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Abstract

The moustached warbler Acrocephalus melanopogon and the reed warbler Acrocephalus scirpaceus

are two insectivorous reedbed nesting passerines. These species are very similar in size, but they

differ in several ecological and behavioural aspects, such as migration strategy, breeding phenology

and habitat specialization. In this work, we studied mainly Spanish populations of the two species,

and our aims were to investigate some aspects of their breeding ecology, to assess their genetic

population  structure  and  dispersal  ability,  and  to  investigate  their  niche  overlap  at  a  sympatry

breeding  site.  We  were  especially  interested  in  assessing  if  the  ecological  and  behavioural

differences between the two species influence their dispersal ability and how they coexist when

breeding in sympatry. We found that the two species are potential competitors for food, and this may

explain the reduced spatial and temporal overlap we observed between the two species during the

breeding season. This suggests that exploitative competition for food may play a more important role

within assemblages of reedbed nesting passerines than previously hypothesized. The food samples

used to assess the diet of birds were obtained by using apomorphine as an emetic on the study

species, and we found no evidence of harmful effects on birds after treatment according to survival

probability  and  mass  change.  Using  microsatellites  and  mitochondrial  DNA data,  we  found

evidences of  gene flow among breeding sites  for  both study species,  suggesting that  these  two

warblers  are  able  to  compensate  for  habitat  fragmentation.  The  genetic  differentiation  among

sampling sites was lower in the reed than in the moustached warbler, possibly because of higher

dispersal ability, lower philopatry, larger population size, more continuous breeding range or higher

capability  in  crossing  natural  barriers  of  the  first  species.  We  found  evidence  for  postglacial

population growth in  both study species,  but  such increasing and the colonisation of  new areas

occurred in partly different ways between the two warblers. We studied the dispersal ability of both

species also by using ringing data from the Spanish marking scheme; the distribution of dispersal

distances did not differ between the moustached and the reed warbler, as well as among age classes.

We found cases of long distance dispersal for both species, up to more than 100 km. Such cases were

more  frequent  than  expected  if  the  probability  of  settling  of  moving  birds  were  constant.  The

similarity of dispersal patterns between the two species may be due to their phylogenetic relatedness

and to similar evolutionary pressures, and is not consistent with the hypothesis of higher dispersal

ability in long distance migrants than in sedentary/short distance migrant bird species.





Resumen

El carricerín real Acrocephalus melanopogon y el carricero común Acrocephalus scirpaceus son 

paseriformes insectívoros típicos de carrizal. Estas especies son muy similares en tamaño, pero 

difieren en muchas características ecológicas y etológicas, como migración, fenología reproductiva y 

especialización de hábitat. En este estudio, hemos considerado sobre todo poblaciones españolas 

de las dos especies, y nuestros objetivos fueron por un lado investigar algunos aspectos de la 

ecología reproductiva, la estructura genética y la capacidad de dispersión de estas poblaciones, y 

por otro estudiar el solapamiento de nichos entre las dos especies en condiciones de 

simpatría. Nos interesaba especialmente comprobar si las diferencias a nivel ecológico y 

etológico entre las dos especies afectan su capacidad de dispersión y como coexisten cuando se 

reproducen en condiciones de simpatría. Hemos comprobado que las dos especies son 

potenciales competidoras por la comida, algo que podría explicar el reducido solapamiento 

observado a nivel temporal y espacial durante la estación reproductiva. Esto sugiere que la 

competencia por la comida podría tener un papel más importante en los ensamblajes de 

paseriformes de los carrizales, en comparación con hipótesis anteriores. Las muestras de comida 

utilizadas para estudiar la dieta de las aves han sido obtenidas suministrado a las aves un emético, 

la apomorfina, y no hemos encontrado evidencias de efectos negativos sobre las aves después del 

tratamiento, ni en la probabilidad de supervivencia ni en la variación de masa. Utilizando datos de 

microsatélites y de ADN mitocondrial, hemos encontrado evidencias de flujo genético entre 

sitios de cría de ambas especies, y esto sugiere que tienen la capacidad de enfrentarse a la 

fragmentación de su hábitat. La diferenciación genética entre sitios de muestreo resultó ser 

menor en el carricero común que en el carricerín real, posiblemente debido a una mayor 

capacidad de dispersión, a un rango de distribución más continuo en el área de estudio, a un 

mayor tamaño de población, a una menor filopatría o a una mayor capacidad de cruzar 

barreras geográficas de la primera especie. En ambas especies hemos encontrado evidencias de 

un incremento post-glacial del tamaño de población, aunque dicho incremento y la colonización 

de nuevas áreas ocurrieron de manera parcialmente diferente. Hemos estudiado la capacidad 

de dispersión de las dos especies también utilizando datos de anillamiento recolectados en 

España; no hemos encontrado diferencias en la distribución de las distancias de dispersión entre 

el carricerín real y el carricero común, y tampoco entre clases de edad. En ambas especies 

hemos encontrado casos de dispersión de larga distancia, hasta más de 100 km. Estos casos 

ocurrieron con mayor frecuencia de lo que esperaríamos si la probabilidad de establecimiento de 

los individuos en dispersión fuese constante. La similitud entre los patrones de dispersión de las 

dos especies se podría explicar por su estrecha relación filogenética, o por las similares presiones 

evolutivas, y no es consistente con la hipótesis de que tienen una mayor capacidad de 

dispersión los migradores de larga distancia frente a las especies sedentarias/

migratorias de corta distancia. 
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Introduction

Acrocephalus and Locustella warblers are passerine birds (Aves: Passeriformes) which

typically breed in wet habitats such as swamps, lake and river banks, and wet grasslands

(Kennerley & Pearson 2010). These small birds (~10-30 g) are mainly insectivorous and

most  species  have  a  cryptic  plumage  consisting  in  pale  underparts  and  brownish

upperparts. The nine recognized species of Locustella warblers breed exclusively in the

Palearctic, while genus Acrocephalus (37 species) also includes species breeding in sub-

Saharan  Africa,  S  Asia,  Australia  and  several  Pacific  Ocean  islands  (Kennerley  &

Pearson 2010). 

In  Europe,  Acrocephalus warblers  dominate  the  assemblages  of  reedbed-nesting

passerines,  which often include also one or more species of  Locustella warblers.  In

many wetlands,  these  warblers  constitute  a  set  of  ecologically  and morphologically

similar coexisting species.  Consequently, they are expected to show some degree of

niche differentiation (Begon et al. 2006), such as interspecific differences in spatial or

temporal distribution or in the use of trophic resources. In fact, some authors found

differences in habitat preferences among coexisting Acrocephalus species (e.g., Hoi et

al. 1991, Poulin et al. 2002), and there are also more or less pronounced differences in

their  breeding  phenologies  (Kennerley  &  Pearson  2010),  while  the  available

information about trophic niche overlap is  scarce.  Studying the breeding ecology of

sympatric Acrocephalus species, taking into account also their use of food resources and

the temporal dynamic of prey availability, may provide a better understanding of their

co-occurrence  and  insights  about  the  role  of  interspecific  competition  for  food

(exploitative competition). This last topic has been scarcely investigated so far, possibly

because reedbeds are highly productive habitats (Whittaker 1975), thus food availability

seemed unlikely to be scarce compared to food requirements. Nonetheless, Poulin et al.

(2002)  found  a  significant  positive  effect  of  prey  availability  on  the  abundance  of

reedbed-nesting passerines, result that is not consistent with a general overabundance of

preys. Until now, most studies about the interspecific interactions among Acrocephalus

warblers were focused on interference competition (Murray 1971, Catchpole 1978, Hoi

et al. 1991, Honza et al. 1999). While the large-sized great reed warbler Acrocephalus

arundinaceus can influence the distribution of smaller Acrocephalus (also by destroying

their nests; Hoi et al. 1991, Honza et al. 1999), such studies did not provide clear results
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for other species.

Besides the high productivity mentioned above, reedbeds are also characterized by high

patchiness, which is both a natural feature and the result of wetlands destruction due to

human activities (Van Vessem et  al.  1997, Laurence 2010).  In such a  discontinuous

habitat, the capability to disperse is a crucial characteristic to produce sufficient gene

flow among spatially isolated breeding areas (Frankham et al. 2010). If a population

become small and isolated, the probability of inbreeding and genetic drift increases, and

these effects may imply an increase in extinction risk (Young & Clarke 2000, Frankham

et  al.  2010).  Small  and  isolated  populations  are  also  more  vulnerable  to  stochastic

variations  in  demographic  parameters  (birth  and death  rates,  sex ratio),  catastrophic

events  like  large  fires  or  floods,  and  environmental  fluctuations  (e.g.,  climatic

variability;  Bennett  & Saunders 2010).  Birds have generally a high dispersal  ability

(Koenig et  al.  1996),  but  with important  interspecific  differences  which seem to be

related, in a complex and still poorly understood way, to several species' characteristics

(e.g.,  migration strategy, population size, distribution range, breeding habitat)  and to

their phylogenetic relatedness (Paradis et al. 1998, Sutherland et al. 2000). Additional

data and comparative studies are needed to improve our understanding of dispersal in

birds. However, in species with high active displacement ability, dispersal outside the

natal/breeding site is often difficult to study because very large study areas should be

adopted to avoid the underestimation of long-distance dispersal events (Paradis et al.

1998). Such events are relatively rare, but they are likely to have important effects on

population  dynamics  and  on  the  genetic  population  structure  (Ibrahim et  al.  1996,

Frankham et al. 2010). For this reason, some recent studies about dispersal distances in

birds were carried out using mark-recapture data obtained over large regions or entire

countries (Paradis et al. 1998, 2002, Winkler et al. 2005, Van Houtan et al. 2007, 2010).

Information about dispersal capability has been often obtained also from genetic data,

by assessing  the  genetic  differentiation  among  populations  or  by detecting  possible

immigrant individuals within a population (Piry et al. 2004, Frankham et al. 2010).

The species taken into account in this thesis are the moustached warbler Acrocephalus

melanopogon and the reed warbler Acrocephalus scirpaceus, and we present the results

of studies concerning their breeding ecology, dispersal ability and genetic population

structure. We considered  the moustached and the reed warbler because this allows to

compare  two  phylogenetically  closely  related  species  with  several  ecological  and
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behavioural  differences  (see  the  following  section  for  details).  We  were  especially

interested in assessing if such differences influence their dispersal ability and how they

coexist when breeding in sympatry. Two other species, the great reed warbler and the

Savi's warbler Locustella luscinioides, were considered only in one methodological part

of this thesis, to assess the effects of using an emetic substance on birds to obtain food

samples (see chapter 1). All these species typically breed in reedbeds (Kennerley &

Pearson 2010), therefore they can be found breeding in sympatry, as occurs in part of

our study area (mainly Spain, also Morocco in one study, see chapter 3).

Study species

The moustached warbler breeds across a wide but discontinuous area ranging from NW

Africa  to  Kazakhstan  (Kennerley  &  Pearson  2010).  Three  subspecies  have  been

recognized:  A.  m.  melanopogon (NW Africa,  South  and  Central-East  Europe,  Low

Danube and S Ukraine, W Turkey), A. m. albiventris (Lower Don and E Black Sea) and

A. m.  mimicus (from SE  Turkey  to  Kazakhstan;  Kennerley  &  Pearson  2010).  The

European population is estimated in 150000-300000 breeding pairs and it is considered

to be stable, mainly because of the stability of the strongholds in Austria and Romania

(BirdLife  International  2004).  The  species  is  included  in  the  Annex I  of  the  Birds

Directive (2009/147/EC). In Spain, it breeds mainly along the Mediterranean coast and

in the Balearic Islands, and more scarcely in some inland marshlands of Extremadura,

Castilla-La Mancha and Aragón; the population has been estimated in approximately

1000 breeding pairs, which represents a decline of more than 50% compared to the '90s

decade  (Castany  &  López  2006).  Such  decline  has  been  probably  due  to  habitat

degradation in several wetlands (Castany & López 2006).

This  species  has  specialized habitat  requirements,  breeding in flooded reedbeds and

preferably where common reed Phragmites australis is mixed with other wetland plants

such  as  Typha,  Scirpus,  Cladium and  Juncus (Castany 2003,  Kennerley  & Pearson

2010). Some of these plants are vulnerable to reedbeds management practices such as

winter  cutting  and  variations  in  the  water  level,  thus  these  practices  are  likely  to

negatively affect the moustached warbler (Poulin et al. 2002), possibly also by reducing

prey availability (Schmidt et al. 2005). The diet is constituted by several types of insects

and  their  larvae  (Coleoptera,  Hymenoptera,  Hemipera,  Ephemeroptera,  Odonata,
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Lepidoptera, Trichoptera, Diptera), spiders (Araneae), woodlice (Isopoda), water snails

(Planorbidae and Lymnaeidae), and occasionally fruits (Dyrcz 2016). Small spiders are

reported to represent a large part of the diet in a Mediterranean marshland (Poulin et al.

2002). 

Unlike the other  Acrocephalus warblers breeding in Europe, which migrate over long

distances, S Europe moustached warbler populations are sedentary or short-distances

migratory, and birds breeding in Central and E Europe winter in the Mediterranean area

(Kennerley & Pearson 2010). This warbler starts breeding earlier than other congeneric

species,  beginning  to  lay  eggs  in  late  March/April,  according  to  the  breeding  area

(Castany  2003,  Kennerley  &  Pearson  2010).  No  information  about  the  genetic

population structure of this species was available before the studies presented in this

thesis, and knowledge about its dispersal patterns was scarce; in Hungary, Vadász et al.

(2008) found higher breeding site fidelity in this species than in other  Acrocephalus

warblers. In the nominal subspecies, both adults and young birds have a complete moult

in summer-early autumn, at or near the breeding/natal areas, and also a pre-breeding

partial moult (Kennerley & Pearson 2010).

The reed warbler is a very widespread bird breeding in Europe, Asia and Africa, with

three recognized subspecies:  A. s.  scirpaceus (N Africa,  Europe),  A. s.  fuscus (from

Central and E Turkey to W China), and  A. s. avicenniae (Red Sea area; Kennerley &

Pearson 2010); these subspecies correspond to three evolutionary lineages, according to

mitochondrial DNA data (Arbabi et al. 2014). The European population of this warbler

has been estimated in 2.7-5 millions of breeding pairs and is considered to be stable

(BirdLife International 2004). In Spain, the breeding population has been estimated in

20000-100000 pairs  (BirdLife International  2004),  mainly concentrated  in  the Ebro,

Tajo  and  Guadalquivir  valleys,  along  the  Mediterranean  coast  and  in  the  Northern

Inland Plateau (Gainzarain 2003). 

The reed warbler breeds preferably in mature inundated reedbeds, and can settle also in

small patches and narrow strips of reeds, zones where reeds are mixed with bushes and

dry reedbed areas (Poulin et  al.  2002, Kennerley & Pearson 2010). The diet  of this

warbler  includes  a  variety  of  insects  and  their  larvae  (Coleoptera,  Hymenoptera,

Hemipera,  Ephemeroptera,  Odonata,  Lepidoptera,  Trichoptera,  Diptera,  Psocoptera),

spiders, harvestman (Opiliones), pseudoscorpions (Chelonethi), small molluscs (snails
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and  bivalves),  and  occasionally  fruits,  flowers  and  seeds  (Dyrcz  et  al.  2016).  In

England, Davies & Green (1976) found the nestlings' diet to be constituted mainly by

dipterans (65%), while Bibby & Thomas (1985) reported that spiders, dipterans and

beetles jointly represented scarcely more than the half of the nestlings' diet. Bibby &

Thomas (1985) also measured prey availability and found a broad similarity with prey

consumption, suggesting a generalist foraging behaviour, although some abundant prey

types (like dipterans) were relatively underexploited. At a breeding site in Poland, the

abundance of the main prey types showed peaks in different periods, resulting in high

food availability during all the breeding season (Dyrcz & Zdunek 1996).

Excepted some N African populations, birds of the nominal subspecies are long-distance

migrants and winter in sub-Saharan Africa (Kennerley & Pearson 2010). A migratory

divide in Central Europe separates the populations of the nominal subspecies: starting

from late July, birds breeding in W and N Europe migrate through the Iberian Peninsula

and Morocco to reach sub-Saharan W Africa, while Czech, Hungarian and SE European

populations reach more eastern wintering areas by crossing the eastern Mediterranean

(Procházka et al. 2008). Reed warblers arrive back to Europe between March and June,

according to the breeding area; in SW Europe most of arrivals take place in April and

egg-laying occurs mainly between May and July/August (Kennerley & Pearson 2010).

In an area of Central Europe, between 1970 and 2006 the mean temperatures during the

breeding season increased significantly,  and both the beginning and the peak of egg

laying  occurred  progressively  earlier  (Halupka  et  al.  2008).  Furthermore,  nesting

success  increased  with  temperatures,  possibly  because  nests  were  better  hidden  by

earlier developed reeds, or due to higher insect abundance (Halupka et al. 2008).  The

species shows a good natal and breeding dispersal capability (up to more than 250 km)

according  to  mark-recapture  data  from the  British  population  (Paradis  et  al.  1998).

Genetic  analyses  on  European  populations  showed  low  population  differentiation,

which  confirms  the  high  dispersal  capability  of  reed  warblers  (Kralj  et  al.  2010,

Procházka et al. 2011). In birds belonging to the nominate subspecies, both young and

adult  birds perform a partial  moult  in  late  summer and a  complete  moult  in  winter

(Kennerley & Pearson 2010). Some Iberian birds have been found to moult completely

in  their  breeding grounds,  and this  also  occurs  regularly in  the  Moroccan breeding

population (Kennerley & Pearson 2010). 

Concerning the niche overlap and the interactions between the moustached and the reed
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warbler, until now their diet overlap was never assessed, while some authors compared

their spatial patterns: in a marshland of Central Europe Hoi et al. (1991) did not find

evidence for dominant relationships between the two species. In the Mediterranean area,

other  researchers  found  possible  signs  of  competition:  Castany  (2003)  found  a

surprisingly  low  breeding  density  of  reed  warblers  in  a  wetland  hosting  a  large

population  of  moustached  warblers;  both  Poulin  et  al.  (2002)  and  Castany  (2003)

observed  that  reed  warblers  were  abundant  in  reedbed  areas  not  suitable  for  other

species. Thus, the reed warbler possibly take advantage of its high adaptability to settle

in reedbed zones were potential competitors are scarce. 

The Savi's and the great reed warbler, considered only in one chapter of this thesis as

previously mentioned, are both long-distance migrants wintering in sub-Saharan Africa

and are both insectivorous (Kennerley & Pearson 2010). These two warblers mainly

breed in reedbeds and are distributed across large areas of Europe, and also in some

zones of N Africa, but the Savi's warbler has more specialized habitat requirements, and

it is less common than the great reed warbler both in Europe and in Spain (BirdLife

International 2004).

Objectives

The  aim of  this  thesis  was  to  study the  breeding  ecology of  moustached  and  reed

warblers at a sympatry breeding site and to investigate their dispersal ability and genetic

population structure, considering mainly Spanish populations; we then compared the

results obtained for both species, taking into account their ecological and behavioural

differences. More specifically, our objectives were:

1. To assess the diet, the prey selection, and the temporal trend of prey availability

and prey need during the breeding season.

2. To contribute in finding an effective and safe field technique to obtain samples

of regurgitated food from passerine birds.

3. To investigate, at a sympatry breeding site, the niche overlap of the two study

species, and based on this to obtain insights about their interspecific interactions.

4. To verify the consequences of wetland fragmentation on the genetic diversity

and population structure of the two study species.
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5. To assess the natal and breeding dispersal capability of the two study species.

6. To compare the genetic population structure and the dispersal capability of the

two species, taking into account their differences in migration strategy, population size 

and habitat specialization.

Brief description of the chapters

This thesis is organized as a series of papers, all of which have already been accepted

for publication. The papers are not presented in chronological order, but follow a logical

sequence based on the topics and the aims of each single work:

Chapter 1. Ceresa F., Belda E. J. & Monrós J. S. 2014. Apomorphine as an emetic for

insectivorous songbirds:  effectiveness  and post-release effects  on survival

and mass change. Journal of Field Ornithology 85: 213-220.

Chapter 2. Ceresa F., Belda E. J.,  Gómez J.,  Miñana I. J.,  Soler L.,  Villarroya J. &

Monrós J. S. 2016. Differences in time and space use between two sympatric

Acrocephalus warblers with similar diets. Bird Study 63: 172-180.

Chapter 3. Ceresa F., Belda E. J., Kvist L., Rguibi-Idrissi H. & Monrós J. S. 2015. Does

fragmentation  of  wetlands  affect  gene  flow  in  sympatric  Acrocephalus

warblers with different migration strategies? Journal of Avian Biology 46:

577-588.

Chapter  4.  Ceresa  F.,  Belda  E.  J.  & Monrós  J.  S.  2016.  Similar  dispersal  patterns

between  two  closely  related  birds  with  contrasting  migration  strategies.

Population Ecology 58: 421-427.

Below, we provide a brief summary for each of the four chapters.

Chapter 1. To investigate the diet of our study species during the breeding season (see

chapter 2) we needed food samples, thus we used apomorphine as an emetic on birds. In

the literature this substance has been described as effective and apparently harmless, at

least during and immediately after treatment (Valera et al. 1997, Poulin et al. 2002).
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These characteristics were confirmed during our fieldwork, but we wanted to assess the

occurrence of possible harmful effects of apomorphine on birds also after treatment.

This kind of information about emetics is very scarce in the literature and may help

researchers in choosing the best food sampling technique. Therefore, we compared the

survival  probability and mass  change of  treated and control  birds during the weeks

following treatment. This work represents the first assessment of the effects of emetics

on birds using survival estimations based on the Cormak-Jolly-Seber model. In addition,

we provided information about the effectiveness of the emetic; in this part, besides the

moustached and the  reed  warbler,  we also considered the Savi's  and the great  reed

warbler.

Chapter  2.  In  this  work  we  studied  the  breeding  ecology of  moustached  and  reed

warbler at a sympatry site, the Pego-Oliva Natural Park (Mediterranean coast of Spain).

We  collected  data  about  breeding  phenology,  diet,  food  availability  and  spatial

distribution of the two species. Our aim was to assess their overlap in the use of time,

space and food resources. We also described the prey selection and the temporal trends

of food availability and food demand during the breeding season of both warblers. This

study provided insights about the possibility of competitive interactions among the two

study species.

Chapter 3. In this study we used both microsatellites (16 loci) and mitochondrial DNA

to  investigate  the  genetic  population  structure,  genetic  diversity  and  demographic

history of moustached and reed warblers in areas where wetlands are highly fragmented.

We  were  interested  in  comparing  two  closely  related  species,  but  with  different

migration strategies and different  population sizes  in  the study area.  Blood samples

were collected at three breeding sites in Spain and, only for the reed warbler, one in

Morocco. Before this study, no information about population structure and demographic

history was available for the moustached warbler.

Chapter 4. After obtaining indirect information about dispersal ability of moustached

and reed warblers (chapter 3), we looked for additional direct information using mark-

recapture  data  from  the  Spanish  ringing  scheme.  Our  aims  were  to  compare  the

distribution of  dispersal  distances  between the two species  and between age classes

(natal vs breeding dispersal) and to find the best conceptual description for dispersal

distances  among  a  set  alternative  models  (normal,  exponential  and  Cauchy
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distributions). We then compared the results with the information obtained from genetic

data (chapter 3) and discussed the role of dispersal capability, philopatry,  population

size, breeding range patchiness and geographical barriers in determining the observed

patterns.
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ABSTRACT. Emetics can be used to obtain food samples from birds, but they can harm birds during or after
treatment. Studies to date suggest that apomorphine is a safe emetic for songbirds, but information is needed about
possible post-release deleterious effects. From March to July 2012, we collected food samples from insectivorous
songbirds using apomorphine. We treated 67 Moustached Warblers (Acrocephalus melanopogon), 56 Reed Warblers
(Acrocephalus scirpaceus), 15 Great Reed Warblers (Acrocephalus arundinaceus), and 12 Savi’s Warblers (Locustella
luscinoides). Effectiveness in inducing regurgitation was high (76.7%) and varied among species, being significantly
more effective with Reed Warblers (91.1%). No birds died during treatment. To check for possible post-release
negative effects, we considered 53 treated Moustached Warblers and 37 treated Reed Warblers and selected an equal
number of untreated individuals (simply captured, banded, and measured). We found no support for differences
in survival or recapture probabilities between treated and untreated birds of either species within 21 d after
administering apomorphine. We calculated body mass changes of all Moustached Warblers subsequently recaptured
(within 21 d) and found no difference between treated (N = 8) and untreated (N = 22) birds, suggesting normal
foraging activity after release. Our results suggest that apomorphine is a safe emetic, with no negative effect on
survival at least in the short term. The effectiveness of apomorphine with insectivorous songbirds in our study
contrasts with the results of some previous studies and confirms the differences in effectiveness among different taxa
of songbirds. As with differences in effectiveness among species in our study, this variability in sensitivity to the
emetic could be caused by morphological and physiological differences among different taxa.

RESUMEN. Apomorfina como emético para aves canoras insectı́voras: efectividad, efectos
post-liberación, sobrevivencia y cambio en masa corporal

Los eméticos pueden ser utilizados para obtener muestras de lo que ingieren las aves, pero pueden causarle daño a
estas durante y después del tratamiento. Estudios han sugerido que la apomorfina puede ser un emético seguro para
aves canoras, pero se necesita información sobre sus posibles efectos adversos una vez se liberan las aves. De marzo
– julio 2012, obtuvimos muestras de lo ingerido por aves canoras insect́ıvoras utilizando apomorfina. Usamos este
como emético en 67 individuos de Acrocephalus melanopogon, 56 de A. scirpaceus, 15 de A. arundinaceus y 12 de
Locustella luscinoides. La efectividad para inducir la regurgitación fue alta (76.6%) y varió entre especies, siendo
significativamente más efectiva en Locustella luscinoides (91.1%). Ningún ave murió durante el procedimiento. Para
examinar el posible efecto negativo post-liberación de las aves tomamos 53 individuos de Acrocephalus melanopogon,
37 individuos de A. arundinaceus y un número igual de individuos, que tan solo fueron capturados, anillados
y medidos. No encontramos evidencia de diferencias en la sobrevivencia o probabilidad de recaptura entre aves
tratados y no-tratadas, unos 21 dı́as después de administrar la apomorfina. Calculamos el cambio en masa corporal
de Acrocephalus melanopogon, (dentro de los 21 dı́as subsiguientes a la captura) y no encontramos diferencias entre
las aves tratadas (N = 8) y las no tratadas (N = 22), lo que sugiere actividades normales de forrajeo luego que se
liberaron las aves. Nuestros resultados sugieren que la apomorfina es un emético seguro, sin efectos negativos en
la sobrevivencia de las aves, a corto alcance. De nuestro estudio se desprende, que la efectividad de la apomorfina
en aves canoras insect́ıvoras contrasta con los resultados de otros trabajos y confirma diferencias en la efectividad
entre diferentes taxones de aves canoras. Con respecto a las diferencias en el grado de efectividad (entre especies),
encontrado en nuestro estudio, las diferencias en la sensibilidad al emético, pudieran estar asociados a diferencias
morfológicas y fisiológicas entre diferentes taxones.

Key words: bird diet, capture-recapture analysis, Cormack-Jolly-Seber model, Moustached Warbler, Reed Warbler

Effectiveness in inducing regurgitation and
the safety of different emetics can be influenced
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by many variables, such as dosage, bird size, bird
species, stress during handling, and the amount
of food in digestive tracts (Lederer and Crane
1978, Dı́az 1989, Poulin et al. 1994, Poulin
and Lefebvre 1995, Durães and Marini 2003,
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Diamond et al. 2007). Antimony potassium
tartrate (tartar emetic) is a widely used emetic
(Durães and Marini 2003). Despite being ef-
fective at inducing regurgitation (60.5–89.8%
of treated birds; Poulin and Lefebvre 1995,
Johnson et al. 2002, Durães and Marini 2003,
Lopes et al. 2005, Carlisle and Holberton 2006,
Diamond et al. 2007), several investigators
have reported negative effects of this emetic
on songbirds. For example, Zach and Falls
(1976) reported mortality rates ranging from
12.5% to 50%, and Carlisle and Holberton
(2006) reported that 1.5% of free-living and
94.4% (17 of 18) of captive Dark-eyed Juncos
(Junco hyemalis) died after receiving the emetic.
Poulin et al. (1994) treated a wide range of
bird species and found an inverse relationship
between mortality rate and body mass (higher
mortality rates in birds <10 g), with significantly
higher mortality rates for birds regurgitating
only liquids (i.e., empty digestive tracts). How-
ever, other investigators have either reported no
mortality (Tomback 1975, Zduniak 2005) of
birds treated with tartar emetic or that mortality
rates of small birds were no higher than those of
larger birds (Poulin and Lefebvre 1995, Durães
and Marini 2003). Other investigators have
reported that reducing the concentration of the
emetic reduced mortality rates of some especially
sensitive small species (Poulin et al. 1994, Poulin
and Lefebvre 1995).

Information about post-treatment deleterious
effects of tartar emetic (e.g., death or abandon-
ment of an area) in the wild is contradictory.
For example, Johnson et al. (2002) reported
significantly lower resighting rates of treated
than untreated birds for three species of war-
blers (61.5% vs. 13.2%), whereas Poulin et al.
(1994), Durães and Marini (2003), and Carlisle
and Holberton (2006) found no significant
differences between return rates of treated and
untreated birds. Abandonment of an area due
to the stress of treatment could result in lower
resighting or return rates. For example, Poulin
et al. (1994) suggested that stress associated with
administration of the emetic led many birds to
leave the area and hypothesized that mortality
and desertion both contributed to the lower
(although not significant) return rates of treated
birds.

Other substances proposed for use as emetics
include ipecac, lukewarm water, and apomor-
phine. Diamond et al. (2007) report no mor-

tality using ipecac on songbirds and suggested
that its dosages were less likely to reach a toxic
level than tartar emetic. Investigators studying
food habits of songbirds by flushing stomachs
with lukewarm water have reported either no
mortality (Ford et al. 1982) or low mortality
rates (0.36%, Jenni et al. 1990), and no signif-
icant differences in return rates of treated and
untreated birds (Ford et al. 1982, Jenni et al.
1990).

Investigators using apomorphine have re-
ported effectiveness ranging from 43.7% to
71% (Schluter 1988, Dı́az 1989, Valera et al.
1997) and either no mortality prior to release
(Schluter 1988, Dı́az 1989, Valera et al. 1997,
Poulin et al. 2002, Mwangomo et al. 2007)
or low rates of mortality (Valera et al. 1997).
Such results suggest that apomorphine is a safe
emetic, but information is needed about possible
post-release deleterious effects. Furthermore, the
effectiveness of this emetic on songbirds has
been shown to be highly variable (Dı́az 1989,
Pulido and Dı́az 1994, Valera et al. 1997, Poulin
et al. 2002, Mwangomo et al. 2007) so species-
specific investigations are warranted.

Our objective was to assess the impact of
using apomorphine on several small (range
= �10–30 g) insectivorous songbirds, includ-
ing Great Reed Warblers (Acrocephalus arundi-
naceus), Reed Warblers (Acrocephalus scirpaceus),
Moustached Warblers (Acrocephalus melano-
pogon), and Savi’s Warblers (Locustella lusci-
noides). In addition, for Moustached Warblers
and Reed Warblers, we compared the survival,
recapture probabilities, and mass of treated and
untreated birds to provide further information
about the effectiveness and safety of this emetic.

METHODS

Field work took place at the Pego-Oliva
Natural Park (38°52′N 0°04′W, Spain) from
23 February 2012 to 5 July 2012. This coastal
marshland (1250 ha) is located between the
provinces of Valencia and Alicante, and in-
cludes large areas of reedbeds dominated by
Phragmites australis and Typha angustifolia, and
rice fields (Urios et al. 1993, Generalitat
Valenciana 2010).

We established 10 capture stations in our
study area, and captured birds daily using 6
mist-nets (10 m, 16-mm mesh) at one randomly
selected station. Captures started 30 min before
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dawn and lasted 4 h. During normal banding
activity, captured birds were banded, measured,
aged, sexed when possible (Svensson 1992),
weighed, and released.

During each of four periods (15–23 March,
10–30 April, 31 May–7 June, and 2–5 July),
we collected food samples until we had treated
at least 15 birds of each of the most common
species (Moustached and Reed warblers). Dur-
ing each period, captured birds were banded,
aged, and sexed, then two drops of a fresh
saturated solution of apomorphine (0.04 g of
hydrochloride hemihydrate per milliliter of wa-
ter) were placed on each eye of a captured bird
with a 1-ml pipette; birds were then held until
the liquid was totally absorbed (�5 min; Valera
et al. 1997, Poulin et al. 2002). Birds were
then placed in a small, dark box lined with
absorbent paper for 20 min (Valera et al. 1997),
and we then measured and released them. We
used apomorphine solutions for just 3 d to avoid
potential loss of effectiveness (Dı́az 1989) and
checked for possible changes in effectiveness over
time. We did not treat females that had brood
patches to avoid possible harmful impacts, and
other individuals were sometimes not treated
either due to logistical problems (e.g., running
out of apomorphine) or because we already had
an adequate number of food samples. Untreated
birds and those captured before and after food-
sampling periods constituted the untreated set.
These birds were simply banded, measured,
aged, and sexed (when possible); they were
not subjected to a real control procedure (i.e.,
putting two drops of distilled water on each eye
and keeping them in the box for 20 min) due
to logistical problems (e.g., too many birds to
treat given the long procedure) and because we
wanted to minimize possible negative impacts
on captured birds. Therefore, treated birds were
manipulated longer (�5 min to administer the
emetic and 20 min in the box), with the con-
sequent additional stress, than untreated birds.
A chi-square (� 2) test of independence was used
to test for possible differences among species in
the effectiveness of the emetic. Working on 2
× 2 contingency tables, chi-square values were
subjected to Yates correction for continuity to
avoid inflating Type I errors (Zar 2010). Apache
OpenOffice Calc 3.4.1 (OpenOffice.org 2012)
was used to perform the tests.

The possible effects on effectiveness of time
since the apomorphine solution was prepared

and time of capture were tested by fitting a
saturated log-linear model to the three-way
contingency table generated by the factors apo-
morphine effect (inducing regurgitation or not,
0/1), time since preparing the solution (first,
second, and third day, corresponding to �15,
39, and 63 h post-preparation, respectively),
and time of capture (0–1.5, 1.5–3, and >3
h after opening mist-nets; Dı́az et al. 1999).
We could not include species as a factor in the
model because that would have multiplied the
number of cells by four, making the analysis
unreliable. We used IBM SPSS Statistics 19.0
(Norušis 2011) to conduct the analysis.

To analyze possible differences in survival
or recapture probabilities of treated and un-
treated birds, an untreated set was created for
each species by selecting an equal number
of untreated birds captured during the same
period. We only considered Moustached and
Reed warblers because sample sizes for the other
two species were small (N < 15). We did
not include the last sampling session (July; N
treated birds = 14 Moustached Warblers and
19 Reed Warblers), given the lack of subsequent
captures. We considered only recaptures from
1 to 21 d after capture to standardize capture
effort. Over the 21-d period, captures were
grouped into 7-d periods. This provided four
capture periods: first capture, and recaptures
during the first, second, and third weeks after the
first capture, respectively. We analyzed capture-
recapture data using models for open popula-
tions based on the Cormack-Jolly-Seber (CJS)
model (e.g., Lebreton et al. 1992). These models
produce survival estimates that are unbiased
due to recapture probability. Hence, they are
more reliable than those based only on return
rates (Martin et al. 1995). Data were analyzed
using MARK 5.1 software (White and Burnham
1999). The starting model was a model with
time and group effects (treated vs. untreated) in
both survival and recapture probabilities. The
set of a priori models included all the possible
models from the starting model to a model with
constant survival and recapture probabilities
(25 models). To determine if the data fulfilled
assumptions of the CJS model, we used the
bootstrap goodness-of-fit (GOF) test approach
(1000 simulations). Bootstrap results were used
to estimate overdispersion factor ĉ (Burnham
and Anderson 2002). Model selection was done
using the corrected Akaike information criterion
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Table 1. Number of birds treated with apomorphine and percent effectiveness of the emetic for each species.

Species N treated N regurgitated % Effectiveness

Moustached Warbler 67 46 68.7
Reed Warbler 56 51 91.1
Great Reed Warbler 15 10 66.7
Savi’s Warbler 12 8 66.7
Total 150 115 76.7

(AICc; see Burnham and Anderson 2002). We
considered differences >2 AICc units to indicate
a real difference in the fit of the model to the data
(Burnham and Anderson 2002). AICc weights
provide a relative measure of how well a model
supports the data. We used model averaging to
cope with model selection uncertainty. We used
the Contrast program (Hines and Sauer 1989)
to compare survival estimates.

To further assess the possible impact of apo-
morphine, we compared changes in mass of all
treated and untreated Moustached Warblers that
were subsequently recaptured and reweighed
within 21 d. For analysis, we used a repeated-
measures analysis of covariance (ANCOVA)
with body mass as the repeated measure (mass at
first capture and mass at recapture), treatment as
the fixed factor, and tarsus length as the covariate
to account for bird size (Freeman and Jackson
1990, Senar and Pascual 1997). We used IBM
SPSS Statistics 19.0 (Norušis 2011) to conduct
the analysis.

RESULTS

Of 150 birds that received the emetic, 115
(76.7%) regurgitated (Table 1). Four birds re-
gurgitated only liquid, suggesting their stomachs
were empty. To assess the usefulness of food
samples, we performed a preliminary analysis
by examining 19 samples from Moustached
and Reed warblers. Mean mass of samples was
0.0029 ± 0.0031 (SD) g. We identified 6320
food fragments, with 2134 (34%) determined to
be part of an organism (e.g., head, leg, antennae,
thorax, or abdomen); unidentified fragments
could not be identified as one of these parts.
Using identified fragments, we identified all
ingested arthropod prey and classified them to
the order level.

No treated birds died, and all flew away
when released. The emetic was more effective
at inducing vomiting by Reed Warblers (51 of
56, 91.1%; Table 1) than by the other three

Table 2. Results of the fit of a saturated log-linear
modela including effect of apomorphine (Effect =
not regurgitating = 0, regurgitating = 1), time of
capture (Time = 0–1.5, 1.5–3, or >3 h after opening
mist-nets), day since preparing the emetic (Day =
first, second, or third day), and interactions between
factors.

Parameter Estimation Z P

Effect −1.946 −2.2 0.026
Time −1.946 −2.2 0.026
Day 0.963 2.7 0.008
Effect∗Day 0.136 0.1 0.89
Time∗Day 1.879 2.0 0.047
Effect∗Time 1.946 1.3 0.18
Effect∗Time∗Day −1.291 −0.8 0.44

aLog-linear model: Constant + Effect + Time +
Day + Effect∗Day + Time∗Day + Effect∗Time +
Effect∗Time∗Day.

species combined (� 2
1 = 9.1, P = 0.0025) and

Moustached Warblers (� 2
1 = 7.9, P = 0.0049).

The results of fitting a saturated log linear
model (Table 2) showed no significant in-
teraction between effectiveness of the emetic
and either time of capture or time since the
apomorphine solution was prepared. All main
effects (Effect, Time, and Day) were significant
(Table 2), reflecting the high effectiveness of the
emetic, the low number of birds treated during
the second time interval compared to the first
and third intervals, and the lower number of
birds treated with a 3-d-old solution than with
1- or 2-d-old solutions.

Return rates of treated and untreated birds
were 18.9% and 11.3% for Moustached War-
blers and 10.8% and 8.1% for Reed Warblers,
respectively (Table 3). For both species, the
model that best fit the data was a model with
constant survival and recapture probabilities
(Table 4). The bootstrap GOF tests were not sig-
nificant (P = 0.47 and P = 0.91, respectively).
The constant model supports the hypothesis
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Table 3. The number of recaptured Moustached and Reed warblers in treateda and untreated groups.

Captures Recaptures within 21 d

Species N treated N untreated N total N treated N untreated N total

Moustached Warbler 53 53 106 10 (18.9%) 6 (11.3%) 16 (15.1%)
Reed Warbler 37 37 74 4 (10.8%) 3 (8.1%) 7 (9.5%)
Total 90 90 180 14 (15.6%) 9 (10.0%) 23 (12.8%)

aBirds treated during the last sampling session (July; N treated birds = 14 Moustached Warblers and 19 Reed
Warblers) are not included in the treated group, given the lack of subsequent captures.

Table 4. The top six CJS models estimating survival (�) and recapture probability (p) of (a) Moustached
Warblers and (b) Reed Warblers in relation to treatment group (g; treated/untreated) and time of capture (t),
or with no group or time effect, i.e., constant (.) survival or recapture probability. For each model, values for
corrected Akaike information criterion (AICc), the difference between that model and the model with the
lowest AICc (�AICc), AICc weight, model likelihood, and number of estimable parameters are provided.

(a)
Model AICc �AICc AICc weight Model likelihood N parameters

� (.) p (.) 111.911 0.000 0.390 1.000 2
� (g) p (.) 113.537 1.627 0.173 0.443 3
� (.) p (g) 113.569 1.658 0.170 0.436 3
� (.) p (t) 115.542 3.631 0.063 0.163 4
� (g) p (g) 115.671 3.760 0.059 0.153 4
� (t) p (.) 116.088 4.177 0.048 0.124 4
(b)
Model AICc �AICc AICc weight Model likelihood N parameters
� (.) p (.) 45.606 0.000 0.456 1.000 2
� (.) p (g) 47.669 2.063 0.163 0.356 3
� (g) p (.) 47.709 2.104 0.159 0.349 3
� (.) p (t) 49.799 4.193 0.056 0.123 4
� (g) p (g) 49.890 4.284 0.054 0.117 4
� (t) p (.) 49.938 4.332 0.052 0.115 4

that there were no differences in the survival or
recapture probabilities of treated and untreated
groups. However, for Moustached Warblers, the
second-best model included group effects in
survival, but not in recapture, and there was
a difference in AICc with the constant model of
1.6 units (Table 4). Thus, given the model se-
lection uncertainty, we used model averaging to
estimate survival probabilities. Apparent weekly
survival was 0.96 ± 0.23 (SE) for the treated
group and 0.92 ± 0.25 for the untreated group,
and this difference was not significant (� 2

1 =
0.02, P = 0.90; null hypothesis = homogeneous
survival rates). The recapture probability for
both treated and untreated groups using model
averaging was 0.06 ± 0.03.

For Reed Warblers, the second-best model
included differences in recapture probabilities
between treated and untreated birds, and the
difference in AICc was >2 units (�AICc =

2.1). For both treated and untreated groups,
weekly survival probability estimated by model
averaging was 0.99 ± 0.08×10−5 and recapture
probability was 0.03 ± 0.01.

We obtained data on body mass changes
for birds recaptured within 21 d for 8 treated
(of 67 treated individuals) and 22 untreated
birds (of 181 untreated individuals; Moustached
Warblers only). The mean difference in body
mass between first capture and recapture was
0.1 ± 0.4 (SD) g for treated birds and 0 ± 0.8 g
for untreated birds, and this difference was not
significant (repeated measures ANCOVA, F1,27

= 0.1, P = 0.74).

DISCUSSION

We obtained samples of stomach contents
from 76.7% of birds treated with apomorphine.
For all four species combined, the percentage of



218 F. Ceresa et al. J. Field Ornithol.

regurgitating birds was higher than that reported
in studies of granivorous birds (range = 43.7–
71%; see citations in the Introduction). How-
ever, apomorphine has been found to be inef-
fective with other insectivorous songbirds (Blue
Tit, Cyanistes caeruleus, and Great Tit, Parus
major; Pulido and Dı́az 1994, Valera et al. 1997).
Dı́az (1989) also reported differences in the
effectiveness of apomorphine among different
families of granivorous passerines, and suggested
that effectiveness was influenced by anatomical
and physiological differences among taxa. These
differences may include the mechanisms of eme-
sis (e.g., sensitivity of the chemoreceptor trigger
zone, see Chaney and Kare 1966), structure
of the digestive tract (gastric and esophageal
muscles), and the relationship between food-
item size and bird size (e.g., seed fragments
may be easier to regurgitate than intact ones;
Dı́az 1989). Nevertheless, our results and those
reported by other investigators suggest that the
effectiveness of apomorphine is similar to that of
tartar emetic (range = 60.5–89.8%; see citations
in the Introduction) and ipecac (68%; Diamond
et al. 2007).

No treated birds died before release in our
study, and other investigators using apomor-
phine have reported similar results (Schluter
1988, Dı́az 1989, Valera et al. 1997, Poulin et al.
2002, Mwangomo et al. 2007). Investigators us-
ing lukewarm water (Ford et al. 1982) and ipecac
(Diamond et al. 2007) as emetics have also re-
ported no mortality, and others using lukewarm
water reported extremely low mortality rates
(Brensing 1977, Jenni et al. 1990). In contrast,
for free-living birds treated with tartar emetic, re-
ported mortality rates prior to release has ranged
from 0% to 20% (Tomback 1975, Lederer and
Crane 1978, Poulin et al. 1994, 2002, Poulin
and Lefebvre 1995, Johnson et al. 2002, Durães
and Marini 2003, Lopes et al. 2005, Zduniak
2005, Carlisle and Holberton 2006, Diamond
et al. 2007). Diamond et al. (2007) suggested
that use of non-optimal dosages and particularly
stressful procedures could have contributed to
an increase in the number of deaths in some
studies.

We found no evidence of deleterious post-
treatment effects, at least within a few weeks after
treatment. Survival and recapture probabilities
of treated and untreated birds were similar,
as were changes in body mass of treated and
untreated Moustached Warblers. Nevertheless,

given our small sample sizes (especially the
small number of recaptured birds) and lack of
a real control procedure, additional studies with
larger sample sizes are needed before concluding
that apomorphine has no post-release effects
on treated birds. Furthermore, because a real
control procedure was lacking, we did not specif-
ically test the toxic effect of the emetic, but the
joint effect of apomorphine and the manipula-
tion required to administer it (see Methods).
Hence, we found no evidence of deleterious
effects of the entire treatment. Using lukewarm
water as an emetic, Ford et al. (1982) and Jenni
et al. (1990) reported similar return rates for
treated and untreated birds and, using ipecac,
Diamond et al. (2007) reported a significantly
higher return rate for treated than untreated
birds (34% vs. 22%). Diamond et al. (2007)
suggested, however, that this difference could
have been due to differences in the species com-
position of treated and untreated groups. Inves-
tigators using tartar emetic have either reported
significantly lower resighting rates for treated
than untreated birds (Johnson et al. 2002) or no
significant difference in return rates (Poulin et al.
1994, Durães and Marini 2003, Carlisle and
Holberton 2006). However, Durães and Marini
(2003) did not follow an experimental approach
(i.e., untreated individuals were not randomly
chosen), and Poulin et al. (1994) conducted
their study on paired plots in which birds either
did or did not receive the treatment, so that, as
noted by Johnson et al. (2002), the effects of
the emetic and study plot on return rates were
confounded.

Considering pre-release mortality of song-
birds, our results and those of previous studies
indicate that apomorphine causes less mortality
than tartar emetic. Available information about
post-release deleterious effects of tartar emetic
on free-living birds is contradictory (maybe
because of the many variables influencing the
effects of emetics), but studies of captive birds
(Zach and Falls 1976, Carlisle and Holberton
2006) suggest that post-treatment effects can
be serious, whereas our results and those of
other investigators who used apomorphine with
captive birds (Valera et al. 1997) suggest no neg-
ative post-treatment effects. Lukewarm water
and ipecac have impacts similar to apomorphine
both before and after treatment, and available
information (especially about post-treatment
effects) is not sufficient to determine which
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of these three substances should be considered
safest for use with songbirds.

We conclude that apomorphine should be a
preferred alternative to tartar emetic. However,
effects of different emetics on birds can be
influenced by many variables, such as dosage,
bird size, bird species, stress during handling,
and the amount of food in digestive tracts (see
citations in the Introduction). Researchers using
emetics should also take into account possible
biases in representation of different food items
in samples (Zach and Falls 1976, Gavett and
Wakeley 1986, Valera et al. 1997). Additional
studies with other species and larger samples
are needed to better evaluate the possible post-
treatment consequences of using apomorphine,
especially a rigorous capture-recapture analysis
that will allow estimates of survival and recapture
probabilities.
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ABSTRACT
Capsule: We found high diet overlap and different uses of space and time between Moustached
Warblers Acrocephalus melanopogon and Reed Warblers Acrocephalus scirpaceus breeding in
sympatry at a marshland in Spain.
Aims: To study the degree of diet overlap between both species, their space use on a local scale and
their breeding phenologies.
Methods:We studied the breeding phenologies of the two species by standardized ringing activity.
Spatial distribution was investigated by point counts. We determined diet composition from emetic
samples and we collected invertebrates by standardized sweep-netting to estimate food
availability.
Results: Diet and prey selection were similar among species. Conversely, spatial overlap was
relatively small (<50%) and breeding phenologies were not synchronized. Both food availability
and the overall abundance of the two species increased throughout the breeding season.
Conclusion: The two species are potential competitors for food and the observed differences in
spatial and temporal niches may represent a way to lower competition for trophic resources:
Moustached Warblers could reduce competition by breeding early, while Reed Warblers could
avoid settling in areas occupied by the other species.
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Studying the degree of niche overlap among
morphologically and ecologically similar species is
crucial to understand their co-occurrence (Gonzalez-
Solis et al. 1997, Vieira & Port 2007). In fact, the
coexistence of similar species is often associated with
niche differentiation strategies, which include
differences in resource use and in spatial and temporal
distribution (Begon et al. 2006). Determining the degree
of overlap in resource use provides information about
the possibility of interspecific competition, although
large overlap does not automatically imply competition
(Wiens 1977). In fact a resource may be abundant
enough, or even overabundant, compared to the overall
demand of co-existing species. More generally, the
occurrence of competition is difficult to assess when
using merely observational data (Begon et al. 2006), and
distribution models can highlight problems in
understanding the factors influencing co-occurrence of
species (Morelli & Tryjanowski 2015).

In this work, we studied twoAcrocephaluswarblers in a
Spanish marshland where they breed sympatrically: the
Moustached Warbler Acrocephalus melanopogon and the

Reed Warbler Acrocephalus scirpaceus. Sympatric
breeding populations of Acrocephalus species have been
the subject of several studies of their interactions
(Catchpole 1978, Hoi et al. 1991, Honza et al. 1999).
Despite this, as far as we know there are currently no
studies that have combined the temporal dynamics of
reproduction and food availability. Moustached
Warblers and Reed Warblers are extremely similar in
size (∼10 g) and both are insectivorous (Kennerley &
Pearson 2010), but their migration strategy, reproduction
timing and habitat specialization differ. South-west
Mediterranean Moustached Warbler populations are
sedentary or migrate over short distances, and start
breeding earlier than the congeneric long-distance
migrant species, with some females incubating as early as
March (see our results and those of Castany 2003). This
species has specialized breeding habitat preferences that
require flooded reedbeds near open waters, and they
prefer zones where Phragmites is mixed with other
wetland plants like Typha, Scirpus, Juncus and Cladium
(Castany 2003, Kennerley & Pearson 2010). The Reed
Warbler is a long-distance migrant and winters in Africa,

© 2016 British Trust for Ornithology

CONTACT Francesco Ceresa francesco.ceresa01@gmail.com Institute Cavanilles of Biodiversity and Evolutionary Biology, University of Valencia, C/
Catedrático José Beltrán 2, ES-46980, Paterna, Valencia, Spain

BIRD STUDY, 2016
VOL. 63, NO. 2, 172–180
http://dx.doi.org/10.1080/00063657.2016.1182466

mailto:francesco.ceresa01@gmail.com
http://www.bto.org/


arriving back to Europe betweenMarch and May; in West
Europe egg-laying begins in May (Kennerley & Pearson
2010). This warbler is a common and widespread
breeding bird in European reedbeds, including those of
limited extent (Kennerley & Pearson 2010). Flooded
reedbeds are preferred, but breeding is also possible in
drier habitats (Kennerley & Pearson 2010). In Spain, the
Moustached Warbler breeds across a highly fragmented
range, almost always in sympatry with the commoner
Reed Warbler (Castany & Lopez 2006). As far as we
know, the literature contains no detailed information
about trophic niche overlap between the two species.

The aims of this work were to measure the trophic
niche overlap between both species throughout the
breeding season and to compare their spatial
distributions and breeding phenologies in the study
area. Given that potentially competing sympatric species
are predicted to develop niche differentiation (Schoener
1974), we expected to find substantial differences in one
or more of the investigated niche axes (trophic, spatial
and temporal). To gain further insights into the
coexistence of the two species, we used breeding
phenology and arthropod abundance data to compare
the temporal dynamics of food demand and food
availability. We considered this species pair instead of a
wider assemblage of sympatric reedbed-nesting
insectivorous passerines because the remaining species
(Great Reed Warbler Acrocephalus arundinaceus and
Savi’s Warbler Locustella luscinioides) were scarcer at
our study site, thus we could obtain only low sample sizes.

Methods

Data collection

Data collection took place at the Pego-Oliva Natural Park
(38°52′N 0°04′W), located on the Mediterranean coast of
Spain. This marshland includes wide reedbed areas
(dominated by Phragmites australis and Typha
angustifolia), water bodies and rice fields, and covers
approximately 1250 ha (Urios et al. 1993). Except for the
point counts carried out in April 2013 and April 2014,
all the fieldwork took place between 23 February and 5
July 2012.

We investigated breeding phenology by standardized
ringing activity in a part of the marshland (30 ha)
where both species breed. In this area we established
ten ringing stations and captured birds daily with six
mist nets (10 m, 16-mm mesh) at one randomly
selected station. Captures started 30 minutes before
dawn and lasted 4 hours. Birds were ringed, aged,
sexed whenever possible (Svensson 1992), measured,
weighed and released. The development of brood

patches in breeding females was also recorded using the
code proposed in Clarabuch (2000), and this
information was used to estimate the higher food
demand periods. Females with an evidently vascularized
brood patch (codes 2 and 3, evident and maximum
vascularization, respectively) were considered to be
incubating eggs or rearing nestlings of up to 4–5 days
old (Bailey 1952). According to Kennerley & Pearson
(2010), incubation and the period from hatching to
fledging respectively last 14–15 and approximately
12 days in Moustached Warblers, and 9–12 and
10–12 days in Reed Warblers. Accordingly, evident
brood patch vascularization lasts approximately 18–20
days for Moustached Warblers and 13–17 days for
Reed Warblers (incubation + 4–5 days after hatching).
Thus we estimated the weekly abundance of pairs
rearing nestlings as the average of abundances of the
females with vascularized brood patches that were
recorded in the previous 3 weeks. We considered the
whole period of nestling rearing as the maximum food
demand time. In fact, birds often have the greatest
breeding success if they produce nestlings when food
availability is seasonally at its highest (Lack 1968,
Perrins & McCleery 1989, van Noordwijk et al. 1995).
Ringing data were also used to measure the weekly
overall abundance (Moustached + Reed Warblers) of
the two species; that is, the abundance of potential
competing individuals that forage at the same time in
the reedbed. The resulting trend widely fluctuated, so
we calculated the centred moving averages (MA) over 3
weeks to obtain more reliable information. In both
cases (incubating females and Moustached + Reed
Warblers) weekly abundance of birds was calculated as
N captured birds/N days (usually 7, sometimes less due
to adverse weather conditions which did not allow
ringing activity).

We collected information about food availability by
sampling invertebrates once a week through sweep-
netting (Ausden & Drake 2006). Sampling took place 4
hours after dawn along four transects, located in the
same area where we performed the ringing activity and
always in the same places. These transects consisted of
hitting vegetation with the net ring from the bottom
upwards and alternatively on both sides of the trail
(Poulin et al. 2002). Along each transect (approximately
125 m long), vegetation was swept 125 times, with 500
hits in all. We adopted this method because it samples a
wide variety of invertebrate taxa from the foraging
substrate of our study species (Poulin & Lefebvre 1997,
Poulin et al. 2002). Afterwards, collected invertebrates
were identified to the level of order according to
Barrientos (2004) and were counted. Eggs, pupae and
larvae were also counted, but were not taxonomically
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differentiated. A reference collection was created to
facilitate prey identification (see below).

To study diet composition, during four periods
(approximately monthly: 12–23 March, 10–30 April, 31
May–7 June and 2–5 July) birds captured when ringing
were induced to regurgitate using apomorphine as an
emetic agent (see Ceresa et al. 2014 for details). Each
food sample was obtained from a different individual.
Sampling periods lasted until we treated at least 15
individuals per species; from Moustached Warblers we
did not always obtain this number of food samples
because for this species the emetic was not highly
effective (<70% of the treated individuals regurgitated,
Ceresa et al. 2014). Overall, we obtained 44 food samples
from Moustached Warblers and 48 from Reed Warblers.
During the first sampling period, Reed Warblers were
still absent in the study area. Thus we were able to
sample only Moustached Warblers. According to the
capture–recapture analysis and body mass change, we
found no evidence for deleterious effects of this
treatment on birds (Ceresa et al. 2014). We examined
food samples under a stereo microscope and identified
prey to the level of order according to Barrientos (2004)
and Shiel et al. (1997), and also the reference collection
created with the invertebrates sampled in the study area
(see above). Save a few intact bodies, most samples were
represented by prey fragments. Therefore, the minimum
number of individuals of each prey type was calculated
by counting body parts (Carlisle & Holberton 2006,
Orłowski & Karg 2013).

In order to assess the possible spatial segregation of the
study species, we performed point counts (Gibbons &
Gregory 2006) at 72 stations in 2013 (11–17 April) and
58 in 2014 (16 and18 April). Counting stations were
chosen from across the entire marshland by systematic
selection. Each station was surveyed one time, the
census lasted 10 minutes per station and the distance
between each detected bird and the observer was
recorded.

Statistical analysis

We calculated weekly food availability with the weighed
abundance index (WAI) used by Poulin & Lefebvre
(1997):

WAI =
∑n

i=1

pi
xij
yi

where pi is the proportion of prey group (order) i in the
birds’ diet; xij is the number of prey of group i sweep-
netted on date j; and yi is the number of prey from
group i sweep-netted during the whole sampling period.

Birds’ food sampling was not carried out weekly, unlike
sweep-netting. Thus the xij of each week was associated
with the pi obtained from the chronologically closer food
sampling.

With the diet composition and invertebrate sampling
data, we assessed prey selection using Jacobs’ index of
selectivity (S; Jacobs 1974). It was calculated as S = r −
p/(r + p − 2rp), where r is the proportion of a prey
type in diet and p is the proportion of that prey type in
the environment. S begins at −1 (prey available in the
environment, but never consumed) and comes close to
1 (the proportion of a given prey type in diet is far
larger than in the environment). We tested the
independence between prey availability and
consumption using Fisher’s exact test. To avoid
proliferation of categories, we excluded the prey taxa
sampled extremely rarely in the environment from this
analysis (<5 individuals in the entire study period). To
measure diet overlap, we calculated Pianka’s overlap
index (1973) using package pgirmess 1.5.9 (Giradoux
2014), in R 3.1.1 (R Core Team 2014). This index
ranges between 0 (totally different diets) and 1 (identical
diets). We also measured diet specialization with
the Berger–Parker index of dominance (d), calculated as
d =Nmax/N, where Nmax is the number of individuals of
the most abundant prey type; N is the total number of
individuals in the sample (Berger & Parker 1970). Prey
selection, niche overlap and diet specialization were
calculated for the entire study period and per food
sampling period.

Radial distances from the point transects were used to
estimate density using program Distance 6.0 (Thomas
et al. 2009). There were no observations closer than 5
m, thus zero distance was set at that point. This was
probably due to the presence of the observer in the
habitat. Data were right-truncated at a maximum
distance of 50 m for Moustached Warblers and of 60 m
for Reed Warblers. Data were grouped into 10 m wide
intervals. In order to estimate the detection function,
the half normal, uniform and hazard rate keys were
used with the cosine, simple polynomial and hermite
polynomial as series adjustments. The model that best
fitted the data was selected using the Akaike
Information Criteria (AIC). The model with the lowest
AIC was chosen to obtain estimates (Burnham &
Anderson 2002). The detection probability was
estimated with all the combined data, while density and
encounter rates were estimated per sample. The pooled
estimate of density was made from the sample estimates
treated as replicates. Afterwards we used Spearman rank
correlation to assess the possible association between
the densities of both species. The points without
contacts were excluded from the analysis.

174 F. CERESA ET AL.



Results

Diet composition, prey selection and food niche
overlap

The diet of both species exclusively included
arthropods, which belonged to the orders Araneida,
Coleoptera, Diptera, Hemiptera, Hymenoptera and
(only in Reed Warblers’ diet) Orthoptera (Table 1).
Coleoptera and Hymenoptera were the most widely
consumed prey and jointly represented 76.6% of
Moustached Warblers’ diet and 74.4% of Reed
Warblers’ diet. By studying prey choice over the
entire study period, we found a clear selection for
almost all prey types, and also similarly between both
warbler species (Figure 1). In fact both species
positively selected Coleoptera, Araneida and
Hymenoptera, and negatively selected Hemiptera and
Diptera. In all these cases, the difference between the
proportion of prey type in the diet and in the
environment was significant. When considering the
single food sampling periods, prey preferences were
less pronounced and not significant in some cases
(Figure 1), possibly also because of the smaller
sample size, but were still similar between both
species. Eight other invertebrate categories
(Gasteropoda, Glomerida, Lepidoptera, Odonata,
Parasitiformes, Thysanoptera, Larvae and Eggs) were
sampled in the environment, but were not
encountered in food samples. In such cases, S always
corresponds to −1. However, the proportions of these
categories in the diet and in the environment were
never significantly different. Thus their absence in
food samples cannot be certainly ascribed to negative
selection. According to the Pianka index, the trophic
niche overlap was very large during all the food
sampling periods (April = 0.934; May/June = 0.984;

July = 0.995), and also during the whole study period
(0.998). Diet specialization calculated over the entire
data set was similar between the species (Moustached
Warblers: d = 0.387; Reed Warblers: d = 0.384), but
diverged slightly throughout the breeding season
(Figure 2). For both species, specialization reached its

Figure 1. Prey selection of (a) Moustached and (b) Reed Warblers
during the 2012 breeding season according to Jacob’s index of
selectivity (S). Asterisks mark the cases when the proportion of
a prey type in diet and in the environment significantly
differed according to Fisher’s exact test. Only the prey types
represented in diet are shown; for the other categories S =−1
and Fisher’s exact test was never significant.

Table 1. Number of individuals and relative frequencies of the prey types in the food samples of Moustached (N = 44) and Reed (N =
48) Warblers collected during the 2012 breeding season. For Reed Warblers, we did not collect samples in March because this species
was absent from the study area.

Moustached Warblers Reed Warblers

Prey type March April May–June July Total April May–June July Total

Araneida 6
(0.25)

2
(0.15)

5
(0.14)

1
(0.02)

14
(0.11)

18
(0.25)

7
(0.12)

2
(0.02)

27
(0.12)

Coleoptera 4
(0.17)

2
(0.15)

10
(0.29)

32
(0.62)

48
(0.39)

16
(0.22)

19
(0.32)

49
(0.57)

84
(0.38)

Diptera 1
(0.04)

1
(0.08)

1
(0.03)

2
(0.04)

5
(0.04)

8
(0.11)

4
(0.07)

2
(0.02)

14
(0.06)

Hemiptera 1
(0.04)

1
(0.08)

4
(0.11)

4
(0.08)

10
(0.08)

5
(0.07)

2
(0.03)

7
(0.08)

14
(0.06)

Hymenoptera 12
(0.50)

7
(0.54)

15
(0.43)

13
(0.25)

47
(0.38)

26
(0.36)

27
(0.45)

26
(0.30)

79
(0.36)

Orthoptera 0
(0.00)

0
(0.00)

0
(0.00)

0
(0.00)

0
(0.00)

0
(0.00)

1
(0.02)

0
(0.00)

1
(0.005)

Total 24
(1.00)

13
(1.00)

35
(1.00)

52
(1.00)

124
(1.00)

73
(1.00)

60
(1.00)

86
(1.00)

219
(1.00)
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maximum in July because of the large proportion of
Coleoptera found in diets.

Temporal patterns of food availability and food
demand

The breeding phenology data (Figure 3) allowed us to
measure the temporal mismatch of the reproduction
stages between the study species: the first incubating
female was captured 7 weeks earlier for Moustached
Warblers than for Reed Warblers and the first capture
of a fledged young occurred 6 weeks earlier for
Moustached Warblers than for Reed Warblers. The
highest food demand period (nestlings rearing, see
Methods) was estimated to be April for Moustached
Warblers and approximately 5–25 June for Reed
Warblers (Figure 4). As a result of this temporal
difference, when adult Reed Warblers reared nestlings,
both adults and an increasing number of young
Moustached Warblers foraged in the reedbed.
Furthermore, the higher food demand of Reed

Warblers coincided with a second lower food demand
peak of Moustached Warblers (Figure 4) due to the
latter species’ substitution/second clutches. Food
availability, estimated with the WAI, was similar
between both species (which is not surprising given the
similar diets), and increased with fluctuations
throughout the breeding season (Figure 4). For both
species, the greatest food abundance was reached late
in June. For Moustached Warblers, the highest food
demand occurred when food availability rose (WAI
range = 0.036–0.086), but was still below the maxima
reached late in June (WAI = 0.106) and at the
beginning of July (WAI = 0.100). The overall
abundance of the potential competitors calculated for
the corresponding weeks (6–10, Figure 5) ranged
between 2.5 and 4.4 individuals per day (MA, see
Methods), which was lower than for the following
months, but still rapidly increased (Figure 5). For Reed
Warblers, the WAI ranged between 0.045 and 0.104
during the highest food demand period, including
greatest recorded availability, but the abundance of
potential competitors was also high (MA range = 4.9–
6.1 ind./day; Figure 5).

Spatial segregation

During the census of 2013, we recorded Moustached
Warblers at 40 points, Reed Warblers at 33 points and
the two species overlapped at 12 points. Thus 30.0% of
Moustached Warbler occurrences overlapped spatially
with Reed Warblers, and vice versa in 36.4% of cases.
In 2014, we recorded Moustached Warblers at 20
points, Reed Warblers at 23 points and the two species
overlapped at 9 points; that is, in 45.0% and 39.1% of
the cases, respectively. A significant negative
association between the densities of the two species

Figure 2. Diet specialization of Moustached (solid line) and Reed
(dashed line) Warblers during the 2012 breeding season
according to the Berger–Parker index of dominance (d ).

Figure 3. Weekly abundance of females with vascularized brood patches and young individuals of Moustached (MW) and Reed (RW)
Warblers during the 2012 breeding season.
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was found in 2013 but not 2014 (2013: rho =−0.635,
P < 0.001; 2014: rho =−0.321, P = 0.069; Figure 6).

Discussion

Our results indicate a large trophic niche overlap and
similar prey choice between the Moustached and
Reed Warblers. These findings confirm that the two
species are potential competitors for food. The low
sample size should be taken into account when
considering these results, especially for the single food
sampling periods. The negative association between
densities of Moustached and Reed Warblers in 2013
and the degree of spatial overlap (<50%) indicate a
clear difference in the spatial distribution of both
species in our study area. Given the greater habitat
specialization of Moustached Warblers (see the
references in the first section), its occurrence in only
one part of the census points occupied by Reed
Warblers is not surprising. Yet Reed Warblers were

also contacted only in one part (<40%) of the
Moustached Warblers’ occurrence points. Reed Warblers
are an Acrocephalus with eclectic habitat requirements
(see the first section). Thus its absence from most areas
occupied by Moustached Warblers, and consequently
from wide reedbed areas (suitable habitat), needs
explaining. We also observed a partial temporal
segregation of breeding between both species, and the
most important periods for the chick rearing of
Moustached and Reed Warblers did not overlap. Thus,
as predicted, we found evidence of niche differentiation
among two potentially competing species.

Given these elements, we suggest that a small spatial
and temporal overlap may be a response to interspecific
competition for food. According to this scenario,
Moustached Warblers reduced competition by breeding
early, and partly avoided the higher food demand period
of Reed Warblers. As a further possible advantage, the
early fledged juveniles of Moustached Warblers did not
have to compete with young Reed Warblers for several

Figure 4. Abundance estimation of breeding pairs rearing nestlings of Moustached (MW) and Reed (RW) Warblers during the 2012
breeding season, calculated as the averaged abundance of females with evidently vascularized brood patches recorded in the
previous 3 weeks, and food availability for the two species according to the WAI.

Figure 5. Weekly overall abundance of Moustached and Reed Warblers (RW + MW) during the 2012 breeding season (the solid line
represents MA over 3 weeks), higher food demand periods of Moustached and Reed Warblers (light grey area and dark grey area,
respectively) identified on the basis of brood patch data, and food availability for the two species according to the WAI.
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weeks (Figure 3, weeks 10–15). In addition, early breeding
implies the possibility to carry out a substitution/second
clutch (Figure 4). The breeding phenology of
Moustached Warblers varies notably among years and
breeding sites, thus it is likely to be influenced by inter-
annual climate variability and local factors (Castany &
Lopez 2006 and references therein). The advantages that
stem from lower competition may also influence the
breeding phenology of Moustached Warblers and help
explain the early breeding of this species. Concerning
Reed Warblers, individuals arriving from Africa would
be advantaged from settling preferably in those areas not
previously occupied by Moustached Warblers, because
they would experience less competition for food during
nestling rearing.

A large trophic niche overlap does not necessarily
imply interspecific competition, and no direct evidence
was obtained that food availability was scarce compared
to the demand observed during the study period, or at
least part of it. An appropriate way to assess the
occurrence of interspecific competition among our study
species would be to compare their niche dimensions in
breeding sites of sympatry and allopatry (Begon et al.
2006). For example, detailed data about habitat
preferences of both species in our study area and in
allopatry sites may have allowed us to distinguish the
effects of their co-occurrence from those of the habitat
features on the observed spatial patterns. Conversely,
starting from our data it is possible to draw conclusions
only about niche overlap. According to our results, it is
possible to identify periods when competition was more
likely to occur based on high food demand and
fluctuations in food availability (see weeks 15–16,
Figures 4 & 5). As a result of inter-annual climate
variability, such fluctuations are likely to occur not only
during one breeding season, but also between years,
with competition being more likely in years with lower
food availability. However, competition for food was
unlikely to occur if food availability at our study site
was higher than the overall demand throughout the
breeding season. After studying several wetlands in
south France, Poulin et al. (2002) found a significant
positive correlation between the abundance of breeding
reedbed-nesting passerines and food (arthropods)
availability. This result does not support the scenario
where food in Mediterranean reedbeds is generally
overabundant compared with the demand of reedbed-
nesting passerines because, in this case, food availability
should not influence bird abundance. In other European
regions, researchers who studied Acrocephalus warblers
found no clear influence of food abundance on breeding
success (Bibby & Thomas 1985) or attributed low
importance to this factor in territorial spacing (Hoi et al.
1991). Other researchers who studied these species
found possible signs of competition: Castany (2003)
reported a surprisingly low breeding density of Reed
Warblers in a Spanish marshland that hosts a large
population of Moustached Warblers. This author
hypothesized that such a low density could be explained
by the competition of both Moustached and Great Reed
Warblers; Castany (2003) and Poulin et al. (2002)
reported Reed Warblers to be common in areas that are
not optimal for other species, such as dry reedbed
zones. Thus this species’ eclectic habitat requirements
may enable it to occupy the reedbed areas that other
species avoid, which would reduce interspecific
competition.

Figure 6. Associations between the densities of Moustached and
Reed Warblers recorded at point count locations during the
breeding seasons of 2013 (N points = 72) and 2014 (N points = 58).
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Factors other than interspecific competition for food
may explain the segregation we observed. Some authors
have reported interspecific aggressive interactions
(interference competition, Begon et al. 2006) among
Acrocephalus warblers, but the meaning and effects of
such behaviours have not been clarified (Murray 1971,
Catchpole 1978, Hoi et al. 1991). In a Central Europe
marshland, Moustached Warblers bred in a limited area
within the wider spatial range of Reed Warblers, and no
dominant relationship between the two species was
found (Hoi et al. 1991). While conducting fieldwork in
areas where the two species co-occur, we noticed no
interactions to support the existence of interference
competition. However, we did not carry out specific
observations or experiments to study aggressive
interactions. While studying Phylloscopus warblers,
Bourski & Forstmeier (2000) suggested that some species
may simply avoid areas occupied by the congeneric
competitors that arrived earlier. Given the apparent lack
of aggressive interactions, they also suggested the term
‘territorial avoidance’ as being more correct than
‘territorialism’.

A further possible explanation has been suggested by
Hoi et al. (1991): territorial spacing and differences in the
breeding times between Acrocephalus warblers may
operate to reduce nest predation. As we did not collect
data on this issue, we were unable to evaluate this
possibility in our study.

By way of conclusion, we found a large trophic niche
overlap at our study site between Moustached and Reed
Warblers throughout the breeding season. Conversely, we
found differences in space and time use between both
species. We suggest that these differences may be a
response to interspecific competition for food. The need
to reduce competition may also help explain the early
breeding of Moustached Warblers. Although we found no
direct evidence for the occurrence of competition, we
identified periods when interspecific competition was
more likely to occur given high food demand and
fluctuations in food availability. Other factors, such as
interspecific aggressive interactions and nest predation,
may also help determine the observed spatial and
temporal patterns.
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                             Does fragmentation of wetlands affect gene fl ow in sympatric 
Acrocephalus warblers with different migration strategies?      

    Francesco     Ceresa  ,       Eduardo J.     Belda  ,       Laura     Kvist  ,       Hamid     Rguibi-Idrissi     and         Juan S.     Monr ó s            

  F. Ceresa (francesco.ceresa01@gmail.com) and J. S. Monr ó s, Inst. Cavanilles of Biodiversity and Evolutionary Biology, Univ. of Valencia,
C/Catedr á tico Jos é  Beltr á n 2, ES-46980 Paterna (Valencia), Spain.  –  E. J. Belda, IGIC, Univ. Polit é cnica de Valencia, C/Paranimf 1, ES-46730 
Gand í a (Valencia), Spain.  –  L. Kvist, Dept of Biology, Univ. of Oulu, PO Box 3000, FI-90014 Oulu, Finland.  –  H. Rguibi-Idrissi,  é quipe de 
recherche  ‘ Valorisation des ressources naturelles et biodiversit é  ’ , Facult é  des Sciences, BP 20, MA-24000 El Jadida, Morocco.                              

 Wetlands are naturally patchy habitats, but patchiness has been accentuated by the extensive wetlands loss due to human 
activities. In such a fragmented habitat, dispersal ability is especially important to maintain gene fl ow between populations. 
Here we studied population structure, genetic diversity and demographic history of Iberian and North African populations 
of two wetland passerines, the Eurasian reed warbler  Acrocephalus scirpaceus  and the moustached warbler  Acrocephalus mela-
nopogon . Th ese species are closely related and sympatric in our study sites, but the reed warbler is a widespread long-distance 
migrant while the moustached warbler ’ s breeding range is patchier and it is resident or migrates over short distances. Using 
microsatellite and mtDNA data, we found higher diff erentiation in moustached than in reed warblers, indicating higher 
dispersal capability of the latter species. Our results also suggest that the sea limits dispersal in the moustached warbler. How-
ever, we found evidence of gene fl ow between the study sites in both species, indicating a capability to compensate for habitat 
fragmentation. In most cases, the gene fl ow was restricted, possibly because of the large distances between study sites (from ca 
290 to 960 km) or breeding site fi delity. Th e reed warbler had higher haplotype diversity, likely due to dispersal from diff er-
ent populations, past admixture event and a larger population size. We found also signs of postglacial population growth for 
both species and evidence of a recent colonization or re-colonization of the Mallorca Island by the moustached warbler.   

 Habitat fragmentation consists of reduction of the total 
habitat area and creation of separate patches from a wider 
continuous distribution (Frankham et   al. 2010). Th e con-
sequences of habitat fragmentation on the demographic 
and genetic structure of a natural population vary accord-
ing to both landscape features (degree of habitat isolation, 
type of matrix between fragments) and species characteris-
tics (population size and density, dispersal ability, stress toler-
ance; Matthysen et   al. 1995, Newton 1998, Bohonak 1999, 
Desrochers et   al. 1999, Galbusera et   al. 2004). Wetlands are 
patchy habitats immersed in a terrestrial matrix, and this 
natural characteristic of discontinuity has been accentu-
ated by the extensive habitat destruction caused by human 
activities (Finlayson et   al. 1992, Van Vessem et   al. 1997, 
Paracuellos and Teller í a 2004, Silva et   al. 2007, Laurence 
2010). In such a scattered habitat, the dispersal ability of a 
species is crucial to produce suffi  cient gene fl ow to reduce 
the impact of population fragmentation. Lack of gene fl ow 
between fragmented populations can lead to loss of genetic 
diversity (Kvist et   al. 2011), inbreeding and consequently 
higher extinction risk compared to a continuous population 
(Frankham et   al. 2010). Dispersal ability of birds is gener-
ally high (Koenig et   al. 1996, Frankham et   al. 2010), but 
detailed species-specifi c estimates are diffi  cult to obtain. Th is 
is largely due to practical diffi  culties; studying dispersal over 

large distances requires large-scale marking schemes (Paradis 
et   al. 1998, Hansson et   al. 2002) and the use of satellite 
telemetry is usually possible only on a reduced number of 
individuals due to the high costs and cannot be used in small 
birds due to their size. However, indirect genetic methods 
can provide useful information about gene fl ow and popula-
tion diff erentiation. 

 Here we present new information of genetic diversity and 
population structure of two closely related and sympatric wet-
land passerines with diff erent migration strategies, the mous-
tached warbler  Acrocephalus melanopogon  and the Eurasian 
reed warbler  Acrocephalus scirpaceus  (hereafter reed warbler), 
based on both microsatellites and mitochondrial DNA data. 

 Th e moustached warbler is a polytypic species breed-
ing across a discontinuous area ranging from SW Europe 
to central Asia (Kennerley and Pearson 2010). Our study 
populations in Spain belong to the nominal subspecies  mela-
nopogon , which occupy the western part of the species range. 
Th ese populations are mostly sedentary or migrate over 
short distances (Castany 2003, Castany and L ó pez 2006, 
Kennerley and Pearson 2010). In Spain, the distribution of 
the moustached warbler is discontinuous and most of the  ∼  
1000 breeding pairs are concentrated in a few marshlands 
along the Mediterranean Coast and on the Mallorca Island 
(Castany and L ó pez 2006). Until now, no information about 
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genetic diversity and genetic population structure has been 
provided for this species. 

 Th e reed warbler is a common and widespread breeding 
bird in Europe. Th is species is a long-distance migrant win-
tering in sub-Saharan Africa (Kennerley and Pearson 2010); 
a migratory divide in central Europe splits the European 
reed warbler population (subspecies  scirpaceus ) into SW- and 
SE-migrating populations (Proch á zka et   al. 2008). Iberian 
reed warblers belong to the SW-migrating group, have more 
rounded and shorter wings (Cramp 1992, Peir ó  2003) and 
winter more north than the other SW-migrating populations 
(Proch á zka et   al. 2008). Proch á zka et   al. (2011), using ten 
microsatellite loci, found no clear population structure and 
low genetic diff erentiation in reed warbler populations across 
Europe, indicating a high level of gene fl ow. Furthermore, 
the authors reported slight, but signifi cant, diff erentiation 
of Iberian populations and suggested that they may have a 
diff erent evolutionary history than other populations. North 
African reed warblers seem to be partly sedentary (Amezian 
et   al. 2010, Kennerley and Pearson 2010) and birds breed-
ing in Morocco diff er from European reed warblers also in 
biometrics, coloration and moult strategy (Amezian et   al. 
2010, Jiguet et   al. 2010). On this basis, some authors sug-
gest that these birds could constitute a new taxon (Amezian 
et   al. 2010, Jiguet et   al. 2010), thus the status of the north 
African population is still unclear. 

 Th e aims of this study were: 1) to provide new informa-
tion of genetic diversity, population structure and popu-
lation history of the study species in Iberia (and also in 
north Africa for the reed warbler), 2) to assess the possible 
eff ects of habitat fragmentation on the genetic diversity 
and structure of the study populations and 3) to com-
pare the results obtained for the two species, taking into 
account especially their diff erences in migration strategy 
and population size.  

 Methods  

 Sampling and DNA extraction 

 We obtained blood samples from birds mist-netted during 
the breeding season of 2012 – 2013 at four study areas: the 

Pego-Oliva Natural Park (38 ° 51 ′ N, 0 ° 03 ′ W), S’Albufera de 
Mallorca (39 ° 47 ′ N, 3 ° 06 ′ E) and Villafranca de los Cabal-
leros (39 ° 27 ′ N, 3 ° 19 ′ W) in Spain and Larache (35 ° 08 ′ N, 
6 ° 05 ′ W) in Morocco (Fig. 1, for sample sizes see Table 1). 
At the last site, the breeding population of the moustached 
warbler is small and we captured no individuals. Blood sam-
ples (5 – 15  μ l) were obtained by puncturing the brachial vein 
and stored in 96% ethanol. Overall, we sampled 54 mous-
tached warblers and 68 reed warblers. We extracted DNA 
using UltraClean TM  Blood Spin TM  Kit (MoBio Laboratories) 
according to the manufacturer ’ s protocol.    

 DNA amplifi cation  

 Microsatellites 
 We amplifi ed 16 polymorphic microsatellite loci from reed 
warbler DNA samples: Ase25, Ase34, Ase37, Ase48, Ase58 
(Richardson et   al. 2000,  Acrocephalus sechellensi s), Pocc2 
(Bensch et   al. 1997,  Phylloscopus occipitalis ), Ppi2 (Mart í nez 
et   al. 1999,  Pica pica ), Aar4, Aar5 (Hansson et   al. 2000, 
 Acrocephalus arundinaceus ), FhU2 (Ellegren 1992,  Ficedula 
hypoleuca ), Pca3 (Dawson et   al. 2000,  Cyanistes caeruleus ), 
Pdo μ 1 (Neumann and Wetton 1996,  Passer domesticus ), 
Cu μ 28 (Gibbs et   al. 1999,  Catharus ustulatus ), Gf05 (Petren 
1998,  Geospiza fortis ), Pdo5 (Griffi  th et   al. 1999,  P. domesti-
cus ) and ZL54 (Frentiu et   al. 2003,  Zosterops lateralis ). From 
the moustached warbler, we successfully amplifi ed eight poly-
morphic loci: Ase18 (Richardson et   al. 2000,  A. sechellensis ), 
Aar4, Pdo5, Ppi2, ZL54, Pocc2, Pca3 and Ase25. Details 
on the PCR are available in Supplementary material Appen-
dix 1. We ran the PCR products with ABI PRISM 3730 
DNA Analyzer (Applied Biosystems) and scored them with 
GeneMapper 4.0. We checked the data with the program 
MICROCHECKER 2.2.3 (van Oosterhout et   al. 2004) for 
possible genotyping errors (null alleles, scoring errors due to 
stuttering, large allele dropouts).   

 Mitochondrial DNA 
 We amplifi ed 473 bp (reed warblers) of the mitochondrial cyto-
chrome oxidase COI using primers CO1F and CO1R (Hebert 
et   al. 2004) or 623 bp (moustached warbler) using primers 
CO1F and CO1R2 (Kerr et   al. 2007). Details on the PCR 

  Figure 1.     Location of the sampling sites: 1) Larache, 2) Villafranca de los Caballeros, 3) Pego-Oliva Natural Park and 4) S’Albufera de Mallorca.  
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procedures are available in the online supplementary material. 
We used the forward primer (F) for sequencing and, in order to 
check for sequence quality, all the reed warblers and 26 mous-
tached warblers were sequenced also using the reverse primers 
(R). We used the BigDye TM  Terminator 3.1 Cycle Sequencing 
Kit (Applied Biosystems) and ran the sequencing reactions with 
ABI PRISM 3730 automatic sequencer (Applied Biosystems). 
We obtained sequences of 50 reed warblers and 43 mous-
tached warblers (GenBank accession numbers: KP776472 to 
KP776521 for the fi rst species and KP776522 to KP776564 
for the second species). Th e sequences were checked and 
aligned with BioEdit 7.2.5 (Hall 1999).   

 Statistical analysis  

 Microsatellites 
 We tested the possible deviations from the Hardy – 
Weinberg and linkage equilibrium with GENEPOP 4.2 
(Raymond and Rousset 1995, Rousset 2008), for each 
sampling site and for the total sample of both species. For 
the same groups we calculated the expected heterozygos-
ity (H e ) with Arlequin 3.5.1 (Excoffi  er and Lischer 2010) 
and inbreeding coeffi  cient (F IS ) and allelic richness (A) with 
FSTAT 2.9.3 (Goudet 1995). 

 To infer the population genetic structure we used the 
program STRUCTURE 2.3.4 (Pritchard et   al. 2000, Falush 
et   al. 2003). Th is program is based on a Bayesian approach 
and allows estimation of the most probable number of dis-
tinct genetic clusters (K) in the data set. We chose a model 
with population admixture and correlated allele frequen-
cies (Falush et   al. 2003), and performed the analysis with 
and without prior spatial information of sample locations. 
We performed ten independent runs for each value of K 
between 1 and 10, with a burn-in period of 50 000 itera-
tions and 500 000 Markov chain Monte Carlo (MCMC) 
replications. Furthermore, we calculated the ad hoc statistic 
 Δ K from the STRUCTURE results as described by Evanno 
et   al. (2005). We investigated population diff erentiation 
also by calculating pairwise F ST  values between each of the 
sampling sites using the program Arlequin. 

 We explored the spatial genetic structure with the 
program SPAGeDi 1.4 (Hardy and Vekemans 2002), using 

the Loiselle kinship coeffi  cient (Loiselle et   al. 1995) and four 
(reed warbler) or three (moustached warbler) distance classes. 
Th e spatial coordinates of the individuals corresponded to 
the coordinates of the four sampling sites, and we built dis-
tance classes to include one site per class. To obtain informa-
tion about current dispersal between populations, we carried 
out an assignment analysis and looked for fi rst generation 
migrants with the program GENECLASS 2 (Piry et   al. 
2004). We used the Bayesian individual assignment meth-
ods by Rannala and Mountain (1997) and the simulation 
algorithm of Paetkau et   al. (2004). For both assignment 
analysis and fi rst generation migrant detection, we used 
1000 replicates, alpha level for the MCMC simulations at 
0.01 and assignment threshold at 0.05. 

 Genetic data from population samples carry also infor-
mation about population history. First, we looked for past 
bottlenecks by means of the program BOTTLENECK 
1.2.02 (Cornuet and Luikart 1996, Piry et   al. 1999), which 
tests for heterozygosity excess caused by recent reduction of 
the eff ective population size (Piry et   al. 1999). We used the 
Wilcoxon test under the two-phase mutation model with 
95% single-step mutations. We also estimated the Garza –
 Williamson index (Garza and Williamson 2001) with Arle-
quin, in order to search for strong past population bottlenecks. 
Using the genetic clusters identifi ed by STRUCTURE, we 
studied the population history with the program DIY ABC 
2.0.3 (Cornuet et   al. 2008), based on approximate Bayesian 
computation (ABC). Using DIY ABC it is possible to com-
pare diff erent competing historical/demographic scenarios 
and to obtain parameter estimators, such as the divergence 
times and the current and past eff ective population sizes. For 
the reed warblers, we found only one genetic cluster with 
STRUCTURE (K    �    1, see Results), thus we performed this 
analysis only for moustached warbler (K    �    2, see Results). 
We explored fi ve scenarios, the simplest one containing 
one divergence event, while the remaining four contained 
population size changes at diff erent times after divergence 
in only one or both diverged lineages. We chose the default 
range of priors for eff ective population sizes and divergence 
times (10 – 10 000) and set the conditions for the chrono-
logical order of historical events. We adopted the default 
generalized stepwise mutation model (Estoup et   al. 2002) 
and seven of 11 default summary statistics (four within- and 

  Table 1. Sample sizes, expected heterozygosity (H e ), allelic richness (A), inbreeding coeffi cient (F IS ), Wilcoxon p-values (Wil. test, one-tailed 
for heterozygosity excess) and Garza – Williamson index (G – W) of (a) reed warbler and (b) moustached warbler, calculated from microsatel-
lite data for each sampling site and populations defi ned by STRUCTURE (Str).  

Sample n H e  (SD) A (SD) F IS  (SD) p (Wil. test) G – W

(a)
Larache 38 0.696 (0.316) 1.70 (0.32) 0.127 (0.314) 0.207 0.84
Pego-Oliva 7 0.681 (0.366) 1.68 (0.37) 0.049 (0.281) 0.67
Mallorca 3 0.650 (0.375) 1.65 (0.38)  – 0.153 (0.413) 0.62
Villafranca 20 0.710 (0.249) 1.71 (0.25)  – 0.022 (0.257) 0.661 0.73
Total 68 0.716 (0.272) 1.68 0.014 (0.316) 1.00

(b)

Pego-Oliva 30 0.602 (0.184) 3.76 (2.16)  – 0.275 (0.404) 0.078 0.96
Villafranca 9 0.590 (0.185) 3.47 (2.22)  – 0.344 (0.477) 0.078 0.85
Mallorca   (    �    Str  –  Mallorca) 15 0.538 (0.202) 2.96 (1.60)  – 0.500 (0.454) 0.023 0.82
Str  –  Spanish mainland 39 0.611 (0.172) 4.28 (3.01)  – 0.240 (0.394) 0.039 0.96
Total 54 0.621 (0.182) 3.40  – 0.250 (0.115) 0.88
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from BOTTLENECK analysis, while for the other analyses 
we used all 16 loci. We found no evidences of large allele 
dropouts or scoring errors in the data set. 

 We found no signifi cant deviations from Hardy – Wein-
berg equilibrium. Linkage disequilibrium was found only for 
FhU2 and Pca3 in Villafranca and when all sampling sites 
were combined. Genetic variation (Table 1a) was at similar 
levels in all the four sampling sites, the highest was found in 
Villafranca (H e     �    0.710, A    �    1.71) and the lowest in Mal-
lorca (H e     �    0.650, A    �    1.65). 

 Th e program STRUCTURE attributed the highest like-
lihood ( – 2412) to K    �    1, although K    �    2 obtained almost 
equal support ( – 2417).  Δ K showed a peak at K    �    2, but as 
it is not possible to compute  Δ K for K    �    1, we could not 
compare the two hypotheses based on this. Th e STRUC-
TURE bar plot obtained for K    �    2 (Fig. 2a) support the 
K    �    1 hypothesis, because all individuals showed approxi-
mately equal probability of belonging to both of the two 
clusters. To detect a possible weak population structuring 
we repeated the analysis adding geographical information 
(LOCPRIOR model), but with similar results. Th erefore, 
the most supported hypothesis is the lack of a clear popula-
tion structuring in reed warblers. Nonetheless, in two cases 
(Larache  –  Pego-Oliva and Villafranca  –  Mallorca) pairwise 
F ST  values between sampling sites were signifi cant, though 
low (Table 2a). 

 Using the program SPAGeDi, the regression between the 
kinship coeffi  cients of individual pairs and the logarithm 
of the distances between sampling sites was signifi cantly 
negative (r    �     – 0.058, p    �    0.042). However, given the low 
regression coeffi  cient, this does not clearly support isola-
tion by distance. Out of 68 birds, 43 (63%) were assigned 
to their sampling sites (Table 3a) by the assignment test. 
It is noteworthy, that two birds sampled at Mallorca were 
identifi ed as fi rst generation migrants and assigned to 
Pego-Oliva. Both individuals (a male with evident cloacal 
protuberance and a female with brood patch) were breeding 
when sampled. 

 We found no evidence of past bottlenecks according 
to the allele frequency distributions or heterozygote excess 
(Table 1a). Sample sizes from Pego-Oliva and Mallorca were 
too small to perform the analysis. Th e Garza – Williamson 
(G – W) index provides a sign of past bottleneck when 
lower than 0.68 while excludes this event if it exceeds 0.8 
(Garza and Williamson 2001). Th e only low values were 
obtained from Pego-Oliva and Mallorca (Table 1a), but 
again, the small sample sizes prevent further interpretations. 
To conclude, we found no clear evidence of past bottle-
necks.   

 Mitochondrial DNA 
 Th e 50 sequenced reed warblers belonged to 18 diff erent hap-
lotypes. Th e TCS network (Fig. 3a) show a star-like structure, 
with one dominant haplotype including 25 individuals (50% 
of the total) and 17 other haplotypes represented by few 
birds (1 – 4). Th is structure suggests past population expan-
sion. Four of sampled birds were more related to the out-
group individual from Sweden than to the remaining Iberian/
African individuals (Fig. 3a). Haplotype and nucleotide diver-
sities are reported in Table 4a. Th e pairwise  ϕ  ST  values between 
the study sites were low and not signifi cant (Table 5a). 

three among-populations). With these settings, a total of 
5 000 000 simulated data sets were calculated (1 000 000 
per scenario); among them, the 50 000 sets closest to the 
observed data according to the summary statistics were used 
for parameter estimation.   

 Mitochondrial DNA 
 We calculated haplotype and nucleotide diversities for the 
entire sample and for each sampling site using DnaSP 5.10.01 
(Librado and Rozas 2009). To build a statistical parsimony 
network, we used the program TCS 1.21 (Clement et   al. 2000) 
with default settings of 95% parsimony connection limit. As 
outgroups, we included sequences from other European pop-
ulations obtained from the GenBank (accession numbers and 
origin: moustached warbler  –  GQ481257, Russia; reed war-
bler  –  GU571698, Sweden). We used the program Arlequin 
to estimate population diff erentiation by calculating pairwise 
 ϕ  ST  values between each of the sampling sites using pairwise 
diff erences and frequencies of haplotypes. 

 We studied the demographic history of both species 
with mismatch distribution analysis, the distributions of the 
observed number of diff erences between pairs of sequences 
in a sample. Unimodal distributions usually indicate an 
expansion event, whereas multimodal distributions are typi-
cal of populations at demographic equilibrium (Rogers and 
Harpending 1992). In addition, we carried out Tajima’s D 
(Tajima 1989) and Fu’s F S  (Fu 1997) neutrality tests, where a 
statistically signifi cant negative value indicates a recent expan-
sion event. All these were tested for the entire sample and for 
each sampling site separately using Arlequin and DnaSP. 

 Th e reed warbler mismatch distribution suggested an 
admixture of two previously isolated populations (see 
Results). Th us, we ran reed warbler data with DIY ABC to 
estimate the timing of this demographic event. We compared 
four scenarios, where the simplest one consisted of an admix-
ture of lineages at time t a  and a previous divergence at time 
t 2 . Th e remaining three scenarios followed the same basic set-
ting, but included population size changes at diff erent times 
for only one or both lineages before the admixture. Reed war-
bler populations in Iberia and across Europe are abundant 
(Carrascal and Palomino 2008, BirdLife International 2012), 
thus we set the maximum eff ective population size at 1 000 
000 individuals in the model. As maximum time for the 
admixture and the previous divergence events, we set respec-
tively 10 000 and 20 000 generations. We used the Kimura 
two parameter mutation model (Kimura 1980) and all default 
summary statistics. A total of 4 000 000 simulated data sets 
were calculated (1 000 000 per scenario); among them, the 
40 000 sets closest to the observed data according to the sum-
mary statistics were used for parameter estimation.     

 Results  

 Reed warbler  

 Microsatellites 
 Using MICROCHECKER we found possible null alleles 
in loci Ase25, Ase37, Ase48 and ZL54. We excluded these 
loci from calculations for the Hardy – Weinberg equilibrium, 
linkage disequilibrium and inbreeding coeffi  cient, as well as 
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 According to the neutrality tests, we found signs of popu-
lation expansion for Larache and, less clearly, for the total 
data set. Tajima’s D and Fu’s F S  were signifi cantly negative 
for Larache (D    �     – 2.203, p    �    0.01; F S     �     – 7.063, p    �    0.001) 
and for the total sample, only Fu’s F S  was signifi cantly nega-
tive (D    �     – 1.581, p    �    0.05; F S     �     – 8.590, p    �    0.001). Th e 
mismatch distribution did not detect signifi cant deviations 
from the expansion hypothesis. Furthermore, mismatch 

  Table 2. Pairwise F ST  values (p-values in parentheses) between 
sampling sites and between STRUCTURE (Str) populations of (a) 
reed warbler and (b) moustached warbler, calculated from microsat-
ellite data.  

Sample Pego-Oliva Mallorca Villafranca

(a)
Mallorca 0.0030 (0.189)  – – 
Villafranca  – 0.0211 (0.505) 0.0732 (0.018)  – 
Larache 0.0189 (0.027)  – 0.0029 (0.351)  – 0.0193 (0.892)

Sample Pego-Oliva Mallorca (    �    Str  –  Mallorca)

(b)

Mallorca 0.1146 (0.000)  – 
Villafranca 0.0609 (0.000) 0.1352 (0.000)
Str  –  Spanish 

mainland
 – 0.1078 (0.000)

  Figure 2.     Bar plots of the STRUCTURE results based microsatellite data of (a) reed warbler and (b) moustached warbler for K    �    2 and 
K    �    3. Each column corresponds to an individual and represents its probability to belong to one of the K clusters.  

  Table 3. Assignment of (a) reed warblers and (b) moustached warblers 
to the sampling sites and the genetic clusters defi ned by STRUCTURE 
(Str), on the basis of microsatellite data; individuals which have not 
been assigned to their site/population of origin are reported in bold.  

Assigned to

Sampling site 
of origin Larache Pego-Oliva Mallorca Villafranca

(a)

Larache 35  1 0  2 
Pego-Oliva  3 0 0 4 
Mallorca  2 0 0 1 
Villafranca  12 0 0 8

Assigned to

Sampling site 
of origin

Pego-Oliva Mallorca Villafranca

(b)
Pego-Oliva 30 0 0
Mallorca  5 9 1 
Villafranca  6 0 3

Assigned to

Str population 
of origin

Str  –  Spanish mainland Str  –  Mallorca

Str  –  Spanish 
mainland

39 0

Str  –  Mallorca  6 9
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direct estimation (A    �    0.386, B    �    0.440), but the logis-
tic approach clearly supported scenario A (A    �    0.841, 
B    �    0.159). Testing confi dence in scenario choice over all 
scenarios, as implemented in DIY ABC, confi rmed scenario 
A as the best, but with high type I error (56.8% according 
to direct approach, 55.4% to logistic approach) due to the 
good performance of scenario B. Both scenarios fi tted the 
data well according to model checking, with no signifi cant 
deviation in summary statistics between posterior distri-
butions and observed data. Timing of admixture was esti-
mated to be 5690 generations ago (CI 95% 583 – 9610) from 
scenario A and 4750 generations (CI 95% 505 – 9420) from 
scenario B. Assuming a generation length of three years (mean 
of ages suggested for other  Acrocephalus  warblers; Bensch and 
Hasselquist 1999, Spurgin et   al. 2014), this would translate 
to admixture occurring about 14 000 – 17 000 yr ago.    

distribution of Larache, Villafranca and the whole data set 
showed a bimodal shape (Fig. 4), suggesting a past admix-
ture of previously isolated populations. When demographic 
history was explored with DIY ABC, the scenario includ-
ing a population size change in the other population after 
divergence but before admixture (hereafter A; Fig. 5) resulted 
to be the best. However, the simplest scenario with diver-
gence followed by admixture without population size changes 
(hereafter B; Fig. 5), obtained high support as well, thus we 
report the parameter estimates from both scenarios (Fig. 5). 
Scenario A had lower posterior probability than B according to 

  Table 4. Sample sizes, number of segregating sites, number of 
haplotypes, haplotype diversity (h) and nucleotide diversity ( π ) of (a) 
reed warbler and (b) moustached warbler, calculated from 
mitochondrial DNA data for each sampling site and STRUCTURE 
(Str) population (Str populations were identifi ed on the basis of 
microsatellite data).  

Sample n
n segregating 

sites
n 

haplotypes h  π 

(a)
Larache 29 21 13 0.823 0.004
Pego-Oliva 5 11 3 0.700 0.010
Mallorca 3 0 1 0.000 0.000
Villafranca 13 14 6 0.718 0.008
Total 50 23 18 0.745 0.006
(b)

Pego-Oliva 22 3 4 0.333 0.001
Villafranca 8 0 1 0.000 0.000
Mallorca (    �    Str 

 – Mallorca)
13 4 4 0.526 0.001

Str  –  Spanish 
mainland

30 3 4 0.251 0.000

Total 43 7 7 0.339 0.001

  Table 5. Pairwise  ϕ  ST  values (p-values in parentheses) between 
sampling sites and between STRUCTURE (Str) populations of 
(a) reed warbler and (b) moustached warbler, calculated from
mitochondrial DNA data. STRUCTURE population were identifi ed
on the basis of microsatellite data.

Sample Pego-Oliva Mallorca Villafranca

(a)
Mallorca  – 0.0918 (0.802)  – – 
Villafranca  – 0.0997 (0.685)  – 0.1149 (0.991)  –
Larache 0.0486 (0.207)  – 0.1742 (0.991) 0.0302 (0.072)

Sample Pego-Oliva Mallorca (    �    Str  –  Mallorca)

(b)

Mallorca 0.0660 (0.036)  – 
Villafranca  – 0.0402 (0.739) 0.0065 (0.541)
Str  –  Spanish 

mainland
 – 0.0862 (0.000)

  Figure 3.     Statistical parsimony network based on (a) reed warbler and (b) moustached warbler mtDNA data. Each haplotype is represented by 
a circle, whose area is proportional to the number of individuals belonging to the haplotype. Each connecting bar stands for one substitution.  
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analyses, we used all eight loci. We found no evidence of large 
allele dropouts or scoring errors in the data set. Th e total 
sample was not in Hardy – Weinberg equilibrium ( χ  2  32     �     ∞ , 
p    �    0.001), nor was Pego-Oliva ( χ  2  12     �     ∞ , p    �    0.001) or 
Mallorca ( χ  2  12     �    47.18, p    �    0.001). We found no linkage 
disequilibrium between loci. Expected heterozygosity and 
allelic richness were higher and inbreeding coeffi  cient lower 
in the mainland sites of Pego-Oliva and Villafranca than in 
Mallorca (Table 1b). 

 Th e highest support for number of genetic clusters obta-
ined with STRUCTURE was for K    �    3 (ln likelihood    �     – 919). 
However, at K    �    2 (ln likelihood    �     – 935) we observed a 
clear peak of  Δ K, indicating the strongest structuring into 
two clusters. In the STRUCTURE bar plot (Fig. 2b, K    �    3), 
Mallorca is clearly distinct from the mainland, whereas most 
of the mainland individuals showed about equal proportions 
to belong into two clusters. Th us, we identifi ed two clusters 
corresponding to Mallorca and the Spanish mainland. Pair-
wise F ST  values were signifi cant between all sampling sites, as 
well as between the mainland and Mallorca (Table 2b). We 
did not fi nd any indications of isolation by distance (correla-
tion between the Loiselle kinship coeffi  cients and logarithms 
of distances r    �    0.000, p    �    0.825). Th e assignment analysis 
assigned 42 out of 54 (78%) individuals to their sampling 
sites, and when sampling sites were divided to mainland and 
Mallorca, 48 out of 54 birds (89%) were assigned to their 

 Moustached warbler  

 Microsatellites 
 MICROCHECKER detected possible null alleles in loci 
Ase18 and Ase25, thus we excluded them from the same 
analyses as listed for the reed warbler. For the remaining 

  Figure 5.     Demographic history of reed warbler according to the two best DIY ABC scenarios obtained from mitochondrial DNA data. 
Th e parameters estimates are provided as median (95% CI) and include the current (N1) and the ancient (N2, N3) eff ective population 
size, and timing (in terms of generations) of the admixture event (ta), population size variation (t2 scenario A) and population divergence 
(t3 scenario A, t2 scenario B).  

  Figure 4.     Mismatch distributions calculated from all reed warbler 
samples using mitochondrial DNA data. Th e bimodal shape of the 
observed frequencies indicates a past admixture of two previously 
isolated populations. Expected distributions for constant and 
expanded populations are also shown.  
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other six haplotypes were represented by one or two birds. 
Compared to the reed warbler, haplotype and nucleotide 
diversities (Table 4b) are markedly lower. 

 Th e  ϕ  ST -value estimated between mainland Spain and 
Mallorca was 0.0862 (p    �    0.022). Th e pairwise  ϕ  ST  value 
was signifi cant also between Pego-Oliva and Mallorca (Table 
5b), but low and non-signifi cant between Pego-Oliva and 
Villafranca. Th e results of neutrality tests suggested a past 
expansion for the whole sample (D    �     – 1.954, p    �    0.05; 
Fs    �     – 5.308, p    �    0.004). Th e mismatch distribution did not 
reveal signifi cant deviations from the expansion hypothesis.     

 Discussion 

 Despite the large distances between our sampling sites, 
we detected gene fl ow for both reed and moustached war-
blers, although partly restricted or even limited. Our results 
suggest that both species are able to avoid the risk of isola-
tion derived from breeding in fragmented habitats. However, 
there were diff erences between the species; genetic diff eren-
tiation in reed warblers is lower and diversity higher than in 
moustached warblers and their population histories diff er.  

 Reed warbler 

 Our results indicate low genetic diff erentiation and high 
gene fl ow between the sampling sites, suggesting high dis-
persal capability for the reed warblers. Low diff erentiation of 
the reed warbler populations has been observed also previ-
ously in Europe (Kralj et   al. 2010, Proch á zka et   al. 2011). 
However, the weak but signifi cant diff erentiation among 
some of the sampling sites in microsatellite data indicates 
that gene fl ow can be partly restricted. Th is can be due to the 
relatively large distances between sampling sites (from ca 290 
to 960 km) or breeding site fi delity reported for this species, 
especially for adult birds (Vad á sz et   al. 2008). Yet, lack of 
isolation by distance did not clearly support this. It is also 
possible that the result is aff ected by small sample sizes. 

 Given the lack of a clear structuring between Spain 
(subspecies  scirpaceus ) and Morocco in both markers, our 
results do not support the hypotheses that the Moroccan 
population should form a separate taxon (see Introduction; 
Amezian et   al. 2010, Jiguet et   al. 2010). In fact, Iberian 
and Moroccan birds even shared the same haplotypes. 
Besides the geographical proximity of the two areas, Morocco 
is crossed by the migration routes of the European SW-
migrating populations, which includes the Iberian reed 
warblers (Proch á zka et   al. 2008), which is likely to facilitate 
the gene fl ow between these populations. 

 We found signs of past population growth and mixing of 
previously isolated populations. Th e dating of this popula-
tion admixture calculated in DIY ABC (Fig. 5) is compat-
ible with a postglacial expansion from a refugium area, as 
the climate became warmer, causing the expansion of the 
suitable habitat also for many other species (Murray Gates 
1993, Wright et   al. 1993, Hewitt 2000, Dubey et   al. 2006). 
Arbabi et   al. (2014) identifi ed three mitochondrial lineages 
corresponding to three subspecies ( scirpaceus ,  fuscus  and 
 avicenniae ) of reed warblers and suggested these had remained 
isolated in three diff erent glacial refugia during the Middle 

cluster (Table 3b). Two breeding individuals (one sampled 
in Mallorca and one in Villafranca) were classifi ed as fi rst 
generation migrants and assigned to Pego-Oliva. Th e fi rst 
was a female with regressing brood patch and the second a 
male with evident cloacal protuberance. 

 We found signs of recent population size reduction in 
Mallorca (BOTTLENECK; Wilcoxon test, heterozygosity 
excess, p    �    0.023; shifted allele frequency class mode) and 
less clearly for the Spanish mainland as a whole (Wilcoxon 
test, heterozygosity excess, p    �    0.039; normal L-shape of 
allele frequency distribution). No evidence of past bottle-
necks was found, when mainland samples were analysed 
separately. G – W indices were always    �    0.8. 

 Out of the fi ve simulated scenarios for demographic his-
tory tested with the program DIY ABC, the best was the sim-
plest one (Fig. 6), with divergence at time t 1  and no eff ective 
population size (N e ) change after divergence. Posterior prob-
abilities of this scenario were 0.970 according to direct esti-
mation and 0.991 according to logistic approach. Th e model 
checking based on seven summary statistics and the PCA 
analysis supported the reliability of the scenario, with the 
exception of two summary statistics (mean M index, Garza 
and Williamson 2001; ( δ  μ ) 2  distance, Goldstein et   al. 1995) 
where posterior distributions deviated (0.01    �    p    �    0.001) 
from the observed data. Th e estimate of divergence time was 
230 generations (95% CI 41 – 449), corresponding to 690 yr 
using the same generation time of 3 yr as with reed warblers. 
N e  estimate for the Spanish mainland was 4460 (95% CI 
1240 – 6360), and 1500 for Mallorca (95% CI 290 – 2740). 
Th e ancient population size (before divergence) was esti-
mated to be 5890 (95% CI 1430 – 7820).   

 Mitochondrial DNA 
 Th e 43 sequenced moustached warblers belonged to seven 
diff erent haplotypes. Similarly to the reed warbler, the TCS 
cladogram (Fig. 3b) showed a star-like structure, suggest-
ing a past population expansion. Th e dominant haplotype 
was found from 35 individuals (81% of the total), while the 

  Figure 6.     Demographic history of moustached warbler: best DIY 
ABC scenario obtained from microsatellite data. Divergence time 
(t1) of the two populations (Pop 1    �    Spanish mainland and Pop 
2    �    Mallorca) is estimated to be 230 generations.  
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across Europe when the climate became warmer. Taking into 
account the population structuring, lower genetic variation 
and bottleneck and coalescence analysis, we suggest that 
Mallorca has been recently colonized or re-colonized by indi-
viduals originating from the mainland. After the settlement 
of the founding population, there is still some limited gene 
fl ow from the mainland.   

 Differences in population structure and 
demographic history between the two species  –  
possible explanations 

 Th e lower genetic diff erentiation found in reed warblers indi-
cates a higher dispersal rate than in moustached warblers. 
Long-distance migrants, like the reed warbler, are suggested 
to have higher dispersal ability than sedentary or short-
distance migrants, such as the moustached warbler (Gill et   al. 
1993, Lovette et   al. 1998, Paradis et   al. 1998, Arguedas and 
Parker 2000). Diff erences in wing morphology has been sug-
gested to be connected with migratory behaviour, as migra-
tory species tend to have more pointed wings than sedentary 
species (M ö nkk ö nen 1995). Th is is also seen in our study 
species; the reed warblers have more pointed wings than the 
moustached warblers (Kennerley and Pearson 2010) allow-
ing greater fl ight effi  ciency (Norberg 1989). In addition, our 
results suggest that diff erences in dispersal ability between 
reed and moustached warblers can result to diff erent capabil-
ity in crossing natural barriers, in this case dispersal over sea. 
Th e Mediterranean Sea is along the migration routes of the 
reed warblers and thus, it is obligatory for this species to be 
able to cross these kinds of barriers. On the contrary, migra-
tion of Spanish and French populations of moustached war-
blers mostly follow the Mediterranean coast (Castany 2003) 
and do not require crossing the sea, thus overcoming such a 
barrier is probably less common for these birds. 

 Higher diff erentiation in moustached warblers could be 
also due to the smaller population size and the more dis-
continuous breeding range than in reed warblers. In fact, 
breeding areas of moustached warblers are more isolated 
from each other, making the exchange of individuals more 
diffi  cult. In addition, Vad á sz et   al. (2008) reported higher 
breeding site fi delity in moustached than in reed warblers. 
Th ey hypothesized that the more specialized habitat pref-
erences of moustached warblers limit the opportunities to 
fi nd new suitable areas, resulting in reduced dispersal rates 
(Vad á sz et   al. 2008). Similar studies of the west Mediter-
ranean moustached and reed warbler populations would be 
needed to assess the breeding site fi delity. 

 Both species showed signs of postglacial expansions, 
consistently with the fi ndings of other studies of European 
wetland passerines (Hansson et   al. 2008, Neto et   al. 2012, 
Arbabi et   al. 2014). Haplotype diversity was higher for reed 
warblers, possibly because of a more important contribution 
of dispersal from diff erent populations, past admixture of dif-
ferentiated lineages and the higher population size (Fig. 3, 5 
and 6). Th e haplotype network structures of reed and mous-
tached warblers (Fig. 3) resemble each other, but whereas the 
reed warbler tree shows mixing of distinct lineages within 
populations, the other lineage of moustached warblers 
was found only from the Russian individual used as an 
outgroup. Th is indicates that the postglacial expansion and 

Pleistocene glaciations. Proch á zka et   al. (2011) suggested 
that it is possible that the Iberian Peninsula was one of the 
refugium areas for reed warblers, as has been documented for 
many other species (Hewitt 2004). Evidence of past popula-
tion growth in reed warblers was detected also by Arbabi 
et   al. (2014), but their samples were mainly from Germany. 

 Th e haplotype and nucleotide diversities we obtained 
were higher (n    �    50; h    �    0.745;  π     �    0.006) than estimated 
for Germany (n    �    347; h    �    0.544;  π     �    0.002) or for subspe-
cies  scirpaceus  (n    �    380; h    �    0.558;  π     �    0.002) in Arbabi 
et   al. (2014). Th e higher genetic diversity could be linked to 
an older population, i.e. more ancient refugium area (Comes 
and Kadereit 1998, Taberlet et   al. 1998) than suggested by 
Arbabi et   al. (2014). However, in this case the high diversity 
obviously results from admixture between the two diff er-
entiated lineages. Th e population divergence preceding the 
admixture (Fig. 5) can be dated to about 47 000 – 40 000 yr 
ago (given a generation time of three years) and thus coin-
cides with the MS3 stage of the last Glacial.   

 Moustached warbler 

 Microsatellite and mtDNA data indicate that gene fl ow is 
limited between the Spanish mainland and Mallorca Island 
and possibly restricted also among the two mainland sites. 
Th e assignment test suggest that occasional dispersal occurs 
from the mainland to Mallorca, but not much vice versa. 
However, it is possible that the classifi cation of a breeding 
bird as a fi rst generation migrant is not due to a real disper-
sal event, but to false detection due to small sample size or 
due to the sampling sites not being in H – W equilibrium 
(Excoffi  er and Heckel 2006). 

 Approximately the same distance (ca 290 km) separates 
Pego-Oliva from Villafranca and Mallorca, but only the Mal-
lorcan sample was clearly distinct. Th is suggests that gene 
fl ow between the Spanish mainland and Mallorca is likely to 
be limited not only by the distance, but also by the sea (ca 
200 km wide) between the coast and the island. Th us, our 
results suggest that the sea forms an eff ective dispersal barrier 
and limits gene fl ow in moustached warblers, at least between 
our study sites. For a warbler, crossing the sea means a lack 
of resting and foraging opportunities until reaching land, 
which is more risky and diffi  cult than dispersal over land. 
Th e low diff erentiation among the mainland sites indicates 
gene fl ow between the important breeding populations of 
the Mediterranean coast and the small and scattered inland 
populations breeding in Castilla-La Mancha (estimated to 
be only 10 pairs by Castany and L ó pez 2006), represented 
by Pego-Oliva and Villafranca samples in our study, respec-
tively. Th e breeding bird sampled in Villafranca and classi-
fi ed as fi rst generation migrant from Pego-Oliva can be a 
further sign of dispersal. In any case, the gene fl ow is not 
high, possibly because the two mainland sites are divided by 
a wide area without any other known breeding populations 
(Castany and L ó pez 2006) and without suitable habitat. As 
in reed warblers, breeding site fi delity in moustached war-
blers (Vad á sz et   al. 2008) could also reduce dispersal. 

 mtDNA showed evidence of past population growth, 
likely a sign of postglacial expansion. As discussed above 
about reed warblers, moustached warbler populations were 
probably confi ned to glacial refugia and extended their range 
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Appendix 1

PCR procedures 

Microsatellites 

For both reed and moustached warblers, we performed the Polymerase Chain Reaction (PCR) in 10-µl volumes using 2 

µl of DNA template, 1 µl of 10x PCR-buffer, 0.9 µl of dNTPs (2 mM), 0.8 of primers (10 µM) (or 0.4 of 20 µM 

primer), 0.4 of MgCl2 (2 mM) and 0.1 µl of DNA-polymerase (Biotools). The PCR procedure consisted of an initial 

denaturation for 5 min (94°C), 35 cycles of denaturation for 45 s (94°C), annealing for 45 s (from 48° to 63°C) and 

synthesis for 1 min (72°C), and a final synthesis for 7 min (72°C). Annealing temperatures for the primers were 50°C 

for Gf05 and Pdo5, 52°C for Ppi2, 54°C for Cuµ28 and ZL54, a touchdown from 60° to 50°C for Pocc2, from 63° to 

53°C for Aar5, FhU2, Pca3 and Pdoµ1, from 54° to 48°C for Aar4 and Ase34, and from 60° to 54°C for Ase18, Ase25, 

Ase37, Ase48 and Ase58. 

Mitochondrial DNA 

For reed warblers, we performed the PCR in 10-µl volumes using 2 µl of DNA template, 1 µl of 10x PCR-buffer, 0.5 µl 

of MgCl2 (2 mM), 1 µl of dNTPs (2 mM), 0.4 µl primer CO1F (20 µM), 0.4 µl of primer CO1R (20 µM) and 0.06 µl of 

DNA-polymerase (Biotools). We used the following PCR profile: denaturation for 1 min (95°C), 35 cycles of 

denaturation for 30 s (94°C), annealing for 45 s (49°C) and synthesis for 45 s (72°C), and a final synthesis for 10 min 

(72°C). 

For moustached warblers, we carried out the PCR in 10-µl volumes using 5 µl of DNA template, 1 µl of 10x 

PCR-buffer, 0.4 µl of MgCl2 (2 mM), 1 µl of dNTPs (2mM), 0.4 µl primer CO1F (20 µM), 0.4 µl of primer CO1R2 (20 

µM) and 0.06 µl of DNA-polymerase (Biotools). We used the same PCR profile employed for reed warblers, but with 

50°C as annealing temperature. 
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Abstract Studying dispersal is crucial to understand

metapopulation and sink-source dynamics and invasion

processes. The capability to disperse is especially impor-

tant for species living in fragmented habitats like wetlands.

We investigated the distribution of natal and breeding

dispersal distances and philopatry in Spanish populations

of two closely related reedbed-nesting birds, the Mous-

tached Warbler Acrocephalus melanopogon and the Eur-

asian Reed Warbler Acrocephalus scirpaceus. These

warblers are morphologically very similar, but differ in

migration strategy and, in our study area, in population

size. Our aims were to find the best model for dispersal

distances and to assess the occurrence of intra- or inter-

specific differences in dispersal patterns. We used ringing

data from the Spanish marking scheme and selected

recaptures to avoid including migrating individuals. In both

species, most individuals were philopatric but dispersing

birds were able to cross large distances (up to more than

100 km), suggesting the capability to compensate for

habitat fragmentation. We found the heavy-tailed Cauchy

distribution to be the best conceptual description for our

data, in all cases but natal dispersal of Moustached War-

blers. Among Eurasian Reed Warblers, natal philopatry

was lower than breeding philopatry. We found no signifi-

cant interspecific differences. This does not confirm the

hypothesis of higher dispersal ability in long distance

migrants (like Eurasian Reed Warblers) than in resident/

short distance migrant bird species (like Moustached

Warblers). The similarity in dispersal patterns among the

two warblers may be explained by their close phylogenetic

relatedness, similar constraints imposed on both species by

a patchy habitat or similar evolutionary pressures.

Keywords Acrocephalus melanopogon � Acrocephalus
scirpaceus � Dispersal � Long-distance dispersal �
Philopatry � Spatial ecology

Introduction

Studying dispersal is crucial in population biology. It is an

important element in metapopulation and sink-source

dynamics (Begon et al. 2006), in colonization and invasion

processes (Hengeveld 1994; Shigesada et al. 1995), and

should be taken into account when studying the processes

underlying adaptation (Lambrechts et al. 1999). Dispersal

is also related to gene flow and, consequently, to the degree

of genetic differentiation among populations (Bohonak

1999; Frankham et al. 2010). Thus, information about

dispersal is of critical importance for conservation, espe-

cially for species living in fragmented habitats (e.g., Van

Houtan et al. 2010). Dispersal in birds has been the object

of many studies, but the high movement capability of most

bird species implies important problems of data collection

(Koenig et al. 1996; Paradis et al. 1998 and references

therein). Indeed, small-scale study areas are likely to

underestimate the frequency of long-distance dispersal

events (Koenig et al. 1996; Paradis et al. 1998). In spite of

being relatively rare, such events are likely to be important

in population dynamics (Nathan et al. 2003) and in deter-

mining the genetic structure of populations (Ibrahim et al.
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1996). A ringed bird may be recovered anywhere, thus

recapture data from ringing databases are not spatially

limited and can provide useful information about dispersal

(Paradis et al. 1998, 2002).

In this study, we used data from the Spanish marking

scheme to investigate large-scale dispersal patterns of two

closely related reedbed-nesting birds, the Eurasian Reed

Warbler Acrocephalus scirpaceus Hermann 1804 and the

Moustached Warbler Acrocephalus melanopogon Tem-

minck 1823. These species are similar in size (approxi-

mately 10 g) and are both insectivorous, but they differ in

migration strategy. Their population sizes in Spain are also

highly different. The Eurasian Reed Warbler (hereafter

Reed Warbler) is a common breeding bird in Spain

(679,000–1320,000 individuals, Carrascal and Palomino

2008) and migrates over long distances, wintering in sub-

Saharan Africa (Kennerley and Pearson 2010). The Span-

ish population of Moustached Warbler is sedentary or

migrate over short distances, is distributed across a highly

discontinuous range and has been estimated in 484–1777

breeding pairs (Castany and López 2006). Distribution

maps of both species in Spain are available at Atlas Virtual

de las Aves Terrestres de España (Carrascal et al. 2005;

http://www.lmcarrascal.eu/atlas/mapasalfab.html). The

breeding habitat of both species is highly fragmented,

because of the natural patchy distribution of wetlands and

the habitat loss due to human activities (Van Vessem et al.

1997; Paracuellos and Tellerı́a 2004; Silva et al. 2007).

Our aims were: (1) to obtain new information about

dispersal ability and philopatry in Spanish populations of

the two species, the Reed Warbler and the Moustached

Warbler; (2) to find the best conceptual description of

dispersal distances in these warblers, among a set of simple

models (one-two parameters, see Table 1 for details) with

clear biological meaning; (3) to assess the occurrence of

intraspecific differences in dispersal patterns, between natal

dispersal (from the birth place to a breeding site) and

breeding dispersal (between breeding sites); (4) to assess

the occurrence of interspecific differences in dispersal

patterns between the two species: long-distance migrants

are suggested to have higher dispersal ability than seden-

tary/short-distance migrant species (Paradis et al. 1998).

Genetic data suggest that this pattern also occurs among

our study species, given the higher differentiation among

Spanish populations of Moustached Warbler than among

Reed Warblers breeding in Spain and Morocco (Ceresa

et al. 2015). In addition, Reed Warblers have more pointed

wings than Moustached Warblers (Kennerley and Pearson

2010), indicating higher flight efficiency (Norberg 1990)

and, consequently, a possibly higher dispersal capability.

Concerning our model set, we fitted distance data to the

normal, the exponential and the Cauchy distributions. The

normal distribution describes a low diffusion through

space, determined by various external stochastic factors

(‘random walk’; Van Houtan et al. 2007). Dispersal dis-

tances will follow an exponential distribution if moving

individuals have a constant probability of settling (Paradis

et al. 2002). Finally, the Cauchy distribution is heavy-

tailed, and as such it predicts more frequent long-distance

dispersal events than the exponential distribution (Paradis

et al. 2002).

Methods

Data selection

The starting database was made available by ‘Banco de

datos de anillamiento del remite ICONA—Ministerio de

Medio Ambiente’ (2015). It included all recoveries of

individuals ringed in Spain (including those birds recov-

ered outside the country) from year 1962 to 2013 and

provided recovery distances to the nearest kilometre. The

ringing effort on the two species increased throughout the

years, up to reaching the maximum number of marked

individuals in the decade 2001–2010 (6425 Moustached

Warblers and 229,671 Reed Warblers; SEO/BirdLife

2016a, b). Consequently, also the majority of the collected

recovery data ([80 %) are referred to birds ringed during

that decade and the following years. Ringing and recov-

eries occurred at overall 1127 different localities, among

these the Moustached Warbler was recorded at 103 sites

and the Reed Warbler at 1099 sites.

In this study, we only considered birds ringed during the

breeding season and recovered during the breeding season

of following years. We defined two age classes: juveniles

for individuals ringed in their year of birth and adults for

birds ringed later. Natal dispersal was estimated by using

birds ringed as juveniles, while to estimate breeding dis-

persal we used birds ringed as adults (Paradis et al. 1998).

We excluded those birds whose age was unknown when

ringed. Periods adopted as breeding season were 1 June–31

Table 1 Distributions adopted

for modelling dispersal

distances (d)

Distribution Probability density function Parameters (name)

Normal 1

r
ffiffiffiffi

2p
p e� d�lð Þ2=2r2 l (mean), r (standard deviation)

Exponential ke�kd k (rate)

Cauchy 1
pc

c2

d�xð Þ2þc2

h i

x (location), c (scale)
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July for the Reed Warbler (Cantos and Tellerı́a 1994) and 1

April–31 May for the Moustached Warbler (Castany 2003).

Juvenile Reed Warblers ringed in May (early fledged

individuals) were also included. We checked the geo-

graphical coordinates provided in the database to ensure

they corresponded to the ringing/recovery localities, when

they did not we corrected them. Given the intrinsic char-

acteristics of our dataset, we could not investigate fine-

scale movements of birds within each breeding area, thus

all dispersal events described in this work consist in dis-

placements from a natal/breeding site towards a different

patch of suitable habitat. To obtain reliable information

about dispersal distances, it was very important to avoid

including individuals ringed/recovered when migrating.

The periods we adopted as breeding season excluded the

main migration periods of the study species (Cantos and

Tellerı́a 1994; Castany 2003; Peirò 2003; Kennerley and

Pearson 2010), but even so we risked including some late/

early migrating individuals. Examining recoveries of Reed

Warblers, we observed that the direction of most of the

largest recorded distances approached or corresponded to

the North-East–South-West axis, followed by most indi-

viduals migrating through the Iberian Peninsula (e.g.,

Procházka et al. 2011). We then discarded the largest dis-

persal distances when orientated along the NE–SW axis

(Paradis et al. 1998). As a result of this selection, all dis-

persal distances larger than 290 km were removed and

recoveries were not preferentially oriented along this axis

(%migratory axis& vs. all other directions: v1
2 = 1.041,

P = 0.308). Including all the data did not anyway affect

the results of our study (i.e., we obtained very similar

outputs from data analysis). For Moustached Warblers we

found a low number of dispersing individuals, thus we

could not assess if distances were preferentially orientated

in some direction. We then used all available recoveries for

this species. A further possible risk was to include birds

that were not actually breeding when recaptured, e.g., in

several passerine species some individuals do not breed

during their first potential breeding season (Cooper et al.

2009 and references therein). However, such individuals

are likely to be waiting for an opportunity to obtain a ter-

ritory/mate (Newton 1992) or looking for extra-pair cop-

ulations (see, e.g., Blomqvist et al. (2005) for the

Moustached Warbler). Thus, even when occurring in our

dataset, such individuals were probably recovered close to

their potential breeding sites (Paradis et al. 1998).

Statistical analysis

Within the set of selected recoveries, we first calculated the

proportion of philopatric and dispersing individuals among

juveniles and adults of the two species and carried out

inter- and intraspecific comparisons by means of Chi

square (v2) test of independence (Winkler et al. 2004). To

compare the distribution of dispersal distances among

species and age classes we used the two-samples Kol-

mogorov–Smirnov test. Interspecific comparisons were

carried out by considering natal and breeding dispersal

both jointly (i.e., using all data per species) and separately.

In order to find the best dispersal model among our set (see

‘‘Introduction’’) we fitted dispersal distances to the normal,

the exponential and the Cauchy distributions using package

fitdistrplus 1.0–4 (Delignette-Muller and Dutang 2015) in

R 3.1.1 (R Core Team 2014). For the Cauchy distribution,

we always fixed the location parameter at x = 0.1. We

ranked models using the Akaike Information Criterion

(AIC), and considered the model with lower AIC as the

best one (Burnham and Anderson 2002).

Ideally, spatial variation in sampling effort should be

taken into account when studying the distribution of dis-

persal distances (e.g., Van Houtan et al. 2007), because it is

likely to determine a spatial variation in recovery rates, but

we lacked the necessary data. As suggested by Paradis

et al. (1998), the bias resulting form spatial variation in

recovery rates may be reduced if the number of potential

recovery sites is large (like in this study), and interspecific

comparisons are unlikely to be affected when species are

studied over the same area, because spatial variation in

recovery rates would be similar.

Results

Both natal and breeding philopatry were high in both

species: the proportion of philopatric individuals was 98

and 92 % respectively in juvenile and adults Moustached

Warblers, 91 and 94 % in juvenile and adult Reed War-

blers. Among Reed Warblers, natal philopatry was lower

than breeding philopatry (v1
2 = 6.273, P = 0.012), while

we found no significant difference among Moustached

Warblers (v1
2 = 1.066, P = 0.302) or among species (all

data: v1
2 = 0.128, P = 0.721; juveniles: v1

2 = 2.285,

P = 0.131; adults: v1
2 = 0.233, P = 0.629). Some of the

relatively rare dispersing individuals were recovered at

long distance (Fig. 1); birds dispersing further than 100 km

were found in all categories excepted the juvenile Mous-

tached Warblers (the category with lower sample size,

n = 50). According to the Kolmogorov–Smirnov test we

found no significant difference in distribution of dispersal

distances among the two species (all data: D = 0.026,

P = 1; juveniles: D = 0.075, P = 0.963; adults:

D = 0.030, P = 1) and among age classes (Reed Warbler:

D = 0.041, P = 0.590; Moustached Warbler: D = 0.06,

P = 1). According to the AIC values, the Cauchy distri-

bution provided the best model for dispersal distances in all

cases, excepted the natal dispersal of Moustached Warblers

Popul Ecol (2016) 58:421–427 423
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(Table 2). In this last case, the exponential distribution

obtained the lower AIC (Table 2). The estimated scale

parameter c of Cauchy distribution was very similar among

species and age classes (Table 2), i.e., increasing distance

the probability of dispersal events decreased in a similar

way. The normal distribution always resulted to be the

worst model for our dispersal data (Table 2; Fig. 2).

Discussion

Although in both species most individuals were philopatric,

dispersing birds were able to cross large distances, sug-

gesting the capability to compensate for habitat fragmen-

tation. We found a heavy-tailed distribution to be the best

model for dispersal distances, consistently with similar

previous studies (Paradis et al. 2002; Winkler et al. 2005;

Van Houtan et al. 2007, 2010). The exception represented

by natal dispersal of Moustached Warblers, where the

exponential distribution was selected as the best model

(Table 2), should be cautiously considered because of the

low sample size. Long-distance dispersal cases are rare,

thus reduced samples are likely to fail in detecting them.

When loosing these events, heavy-tailed distributions,

given their characteristics (see the ‘‘Introduction’’), will

result as less adequate to describe dispersal distances.

Further investigation using additional data will be needed

to assess if juvenile Moustached Warblers from our study

populations are able to disperse over long distances. The

good dispersal ability of Reed Warblers was also found in

British populations (Paradis et al. 1998) and was confirmed

by the low genetic differentiation among European popu-

lations (Kralj et al. 2010; Procházka et al. 2011; Ceresa

et al. 2015). Our results about this species indicate that in

our study population juveniles disperse more frequently

than adults, but with similar probability of settling with

increasing distance, which indicates that dispersal ability is

not different among the two age classes.

The two species showed a similarly low tendency to

disperse, possibly caused by the reduced opportunities of

finding new breeding sites and/or by the high costs of

dispersal (e.g., increased mortality, physiological costs;

Fig. 1 Natal and breeding

dispersal distances in Spanish

populations of Moustached and

Reed Warbler, obtained from

ringing data. The x- and y-axis

scales are different among the

panels

Table 2 AIC values for three

dispersal models (the best

model for each data category is

highlighted in bold), sample

size (n) and the estimated

Cauchy scale parameter (c) with
the 95 % confidence intervals

(CI)

AIC values

Species Data category n Cauchy Exponential Normal c (95 % CI)

Reed

Warbler

All data 1808 693 6509 14,466 0.108 (0.102, 0.113)

Natal dispersal 476 416 1961 4017 0.111 (0.101, 0.122)

Breeding dispersal 1332 278 4500 10,372 0.106 (0.101, 0.112)

Moustached

Warbler

All data 125 20 468 1022 0.106 (0.087, 0.125)

Natal dispersal 50 –27 253 185 0.102 (0.073, 0.131)

Breeding dispersal 75 49 352 652 0.109 (0.083, 0.135)
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Waser et al. 1994; Plissner and Gowaty 1996). At a

marshland in Hungary, Vadász et al. (2008) found higher

natal and breeding site fidelity in Moustached than in Reed

Warblers, and in both species breeding site fidelity was

higher than natal site fidelity. The results of Vadász et al.

(2008) can not anyway be compared with ours, because in

the first case the authors used returning rates at a single site

(mortality and dispersal can not be distinguished), while we

compared the proportion of recoveries obtained at and

outside each ringing site. Ceresa et al. (2015) found that

gene flow among Spanish populations of the two warblers,

although occurring, was partly limited or even restricted.

The high natal and breeding philopatry we found in both

species may help to explain such limitation in gene flow, as

hypothesized by Ceresa et al. (2015).

The lack of significant differences in the distribution of

dispersal distances between the two species and the high

similarity in the estimated Cauchy scale parameter

Fig. 2 Cumulative density functions (CDF) of the normal (norm),

exponential (exp) and Cauchy (cauchy) distributions fitted to dispersal

distances in Spanish populations of Moustached and Reed Warbler.

The AIC values for the fitted distributions are provided in Table 2.

The black solid line represents the CDF of the observed dispersal

distances. The x-axis scales are different among the panels
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(Table 2) contrast with the hypothesis of higher dispersal

ability in Reed Warblers (long-distance migrants) than in

Moustached Warblers (resident/short distance migrants).

Indirect information from genetic data indicated that

Spanish populations of both species have a good dispersal

capability, consistently with our results, but also showed

lower population differentiation in Reed than in Mous-

tached Warblers (Ceresa et al. 2015), indicating higher

gene flow in the first species. Consistently with a limited

gene flow, for Moustached Warblers we found no case of

dispersal between the three populations considered in

Ceresa et al. (2015), i.e., one small isolated inland pop-

ulation, one at the Mediterranean coast and one on the

Mallorca Island. These populations are separated by the

sea or by large land zones where the species does not

breed. We found dispersal cases only between marshlands

along the Mediterranean coast of Spain, the only area of

the country where the breeding range is relatively con-

tinuous (see Castany and López 2006). Unfortunately, as

far as we know there are no available genetic data to

compare birds from different breeding sites along the

coast. The Mallorca Island hosts the largest Spanish

population of Moustached Warblers (approximately 500

breeding pairs) and has been the object of intense ringing

activity (Castany 2003). The lack of recoveries from or

towards this island is consistent with the restricted gene

flow between the Mallorcan population and those of the

mainland, which suggested that the sea represents an

effective barrier for this species (Ceresa et al. 2015). The

extinction of several bird species on Barro Colorado

Island (Panama) showed that water can represent a barrier

to immigration (Willis 1974; Robinson 1999), and other

studies suggest that water bodies are more effective bar-

riers than land areas of the same width, at least for some

species (Hodges and Krementz 1996; Machtans et al.

1996). Unlike Moustached Warblers, Reed Warblers

showed low populations differentiation even when the

breeding sites were separated by the sea (Ceresa et al.

2015). According to the authors, the interspecific differ-

ence in population differentiation could be due to differ-

ences in dispersal ability, breeding site fidelity, capability

of crossing the sea, population size or breeding range

patchiness (Ceresa et al. 2015). Our results do not support

the first two possible explanations, thus the lower popu-

lation differentiation in Reed than in Moustached War-

blers is more likely to be determined by the more

continuous breeding range/larger population size (see the

references in the ‘‘Introduction’’) and the higher capability

of crossing stretches of sea of the first species. This

comparison among ringing data and genetic information

should be anyway cautiously considered. For example,

differences in gene flow may also be influenced by pos-

sible interspecific differences in the fitness costs of

dispersal, and we have no information about this issue.

The similarity in dispersal patterns between the two

species may be explained by their close phylogenetic

relatedness (Sutherland et al. 2000). Furthermore, both

warblers breed in a naturally patchy habitat, thus their

dispersal ability may have evolved according to the same

need of crossing more or less wide areas of unsuit-

able habitat to find new breeding sites.
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General discussion and future perspectives

We have provided new information about the breeding ecology of two  Acrocephalus

warblers  and  their  niche  overlap  in  sympatric  conditions.  Our  results  (chapter  2)

provided insights about possible  competitive interactions between our study species,

and about the possible influence of such interactions in determining the early breeding

of the moustached warbler, which is peculiar among Acrocephalus warblers breeding in

Europe. Although we could not clearly assess the role of  exploitative competition for

food (a common problem when using observational data; Begon et al. 2006), our study

suggests that it could play a more important role than previously hypothesized within

assemblages of reedbed-nesting passerines.  Future studies may obtain clearer results

about competitive interactions by taking into account more breeding sites to compare

the niche dimensions of wetland passerines in sympatry and allopatry areas. In addition,

considering whole assemblages of co-occurring wetland passerines instead of pairs of

species may allow to obtain more complete information.

Among  European  passerines,  the  temporal  dynamic  of  food  availability  and  food

demand has been rarely documented for wetland species (Bibby & Thomas 1985), while

most of such information has been obtained for some woodland passerines (e.g. Thomas

et al. 2001, Cresswell & McCleery 2003, Both et al. 2006, Visser et al. 2006, Veen et al.

2010; but see also Hussel 1972 and Bryant 1975 about Emberizidae and house martin

Delichon urbicum). The trophic resources of these species during the breeding season

are  represented  substantially  by  caterpillars,  which  typically  show  a  clear  peak  of

seasonal abundance, thus breeding birds need to match the nestling rearing period with

such  peak.  In  the  case  of  our  study  species,  given  their  varied  diet  the  different

phenologies of the several prey types produced an overall increase of food availability

throughout the breeding season (chapter 2), rather than a clear peak, as found also by

Bibby & Thomas (1985) for reed warblers in England. For this reason, Halupka et al.

(2008)  concluded  that  the  advancement  of  breeding  phenology  in  a  reed  warbler

population was probably not connected to possible shifts of food availability. A further

development of our work will consist in examining food need and availability across

more years, looking for possible interannual differences and for the relationships among

breeding phenologies, trophic resources and climatic variables.

Our results about the effects of the emetic used to obtain food samples (chapter 1) may
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help researchers in finding the most appropriate food sampling technique. In particular,

we  hope  to  have  encouraged  investigators  to  abandon  the  use  of  clearly  harmful

substances on passerines, such as antimony potassium tartrate. In any case, given the

interspecific differences in the effects of emetics, future uses of apomorphine on other

bird species should include a rigorous assessment of its effects.

The results reported in chapter 3 represent the first assessment of genetic population 

structure and demographic history for the moustached warbler and contribute to a better 

knowledge of Iberian and Moroccan populations of the reed warbler, also confirming 

the good dispersal capability of this species reported by previous studies (Kralj et al. 

2010, Procházka et al. 2011). For both warblers we found evidence for gene flow among 

distant breeding areas, although the sea seems to represent an effective dispersal barrier 

for moustached warblers, possibly because of the risks connected with crossing large 

water bodies. Most of SW European moustached warbler population breeds along the 

Mediterranean coast, across a highly scattered range. Supplementary data from more 

breeding sites may clarify the degree of gene flow within this area, which includes the 

large population breeding in S France (2000-6000 pairs, BirdLife International 2004), 

which partly winters in Spain (Castany 2003). At the moment, mark-recapture data 

(chapter 4) indicate the exchange of individuals at least among the Spanish 

Mediterranean coastal marshlands. Although the comparison between the genetic results 

and mark-recapture data should be cautiously considered, we found an interesting 

overall consistency in indicating the good dispersal ability of the two study species and 

the role of the sea as a dispersal barrier for moustached warblers. This comparison also 

provided insights about how to interpret the differences in genetic population 

differentiation found between moustached and reed warblers. In fact, the similar 

distributions of dispersal distances and philopatry between the two species (chapter 4) 

suggest that other characteristics (such as population size, breeding range patchiness and 

the capability of crossing natural barriers) are more likely to be involved in determining 

the differences found through genetic analysis. Comparing results obtained from both 

mark-recapture and genetic data allowed us to obtain a better understanding of dispersal 

patterns and genetic population structure (see also Hansson et al 2000, 2002).

Large ringing databases have been often used to investigate bird migration, but large

scale studies about dispersal based on this kind of data are relatively scarce (Paradis et

al 1998, 2002, Van Houtan et al. 2007). Such studies and our results confirmed that
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valuable  information  about  dispersal  can  be  obtained  from ringing  data.  Additional

similar investigations may help to clarify the general dispersal patterns of birds explored

by Paradis et al. (1998) and Sutherland et al. (2000). However, an effort to obtain more

reliable results will consist in taking into account the spatial variation in capture effort,

like in Van Houtan et al. (2010). This could be challenging when considering very large

areas as in our study, due to the necessity of detailed data about field effort and species'

distribution. In addition, given the relative rarity of long-distance dispersal events, large

numbers of recaptures are required to avoid missing such relevant cases. Indeed, in our

study (chapter  4),  the scarcity of recaptures  for young moustached warblers did not

allow us to assess if such birds are actually not able to disperse over long distances.

Future additional data will hopefully provide sufficient information to clarify this issue.

Heavy-tailed distributions resulted to be the most adequate models to describe dispersal

distances (see also Paradis et al.  2002, Winkler et al. 2005, Van Houtan et al.  2007,

2010), indicating higher frequency of long-distance dispersal events than expected in

case  of  constant  probability  of  settling.  Such result  has  been found in  a  variety of

morphologically and ecologically very different passerine species (blue tit  Cyanistes

cearuleus and great tit  Parus major in Paradis et al. 2002; tree swallow  Tachycineta

bicolor in  Winkler  et  al.  2005;  Tyrannidae,  Thamnophilidae and Furnariidae  in  Van

Houtan et al. 2007; seaside sparrow Ammodramus maritimus in Van Houtan et al. 2010),

suggesting that it could represent a common pattern, at least among passerine birds.
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Conclusions

1. We found support  for the high safeness and effectiveness of apomorphine,  a

scarcely  used  emetic  substance.  Such  information  will  hopefully  help

researchers to choose the best food sampling technique, in order to reduce the

impact of diet studies on birds.

2. Exploitative  competition  has  been  scarcely  taken  into  account  in  studies  on

coexisting Acrocephalus warblers. At a sympatry breeding site, we assessed that

the moustached and the reed warbler are potential competitors for food, given

their  high diet  overlap.  This may help to explain their  reduced temporal and

spatial overlap observed at the study site.

3. We described the temporal dynamic of food availability and food demand for the

two study species during the breeding season. The period of higher food demand

for reed warblers coincided with high food availability and high abundance of

potential  competitors,  while  most  moustached  warblers  reared  their  chicks

earlier, when both food availability and abundance of potential competitors were

lower.

4. Within the reedbed invertebrate community, both warblers clearly selected their

preys, preferring spiders, beetles and hymenopterans while avoiding dipterans

and hemipterans.

5. In both the study species we found evidences of gene flow among sampling

sites,  suggesting  that  these  two  warblers  are  able  to  compensate  for  habitat

fragmentation.  However,  in  both  species  gene  flow  was  partly  restricted,

possibly  because  of  the  large  distances  among  sampling  sites,  breeding  site

fidelity, or due to geographical barriers.

6. The lower genetic population differentiation in reed than in moustached warblers 

may be due to possible interspecific differences in dispersal ability, philopatry 

and capability in crossing natural barriers, as well as to the larger population size 

and the more continuous breeding range of the first species. The analysis of 

mark-recapture data, however, did not show significant differences in dispersal 

ability  or philopatry between the two warblers. The sea is likely to represent an 

effective dispersal barrier for moustached warblers, but probably not for reed
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warblers, given the low differentiation found between Moroccan and Iberian 

individuals of this last species.

7. Consistently with previous studies on wetland passerines (Hansson et al. 2008,

Neto  et  al.  2012,  Arbabi  et  al.  2014),  we  found  evidence  for  postglacial

population  growth  in  both  study  species,  but  such  increasing  and  the

colonisation of new areas occurred in partly different ways between the two

warblers.

8. Mark-recapture data  confirmed the  good dispersal  ability of  moustached and

reed  warblers,  although  most  individuals  were  philopatric.  We  found  no

evidence for differences in dispersal ability between adults and young in both

warblers,  while  among reed  warblers  young birds  dispersed  more  frequently

than adults.

9. The similar distribution of dispersal distances between the moustached and the

reed warbler does not support the hypothesis of higher dispersal ability in long

distance than in sedentary/short  distance migrant birds suggested by previous

studies (Paradis et al. 1998, Sutherland et al. 2000). Such similarity may be due

to  the  phylogenetic  relatedness  between  the  two  warblers  and  to  similar

evolutionary pressures.

10. Among a set of dispersal models,  a heavy-tailed distribution resulted to be the

best  in  describing  dispersal  distances,  indicating  higher  probability  of  long-

distance dispersal events than expected if probability of settling were constant.

This  is  consistent  with  previous  studies  concerning  some  ecologically  and

morphologically very different passerine species (Paradis et al. 2002, Winkler et

al. 2005, Van Houtan et al. 2007, 2010). This suggests that such distribution of

dispersal distances is a common pattern, at least among passerine birds.
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Resumen ampliado 

Acrocephalus y Locustella son dos géneros de aves paseriformes típicos de ambientes 

húmedos. Se trata de aves de pequeño tamaño (~10-30 g), mayoritariamente de colores 

apagados e insectívoras. En Europa, especies de estos dos géneros constituyen la mayor 

parte de los ensamblajes de paseriformes en los carrizales. Como consecuencia, en 

muchos carrizales coexisten varias especies similares a nivel ecológico y morfológico. 

Para que esta coexistencia sea posible, se puede esperar que existan diferencias a nivel 

de nicho ecológico entre estas especies, y efectivamente en algunos estudios se 

encontraron diferencias en las preferencias ambientales (Hoi et al. 1991, Poulin et al. 

2002). El solapamiento de nichos tróficos y la posibilidad de competencia por el 

alimento entre paseriformes palustres han sido poco estudiados, probablemente porque 

en un hábitat muy productivo como los carrizales se asumió una disponibilidad de 

comida demasiado elevada como para determinar interacciones competitivas. Sin 

embargo, la disponibilidad de alimento puede influir en la abundancia de paseriformes 

palustres (Poulin et al. 2002), y esto sugiere que los recursos tróficos que están a 

disposición de estas especies no son siempre sobreabundantes. 

Además de ser ambientes muy productivos, los carrizales son también hábitats muy 

fragmentados, tanto por causas naturales como por el resultado de actividades humanas 

(Finlayson et al. 1992, Van Vessem et al. 1997, Silva et al. 2007). Es en estas 

condiciones es cuando resulta crucial la capacidad de dispersión de la especies que los 

habitan, para garantizar un suficiente flujo genético entre poblaciones (Frankham et al. 

2010). Las mayoría de las aves tiene una elevada capacidad de dispersión (Koenig et al. 

1996), pero existen importantes diferencias interespecificas, relacionadas de manera 

compleja y aún con poca claridad entre varias características especificas (como la 

estrategia migratoria, tamaño poblacional, rango de distribución y preferencias 

ambientales) y con la relación filogenética entre especies (Paradis et al. 1998, 

Sutherland et al. 2000). Datos y estudios comparativos adicionales son necesarios para 

mejorar el conocimiento sobre la dispersión de las aves. 

En la presente tesis hemos considerado el carricerín real Acrocephalus melanopogon y 

el carricero común Acrocephalus scirpaceus. Estudiar estos dos Acrocephalus 
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representa una oportunidad para comparar dos especies filogenética y estrictamente 

relacionadas, y además muy similares en tamaño (~10 g), pero con importantes 

diferencias a nivel ecológico y etológico (descritas en los párrafos siguientes). El 

objetivo de esta tesis fue de estudiar algunos aspectos de la ecología reproductiva, la 

capacidad de dispersión y la estructura genética de las poblaciones de estas dos especies 

en un contexto de elevada fragmentación de hábitat, y su solapamiento de nicho en 

condiciones de simpatría; así como comparar los resultados obtenidos para las dos 

especies teniendo en cuenta sus diferencias a nivel ecológico y etológico. Además, en 

un trabajo metodológico sobre los efectos de un emético (apomorfina) en paseriformes 

palustres (capítulo 1), también hemos considerado otras dos especies, la buscarla 

unicolor Locustella luscinioides y el carricero tordal Acrocephalus arundinaceus. 

El carricerín real se reproduce principalmente en Europa y Asia, a lo largo de un rango 

de distribución discontinuo entre el suroeste de Europa y Kazakstán; también cría en 

algunas áreas muy localizadas en el norte de África (Kennerley & Pearson 2010). La 

población española pertenece a la subespecie nominal, y se estima que está formada 

aproximadamente por unas 1000 parejas, y parece haber sufrido un claro declive en las 

últimas décadas (Castany & López 2006). Se reproduce, casi siempre en simpatría con 

el más abundante carricero común, en humedales de la costa Mediterránea, en las Islas 

Baleares y, con pequeñas poblaciones, en algunas zonas de Extremadura, Castilla-La 

Mancha y Aragón (Castany & López 2006). En Europa, es el único Acrocephalus cuyas 

poblaciones son sedentarias o migran a corta distancia (Kennerley & Pearson 2010). Las 

preferencias de hábitat del carricerín real son especializadas, ya que para criar necesita 

carrizales inundados donde además de carrizo Phragmites australis se encuentren 

también otras plantas de los géneros Typha, Scirpus, Cladium y Juncus (Castany 2003, 

Kennerley & Pearson 2010). Como consecuencia de tal especialización, esta especie 

puede resultar perjudicada por prácticas de gestión de carrizales, tales como el corte 

invernal o variaciones del nivel hídrico, que pueden reducir la disponibilidad de lugares 

de cría o de alimento (Poulin et al. 2002, Schmidt et al. 2005). El carricerín real puede 

alimentarse de muchos tipos de insectos y sus larvas, de arañas, de isópodos, de 

pequeños caracoles dulceacuícolas y, ocasionalmente, de frutos (Dyrcz 2016). La 

reproducción comienza antes que en los demás Acrocephalus europeos; en el área 

Mediterránea la puesta de huevos puede tener lugar ya en marzo (Castany 2003, 

Kennerley & Pearson 2010). En la subespecie nominal, tanto los adultos como los 
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jóvenes mudan completamente el plumaje a finales de verano/inicio del otoño; también 

efectúan una muda pre-reproductiva parcial (Kennerley & Pearson 2010).  

 

El carricero común es una especie con un amplio rango de distribución en Europa, 

además de criar también en amplias zonas de Asia y de África. En España, la población 

reproductora ha sido estimada entre 20000 y 100000 parejas (BirdLife International 

2004), las cuales se concentran especialmente en los valles del Ebro, Tajo y 

Guadalquivir, a lo largo de la costa Mediterránea y en la Meseta Norte (Gainzarain 

2003). Las poblaciones europeas de esta especie son migrantes de larga distancia e 

invernan en el África sub-Sahariana (Kennerley & Pearson 2010). Estudios genéticos 

han evidenciado una baja diferenciación entre poblaciones europeas, algo que indica 

una elevada capacidad de dispersión (Kralj et al. 2010, Procházka et al. 2011). Datos de 

marcaje y recaptura colectados en poblaciones británicas han confirmado esta 

capacidad, con distancias de dispersión de hasta 300 km (Paradis et al. 1998). Entre los 

Acrocephalus, el carricero común es una especie muy adaptable, ya que puede criar en 

carrizales de diverso tipo, incluidos los muy pequeños o sin agua, aun que prefiere 

carrizales inundados (Kennerley & Pearson 2010). Su dieta incluye insectos y sus 

larvas, arañas, opiliones, pseudoescorpiones, pequeños moluscos y, con menor 

frecuencia, frutos, flores y semillas (Dyrcz et al. 2016). En la subespecie nominal, tanto 

los adultos como los jóvenes efectúan una muda parcial a finales de verano y una muda 

completa en las zonas de invernada, aun que en poblaciones Ibéricas se han encontrado 

casos de muda completa en las zonas de reproducción (Kennerley & Pearson 2010). 

 

En el capítulo 2 presentamos los resultados de un trabajo llevado a cabo en el año 2012 

en un humedal donde el carricerín real y el carricero común crían en simpatría, el Marjal 

de Pego-Oliva (Comunidad Valenciana, España). Nuestro objetivo fue evaluar el 

solapamiento de nichos entre ellas a nivel trófico, temporal y espacial. Con este 

propósito, hemos colectado información sobre la composición de la dieta, la 

disponibilidad de alimento, la fenología reproductiva y la distribución espacial a nivel 

local de las dos especies. Para describir la dieta, hemos obtenido muestras de comida 

regurgitada al suministrar a las aves un emético, y clasificado las presas presentes en las 

muestras hasta el nivel de Orden. Para medir la disponibilidad de alimento hemos 

llevado a cabo muestreos estandarizados de invertebrados, que posteriormente fueron 

clasificados hasta el nivel de Orden. La fenología reproductiva se estudió a través de 
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anillamiento intensivo estandarizado, colectando también datos detallados sobre el 

desarrollo de la placa incubatriz de las hembras; teniendo en cuenta el tiempo necesario 

para la incubación de los huevos, a partir de los datos de placa incubatriz, hemos 

individuado el periodo donde más parejas alimentaban a sus pollos en el nido, y lo 

hemos considerado como el periodo de máxima demanda de alimento (Van Noordwijk 

et al. 1995). La distribución de las dos especies en el humedal se comprobó a través de 

puntos de escucha. A partir de estos datos, hemos averiguado que en este lugar de cría 

las dos especies tienen un amplio solapamiento de nicho trófico, siendo así potenciales 

competidoras por la comida. En ambas especies, coleópteros y himenópteros fueron las 

presas más frecuentes, representando juntos más del 70% de la dieta. La selección de 

presas resultó ser similar, ya que tanto el carricerín real como el carricero común 

seleccionaron positivamente arañas, coleópteros y himenópteros, y negativamente 

dípteros y hemípteros. En la dieta no se encontraron algunas categorías de invertebrados 

que fueron muestreadas en el carrizal (larvas de insectos, huevos, Gasteropoda, 

Glomerida, Lepidoptera, Odonata, Parasitiformes, Thysanoptera), pero sus proporciones 

en la dieta y el medio ambiente no resultaron significativamente diferentes, así que no 

se puede afirmar que fueron seleccionadas negativamente. A diferencia de lo observado 

a nivel trófico, las dos especies diferían tanto en distribución espacial (< 50% de 

solapamiento) como en fenologías reproductivas. La disponibilidad de alimento 

aumentó, con fluctuaciones, a lo largo de la estación reproductiva, alcanzado el máximo 

a finales de junio, mientras que los periodos de máxima demanda de alimento fueron en 

abril para los carricerínes reales y aproximadamente entre el 5 y el 25 de junio para los 

carriceros comunes. También la abundancia global de las dos especies, y 

consecuentemente de los posibles competidores, aumentó durante la estación 

reproductiva, resultando ser menor durante la máxima necesidad de alimento de los 

carricerínes reales en comparación con los carriceros comunes. Las diferencias en 

nichos temporales y espaciales encontradas entre las dos especies podrían representar 

una respuesta a la competencia interespecifica por la comida, donde el carricerín real 

reduce la competencia con el carricero común criando notablemente antes, y la segunda 

especie se establece preferiblemente en áreas no previamente ocupadas por la primera. 

Esto ayudaría también a explicar la peculiar fenología reproductiva del carricerín real, 

que es única entre los Acrocephalus europeos. De todas maneras, el papel de las 

interacciones competitivas no se puede aclarar a partir de nuestros resultados, y no 

pudimos comprobar si en algún momento la disponibilidad de alimento resultó ser 
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escasa en comparación con la necesidad de las aves. Información más exhaustiva podría 

dar luz a estas cuestiones en futuros estudios sobre los nichos ecológicos de las dos 

especies en áreas de simpatría y alopatría. Así, en trabajos posteriores vamos a comparar 

disponibilidad y necesidad de alimento durante varios años, para investigar las posibles 

diferencias interanuales y las relaciones entre fenologías reproductivas, recursos tróficos 

y variables climáticas.  

 

Para obtener las muestras de comida regurgitada se utilizó, como hemos mencionado, 

un emético. Hemos utilizado la apomorfina (un opiáceo), ya que ha sido descrita en la 

literatura como un emético eficaz y no dañino por las aves tratadas, al menos durante e 

inmediatamente después de la administración (Díaz 1989, Valera et al. 1997, Poulin et 

al. 2002), aunque sobre efectos posteriores solo existía información obtenidas de 

algunas aves en cautividad (paseriformes granívoros; Valera et al. 1997). Después de 

comprobar durante la actividad de campo la falta de mortalidad durante el tratamiento, 

hemos realizado un estudio para averiguar los efectos de la apomorfina sobre las aves 

después del tratamiento (capítulo 1). Con este propósito, hemos analizado  datos de 

captura-recaptura de aves tratadas y no tratadas (carricerínes reales y carriceros 

comunes), para comparar su probabilidad de supervivencia en un periodo de 21 días 

después del tratamiento/primera captura. Las probabilidades de supervivencia y de 

recaptura fueron calculadas a través de modelos Cormack-Jolly-Seber. Además, 

comparamos la diferencia de masa entre recapturas de carricerínes reales tratados y no 

tratados, para averiguar si las aves tratadas, aun que vivas, habían sufrido un 

empeoramiento de sus condiciones. También medimos el nivel de eficacia del emético 

en todas las especies tratadas (incluyendo buscarla unicolor y carricero tordal), y 

comprobado si el momento del día o el tiempo transcurrido desde la preparación del 

emético influía en su eficacia. No hemos encontrado evidencias de efectos negativos de 

la apomorfina en el periodo considerado, ni en la probabilidad de supervivencia ni en la 

variación de masa. El emético resultó ser eficaz, ya que obtuvimos muestras de comida 

del 76.7% de las aves tratadas, pero con diferencias significativas entre especies. Ni la 

hora del día ni el tiempo desde la preparación del emético influía en su efectividad. Con 

este estudio hemos contribuido a mejorar el conocimiento sobre un emético hasta ahora 

escasamente utilizado, información que puede resultar útil en otras investigaciones a la 

hora de seleccionar el método de muestreo más adecuado. Por ejemplo, podría 

convencer a otros investigadores para abandonar el uso de eméticos más dañinos para 
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paseriformes, como el tartrato de potasio. En cualquier caso, ya que los eméticos tienen 

efectos diferentes según la especie tratada, en futuros muestreos con apomorfina 

llevados a cabo sobre otras especies, va a ser necesario seguir recogiendo información 

para comprobar los efectos de la apomorfina durante y después del tratamiento. 

 

Como ya he mencionado, los humedales son hábitats fragmentados por razones 

naturales y antrópicas. La destrucción y degradación de estos hábitats como 

consecuencia de las actividades humanas ha sido especialmente fuerte en el área 

Mediterránea (Silva et al. 2007). Para especies que viven en hábitats fragmentados, la 

capacidad de dispersión es especialmente importante para poder mantener un flujo 

genético suficiente entre poblaciones. Poblaciones aisladas y pequeñas tienen más 

probabilidades de incurrir en endogamia y en la deriva genética, y consecuentemente se 

enfrentan a mayores riesgos de extinción (Young & Clarke 2000, Frankham et al. 2010). 

En el capítulo 3, hemos investigado la estructura y la diversidad genética, así como la 

historia demográfica de poblaciones reproductoras de carricerín real y carricero común 

en contextos de elevada fragmentación de su hábitat, en España y Marruecos. Nuestros 

objetivos fueron contribuir a mejorar la información existente sobre las dos especies, 

comprobar los posibles efectos de la fragmentación de hábitat sobre las poblaciones 

consideradas y comparar los resultados obtenidos para las dos especies, considerando 

sus diferencias en estrategia migratoria, tamaño poblacional y discontinuidad del rango 

de distribución. Para el carricerín real, se trata del primer estudio sobre estructura 

genética de sus poblaciones e historia demográfica. Durante las estaciones reproductivas 

de 2012 y 2013 se colectaron muestras de sangre de las dos especies en el Marjal de 

Pego-Oliva, en Villafranca de los Caballeros y en S'Albufera de Mallorca, y (solo del 

carricero común) en Larache (Marruecos). A partir de las muestras (54 de carricerín real 

y 68 de carricero común) hemos obtenido información de microsatélites (16 loci) y de 

ADN mitocondrial (secuencias de citocromo oxidasa COI). Para el carricerín real hemos 

encontrado evidencias de flujo genético entre los sitios de muestreo, a pesar de la gran 

distancia que los separan (290-960 km), aunque dicho flujo resultó ser “parcialmente 

limitado” entre la costa Mediterránea (Pego-Oliva) y el interior de la Península 

(Villafranca), y “reducido” entre Mallorca y los humedales peninsulares. En el carricero 

común hemos encontrado una menor diferenciación genética entre sitios de muestreo 

que en el carricerín real, aun que el flujo genético resultó ser “parcialmente limitado”. 

En ninguna de las dos especies se obtuvieron evidencias claras de aislamiento por 
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distancia. La diversidad haplotípica y nucleotídica resultaron ser mayores en el carricero 

común que en el carricerín real. La historia demográfica de las dos especies resultó ser 

parcialmente diferente, aunque en ambos casos encontramos evidencias de un 

incremento post-glacial del tamaño de población. En el carricero común hubo una 

divergencia genética hace 40000-47000 años, seguida por una mezcla aproximadamente 

hace 14000-17000 años. En el carricerín real, los análisis indican una divergencia entre 

la población peninsular y la de Mallorca hace aproximadamente 690 años, algo que 

indica que la isla fue colonizada o recolonizada en tiempos recientes. Los resultados 

mostraron que ambas especies tienen una buena capacidad de dispersión. Las 

limitaciones parciales al flujo genético podrían explicarse o bien por una alta filopatría, 

o por el efecto de barreras geográficas, o por la elevada distancia entre las áreas de 

muestreo (aunque los resultados sobre aislamiento por distancia no apoyan claramente 

esta última posibilidad). La menor diferenciación encontrada en los carriceros comunes 

puede ser debida a una mayor capacidad de dispersión de la especie, a un rango de 

distribución más continuo en el área de estudio, a un mayor tamaño de población, a una 

menor filopatría o a una mayor capacidad de cruzar barreras geográficas en 

comparación con los carricerínes reales. De hecho, para esa última especie el mar que 

separa la Península Ibérica de la isla de Mallorca (~200 km) parece constituir una 

barrera eficaz; hay que tener en cuenta que cruzar el mar es probablemente algo insólito 

para individuos de las poblaciones estudiadas de carricerín real, ya que en su mayoría 

son sedentarios o migran sin cruzar el Mediterráneo (Castany 2003), mientras que para 

los carriceros comunes se trata de una capacidad necesaria para llegar a las áreas de 

invernada en África. Algunos estudios previos ya sugirieron que, para algunas especies, 

los cuerpos de agua pueden representar barreras más eficaces que áreas de tierra de la 

misma extensión (Hodges & Krementz 1996, Machtans et al. 1996). La mayor 

diversidad haplotípica en el carricero común podría ser debida a una mayor llegada de 

individuos en dispersión desde otras poblaciones, al mayor tamaño de población o a la 

mezcla ocurrida entre diferentes linajes. El incremento post-glacial del tamaño de la 

población ocurrido en ambas especies es consistente con estudios previos sobre otros 

paseriformes palustres, que durante el calentamiento global expandieron su rango de 

distribución a partir de sus refugios glaciales (Hansson et al. 2008, Neto et al. 2012). 

 

Después de obtener información sobre la capacidad de dispersión de las especies 

estudiadas a partir de datos genéticos (capítulo 3), hemos seguido investigado utilizando 
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también datos de marcaje y recaptura, para poder estudiar las distancias de dispersión 

(capítulo 4). Obtener información directa sobre las distancias de dispersión es 

especialmente difícil en organismos con una elevada capacidad de movimiento como las 

aves, ya que es necesario considerar áreas de estudio muy amplias para poder detectar 

los casos de dispersión a larga distancia. Estos casos son importantes ya que pueden 

influir la dinámica de las poblaciones y sus estructuras genéticas (Ibrahim et al. 1996, 

Nathan et al. 2003). Las grandes bases de datos de anillamiento de aves incluyen datos 

colectados sin los límites espaciales de una única área de estudio, y por esto pueden 

proporcionar información valiosa sobre la dispersión (Paradis et al. 1998, 2002). En el 

capítulo 4, hemos investigado los patrones de dispersión de poblaciones españolas de 

carricerín real y carricero común a partir de datos proporcionados por el Banco de datos 

de anillamiento del remite ICONA - Ministerio de Medio Ambiente. Esos datos 

consistían en todas las recapturas de individuos de las dos especies, que fueron anillados 

en España entre el año 1962 y el 2013. Nuestros objetivos fueron obtener información 

sobre las distancias de dispersión y la filopatría en las poblaciones consideradas, y 

averiguar la ocurrencia de posibles diferencias intraespecificas (entre jóvenes y adultos) 

e interespecificas. Además, entre tres modelos con claro significado biológico, 

queríamos encontrar el más adecuado para describir la dispersión en las poblaciones 

estudiadas. Como modelos candidatos hemos considerado la distribución normal, la 

distribución exponencial y la distribución Cauchy. El primer modelo es el más adecuado 

para describir movimientos lentos de difusión influenciados por varios factores 

estocásticos; en el segundo, al aumentar la distancia la probabilidad de establecimiento 

es constante; el tercer modelo predice eventos de dispersión de larga distancia más 

frecuentemente que en la distribución exponencial (Paradis et al. 2002, Van Houtan et 

al. 2007). Hemos considerado solo los individuos marcados durante la estación 

reproductiva y recapturados en años siguientes durante también la estación 

reproductiva. Para evitar incluir aves en migración en los análisis, hemos descartado las 

recapturas de larga distancia si se producían a lo largo del principal eje de migración en 

la Península Ibérica (NE-SO). No hemos encontrado evidencias de diferencias intra- o 

interespecificas en la distribución de las distancias de dispersión. La mayoría de las 

recapturas (> 90 % en ambas especies) se producían en el mismo sitio de marcaje, 

indicando un comportamiento filopátrico; además, no había deferencias entre 

carricerínes reales jóvenes y adultos, mientras que entre los carriceros comunes los 

adultos resultaron ser más filopátricos que los jóvenes. Aun que relativamente pocos, 
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los individuos que se dispersaron se desplazaron en algunos casos a largas distancias, de 

hasta más de 100 km en ambas especies. La distribución Cauchy resultó ser la más 

adecuada para describir las distancias de dispersión en todos los casos, exceptuados los 

jóvenes carricerines reales donde el modelo exponencial resultó ser el mejor. Para esta 

categoría era la que teníamos el tamaño de muestra más pequeño (N = 50), y fue la 

única en que no encontramos casos de dispersión de larga distancia. El parámetro escala 

γ de la distribución Cauchy resultó ser muy similar entre especies y clases de edad, 

indicando que al aumentar de la distancia, la probabilidad de establecimiento baja de 

manera muy similar. La distribución normal representó en todos los casos el peor 

modelo de dispersión. Nuestros resultados sobre los modelos de dispersión son 

consistentes con estudios previos realizados en otros paseriformes, donde distribuciones 

con cola larga resultaron ser los más adecuados para describir las distancias de 

dispersión (Paradis et al. 2002, Winkler et al. 2005, Van Houtan et al. 2007, 2010). Estos 

estudios, y el nuestro, consideraron varias especies de paseriformes con características 

ecológicas y morfológicas muy diferentes, por lo que este tipo de distribución de las 

distancias de dispersión podría constituir un patrón común entre los paseriformes. En 

nuestros resultados, la excepción representada por los jóvenes carricerínes reales tiene 

que ser considerada con cautela dado el reducido tamaño de muestra, pues la baja 

proporción de individuos que se dispersan a una larga distancia evidencia la necesidad 

de disponer de un gran número de recapturas para detectar estos casos. Creemos que en 

futuros estudios, la obtención de datos adicionales podría aclarar si los jóvenes de esta 

especie tienen la capacidad de dispersarse a una larga distancia. La baja proporción de 

individuos que se dispersan en ambas especies podría ser debida a la baja disponibilidad 

de nuevos sitios de reproducción y a los elevados costes que implicarían esta dispersión 

en términos fisiológicos y de una menor supervivencia (Waser et al. 1994, Plissner & 

Gowaty 1996). La falta de diferencias significativas entre el carricero común y el 

carricerín real no es consistente con la hipótesis de que tienen una mayor capacidad de 

dispersión los migradores de larga distancia frente a las especies sedentarias/migratorias 

de corta distancia propuesta en algunos estudios (Paradis et al. 1998, Sutherland et al. 

2000). La similitud entre los patrones de dispersión de las dos especies se podría 

explicar por su estrecha relación filogenética, o por las similares presiones evolutivas a 

las que son sometidas debidas a la común necesidad de cruzar amplias áreas de hábitat 

inadecuado para llegar a nuevas zonas de cría. Nuestro trabajo, junto con estudios 

previos, confirma la utilidad de utilizar las grandes bases de datos de anillamiento para 
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estudiar los patrones de dispersión de las aves, algo que hasta ahora se hizo en 

relativamente pocos casos. Llevar a cabo más estudios similares, sobre más especies y 

diferentes áreas geográficas, podría permitir una mejor definición y comprensión de los 

patrones generales de dispersión de las aves explorados por Paradis et al. (1998) y 

Sutherland et al. (2000). Sin embargo, para obtener información más precisa, en futuros 

estudios sería oportuno tener en cuenta las diferencias espaciales en el esfuerzo de 

captura, aunque esto va a implicar disponer de datos detallados sobre la distribución de 

las aves estudiadas y sobre el esfuerzo de captura en áreas muy amplias (Van Houtan et 

al. 2010). 

Es interesante remarcar la alta consistencia entre los resultados obtenidos en el capítulo 

3 y en el capítulo 4. En ambos casos hemos comprobado una buena capacidad de 

dispersión en las especies estudiadas, y la falta de casos de dispersión entre la isla de 

Mallorca y la península (capítulo 4) es consistente con el reducido flujo genético 

encontrado entre estas dos áreas (capítulo 3). Además, los datos de marcaje y recaptura 

han proporcionado elementos que pueden ayudar a interpretar los resultados de los 

análisis genéticos, así la falta de diferencias en la distribución de las distancias de 

recaptura y en filopatría entre la dos especies, sugiere que sean diferencias en otras 

características (continuidad del rango de distribución, tamaño de población, capacidad 

de cruzar barreras geográficas) las que determinan la menor diferenciación genética 

poblacional en el carricero común que en carricerín real (capítulo 3). De hecho, en el 

carricerín real solo hemos encontrado casos de dispersión entre humedales peninsulares 

de la costa Mediterránea, la zona donde el rango de distribución de la especie es más 

continua, donde se concentra una parte importante de la población española (Castany & 

López 2006), y donde, además, no hay importantes barreras geográficas. Sin embargo, 

esta comparación entre los resultados de los análisis genéticos y de la información 

obtenida de los datos de marcaje y recaptura tiene que ser evaluada con prudencia, pues 

por ejemplo, también la existencia de posibles diferencias interespecificas en los costes 

de dispersión a nivel de eficacia biológica, podrían influenciar el flujo genético. 

La información sobre el carricerín real que hemos obtenido en los capítulos 3 y 4 es 

completamente nueva, por lo que en futuros estudios sería sin duda interesante ampliar 

el enfoque y estudiar más poblaciones del suroeste de Europa a través de nuevos datos 

genéticos y de anillamiento. Esto podría aclarar si hay intercambio de individuos entre 
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la población reproductora del sur de Francia (la más importante en el Mediterráneo 

occidental con 2000 - 6000 parejas, BirdLife International 2004) y las poblaciones más 

al este (Italia) y al oeste (España, donde también inverna parte de la población francesa). 
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