest
neutrino mass, mlight ¼ m1ðm3Þ for NH (IH).
Figure 8 shows that the quasidegenerate light neutrino

spectrum is ruled out for M1 ∈ ½1 eV–100 MeV� and
M2;3 ≫ 100 MeV. The region of the parameter space in
which a cancellation can occur in the active neutrino
contribution is also excluded. It is remarkable that the
thermalization bound on mlight is around two orders of
magnitude stronger than the present constraint on the
absolute neutrino mass scale from Planck [24]. On the
other hand, we can also conclude that the contribution
of the lightest sterile neutrino to the process is sub-
leading and well below the (optimistic) sensitivity of
the next-to-next generation of ββ0ν decay experiments,
10−2 eV. This is so, independently of the light neutrino
hierarchy.
Finally, there is a still plausible possibility of having a

significant contribution to the ββ0ν decay from a sub-eV
thermal sterile neutrino which can satisfy the cosmological
bounds. For example, if fs1ðTmaxÞ ≥ 1withM1 ≲ 1 eV and
M2;3 ≫ 100 MeV, the lightest sterile neutrino could give a
significant contribution to the process. However, for such a
lowM1 scale, the constraints from neutrino oscillations are
expected to be very relevant. Therefore, this case deserves a
more careful analysis which should also face the possibility
of explaining the neutrino anomalies. This would also
apply to the scenario where M1 ≤ 1 eV, 1 eV ≤ M2 ≤
100 MeV and M3 ≫ 100 MeV, if m1 ≤ mth

1 . The two
lighter states would contribute to ββ0ν. The contribu-
tion of M2 would be similar to that of M1 in Fig. 8,
while that of M1 would depend significantly on oscillation
constraints.

VII. CONCLUSIONS

We have studied the thermalization of the heavy sterile
neutrinos in the standard type I seesaw model with three
extra singlets and a low scale, eV ≤ Mj ≤ 100 MeV. The
production of the states in the early Universe occurs via
nonresonant mixing (in the absence of large primordial
asymmetries) and we have found that, independently of the
unknown mixing parameters in the model, full thermal-
ization is always reached for the three states if the lightest
neutrino mass is above Oð10−3 eVÞ. Since they decouple
early, while they are still relativistic, these states either
violate BBN constraints on ΔNeff and/or contribute too
much energy density to the Universe at later times, either in
the form of cold dark matter (if they decay late enough) or
in the form of dark radiation (if they decay earlier).
Majorana masses would all need to be heavier than
Oð100 MeVÞ to avoid cosmology constraints, or alterna-
tively one of them could remain very light sub-eV, resulting
in a milder tension with cosmology.
In contrast, if the lightest neutrino mass is below

Oð10−3 eVÞ, one and only one of the sterile states might
never thermalize, depending on the unknown parameters of
the model, and therefore its mass is unconstrained. The
other two states always thermalize and therefore their
masses should be above Oð100 MeVÞ to avoid cosmo-
logical constraints. The scenario often referred to as the
νMSM [15] falls in this category, where the nonthermalized
state in the keV region could be a candidate for warm dark
matter [8,11] and the heavier states could generate the
baryon asymmetry [14]. In fact, a more stringent upper
bound on m1 had been previously derived from the
requirement that M1 ∼ keV and could be a warm dark
matter candidate [15]. Alternatively, the tension with
cosmology could also be minimized in this case if one
of the two thermalized states is very light sub-eV and the
other remains heavy.
Although the possibility of having one of the species

in the sub-eV range could provide an interesting scenario
to maybe explain the neutrino oscillation anomalies,
the tension between cosmology and neutrino oscillation
experiments is likely to be significant.
Finally, we have also studied the impact of the cosmo-

logical bounds extracted in this work on the ββ0ν decay
phenomenology. We have found that if one of the sterile
neutrinos does not thermalize, the quasidegenerate light
neutrino spectrum would be ruled out. The region of the
parameter space in which a cancellation can take place in
the active neutrino contribution is also excluded in this
scenario. In addition, we have also shown that the con-
tributions of sterile states with M1 ∈ ½1 eV–100 MeV� are
subleading and well beyond the sensitivity of the next-to-
next generation of ββ0ν decay experiments. However, a
sub-eV thermal sterile state could give a contribution, in
this scenario, within reach of the next-to-next generation of
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FIG. 8 (color online). mββ as a function of the lightest neutrino
mass: contribution from the active neutrinos (red and blue
regions) and the maximum contribution of the lightest sterile
neutrino, for M1 ¼ 1 eV (solid), 100 eV (dashed), 1 keV
(dotted), for NH (blue) and IH (red) restricting Ωs1h

2 ≤ 0.12
and fs1ðTmaxÞ ≤ 1, for M2;3 ≫ 100 MeV, as a function of the
lightest neutrino mass. The shaded region is ruled out for M1 ∈
½1 eV–100 MeV� by the thermalization bound on the lightest
neutrino mass, m1 ≤ 10−3 eV.
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ββ0ν decay experiments, the constraints from neutrino
oscillations playing a very important role.
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APPENDIX:

In the density matrix formalism [54], the kinetic
equations have the usual form:

_ρ ¼ −i½H; ρ� − 1

2
fΓ; ρ − ρeqIAg; ðA1Þ

where ρ is the 6 × 6 density matrix, H is the Hamiltonian
describing the propagation of relativistic neutrinos in the
plasma, Γ is the collision term that we take from
Refs. [56,57] and ρeq is the active neutrino thermal density,
i.e. the Fermi-Dirac distribution ρeq ¼ 1

eE=Tþ1
, in the absence

of a chemical potential. IA is the projector on the active
sector. The trace of the density matrix corresponds to the
number density of neutrinos.
Rewriting Eq. (A1) in the form of active-sterile block

matrices we get the following set of equations:

_ρA ¼ −iðHAρA − ρAHA þHASρ
†
AS − ρASH

†
ASÞ

−
1

2
fΓA; ρA − ρeqIAg; ðA2Þ

_ρAS ¼ −iðHAρAS − ρAHAS þHASρS − ρASHSÞ −
1

2
ΓAρAS;

ðA3Þ

_ρS ¼ −iðH†
ASρAS − ρ†ASHAS þHSρS − ρSHSÞ: ðA4Þ

Assuming that ΓA ≫ Hubble rate, we can approximate

_ρA ¼ _ρAS ¼ 0: ðA5Þ

This is the so-called “static approximation” [33,69,70].
The first equation implies ρA ¼ ρeqIA, while the second

equality implies

ðρASÞai ¼ ð−ðHA − ~HiIAÞ þ iΓA=2Þ−1aa0 ðHASÞa0jððρSÞji
− ρeqδjiÞ; ðA6Þ

where we have made the approximation that ðHSÞij ¼
~Hiδij, which is very good in the seesaw limit. Similarly
we find

ðρ†ASÞia ¼ ððρSÞij − ρeqδijÞðH†
ASÞja0 ð−ðHA − ~HiIAÞ

− iΓA=2Þ−1a0a: ðA7Þ

Defining ~ρS ≡ ρS − ρeqIS, and after substituting ρAS and

ρ†AS in Eq. (A4), we get the following equation:

ð_ρSÞij ¼ −ið ~Hi − ~HjÞðρSÞij
− iðH†

ASÞa0ið−ðHA − ~HjIAÞ
þ iΓA=2Þ−1a0aðHASÞak ~ρkj
þ i~ρikðH†

ASÞa0kð−ðHA − ~HiIAÞ
− iΓA=2Þ−1a0aðHASÞaj: ðA8Þ

It is clear that the equilibrium distribution for the sterile
components is ~ρii ¼ 0 or ρii ¼ ρeqδii.
At this point it is necessary to solve the 3 × 3 system of

differential equations (A8), but we can further simplify the
problem if we assume that the dynamics of the different
sterile components decouple from each other, which is the
case provided their masses are sufficiently different. Since
HAS depends on temperature, if the sterile splittings are
significantly different from each other, we will generically
have that HAS will be very suppressed unless the temper-
ature-dependent effective mass is similar to one of the mass
splittings. Let us suppose that this is the case. At high T all
active-sterile mixings are very suppressed, until one split-
ting that associated to the sterile state s is reached; at this
point only ðHASÞas is non-negligible. Then only ðρSÞss
changes significantly and can be described by

_ρss ¼ −i
�
H†

AS

�
1

−ðHA − ~HsÞ þ iΓA=2

−
1

−ðHA − ~HsÞ − iΓA=2

�
HAS

�

ss

~ρss

¼ −
�
H†

AS

�
ΓA

ðHA − ~HsÞ2 þ Γ2
A=4

�
HAS

�

ss

~ρss; ðA9Þ

where in the last step we have assumed that HA;ΓA
commute, which again is a good approximation in the
seesaw limit. This equation justifies Eq. (6), since the
source term on the right of Eq. (A9) is the same as Γs in
Eq. (6) if we neglect the term ∼Γ2

A in the denominator. We
have checked that the result of solving the three coupled
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equations or the three independent ones gives very similar
results and the latter is obviously much faster.
Now we have to consider the evolution in an expanding

universe, where the variation of the scale factor aðtÞ
depends on the Hubble expansion rate, which, in a
radiation-dominated universe at temperature T, is given by

HðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

3

�
π2

30
gÃðTÞT4 þ ϵsðTÞ

�s
; ðA10Þ

where gÃ counts the relativistic degrees of freedom and we
have included the contribution to the energy density of the
sterile states, ϵs, which must be computed integrating the
trace of the density matrix, ρS. As in Ref. [33] we introduce
new variables:

x ¼ aðtÞ
aBBN

; y ¼ x
p

TBBN
; ðA11Þ

where aðtÞ is the cosmic scale factor, TBBN ≃ 1 MeV is the
temperature of active neutrino decoupling and aBBN the
scale factor at this point. On the other hand, entropy
conservation implies gSÃðTÞT3aðtÞ3 ¼ constant (here gSÃ
refers to the relativistic degrees of freedom in equilibrium;
it differs from gÃ in the Hubble expansion only after light
neutrino decoupling). This relation implies

x ¼ TBBN

T

�
gSÃðTBBNÞ
gSÃðTÞ

�
1=3

: ðA12Þ

We neglect the contribution of the sterile states to gSÃ,
because they decouple very early and therefore they give a
small contribution.
The time derivative acting on any phase space distribu-

tion can be written as

d
dt

fðt; pÞ ¼ ð∂t −Hp∂pÞfðt; pÞ ¼ Hx∂xfðx; yÞ: ðA13Þ

Applied to Eq. (A1) this leads to

Hx
∂
∂x ρðx; yÞjy ¼ −i½Ĥ; ρðx; yÞ�

−
1

2
fΓ; ρðx; yÞ − ρeqðx; yÞIAg; ðA14Þ

where

ρeqðx; yÞ ¼
1

exp ½yðgSÃðTðxÞÞ=gSÃðTBBNÞÞ1=3�þ 1
;

ðA15Þ

and for Eq. (A9) similarly

Hx
∂
∂x ρssðx; yÞjy
¼ −

�
H†

AS

�
ΓA

ðHA − ~HsÞ2 þ Γ2
A=4

�
HAS

�

ss

~ρssðx; yÞ:

ðA16Þ

The equations are evolved from an initial condition at
xi → 0, ρss ¼ 0, until active neutrino decoupling, xf ¼ 1
for fixed y. We define the effective number of additional
neutrino species by

ΔNeff ¼
ϵs
ϵ0ν
; ðA17Þ

where ϵ0ν is the energy density of one SM massless
neutrino. For each additional neutrino we compute the
contribution to ΔNeff from the solution of ρsjsjðxf; yÞ as

ΔNðjÞBBN
eff jenergy ¼

R
dyy2EðyÞρsjsjðxf; yÞR
dyy2pðyÞρeqðxf; yÞ

; ðA18Þ

where pðyÞ ¼ y
xf
TBBN and EðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðyÞ2 þM2

j

q
.

We can also define the ratio of number densities
instead, which is more appropriate when they are not
relativistic,

ΔNðjÞBBN
eff jnumber ¼

R
dyy2ρsjsjðxf; yÞR
dyy2ρeqðxf; yÞ

: ðA19Þ

The two correspond to the solid/dashed curves depicted
in Fig. 7.
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1 Introduction

One of the interesting potential implications of (Majorana) neutrino masses is the gener-

ation of a matter-antimatter asymmetry in the Universe. It has been demonstrated that

the generation of sizeable leptonic asymmetries, leptogenesis, is generic in extensions of the

Standard Model that can account for neutrino masses [1]. In particular two new ingredients

are essential for this mechanism to work: the existence of new weakly interacting particles

that are not in thermal equilibrium sometime before the electroweak phase transition and

the existence of new sources of CP violation.

Leptogenesis from the out-of-equilibrium decay of heavy Majorana fermions that ap-

pear in type I seesaw models [1] has been extensively studied (for a comprehensive re-

view see e.g. [2]). The simplest version requires however relatively large Majorana masses

> 108GeV [3, 4] (or > 106 if flavour effects are included [5]), which imply that this scenario

– 1 –
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would be very difficult to test experimentally. It is possible to have sizeable asymmetries

for smaller masses if a large degeneracy exists, through resonant leptogenesis [6].

On the other hand, for Majorana masses in the GeV range, when the neutrino Yukawa

couplings are small, another mechanism might be at work. In particular, the non-equilib-

rium condition takes place not in the decay, but in the production of the heavy sterile

neutrinos. The small Yukawa couplings imply that some of the species might never reach

thermal equilibrium and a lepton asymmetry can be generated at production and seed the

baryon asymmetry in the Universe. This mechanism was first proposed by Akhmedov,

Rubakov and Smirnov (ARS) in their pioneering work [7] and pursued, with important

refinements in refs. [8, 9]. For a recent review and further references see [10]. In most

of these works, the case of just two extra sterile species is considered, which is also the

limiting case of the so-called νMSM where there are three species, but one of them plays

the role of warm dark matter (WDM) and is almost decoupled, having no impact in the

generation of the lepton asymmetry. When the mechanism involves just two species, it

has been found that the observed baryon asymmetry is only possible if the two states are

highly degenerate in mass. This however was not the conclusion of the ARS paper.

The purpose of this paper is to explore systematically the parameter space in the case

of three sterile species (which encompass the one with two neutrinos) as regards the baryon

asymmetry, in particular we do not want to restrict the parameter space to have a WDM

candidate. The model has many free parameters (only 5 out of the 18 parameters are

fixed by the measured light neutrino masses and mixings) and the exploration of the full

parameter space is challenging. Only with the help of approximate analytical solutions to

the kinetic equations this task is feasible. The analytical solutions furthermore allows us

to identify the relevant CP invariants and to reach regions of parameter space where the

equations become stiff and very difficult to deal with numerically.

The paper is organised as follows. In section 2 we present the model, which is essen-

tially a generic type I seesaw model, establish the notation and discuss on general grounds

what are the CP reparametrization and flavour invariants we expect to find in comput-

ing any CP violating quantity such as any putative lepton asymmetry. In section 3 we

present the kinetic equations that describe the production of sterile neutrinos and solve

them analytically via a perturbative expansion in the mixing angles up to the third or-

der. In section 4 we compare the analytical and numerical solutions for several choices of

the parameters, and identify the region of parameter space where the analytical solution

accurately describes the numerical one. In section 5 we use the analytical solutions and

perform a Monte Carlo scan (using the software package MultiNest [11, 12]) to find re-

gions of parameter space that can reproduce the observed baryon asymmetry, and that are

compatible with the measured neutrino masses and mixings. In section 6 we conclude.

2 Minimal model of neutrino masses

We will concentrate on the arguably simplest model of neutrino masses that includes three

right-handed singlets. The Lagrangian is given by:

L = LSM −
�

α,i

L̄αY αiΦ̃N i
R −

3�

i,j=1

1

2
N̄ ic

RM ijN j
R + h.c.,
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where Y is a 3 × 3 complex matrix and M a diagonal real matrix. The spectrum of this

theory has six massive Majorana neutrinos, and the mixing is described in terms of six

angles and six CP phases generically. One convenient parametrization for the problem at

hand is in terms of the eigenvalues of the yukawa and majorana mass matrices together

with two unitary matrices, V and W . In the basis where the Majorana mass is diagonal,

M = Diag(M1,M2,M3), the neutrino Yukawa matrix is given by:

Y ≡ V †Diag(y1, y2, y3)W. (2.1)

Without loss of generality, using rephasing invariance, we can reduce the unitary matrices

to the form:1

W = U(θ12, θ13, θ23, δ)
†Diag(1, eiα1 , eiα2),

V = Diag(1, eiφ1 , eiφ2)U(θ̄12, θ̄13, θ̄23, δ̄), (2.2)

where2

U(θ1, θ2, θ3, δ) ≡




cos θ1 sin θ1 0

− sin θ1 cos θ1 0

0 0 1







cos θ2 0 sin θ2e
−iδ

0 1 0

− sin θ2e
iδ 0 cos θ2







1 0 0

0 cos θ3 sin θ3
0 − sin θ3 cos θ3


 .

(2.3)

Obviously not all the parameters are free, since this model must reproduce the light neu-

trino masses, which approximately implies the seesaw relation:

mν � −v2

2
Y

1

M
Y T , (2.4)

where v = 246GeV is the vev of the Higgs. On the other hand, the known neutrino masses

and mixings do not give us enough information to determine the Majorana spectrum, not

even the absolute scale. Very strong constraints can be derived from neutrino oscillation

experiments for masses below the eV range [13–16]. Cosmology can exclude a huge window

below 100MeV [17–22], except maybe for one species that could be lighter provided the

lightest active neutrino mass is below � 3× 10−3eV [20, 21]. The GeV range is interesting

because an alternative mechanism for lepton asymmetry generation could be at work [7–

9]. Majorana neutrinos in this range are heavy enough to safely decay before Big Bang

Nucleosynthesis, while they are light enough that they might have not reached thermal

equilibrium by the time of the electroweak phase transition (EWPT), behaving as reservoirs

of a putative lepton asymmetry.

Our goal in this paper is to explore the full parameter space of this model allowed by

neutrino masses, as regards leptogenesis. An essential condition will be that at least one

of the sterile neutrinos does not reach thermal equilibrium before the EWPT. This can be

ensured assuming a large hierarchy in the yukawas [7]:

y3 � y1, y2. (2.5)

1Although we use the same notation for the mixing angles and phases of W as those in the usual PMNS

matrix, they should not be confused.
2Note the unconventional ordering of the 2×2 rotation matrices in U .
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It is mandatory, however, to have an accurate analytical description, since the uncon-

strained parameter space is huge. We will solve the quantum kinetic equations in a per-

turbative expansion in the mixings in the next section. Since the lepton asymmetry is

necessarily a CP-odd observable, on general grounds we can derive what are the expecta-

tions in terms of weak-basis CP invariants.

2.1 CP invariants

In [23], weak basis (WB) invariants sensitive to the CP violating phases which appear in

leptogenesis, within the type I seesaw model, were derived. All of them should vanish if

CP is conserved, and conversely the non-vanishing of any of these invariants signals CP

violation. They must be invariant under the basis transformations:

�L → WL�L,

NR → WRNR . (2.6)

Defining h ≡ Y †Y , and HM ≡ M †M , a subset of the invariants can be written as:

I1 ≡ ImTr[hHMM∗h∗M ], (2.7)

I2 ≡ ImTr[hH2
MM∗h∗M ], (2.8)

I3 ≡ ImTr[hH2
MM∗h∗MHM ]. (2.9)

Since the Ii are WB invariants, we can evaluate them in any basis. In the WB where the

sterile neutrino mass matrix M is real and diagonal, one obtains:

I1 = M1M2ΔM2
21Im(h212) +M1M3ΔM2

31Im(h213) +M2M3ΔM2
32Im(h223), (2.10)

I2 = M1M2(M
4
2 −M4

1 )Im(h212) +M1M3(M
4
3 −M4

1 )Im(h213)

+M2M3(M
4
3 −M4

2 )Im(h223), (2.11)

I3 = M3
1M

3
2ΔM2

21Im(h212) +M3
1M

3
3ΔM2

31Im(h213) +M3
2M

3
3ΔM2

32Im(h223), (2.12)

where ΔM2
ij ≡ M2

i −M2
j and, using the parametrization of eq. (2.1)

Im(h2ij) = Im[(Y †Y )2ij ] =
�

α,β

y2αy
2
β Im[W ∗

αiW
∗
βiWαjWβj ] . (2.13)

It is explicit in the above expression that such unflavoured invariants depend only on the

CP phases of the sterile neutrino sector, which are encoded in the unitary matrix W : one

Dirac-type phase, δ and two Majorana-type phases α1,α2. Not surprisingly, these invariants

are the relevant ones in unflavoured leptogenesis, i.e., in the conventional computation of

the CP asymmetry generated by heavy Majorana neutrino decay neglecting flavour effects.

The combinations of W matrix elements which appear in Im(h2ij) can be expressed in

terms of the rephasing invariants defined in [24] as follows:

Im[W ∗
αiW

∗
βiWαjWβj ] =

Im[WαiW
∗
βiW

∗
αjWβj(WαjW

∗
αi)

2]

|WαiWαj |2
. (2.14)
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Notice that JW ≡ ±Im[WαiW
∗
βiW

∗
αjWβj ] is the Jarlskog invariant for the matrix W ,

while the quantities Im[(WαjW
∗
αi)

2] determine the Majorana phases, α1,2. When consid-

ering processes, such as heavy neutrino oscillations, where the Majorana nature does not

play a role, only the Dirac phase δ will be relevant and therefore we expect to find just the

Jarlskog invariant of the matrix W.

Since there are six independent CP-violating phases, it is possible to construct three

more independent WB invariants, which would complete the description of CP violation

in the leptonic sector. One simple choice are those invariants obtained from Ii under the

change of the matrix h by h̄ ≡ Y †h�Y , with h� = λ�λ
†
�, being λ� the charged lepton Yukawa

couplings, i.e.,

Ī1 = ImTr[Y †h�Y HMM∗Y Th∗�Y
∗M ] , (2.15)

and analogously for Ī2, Ī3. The corresponding CP odd invariants are Im(h̄2ij), which in the

basis where also the charged lepton Yukawa matrix is real and diagonal can be written as:

Im(h̄2ij) =
�

α,β

λ2
αλ

2
β Im[Y ∗

αiYαjYβjY
∗
βi] . (2.16)

The lepton number (L) violating part of the flavoured CP asymmetries in leptogenesis

depends on the above combinations [25]:

� �Liα =
�

β,j

Im[Y ∗
αiYαjYβjY

∗
βi]f̃(Mi,Mj) , (2.17)

where f̃ is an arbitrary function. Upon substitution of the neutrino Yukawa couplings as

given in eq. (2.1) can be written as:

� �Liα =
�

j

�

β,δ,σ

yβ yδ y
2
σ Im[W ∗

βiVβαV
∗
δαWδjW

∗
σiWσj ]f̃(Mi,Mj) . (2.18)

These asymmetries contain the additional rephasing invariants of the form Im[W ∗
βiVβαV

∗
δαWδj ],

which depend on the phases in the matrix V (δ̄,φ1,φ2), showing that the flavoured CP

asymmetries of leptogenesis are also sensitive to the CP phases in the V leptonic mixing

matrix, besides those in W .

Alternatively, we choose to construct the WB invariants which will appear when the

Majorana character of the sterile neutrinos is not relevant, i.e., L-conserving ones. These

are given by:

Ī �1 ≡ ImTr[hH2
M h̄HM ]

= M2
1M

2
2ΔM2

21Im(h12h̄21) +M2
1M

2
3ΔM2

31Im(h13h̄31)

+M2
2M

2
3ΔM2

32Im(h23h̄32), (2.19)

Ī �2 ≡ ImTr[hH3
M h̄HM ]

= M2
1M

2
2 (M

4
2 −M4

1 )Im(h12h̄21) +M2
1M

2
3 (M

4
3 −M4

1 )Im(h13h̄31)

+M2
2M

2
3 (M

4
3 −M4

2 )Im(h23h̄32), (2.20)

Ī �3 ≡ ImTr[hH3
M h̄H2

M ]

= M4
1M

4
2ΔM2

21Im(h12h̄21) +M4
1M

4
3ΔM2

31Im(h13h̄31)

+M4
2M

4
3ΔM2

32Im(h23h̄32) , (2.21)
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where

Im(hij h̄ji) =
�

α,β

λ2
α Im[YαiY

∗
αjYβjY

∗
βi] . (2.22)

The L-conserving CP asymmetry in leptogenesis via heavy neutrino decay, as well as

the CP asymmetries encountered in leptogenesis through sterile neutrino oscillations, are

sensitive to the above combinations of Yukawa couplings [25]:

�Liα =
�

j,β

Im[YαiY
∗
αjYβjY

∗
βi] f(Mi,Mj) , (2.23)

where f is an arbitrary function, and can be written in terms of the rephasing invariants as:

�Liα = −
�

j

�

β,δ,σ

yβyδy
2
σ Im[W ∗

βiVβαV
∗
δαWδjWσiW

∗
σj ] f(Mi,Mj) . (2.24)

Notice that the crucial difference between the L-violating and the L-conserving CP asym-

metries is that in �Liα the combination of W matrix elements is such that all dependence

on the Majorana phases α1,2 disappears, as expected.

In the approximation of neglecting y3 � y1, y2, we obtain that Im[YαiY
∗
αj(Y

†Y )ij ] =�
β Im[YαiY

∗
αjYβjY

∗
βi] reduces to

Im[YαiY
∗
αj(Y

†Y )ij ] = y21y
2
2(|V2α|2 − |V1α|2)Im[W ∗

1iW1jW
∗
2jW2i]

+y1y2
��
y22|W2i|2 − y21|W1i|2

�
Im[W ∗

1jV1αV
∗
2αW2j ]

+
�
y21|W1j |2 − y22|W2j |2

�
Im[W ∗

1iV1αV
∗
2αW2i]

�
, (2.25)

so in principle we expect that the lepton asymmetry will depend on ten CP invariants,

namely Im[W ∗
1iV1αV

∗
2αW2i], with i = 1, 2, 3 and α = 1, 2, 3 and JW .

However, they are not all independent. In ref. [24] it has been shown that in the

minimal seesaw there are only six independent CP invariants that can be made out of the

matrices V,W . Two of them correspond to the Majorana phases of W , α1,2, which as

we have argued before will not contribute in the limit of small sterile neutrino Majorana

masses that we are considering. Other two are the equivalent of the Jarlskog invariants

for the matrices V,W and therefore determine the Dirac phases, δ̄, δ, respectively. The

last two are of the form Im[W ∗
1iV1αV

∗
2αW2i], for two reference values of i,α, that fix the

additional phases φ1,2. Moreover, it can be shown that since we are neglecting the Yukawa

coupling y3, the phase φ2 of the matrix V does not appear in eq. (2.25), thus we are left

with only three independent invariants.

The unitarity of the mixing matrices V,W implies that

�

α

V1αV
∗
2α = 0 , (2.26)

�

i

W ∗
1iW2i = 0 , (2.27)

which allows to write the invariants Im[W ∗
1iV1αV

∗
2αW2i] for α = 2 in terms of those with

α = 1, 3, and the invariants for i = 2 in terms of the corresponding ones with i = 1, 3. By

– 6 –
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exploiting the identities

Im[W ∗
1iV1βV

∗
2βW2i] =

Im[(W ∗
1iV1αV

∗
2αW2i)(V

∗
2βV2αV

∗
1αV1β)]

|V1αV2α|2
, (2.28)

we can write for instance one of the invariants with β = 3 in terms of the invariant with

α = 1 and the Jarlskog invariant for V , Im[V ∗
2βV2αV

∗
1αV1β ] = ±JV .

It is simpler, though, to write the results in terms of the following four invariants, even

if only three are independent, expanded up to 3rd order in the small mixing angles θij , θ̄ij :

I
(2)
1 = −Im[W ∗

12V11V
∗
21W22] � θ12θ̄12 sinφ1,

I
(3)
1 = Im[W ∗

12V13V
∗
23W22] � θ12θ̄13θ̄23 sin(δ̄ + φ1),

I
(3)
2 = Im[W ∗

13V12V
∗
22W23] � θ̄12θ13θ23 sin(δ − φ1),

JW = −Im[W ∗
23W22W

∗
32W33] � θ12θ13θ23 sin δ. (2.29)

A generic expectation for the CP-asymmetry relevant for leptogenesis is

ΔCP =
�

α,k

|Yαk|2Δα, (2.30)

with

Δα =
�

i

�Liα =
�

i,j

Im[YαiY
∗
αj(Y

†Y )ij ]f(Mi,Mj). (2.31)

Since the CP rephasing invariants are at least second order in the angles, we just need to

take the diagonal elements in ΔCP, to keep the result up to 3rd order. Then, in the limit

y3 = 0, we get:

ΔCP = y21y
2
2(y

2
2 − y21)

�

i,j

Im[W ∗
1iW1jW

∗
2jW2i]f(Mi,Mj)

+y1y2

�
(y22 − y21)

�
I
(2)
1 [g(M1)− g(M2)] + I

(3)
2 [g(M1)− g(M3)]

�
(2.32)

− y22I
(3)
1 [g(M1)− g(M2)]

�
,

where

g(Mi) ≡ y21[f(M1,Mi)− f(Mi,M1)]− y22[f(M2,Mi)− f(Mi,M2)] . (2.33)

From the above definition of g(Mi), it immediately follows that g(M1) − g(M2) =

(y22 − y21)[f(M1,M2)− f(M2,M1)], so ΔCP simplifies to

ΔCP = y21y
2
2(y

2
2 − y21)

�

i,j

Im[W ∗
1iW1jW

∗
2jW2i]f(Mi,Mj)

+y1y2(y
2
2 − y21)

��
(y22 − y21)I

(2)
1 − y22I

(3)
1

�
[f(M1,M2)− f(M2,M1)]

+ I
(3)
2 [g(M1)− g(M3)]

�
. (2.34)

We will see in the next section that this is precisely the yukawa and mixing angle

dependence we will find when solving the kinetic equations, which is a strong crosscheck

of the result.
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3 Perturbative solution of the Raffelt-Sigl equation

3.1 Sterile neutrino production

Our starting point is the Raffelt-Sigl formulation [26] of the kinetic equations that describe

the production of sterile neutrinos in the early Universe. The density matrix is the expec-

tation value of the one-particle number operator for momentum k: ρN (k) for neutrinos,

and ρ̄N (k) for antineutrinos. We will assume that only sterile neutrinos and the lepton

doublets are out of chemical equilibrium, but assume that all the particles are in kinetic

equilibrium, using Maxwell-Boltzmann statistics:

ρa(k) = Aaρeq(k), Aa = eµa ; ρā(k) = Aāρeq(k), Aā = e−µa , (3.1)

where ρeq(k) ≡ e−k0/T , with k0 = |k|, and µa denotes the chemical potential normalised by

the temperature. We will furthermore neglect spectator processes and the washout induced

by the asymmetries in all the fields other than the sterile neutrinos and lepton doublets.

We expect this approximation to give uncertainties of O(1) which for our purpose is good

enough [27].

In [7], only the asymmetry in the sterile sector was considered, neglecting the feedback

of the leptonic chemical potentials. In this case, the equations get the standard form

ρ̇N = −i
�
H, ρN

�
− 1

2

�
Γ, ρN − ρeq

�
, (3.2)

and the analogous for ρ̄N with H → H∗, where H is the Hamiltonian (we neglect matter

potentials for the time being but we will include them later on)

H ≡ WΔW †, Δ ≡ Diag

�
0,

ΔM2
12

2k0
,
ΔM2

13

2k0

�
. (3.3)

Γ is the rate of production/annihilation of sterile neutrinos in the plasma, which is diagonal

in the basis that diagonalises the neutrino Yukawa’s:

Γ = Diag(Γ1,Γ2, 0), Γi ∝ y2i , (3.4)

where we assume y3 = 0. In deriving eq. (3.2) it is assumed that the particles involved

in the production/annihilation of the sterile neutrinos are in full equilibrium (all chemical

potentials vanish), and that kinematical effects of neutrino masses are negligible.

Note that only the matrix W appears in these equations and therefore any CP asym-

metry generated can only be proportional to the invariant JW which depends at third order

on the mixing angles of W .

In [8] it was correctly pointed out that the asymmetries in the sterile sector will be

modified by the leptonic chemical potentials that will be generated as soon as sterile neu-

trinos start to be produced. Including the evolution of the leptonic chemical potentials has

two important consequences: new sources of CP violation become relevant and washout

effects are effective. Leptons are fastly interacting through electroweak interactions in the

plasma and therefore it is a good approximation to assume they are in kinetic equilibrium.
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An important question is what is the flavour structure of these chemical potentials.

For T � 109GeV the Yukawa interactions of the tau and muon are very fast, which implies

that µ will be diagonal in the basis that diagonalises the charged lepton Yukawa matrix,

since no other interaction changing flavour is in equilibrium before the heavy neutrinos

are produced. Note however that this is not the basis where the neutrino Yukawas are

diagonal, the two are related by the mixing matrix V . As a result, when the evolution

of the lepton chemical potentials is taken into account, the CP phases of the matrix V

become relevant.

Adapting the derivation of [26] to this situation, we find that the evolution of the

CP-even and CP-odd parts of the neutrino densities: ρ± ≡ ρN±ρ̄N
2 and the lepton chemical

potentials , µα, to linear order in µα, ρ−, satisfy in this case:

ρ̇+ = −i[Hre, ρ+] + [Him, ρ−]−
γaN + γbN

2
{Y †Y, ρ+ − ρeq}

+iγbN Im[Y †µY ]ρeq + i
γaN
2

�
Im[Y †µY ], ρ+

�
,

ρ̇− = −i[Hre, ρ−] + [Him, ρ+]−
γaN + γbN

2

�
Y †Y, ρ−

�

+γbNRe[Y †µY ]ρeq +
γaN
2

�
Re[Y †µY ], ρ+

�
,

µ̇α = −µα

�
γbνTr[Y Y †Iα] + γaνTr

�
Re[Y †IαY ]r+

��

+(γaν + γbν)Tr
�
Re[Y †IαY ]r−

�
, (3.5)

where Hre ≡ Re[H], Him ≡ Im[H], Iα is the projector on flavour α and γa,bN , γa,bν are the

rates of production/annihilation of a sterile neutrino or a lepton doublet neglecting all

masses, after factorizing the flavour structure in the Yukawas,

γ
a(b)
N(ν) ≡

1

2k0

�

i

�

p1,p2,p3

ρeq(p1)|M(a(b))
N(ν),i|

2(2π)4δ(k + p1 − p2 − p3), (3.6)

where k is the momentum of the N or ν and a(b) refer to the s-channel (t,u-channels)

depicted in figure 1. In topology a the lepton and sterile neutrino are both in the initial or

final state, while topology b corresponds to those diagrams where one is in the initial and

other in the final state. Finally

r± ≡
�

i

�
p1,p2,p3

ρ±(p1)|M(a)
νi |2(2π)4δ(k + p1 − p2 − p3)

�
i

�
p1,p2,p3

ρeq(p1)|M(a)
νi |2(2π)4δ(k + p1 − p2 − p3)

. (3.7)

A similar derivation can be found in [28] and we agree with their findings.

These equations reduce to those in eq. (3.2) in the limit µ → 0 with Γi = y2i (γ
a
N +γbN ).

Most previous studies have assumed that the rates are dominated by the top quark

scatterings. In this case, the rates are given (in the Boltzman approximation) by the

well-known result [29, 30]

γbN,Q = 2γaN,Q = 2γbν,Q = 4γaν,Q =
3

16π3

y2t T
2

k0
. (3.8)
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N

Lα

Φ

N Lα

Φ

a
b

Figure 1. a, b topologies for annihilation/production of sterile neutrinos.

The factor of 2 difference between the rates of the N and the ν is due to the fact that the

lepton is a doublet and the sterile neutrino is a singlet. Note that there is a non-linear

term of the form O(µρ+), as first noted in [28]. More recently in [31], the equations have

been written in terms of the µB−Lα/3 chemical potentials, however not all the chemical

potentials (e.g. higgs and top quark) have been included. A full treatment including all

chemical potentials will be postponed for a future work, but we expect that including these

spectator effects will change the results by factors of O(1).

In [30, 32], it has been pointed out that the scattering processes L̄N ↔ WH get a

strong enhancement from hard thermal loops and are actually the dominant scatterings.

The results of [30, 32] however do not include the chemical potentials of spectators, so it

is not clear how to include them consistently in the above equations. We will neglect these

effects in the following. Note however that the lepton flavour structure of these and of the

top quark scatterings is the same.

It is easy to see also that total lepton number is conserved as it should:

2
�

α

µ̇α +Tr[ṙ−] = 0. (3.9)

Two approximations are often used in solving these equations: 1) assume that the mo-

mentum dependence of ρ± follows that of ρeq, i.e. kinetic equilibrium for the sterile states,

which implies r± = ρ±/ρeq are constants and the integro-differential equations become just

differential equations, 2) neglect the k0 dependence of the rates by approximating

�k−1
0 � � T−1

2
. (3.10)

The effect of these approximations has been studied numerically in [28] and the results do

not differ too much. We will therefore adopt both approximations that simplify consider-

ably the perturbative treatment.
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3.2 Lepton asymmetries in the sterile sector

We are going to solve these equations perturbing in the mixing angles up to third order.

We first consider the simpler case, neglecting leptonic chemical potentials and considering

in turn the evolution in a static Universe and in the expanding case.

3.2.1 Static Universe

We start with eq. (3.2) and assume y3 = 0. In this case, neither H nor Γ depend on time.

Defining ρNij/ρeq ≡ aij + ibij and taking into account the hermiticity of ρN we change the

matrix equation into a vector equation:

r ≡ (a11, a22, a12, b12, a13, b13, a23, b23, a33). (3.11)

At 0-th order the system of equations of eq. (3.2) can be rewritten as

ṙ(0) = A0r
(0) + h0, (3.12)

with

h0 ≡ (Γ1ρeq,Γ2ρeq, 0, . . . .0), (3.13)

and the matrix A0 is constant and has a block structure:

A0≡




(AI)4×4 0 0

0 (AII)4×4 0

0 0 0


 , (3.14)

AI≡




−Γ1 0 0 0

0 −Γ2 0 0

0 0 −Γ1+Γ2
2 −Δ12

Δ12 −Γ1+Γ2
2


 , AII≡




−Γ1/2 −Δ13 0 0

Δ13 −Γ1/2 0 0

0 0 −Γ2
2 Δ12 −Δ13

0 0 −(Δ12 −Δ13) −Γ2
2


 .

(3.15)

The matrix can be easily diagonalised and exponentiated so the general solution to the

equation is

r(0)(t) = eA0t

� t

0
dx e−A0xh0. (3.16)

At the next order we have to keep O(θij) in the Hamiltonian and translate the matrix

form into the vector form:

−i[H(1), ρ(0)(t)] → A1r
(0). (3.17)

The equation for the first order correction to the density is

ṙ(1) = A0r
(1) +A1r

(0)(t). (3.18)
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The solution at this order is therefore

r(1)(t) = eA0t

� t

0
dxe−A0xA1r

(0)(x). (3.19)

We can iterate this procedure to get the correction at order n:

ṙ(n)(t) = A0r
(n)(t) +

n−1�

i=1

Air
(n−i)(t), (3.20)

with solution

r(n)(t) = eA0t

� t

0
dxe−A0x

n−1�

i=1

Air
(n−i)(x). (3.21)

We can define the evolution operator

U0(t, x) ≡ eA0te−A0x, (3.22)

so that the solution can be written as

r(n)(t) =

� t

0
dx U0(t, x)

n−1�

i=1

Air
(n−i)(x). (3.23)

As a first estimate of the leptonic asymmetry that can be generated, we are interested in

Δρ33 since this is the sector that will never reach equilibrium (in the absence of mixing)

and therefore can act as reservoir of the leptonic asymmetry until the electroweak phase

transition [7].

One can easily compute the solution of the eq. (3.21) up to order n = 3, which is the

first order that gives a non-vanishing result, as expected from general considerations on

CP invariants. The result at finite t is not particularly illuminating but the limit t → ∞
is rather simple:

lim
t→∞

Δρ33
ρeq

≡ lim
t→∞

ρN33 − ρ̄N33

ρeq
= 2JW

(Γ1 − Γ2)Δ12Δ13(Δ12 −Δ13)�
Δ2

13 +
Γ2
1
4

� �
(Δ12 −Δ13)2 +

Γ2
2
4

� . (3.24)

A few comments are in order. We have not assumed any expansion in Γi in this expression,

only in the mixing angles. According to general theorems the equations should reach a

stationary solution if all the eigenvalues of the matrix A0 + A1 + A2 + . . . are real and

negative. However, because Γ3 = 0, one of the eigenvalues of A0 vanishes and it is lifted

only at second order in perturbation theory, ∼ θ2i3Γi, therefore we expect the perturbative

expansion should break down for t ∼ 1
θ2i3Γi

, which is the time scale of equilibration of the

third state. On the other hand, if θ is small, the perturbative solution should be accurate

for times t ≥ Γ−1
1(2). Indeed this is precisely what we find comparing the perturbative and

numerical solutions in figure 2.

The result is proportional to JW which is the only CP rephasing invariant that can

appear in this case. The result vanishes if any two of the masses or the yukawa’s are

degenerate, since the CP phase would be unphysical in this case.
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Figure 2. Comparison of numerical (blue) and perturbative (red) solution for Δρ33 as a function

of time, in the case with no expansion of the Universe. The two curves are indistinguishable (left

plot) until large times (right plot): the vertical line on the left plot corresponds to (θ231Γ1)
−1, while

those on the right one correspond to Γ−1
2 and Γ−1

1 respectively.

3.2.2 Expanding Universe

Let us turn now to the realistic case of an expanding Universe. As usual, we will consider

the evolution as a function of the scale factor x ≡ a, in such a way that the Raffelt-Sigl

equation becomes

d

dt
→ xHu(x)

∂

∂x
ρ(x, y)

����
fixed y

= −i[H(x, y), ρ(x, y)]− 1

2
{Γ(x), ρ(x, y)− ρeq(y)},

(3.25)

where Hu(x) is the Hubble parameter, Hu =

�
4π3g∗(T )

45
T 2

MPlanck
, and y ≡ p

T . Assuming for

simplicity a radiation dominated Universe with constant number of degrees of freedom,

during the sterile evolution time we can assume xT= constant that we can fix to be one.

Therefore the scaling of the different terms is

H(x, y) ≡ xW
ΔM2

2y
W †, Γi(x) ≡

ci
x
, xHu(x) ≡

1

M∗
Px

, (3.26)

where M∗
P ≡ MPlanck

�
45

4π3g∗(T0)
and g∗(T0) is the number of relativistic degrees of freedom

in the plasma during the sterile evolution.

Therefore the equation as function of x is:

ρ̇ = −ix2[WΔW †, ρ]− 1

2
{γ, ρ− ρeq}, (3.27)

where we have defined

Δij ≡
ΔM2

ij

2y
M∗

P , γi ≡ ciM
∗
P . (3.28)

The perturbative expansion works as in section 3.2.1, but now all the An(x) are x-depend-

ent: An(x) with n ≥ 1 scale like the Hamiltonian, ie. x2, while A0(x) contains terms that

scale with x2 and others that do not depend on x. Fortunately, there is an important

– 13 –
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simplification in that A0(x) can be diagonalised by an x-independent matrix, therefore the

path-ordered exponential can be easily evaluated. The result can be written in the same

form of eq. (3.23), with the evolution operator given by

U0(t, r) = e
� t
0 A0(x)dxe−

� r
0 A0(y)dy. (3.29)

At third order in the mixings, after algebraic simplifications and partial integrations,

the result can be given in terms of integrals of the form

Jn(α1,β1, . . . ,αn,βn, t) ≡
� t

0
dx1e

iα1
x31
3
+β1x1

� x1

0
dx2e

iα2
x32
3
+β2x2 . . .

� xn−1

0
dxne

iαn
x3n
3
+βnxn ,

(3.30)

where αi are combinations of Δij and βi are combinations of γi. Up to third order in the

perturbative expansion only integrals with n ≤ 3 appear.

Since we are in a regime where γi � |Δij |(1/3), the integrands are highly oscillatory

and hard to deal with numerically. To evaluate the integrals, we separate the integration

interval [0, t] = [0, t0] + [t0, t] with t0 such that t0|Δij |1/3 � 1 and t0γi � 1:

Jn(α1,β1, . . . ,αn,βn, t) = Jn(α1,β1, . . .αn,βn, t0) +ΔJn(α1,β1, . . .αn,βn, t0, t). (3.31)

To solve the integrals up to t0 we can safely Taylor expand in βi (which results in an

expansion in γ1,2/|Δij |) and write the integrals in terms of simpler integrals of the form:

Jnk(α1, . . . ,αn, t) ≡
� t

0
dx1x

k1
1 ei

α1x
3
1

3

� x1

0
dx2x

k2
2 ei

α2x
3
2

3 . . .

� xn−1

0
dxnx

kn
n ei

αnx3n
3 ,

(3.32)

up to third order in the βi expansion we just need integrals with n +
�

i ki ≤ 3. We can

use the relation

d

dx
[Fn(x)] = xnei

αx3

3 , (3.33)

with

Fn(α, x) = −3
n−2
3 (−iα)−

1+n
3 Γ

�
1 + n

3
,−1

3
iαx3

�
, (3.34)

to evaluate immediately the one-dimensional integrals in terms of incomplete Γ functions.

The integrals in the range [t0, t] can be approximated by the large t behaviour of the

J1n(α, t) functions, after resumming the Taylor series in βi. Further details are presented

in appendix A.

The finite t dependence of the asymmetry Δρ33 is rather complicated, but the asymp-

totic value is non-zero and rather simple:

lim
t→∞

Δρ33
ρeq

= −JWγ1γ2(γ2 − γ1) lim
t→∞

Im[J30(Δ12 −Δ13,−Δ12,Δ13, t)

+J30(Δ12 −Δ13,Δ13,−Δ12, t) + J30(Δ13,−Δ12,Δ12 −Δ13, t)

+J30(Δ13,Δ12 −Δ13,−Δ12, t)]. (3.35)

– 14 –
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This can be simplified to

lim
t→∞

Δρ33
ρeq

= −JW
γ1γ2(γ2 − γ1)

(Δ13Δ12Δ23)1/3
Im

�
I

�
Δ12

Δ23
,−Δ13

Δ23

�
+ I

�
−Δ12

Δ13
,−Δ23

Δ13

��
,

(3.36)

where

I

�
Δ2

Δ1
,
Δ3

Δ1

�
≡ (Δ1Δ2Δ3)

1/3

� ∞

0
dxei

Δ1x
3

3 J10(Δ2, x)J10(Δ3, x). (3.37)

Comparing eq. (3.36) and eq. (3.24) we see that in the expanding case the asymmetry

is cubic in γi and not linear. Note that the dependence on the yukawa’s is precisely that

expected from a flavour invariant CP asymmetry. In fact this is effectively the situation in

the expanding case, because the asymmetry is generated at times t � γ−1
i and the depen-

dence in the yukawa’s in this regime is therefore perturbative. This is in contrast with the

non-expanding case, where the asymmetry evolves all the way till t ∼ γ−1
i . To understand

the reason behind this different behavior, it is useful to recall the definition of Δij from

eq. (3.28). Then, we see that Δijx
3 � 1 implies ΔM2

ij/(4T ) � T 2/M∗
P = Hu(T ), therefore

in this regime the sterile neutrino oscillations are much faster than the Hubble parameter

and no asymmetry is produced anymore, since oscillations are averaged out. Thus in the

expanding Universe the generation of the asymmetry occurs at x ∼ |Δij |−1/3 � γ−1
i .

Until now we have neglected the matter potentials, however given the suppression in

three powers of γ of the leading result, there are corrections of same order coming from

the potentials, and in fact they are numerically more important.

The equation including the potentials in the basis with diagonal neutrino Yukawas is:

ρ̇ = −ix2[WΔW †, ρ]− i[v, ρ]− 1

2
{γ, ρ− ρeq}, (3.38)

where

vij =
y2i
8
M∗

P δij ≡ viδij . (3.39)

The result for the asymmetry including the potentials is given by:

lim
t→∞

Δρ33
ρeq

= JW lim
t→∞

Re [z1J30(Δ12 −Δ13,−Δ12,Δ13, t) + z2J30(Δ12 −Δ13,Δ13,−Δ12, t)

+ z2J30(Δ13,Δ12 −Δ13,−Δ12, t) + z3J30(Δ13,−Δ12,Δ12 −Δ13, t)] ,

(3.40)

with

z1 ≡ γ1γ2Δv + γ1v2Δγ + i

�
γ1γ2Δγ

2
− 2γ1v2Δv

�
,

z2 ≡
�
γ1v2 − γ2v1 + i

�γ1γ2
2

+ 2v1v2

��
Δγ ,

z3 ≡ −γ1γ2Δv − γ2v1Δγ + i

�
γ1γ2Δγ

2
− 2γ2v1Δv

�
. (3.41)

and Δv ≡ v2 − v1 and Δγ ≡ (γ2 − γ1).
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The leading terms O(v2γ) at asymptotic times t � γ−1
1,2 are:

lim
t→∞

Δρ33
ρeq

=
9y6t

2048π3
JW

y21y
2
2(y

2
2 − y21)M

∗2
P

|ΔM2
12ΔM2

13ΔM2
23|1/3

κ, (3.42)

where

κ ≡ |Δ12Δ13Δ23|1/3Im
�
J30(Δ12 −Δ13,−Δ12,Δ13, t)− J30(Δ12 −Δ13,Δ13,−Δ12, t)

−J30(Δ13,Δ12 −Δ13,−Δ12, t) + J30(Δ13,−Δ12,Δ12 −Δ13, t)
�
, (3.43)

depends only on the ratios of mass differences and/or the ordering of the states. This result

is parametrically the same as the result of [7] if we neglect the dependence of κ on the mass

differences and has the dependence on the yukawas expected from eq. (2.34).

Considering the naive seesaw scaling y2i ∼ 2mνMi
v2

, for mν ∼ 1 eV and assuming no big

hierarchies or degeneracies, i.e. M2
i ∼ ΔM2

ij ∼ M2, leads to

lim
t→∞

Δρ33
ρeq

∼ 2× 10−7JW

� mν

1 eV

�3� M

10GeV

�
. (3.44)

The asymmetry is highly sensitive to the light neutrino mass. Note that we have pushed the

value to the limit, a light neutrino mass in the less constrained 0.1 eV range would imply

three orders of magnitude suppression. The asymmetry grows linearly with the mass of

the heavy steriles. However, for masses larger than ∼ 10–100GeV lepton number violating

transitions via the Majorana mass could washout further the asymmetry, an effect that

requires a refinement of the formulation to be taken into account.

3.3 Lepton asymmetries in the active sector

The asymmetry generated ignoring the µ evolution depends only on the Dirac-type phase,

δ, appearing in W as we have seen. However when the evolution of the leptonic chemical

potentials is included, other phases contribute to the total lepton asymmetry. We will

perform a perturbative expansion to third order in the mixings of both V and W matrices.

The result at finite t � θ2i3(θ̄
2
i3)γ

−1
i can be written in the form:

Tr[µ](t) =
�

ICP

ICPAICP
(t), (3.45)

where all the four CP invariants appear, ICP =
�
JW , I

(2)
1 , I

(3)
1 , I

(3)
2

�
, given in eqs. (2.29).

At finite t, the result for the functions AICP
is well approximated by

A
I
(2)
1

(t) = y1y2(y
2
2 − y21)

�
1− γN

γ̄N

�
γ2NG1(t),

A
I
(3)
1

(t) = −y1y2(y
2
2 − y21)

�
1− γN

γ̄N

�
γ2NG2(t),

A
I
(3)
2

(t) = y1y2

�
1− γN

γ̄N

�
γNG3(t),

AJW (t) = γ1γ2

�
1− γN

γ̄N

�
G41(t)−

γN
2γ̄N

G42(t), (3.46)
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Figure 3. Functions A
I
(2)
1

(t) (left) and A
I
(3)
1

(t) (right) assuming the rates are dominated by top

quark scattering, and taking y2/
√
2 = y1 = 10−7, for two choices of ΔM2

12 = 1GeV2 (dashed)

and ΔM2
12 = 10−6 GeV2 (solid). tEW is the electroweak phase transition time, corresponding to

TEW � 140GeV.

where γN ≡ γaN + γbN and γ̄N ≡ 2γa
N+3γb

N
2 , while

G1(t) ≡
�
e−γ̄2t − e−γ̄1t

�
Re [iJ20(Δ12,−Δ12, t) + 2ΔvJ201(Δ12,−Δ12, t)]

+
1

2

2�

k=1

(−1)ke−γ̄ktRe [J210(Δ12,−Δ12, t) (−2Δv + i(2γ̄k − γ1 − γ2))] ,

(3.47)

and

G2(t) = G1(t)|γ̄1=0 , (3.48)

where we have defined γ̄i ≡ y2i γ̄N and Δv ≡ v2− v1, and the result for G3(t), G41(t), G42(t)

are lengthier and reported in the appendix B. These results would get modified for γit � 1

had we included the non-linear terms that modify the rate of thermalisation at large times.

In these equations there is an implicit expansion up to third order in γi(vi)/Δ
1/3 when

Δ1/3t � 1, while the terms γi(vi)t are resumed.

In figure 3 we plot the functions A
I
(2)
1

(t) and A
I
(3)
1

(t), which depend only on one

neutrino mass difference. We show two physical situations: one with very degenerate

neutrinos and the other with no strong degeneracies.

These two invariants are the only ones relevant for the scenario that has been consid-

ered in most previous studies, where it has been assumed that only two sterile neutrinos

have a role in generating the lepton asymmetry (see for instance [33] for a very recent

analysis). This is the situation in the limit of complete decoupling of N3, ensured by the

condition θi3 = 0, implying that only the invariants I
(2)
1 and I

(3)
1 survive. In [8] an approx-

imate analytical solution was obtained, expanding in the yukawa’s, under the assumption

that |Δ12|−1/3 � tEW � γ̄−1
i . In this limit, the result of eqs. (3.46) and (3.47) can be

simplified to

Tr[µ](tEW)�−
�
(y22−y21)I

(2)
1 −y22I

(3)
1

�
y1y2(y

2
2−y21)

�
1− γ̄N

γN

�
γ3N

Im[J20(Δ12,−Δ12,∞)]

TEW
.

(3.49)
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Comparing with eq. (2.34), we see that the dependence on the yukawa’s is again that

expected from a flavour invariant CP asymmetry. Using

Im[J20(Δ12,−Δ12,∞)] = −2

�
2

3

�1/3 π3/2

Γ[−1/6]

sign(Δ12)

|Δ12|2/3
, (3.50)

and γ̄N = 4
3γN , and assuming the naive seesaw relations y21 = 2

√
ΔsolM1

v2
, y22 = 2

√
ΔatmM2

v2

we find:

Tr[µ](tEW) � 10−2(I
(2)
1 − I

(3)
1 )

�
M1M

7/3
2

GeV5/3

�
M2

2

|ΔM2
12|

�2/3

, (3.51)

while for y21 = y22/2 = 10−14 (that would correspond to light neutrino masses in the eV

range and heavy ones in the GeV range) we would have

Tr[µ](tEW) � 7× 10−10 I
(2)
1 − 2I

(3)
1

|ΔM2
12(GeV2)|2/3 . (3.52)

Even if the CP invariants are of O(1), the asymmetry is too small unless there is a significant

degeneracy between the two states [8]. It is important however to realise that the naive

seesaw scaling is too naive and a full exploration of parameter space is necessary.

In figure 4 we plot the functions A
I
(3)
2

(t) and AJW (t). They depend on the two neutrino

mass differences, so we show three examples here: one in which there are no degeneracies,

one where there are two almost degenerate states, and the case where the three states are

almost degenerate. As in the previous case we see a large enhancement when only one of

the mass differences is small and a further enhancement when the two are small compared

to the absolute scale. In the case of AJW we find that there is a significant difference in

the regime Δ
1/3
ij t � 1 if we plot AJW (t) truncated to the terms of O(y6i ). As we will see

in the next section, the latter is much closer to the numerical result. The reason for this

difference is that at small times, Δ1/3t � 1, only some terms of order O(y8i ) are kept in

eqs. (3.46), while there is a strong cancellation if all had been included. Note however that

this effect is only important at times where the asymmetry is suppressed and seems to

affect only AJW .

It is interesting to note that even though the dependence on the yukawas of the func-

tions AICP
(t) is different (fourth or sixth order), the maxima for all cases are roughly of the

same order of magnitude. Note, however, that in the limit t � γ−1
i , only the contribution

of two invariants, JW and I
(3)
1 , survive:

lim
t→∞

Tr[µ](t) � − γN
2γ̄N

lim
t→∞

�
Δρ33(t)

ρeq

�

eq. (3.41)

− 24/3π3/2

31/3Γ
�
−1

6

�I(3)1

y1y2(y
2
2 − y21)

|Δ12|2/3
�
1− γN

γ̄N

�
γ2N , (3.53)

where we kept only the leading terms O(y4) proportional to I
(3)
1 and we have used the

result of eq. (3.50).
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Figure 4. Functions A
I
(3)
2

(t) (left) and AJW
(t) (right) assuming the rates are dominated by

top quark scattering, and taking y2/
√
2 = y1 = 10−7, for three choices of [ΔM2

12,ΔM2
13] =

[1, 2], [10−6, 2] and [10−6, 2 × 10−6] in GeV2 (dashed, dotted and solid). tEW is the electroweak

phase transition time, corresponding to TEW � 140GeV.

The first term in this expression corresponds to the expectation of [7], ie. the final

asymmetry is proportional to that stored in the third sterile state, eq. (3.40), while the

second term was missing in the simplified treatment of [7]. Note that they depend on

different CP invariants.

4 Numerical solution

In order to check the accuracy of the analytical solutions presented in the previous sec-

tion, we have solved the differential equations numerically. As shown in [28], the momen-

tum dependence does not change significantly the results so we will consider the average-

momentum approximation.

In figures 5–6 we compare the analytical and numerical solutions for the functions

AICP
(t) in the highly degenerate case (the values of the mixing angles are of O(10−2)). In

order to isolate the appropriate invariant we make the following choices:

• Case 1: θi3 = θ̄i3 = 0 isolates I
(2)
1 ,

• Case 2: θi3 = θ̄12 = 0 isolates I
(3)
1 ,

• Case 3: θ12 = θ̄i3 = 0 isolates I
(3)
2 ,

• Case 4: θ̄ij = 0 isolates IJW .

The numerical results normalised by the corresponding CP invariant are shown together

with the predictions of the previous section. In the case of JW , we plotted the function

AJW keeping only the terms of O(y6) that is more accurate at small t and the full function

at large t. The agreement in all cases is quite good. The differences observed at large t

come from the non-linear terms in the equations. We also show the numerical results of

the equations without them and find a very good agreement also at large t. Note that the

approximation works well in the regime γt � 1, that is in the strong washout regime of

the fast modes.
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Figure 5. Left: full numerical solution (solid blue) and numerical solution neglecting non-linear

terms (dotted green) for case 1, normalised to the invariant I
(2)
1 , compared with the prediction,

A
I
(2)
1

(t) (dashed red). Right: same for case 2 normalised to the invariant I
(3)
1 compared to A

I
(3)
1

(t).

The parameters are the same as in figure 3 for the degenerate case.
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Figure 6. Left: full numerical solution (solid blue) and numerical solution neglecting non-linear

terms (dotted green) for case 3, normalised to the invariant I
(3)
2 , compared with the prediction,

A
I
(3)
2

(t) (dashed red). Right: same for case 4 normalised to the invariant JW compared to AJW
(t).

The parameters are the same as in figure 4 for the double degenerate case.

Numerically it is very hard to go to regimes where the ratios γ/|Δ|1/3 become very

small, since the system becomes stiff. On the other hand, there is no reason why the

perturbative solution is not accurate in such regime. We will therefore assume this to be

the case in the following section and use the perturbative solution to perform a scan of

parameter space.

5 Baryon asymmetry

The observed baryon asymmetry is usually quoted in terms of the abundance, which is

the number-density asymmetry of baryons normalised by the entropy. After Planck this

quantity is known to per cent precision [34]:

Y exp
B � 8.6(1)× 10−11. (5.1)
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The lepton asymmetries in the left-handed (LH) leptons generated in the production of

the sterile neutrinos are efficiently transferred via sphaleron processes [35] to the baryons.

The baryon asymmetry is given by

YB =
28

79
YB−L. (5.2)

Since we have neglected spectator processes in the transport equations, the B−L asymme-

try is related to the chemical potentials computed in the previous sections by the relation

YB−L = − 90

π4g∗
Tr[µ], (5.3)

where g∗ = 106.75 (which ignores the contribution to the entropy of the sterile states).

Our estimate for the baryon asymmetry is therefore

YB � 3× 10−3 Tr[µ(t)]|tEW
. (5.4)

We have performed a first scan of the full parameter space of the model. Given the

theoretical uncertainties mentioned in different sections of the paper, we have considered

as interesting the points that can explain the baryon asymmetry within a factor of 5. For

this we have used the analytical solutions, even though in some regions of parameter space

they will not be precise, since they are based on a perturbative expansion on the mixing

angles of the matrices V and W . We have considered however a few cases where the angles

are not small and we find that the analytical solutions differ from the numerical ones only

in some global numerical factor of a few (ie. safely within our factor of 10 uncertainty),

but the time dependence is very similar.

Even with an analytical expression the exploration of the large parameter space is a

challenge. We have used the package Multinest [11, 12] to perform a scan on the Casas-

Ibarra parameters [36], where the Yukawa matrix is written as

Y = −iU∗
PMNS

√
mlightR(zij)

T
√
M

√
2

v
. (5.5)

mlight is a diagonal matrix of the light neutrino masses and R is a complex orthogonal

matrix that depends on three complex angles zij . We fix the light neutrino masses and

mixings to the present best fit points in the global analysis of neutrino oscillation data of

ref. [37] and leave as free parameters: three complex angles, the three phases of the PMNS

matrix, the lightest neutrino mass as well as the heavy Majorana masses that are allowed

to vary in the range Mi ∈ [0.1, 100]GeV. In total thirteen free parameters.

The scan searches for minima of the quantity | log10 |YB(tEW)/Y exp
B || (in the range

≤ 1.5) and the MultiNest algorithm is optimised to sample properly when there are several

maxima. For the determination of YB we use the analytical results of the previous sections,

for which the CP invariants are computed directly from the matrix elements of the V,W

matrices that can be easily calculated by diagonalising the Yukawa mass matrix obtained

in the Casas-Ibarra parametrization. Since the mechanism to work requires that at least

one of the modes does not get to equilibrium before the electroweak phase transition we
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restrict the search to the range where one of the yukawa eigenvalues, y3, is much smaller

than the others and the following conditions are satisfied

y3 ≤ 0.01Min[y1, y2],
�

i=1,2

Γi

�
|Vi3|2 + |Wi3|2

�
≤ 0.01Hu(TEW). (5.6)

Furthermore, since the kinetic equations neglect lepton number violating effects in the

rates, we impose additionally the constraint

�
Mi

TEW

�2

Γi � Hu(TEW). (5.7)

We first consider a case where one of the sterile neutrinos is effectively decoupled from

baryon number generation, that we can assume to be N3. This can be achieved with the

choice of parameters:

m3(1) = 0, zi3 = 0, R(zij) → R(zij)(P ), (5.8)

for the IH(NH), where P is the 123 → 312 permutation matrix (only necessary for the

NH). With this choice, only the terms corresponding to the CP invariants I
(2)
1 and I

(3)
1

contribute. This case is the one that has been considered in most previous works on the

subject [8, 9, 28, 31, 38], where the number of parameters is reduced to six: only one

complex angle, two PMNS CP phases and two Majorana neutrino masses are relevant.

It is believed that a large degeneracy of the two sterile neutrinos is needed to obtain the

correct baryon asymmetry. In figure 7 we show the result of the scan under the conditions

of eq. (5.8) on the plane ΔM12 ≡ M2 −M1 versus M1 for normal and inverted orderings

of the light neutrinos. The different colours correspond to values of YB > 1/5, 1, 5× Y exp
B

(blue,green,red). Successful leptogenesis is possible in a larger range of parameter space

for IH than for NH. In the range shown our results agree reasonably well with those in

ref. [39] for the IH, while the range for NH looks a bit smaller. We see that there are a

significant number of points for which the degeneracy is mild for the IH. We have analysed

more carefully some of these points by solving the full numerical equations. We find that

even though these points correspond to cases where the angles in V,W are not small, the

analytical and numerical solution agree very well and have the same t dependence as shown

in figure 8. Note that the numerical solution is difficult at large times for non-degenerate

solutions and the standard methods that we use fail. An optimised numerical method is

needed to solve the stiffness problem and this will be studied elsewhere. It is very interesting

to correlate the baryon asymmetry with observables that could be in principle measured

such as the Dirac CP phase of the PMNS matrix, the amplitude of neutrinoless double

beta decay or the active-sterile mixings that control the probability for the heavy sterile

states to be observed in accelerators or in rare decays of heavy mesons. The effective mass

entering the 0νββ decay is given by

mββ =

3�

i=1

U2
eimi +

3�

i=1

U2
e(i+3)Mi

M0νββ(Mi)

M0νββ(0)
, (5.9)
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Figure 7. Points on the plane ΔM = M2 − M1 versus M1 for which YB > 1/5 × Y exp
B (blue),

YB > Y exp
B (green) and YB > 5 × Y exp

B (red) for NH (left) and IH (right), with only two sterile

neutrino species.

-6 -5 -4 -3 -2 -1 010-18
10-15
10-12
10-9
10-6
0.001

1

Log10
t
tew

Tr@mD

Figure 8. Comparison of the analytical (red-dashed) and numerical (blue-solid) solution for one

of the points with mild degeneracy and YB ≥ Y exp
B , corresponding to log10(M1(GeV )) = 0.9 and

log10(ΔM(GeV )) = −0.92 and yukawa couplings y1 = 1.3× 10−6, y2 = 9.8× 10−9.

where M0νββ are the Nuclear Matrix Elements (NMEs) defined in [40].3 The first term

corresponds to the standard light neutrino contribution and the second is the contribution

from the heavy states. Uei with i ≥ 4 is the active-sterile neutrino mixing.

In figure 9 we show the results for the active-sterile mixing as function of the sterile

mass and compare them with present direct bounds and the prospects of SHiP [43] and

LBNE near detector [44]. We show the result for M1 but the one for M2 is almost identical.

We see that most of the parameter space for successfull baryogenesis is not excluded by

present constraints and that the active-sterile mixings tend to be larger for the IH. A

3The results for the NMEs computation in the interacting shell model [41, 42] are available in appendix A

of [40].
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Figure 9. Points on the plane |Ue4|2(left), |Uµ4|2(middle), |Uτ4|2(right) versus M1 for which YB is

in the range [1/5 − 1] × Y exp
B (blue) and [1 − 5] × Y exp

B (green) for NH (up) and IH (down), with

only two sterile neutrino species. The red bands are the present constraints [45], the solid black

line shows the reach of the SHiP experiment [43] and the solid red line is the reach of LBNE near

detector [44].

Figure 10. Points on the plane �deg = |M2−M1|
M2+M1

versus |Ue4|2 for which the asymmetry is in the

range [1/5, 5]× Y exp
B in the range explored for IH.

sizeable region in the range of the GeV could be explored in the future experiment SHiP

in the case of the IH and by LBNE near detectors. It is interesting to note that the less

degenerate solutions can not have very small active-sterile mixing, as shown in figure 10,

where we plot the points on the plane �deg ≡ |M2−M1|/(M2+M1) versus the active-sterile

mixing in the electron flavour. The degeneracy can be lifted to some extent at the expense

of larger yukawa couplings which also imply larger mixings.

We have looked for direct correlations of the baryon asymmetry with the phases of the

PMNS matrix. We have found that the distribution on the Dirac phase and the Majorana
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Figure 11. Distribution of m1 for points that satisfy YB > Y exp
B for the NH.

phase are flat. This is due to the fact that the complex angle can provide the necessary CP

violation, even if the PMNS phases would vanish. The same is true for the effective mass of

neutrinoless double beta decay, which depends on the Majorana phase. A dedicated scan

is needed to quantify how the putative measurement of various observables could constrain

the lepton asymmetry. This will be done elsewhere.

In the general case, N3 is also relevant and the main difference with respect to the

previous situation is that there is a significantly enlarged parameter space where degeneracy

is not necessary. This was already found in refs. [46] for some points of parameter space.

In figure 12 we show the points on the plane (ΔM12,M1) for the general case. The active-

sterile mixings are shown in figure 13. These mixings can be larger in this case, specially

in the case of the NH. The SHiP prospects are therefore more promising in this context.

As in the N = 2 case there is no direct connection between the asymmetry and the PMNS

CP phases. On the other hand, the lightest neutrino mass is non-zero in this case, but the

requirement that one yukawa needs to be significantly smaller than the others, eq. (5.6),

implies that the lightest neutrino mass must be small. In figure 11 we show the distribution

of this quantity for those points that satisfy YB ≥ Y exp
B in the case of NH (the IH being

very similar).

6 Conclusions

We have studied the mechanism of leptogenesis in a low-scale seesaw model that is arguably

the simplest extension of the Standard Model that can account for neutrino masses. For

Majorana neutrino masses in the GeV range, sizeable lepton asymmetries can be generated

in the production of these states some of which never reach thermal equilibrium before the

electroweak phase transition. Lepton asymmetries are efficiently transferred to baryons

via sphaleron processes. This mechanism was proposed in [7, 8] and studied in many

works, but a full exploration of parameter space in the general case of three neutrinos
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Figure 12. Points on the plane ΔM = M2 − M1 versus M1 for which YB > 1/5 × Y exp
B (blue),

YB > Y exp
B (green) and YB > 5× Y exp

B (red) for NH (left) and IH (right), in the general case with

three neutrinos.

Figure 13. Points on the plane |Ue4|2(left), |Uµ4|2(middle), |Uτ4|2(right) versus M1 for which YB

is in the range [1/5, 1] × Y exp
B (blue) and [1 − 5] × Y exp

B (green) for NH (up) and IH (down), with

three sterile species. The red bands are the present constraints, the solid black line shows the reach

of the SHiP experiment [43] and the solid red line is the reach of LBNE near detector [44].

is lacking. To this aim we have developed an accurate analytical approximation to the

quantum kinetic equations which works both in the weak and strong washout regimes of

the fast modes (there is always a slow mode that does not reach thermal equilibrium before

the EW phase transition). It relies on a perturbative expansion in the mixing angles of the

two unitary matrices that diagonalise the Yukawa matrix. This analytical approximation

allows us to identify the relevant CP invariants, and explore with confidence the regime

of non-degenerate neutrino masses which is very challenging from the numerical point of

view. We have used this analytical solution to scan the full parameter space using the

MultiNest package to identify the regions where the baryon asymmetry is within an order

of magnitude of the experimental value. We have performed first a scan in the simpler
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setting where one of the sterile neutrino decouples, which reduces the parameter space,

and is the approximation that has been considered in most previous works on the subject,

for example in the so-called νMSM. Although baryon asymmetries tend to be larger in the

case of highly degenerate neutrinos, we find solutions with a very mild degeneracy that

also correlate with a larger active-sterile mixing. These non-degenerate solutions appear

for an inverted ordering of the light neutrinos. On the other hand we do not observe a

direct correlation with other observables, such as the PMNS CP phases nor the neutrinoless

double beta decay amplitude.

We have also performed a scan in the full parameter space, with the only requirement

that one of the yukawa matrix eigenvalues is very small, and that one mode will not reach

equilibrium before the electroweak transition, for the washout not to be complete. The

main difference with the simpler case of two neutrinos is that the parameter space with

successfull baryogenesis is significantly enlarged, in particular as regards non-degenerate

spectra. Also the active-sterile mixings can reach larger values, particularly in the normal

hierarchy case, improving the chances of future experiments such as SHiP or LBNE to find

the GeV sterile neutrinos. There is much less difference in this case between normal and

inverted neutrino orderings and also no direct correlation with the PMNS phases. On the

other hand, the requirement of a small yukawa eigenvalue implies that the lightest neutrino

mass cannot be large.

A number of refinements are needed to improve the precision of the determination of

the baryon asymmetry. First a more precise determination of the scattering rates of the

sterile neutrinos is required. Most previous studies, and this one, have included only top-

quark scatterings, but it has been pointed out recently that gauge scatterings are also very

important. A correct treatment of these processes in the kinetic equations is necessary.

Also the kinetic equations neglect effects of O((Mi/T )
2). Such effects are not so small

for masses in the GeV near the electroweak phase transition and their effect should be

quantified. Finally, spectator processes and the asymmetries of fields other than the sterile

neutrinos and LH leptons have not been taken into account in the kinetic equations. A

proper treatment could easily bring corrections of O(1). Finally, a more ambitious scan

of parameter space should define more accurately the limits of eq. (5.6) for successfull

baryogenesis. These effects will be studied in the future.
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A Results for the perturbative integrals

A.1 One dimensional integrals

We just need them up to O(β/α)2:

J1(α1,β1, t) � J10(α1, t0) + β1J11(α1, t0) +
β2
1

2
J12(α1, t0) +ΔJ1(α1,β1, t, t0),

(A.1)

with

ΔJ1(α1,β1, t, t0) =
�

n

βn
1

n!
J1n(α1, t, t0) � i

�

n

βn
1

n!


 ei

α1t
3
0

3

α1t
2−n
0

− ei
α1t

3

3

α1t2−n


+O(t−4, t−4

0 )

= i


ei

α1t
3
0

3
+β1t0

α1t20
− ei

α1t
3

3
+β1t

α1t2


 . (A.2)

We can factor out the α dependence and define:

J10(α, t) =
1

|α|1/3
�
Re
�
J10(1, t|α|1/3)

�
+ isign(α)Im

�
J10(1, t|α|1/3)

��
. (A.3)

A.2 Two dimensional integrals

We just need them up to O(β/α):

J2(α1,β1,α2,β2, t) � J200(α1,α2, t0) + β1J210(α1,α2, t0) + β2J201(α1,α2, t0)

+ΔJ2(α1,β1,α2,β2, t, t0), (A.4)

where if
�

i αi �= 0:

ΔJ2(α1,β1,α2,β2, t, t0) =


J1(α2,β2, t0) + i

ei
α2t

3
0

3
+β2t0

α2t20


ΔJ1(α1,β1, t, t0)

−i


i

ei
�

i αit
3
0

3
+
�

i βit0

α2
�

i αit40
− i

ei
�

i αit
3

3
+
�

i βit

α2
�

i αit4


 , (A.5)

and for those terms where
�

i αi = 0

ΔJ2(α1,β1,α2,β2, t, t0) =


J1(α2,β2, t0) + i

ei
α2t

3
0

3
+β2t0

α2t20


ΔJ1(α1,β1, t, t0)

− i

α2

�� t

t0

e
�

i βix

x2

�
. (A.6)
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We can factorize the α-dependence:

J200(−α,α, t) =
1

|α|2/3
�
Re
�
J200(−1, 1, t|α|1/3)

�
+ i sign(α)Im

�
J200(−1, 1, t|α|1/3)

��
,

J201(−α,α, t) =
1

|α|
�
Re
�
J201(−1, 1, t|α|1/3)

�
+ i sign(α)Im

�
J201(−1, 1, t|α|1/3)

��
,

J210(−α,α, t) =
1

|α|
�
Re
�
J210(−1, 1, t|α|1/3)

�
+ isign(α)Im

�
J210(−1, 1, t|α|1/3)

��
, (A.7)

and reduce the integrals to the basic ones.

A.3 Three dimensional integrals

We need the integrals up to O(β/α)0 in this case. We can use the relation:

J30(α1,α2,α3, t) = J10(α1, t)J200(α2,α3, t)−
� t

0
dx e

iα2x
3

3 J10(α1, x)J10(α3, x).

(A.8)

Since
�

i αi = 0 for the cases of interest, we can rewrite the result in terms of some basic

integrals, I1 and I2:

J200(α1,α2, t) =
1

|α1α2|1/3
I1
�
|α2/α1|, sign(α2), sign(α1), t|α1|1/3

�
, (A.9)

and
� t

0
dx e

iα2x
3

3 J10(α1, x)J10(α3, x) =
I2
�
|α1/α2|, sign(α1), sign(α3), sign(α2), t|α2|1/3

�

|α1α2α3|1/3
,

(A.10)

where

I1(r, s1, s2, t) ≡
� t

0
dx eis2x

3/3J10(s1, r
1/3x), (A.11)

I2(r, s1, s2, s3, t) ≡
� t

0
dx eis3x

3/3J10(s1, r
1/3t)J10(s2, (−s3/s2 − s1/s2r)

1/3t). (A.12)

B Pertubative results for the invariants JW and I
(3)
2

The finite t perturbative results proportional to the invariants JW are given by the following

expressions (we have used the property γi ∝ vi to simplify them):

AJW (t) = γ1γ2

�
1− γN

γ̄N

�
G41(t)−

γN
2γ̄N

G42(t), (B.1)

where

G41(t)≡
2�

k=1

(−1)k e−γ̄kt

�

�

i<j

Re
�
aijJ20(Δij ,−Δij , t0)+bijJ201(Δij ,−Δij , t0)+c

(k)
ij (t)J210(Δij ,−Δij , t0)

��
,

(B.2)
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with

a12 = i, b12 = 2Δv, c
(k)
12 = −Δv +

i

2
(2γ̄k − γ1 − γ2),

a13 = −i, b13 = 2v1, c
(k)
13 = −v1 −

i

2
(2γ̄k − γ1),

a23 = i, b23 = −2v2, c
(k)
23 = v2 +

i

2
(2γ̄k − γ2),

and Δv ≡ v2 − v1, Δγ ≡ (γ2 − γ1).

G42(t) ≡ Re
�
d1J30(Δ12 −Δ13,−Δ12,Δ13, t) + d2J30(Δ12 −Δ13,Δ13,−Δ12, t)

+d3J30(Δ13,Δ12 −Δ13,−Δ12, t) + d4J30(Δ13,−Δ12,Δ12 −Δ13, t)

+d5J30(Δ12,−Δ12 +Δ13,−Δ13, t) + d6J30(Δ12,−Δ13,−Δ12 +Δ13, t)
�
,

(B.3)

with

d1 = z1 + i
γ1
2

�
2Δv + iΔγ

��
2v2 − i(2γ̄2 − γ2)

�
e−γ̄2t,

d2 = z2 + i
Δγ

2

�
− 2v1 + iγ1

��
2v2 − i(2γ̄2 − γ2)

�
e−γ̄2t,

d3 = z2 − i
Δγ

2

�
2v2 + iγ2

��
2v1 + i

�
2γ̄1 − γ1

��
e−γ̄1t,

d4 = z3 + i
γ2
2

�
2Δv − iΔγ

��
2v1 + i(2γ̄1 − γ1)

�
e−γ̄1t,

d5 =
γ1
2

�
2v2 + iγ2

��
e−γ̄1t(2iΔv + 2γ̄1 − γ1 − γ2)− e−γ̄2t(2iΔv + 2γ̄2 − γ1 − γ2)

�
,

d6 = −γ2
2

�
2v1 − iγ1

��
e−γ̄1t(2iΔv + 2γ̄1 − γ1 − γ2)− e−γ̄2t(2iΔv + 2γ̄2 − γ1 − γ2)

�
.

(B.4)

On the other hand, for the invariant I
(3)
2

A
I
(3)
2

(t) = y1y2

�
1− γN

γ̄N

�
γNG3(t), (B.5)

G3(t) ≡
2�

k=1

(−1)k e−γ̄kt

��

i<j

Re
�
a�ijJ20(Δij ,−Δij , t0) + b�ij(t)J201(Δij ,−Δij , t0)

+ c
�(k)
ij (t)J210(Δij ,−Δij , t0)

�
+Re

�
w1J30(Δ12,−Δ12 +Δ13,−Δ13, t)

+ w2J30(Δ12,−Δ13,−Δ12 +Δ13, t)
��

, (B.6)
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with

w1 =
1

2
[2v2γ1 + iγ1γ2] , w2 =

1

2
[−2v1γ2 + iγ1γ2] , (B.7)

and

a�12 = iγ2, b�12 = 2γ2v2 − v1γ2 − v2γ1, c
�(k)
12 =

1

2
γ2

�
− 2Δv + i(2γ̄k − γ2 − γ1)

�
,

a�13 = −iγ1, b�13 = 2γ1v1, c
�(k)
13 = −1

2
γ1

�
2v1 + i(2γ̄k − γ1)

�
,

a�23 = iγ2, b�23 = −2γ2v2, c
�(k)
23 =

1

2
γ2

�
2v2 + i(2γ̄k − γ2)

�
.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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1 Introduction

It is well known that minimal extensions of the Standard Model that accommodate mas-

sive neutrinos, such as the type I seesaw models, could also explain the observed matter-

antimatter asymmetry in the universe [1]. The two new ingredients that make this possible

are the existence of new particles that are not in thermal equilibrium sometime before

the electroweak phase transition (TEW � 140GeV) and the presence of new CP-violating

interactions of these particles.

Two basic scenarios have been shown to work. In the first one, the heavy Majorana

singlets decay out of equilibrium generating a lepton asymmetry that sphaleron processes

recycle into a baryonic one. These neutrinos have masses well above the electroweak scale,

typically M � 108 − 109GeV [2, 3] and M � 106GeV when B −L is almost conserved [4],

while in resonant leptogenesis masses in the TeV scale are possible [5]. For a comprehensive

review and references of this very well studied scenario see ref. [6]. In the second scenario,

the heavy Majorana singlets have masses below the electroweak scale, and therefore their

Yukawa couplings are small enough that one or more of these states might not reach

thermal equilibrium by the time the electroweak phase transition takes place. A lepton

(and baryon) asymmetry can be generated when the states are being produced, i.e. at

freeze-in. The sterile states get populated via Yukawa interactions, but the coherence

between collisions is essential to produce a CP asymmetry, via the interference of CP-odd

and CP-even phases. This is why this mechanism is often referred-to as baryogenesis from

neutrino oscillations. It was first proposed by Akhmedov, Rubakov and Smirnov (ARS) in

their pioneering work [7] and pursued, with important refinements in references [8, 9]. A

list of recent references is [10–15].

In [15], we studied this second scenario and explored the available phase space for

successful leptogenesis in the minimal models with two or three extra singlets, N = 2, 3.

– 1 –
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In particular we considered an accurate analytical approximation, where we could identify

the relevant CP invariants, and that helped us explore the full parameter space. The case

with N = 2 is effectively equivalent to the popular νMSM [8], which is a N = 2+1 model,

where the lighter neutrino plays the role of dark matter and decouples from the problem

in the generation of the baryon asymmetry. The original ARS scenario on the other hand

required the interplay of all the three species. The analytical approximation of [15] allowed

to clarify these different scenarios.

The purpose of this paper is twofold. First, we will refine our previous study in

various aspects. In [15] (like in most previous works) the collision terms only included the

dominant top quark scatterings. As has been known for sometime [16, 17], scatterings off

gauge bosons, as well as the resumed decays and inverse decay processes, are also very

important. These rates have been computed in [17, 18] in the limit of vanishing leptonic

chemical potentials. In the generation of lepton asymmetries, it is very important however

to include the effect of the latter, since these will tend to washout the asymmetry. In

section 2 we derive new kinetic equations including all the scattering processes considered

in [17, 18], that we have re-evaluated in the presence of small leptonic chemical potentials.

Furthermore Fermi-Bose statistics is consistently used through-out.

The second important improvement concerns our scans of parameter space. In our

previous study we speeded-up the scan using the analytical approximation. This forced

us to avoid some regions in parameter space, to ensure that the approximation was good

enough. We have now optimized significantly the numerical solution of the kinetic equa-

tions, in particular addressing the stiffness problem. The analytical approximation is no

longer needed, and therefore the ad hoc constraints on parameter space are avoided. We

use a Bayesian approach to extract posterior probabilities on the relevant observables of the

model, from a prediction of the measured baryon asymmetry, using the Multinest package.

In section 3, we present the results of these scans of parameter space.

In the second part of the paper, we address the question: to what extent it would be

possible to predict quantitatively the baryon asymmetry, within the minimal model N = 2,

if the heavy neutrino states would be discovered in future experiments, such as SHiP. In

section 4, we derive approximate analytical formulae valid in the range within SHiP reach,

which demonstrate the complementarity of the different measurements: mixings and masses

of the extra states from direct searches, neutrinoless double beta decay and the CP phase

measurable in neutrino oscillations. The numerical study confirms these expectations and

allows us to answer the question in the affirmative if nature is kind enough to provide us

with positive signals at SHiP and an inverted neutrino ordering. Furthermore we show how

such SHiP measurements could constrain the CP-violating phases of the PMNS matrix.

2 Kinetic equations

The Lagrangian of the model is given by:

L = LSM −
�

α,i

L̄αY αiΦ̃N i
R −

3�

i,j=1

1

2
N̄ ic

RM ijN j
R + h.c.,

– 2 –
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where Y is a 3×3 complex matrix andM a symmetric matrix. One convenient parametriza-

tion is in terms of the eigenvalues of the Y andM matrices, together with two unitary matri-

ces, V and W . In the basis where the Majorana mass is diagonal, M = Diag(M1,M2,M3),

the neutrino Yukawa matrix is given by:

Y ≡ V †Diag(y1, y2, y3)W. (2.1)

Without loss of generality, using rephasing invariance, we can reduce the unitary matrices

to the form:

W = U (φ12,φ13,φ23, d)
†Diag

�
1, eiα1 , eiα2

�
,

V = Diag
�
1, eiβ1 , eiβ2

�
U
�
φ̄12, φ̄13, φ̄23, d̄

�
, (2.2)

where1

U(α,β, γ, δ) ≡




cosα sinα 0

− sinα cosα 0

0 0 1







cosβ 0 sinβe−iδ

0 1 0

− sinβeiδ 0 cosβ







1 0 0

0 cos γ sin γ

0 − sin γ cos γ


 . (2.3)

Obviously not all the parameters are free, since this model must reproduce the light neu-

trino masses, which approximately implies the seesaw relation:

mν � −v2

2
Y

1

M
Y T , (2.4)

where v = 246GeV is the vev of the Higgs. A very convenient parametrization that takes

this constraint into account is the Casas-Ibarra one [19], where the Yukawa matrix can be

written in terms of the light neutrino masses and mixings as

Y = −iU∗
PMNS

√
mlightR(zij)

T
√
M

√
2

v
, (2.5)

where mlight is a diagonal matrix of the light neutrino masses, UPMNS(θ12, θ13, θ23, δ,φ1,φ2)

is the PMNS matrix that describes the light neutrino mixing, M is the diagonal matrix of

the heavy neutrino masses, and R is a complex orthogonal matrix, that depends generically

on one (three) complex angle(s) zij for N = 2 (N = 3).

The kinetic equations that describe the production of sterile neutrinos in the early

Universe have been studied in many previous works, see for example [11–13]. In this

work we have rederived these equations with the following refinements with respect to our

previous work [15]:

• Fermi-Dirac or Bose-Einstein statistics is kept throughout

• Collision terms include 2 ↔ 2 scatterings at tree level with top quarks and gauge

bosons, as well as 1 ↔ 2 scatterings including the resummation of scatterings medi-

ated by soft gauge bosons as obtained in refs. [16–18]

1Note the unconventional ordering of the 2×2 rotation matrices in U .
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• Leptonic chemical potentials are kept in all collision terms to linear order

• Include spectator processes

As usual we assume that all the spectator particles are in kinetic equilibrium. On the other

hand, we neglect the effects of the top quark and Higgs chemical potentials. These effects

are expected to be smaller than the effect of thermal masses in 2 ↔ 2 processes that we

are neglecting. Note that, in contrast with the effects of the lepton chemical potential, the

former do not bring in any new flavour structure.

The starting point to derive the equations is the Raffelt-Sigl formalism [20], where the

sterile neutrino density satisfies the equation:

dρN (k)

dt
= −i[H, ρN (k)]− 1

2
{Γa

N , ρN}+ 1

2

�
Γp
N , 1− ρN

�
, (2.6)

where

H ≡ M2

2k0
+ VN (k), VN (k) ≡ T 2

8k0
Y †Y, (2.7)

and Γa
N (k) and Γp

N (k) are the annihilation and production rates of the sterile neutrinos.

The result can be written as

Γp
Nij = Y †

iαρF

�
k0
T

− µα

�
γN (k, µα)Yαj ,

Γa
Nij = Y †

iα

�
1− ρF

�
k0
T

− µα

��
γN (k, µα)Yαj , (2.8)

where ρF (y) = (exp y+1)−1 is the Fermi-Dirac distribution and µα is the leptonic chemical

potential normalised by the temperature. γN contain the contributions from all 2 → 2

processes that produce an N :

Q̄t → l̄N ; tl → QN ; Q̄l → t̄N ; Wl → φ̄N ; lφ → WN ; Wφ → l̄N, (2.9)

and 1 ↔ 2 processes: φ → l̄N including resummed soft-gauge interactions. All these

contributions have been computed for vanishing leptonic chemical potential in [10, 17, 18].

We have followed their methods including the effects of a lepton chemical potential to

linear order.

Defining

γN (k, µα) � γ
(0)
N (k) + γ

(2)
N (k)µα, (2.10)

and

γ
(1)
N ≡ γ

(2)
N − ρ�F

ρF
γ
(0)
N , (2.11)

with ρ�F (y) ≡
dρF (y)

dy , the functions γ
(i)
N get contributions from quark (Q), gauge scattering

(V) and the 1 → 2 resummed processes (LPM):

γ
(i)
N = γ

(i)
LPM + y2t γ

(i)
Q + (3g2 + g�2)

�
γ
(i)
V + γ

(i)
IR log

�
1

3g2 + g�2

��
. (2.12)

– 4 –
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The functions γ
(i)
Q,V depend only on the ratio k0/T , while γ

(i)
LPM has non-trivial temperature

dependence due to the runnings of the coupling constants.2 In figure 1 the three functions

are plotted, where the two lines labeled LPM curve correspond to two temperatures 104GeV

and 1010GeV, while

γ
(0)
IR = 2γ

(1)
IR =

T 2

256πk0

ρB
ρF

, γ
(2)
IR = γ

(0)
IR

ρ�F
ρF

+ γ
(1)
IR , (2.13)

where ρB(y) = (exp y − 1)−1 is the Bose-Einstein distribution.

Inserting these functions in the kinetic equation we get:

dρN
dt

= −i[H, ρN ]− γ
(0)
N

2

�
Y †Y, ρN − ρF

�
+ γ

(1)
N ρFY

†µY

−γ
(2)
N

2

�
Y †µY, ρN

�
, (2.14)

where µ ≡ Diag(µα). The equation for the antineutrino (opposite helicity state) density is

the same but changing µ → −µ and Y → Y ∗.

It is often useful to consider instead the evolution of the CP conserving and violating

combinations:

ρ± ≡ ρN ± ρN̄
2

. (2.15)

The equations for these combinations are:

ρ̇+ = −i[Hre, ρ+] + [Him, ρ−]−
γ
(0)
N

2

�
Re
�
Y †Y
�
, ρ+ − ρF

�

+iγ
(1)
N Im

�
Y †µY

�
ρF − i

γ
(2)
N

2

�
Im
�
Y †µY

�
, ρ+

�
− i

γ
(0)
N

2

�
Im
�
Y †Y
�
, ρ−
�
,

ρ̇− = −i[Hre, ρ−] + [Him, ρ+]−
γ
(0)
N

2

�
Re
�
Y †Y
�
, ρ−
�

+γ
(1)
N Re

�
Y †µY

�
ρF − γ

(2)
N

2

�
Re
�
Y †µY

�
, ρ+

�
− i

γ
(0)
N

2

�
Im
�
Y †Y
�
, ρ+ − ρF

�
.

(2.16)

Finally we need the equations that describe the evolution of the leptonic chemical

potentials. This is obtained from the equation that describes the evolution of the conserved

charges in the absence of neutrino Yukawas, that is the B
3 − Lα numbers. These numbers

can only be changed by the same out of equilibrium processes that produce the sterile

neutrinos:

dnB/3−Lα

dt
=

1

2

�

p
{Γa

l (p), ρl(p, µ)}αα − 1

2

�

p

�
Γp
l (p), 1− ρl(p, µ)

�
αα

. (2.17)

2For the details of the calculation see [18].
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Figure 1. γ
(i)
V k0/T

2 (solid), γ
(i)
Q k0/T

2 (dashed), γ
(i)
LPM (k0)k0/T

2 for T = 104 GeV (dotted) and

γ
(i)
LPM (k0)k0/T

2 for T = 1010 GeV (dash-dotted) as a function of k0/T .
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where
�
p ≡
� d3p

(2π)3
. Since (ρl)αα = ρF

�p0
T − µα

�
, it is possible to relate the integrated rates

of these equations to those of the sterile neutrinos and their densities:

ṅB/3−Lα
= −2

�

k

�
γ
(0)
N

2

�
Y ρNY † − Y ∗ρN̄Y T

�
αα

+ µα

�
γ
(2)
N

2

�
Y ρNY † + Y ∗ρN̄Y T

�
αα

− γ
(1)
N Tr

�
Y Y †Iα

�
ρF

��
, (2.18)

or in terms of ρ±:

ṅB/3−Lα
= −2

�

k

�
γ
(0)
N Tr

�
ρ−Re

�
Y †IαY

�
+ iρ+Im

�
Y †IαY

��

+ µα

�
γ
(2)
N Tr

�
ρ+Re

�
Y †IαY

��
− γ

(1)
N Tr

�
Y Y †Iα

�
ρF

��
, (2.19)

where Iα is the projector on flavour α, and we have neglected terms of O(µρ−).

The relation between the leptonic chemical potentials and the approximately conserved

charges, B/3− Lα, is given for T ≤ 106GeV by [21]

µα = −
�

β

CαβµB/3−Lβ
, Cαβ =

1

711




221 −16 −16

−16 221 −16

−16 −16 221


 , (2.20)

where we have defined µB/3−Lβ
by the relation:

nB/3−Lα
≡ −2µB/3−Lα

�

k
ρ�F =

1

6
µB/3−Lα

T 3. (2.21)

Introducing finally the expansion of the universe and changing variables to the scale

factor x = a and y = ka, the time derivatives of the distribution functions change to:

dρN (T, k)

dt
→ xHu(x)

∂ρN (x, y)

∂x

����
y fixed

dnB/3−Lα

dt
→ −2xHu(x)

dµB/3−Lα

dx

�

k
ρ�F , (2.22)

where Hu(x) =

�
4π3g∗(T )

45
T 2

MPlanck
is the Hubble expansion parameter. Assuming a radiation

dominated universe with constant number of relativistic degrees of freedom g∗(T0) � 106.75

for T0 ≥ TEW , then xT= constant that we can fix to one.

2.1 Momentum averaging

In principle the equations should be solved for all momenta of the sterile neutrinos, but it

is a good approximation [10] to assume ρ±(x, y) = r±(x)ρF (y), with r±(x) independent of
momentum. This allows to integrate explicitly over y and we get the momentum-averaged
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equations:

xHu
dr+
dx

= −i[�Hre�, r+] + [�Him�, r−]−
�γ(0)N �
2

�
Re
�
Y †Y
�
, r+ − 1

�

+i�γ(1)N �Im
�
Y †µY

�
−i

�γ(2)N �
2

�
Im
�
Y †µY

�
, r+

�
− i

�γ(0)N �
2

�
Im
�
Y †Y
�
, r−
�
,

xHu
dr−
dx

= −i[�Hre�, r−] + [�Him�, r+]−
�γ(0)N �
2

�
Re
�
Y †Y
�
, r−
�

+�γ(1)N �Re
�
Y †µY

�
−�γ(2)N �

2

�
Re
�
Y †µY

�
, r+

�
− i

�γ(0)N �
2

�
Im
�
Y †Y
�
, r+−1

�
,

xHu

dµB/3−Lα

dx
=

�
k ρF�
k ρ

�
F

�
�γ(0)N �Tr

�
r−Re

�
Y †IαY

�
+ ir+Im

�
Y †IαY

��

+µα

�
�γ(2)N �Tr

�
r+Re

�
Y †IαY

��
− �γ(1)N �Tr

�
Y Y †Iα

���
,

µα = −
�

β

CαβµB/3−Lβ
, (2.23)

where

�(. . .)� ≡
�
y(. . .)nF (y)�

y nF (y)
(2.24)

and
�
k ρF�
k ρ�F

= −9ξ(3)
π2 .

The equation for rN = ρN/ρF and rN̄ = ρN̄/ρF are equivalently

xHu
drN
dx

= −i[�H�, rN ]− �γ(0)N �
2

�
Y †Y, rN − 1

�
+ �γ(1)N �Y †µY − �γ(2)N �

2

�
Y †µY, rN

�
,

xHu
drN̄
dx

=−i[�H∗�, rN̄ ]−�γ(0)N �
2

�
Y TY ∗, rN̄−1

�
−�γ(1)N �Y TµY ∗+

�γ(2)N �
2

�
Y TµY ∗, rN̄

�
,

xHu

dµB/3−Lα

dx
=

�
k ρF�
k ρ

�
F

�
�γ(0)�N

2

�
Y rNY † − Y ∗rN̄Y T

�
αα

+ µα

�
�γ(2)N �
2

�
Y rNY † + Y ∗rN̄Y T

�
αα

− �γ(1)N �Tr
�
Y Y †Iα

���
,

µα = −
�

β

CαβµB/3−Lβ
. (2.25)

The momentum averaged rates are:

�γ(i)N � = Ai

�
c
(i)
LPM + y2t c

(i)
Q + (3g2 + g�2)

�
c
(i)
V + log

�
1

3g2 + g�2

���
, (2.26)

with

A0 = 2A1 = −4A2 ≡
4π2

3ξ(3)

T

3072π
, (2.27)

and the coefficients are given in the table 1.
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i c
(i)
LPM (T1) c

(i)
LPM (T2) c

(i)
Q c

(i)
V

0 4.22 2.65 2.52 3.17

1 3.56 2.80 3.10 3.83

2 4.77 2.50 2.27 2.89

Table 1. Coefficients in the momentum averaged rates. The LPM ones have been evaluated at

T1 = 104 GeV and T2 = 1010 GeV.

For the couplings g, g� we evaluate them at the scale πT :

1

g(πT )2
=

1

g(Mz)2
+

19

48π2
ln

�
πT

Mz

�
, (2.28)

1

g�(πT )2
=

1

g�(Mz)2
+

41

48π2
ln

�
Mz

πT

�
, (2.29)

while the top Yukawa running is obtained numerically from the one loop renormalization

group equations.

In figure 2 we compare the time evolution of the asymmetry that we obtain with the

new equations and the old equations of [15] that only included top scattering processes

and Maxwell-Boltzmann statistics. As expected the larger scattering rates induce a larger

asymmetry at short times, but also a stronger washout at late times.

In [15], we identified four independent CP rephasing invariants that can contribute to

this asymmetry in the general case with N = 3 as:

I
(2)
1 = −Im [W ∗

12V11V
∗
21W22] , (2.30)

I
(3)
1 = Im [W ∗

12V13V
∗
23W22] , (2.31)

I
(3)
2 = Im [W ∗

13V12V
∗
22W23] , (2.32)

JW = −Im [W ∗
23W22W

∗
32W33] , (2.33)

where V,W are the matrices parametrizing the neutrino Yukawa matrix, eq. (2.1). In the

minimal scenario with N = 2 only the first two invariants can contribute. We considered

a convenient analytical approximation, based on a perturbative expansion in the mixing

angles of these matrices, that allowed us to solve the differential equations analytically,

neglecting non-linear terms. It is straightforward to apply the same method to the new

equations. As an example we give the result for the asymmetry when only the CP invariant

I
(2)
1 survives (i.e. for φi3 = φ̄i3 = 0). Defining

Δij ≡
ΔM2

ij

2y
M∗

P , Δv =
�
y22 − y21

�M∗
P

8y
, γ(i) ≡ �γ(i)N �M

∗
P

T
, (2.34)

with M∗
P ≡ MPlanck

�
45

4π3g∗(T0)
, and neglecting the running of the couplings, the result is

�

α

µB/3−Lα
(t) =

2

3

�
9ξ(3)

π2

�2

I
(2)
1 y1y2(y

2
2 − y21)

(γ(0))2γ(1)

γ̄
G1(t), (2.35)
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Figure 2. Time evolution of the baryon asymmetry for two different choices of parameters. First

set (blue curves): z = 0.81 + 3.22i,φ1 = 1.21, δ = 2.07,M1 = 9.683 GeV, M2 = 9.677GeV; second

set (red curves): z = 0.88 − 0.35i,φ1 = 1.65, δ = −2.07,M1 = 0.754 GeV, M2 = 0.750GeV, using

the equations that only take into account quark scattering (solid) and those in eqs. (2.25) (dashed).

where

γ̄ ≡

����
�
γ(0) +

221

711

9ξ(3)

π2
γ(1)
�2

+
1024

505521

�
9ξ(3)

π2

�2 y22y
2
1�

y22 − y21
�2
�
γ(1)
�2
, (2.36)

and

G1(t) ≡
�
e−Γ+t − e−Γ−t

�
Re [iJ200(Δ12,−Δ12, t) + 2ΔvJ201 (Δ12,−Δ12, t)]

+
1

2

�

σ=±
σe−ΓσtRe

�
J210 (Δ12,−Δ12, t)

�
−2Δv + i

�
2Γσ −

�
y22 + y21

�
γ
(0)
N

���
,

(2.37)

Γ± ≡ y21 + y22
2

�
γ(0) +

9ξ(3)

π2

221

711
γ(1)
�
∓ y22 − y21

2
γ̄. (2.38)

The integrals are

J2nm(α,−α, t) ≡
� t

0
dx1 xn1 ei

αx31
3

� x1

0
dx2 xm2 e−i

αx32
3 . (2.39)

Figure 3 shows the analytical result compared with the numerical solution to the equation

for sufficiently small mixing angles.

2.2 Baryon asymmetry

The observed baryon asymmetry is usually quoted in terms of the abundance, which is the

number-density asymmetry of baryons normalised to the entropy density. After Planck
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Figure 3. Assuming parameters for which only the simplest invariant, I
(2)
1 is non-vanishing,

comparison of the analytical result of eq. (2.35) (dashed), the full numerical one (red), the numerical

one neglecting the variation of the running of the couplings (blue) and that neglecting also non-

linear terms (green). The parameters have been chosen as M1 = 1GeV, M2−M1 = 10−3 GeV, and

(y1, y2) = (10−7,
√
2× 10−7), and sufficiently small V,W mixings.

this quantity is known to per cent precision [22]:

Y exp
B � 8.65(8)× 10−11. (2.40)

The baryon abundance is related to that of B − L by [23, 24]

YB � 28

79
YB−L, (2.41)

and

YB−L =
�

α

nB/3−Lα

s
, nB/3−Lα

=
T 3

6
µB/3−Lα

, s =
2π2

45
g∗T 3, (2.42)

where we take g∗ = 106.75 (which ignores the contribution to the entropy of the sterile

states). Our estimate for the baryon asymmetry is therefore

YB � 1.3× 10−3
�

α

µB/3−Lα
. (2.43)

3 Numerical results

The numerical solution of the kinetic equations is challenging, because in most part of the

parameter space, they are stiff since the oscillation time is much shorter than the collision

one. In [15] we performed an exploration of the parameter space viable for leptogenesis for

the models N = 2, 3 employing the perturbative analytical approximation. This required to

constrain certain regions of parameter space where the perturbative solution could fail. We
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want to improve on this scan by going beyond the perturbative estimate of the asymmetry

and using the full numerical solution of the equations.

We have solved eqs. (2.25) using the publicly available code SQuIDS [25, 26]. The code

is designed to solve the evolution of a generic density matrix in the interaction picture. The

interaction picture is useful because it removes the short time scale, i.e. the oscillation scale,

from the numerical integration, but fast oscillatory coefficients then appear in the terms

involving the off-diagonal elements of the density matrix. In order to optimize the code, at

some large enough time, we switch to a fully decoherent evolution (when the exponents of

all the oscillatory terms are larger than 105). The decoherent evolution is already included

in the last version of the SQuIDs code [26]. Using this approximation the solution speeds

up the computation by a factor more than a hundred and the result agrees with the full

solution with a relative error smaller than O(1%).

Using these optimizations we get a computational time for the full numerical solution

of order minutes, which allows us to do a Bayesian parameter estimation from the log-

likelihood:

logL = −1

2

�
YB(tEW)− Y exp

B

σYB

�2

. (3.1)

For this, we use a nested sampling algorithm implemented in the public package Multi-

Nest [27–29] and the Markov Chain sample analysis tool GetDist [30] to get the posterior

probabilities. The number of random starting points is 5000.

The scan is performed using the Casas-Ibarra parameters of eq. (2.5). We fix the light

neutrino masses and mixings to the present best fit points in the global analysis of neutrino

oscillation data of ref. [31] for each of the neutrino orderings (normal, NH, and inverted,

IH), and leave as free parameters: the complex angle(s) of the R matrix, the CP phases

of the PMNS matrix, the lightest neutrino mass as well as the heavy Majorana masses.

For N = 2 these are six independent parameters, while for N = 3, there are thirteen free

parameters.

In this work we consider the simplest case of N = 2, which can be obtained from the

N = 3 model in the limit where one of the sterile neutrinos is effectively decoupled, that

we can assume without loss of generality to be N3. This can be achieved with the choice

of parameters:

m3(1) = 0, zi3 = 0, R(zij) → R(zij)(P ) (3.2)

for the IH(NH), where P is the 123 → 312 permutation matrix (only necessary for the NH).

This is then the model that has been considered in most previous works on the sub-

ject [8–10, 13, 32], where the number of constrained parameters is reduced to six: only one

complex angle in R, z ≡ θ + iγ, two CP phases, δ and φ1 in the PMNS matrix, and two

Majorana neutrino masses, M1,M2.

Figures 4 and 5 show, for IH and NH, the posterior probabilities of the spectrum of the

two relevant states, M1,M2, the active-sterile mixings of the first heavy state |Uα4|2 (those

of the second state are almost identical), the neutrinoless double beta decay effective mass

|mββ | and the baryon asymmetry YB. An important consideration are the priors. We have

considered flat priors in all the Casas-Ibarra parameters except the masses where we assume
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Figure 4. Triangle plot with 1D posterior probabilities and 2D 68% and 90% probability contours

in the N = 2 scenario for IH. The parameters shown are the observables M1, ΔM12/M1 = (M2 −
M1)/M1, mββ , YB , and the three mixings with the first of the heavy states |Uα4|2 for α = e, µ, τ .

The blue and red contours correspond respectively to the assumption of a flat prior in log10 M1 and

log10 M2 and to a flat prior in log10 M1 and log10(ΔM12). The star is the test point used for the

SHiP study of the next section.

a flat prior in log10
�

M1
GeV

�
, within the range M1 ∈ [0.1GeV, 102GeV], and two possibilities:

1) a flat prior also in log10
�

M2
GeV

�
in the same range or 2) a flat prior in log10

�
|M2−M1|

GeV

�

in the range M2 − M1 ∈ [10−8GeV, 102GeV]. The two different colours (light blue and

red) in figure 4 correspond to the two options. The significant differences between the

two posteriors show the effect of allowing or not for fine-tuning in the degeneracy of the

two heavy states. Even though the contours are typically larger if more fine-tuning is

allowed, we find interesting solutions with a mild degeneracy, which tend to imply smaller

M1,M2, larger values of the active-sterile mixing parameters and a sizeable non-standard
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Figure 5. Triangle plot with 1D posterior probabilities and 2D 68% and 90% probability contours

in the N = 2 scenario for NH. The parameters shown are the observables M1, ΔM12/M1 =

(M2 − M1)/M1, mββ , YB , and the three mixings with the first of the heavy states |Uα4|2 for

α = e, µ, τ . The blue and red contours correspond respectively to the assumption of a flat prior in

log10 M1 and log10 M2 and to a flat prior in log10 M1 and log10(ΔM12).

contribution to neutrinoless double beta decay, which obviously imply much better chances

of testability. Figures 6 zoom in the most interesting results from this study: the mild level

of fine-tuning of the blue contours (neither a strong degeneracy is required, nor a very large

deviation from the naive seesaw scaling of the mixings), correlated with a relatively large

mixing, and a sizeable amplitude for neutrinoless double beta decay. We will come back to

this point in the next section.

In table 2 we show the 68% probability ranges for the relevant parameters as extracted

from the 1D posterior probabilities, for the two neutrino orderings and the two prior choices.

The ranges for the mixings of the second heavy state, |Uα5|2, are basically the same.
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Figure 6. Posterior probabilities for the amplitude of neutrinoless double beta decay (left), electron

mixing (middle) and
�

α=e,µ,τ |Uα4|2M1 (right) versus the mass degeneracy.

NO Prior M1(GeV) ΔM12(GeV) |Ue4|2 |Uµ4|2 |Uτ4|2 mββ(eV)

IH M −0.55+0.16
−0.38 −2.23+0.22

−0.19 −7.2+0.9
−0.4 −8.5+1.0

−0.6 −8.5+0.8
−0.7 −0.84± 0.55

ΔM 0.23+0.68
−0.82 −2.36+0.71

−0.51 −9.2+1.7
−1.4 −10.1+1.5

−1.2 −9.9+1.4
−1.2 −1.48+0.15

−0.28

NH M −0.39+0.31
−0.42 −3.1± 0.4 −8.9+0.8

−0.7 −7.4± 0.7 −7.3+0.7
−0.5 −2.66± 0.20

ΔM 0.8+0.82
−0.66 −2.76± 0.62 −11.21.4−1.6 −9.9+1.3

−1.8 −10.0+1.3
−1.6 −2.62± 0.14

Table 2. For the minimal model N = 2: 68% posterior probability ranges of log10(param) assuming

flat prior in log10(M2(GeV)) (M) or log10(ΔM12(GeV)) (ΔM).

In figures 7 we zoom in the probability plots for the heavy neutrino mixings versus

mass and compare them with present [33, 34] and future constraints from DUNE [35],

SHiP [36] and FCC [37]. Constraints from Big Bang Nucleosynthesis are very restrictive

in the low mass range, particularly below the pion threshold [38, 39]. In ref. [15] similar

figures were shown from a scan of parameter space assuming only flat priors in log10M1

and log10 |M2 − M1|. We note that the regions we show here are the result of a full

numerical treatment, that avoids any constraint in parameter space and successfully explain

the baryon asymmetry within its small 1% uncertainty. The most important addition is

however that of the blue contours that use flat priors in log10M1 and log10M2, and therefore

avoid too large fine-tuning. These solutions point to a region of parameter space within

SHiP reach as the most probable one. It is interesting that the sensitivity of SHiP and

DUNE to the e or µ channels will cover to a large extent the blue regions. When a larger

degree of degeneracy in the masses is allowed (red regions), the right baryon asymmetry

can be obtained also for larger masses, up to 10-100GeV, but this high mass region will

be harder to test experimentally (for recent work see also [40]).

In the N = 3 case, there are 13 unknown parameters and the exploration of parameter

space is significantly more challenging. This case will be considered elsewhere.

4 Predicting the baryon asymmetry in the minimal N = 2 model

A very relevant question is whether the baryon asymmetry could be predicted in this

scenario if the heavy sterile neutrinos are within reach of future experiments, such as the
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Figure 7. Comparison of the posterior probability contours at 68% and 90% on the planes mixings

with e, µ, τ versus masses, with the present (shaded region) and future constraints from DUNE,

FCC and SHiP for NH (up) y IH (down).

SHiP experiment. We will analyse this question in the simplest case N = 2 where the

number of unknown parameters is minimal. Obviously the situation for the N = 3 case

will be much more difficult.

The SHiP experiment will be capable of detecting heavy neutrinos in the few GeV range

provided their mixings are sufficiently large. In particular significantly larger than what the

naive seesaw scaling |Uai|2 ∼ mi/Mi would suggest. In the Casas-Ibarra parametrization

of eq. (2.5), this implies that the entries of the R matrix need to be significantly larger

than one, and therefore the imaginary part of the complex angle needs to be sizeable.

In order to understand the dependence of YB on the different parameters, it is useful to

consider the perturbative results of [15]. The CP asymmetries responsible for the baryon

number generation, ΔCP , in the weak washout regime, can be generically written as

ΔCP =
�

α,k

|Yαk|2Δα, (4.1)

with

Δα =
�

i,j

Im

�
YαiY

∗
αj

�
Y †Y
�
ij

�
f(Mi,Mj). (4.2)

For the N = 2 case, when φi3 = 0 and y3 = 0, this quantity can be written as [15]

YB = ΔCP = y1y2
�
y22 − y21

� ��
y22 − y21

�
I
(2)
1 + y22I

(3)
1

�
g(M2,M1), (4.3)

where the invariants I
(2),(3)
1 are defined in eq. (2.33). This is indeed the dependence obtained

from the solution of the kinetic equations in the perturbative approximation obtained

in [15], in the weak washout limit. For our new kinetic equations, the perturbative result
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is shown in eq. (2.35) (where only the I
(2)
1 contribution has been kept). We can read from

eq. (2.35) in the limit of weak washout, Γ±t � 1, and using eq. (2.43):

g(M2,M1) = 1.3× 10−3 × 2

�
2

3

� 4
3 π3/2

Γ(−1/6)

�
9ξ(3)

π2

�2 (γ(0))2γ(1)

M
∗2/3
P TEW

sign(ΔM2
12)��ΔM2

12

��2/3 . (4.4)

In contrast with eq. (2.35), this approximation fails at large times since it is valid only for

Γ±t � 1. It typically overestimates the asymmetry, but should give qualitatively the right

dependence on the parameters.

What we need however are the expressions in terms of the Casas-Ibarra parameters.

The relations are typically very complicated, but we can identify a few small parameters

and perturb in them:

O (�) : r ≡
�

Δm2
sol

Δm2
atm

∼ θ13 ∼ e−
γ
2 , (4.5)

where γ, assumed positive, is the imaginary part of the complex angle of the R matrix that

needs to be large to avoid the naive seesaw scaling of the active-sterile mixings.3 Defining

A ≡ e2γ
�
Δm2

atm

4
, (4.6)

the result for the heavy-light mixing for IH can be written as

|Ue4|2M1 � |Ue5|2M2 � A

�
(1+sinφ1 sin 2θ12)

�
1−θ213

�
+
1

2
r2s12(c12 sinφ1 + s12)+O(�3)

�
,

|Uµ4|2M1 � |Uµ5|2M2 � A

��
1− sinφ1 sin 2θ12

�
1 +

1

4
r2
�
+

1

2
r2c212

�
c223

+θ13(cosφ1 sin δ − sinφ1 cos 2θ12 cos δ) sin 2θ23

+θ213(1 + sinφ1 sin 2θ12)s
2
23 +O(�3)

�
,

|Uτ4|2M1 � |Uτ5|2M2 � A

��
1− sinφ1 sin 2θ12

�
1 +

1

4
r2
�
+

1

2
r2c212

�
s223

−θ13(cosφ1 sin δ − sinφ1 cos 2θ12 cos δ) sin 2θ23

+θ213(1 + sinφ1 sin 2θ12)c
2
23 +O(�3)

�
. (4.7)

The result for NH is:

|Ue4|2M1 � |Ue5|2M2 � A
�
rs212 − 2

√
rθ13 sin(δ + φ1)s12 + θ213 +O

�
�5/2
� �

,

|Uµ4|2M1 � |Uµ5|2M2 � A
�
s223 −

√
r c12 sinφ1 sin 2θ23 + rc212c

2
23

+2
√
r θ13 sin(φ1 + δ)s12s

2
23 − θ213s

2
23 +O

�
�5/2
� �

,

|Uτ4|2M1 � |Uτ5|2M2 � A
�
c223 +

√
rc12 sinφ1 sin 2θ23 + rc212s

2
23

+2
√
r θ13 sin(φ1 + δ)s12c

2
23 − θ213c

2
23 +O

�
�5/2
� �

. (4.8)

3Note that γ can also be negative, but there is an approximate symmetry γ → −γ, that would lead to

very similar results by expanding in e−
|γ|
2 in this case.
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Note that the mixings depend exponentially on γ and are inversely proportional to the

heavy masses, but this dependence drops in any ratio.

At leading order (LO) in the � expansion, we see that for IH, the ratio of the electron

and muon mixings is independent of γ and heavy masses and depends exclusively on the

Majorana CP phase of the PMNS matrix, φ1:

IH :
|Ue4|2
|Uµ4|2

� 1

c223

1 + sinφ1 sin 2θ12
1− sinφ1 sin 2θ12

+O(�). (4.9)

This is important because the CP asymmetry strongly depends on this phase as we will

see below, therefore for the IH, the putative measurement of the masses and the mixings

of these states in SHiP for example, would allow in principle to fix simultaneously γ and

φ1. For NH on the other hand the SHiP measurement would only provide information on

γ but not on φ1 nor any other phase, at this order:

NH :
|Ue4|2
|Uµ4|2

� 2r
s212
s223

+O
�
�3/2
�
. (4.10)

The mixings to taus are at this order the same as those to muons.

The leading order however is not precise enough. For IH, it is clear from eq. (4.9) that

depending on the value of φ1 a significant suppression of the leading terms in the numerator

or denominator can take place, therefore at this point the NLO corrections are relevant

and these bring a new undetermined parameter, δ, as can be seen from eqs. (4.7), which is

the CP phase that can be measured in neutrino oscillations! In this case, the measurement

of the ratio of mixings at SHiP cannot resolve φ1 and δ simultaneously and a degeneracy

between these two phases remains. We will come back to this interesting observation in the

following section. Clearly the δ phase could be determined in future neutrino oscillation

experiments.

At leading order in the � expansion, the CP asymmetry in this regime can be approx-

imated by

����
ΔCP

g(M1,M2)

����
IH

= e4γ
(Δm2

atm)
3/2

4v6
M1M2(M1+M2)

�
(sin 2θ cos 2θ12−cosφ1 cos 2θ sin 2θ12)×

�
sin2 2θ23 + (4 + cos 4θ23) sinφ1 sin 2θ12

�
+O(�)

�
,

����
ΔCP

g(M1,M2)

����
NH

= e4γ
(Δm2

atm)
3/2

4v6
M1M2(M1 +M2)

�√
r

2
sin 4θ23c12 cos(φ1 − 2θ)

+ r
�
sin2 2θ23

�
c212 sin 2(φ1 − θ) + (2 + cos 2θ12) sin 2θ

�
− 2
�

+
√
r θ13 s12(1 + cos2 2θ23) cos(δ + φ1 − 2θ) +O(�2)

�
, (4.11)

where in the case of NH we have included NLO corrections because the LO cancel for

maximal atmospheric mixing. We see that for both neutrino orderings, it depends strongly

on the real part of the Casas-Ibarra angle θ, which does not affect any other of the ob-

servables above. In particular, independently of the value of φ1, there is always a value of
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θ that can make the asymmetry vanish. For instance for the IH result the value can be

approximated by

IH : tan 2θ � cosφ1 tan 2θ12, (4.12)

therefore the uncertainty in θ forbids to set a lower bound on the asymmetry, although an

upper bound can be derived. Therefore even if the sterile states would be discovered at

SHiP and their mixings to electrons and muons accurately measured, the asymmetry can

only be predicted up to this angle.

Furthermore as we have seen in order to explain the baryon asymmetry in the N = 2

case, a significant level of degeneracy between the two states is needed. The dependence

on this quantity enters in the function g(M1,M2). Although we have not found a detailed

study of the expected uncertainty in the invariant mass at SHiP, given the momentum

resolution for muons and pions quoted in [41], we expect that this uncertainty could be

better than 1%. If the degeneracy cannot be measured, a large uncertainty in the CP

asymmetry will result also from this unknown.

Interestingly neutrinoless double beta decay also depends on both unknowns: θ and

ΔM12. The effective neutrino mass in neutrinoless double beta is given approximately

by [42, 43]

|mββ |IH �
�

Δm2
atm

����c213
�
c212 + e2iφ1s212

�
1 +

r2

2

��
(4.13)

−f(A) e2iθe2γ(c12−ieiφ1s12)
2(1−2eiδs23θ13)

(0.9GeV)2

4M2
1

�
1−
�

M1

M1+ΔM12

�2������ ,

|mββ |NH �
�

Δm2
atm

���e2iφ1c213s
2
12r + e−2iδs213 (4.14)

−f(A) e2iθe2γs12

�
rs12e

2iφ1−2i
√
rθ13e

−iδ
�(0.9GeV)2

4M2
1

�
1−
�

M1

M1+ΔM12

�2������ ,

where the two lines in each amplitude correspond respectively to the light and heavy

contributions. f(A) depends on the nucleus under consideration. For 48Ca, 76Ge, 82Se,
130Te and 136Xe, f(A) ≈ 0.035, 0.028, 0.028, 0.033 and 0.032, respectively [44, 45]. Since

f(A) is very small we have neglected O(�2) effects in the heavy contribution.

Note that the non-standard contribution from the heavy states is very sensitive to the

mass degeneracy. Furthermore the interference between the light and heavy contributions

is very sensitive to the angle θ, and it is precisely in the region around 1GeV where the

heavy and light contributions can be comparable, and can effectively interfere [43, 46, 47].

There is therefore the possibility that neutrinoless double beta decay could provide the

missing information to predict the baryon asymmetry.

On the left plot of figure 8 we show |mββ | as a function of the angle θ for IH and

some choice of parameters that are within the range of SHiP and assumed known. |mββ |
has been computed exactly using the nuclear matrix elements for 76Ge from ref. [44].The

bands are the standard 3ν contributions to |mββ | for NH/IH. If the uncertainty in |mββ |
could be better than the spread within the standard IH region, a determination of θ could

result from this measurement. On the right plot we show the dependence of YB (computed
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Figure 8. Left: dependence of mββ on θ for IH and M1 = 1GeV,ΔM12 = 10−2 GeV, φ1 = π
2 ,

δ = 0 and γ = 3. The red band is the standard 3ν expectation for NH and the blue one that for

the IH. The dashed line would be the standard 3ν contribution for the chosen value of φ1. Right:

YB versus θ for the same parameters. The dashed line is the experimental value of YB .
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Figure 9. Correlation of |mββ | and YB when the parameters that could in principle be measured at

SHiP are fixed and the neutrino ordering is inverted. The band is the standard 3ν expectation. The

vertical dashed line is the measured YB , and the horizontal one corresponds to the 3ν expectation

for φ1 = π
2 .

exactly) on the same angle. In figure 9 we show the correlation between |mββ | and YB as

we vary θ. Ideally a precise determination of |mββ | could predict the baryon asymmetry up

to a global sign. In practice, this would require a very good control of the nuclear matrix

elements which is very challenging.

As a proof of principle we have studied the posterior probabilities for a hypothetical

measurement of SHiP of M1 and M2 and their respective couplings to electrons and muons

for IH. The point chosen is indicated by a star in figure 4. We did not look for a very special

nor optimal point, simply that it was within the range of SHiP and could explain the baryon

asymmetry. The corresponding triangle plots are shown in figure 10 for two values of the
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Figure 10. Triangle plot with 1D posterior probabilities and 2D 68% and 90% probability contours

in the N = 2 scenario for IH, assuming a putative measurement of SHiP of the two masses M1,M2

and their mixings to electrons and muons. We assume uncertainties of 1%, 10% for the masses and

mixings in the grey contours and 0.1%, 1% in the red ones. An additional posterior probability

in light blue is shown for a combination of SHiP and a measurement of the phase δ in DUNE or

HyperK. The parameters shown are the observables YB , |mββ |, |Uτ4|2, δ and φ1.

assumed errors in this experiment: relative errors on masses and mixings of (1%, 10%) and

the much more optimistic (0.1%, 1%). We furthermore considered a combination of SHiP,

with the more optimistic errors, with a determination of δ in future neutrino oscillation

experiments such as HyperK and DUNE. We have assumed σδ � 10◦ as derived from the

studies in references [48, 49]. The |mββ | versus YB plot is zoomed in in figure 11.

Clearly the determination of δ results in a more clear correlation between |mββ | and
YB. In fact the resulting width of the contour can be understood from the propagation of
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Figure 11. Posterior probabilities in the |mββ | vs YB plane from a putative measurement at SHiP,

assuming 0.1%, 1% uncertainties in the masses and mixings (red) or the latter with an additional

measurement of δ in DUNE and HyperK (blue). The grey band is the standard 3ν expectation.

the error in δ on the determination of φ1. This is shown in figure 12, where we compare

the posterior probability with the three curves obtained in the following way: 1) fixing the

parameters to those of the test point and changing only θ (solid line), 2) the same as 1)

except δ which is fixed to δtest − σδ, and correspondingly φ1, γ tuned to keep the mixings

unchanged. There are two solutions for φ1 and the two dashed lines correspond to the

two values (see figure 13), according to the analytical approximate formulae. The region

encompassed by these lines is roughly similar to the 68% and 90% regions.

For NH, the expectations are much more pessimistic, since the SHiP measurement

would have a hard time to pin down φ1, even if δ is known, and therefore two unknowns

φ1, θ would remain. They could be determined in principle from a measurement of YB and

|mββ | but not from one single measurement and therefore the baryon asymmetry will be

very difficult to predict in this case. The measurement of |mββ | for NH would nevertheless

be futuristic since the value would be roughly a factor 10 smaller, which is beyond the

reach of the next generation of neutrinoless double beta decay experiments.

5 UPMNS phases from SHiP and neutrinoless double beta decay

We have seen that the ratios of electron and muon mixings that could be measured at

SHiP could give very interesting information of the phases of the PMNS matrix. We stress

that this is independent of whether the baryon asymmetry can be explained or not. This

relies on the fact that the mixings are large enough so that they can be discovered at SHiP.

In this case, the ratio of the electron to muon mixings are dominantly controlled by the

phases of the PMNS mixing matrix, as can be seen in eqs. (4.7) and (4.8).
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Figure 12. Posterior probabilities in the |mββ | vs YB plane from a putative measurement at SHiP,

assuming 0.1%, 1% uncertainty and an additional measurement of δ in DUNE and HyperK, together

with the contours obtained by changing θ and every other parameter fixed to the test point values

(solid line) or with δ = δtest − σδ and φ1, γ in each case tuned to keep |Ue4|2, |Uµ4|2 fixed. There

are two solutions for φ1 and these correspond to the two dashed lines.

In figure 13, we compare the correlation expected on the (φ1, δ) plane from a putative

measurement of this ratio using the analytical formulae of eqs. (4.7) for the test point of the

previous section, to the posterior probabilities obtained with the most competitive SHiP

uncertainties assumed in the previous section. Clearly the analytical formulae work very

well and demonstrate the potential of SHiP in constraining the CP violating phases of the

mixing matrix.

This has the following interesting consequence. If neutrinoless double beta decay could

be measured with sufficient precision and the effect of the unknown θ would be small (this

would happen for example in a more degenerate situation or for larger heavy masses which

suppress the heavy contribution to neutrinoless double beta decay), the combination of this

measurement with that at SHiP could provide information on the phase δ. Quantifying

what is the reach of the combination of SHiP and neutrinoless double beta decay on δ is

very interesting and deserves a dedicated study.

Reversely, if a measurement of δ could be obtained from neutrino oscillation measure-

ments, a putative measurement of SHiP could provide a more precise prediction of the

neutrinoless double beta decay amplitude if the neutrino ordering is inverted. This would

be an extra motivation for improving the nuclear matrix element determination.

The possibility of measuring also the tau mixing at SHiP could help to resolve the

degeneracy. Figure 14 shows the isocurves of |Ue4|2/|Uµ4|2 and |Ue4|2/|Uτ4|2 in the (φ1, δ)

plane. The test point we used did not have sensitivity to the tau mixing according to the

expectations for SHiP, but if this measurement could be improved this would also be useful

to reduce the (δ,φ1) degeneracy.
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Figure 13. Posterior probabilities from a SHiP measurement of the masses and mixings with e, µ

on the plane (φ1, δ) compared with the result of the analytical ratio (red line) derived from eqs. (4.7)

for parameters in the test point.
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Figure 14. Isocurves for the ratios |Ue4|2/|Uµ4|2 (red) and |Ue4|2/|Uτ4|2 (blue) derived from

eqs. (4.7).

6 Conclusions

We have studied the production of the matter-antimatter asymmetry in low-scale O(GeV)

seesaw models. We have improved our previous study [15] by including the washout pro-

cesses from gauge interactions and Higgs decays and inverse decays, quantum statistics in

the computation of all rates, as well as spectator processes. This together with a more

efficient numerical treatment of the equations have allowed us to perform the first bayesian

exploration of the full parameter space that explains the observed baryon asymmetry in

the context of the minimal model, where only two singlets play a role in the generation of

the baryon asymmetry.
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We have demonstrated that successful baryogenesis is possible with a mild heavy neu-

trino degeneracy, and more interestingly that these less fine-tuned solutions prefer smaller

masses Mi ≤ 1GeV, which is the target region of SHiP, and significant non-standard

contributions to neutrinoless double beta decay. We have also demonstrated the comple-

mentarity of future putative measurements from SHiP, neutrinoless double beta decay and

searches for leptonic CP violation in neutrino oscillations, in the quantitative prediction

of the baryon asymmetry within the minimal model. If singlets with masses in the GeV

range would be discovered in SHiP and the neutrino ordering is inverted, the possibility to

predict the baryon asymmetry (maybe up to a sign) looks in principle viable, in contrast

with previous beliefs. Unrelated to whether the baryon asymmetry is explained or not, we

have also shown that a measurement of the electron and muon mixings of heavy species

within SHiP range could precisely determine, in the minimal model, a combination of the

two phases of the UPMNS matrix.
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