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The non-nucleoside analogue reverse transcriptase inhibitor efavirenz (EFV) is among 

the most widely used drugs in the combined antiretroviral therapy (cART) employed in 

the treatment of human immunodeficiency virus (HIV) infection. Although generally 

considered safe, there is a concern about the side effects induced by EFV-containing 

therapies. It has been associated with hepatic toxicity and metabolic disturbances and, 

although the mechanisms involved are not clear, recent evidence has pinpointed a 

specific mitochondrial action of EFV accompanied by the induction of an endoplasmic 

reticulum (ER) stress/unfolded protein response in cultured human hepatic cells.  

In the present work, in order to understand the role of mitochondria in the effects of 

EFV, firstly, we have assessed the cellular actions of this drug in a model of hepatic 

cells that lack functional mitochondria (rho⁰ cells generated in Hep3B background). In 

addition, we have studied mitochondrial dynamics, in wild-type Hep3B cells, which 

depends among other processes on the interaction between mitochondria and ER. This 

interaction has also been analysed by evaluation of mitochondria-associated 

membranes (MAMs). Finally, in order to further link the two effects of EFV 

(mitochondria and ER), we have analysed the expression of LONP1, a highly conserved 

mitochondrial protease whose activation is an adaptive mechanism in both oxidative 

and ER stress. Throughout the manuscript, the effects of EFV have been compared to 

those induced by the classic pharmacological inducer of ER stress thapsigargin (TG), 

the typical mitotoxic agent rotenone (Rot) - a standard complex I inhibitor - and the 

uncoupler of OxPhos CCCP. 

On the one hand, EFV-treated rho⁰ cells exhibited a substantial reduction in 

parameters indicative of mitochondrial interference, such as increased superoxide 

production, mitochondrial mass/morphology alterations and enhanced expression of 

LONP1. In line with these results, the cytotoxic effect (cell number, chromatin 

condensation, cell cycle alterations and induction of apoptosis) of EFV was less 

pronounced in Hep3B respiration-depleted cells than in wild-type cells. The effect of 

EFV was both similar and different from those of two distinct mitochondrial stressors, 

TG and Rot, depending on the parameter studied. 

On the other hand, markers of mitochondrial dynamics were expressed differentially 

with the stimuli used (EFV, TG, Rot and CCCP), which points to a specificity of the dual 
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ER/mitochondrial stress induced by EFV. EFV treatment enhanced mitochondria/ER 

interorganelle interaction, as shown by co-immunoprecipitation experiments of MAMs 

protein partners. In addition, LONP1 was upregulated at mRNA and protein levels 

under all conditions. Surprisingly, upon treatment with EFV, its extramitochondrial 

presence (ER and MAMs) increased.  

In conclusion, hepatic cells lacking normal mitochondria (rho⁰) are less vulnerable to 

EFV. This finding may account for the idiosyncratic hepatic reactions triggered by anti-

HIV drugs and may also explain the different degrees of susceptibility to liver damage 

seen in patients undergoing antiretroviral therapy. The specific dual mitochondria-ER 

effect induced by EFV enhances MAMs content and this is associated with increased 

extramitochondrial LONP1 expression. This is the first report of this phenomenon in 

mammalian cells and suggests a novel MAMs-linked function of LONP1. 
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El inhibidor de la transcriptasa inversa no análogo de nucleósido efavirenz (EFV) es uno 

de los fármacos más utilizados en la terapia antirretroviral combinada (TARc) 

empleada en el tratamiento de la infección por el virus de la inmunodeficiencia 

humana (VIH). Aunque en general se ha considerado seguro, existe una gran 

preocupación acerca de los efectos secundarios inducidos por las terapias que 

contienen EFV. Este fármaco se ha asociado con toxicidad hepática y trastornos 

metabólicos y, aunque los mecanismos implicados no están claros, evidencias 

recientes han señalado una acción mitocondrial específica de EFV acompañada por la 

inducción de estrés de retículo endoplasmático (RE)/respuesta a proteínas 

desplegadas en células hepáticas humanas cultivadas. 

En el presente trabajo, con el objetivo de entender el papel de la mitocondria en los 

efectos inducidos por EFV, en primer lugar, hemos evaluado las acciones celulares de 

este fármaco en un modelo de células hepáticas que carecen de mitocondrias 

funcionales (células rho⁰ generadas en el fondo Hep3B). Además, hemos estudiado la 

dinámica mitocondrial, en células Hep3B wild-type, que depende entre otros procesos 

de la interacción entre las mitocondrias y el RE. Esta interacción también se ha 

analizado mediante la evaluación de las membranas asociadas a las mitocondrias 

(MAMs). Por último, con el fin de vincular aún más los dos efectos de EFV (mitocondria 

y RE), hemos analizado la expresión de LONP1, una proteasa mitocondrial altamente 

conservada cuya activación es un mecanismo adaptativo tanto en el estrés oxidativo 

como en el de RE. A lo largo del manuscrito, los efectos de EFV se han comparado con 

los inducidos por un inductor farmacológico clásico del estrés de RE, tapsigargina (TG), 

el agente mitotóxico típico rotenona (Rot) - un inhibidor estándar del complejo I - y el 

desacoplador de la OxPhos, CCCP. 

Por un lado, las células rho⁰ tratadas con EFV mostraron una reducción importante en 

los parámetros indicativos de interferencia mitocondrial, tales como aumento de la 

producción de superóxido, alteraciones en la morfología y masa mitocondrial, y 

aumento de la expresión de LONP1. En consonancia con estos resultados, el efecto 

citotóxico (número de células, condensación de la cromatina, alteraciones del ciclo 

celular e inducción de la apoptosis) de EFV fue menos pronunciado en las células 

Hep3B deficientes de respiración que en las células wild-type. El efecto de EFV fue 
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tanto similar como diferente de los efectos producidos por dos factores distintos de 

estrés mitocondrial, TG y Rot, dependiendo del parámetro estudiado. 

Por otro lado, los marcadores de la dinámica mitocondrial se expresaron de forma 

diferente con los estímulos utilizados (EFV, TG, Rot y CCCP), lo que apunta a una 

especificidad del doble estrés mitocondrial/RE inducido por EFV. El tratamiento con 

EFV potenció la interacción entre las mitocondrias y el RE, como se muestra por los 

experimentos de co-inmunoprecipitación de los complejos proteicos de las MAMs. 

Además, LONP1 fue regulado positivamente tanto a nivel de ARNm como de proteína 

en todas las condiciones. Sorprendentemente, tras el tratamiento con EFV, su 

presencia extramitocondrial (RE y MAMs) aumentó. 

En conclusión, las células hepáticas que carecen de mitocondrias normales (rho⁰) son 

menos vulnerables a EFV. Este hallazgo puede explicar las reacciones hepáticas 

idiosincrásicas desencadenadas por los fármacos anti-VIH y también los diferentes 

grados de susceptibilidad al daño hepático observados en pacientes sometidos a 

terapia antirretroviral. El doble efecto mitocondria-RE específico inducido por EFV 

aumenta el contenido de MAMs y esto está asociado con el aumento de la expresión 

extramitocondrial de LONP1. Este es el primer informe de este fenómeno en células de 

mamífero y sugiere una función novedosa de LONP1 relacionada con las MAMs. 
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1. OVERVIEW OF THE HUMAN IMMUNODEFICIENCY VIRUS INFECTION 

The human immunodeficiency virus (HIV), classified within the genus Lentivirus, 

Retroviridae family, is the causative agent of acquired immunodeficiency syndrome 

(AIDS) (Barre-Sinoussi F. et al., 1983). Two types of genetically different HIV has been 

described, HIV-1 and HIV-2 which have similar epidemiological characteristics; 

although HIV-1 is more widespread and is responsible for most cases of infection and 

HIV-2, less transmissible and pathogenic, is found mainly in West Africa (De Cock K.M. 

et al., 1993). According to WHO and UNAIDS, at the end of 2015 there were in the 

world about 36.7 million people infected with HIV. That same year, about 2.1 million 

people became newly infected and around 1.1 million died from AIDS-related causes 

(WHO and UNAIDS, 2016). 

1.1. Life cycle and infection by the human immunodeficiency virus 

HIV can infect a variety of immune cells such as CD4+ T cells, macrophages and 

microglial cells where viral replication occurs. Lentiviruses are transmitted as single-

stranded enveloped RNA viruses; upon entry into the target cell, the viral RNA genome 

is converted into double-stranded DNA by a virally encoded reverse transcriptase 

enzyme. The resulting viral DNA is integrated into the human genome by a virally 

encoded integrase and uses the cell machinery for its expression (Smith J.A. and Daniel 

R., 2006). 

The HIV life cycle is carried out in several steps (Fig.I.1). It begins with the entry in the 

cell by associating the virus with a CD4 receptor and a co-receptor on the CD4+ T cell 

surface, followed by fusion of the viral envelope with the cell membrane and the 

release of the HIV capsid into the cell. After reverse transcription of viral RNA into viral 

DNA by HIV reverse transcriptase, the viral DNA is integrated into the host cell’s 

genome by the viral integrase. After transcription and translation, some RNAs function 

as new copies of the virus genome, while others function as mRNAs to produce 

structural proteins. The final step of the viral cycle is the assembly, with the action of 

the viral protease, of new mature HIV virions which are able to infect another cell 

(Zheng Y.H. et al., 2005; Smith J. A. and Daniel R., 2006). 
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Figure I.1. Schematic representation of the HIV life cycle (modified from Laskey S.B. and Siliciano R.F., 

2014). The boxes represent the different classes of antiretroviral drugs and blue arrows show the site 

of the viral cycle on which they act. NRTIs and NNRTIs: nucleoside and non-nucleoside reverse 

transcriptase inhibitors. 

HIV transmission is only possible through contact between body fluids that have a high 

viral concentration, such as sexual contact, parenteral exposure to blood or 

contaminated blood products, and vertical transmission from mother to foetus or 

neonate during birth or through breast milk (Crandall K.A., 2001). 

HIV infection develops in several stages identified by a set of symptoms and clinical 

indicators. Although it may be highly variable among patients, is characterized by a 

brief acute phase associated with high levels of viral load; followed by a clinical latency 

stage, asymptomatic, in which a gradual deterioration of the immune system occurs 

with a great production of new viral particles and a decrease in the number of CD4+ T 

cells; finally culminating with the development of AIDS. This critical stage of HIV 

infection occurs when the immune system is unable to replace CD4+ T lymphocytes 

lost during the virus attack, so that plasma levels of these cells fall below 2x105 

cells/mL of blood. This phenomenon makes the host vulnerable to opportunistic 

infections (Pantaleo G. et al., 1993). 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Laskey%20SB%5BAuthor%5D&cauthor=true&cauthor_uid=25263222
https://www.ncbi.nlm.nih.gov/pubmed/?term=Siliciano%20RF%5BAuthor%5D&cauthor=true&cauthor_uid=25263222
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2. ANTIRETROVIRAL THERAPY 

Zidovudine (ZDV), also known as azidothymidine (AZT), was the first effective 

antiretroviral drug against HIV. It was synthesized by Jerome Horwitz in 1964 as a false 

nucleoside to be used as an antineoplastic. In 1985 it was found that AZT was effective 

against HIV in vitro (Mitsuya H. et al., 1985) and the U.S. FDA (Food and Drug 

Administration) approved its use for the treatment of this infection in 1987 (Fischl 

M.A. et al., 1987).  

The treatment of HIV was revolutionized in the mid-1990s with the development of 

the first compounds of new pharmacological families, and the introduction of drug 

regimens that combined these agents, called highly active antiretroviral therapy 

(HAART) or combined antiretroviral therapy (cART). The increased efficacy of these 

combined treatments is due to the increased number of obstacles for viral replication, 

which leads to reduction in plasma viral load resulting in a significant reconstitution of 

the immune system (Autran B. et al. 1997; Komanduri K.V. et al. 1998; Lederman M.M. 

et al. 1998). Antiretroviral agents individually do not suppress HIV long term, therefore 

they should be used in combination regimen to achieve the greatest possible benefit, 

the better tolerability and compliance, and reduce the risk of resistance development 

(De Clercq E., 2009). cART has resulted in longer survival in infected patients due to the 

restoration and preservation of their immune functions, which leads to reduced 

mortality and morbidity, improving their quality of life (Mocroft A. et al., 2003; Panos 

G. et al., 2008). The drawback is that the viral genome in the host tissue cannot be 

eradicated, meaning an immunological and clinical deterioration of infected people. 

Currently, 26 antiviral drugs are approved by FDA for HIV treatment (Tab.I.1) and 

classified in seven families according to the mechanism by they which interfere with 

the replicative cycle of the virus (Fig.I.1): 

 Nucleoside Reverse Transcriptase Inhibitors (NRTIs) 

 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) 

 Protease Inhibitors (PIs) 

 Fusion Inhibitors (FIs) 

 Entry Inhibitors (EIs) or CCR5 co-receptor antagonists 
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 Integrase Inhibitors (IIs) 

 Pharmacokinetic Enhancers (PEs) 

2.1. Nucleoside Reverse Transcriptase Inhibitors (NRTIs) 

NRTIs were the first approved anti-HIV drugs and their mechanism of action is based 

on inhibiting the activity of HIV reverse transcriptase (Balzarini J., 1994). They are 

analogues of the naturally occurring deoxynucleotides (adenosine, cytidine, guanosine 

and thymidine) needed to synthesize the viral DNA. NRTIs are administered as 

prodrugs; once inside the cell, they must be activated (phosphorylated) to generate 5'-

triphosphate which is incorporated into cellular DNA as alternative substrate, except 

for tenofovir, which is a nucleotide analogue (has an activated phosphate group in its 

chemical structure and therefore does not require this chemical process). The 

incorporation of NRTIs leads to the termination of the growing viral DNA chain because 

of the lack of a 3'-OH terminus that prevents the addition of more nucleotides (Hao Z. 

et al., 1990; De Clercq E., 2002). 

2.2. Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) 

These agents inhibit HIV reverse transcriptase by non-competitively binding to a 

hydrophobic pocket near its catalytic site, which alters the spatial conformation of the 

substrate-binding site and reduces the enzyme´s polymerase activity (De Clercq E., 

2009). They are characterized by a long half-life in plasma, which allows the 

administration in a single daily dose. Because they are metabolised through the P450 

pathway and the fact that there is great variability in the isozymes involved for each 

compound, their plasma levels can change and may also be influenced by the 

interactions with other drugs metabolised through the same pathway. These anti-HIV 

drugs are also characterized by a low barrier to resistance (Blas-Garcia A. et al., 2011). 

2.3. Protease Inhibitors (PIs) 

PIs interfere with the last step of the viral replication cycle by blocking the action of 

the viral protease and thus preventing the formation of infectious viral particles. These 

drugs are similar to the substrates of HIV protease, an enzyme responsible for the 
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cleavage of the viral polyprotein precursors during virion maturation (Wensing A.M. et 

al., 2010). 

Table I.1. FDA-approved HIV drugs (AIDSinfo, 2016). *Ritonavir-boosted lopinavir. 

DRUG CLASS GENERIC NAME BRAND NAME FDA APPROVAL DATE 

NRTIs 

Abacavir (ABC) Ziagen December 17, 1998 

Didanosine (ddI) Videx October 9, 1991 

Emtricitabine (FTC) Emtriva July 2, 2003 

Lamivudine (3TC) Epivir November 17, 1995 

Stavudine (d4T) Zerit June 24, 1994 

Tenofovir disoproxil 
fumarate (TDF) Viread October 26, 2001 

Zidovudine (ZDV) Retrovir March 19, 1987 

NNRTIs 

Efavirenz (EFV) Sustiva September 17, 1998 

Etravirine (ETR) Intelence January 18, 2008 

Nevirapine (NVP) Viramune June 21, 1996 

Rilpivirine (RPV) Edurant May 20, 2011 

PIs 

Atazanavir (ATV) Reyataz June 20, 2003 

Darunavir (DRV) Prezista June 23, 2006 

Fosamprenavir (FPV) Lexiva October 20, 2003 

Indinavir (IDV) Crixivan March 13, 1996 

Nelfinavir (NFV) Viracept March 14, 1997 

Ritonavir (RTV) Norvir March 1, 1996 

Saquinavir (SQV) Invirase December 6, 1995 

Tipranavir (TPV) Aptivus June 22, 2005 

Lopinavir (LPV) Kaletra* September 15, 2000 

FIs Enfuvirtide (T-20) Fuzeon March 13, 2003 

CCR5 
Antagonist Maraviroc (MVC) Selzentry August 6, 2007 

IIs 

Dolutegravir (DTG) Tivicay August 13, 2013 

Elvitegravir (EVG) Vitekta September 24, 2014 

Raltegravir (RAL) Isentress October 12, 2007 

PEs Cobicistat (COBI) Tybost September 24, 2014 
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2.4. Fusion Inhibitors (FIs) 

FIs were designed to prevent virus entry into the host cell by binding to the gp41 

protein located in the viral envelope. The binding prevents conformational changes 

required for the fusion of the viral envelope with the cell membrane, and hence virus 

entry. Enfurvirtide (T-20) is the only FI drug available (Matthews T. et al., 2004). 

2.5. CCR5 co-receptor antagonists 

CCR5 antagonists bind to hydrophobic pockets within the transmembrane helices of 

the CCR5 receptor (Dragic T. et al. 2000; Tsamis F. et al. 2003). Drug binding they 

induce and stabilize a receptor conformation, preventing the virus entry into the host 

cell. Maraviroc (MVC), the only CCR5 inhibitor available, is only active against HIV 

which has tropism for this receptor, and lacks effect against HIV with tropism for the 

CXCR4 receptor or mixed tropism (CCR5/CXCR4) (Ghebremedhin B., 2012). 

2.6. Integrase Inhibitors (IIs) 

This group of drugs inhibits the catalytic activity of HIV integrase preventing the 

insertion of the HIV genome into the DNA of the host cell, an essential step in the HIV 

replication cycle. Until three years ago, raltegravir (RAL) was the only integrase 

inhibitor used commercially. Currently, elvitegravir (EVG) and dolutegravir (DTG) are 

being used as part of a fixed dose combination (Pandey K.K., 2011; Raffi F. et al., 2016; 

GESIDA, 2016).  

2.7. Pharmacokinetic Enhancers (PEs) 

PEs are used to increase the plasma levels of other anti-HIV drugs making them more 

effective. Whereas the PI ritonavir (RTV) has been the only available PE for more than 

a decade, cobicistat (COBI) has recently emerged as an alternative boosting agent. 

COBI, not an HIV drug itself, is used as a PE of atazanavir (ATV) or darunavir (DRV) in 

combination with other antiretroviral agents in the treatment of HIV infection 

(Marzolini C. et al., 2016; Crutchley R.D. et al., 2016).   

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Marzolini%20C%5BAuthor%5D&cauthor=true&cauthor_uid=26945713
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2.8. Guidelines on antiretroviral therapy 

Since the introduction of cART in 1996, antiretroviral multitherapy has become 

increasingly effective in inhibiting HIV replication and in limiting the viral resistance, 

making it widely accepted. Combination of three (or more) anti-HIV compounds is 

aimed at these goals: (i) to obtain synergism between different compounds acting at 

different molecular targets; (ii) to lower the individual drug dosages in order to reduce 

their adverse effects; and (iii) to diminish the development of drug resistance (De 

Clercq E., 2009). 

Although some antiretroviral drugs are less used because of their limited effectiveness, 

its cumbersome management guidelines and/or the appearance of adverse effects, the 

variety of compounds available offer numerous options to obtain the most appropriate 

combination depending on the requirements of each person. The selection of a 

regimen should be individualized based on virologic efficacy, potential adverse effects, 

pill burden, dosing frequency, drug-drug interaction potential, comorbid conditions, 

cost, and resistance test results. cART strategies are frequently updated and according 

to current guidelines (GESIDA, 2016), the initial treatment for HIV-1 consists of a 

combination of three drugs that include two NRTIs associated with a NNRTI, an II or an 

enhanced PI (Tab.I.2). These combinations are effective in lowering plasma viral load 

below 50 copies/mL in more than 75% of cases at 48 weeks (Clumeck N. et al., 2008; 

GESIDA, 2016). 

In the last decade, cART has dramatically improved the natural course of HIV infection. 

cART does not eradicate HIV, but the disease can be controlled if the treatment 

continues throughout the patient’s life. Chronic exposure to these drugs has led to the 

emergence of adverse long-term effects, which can affect the health of patients and 

often require discontinuation of the treatment. Due to the special characteristics of 

this disease, the development of antiretroviral drugs was particularly fast and focused 

primarily on clinical efficacy, which is the reduction of mortality. However, once the 

disease has been controlled, adverse effects associated to therapy and mechanisms of 

toxicity caused by drugs used in it have become very important in the last years (Blas-

García A. et al., 2011). 
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RECOMMENDATIONS 
HAART REGIMENS 

NRTI NRTI 3rd DRUG 

PREFERENTIAL 

ABC 3TC II: DTG 

TDF FTC II: DTG or RAL 

TAF FTC II: EVG/COBI 

ALTERNATIVE 

TDF FTC NNRTI: RPV or EFV 

TDF FTC II: EVG/COBI 

ABC 3TC II: RAL 

TDF FTC 

Enhanced PI 
DRV/COBI or DRV/r 
ATV/COBI or ATV/r 

ABC 3TC PI: ATV/COBI or ATV/r 

Table I.2. Combinations of antiretroviral drugs recommended for triple therapy in patients starting 

HIV treatment (GESIDA, 2016). TAF is a new formulation of tenofovir, which instead of difumarate 

uses alafenamide. PI/r: PI enhanced with ritonavir (RTV). 

3. ADVERSE EFFECTS OF ANTIRETROVIRAL THERAPY 

The immediate adverse effects, which are well defined, can be anticipated and are 

usually easy to control; mainly affect the gastrointestinal tract, the skin and the SNC. 

Many of these effects disappear in a few weeks and most patients overcome them. 

However, if symptoms persist over longer times, they are more difficult to predict and 

control. Also, they enhance the effects of chronic diseases associated with aging and 

affect the functioning of organs and systems. The most common adverse effects 

generated by long-term cART include metabolic syndrome, lipodystrophy, 

hyperlipidaemia, insulin resistance and toxicities in the liver, heart, kidney, bone 

marrow, retina, ear and skin (Hofman P. and Nelson A.M., 2006). Although some of 

these side effects have been described for cART generally, there are also certain drug 

toxicities related to specific pharmacological families or to a particular compound 

(Maggiolo F., 2009, Blas-García A. et al, 2010; Caron-Debarle M. et al, 2010; 

Apostolova N. et al, 2011b). The main adverse effects associated with each 

antiretroviral drug are described in Tab.I.3. 
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There are several factors that influence the presence/absence of toxicity associated 

with antiretroviral drugs, such as adherence to therapy, concurrent diseases, drug 

interactions as well as interindividual variations caused by age, sex, nutritional status 

and especially genetic variation responsible principally for the variability in the 

response to therapy (Evans W.E. and McLeod H.L., 2003; Rodriguez-Novoa S. et al., 

2005). 

The overall benefits of viral suppression and improved immune function as a result of 

effective antiretroviral therapy far outweigh the risks associated with the adverse 

effects of some antiretroviral drugs. However, in patients at high risk or with chronic 

illnesses already diagnosed, the effect of certain antiretroviral drugs may contribute to 

trigger or advance such chronic diseases. 

DRUG SEVERE ADVERSE EFFECT COMMON ADVERSE EFFECT 
(> 5%) 

NRTIs 

ABC 
Myocardial infarction, 

dyslipidaemia, hypersensitivity 
reaction, pancreatitis 

N/A 

ddI 

Pancreatitis, insulin resistance, 
hepatic steatosis, lactic acidosis, 
peripheral neuropathy, retinal 

changes 

Nausea and vomiting 

FTC Hyperpigmentation N/A 
3TC N/A N/A 

d4T 
Insulin resistance, hyperlipidaemia, 

hepatic steatosis, lactic acidosis, 
pancreatitis 

Lipoatrophy, peripheral 
neuropathy 

TDF Loss of bone mineral density, renal 
insufficiency N/A 

AZT 

Anaemia, neutropenia, insulin 
resistance, hyperlipidaemia, hepatic 

steatosis, lactic acidosis, 
lipoatrophy, myopathy 

Nausea and vomiting, 
headache, asthenia, nail 

pigmentation 

NNRTIs 

EFV Hyperlipidaemia, hepatotoxicity, 
rash, teratogenic in human foetus 

Neuropsychiatric symptoms, 
serum transaminase elevations 

ETR Rash Nausea 

NVP 
Hepatotoxicity, hypersensitivity 

syndrome, rash, Stevens-Johnson 
syndrome 

Serum transaminase elevations 
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RPV Rash, hepatotoxicity, 
neuropsychiatric symptoms N/A 

PIs 

ATV 
Cardiovascular risks with RTV, 

cholelithiasis, hyperlipidaemia with 
RTV, rash, renal effects 

Diarrhoea with RTV, indirect 
hyperbilirubinemia 

DRV Hyperlipidaemia, hepatotoxicity, 
Stevens-Johnson syndrome Rash 

FPV Hyperlipidaemia, Stevens-Johnson 
syndrome, nephrolithiasis Rash 

IDV 
Hyperlipidaemia, indirect 

hyperbilirubinemia, nephrolithiasis, 
hyperglycaemia 

Gastrointestinal effects, 
headache, asthenia 

NFV Hyperlipidaemia, hyperglycaemia Diarrhoea 

RTV Hyperlipidaemia, hepatotoxicity, 
hyperglycaemia Gastrointestinal effects 

SQV Cardiovascular risks with RTV, 
hyperglycaemia, hyperlipidaemia 

Gastrointestinal effects, 
headache 

TPV Intracranial haemorrhages, 
hepatotoxicity Nausea, diarrhoea, rash 

LPV/RTV 
Cardiovascular risks, hepatotoxicity, 

pancreatitis, insulin resistance, 
hyperlipidaemia, hyperglycaemia 

Diarrhoea, nausea, vomiting 

FIs 

T-20 Rash, elevated serum transaminases 
Local injection site reactions, 

increased incidence of bacterial 
pneumonia 

CCR5 Antagonists 

MVC 
Hepatotoxicity, hypersensitivity 
reaction, rash, musculoskeletal 

symptoms 

Abdominal pain, upper 
respiratory tract infections 

IIs 
DTG Hypersensitivity reaction Insomnia, headache 
EVG N/A Nausea, diarrhoea 

RAL Myopathy, rash, Stevens-Johnson 
syndrome N/A 

Table I.3. Antiretroviral therapy-associated common and/or severe adverse effects (AIDSinfo, 2016). 

N/A indicates either that there are not reported cases for the particular side effect or that data for the 

specific ARV drug class are not available.  

3.1. Antiretroviral therapy-related hepatotoxicity 

Liver toxicity is one of the most relevant adverse effects of cART, owing to its 

frequency, the fact that it can lead to interruption of therapy (Soriano V. et al., 2008), 

http://aidsinfo.nih.gov/guidelines
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and that most of antiretroviral drugs are potentially hepatotoxic (Stern J.O. et al., 

2003; Sulkowski M.S., 2004; Blas-Garcia A. et al., 2011). Most studies have found that 

the incidence of elevated liver enzyme levels after six or more months of cART is 

approximately 2-18% (Bonfanti P. et al., 2000; Sulkowski M.S. et al., 2002; Wit F.W. et 

al., 2002). 

Data from clinical studies show that the second cause of mortality in patients treated 

with antiretrovirals is the liver disease (Weber R. et al., 2006; Price J.C. and Thio C.L., 

2010), preceded only by the mortality directly associated with AIDS. Among the factors 

that can increase the risk of hepatotoxicity due to anti-HIV drugs include: the presence 

of other infections such as hepatitis B or C virus (HBV or HCV), age, past history of liver 

damage, alcohol or drug abuse, obesity and taking other drugs that can cause liver 

damage (Joshi D. et al., 2011). 

The clinical spectrum of hepatotoxicity produced by cART is varied and covers: 

asymptomatic and transient elevations of liver enzymes, hepatitis, steatosis, 

steatohepatitis, fibrosis and portal hypertension, and rarely, acute fulminant hepatitis 

(Pineda J.A. et al., 2010; Domingo P. and Lozano F., 2011). Liver toxicity caused by cART 

can be inflicted through several mechanisms, such as hypersensitivity reactions, direct 

mitochondrial inhibition, disturbances of lipid/sugar metabolism and steatosis, direct 

cell stress, and immune reconstitution in the presence of viral hepatitis coinfection 

(Núñez M., 2010). 

3.2. Mitochondrial toxicity 

The mitochondrion is a major target of drug-induced cytotoxicity, which occurs 

through a wide variety of mechanisms such as inhibition or uncoupling of oxidative 

phosphorylation (OxPhos), oxidative stress and/or opening of the mitochondrial 

permeability transition pore (Labbe G. et al., 2008). Many important adverse effects 

associated with cART are known to be the consequence of mitochondrial toxicity, but 

they have been mainly attributed to the inhibition by NRTI of DNA polymerase-γ (Pol-

γ), the enzyme responsible for mtDNA replication (Martin J.L et al., 1994; Walker U.A. 

et al., 2002; Apostolova N. et al., 2011b). mtDNA encodes 13 subunits of the electron 

transport chain (ETC) essential to OxPhos, so decreased levels of mtDNA and 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sulkowski%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=11786975
https://www.ncbi.nlm.nih.gov/pubmed/?term=Wit%20FW%5BAuthor%5D&cauthor=true&cauthor_uid=12089658
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polypeptides encoded by it leads to mitochondrial dysfunction (Kohler J.J. and Lewis 

W., 2007; Chiao S.K. et al, 2009). 

The effects on mitochondria of NNRTIs, which do not inhibit Pol-γ, are less well 

documented, though some elements of the toxicity attributed to these drugs resemble 

disorders induced by mitochondrial dysfunction (Sato N., 2007; Abdul-Ghani M.A. and 

DeFronzo R.A., 2008).  

Classically, symptoms of mitochondria affect the tissues with high-energy demand (e.g. 

the muscles) and are mostly manifested as myopathy, peripheral neuropathy, 

hepatotoxicity, hyperlactatemia and lactic acidosis. However, other alterations have 

also been related to mitochondrial dysfunction, such as disturbances in the lipid 

metabolism (a complex syndrome often termed HIV-related lipodystrophy) and 

nephropathy, although the mechanisms implicated and the extent to which 

mitochondria are involved in these effects vary greatly (Petit F. et al., 2005; Hammer 

S.M. et al., 2008; Maagaard A. and Kvale D., 2009; Feeney E.R. and Mallon P.W., 2010; 

2011). 

4. EFAVIRENZ (EFV) 

The NNRTI efavirenz (EFV), chemically described as (S)-6-chloro-4-(cyclopropylethynyl)-

1,4-dihydro4-(trifluoromethyl)-2H-3,1-benzoxazin-2-one (Fig.I.2), is among the most 

widely used drugs in cART. The long half-life of EFV (44 - 55 h) allows its prolonged 

effect on the reduction of viral RNA with a daily dose (600 mg in adults), what makes it 

highly effective (Smith P.F. et al., 2001; Maggiolo F., 2009). After a single oral dose, 

plasma concentrations peak at 3 - 5 h and become steady at 6 – 7 days (Maggiolo F., 

2009). A daily dose of 600 mg usually results in a Cmax of 12.9 ± 3.7 µM and a Cmin of 5.6 

± 3.2 µM (Starr S.E. et al., 1999; Staszewski S. et al., 1999), but important 

pharmacokinetic interindividual variability has been reported, with several studies 

reporting higher levels (30 - 50 µM) in as many as 20%-40% of patients (Marzolini C. et 

al., 2001; Taylor S. et al., 2001; Burger D. et al., 2006; Kwara A. et al., 2009; van Luin M. 

et al., 2009; Carr D.F. et al., 2010; Gounden V. et al., 2010) and as high as 80 µM in 

some studies (Kwara A. et al., 2009; Van Luin M. et al., 2009; Gounden V. et al., 2010). 
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Figure I.2. Quemical structure of efavirenz (EFV, C14H9CIF3NO2). 

EFV is metabolised mainly in the liver by the cytochrome P450 system (CYP) into 

inactive hydroxylated metabolites. CYP2B6 is the mainly isoenzyme responsible for the 

metabolism of EFV, although CYP3A4 and CYP2A6 are also involved (Ward B.A. et al., 

2003). Many in vitro and clinical studies have revealed that genetic polymorphisms of 

CYP2B6 strongly influence EFV pharmacokinetics, leading to marked differences in 

drug’s plasma concentrations which depend on the individual’s genetics (Bumpus N.N. 

et al., 2006; Desta Z. et al., 2007, King J. and Aberg J.A., 2008). 

Although generally considered safe, there is a concern about the side effects induced 

by EFV-containing therapies, such as rash, neuropsychiatric disturbances, lipid and 

metabolic alterations, and hepatotoxicity (Tashima K.T. et al., 2003; Gutiérrez F. et al., 

2005; Maggiolo F., 2009; Loko M.A. et al., 2011; Echenique I.A. and Rich J.D., 2013; 

Patil R. et al., 2015). In particular, there is a growing concern whether lifelong 

treatment with this and/or other drugs used in cART leads to accumulative 

hepatotoxicity as liver-related complications are the second cause of mortality among 

AIDS patients (Jones M. and Núñez M., 2012). The mechanisms behind this liver 

damage are unclear, but it has been reported the presence of acute mitochondrial 

dysfunction in cultured human hepatocytes treated with clinically relevant 

concentrations of EFV. Studies with the human hepatoma cell line Hep3B and primary 

cultures of human hepatocytes have revealed that the mitochondrial effect of EFV 

involves specific inhibition of complex I of the electron transport chain (ETC), which 

leads to reduced oxygen (O2) consumption, decreased mitochondrial membrane 

potential (ΔΨm), bioenergetic changes and elevated reactive oxygen species (ROS) 

generation (Apostolova N. et al., 2010; 2011c; Blas-García A. et al., 2010). Parallel to 

these manifestations, EFV triggers endoplasmic reticulum (ER) stress and activates the 
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unfolded protein response (UPR) observed as altered ER morphology and increased 

expression of several UPR genes (Apostolova N. et al., 2013).  

5. MITOCHONDRION 

5.1. Mitochondrial structure 

Mitochondria are organelles found in all eukaryotic cells (except in mature 

erythrocytes). They range from 0.5 to 1 µm in diameter and collectively can occupy as 

much as 25% of the volume of the cell; their shape, number, size and subcellular 

location depend on the energy needs of the cell (Lodish H. et al., 2003). 

These organelles possess a double membrane whose architecture was revealed in the 

1950s by electron microscopy imaging (Palade G.E., 1953). The outer mitochondrial 

membrane (OMM) has integral membrane proteins (porins) that allow the passage of 

molecules of up to 5000 Da. The inner membrane (IMM) is organized in characteristic 

folds that protrude into the matrix (MM), named cristae, which accommodate the 

respiratory chain complexes. Unlike the OMM, the IMM is much less permeable, but it 

has various transport proteins that allow the movement of impermeable molecules 

across the membrane. The region between the cristae is known as inner boundary 

membrane (IBM) (Zick M. et al., 2009). IMM and the OMM generate two distinct and 

very specific compartments: the MM and the mitochondrial intermembrane space 

(IMS) (Fig.I.3). The morphology and size of these organelles, as well as their behaviour 

and location in the cell, are variable and depend on interactions between outer surface 

proteins and cytoskeletal components, suggesting that mitochondria are dynamic, 

interconnected structures that respond to environmental and developmental signals 

to satisfy cellular needs. 



INTRODUCTION 

17 
 

 
Figure I.3. Representative scheme of the mitochondria structure with its main components. The 

foremost role of mitochondria is the generation of ATP (adenosine triphosphate) through OxPhos, 

carried out by five protein complexes (I-V) which form the ETC (Smith R.A. et al., 2012). NADH-

ubiquinone oxidoreductase (CI) catalyses the transfer of electrons from the NADH to the coenzyme Q 

or ubiquinone. This electron flow causes four protons to be pumped into the IMS. Coenzyme Q is also 

the acceptor of the electrons that come from the succinate dehydrogenase (CII), acting as an 

alternative point of entry of electrons to the ETC. This electron transfer is not coupled to proton 

translocation. The cytochrome c reductase (CIII) transfers electrons from reduced ubiquinone to 

cytochrome c (cyt c), producing a new flow of protons into the IMS. The third proton pump is the cyt c 

oxidase (CIV) that oxidizes cyt c and transfers the electrons to O2 to form H2O (Poyton R.O. et al., 

2009). The proton gradient between the MM and the IMS is used by the ATP synthase (ATPase or CV) 

to synthesize ATP from ADP (adenosine diphosphate) and Pi (inorganic phosphate) (Poyton R.O. et al., 

2009). 

Mitochondria are semi-autonomous organelles that contain their own genome and 

protein synthesis machinery; however, the vast majority of mitochondrial proteins are 

encoded by nuclear genes and thus imported into mitochondria post-translation. The 
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mitochondrial genome (mtDNA) is a circular DNA molecule of about 16 kb that 

possesses 37 genes necessary for assembly of the OxPhos machinery: 13 for subunits 

of respiratory complexes, 22 for mitochondrial transfer RNA (tRNA) and 2 for 

ribosomal RNA (rRNA) (Anderson S. et al., 1981). Mitochondria replicate their DNA and 

divide mainly in response to the energy needs of the cell, rather than in phase with the 

cell cycle, thus tissues with a high energy demand such as brain, liver, heart and 

skeletal muscle have a high content of mitochondria (Amacher D.E., 2005). 

5.2. Mitochondrial dynamics 

For several decades, there was a general understanding of mitochondria as solitary 

and static organelles; however, live-cell microscopy studies in the 1980s suggested a 

new view of these organelles as highly dynamic structures that construct large, 

branched, interconnected network called the mitochondrial reticulum (Bereiter-Hahn 

J., 1990). This structure involves continuous and balancing fusion and fission events 

that regulate mitochondrial morphology. Mitochondrial numbers are increased by the 

process of mitochondrial biogenesis. Abnormal mitochondria (or portions of 

mitochondria) can be eliminated through a quality control process called mitophagy 

(Twig G. et al., 2008). Mitochondrial movement along the microtubules allows its 

intracellular transport (trafficking). All these functions together are referred to as 

mitochondrial dynamics (Youle R.J. and van der Bliek A.M., 2012). 

Fission creates a greater number of discrete non-networked mitochondria, whereas 

fusion increases connectivity, thereby allowing sharing of matrix proteins and 

mitochondrial DNA among these organelles (Santel A. et al., 2003). The causes and 

consequences of mitochondrial fission and fusion are highly contextual. Fission may be 

either a physiological step in the process of mitosis (mitotic fission), the beginning of 

programmed cell death (apoptosis) or a normal part of a cell’s quality control 

mechanism, allowing elimination of dysfunctional mitochondria (by mitophagy) 

(Taguchi N. et al., 2007; Twig G. et al., 2008; Mitra K. et al., 2009). Mitochondrial 

dynamics also alters the network in order to fulfil the specific metabolic and energetic 

demands of the cell and participates in cell cycle progression, apoptosis, production of 

O2-derived free radicals, mitochondrial DNA stability, O2 sensing and the cell’s stress 

response (Chan D.C., 2012; Archer S.L., 2013). Acquired, pathological alterations in 
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mitochondrial dynamics contribute to many human diseases, including cardiovascular 

diseases, such as pulmonary arterial hypertension, degenerative neurological diseases, 

such as Parkinson’s disease, ischaemia/reperfusion injury and cancer (Archer S.L., 

2013). Moreover, disorders of mitochondrial dynamics are emerging as mechanisms of 

pathogenesis in diseases that had not classically been linked to mitochondria. 

The opposing process, fusion, allows for the mixing of mitochondrial contents between 

organelles for maintenance of a homogeneous mitochondrial network (Chen H. et al., 

2005). Fusion also allows a healthy mitochondrion to compensate for oxidative 

damage in a failing mitochondrion by admixture of its healthy mitochondrial proteins 

and mtDNA (Youle R.J. and van der Bliek A.M., 2012). When fusion is no longer 

adequate to compensate for accumulated damage, the diseased portion of the 

mitochondria depolarizes and undergoes fission, with a simultaneous suppression of 

fusion. This isolates damaged sections of mitochondria, allowing their removal in a 

mitophagic vacuole, thereby protecting the cell (Twig G. et al., 2008). 

5.2.1. Mitochondrial fusion 

Although mitochondrial fusion can be simply defined as the joining of two organelles 

into one, it requires the coordination of two distinct steps: fusion of the OMM 

followed by fusion of the IMM (Fig.I.4). OMM fusion is mediated by mitofusin proteins 

(Mfn1 and Mfn2), large transmembrane GTPases embedded in the OMM (Santel A. 

and Fuller M.T., 2001; Rojo M. et al., 2002). IMM fusion is mediated by optic atrophy 

protein 1 (OPA1), a dynamin-related GTPase associated with the IMM or 

intermembrane space (Meeusen S. et al., 2006; Song Z. et al., 2009). Similar to many 

IMM proteins, OPA1´s primary structure consists of an N-terminal mitochondrial 

targeting sequence (MTS) and transmembrane domain. While MTS is constitutively 

cleaved upon import into the organelle, an N-terminal transmembrane domain 

remains and anchors this form to the membrane, referred to as the long-form (l-

OPA1). Two proteases (Oma1 and Yme1L) have the capacity to cleave OPA1 from its N-

terminal transmembrane domain, producing a short (s-OPA1), soluble form that has a 

more characteristic topology to other dynamin family members (Fig.I.4). These 

proteases appear to be highly regulated, responding to various aspects of 

mitochondrial biology. Oma1 is strongly activated by depolarization of the IMM, as 
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well as by apoptotic stimuli; while Yme1L activity can be controlled by ATP levels, 

OxPhos and translational stress (Ishihara N. et al., 2006; Ehses S. et al., 2009; Rainbolt 

T.K. et al., 2013; Mishra P. et al., 2014). These mechanisms allow tuning of 

mitochondrial fusion rates to the organellar and cellular bioenergetics. In particular, it 

appears that a balance of long and short forms of OPA1, as well as proteolysis itself is 

required for fusion activity (McQuibban G.A. et al., 2003; Song Z. et al., 2007; Mishra P. 

et al., 2014), although recent studies have challenged this viewpoint by implicating l-

OPA1 as the primary fusion mediator (Anand R. et al., 2014). 

 
Figure I.4. Schematic representation of the process of mitochondrial fusion (modified from Mishra P., 

2016). It is a two-step process consisting of OMM fusion, mediated by Mfn1 and Mfn2 GTPases, 

followed by IMM fusion, mediated by OPA1 GTPase. OPA1 is present in two forms, a long form (l-

OPA1) which is an integral membrane form, and a shorter, processed form (s-OPA1). Proteolytic 

processing of OPA1 can be achieved via either the Oma1 or Yme1L proteases.  
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5.2.2. Mitochondrial fission 

The mitochondrial fission machinery has two major components: dynamin-related 

protein 1 (Drp1) and its adaptor proteins (Fig.I.5). Drp1 is a member of the dynamin 

GTPase family and is homologous with dynamin, the mitochondrial fission mediator in 

yeast (Smirnova E. et al., 2001). Drp1 has an essential role in fission and mice lacking 

Drp1 die before birth (Ishihara N. et al 2009). Fluorescent microscopy provides 

evidence that Drp1 is recruited from the cytosol to the mitochondrial surface to 

mediate fission (Frank S. et al., 2001). A number of recruitment proteins have been 

identified including fission 1 (Fis1), mitochondrial fission factor (Mff) and the newly 

discovered mitochondrial dynamics proteins of 49 kDa and 51 kDa (MiD49 and MiD51), 

all of which are localized to the OMM (Gandre-Babbe S. and van der Bliek A.M., 2008; 

Loson O.C. et al., 2013).  

In the cytosol, Drp1 exists as a dimer or tetramer and only assembles into higher-order 

complexes when it binds to the OMM (Zhu P.P. et al., 2004; Chang C.R. and Blackstone 

C., 2007). In most models, Drp1 translocates to and oligomerizes on the mitochondrial 

surface, forming a ring which constricts the organelle and eventually leads to fission 

(Fig.I.5). However, the involvement of other auxiliary factors has been suggested. In 

particular, the role of the ER has come to the forefront (Friedman J.R. et al., 2011; 

Rowland A.A. and Voeltz G.K., 2012). In this model, ER tubules actually wrap around 

mitochondria, facilitate constriction and perhaps the final fission event. Interestingly, 

this process appears to utilize localized actin-myosin based contraction to generate the 

pre-constriction forces (Hatch A.L. et al., 2014). Therefore, the dynamic behaviour of 

these two organelles directly influence one another and this evidence highlights the 

importance of mitochondrial-ER interactions.  
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Figure I.5. Schematic representation of the process of mitochondrial fission (modified from Mishra P. 

and Chan D.C., 2014). Drp1 is recruited to mitochondria surface where it oligomerizes into a ring-like 

structure and promotes scission of the mitochondrial membrane. Four recruitment proteins have 

been identified, Fis1, Mff, MiD49 and MiD51. 

Mitochondrial fission is highly regulated by post-translational modifications of Drp1, 

including SUMO(small ubiquitin-like modifier)ylation, or phosphorylation that can 

either activate or inactivate its GTPases activity and fission (Wasiak S. et al., 2007; 

Cribbs J.T. and Strack S., 2007). Drp1 is inhibited by phosphorylation at Ser637 and 

activated by phosphorylation at Ser616 (Taguchi N. et al., 2007; Cribbs J.T. and Strack S., 

2007). Dephosphorylation of Drp1 at Ser637 is necessary for Mff interaction with Drp1 

(Zhang Z. et al., 2016), whereas MiDs can bind the phosphorylated form of Drp1 at 

Ser637 (Loson O.C. et al., 2013). The mitotic fission results in part from cyclin B1/cyclin-

dependent kinase 1 (CDK1), which simultaneously triggers mitosis and fission by 

phosphorylation of Drp1 at Ser616 (Marsboom G. et al., 2012; Rehman J. et al., 2012). 

The interaction of Drp1 with its binding partner Fis1 contributes to mitotic fission (Lee 

S. et al., 2014). Under oxidative stress conditions, protein kinase Cδ mediates 

phosphorylation of Ser579 in human Drp1 isoform 3 (corresponding to Ser616 in the 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Mishra%20P%5BAuthor%5D&cauthor=true&cauthor_uid=25237825
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chan%20DC%5BAuthor%5D&cauthor=true&cauthor_uid=25237825
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human Drp1 isoform 1), leading to mitochondrial fragmentation and impaired 

mitochondrial function, which contributes to hypertension-induced brain injury (Qi X. 

et al., 2011). Under nutrient starvation conditions, for example, mitochondrial fission is 

repressed by phosphorylation of Drp1-Ser637 and coincident dephosphorylation of 

Drp1-Ser616 to protect mitochondria from autophagosomal degradation and sustain 

cell viability (Rambold A.S. et al., 2011). 

5.3. Mitochondrial membrane potential (ΔΨm) 

It is a fundamental mitochondrial physiological parameter because it directly controls 

three crucial cellular processes, ATP synthesis, mitochondrial calcium (Ca2+) 

sequestration and generation of ROS, and is therefore often regarded as a key 

indicator of cell health (Perry S.W. et al., 2011). As shown in Fig.I.3, mitochondria 

generate ATP by utilizing the proton electrochemical gradient potential, or 

electrochemical proton motive force (Δp), generated by serial reduction of electrons 

through the ETC. Under normal circumstances, the accumulation of protons in the IMS 

can be dissipated by the synthesis of ATP o through uncoupling proteins (UCP), which 

can modulate the loss of protons through the IMM decreasing the electrochemical 

potential and favouring heat dissipation (Argilés J.M. et al., 2002). The uncoupling of 

the OxPhos allows protons to go directly back to the MM producing heat but not ATP 

(Amacher D.E., 2005).  

A fast ΔΨm collapse occurs with the opening of the transition pore of the 

mitochondrial permeability resulting from an exposure to mitochondrial toxins or 

conditions which can increase mitochondrial Ca2+ levels, especially if they are 

accompanied by additional factors such as oxidative stress (Lecoeur H. et al., 2004). 

This phenomenon associated with the impaired mitochondrial integrity leads to the 

permeabilization of the OMM and the translocation of pro-apoptotic proteins to the 

cytosol, ending in cell death by apoptosis (Novo E. and Parola M., 2008). The loss of 

ΔΨm may be an early event in some apoptotic processes or, depending on the 

apoptotic model, also a consequence of the apoptosis-signalling pathway (Ly J.D. et al., 

2003).  
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There are numerous well-known uncouplers and inhibitors of OxPhos, such as the 

protonophore carbonyl cyanide m-chloro phenyl hydrazone (CCCP) that causes an 

uncoupling of the proton gradient (Lou P.H. et al., 2007), and rotenone, a pesticide 

that prevents the transfer of electrons from CI to ubiquinone blocking the ubiquinone-

binding site (Li N. et al., 2003). 

5.4. Reactive oxygen species (ROS) and oxidative stress 

Mitochondria is where 99% of the molecular O2 in the cell is reduced, thereby 

producing H2O. Thus, it is not a surprise that these organelles are main cellular 

generators of ROS, mostly synthesised in the form of superoxide (O2.-) resulting from 

irregular side reactions and incomplete reduction of O2 during the electron transport 

at the ETC (Cadenas E. and Davies K.J., 2000). ROS are mainly produced within the 

complexes I and III and roughly 3x107 molecules of O2.- are generated in a single 

mitochondrion per day. Besides ETC as a notorious ROS producer, additional 

mitochondrial sources of ROS have been reported including enzymes of the Krebs cycle 

(Boveris A. and Cadenas E., 1997; Sauer H. et al., 2001). Under normal conditions, from 

0.15% to 0.4 % of the totally consumed O2 is converted into O2.- but this yield can be 

drastically augmented in many physiological and pathological circumstances (Hansford 

R.G. et al., 1997; St-Pierre J. et al., 2002). ROS is a collective term for several free 

radical and non-radical molecules such as O2.-, hydroxyl (HO.) and peroxyl (RO2.) 

radicals, and hydrogen peroxide (H2O2) (Halliwell B. and Cross C.E., 1994). O2.- can 

react with nitric oxide (NO) thus generating peroxynitrite (ONOO−), a very potent 

oxidant and it also inhibits aconitase, a key enzyme in the control of NADH generation 

providing a feedback mechanism to control electron flow through ETC. Also, O2.- is a 

precursor of H2O2 which is a substrate of several mitochondrial enzymes (Jones D.P., 

2008). Moreover, H2O2 can be converted into the highly oxidative and cytotoxic HO.. 

Mitochondrial ROS are important second messengers that act as signalling molecules 

between these organelles and the cytosol. However, under many physiological and 

pathological circumstances mitochondria overproduce ROS which tend to be 

scavenged by the mitochondrial antioxidant defence machinery (Le Bras M. et al., 

2005). Still, this detoxifying system can be overwhelmed which occurs in circumstances 

of impaired electron transport, decreased O2 availability, etc. The overproduction of 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20N%5BAuthor%5D&cauthor=true&cauthor_uid=12496265
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ROS and/or the failure of the intrinsic cellular antioxidant system to scavenge them, 

leads to a state known as oxidative stress. As a result of their intrinsic high reactivity, 

ROS react almost with all macromolecules within the mitochondrion. Oxidative 

damage of mitochondrial lipids, proteins and mtDNA results in abnormal mitochondrial 

protein synthesis and folding as well as altered protein complex assembly which 

ultimately compromises mitochondrial function. Oxidative stress is also characterized 

by changes in the redox state of the mitochondrion that has important consequences 

for signalling (Apostolova N. et al., 2011a). 

Oxidative stress has been given major clinical importance over recent years and a vast 

body of evidence has pointed to its role in a wide variety of pathological situations, 

both inherited and acquired, from ischaemia/reperfusion and cardiovascular diseases, 

to diabetes, cancer, infectious diseases, neurodegeneration and aging (Duchen M.R. 

and Szabadkai G., 2010). It is evident that increases in ROS can determine cell fate 

(survival vs. cell death). All mammalian cells possess intrinsic programs which 

determine progression to cell death and several distinct models of cell death have 

been described: apoptosis, necrosis, autophagy-related, etc. (Orrenius S. et al., 2007). 

Moderate increases in ROS may generate mild mitochondrial damage and thus induce 

mitophagic removal of these organelles. Depending on the duration and the intensity 

of this stimulus, mitophagy can promote cell survival or can lead to autophagy-related 

cell death. Greater increases in ROS can lead to apoptotic or necrotic cell death 

(Lemasters J.J., 2005; Yen W.L. and Klionsky D.J., 2008). 

5.5. Mitochondrial stress response 

Mitochondria are the main energy producers in the cell, and are essential mediators of 

cell death as sources and targets of ROS, and as regulators of ATP levels and calcium 

homeostasis. For this reason, the preservation of mitochondrial function and integrity 

is critical for cell viability. In a cellular environment, especially under stress conditions, 

proteins are at risk for being inactivated by misfolding or aggregation (Dobson C.M., 

2003). To prevent the accumulation of these toxic protein aggregates within the cell, 

organisms have co-evolved complex protein quality control (PQC) networks composed 

of molecular chaperones and proteases (Hartl F.U. et al., 2011; Mogk A. et al., 2011; 

Powers E.T. and Balch W.E., 2013). Molecular chaperones are not only responsible for 
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the de novo folding of proteins but also for their refolding after stress. Proteolytic 

machines on the other hand, are responsible for the removal of damaged or unwanted 

proteins.  

There is growing evidence that points to an important role of mitochondrial protein 

defects in the pathogenesis of human diseases such as neurological disorders, aging, 

cancer and various neuromuscular syndromes (Schapira A.H., 1999; Wallace D.C., 

1999; Turner C. and Schapira A.H., 2001). Mitochondrial stress raises when unfolded, 

misfolded or damaged proteins accumulate in a certain compartment interfering with 

OxPhos and normal mitochondrial functions. Protein overload triggers the 

mitochondrial unfolded protein response (UPRmt), which is the first mechanism to be 

engaged to restore mitochondrial proteostasis. During the UPRmt, mitochondrial 

stress is signalled to the nucleus to promote the expression of mitochondrial-

associated chaperones and proteases to repair and refold misfolded proteins when 

damage is reversible and/or to remove proteins when damage is irreversible (Gibellini 

L. et al., 2016). The UPRmt was initially identified in a monkey cell line (Zhao Q. et al., 

2002) and has been extensively investigated in C. elegans while this pathway is only 

poorly understood in mammals (Haynes C.M. et al., 2007; 2010; Nargund A.M. et al., 

2012). It has been suggested that the subcellular distribution of activating transcription 

factor associated with stress-1 (ATFS-1) is a key regulatory branch-point in the 

pathway. Under non-stress conditions, ATFS-1 is directed to the MM where it is rapidly 

degraded by the AAA+ protease, Lon. In the presence of protein overload however, 

ATFS-1 is not imported into mitochondria but accumulates in the cytosol and then 

translocates into the nucleus, where it activates the transcription of specific genes 

(Nargund A.M. et al., 2012). Significantly, the redistribution of ATFS-1 to the nucleus is 

dependent on the IMM embedded ABC-family peptide transporter Haf-1 (Haf 

transporter 1). Furthermore, both ClpX and ClpP from C. elegans have been 

experimentally implicated as direct components of the UPRmt signal transduction 

pathway (Haynes C.M. et al., 2007; 2010). Interestingly, Haynes and colleagues 

proposed a model, whereby stress within the MM is signalled across the IMM (via Haf-

1) by a factor that is generated by the ClpXP protease (Haynes C.M. et al., 2010). Hence 

a ClpXP-dependent degradation product may regulate ATFS-1 trafficking. 
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In mammalian mitochondria, the PQC network contains key chaperones such as heat 

shock protein-70 (HSP70, also known as HSPA9 and mortalin) and HSP60 (also known 

as HSPD1) and their cofactors, and five different AAA+ proteases (Fig.I.6). Two of these 

proteases, Lon (also known as LONP1) and ClpXP, are located in the MM while IMS-

facing Yme1L1 (also known as i-AAA protease) and two different matrix-facing m-AAA 

protease complexes are anchored to the IMM (Szklarczyk R. et al., 2014; Quiros, P.M. 

et al., 2015).  

 
Figure I.6. Mitochondrial AAA+ proteases. LONP1 and ClpXP localize in the mitochondrial matrix 

(MM), whereas i-AAA and m-AAA are anchored to the inner membrane (IMM). m-AAA proteases 

expose their catalytic site to the MM and i-AAA to the intermembrane space (IMS). Figure modified 

from Matsushima Y. and Kaguni L.S., 2012. 

Beyond UPRmt, mitochondrial fusion provides an additional level of quality control in 

the mitochondrial stress response that is triggered when ETC functions are temporarily 

impaired and ΔΨm is reduced (Chan D.C., 2006). The late-stage quality control 

mechanism is characterized by mitophagy, which is the engulfment of mitochondria 

within double-membraned vesicles and subsequent deliver to lysosomes (Kim I. et al., 

2007; He C. and Klionsky D.J., 2009). In humans, mitophagy is preceded by 

mitochondrial fission and is driven by two proteins: PTEN (phosphatase and tensin 

homolog)-induced putative kinase-1 (PINK1) and Parkin, an E3 ubiquitin ligase (Geisler 

S. et al., 2010; Westermann B., 2010). Therefore, depending on the duration and the 

intensity of stresses, several mechanisms can be engaged to repair damage and 

restore mitochondrial function (Fig.I.7). Mitochondrial proteases are not only involved 

in the UPRmt, but actively participate at multiple levels in the stress-response system 

(Gibellini L. et al., 2016). 
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Figure I.7. Mitochondrial stress response. This process can involve different mechanisms: the 

mitochondrial unfolded protein response (UPRmt) which promotes the expression of mitochondrial-

associated chaperones and proteases, such as LONP1 and ClpXP (left panel); mitochondrial fusion 

(middle panel) and mitophagy (right panel). Figure modified from Gibellini L. et al., 2016. 

5.5.1. Mitochondrial Lon protease 

Mitochondrial Lon protease (LONP1) is a highly conserved and ubiquitous serine 

protease of the MM (Wang N. et al., 1993). It is encoded by the LONP1 gene (PRSS15), 

situated on chromosome 19, as a 107 kDa pre-protein which is then processed in a 100 

kDa mature enzyme (Wang N. et al., 1994). It is widely expressed in multiple human 

tissues – with the highest levels in the most metabolically active organs – heart, brain, 

liver and skeletal muscle (Wang N. et al., 1993). There is also a peroxisomal form of the 

Lon protease, called LONP2; despite apparent similarities to LONP1 in proteolytic 

functions, the peroxisomal LONP2 is encoded by a completely different nuclear gene, 

and is regulated independently of LONP1 (Pomatto L.C. et al., 2016). 

LONP1 is regulated both at the post-transcriptional level, as at least three splicing 

variants have been described, and at the post-translational level, through 

acetylation/deacetylation at Lys917 (Gibellini L. et al., 2014a). The mature protein 
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consists of three domains (Fig.I.8): an N-terminal domain, which is involved in 

substrate binding and oligomeric assembling, an ATPase AAA+ domain, and a C-

terminal proteolytic domain, which contains a serine-lysine catalytic dyad (Rotanova 

T.V. et al., 2004). Data obtained through crystallography suggest that the proteolytic 

domain is inactive when LONP1 is in the monomeric form, to avoid uncontrolled 

proteolysis, and that its activation requires LONP1 oligomerization in hexamers 

(Garcia-Nafria J. et al., 2010). 

 
Figure I.8. Domain structure of mitochondrial Lon protease (LONP1). It comprises three domains, an 

N-terminal domain, a central AAA+ ATPase domain and a C-terminal protease domain. The N-terminal 

domain is involved in oligomerization and protein substrate binding. The AAA+ domain contributes 

ATP binding and hydrolysis. The C-terminal protease domain contains a serine and lysine dyad in the 

active site. 

In human cells, LONP1 is involved in several aspects of mitochondrial biology, by 

interacting with proteins involved in various functions of the organelle (Fig.I.9). LONP1 

belongs to the mitochondrial proteolytic systems, degrading misfolded and damaged 

proteins (Pinti M. et al., 2015). In this context, six substrates of LONP1 have been 

identified: oxidatively modified aconitase (Aco2) (Bota D.A. and Davies K.J., 2002), 

mitochondrial transcription factor A (TFAM) (Matsushima Y. et al., 2010; Lu B. et al., 

2013), steroidogenic acute regulatory protein (StAR) (Granot Z. et al., 2007), 

glutaminase C (GLS-1) (Kita K. et al., 2012), cystathionine β-synthase (CBS) (Teng H. et 

al., 2013) and 5-aminolevulinic acid synthase (ALAS-1) (Tian Q. et al., 2011). The fact 

that LONP1 downregulation leads to PINK1 accumulation in mammalian cells, suggests 

that also PINK1 could be target of LONP1 activity (Jin S.M. and Youle R.J., 2013). This 

protease also is involved in mtDNA maintenance through direct binding to mtDNA and 

proteolytic degradation of TFAM. LONP1 silencing in colon carcinoma cells affected 

OxPhos and Krebs cycle proteins (Gibellini L. et al., 2014b). In addition, LONP1 

downregulation led to a decrease in the levels of several other proteins in the MM, 

including those involved in energetic metabolism, mitochondrial architecture, 

ribosome assembly, mtDNA metabolism and stress response (Gibellini L. et al., 2014b).  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Pinti%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26363553
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Figure I.9. Main functions of LONP1 in mitochondria of human cells. LONP1 is involved in (i) the 

degradation of damaged or oxidized proteins, such as aconitase (Aco2), steroidogenic acute 

regulatory protein (StAR), glutaminase C (GLS-1), cystathionine β-synthase (CBS) and 5-aminolevulinic 

acid synthase (ALAS-1); (ii) mitochondrial metabolism regulation by selective degradation of, and 

interaction with some subunits of OxPhos complexes and (iii) maintenance of mtDNA by degrading p-

TFAM.  Figure modified from Pinti M. et al., 2015. 

LONP1 is one of the most important cellular stress-responsive proteins (Ngo J.K. and 

Davies K.J., 2009). Acute stressors, such as heat shock, serum starvation, mitochondrial 

protein overload, high levels of ROS and ER stress lead to its upregulation (Hori O. et 

al., 2002; Ngo J.K. and Davies K.J., 2009; Pinti M. et al., 2010; 2011; Bahat A. et al., 

2015). The functional characterization of LONP1 promoter has revealed the presence 

of several potential binding sites for stress-responsive transcription factors, such as 

nuclear respiratory factor 2 (NRF-2), nuclear factor-kappa B (NF-κB), Nkx-2 and the 

lymphoid transcription factor (Lyf-1) (Pinti M. et al., 2011). The LONP1 promoter 

region -623/+1 contains a NRF-2 consensus binding site which is essential for response 

to ROS. The ability of NRF-2 to regulate LONP1 expression is a key factor in its ability to 

promote the expression of key components of the mtDNA transcription and replication 

machinery, as well as of genes encoding respiratory subunits (Scarpulla R.C., 2002). 

More recently, the analysis of transcriptional regulation of LONP1 in HEK293 cells has 
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identified three binding sites for NRF-2 at the position -196, -183 and -150 of LONP1 

promoter (Bahat A. et al., 2015). Another very important transcriptional site in the 

promoter of this gene is the region -2023/-1230 that contains a putative binding site 

for NF-κB (Pinti M. et al., 2011). The presence of an NF-κB binding site further 

consolidate LONP1’s role as a stress protein (Ngo J.K. and Davies K.J., 2009). LONP1 

expression is also significantly induced by hypoxia-inducible factor 1 (HIF-1) (Fukuda R. 

et al., 2007). Furthermore, LONP1 is regulated at a post-translational level. The NAD+-

dependent mitochondrial deacetylase sirtuin 3 (SIRT3) mediates LONP1 deacetylation, 

and SIRT3 silencing causes an increase of LONP1 protein levels but not of LONP1 mRNA 

(Gibellini L. et al., 2014a). 

As essential regulator of mitochondrial biology, LONP1 is emerging as an important 

element of mitochondrial alterations that can be observed in several human deseases 

in which the most active organs are involved (Tab.I.4) (Bota D.A. and Davies K.J., 2016). 

In addition, chronic upregulation of LONP1 has been associated with tumorigenesis. 

Malignant transformation and oncogenic growth are highly dependent on adaptation 

to new sources of energy and to hypoxia, which explains the important role LONP1 

plays in a variety of malignancies including colon cancer (Quiros P.M. et al., 2014), 

diffuse large cell lymphoma (Bernstein S.H. et al., 2012), mammary epithelial, cervical 

cancer (Nie X. et al., 2013), bladder cancer (Liu Y. et al., 2014), etc. As LONP1 is 

upregulated by acute oxidative stress, it is also involved in a number of conditions 

caused by the ingestion of toxins and drugs which cause damage via generation of ROS 

or nitrogen species such O2.-, H2O2, and ONOO−, as in different tissues involved in 

detoxification such as the kidney and adipose tissues (Bota D.A. and Davies K.J., 2016). 

In conclusion, LONP1 is a major controller of several mitochondrial functions. Thus, it is 

not surprising that it is associated with the development of human diseases including 

cancer. 

 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Bota%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=27387767
https://www.ncbi.nlm.nih.gov/pubmed/?term=Davies%20KJ%5BAuthor%5D&cauthor=true&cauthor_uid=27387767
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bota%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=27387767
https://www.ncbi.nlm.nih.gov/pubmed/?term=Davies%20KJ%5BAuthor%5D&cauthor=true&cauthor_uid=27387767


Mitochondria and ER interplay at the core of EFV-induced hepatic effects 
 

32 
 

CATEGORY DISEASES REFERENCES 

Impaired proteolytic activity 
and oligomerization of 

LONP1 caused by mutations 
in the encoding gene 

Cerebral, ocular, dental, 
auricular, skeletal (CODAS) 

syndrome 

Dikoglu E. et al., 2015; 
Strauss K.A. et al., 2015 

Lower LONP1 expression  Hereditary spastic 
paraplegia Hansen J. et al., 2008 

Increased LONP1 levels with 
mtDNA mutated 

Mitochondrial 
encephalomyopathy, 

lactic acidosis, and stroke-
like episodes (MELAS) 

Felk S. et al., 2010 

LONP1 overexpression and 
increased proteolytic activity 

Friedreich´s ataxia Guillon B. et al., 2009 

HAART-related 
lipodystrophy Pinti M. et al., 2010 

LONP1 overexpression but 
decreased LONP1 proteolytic 

activity 

Myoclonic epilepsy with 
ragged-red fibres 

(MERRFs) 
Wu S.B. et al., 2010 

Cardiac ischemia and 
heart failure Kuo C.Y. et al., 2015 

Table I.4. Classification of human diseases in which LONP1 expression is modified. Table modified 

from Pinti M. et al., 2015. 

5.5.2. ClpXP 

ClpP is a serine protease whose functional form is a heptamer that assembles into a 

tetradecamer in the presence of caseinolytic protease X (ClpX) (Kang S.G. et al., 2005). 

ClpP is encoded by the nuclear gene CLPP, located in the chromosome 19. The 

transcription and translation of CLPP result in the synthesis of a precursor protein of 

approximately 37 kDa, which is then processed in the mature form of 32 kDa (Corydon 

T.J. et al., 1998). The AAA+ ATPase ClpX (37 kDa) is encoded by the CLPX gene, located 

on chromosome 15; together with ClpP it forms the ClpXP complex, an ATP-dependent 

protease which degrades damaged and misfolded proteins in mitochondria (Baker T.A. 

and Sauer R.T., 2012). As mentioned above, ClpXP acts by inducing the UPRmt in C. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Pinti%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26363553
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elegans (Haynes C.M. et al., 2010). In mammalian cellular models, the overexpression 

of ClpXP is also associated with the upregulation of nuclear genes involved in UPRmt, 

but the mechanism of this signalling is still a matter of debate (Al-Furoukh N. et al., 

2015).  

5.5.3. Heat-shock proteins 

Heat-shock proteins (HSPs), or heat stress proteins, are highly conserved chaperones 

that play crucial roles in folding/unfolding of proteins, assembly of multiprotein 

complexes, transport/sorting of proteins into correct subcellular compartments, cell-

cycle control and signalling, protection of cells against stress/apoptosis and antigen 

presentation (Li Z. and Srivastava P., 2004). HSPs constitute a large family of proteins 

that are often classified based on their molecular weight: HSP10, HSP40, HSP60, 

HSP70, HSP90, etc. HSP90 is located in the cytosol and consists of N-terminal ATP 

binding domain, substrate-interacting middle domain, and C-terminal dimerization 

domain (Jackson S.E., 2013). There are 2 major cytosolic HSP90 proteins: HSP90AA1 

(Hsp90α), an inducible form, and HSP90AB1 (Hsp90β), a constitutive form. Other 

HSP90 proteins are found in the ER (HSP90B1) and mitochondria (TRAP1) (Chen B. et 

al., 2005). Despite high conservation between Hsp90α and Hsp90β, these proteins 

display different functions (Zuehlke A.D. et al., 2015). Unlike Hsp90α, Hsp90β is 

essential in mammals, suggesting that Hsp90β is involved in processes that maintain 

viability, whereas Hsp90α is involved in more adaptive roles (Voss A.K. et al., 2000; 

Grad I. et al., 2010). On the other hand, HSP90B1 plays critical roles in folding proteins 

in the secretory pathway such as toll-like receptors and integrins (Randow F. and Seed 

B., 2001; Yang Y. et al., 2007). It is considered an essential immune chaperone to 

regulate both innate and adaptive immunity (Schild H. and Rammensee H.G., 2000). 

6. APOPTOTIC CELL DEATH 

Apoptosis is a (patho)physiological phenomenon of enormous biological importance 

(Perl M. et al., 2005). It is a type of cell death characterized by membrane blebbing, 

shrinkage of the cell, chromatin condensation and nuclear fragmentation. Intense 

research over the last 20 years has revealed that this process is necessary for 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=18432918
https://www.ncbi.nlm.nih.gov/pubmed/?term=Srivastava%20P%5BAuthor%5D&cauthor=true&cauthor_uid=18432918
https://en.wikipedia.org/wiki/Integrins
https://en.wikipedia.org/wiki/Innate_immunity
https://en.wikipedia.org/wiki/Adaptive_immunity
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development and homeostasis of multicellular organisms. It is also related to many 

pathological processes; increased apoptosis is a prominent feature of numerous 

neurodegenerative diseases (Alzheimer’s disease, Parkinson´s disease and 

Huntington´s disease), whereas apoptosis below the physiological rate is associated 

with cancer. Disturbances of apoptosis are also believed to be implicated in a long list 

of clinical conditions such as ischaemia/reperfusion, diabetes and infectious diseases 

(Perl M. et al., 2005). 

Two major apoptotic pathways have been recognized: the extrinsic, which is originated 

at the death receptors on the cell membrane and the intrinsic, in which mitochondria 

are major players (Elmore S., 2007). Importantly, certain stimuli can activate both 

pathways. Additionally, these pathways are interconnected and converge on the same 

caspase effectors, as caspase activity has been found in practically all cases of 

apoptosis. Mitochondrial apoptosis can also be induced as a secondary event upon 

triggering of the extrinsic pathway (Wang X., 2001; Ekert P.G. and Vaux D.L., 2005). 

Since mitochondria were related to apoptosis in the 1990s, several hypotheses 

regarding the mechanisms of their implication have emerged including disruption of 

the ΔΨm, opening of the voltage-gated ion channel, regulation of the proton flux and 

pore-forming by B-cell lymphoma 2 (Bcl-2) proteins and release of pro-apoptotic 

proteins (Elmore S., 2007). 

At present, there is a general consensus that OMM permeabilization is a key event in 

apoptosis. This process enables the release of pro-apoptotic factors from the IMS to 

the cytosol, which triggers downstream cell death pathways. Indeed, the first solid 

evidence regarding mitochondrial implication in apoptosis was the discovery that cyt c, 

a well-known member of the ETC, is released during mitochondrial apoptosis and 

activates down-stream caspases in the cytosol (Liu X. et al., 1996; Yang J. et al., 1997).  

7. AUTOPHAGY 

In contrast to apoptosis, autophagy is primarily a cell survival/defence mechanism that 

is essential for the eliminations of damaged organelles, misfolded proteins and 

intracellular microbes. It is implicated in important biological functions such as cell 

survival, cell death, metabolism, development, aging, infections and immunity. For this 



INTRODUCTION 

35 
 

reason, alterations in its functioning have been associated with the aetiology of many 

human diseases such as cancer, neurodegenerative and muscular diseases, metabolic, 

hepatic and cardiovascular disorders, infections by microorganisms, diabetes and 

obesity (Mizushima N. et al., 2008; Meijer A.J. and Codogno P., 2009; Shen H.M. and 

Codogno P., 2011). 

This complex biological phenomenon, first described 50 years ago (De Duve C. and 

Wattiaux R., 1966), consists of selective and controlled degradation of cellular 

components and can be divided into 3 types depending on how the cytoplasmatic 

material for degradation is delivered to the lysosome: macroautophagy (or simply 

denominated autophagy), microautophagy and chaperone-mediated autophagy. In 

macroautophagy, this content is sequestered in a double-membrane vesicle called 

autophagosome. The autophagic pathways seem to be very complex but the core 

machinery generally involves two ubiquitin-like conjugation systems (Ohsumi Y., 2001; 

Klionsky D.J., 2007). In the first, the ubiquitin-like protein Atg12 and Atg5 generate a 

complex which interacts with Atg16 to form a multimer complex that is localized in the 

membrane of the early autophagosome. In the second system, the ubiquitin-like 

protein Atg8, also known as microtubule-associated protein 1 light chain 2 (LC3), is 

cleaved by Atg4 and then conjugated to phosphatidylethanolamine giving rise to LC3-

II. This conjugated form is targeted to the autophagosomal membrane. While the 

Atg5/Atg12/Atg16 complex detaches from mature autophagosomes once the 

membrane extension has terminated, Atg8/LC3-II is associated with the 

autophagosome throughout the entire process, until its degradation by the lysosome. 

This is why this protein is used as a universal marker of autophagy. 

Although most of the cytosol can be randomly "sequestered" through autophagy, in 

many cases autophagy has substrate specificity. For example, ubiquitinated protein 

aggregates and unnecessary or damaged organelles are selectively chosen for 

autophagy degradation (He C. and Klionsky D.J., 2009). Different terms have been used 

to describe the selectivity of each process according to the element to be degraded, 

such as autophagic degradation of mitochondria (mitophagy) (Kim I. et al., 2007), 

ribosomes (ribophagy) (Kraft C. et al., 2008), peroxisomes (pexophagy) (Dunn W.A. Jr. 

et al., 2005) and ER (reticulophagy) (Bernales S. et al., 2006; Klionsky D.J. et al., 2007). 



Mitochondria and ER interplay at the core of EFV-induced hepatic effects 
 

36 
 

8. ENDOPLASMIC RETICULUM (ER) 

The endoplasmic reticulum (ER) is a cellular organelle that forms an interconnected 

network of flattened, membrane-enclosed sacs or tube-like structures known as 

cisternae, which are continuous with the outer nuclear membrane. There are two 

types of ER, rough, studded with ribosomes, and smooth-extended through the cell 

(Lodish H. et al., 2003). 

The ER is the main site of synthesis, storing, modifying and transport of newly 

synthesized proteins (Lodish H. et al., 2003), as well as the main centre of storage, 

signalling and regulation of intracellular Ca2+. In addition, this organelle performs other 

functions such as detoxification of xenobiotics and biosynthesis of steroids, cholesterol 

and other lipids (Rao R.V. et al., 2004; Deegan S. et al., 2013). 

The lumen of the ER constitutes a unique cellular environment, possessing the highest 

Ca2+ concentrations of the cell due to the active transport of Ca2+ ATPases. In addition, 

because of its role in protein folding and transport in the secretory pathway, it is rich 

in Ca2+-dependent chaperones such as the 78 kDa glucose-regulated protein (called 

Grp78, BiP or HSPA5), Grp94 (also known as HSP90B1) and calreticulin, which helps to 

stabilize proteins that are not completely folded. On the other hand, the lumen of the 

ER is a highly oxidizing environment, crucial for the formation of disulphide bonds 

mediated by the protein disulphide isomerase (PDI) and for the correct folding and 

modification of many proteins destined for secretion or anchorage in the cell surface 

(Kim I. et al., 2008). 

The molecular profile of the ER reflects its signalling role and is strongly dominated by 

components of the Ca2+ signalling pathway. It contains the inositol-1,4,5-triphosphate 

(IP3) receptors (IP3Rs) and ryanodine receptors (RyRs) responsible for releasing Ca2+ in 

response to the input signals (Patel S. et al., 1999; Patterson R.L. et al., 2004; 

Mikoshiba K., 2006). Both the regulated release and the leak of Ca2+ are counteracted 

by the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) whose function is to 

maintain the internal store of Ca2+. SERCA transfers Ca2+ from the cytosol of the cell to 

the lumen of the ER at the expense of ATP hydrolysis (Clapham D.E., 2007). The 

luminal Ca2+-binding proteins such as calnexin (CNX) and calreticulin play an important 

https://en.wikipedia.org/wiki/Organelle
https://en.wikipedia.org/wiki/Cisterna
https://en.wikipedia.org/wiki/Nuclear_membrane
https://en.wikipedia.org/wiki/Ribosome
http://www.sciencedirect.com/science/article/pii/S0197018612003555#200002109
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role in regulating the SERCA activity and maintenance of a constant luminal level of 

Ca2+ (John L.M. et al., 1998). 

A wide variety of alterations such as hypoxia, lack of nutrients, redox imbalance, 

changes in Ca2+ homeostasis, increased protein translation, virus infections, chemical 

substances and mutations can generate an imbalance between the capacity of ER 

folding and the amount of proteins to be folded, causing the accumulation of unfolded 

or poorly folded proteins and thus generating ER stress. The resulting fate of the cell is 

either survival or apoptosis, depending on the cellular response to the stress. When 

misfolded proteins accumulate in the ER lumen, cells activate a self-protective 

mechanism, termed the unfolded protein response (UPR) (Xu C. et al., 2005; Hussain 

S.G. and Ramaiah K.V., 2007; Cnop M. et al., 2012). 

8.1. Unfolded protein response (UPR) 

The UPR of eukaryotic cells consists of three different mechanisms: (i) translational 

attenuation to limit further protein loads (Harding H.P. et al., 1999), (ii) transcriptional 

activation of genes encoding factors involved in ER protein folding and degradation 

(Gething M.J. and Sambrook J., 1992) and (iii) ER-associated degradation (ERAD), which 

restores the folding capacity through the clearance of unfolded or misfolded proteins 

by enabling their retrotranslocation from the ER into the cytosol via the ubiquitin-

proteasome system (Mori K., 2000). 

In mammals, the UPR signalling pathway is initiated by three ER membrane-associated 

sensors: activating transcription factor-6 (ATF6), inositol-requiring transmembrane 

kinase/endoribonuclease 1 (IRE1) and double-stranded RNA-dependent protein kinase 

(PKR)-like eukaryotic initiation factor 2α (eIF2α) kinase (PERK) (Fig.I.10). If the survival 

signal is insufficient to relieve the cells from ER stress, apoptosis is triggered in order to 

remove ER stress-damaged cells. Many reports have shown that several molecules, 

including IRE1 (Urano F. et al., 2000; Iwawaki T. et al., 2001), apoptosis signal-

regulating kinase 1 (ASK1) (Nishitoh H. et al., 2002), Bax/Bak (Wei M.C. et al., 2001; 

Scorrano L. et al., 2003; Hetz C. et al., 2006), PERK, eIF2α-activating transcription 

factor-4 (ATF4) (Rutkowski D.T. et al., 2006), and CCAAT enhancer-binding protein 

(C/EBP) homologous protein (CHOP, also known as a growth arrest- and DNA damage-
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inducible gene 153 (GADD153)) (Zinszner H. et al., 1998; Oyadomari S. et al., 2002), are 

related to ER stress-induced apoptosis signalling pathways. 

Dysfunction of the UPR, or prolonged ER stress, disrupts ER homeostasis. A large 

number of groups have described the relation between ER stress responses and a 

variety of human diseases, including neurodegenerative disease, metabolic disease, 

inflammatory disease, diabetes mellitus, cancer and cardiovascular disease (Kaufman 

R.J., 2002; Tabas I. and Ron D., 2011). 

 

Figure I.10. Survival signalling under ER stress conditions. The accumulation of misfolded proteins 

activates three ER stress sensors: activating transcription factor-6 (ATF6), inositol-requiring 

transmembrane kinase/endoribonuclease 1 (IRE1), and double-stranded RNA-dependent protein 

kinase (PKR)-like eukaryotic initiation factor 2α (eIF2α) kinase (PERK). ATF6 is activated following 

cleavage with S1P and S2P, after transport to the Golgi. Activated ATF6 (ATF6(N)) induces the 

expression of ER chaperones and XBP1. Activated IRE1 induces the splicing of XBP1 mRNA, and the 

resulting spliced XBP1 protein (XBP1s) controls the transcription of ER-resident chaperones and genes 

involved in lipogenesis and ER-associated degradation (ERAD). Activated PERK enables the translation 

of activating transcription factor-4 (ATF4) which induces the transcription of many genes required for 

ER quality control (Kadowaki H. and Nishitoh H., 2013). 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Kadowaki%20H%5BAuthor%5D&cauthor=true&cauthor_uid=24705207
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nishitoh%20H%5BAuthor%5D&cauthor=true&cauthor_uid=24705207
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8.2. ER stress in the liver 

The liver is one of the main secretory organs of the organism. Its multiple functions 

include synthesis and secretion of plasma proteins, regulation of glucose homeostasis, 

and metabolism of lipids and xenobiotics. Hepatocytes, like other secretory cells, have 

a highly active and well-developed ER structure that represents about 50% of the 

cellular content. Due to the great importance of ER function in liver metabolism, ER 

stress and UPR have been associated with almost all forms of acute and chronic liver 

diseases, with special relevance in steatosis, steatohepatitis, hyperhomocysteinemia, 

viral hepatitis, ischemia/reperfusion injury and drug-induced toxicity (Ji C., 2008; Malhi 

H. and Kaufman R.J., 2011). 

The use of some drugs and the development of hepatic toxicity have been associated 

with ER stress, such as the case of high-dose acetaminophen in mouse liver (Nagy G. et 

al., 2007; 2010) and metapyrylene in rats (Craig A. et al., 2006; Auman J.T. et al., 2007). 

Some PIs used in HIV treatment such as SQV, ATV and RTV also induce ER stress 

associated with hepatotoxicity, as this effect has been seen in human hepatocyte cell 

lines and primary rodent hepatocytes (Parker R.A. et al., 2005; Zhou H. et al., 2006; 

Flint O.P. et al., 2009).  

9. LINK BETWEEN ER AND MITOCHONDRIA 

9.1. Mitochondria-associated membranes (MAMs) 

The presence of a physical connection between the ER and mitochondria was hinted 

for many decades and indicated by pioneering electron microscopic observations 

which revealed a possible interplay between the OMM and the ER membrane in 1969 

(Ruby J.R. et al., 1969). However, mitochondria-associated membranes (MAMs) were 

not discovered as a biochemical entity until 1990, when Jean Vance isolated a 

membrane structure through cell fractionation, which she defined as the contact site 

between the ER and the mitochondria (Vance J.E., 1990). MAMs represent ER 

membranes closely apposed to mitochondria, which can be purified as distinct 

structures. A breakthrough in the functional characterization of the MAMs only came 

up at the turn of the millennium, mainly through the work of Rizzuto R. et al., 1998. 
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They showed that the mitochondria are exposed to higher Ca2+ concentrations than 

the cytosol after Ca2+ release from the ER, suggesting the existence of microdomains of 

high Ca2+ concentrations and transfer between the ER and mitochondria that required 

a physical, proteinaceous linkage between these two organelles. At this time, Vance's 

lab followed up its initial discovery by exploring the function of the MAMs in lipid 

homeostasis in rat liver cells (Shiao Y.J. et al., 1998). Similar findings highlighting the 

key role MAMs play in lipid synthesis were also soon reported in yeast cells (Achleitner 

G. et al., 1999), indicating the evolutionary conserved functions of these ER-

mitochondria contact sites. In the last decades through the continuous advances in 

live-cell imaging techniques allowing 3D reconstitutions of ER and mitochondria 

networks, the total surface area of mitochondria juxtaposed to the ER has been 

estimated at around 5-20% (Rizzuto R. et al., 1998). Therefore, MAMs provide more 

than just a proteinaceous link between these two organelles; they rather enable 

functional transit of metabolites and signalling molecules with relevant implications in 

homeostatic functions within the cell and beyond (van Vliet A.R. et al., 2014).  

MAMs seem to be a highly flexible collection of proteins that is able to recruit a variety 

of signalling components according to the cell's need. In spite of the increasingly large 

number of proteins recognized to participate in this complex, a core subset of ER and 

mitochondria associated proteins has been identified that seem to form the basic 

components of the MAMs (Fig.I.11). These proteins include Ca2+ ion channels located 

at the ER or at the OMM, like the IP3R (Furuichi T. et al., 1989) and voltage-dependent 

anion channel 1 (VDAC1, also known as porin) (Szabadkai G. et al., 2006); enzymes of 

the lipid biosynthetic pathways and lipid transfer proteins like long chain acyl-CoA 

synthetase (FACL4) (Voelker D.R., 2005); various chaperones, like the glucose-

regulated protein 75 (Grp75) physically associated to VDAC1 (Szabadkai G. et al., 

2006), the ER chaperone CNX (Lynes E.M. et al., 2012) and the sigma1-receptor (SIG-

1R) (Hayashi T. and Su T.P., 2003; 2007); enzymes involved in ER redox regulation, like 

the ER oxidoreductase 1 alpha (Ero1α) (Anelli T. et al., 2012); protein kinases, like PERK 

(Verfaillie T. et al., 2012); and proteins involved in the regulation of ER-vesicular 

sorting, like phosphofurin acidic cluster sorting protein 2 (PACS-2) (Simmen T. et al., 

2005) and vesicle-associated membrane protein-associated protein B/C (VAP-B/C) 
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associated with protein tyrosine phosphatase-interacting protein 51 (PTPIP51) that is 

involved in cellular Ca2+ homeostasis (De Vos K.J. et al., 2012). In addition, proteins 

regulating mitochondrial shape and fusion/fission, like Mfn2, Mfn1, Fis1 and Drp1 have 

been found in the MAMs (De Brito O.M. and Scorrano L., 2008; Iwasawa R. et al., 

2011). Mfn2 is one of the best studied MAMs-resident proteins, whose effects on 

MAMs structure and function have been reported in different studies (Chen H. et al., 

2003; De Brito O.M. and Scorrano L., 2008; Munoz J.P. et al., 2013). This GTPase, which 

is located on both the OMM and the ER membranes, is able to establish homotypic as 

well as heterotypic (with the OMM-associated Mfn1) ER–mitochondria interactions, 

which provide stability to the interface between these organelles. In line with this, 

Mfn2 ablation in murine fibroblasts and HeLa cells led to the disruption of the ER-

mitochondria contact sites, increasing the distance between these organelles, and 

caused a change in both the ER and mitochondrial morphology. Importantly, loss of 

Mfn2 also caused a defective mitochondrial Ca2+ uptake (De Brito O.M. and Scorrano 

L., 2008), demonstrating how disruption of the ER-mitochondria contact sites may 

profoundly affect Ca2+ buffering capacity of the mitochondria and overall calcium 

homeostasis, with vital consequences on the cellular fate. 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Vos%20KJ%5BAuthor%5D&cauthor=true&cauthor_uid=22131369
https://www.ncbi.nlm.nih.gov/pubmed/?term=Iwasawa%20R%5BAuthor%5D&cauthor=true&cauthor_uid=21183955
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Figure I.11. Summary of MAMs protein composition. These proteins include Ca2+ ion channels located 

at the ER or at the OMM, like the inositol-1,4,5-triphosphate receptor (IP3R) and voltage-dependent 

anion channel 1 (VDAC1); proteins that regulate mitochondrial shape and fusion/fission, like Mfn2, 

Mfn1, Fis1 and Drp1; various chaperones, like binding immunoglobulin protein (BiP) also known as 78 

kDa glucose-regulated protein (Grp78), the glucose-regulated protein 75 (Grp75) physically associated 

to VDAC1, the ER chaperone calnexin (CNX) and the sigma1-receptor (SIG-1R); enzymes involved in ER 

redox regulation, like the ER oxidoreductase 1 alpha (Ero1α); protein kinases, like PERK; and proteins 

involved in the regulation of ER-vesicular sorting, like phosphofurin acidic cluster sorting protein 2 

(PACS-2) and vesicle-associated membrane protein-associated protein B/C (VAP-B/C) associated with 

protein tyrosine phosphatase-interacting protein 51 (PTPIP51). 

9.2. The function of the ER-mitochondria tethering 

Eukaryotic cells contain membrane-bound organelles with unique identities and 

specialized functions. Communication and cooperation between ER and mitochondria 

take place in order to maintain a variety of physiological functions (Fig.I.12). This 

communication requires short distances between membranes to connect them, and 

allowing ions, metabolites and lipids exchange. 
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9.2.1. Ca2+ exchange 

Cyclical Ca2+ exchange between ER and mitochondria is essential for cell life and death 

(Patergnani S. et al., 2011). ER Ca2+ determines the correct functioning of numerous ER 

enzymes involved in the manufacture of secretory proteins (Michalak M. et al., 2002). 

Intramitochondrial Ca2+ activate numerous mitochondrial enzymes such as enzymes 

catalyzing OxPhos (Gellerich F.N. et al., 2010). The apposition of the ER with 

mitochondria is a prerequisite for Ca2+ exchange. After their intracellular release from 

the ER, free Ca2+ ions cannot travel further than 100-500 nm before they typically 

encounter a Ca2+-binding protein (Allbritton N.L. et al., 1992). This high concentration 

of Ca2+-binding proteins creates microdomains in the proximity of ER Ca2+ release 

channels (Parker I. and Yao Y., 1996). Fluorescence microscopy with Ca2+-sensitive 

photoproteins showed that mitochondrial movement is slowest when cytosolic Ca2+ 

concentrations are high (Yi M. et al., 2004). Ca2+-sensitive probes attached to the 

OMM have further demonstrated that mitochondria specifically approach the ER 

where capacitive Ca2+ influx occurs (Giacomello M. et al., 2010; Csordas G. et al., 

2010).  

Low or very high cytosolic Ca2+ concentrations diminish IP3R opening and hence reduce 

ER Ca2+ release (Bezprozvanny I. et al., 1991). With this, Ca2+ released from the ER 

serves to autoregulate its release from this storage compartment. These findings also 

predict a central role of the extent of ER-mitochondria apposition in cytosolic Ca2+ 

homeostasis. Thus, ER-mitochondria Ca2+ signalling and exchange have to work 

interdependently to determine the Ca2+ concentrations and the correct functioning of 

both the ER and mitochondria.  

Once released from mitochondria, Ca2+ is efficiently taken up into the ER by Ca2+ 

pumps of the SERCA family, which close the circle of intracellular Ca2+ signalling 

between the ER and mitochondria (Vangheluwe P. et al., 2005). The SERCA inhibitor 

thapsigargin (TG) produces high cytosolic Ca2+ concentrations which cause 

mitochondrial Ca2+ overload (Beaver J.P. and Waring P., 1996). This condition 

ultimately provokes the irreversible opening of IP3Rs through the binding of 

mitochondrial cyt c at MAMs, triggering apoptosis. Thus MAMs can also accommodate 

a massive transfer of Ca2+ from the ER to mitochondria to promote cell death 
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(Boehning D. et al., 2003) and therefore not only determines ER-mitochondria Ca2+ 

signalling, but also the speed of apoptosis onset (Simmen T. et al., 2005; De Brito O.M. 

and Scorrano L., 2008).  

9.2.2. Lipid metabolism 

MAMs were initially described as an ER subdomain enriched in proteins involved in 

lipid metabolism. Early biochemical studies on triacylglycerol, phosphatidylcholine (PC) 

and phosphatidylethanolamine (PE) showed that the synthesis of these lipids requires 

enzymatic activity associated with both the ER and mitochondria, thus postulating a 

transport and transfer of lipids between the ER and mitochondria (Dennis E.A. and 

Kennedy E.P., 1972; Jelsema C.L. and Morre D.J., 1978; Bell R.M. et al., 1981). FACL4 

which mediates the ligation of fatty acids to coenzyme A (CoA) and is involved in 

triacylglycerol synthesis, is used today as one of the most reliable MAMs marker 

proteins (Voelker D.R., 2005). Also, acyl-CoA:cholesterol acyltransferase-1 

(ACAT1/SOAT1) is a MAMs marker protein, since its enzymatic activity is among the 

most enriched on the MAMs (Rusinol A.E. et al., 1994). All of this suggests that MAMs 

provide a tight platform for lipid synthesis and lipid transfer between the ER and 

mitochondria.  

Interestingly, the accumulation of lipid metabolism enzymes in the MAMs suggest that 

lipid synthesis and exchange at the MAMs generate an ER subdomain with unique 

properties (Sano R. et al., 2009). Studies indicate that the MAMs-localized lipid 

handling may have a profound impact on mitochondrial metabolism, since yeast cells 

defective in phosphatidylserine (PS) biosynthesis become respiration-deficient (Birner 

R. et al., 2001) and mouse PS decarboxylase knockout cells show altered mitochondrial 

membrane dynamics (Steenbergen R. et al., 2005).  

9.2.3. Mitochondrial morphology 

Several proteins involved in mitochondrial movement along microtubules, such as 

dynein and kinesin, are tightly regulated by increases in Ca2+ levels at the MAMs (Yi M. 

et al., 2004; Pizzo P. et al., 2012). Reduced mitochondrial motility induces an increase 

in their association to the MAMs, thus enhancing their Ca2+ uptake and buffering 

capacity (Yi M. et al., 2004; Pizzo P. and Pozzan T., 2007). Miro family of proteins 
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(Miro1 and 2) is one of the master regulators of mitochondrial motility, based on local 

Ca2+ levels. It has been shown that these proteins have an important role in tethering 

the mitochondria to the cytoskeleton by binding kinesin, thus leading to the 

movement of this organelle (Fransson S. et al., 2006; Saotome M. et al., 2008). 

Beyond the regulation of mitochondrial motility, MAMs participate in the regulation of 

mitochondrial morphology (Scorrano L., 2013). In 2011, Friedman and co-workers 

demonstrated in yeast that mitochondrial fission occurs at positions where ER tubules 

contact and constrict mitochondria. These constrictions would facilitate Drp1 

recruitment (Friedman J.R. et al., 2011). As mentioned above, Mff and Fis1 are 

important for Drp1 recruitment to mitochondrial fission sites and both proteins have 

also been localized to the MAMs (Loson O.C. et al., 2013). Mff localizes in a Drp1-

independent manner to mitochondrial constrictions at sites of ER contact (Loson O.C. 

et al., 2013). All these findings suggest that the recruitment of the mitochondrial 

fission machinery to the MAMs is crucial for mitochondrial morphology. 

9.2.4. Autophagy 

As mentioned above, autophagy is a degradative process in which cytosolic 

components and damaged organelles, but also invading pathogens, are engulfed in 

double-membrane vesicles and delivered to lysosomes for their degradation (Klionsky 

D.J., 2007). It has been described that the ER-mitochondrial contacts are essential for 

autophagosome formation. Different proteins involved in autophagy were found to be 

enriched in MAMs after starvation-induced autophagy (Hamasaki M. et al., 2013): 

ATG14 (autophagy related 14), ATG5 and DFC1 (double FYVE-domain containing 

protein 1) transfer and assemble in a MAMs complex. Interestingly, the disruption of 

ER-mitochondrial contacts by knocking down PACS-2 or Mfn2 decreases the number of 

autophagosomes, suggesting that MAMs integrity is a requirement for autophagosome 

formation. The impact of ER-mitochondria contact on autophagy is also evident when 

the autophagic membranes originate from mitochondria. According to this model, 

disruption of ER-mitochondria contacts by ablation of Mfn2 inhibits lipid transfer and 

starvation-induced autophagy, by inhibiting the PS transfer from ER into mitochondria-

derived autophagosomes (Hailey D.W. et al., 2010). These studies highlight the 

importance of ER-mitochondria tethering in the progression of the starvation-induced 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Hailey%20DW%5BAuthor%5D&cauthor=true&cauthor_uid=20478256
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autophagy. MAMs serve as platform for autophagosome formation (Hamasaki M. et 

al., 2013) and are indispensable for lipid transfer from ER to mitochondria and 

eventual autophagosome formation on the surface of mitochondria (Hailey D.W. et al., 

2010). However, it remains unclear whether autophagosome originate only at MAMs 

and whether this localization is important only in starvation-induced autophagy.  

9.2.5. Apoptosis 

During apoptosis, mitochondrial fragmentation increases due to recruitment of the 

fission protein Drp1 to the OMM. In this particular location, Drp1 also stimulates Bax 

(Bcl2-associated X protein, a pro-apoptotic OMM protein) to form oligomeric pores 

that cause OMM permeabilization (OMMP), causing the release of cyt c and other pro-

apoptotic factors to the cytosol (Hoppins S. and Nunnari J., 2012). Conversely, when 

mitochondrial fusion is increased, apoptosis is attenuated. 

Apoptosis is intimately connected to the mitochondrial Ca2+ levels. Excessive 

mitochondrial Ca2+ accumulation often leads to OMMP and finally the induction of 

apoptosis (Pinton P. et al., 2008). Several studies have associated MAMs and a higher 

ER-mitochondria Ca2+ transfer with mitochondrial dysfunction and apoptosis. It has 

been shown that IP3R activity is regulated by several interacting proteins. In fact, it has 

been shown that cyt c binds to IP3R channels during apoptosis, blocking the Ca2+-

dependent inhibition of IP3R function and promotes apoptotic Ca2+ release (Pinton P. 

et al., 2008). Indeed, PTEN has also been reported to be located at the MAMs and 

enhances Ca2+ signalling to the mitochondria in situations of increased ER stress and 

pro-apoptotic signalling (Bononi A. et al., 2013). 

9.2.6. Inflammatory response 

The inflammasome is a multiprotein complex of the innate immune response that 

regulates the activation of caspase-1 and triggers the processing and maturation of 

proinflammatory cytokines (Schroder K. and Tschopp J., 2010; Franchi L. et al., 2010). 

NLRP3 (Nod-like receptor family, pyrin domain containing 3) is the most thoroughly 

characterized inflammasome and comprises the NLR protein NLRP3, the adapter 

apoptosis-associated speck-like protein (ASC) and pro-caspase-1 (Jin C. and Flavell R.A., 

2010). NLRP3 colocalizes with ASC proteins at the MAMs fraction and ASC 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Hamasaki%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23455425
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hailey%20DW%5BAuthor%5D&cauthor=true&cauthor_uid=20478256
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translocation to the MAMs seems to be NLRP3-dependent (Zhou R. et al., 2011). 

The generation of mitochondrial ROS appears to be common to many activators of the 

NLRP3 inflammasome (Dostert C. et al., 2008). It has been described that VDAC is 

ultimately required for mitochondrial ROS production. In this regard, the 

downregulation of VDAC significantly impairs NLRP3 inflammasome activation (Zhou R. 

et al., 2011). The critical role of MAMs in NLRP3 inflammasome activation is still 

unclear. However, all these findings suggested the crucial role of the MAMs in the 

coordination of cell non-autonomous functions, like inflammation. Moreover, another 

NLRP3 binding partner, thioredoxin-interacting protein (TXNIP), redistributes to 

MAMs/mitochondria in response to oxidative stress (Saxena G. et al., 2010) or NLRP3 

inflammasome activation (Zhou R. et al., 2011). NLRP3 and IRE1α signalling pathways 

are required for TXNIP induction under ER stress (Oslowski C.M. et al., 2012). 

9.2.7. Modulation of ER stress 

During early phases of ER stress, ER–mitochondrial connection is enriched in the 

perinuclear zone of cells (Bravo R. et al., 2011). In this cellular context, it would be 

feasible that connections between ER and mitochondria participate in the regulation of 

ER stress. 

In ROS-mediated ER stress, it was shown that PERK localizes in the MAMs, being 

required for the regulation of interorganellar communication during ROS-induced cell 

death in immortalized mouse embryonic fibroblasts (MEFs) (Verfaillie T. et al., 2012). 

Furthermore, genetic ablation of PERK decreased mitochondrial Ca2+ uptake, 

conferring mitochondrial protection against apoptosis (Verfaillie T. et al., 2012). It has 

been reported in MEFs cells that the mitochondrial protein Mfn2 physically interacts 

with PERK and this binding is required for the proper regulation of cellular homeostasis 

upon ER stress (Munoz J.P. et al., 2013). 

BiP/Grp78, apart from its role in protein folding, is involved in Ca2+ buffering in the ER 

lumen (Lièvremont J.P. et al., 1997). In this regard, it has been shown that BiP forms a 

complex with the ER protein SIG-1R, to control the mitochondrial Ca2+ signalling at 

MAMs. These authors observed that ER stress induction by TG treatment induces 
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dissociation between BiP and SIG-1R and the translocation of SIG-1R from the MAMs 

to other ER regions in Chinese hamster ovary (CHO) cells (Hayashi T. and Su T.P., 2007).  

9.2.8. Antiviral signalling 

During viral infection, the RNA helicase RIG-I (retinoic acid inducible gene I) recognizes 

dsRNA (a viral replication signature) as non-self and is recruited to its adaptor protein 

MAVS (mitochondrial antiviral-signalling protein), initiating the cellular antiviral 

response (Kumar H. et al., 2006). Interestingly, this transmembrane protein is localized 

to both peroxisomes and mitochondria (Seth R.B. et al., 2005; Dixit E. et al., 2010), as 

well as to the MAMs (Horner S.M. et al., 2011). The specific location of the RIG-I-MAVS 

complex at the MAMs is driven by the tethering factor Mfn2 (Horner S.M. et al., 2011). 

In addition, HCV is sensed by RIG-I (Saito T. et al., 2008), however this virus uses its 

NS3/4A protease to cleave MAVS, avoiding antiviral induction (Meylan E. et al., 2005). 

Interestingly, NS3/4A is able to process MAMs-associated MAVS, but not 

mitochondrial-associated MAVS (Horner S.M. et al., 2011), indicating that MAVS 

subpopulation located at this certain cellular hub is critical for the antiviral signalling 

against HCV (Horner S.M., 2014). Recent proteomic studies have identified at MAMs 

new proteins during RNA virus replication, such as RAB1B (member RAS oncogene 

family 1B), VTN (vitronectin) and LONP1 (Horner S.M. et al., 2015). Therefore, the 

importance of the MAMs in the innate immune response to RNA viruses would rely on 

its function as a key cellular platform, contributing to the dynamic relocalization of 

protein complexes to initiate antiviral signalling. 
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Figure I.12. Schematic representation of MAMs and the major pathways they regulate. (1) Ca2+ 

EXCHANGE. The ER releases Ca2+ through specialized channels (IP3R) and pumps it back through 

SERCA. Mitochondria uptakes this Ca2+ by channels like VDAC1. (2) LIPID METABOLISM. MAMs also 

allow the transfer of lipids, such as phosphatidylcholine (PC), phosphatidylethanolamine (PE) and 

phosphatidylserine (PS), between ER and mitochondria. Enzymes of the lipid biosynthetic pathways 

like long chain acyl-CoA synthetase (FACL4) and phosphatidylserine synthase (PSS) are localized at 

MAMs. (3) MITOCHONDRIAL MORPHOLOGY. Mitochondrial fission occurs at positions where ER 

tubules contact and constrict mitochondria. These constrictions facilitate Drp1 recruitment by Mff and 

Fis1 to mitochondrial fission sites and both proteins have been localized to the MAMs. (4) 

AUTOPHAGY. Proteins involved in autophagy, such as ATG14, ATG5 and DFC1 (double FYVE-domain 

containing protein 1), have been found in MAMs. In addition, PACS-2 and Mfn2 are also required for 

autophagosome formation. (5) APOPTOSIS. During apoptosis, Drp1 induces mitochondrial fission and 

also stimulates Bcl2-associated X protein (Bax) causing OMM permeabilization (OMMP) and the 

release of cyt c and other pro-apoptotic factors to the cytosol. Cyt c binding to IP3R channels can block 

the Ca2+-dependent inhibition of IP3R function and promote apoptotic Ca2+ release. Indeed, PTEN 

enhances Ca2+ signalling to the mitochondria in situations of increased ER stress and pro-apoptotic 

signalling. (6) INFLAMMATORY RESPONSE. Nod-like receptor family, pyrin domain containing 3 

(NLRP3), the adapter apoptosis-associated speck-like protein (ASC), pro-caspase-1 and thioredoxin-

interacting protein (TXNIP) localize at MAMs. VDAC1 (mitochondrial ROS producton) and IRE1α (ER 

stress) are involved in NLRP3 inflammasome activation. (7) ER STRESS. ER stress induces dissociation 

between BiP and SIG-1R that control the mitochondrial Ca2+ signalling at MAMs. PERK localizes at 

MAMs under ER stress. (8) ANTIVIRAL SIGNALLING. Retinoic acid inducible gene I (RIG-1) recognizes 

viral RNA and is recruited to its adaptor protein MAVS (mitochondrial antiviral-signalling protein), 

initiating the cellular antiviral response. Figure modified from Bravo-Sagua R. et al., 2013 and Marchi 

S. et al., 2014. 

9.3. MAMs in health and disease 

The vast implications of Ca2+ in various intracellular signalling mechanisms 

demonstrate the importance of the MAMs for metabolism and cellular lifespan. Not 

surprisingly, MAMs have been proposed as a site that is affected in neurodegenerative 

diseases (Schon E.A. and Area-Gomez E., 2010). The role of the MAMs in diabetes has 

also been reported (Zorzano A. et al., 2009; Sebastian D. et al., 2012). Proteins 

implicated in cancer like PML (Pinton P. et al., 2011), in the viral manipulation of 

cellular metabolism (Williamson C.D. and Colberg-Poley A.M., 2009) and in 

inflammation (Tschopp J., 2011; Zhou R. et al., 2011) have been detected on the MAMs 

as well, evidencing the huge potential of future studies in the field to further 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Marchi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24211533
https://www.ncbi.nlm.nih.gov/pubmed/?term=Marchi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24211533
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understanding of human disease.  

Neuronal cells require very large amounts of energy for their activities and rely almost 

exclusively on mitochondria as a provider, in particular in axons and dendrites (Kann O. 

and Kovacs R., 2007). Thus, the distribution and morphology of mitochondria is a 

critical determinant of neuronal survival (Knott A.B. and Bossy-Wetzel E., 2008; Knott 

A.B. et al., 2008). Consistent with this, a number of structural proteins can give rise to 

neuronal defects if mutated. For example, mutations in MFN2, which is essential for 

the transport of mitochondria along the axons (Misko A. et al., 2010), lead to Charcot 

Marie Tooth type 2A disease, a peripheral neuropathy (Cartoni R. and Martinou J.C., 

2009), wherein the longest neurons in patients die (Zuchner S. and Vance J.M., 2006). 

Another neurodegenerative disease tied to the MAMs is Alzheimer's disease (Schon 

E.A. and Area-Gomez E., 2010). Alzheimer's disease-associated mutations in the MAMs 

protein presenilin-2 (PS2) lead to reduced ER Ca2+ content and even further increased 

ER–mitochondria Ca2+ transfer when compared to wild type overexpression (Zampese 

E. et al., 2011a; 2011b). In Parkinson's disease, mutations in PINK1 and Parkin lead to 

increased mitochondrial fragmentation catalysed by Drp1 that also coincides with an 

arrest of mitochondrial motility (Wang X. et al., 2011; Yu W. et al., 2011).  

On the other hand, MAMs are involved in different metabolic processes, including 

steroid metabolism. Caveolin-1 (CAV1) has been recently identified as an integral 

component of hepatic MAMs, which determine the relative cholesterol content of 

these ER subdomains (Sala-Vila A. et al., 2016). A detailed comparative proteomics 

analysis between MAMs from wild type and CAV1-deficient mice (CAV1KO) suggests 

that functional CAV1 contributes to the recruitment and regulation of intracellular 

steroid and lipoprotein metabolism-related processes accrued at MAMs (Sala-Vila A. et 

al., 2016). In humans, CAV1 mutations result in lipodystrophies and CAV1KO display a 

phenotype of partial lipodystrophy and resistance to obesity. In the liver, CAV1KO 

show an important intracellular lipid imbalance, decreased formation of lipid droplets 

and a cholesterol-promoted mitochondrial dysfunction (Frank P.G. et al., 2008; Bosch 

M. et al., 2011; Sala-Vila A. et al., 2016). Another recent study using genetic and 

dietary murine models of obesity has revealed that in the liver, obesity drives an 

abnormal increase in MAMs formation, which results in increased Ca2+ flux from the ER 
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to mitochondria. The mitochondrial Ca2+ overload is accompanied by increased 

mitochondrial ROS production and impairment of metabolic homeostasis (Arruda A.P. 

et al., 2014). Suppression of two distinct proteins critical for ER-mitochondrial 

apposition and Ca2+ flux, IP3R1 and PACS-2, resulted in improved cellular homeostasis 

and glucose metabolism in obese animals, suggesting that this mechanism is critical for 

metabolic health and could represent a new therapeutic target for metabolic disease 

(Arruda A.P. et al., 2014). 

The association of a number of MAMs proteins with cancer and tumorigenesis has also 

been seen. For example, PACS-2 which maintains MAMs integrity and ER-mitochondria 

Ca2+ exchange, is mutated in as much as 40% of sporadic colorectal cancer biopsies and 

could thus act as a tumour suppressor (Anderson G.R. et al., 2001). However, the 

maintenance of the MAMs and their Ca2+ signalling platform is not a clear hallmark of 

cancer, since the tumour suppressor PML actually promotes the opposite: PML 

interacts with IP3R3, which results in reduced ER–mitochondria Ca2+ flux and apoptosis 

resistance (Pinton P. et al., 2011). Similarly, the suspected tumour suppressor 

trichoplein/mitostatin (TpMs) inhibits Mfn2 and hence MAMs formation, but it is 

downregulated or mutated in a number of types of cancer (Vecchione A. et al., 2009; 

Fassan M. et al., 2011). Thus, future research will have to elucidate which functional 

aspect of the MAMs is most critical for tumorigenesis: apoptosis onset or the 

maintenance of cancer cell metabolism.  

Another important group of MAMs regulatory proteins are chaperones and 

oxidoreductases of the ER such as BiP/Grp78, ERp44, Ero1α, and CNX. All of these are 

central players in ER–mitochondria Ca2+ flux (Simmen T. et al., 2010). In mouse models, 

it has been shown that loss of Ero1α function leads to reduced peak amplitude of 

cardiomyocyte Ca2+ transients, resulting in a partial resistance to progressive heart 

failure (Chin K.T. et al., 2011). This latter aspect is also important for the MAMs-

associated regulation of Ca2+ signalling by SERCA. The cellular redox state plays an 

important role in the regulation of SERCA activity, whereas mild oxidation increases 

pump activity (Lancel S. et al., 2009), chronic oxidation results in a complete stop of 

calcium pumping (Lancel S. et al., 2010). These results indicate how cellular redox and 
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redox-sensitive enzymes could directly modulate the Ca2+ signalling function of the 

MAMs.  

In addition to modulating MAMs Ca2+ signalling, Tschopp´s laboratory has discovered 

that ROS lead to the activation of NLRP3 inflammasomes in a human monocytic cell 

line (Zhou R. et al., 2011). This activation coincides with the shift of TXNIP from 

cytosolic thioredoxin 1 to the NLRP3 inflammasome on the MAMs. Increased ROS 

production inside mitochondria due to extra- or intracellular stress triggers is a 

prerequisite for this observation (Tschopp J., 2011). Interestingly, the MAMs structural 

component VDAC is integral to this response, since RNAi-mediated VDAC1/2 

knockdown abrogates inflammasome formation in response to monosodium urate, 

alum or nigericin. Similar to apoptosome formation that requires the release of 

mitochondrial cyt c, ROS-triggered inflammasome activation might require the release 

of mitochondrial DNA, providing an additional potential role for the MAMs (Nakahira 

K. et al., 2011).  

Given these important roles of the MAMs for Ca2+ signalling, apoptosis and 

inflammasome activation, it comes as no surprise that numerous viral proteins target 

this structure. One prominent and well-described example is the human 

cytomegalovirus glycoprotein UL37 exon 1 (Bozidis P. et al., 2010). This glycoprotein is 

targeted to the MAMs by means of its two MTS (Williamson C.D. and Colberg-Poley 

A.M., 2010) and is able to reduce ER Ca2+ content, possibly by increasing the targeting 

of Grp75 (Bozidis P. et al., 2010) or by modulating the amount of Ca2+-regulating 

chaperones and oxido-reductases such as BiP on the MAMs (Zhang A. et al., 2011). As 

mentioned above, MAMs also house RIG-1 that triggers an immunity signalling cascade 

upon viral infection. In addition, HIV-1 Vpr has been suggested to disrupt MAMs by 

reducing Mfn2 and Drp1 protein levels in human embryonic kidney cells and human 

CD4+ T cells (Huang C.Y. et al., 2012).  
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The general aim of this study was to investigate the involvement of mitochondria in 

the efavirenz-induced effects in cultured human hepatic cells and, specifically, to 

understand the mitochondria-ER interplay. 

 

 

Specific aims were: 

1. To evaluate the effects of efavirenz on hepatic cells lacking functional 

mitochondria (rho⁰ cells). 

2. To study the effect of efavirenz on mitochondrial dynamics, a phenomenon that 

depends among other processes on the interaction between ER and 

mitochondria. 

3. To analyse the influence of efavirenz on the interaction between mitochondria 

and ER and, in particular, regarding mitochondria-associated membranes 

(MAMs). 

4. To assess the expression and subcellular location of LONP1 under dual ER 

stress/mitochondrial dysfunction such as that induced by efavirenz. 

5. To compare the effect of efavirenz with those induced by other antiretroviral 

drugs regarding LONP1 expression in hepatic cells. 
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1. REAGENTS 

1.1. Antiretroviral drugs 

The antiretroviral drugs used were purchased from Sequoia Research Products 

(Pangbourne, UK) and were dissolved in their respective vehicles before use (Tab.III.1). 

DRUG TRADE NAME VEHICLE 

Efavirenz (EFV) Sustiva® Methanol  

Lopinavir (LPV) Kaletra® Methanol 

Ritonavir (RTV) Norvir® Methanol 

Rilpivirine (RPV) Edurant® DMSO 

Darunavir (DRV) Prezista® DMSO 

Raltegravir (RAL) Isentress® DMSO 

Abacavir (ABC) Ziagen® Distilled water 

Didanosine (ddI) Videx® Distilled water 

Table III.1. List of antiretroviral drugs used with their corresponding trade names and vehicles in 

which they were dissolved. 

1.2. General chemical reagents 

All reagents used in this study were of analytical grade. The general chemical reagents 

were purchased from Sigma-Aldrich Chemicals (Stenheim, Germany), Roche Applied 

Science (Penzberg, Germany), Merck (Darmstadt, Germany) and Panreac Química S.A. 

(Barcelona, Spain). 

Fluorescent probes, tetramethylrhodamine methyl ester perchlorate (TMRM), 10-N-

nonyl-acridine-orange-chloride (NAO) and MitoSOXTM, were acquired from Molecular 

Probes (Thermo Fisher Scientific, Waltham, MA, USA); propidium iodide (PI) and 

annexin V-fluorescein (Annexin V-FITC Apoptosis detection kit) were from Abcam 

(Cambridge, UK) and bisbenzimide H 33342 trihydrochloride (Hoechst 33342) from 

Sigma-Aldrich Chemicals. 
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The primary antibodies used in Western Blot experiments were purchased from Sigma-

Aldrich Chemicals, Thermo Fisher Scientific, Abcam, Proteintech (Rosemont, IL, USA), 

Cell Signaling (Danvers, MA, USA), BD Biosciences (Franklin Lakes, NJ, USA) and Santa 

Cruz Biotechnology (Heidelberg, Germany). The secondary antibodies were obtained 

from Thermo Fisher Scientific and Vector laboratories (Burlingame, CA, USA). 

1.3. Reagents for cell culture 

Media and supplements for cell culture were purchased from Gibco (Thermo Fisher 

Scientific) including minimum essential medium (MEM), Dulbecco’s modified eagle’s 

medium (DMEM), Roswell Park memorial institute (RPMI) medium, sodium pyruvate, 

non-essential amino acids (NEAA), trypsin-EDTA, penicillin/streptomycin, L-glutamine, 

phosphate-buffered saline (PBS). Foetal bovine serum (FBS) was acquired from Lonza 

(Basel, Switzerland), and Hank’s balanced salt solution (HBSS), uridine, phorbol-12-

myristate-13-acetate (PMA) and William’s medium E were from Sigma-Aldrich 

Chemicals.  

2. CELL CULTURE 

2.1. Cell lines 

Experiments were performed with the human hepatoblastoma cell line Hep3B (ATCC 

HB-8064), which displays certain degree of cytochrome P450 activity (specifically 

CYP2B6) capable of metabolizing EFV (Zhu X.H. et al., 2007; Lin J. et al., 2012). Several 

confirmatory experiments were performed using HepaRG cells, terminally 

differentiated hepatic cells derived from a human hepatic progenitor cell line with 

many characteristics of primary human hepatocytes (Anthérieu S. et al., 2010). Finally, 

the human glioma cell line U-251MG (CLS 300385), human hepatic stellate cells (HSCs) 

LX2 and U937 human monocytes (European Collection of Cell Culture, Salisbury, UK) 

were also used in some experiments. HSCs LX2 were kindly provided by Dr. Scott L. 

Friedman (Icahn School of Medicine at Mount Sinai, NY, USA). 

Hep3B cells were cultured in MEM supplemented with 10% heat-inactivated FBS, 2 

mM L-glutamine, 1 mM sodium pyruvate, 1 mM NEAA, penicillin (50 U/mL) and 

streptomycin (50 μg/mL).  
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Undifferentiated HepaRG cells (HPRGC10), purchased from Gibco, were firstly grown at 

a density of 2.7 x 104 cell/cm2 in William’s medium E supplemented with 2 mM L-

glutamine, 50 μM hydrocortisone hemisuccinate (Sigma-Aldrich Chemicals), 5 μg/mL 

bovine insulin, 10% FBS, 100 U/mL penicillin and 100 μg/mL streptomycin. In order to 

induce cell differentiation, 2% DMSO was added to the medium after 2 weeks of 

culture and cells were further cultured in its presence for another 2 weeks (Anthérieu 

S. et al., 2010). After that, differentiated hepatocyte-like cells were selectively 

collected through mild trypsinization (trypsin-EDTA 0.125%) and reseeded at a density 

of 7-9 x 104 cells/cm2 in medium containing 2% DMSO. Treatments were performed in 

DMSO-free medium. 

Human immortalized HSCs LX2 were cultured in DMEM and U-251MG cells in DMEM 

with 4.5 g/L glucose. U937 human monocytes were maintained in RPMI medium and 

were differentiated into macrophages by incubation with PMA 10 nM during 48 h, 

when they were used for the experiments.  

All cell cultures, except U937 human monocytes, were subcultured once they reached 

90-95% confluence, using trypsin-EDTA to detach them, and were re-fed with fresh 

medium every 2-3 days. Cell cultures were maintained in an incubator (IGO 150, Jouan, 

Saint-Herblain Cedes, France) at 37 °C, in a humidified atmosphere with 5% CO2/95% 

air (AirLiquide Medicinal, Valencia, Spain).  

2.2. Generation and maintenance of rho⁰ cells 

In order to generate rho⁰ cells in Hep3B background, wild-type (WT) cells were treated 

for 8 weeks with ethidium bromide (EtBr, 500 ng/mL) to deplete mtDNA, in medium 

supplemented with 50 μg/mL uridine (King M.P. and Attardi G., 1989). Taken into 

account that rho⁰ cells have a slower proliferation rate compared to the parental cells, 

the two cell types were seeded at different cell density (in the case of 48-well plates, 

50.000 cells per well for rho⁰ cells and 30.000 cells per well for WT) in order to ensure 

the same cell density when the drug was added. 
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3. TREATMENTS 

Unless otherwise stated, experiments were performed using clinically relevant 

concentrations of drugs which were chosen by considering the important 

interindividual variability in their pharmacokinetics. For this, in order to analyse the 

concentration-dependence of the results we used 3 concentrations of each drug within 

and above the therapeutic range. In each experiment, we used a control of the vehicle 

used in the treatment and a negative control (untreated cells). 

In some experiments, the effect of EFV was compared to those induced by the classical 

ER-stress inductor thapsigargin (TG, 2 µM) (Thastrup O. et al., 1990) and two widely 

employed mitochondrial stressors: rotenone (Rot, 10-25 µM), a common 

pharmacological inhibitor of Complex I of the ETC (Li N. et al., 2003), and the 

protonophore carbonyl cyanide m-chloro phenyl hydrazone CCCP (10 µM), a potent 

chemical uncoupler of OxPhos (Lou P.H. et al., 2007). 

In order to assess whether the observed changes were dependent on Ca2+, we pre-

treated cells with an intracellular Ca2+ chelator, 10 µM BAPTA (1,2-bis(o-

aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid) from Abcam, 1 h before the 

treatment.  

To study apoptosis, cells were treated with the inducer of apoptosis staurosporine (STS 

1 µM, from Sigma-Aldrich Chemicals), which was used as a positive control.  

The non-specific nitric oxide synthase (NOS) inhibitor L-NG-nitroarginine methyl ester 

(L-NAME 50 μM, Cayman Chemical, MI, USA) was used to evaluate the influence of 

NOS activity. 

4. TRANSFECTION EXPERIMENTS: CHOP and LONP1 silencing 

Transient transfections were performed by small interfering RNA (siRNA) using 

LipofectAMINETM 2000 (Thermo Fisher Scientific) and following the protocol supplied 

by the manufacturer. For control experiments, SignalSilence® unconjugated control 

siRNA (Cell Signaling) was employed. 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20N%5BAuthor%5D&cauthor=true&cauthor_uid=12496265
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Both for CHOP and LONP1 silencing, cells were seeded the day before the experiment 

in t-25 flasks at cell density of approximately 90%. siRNA/Lipofectamine complexes 

were formed in serum-free OptiMEM (Gibco), using 50 nM of GADD153 siRNA(h) from 

Santa Cruz Biotechnology or 10 nM LONP1 siRNA(h) from Ambion® (Thermo Fisher 

Scientific). Transfections were performed in complete cell culture medium without 

antibiotics, over 24 h for CHOP silencing and 48 h for LONP1, and then cells were re-

fed with fresh complete medium containing antibiotics.  

5. ELECTROCHEMICAL MEASUREMENT OF OXYGEN CONSUMPTION 

Cellular oxygen (O2) consumption was measured using a Clark-type electrode 

(Oxytherm, Hansatech Instruments, Norfolk, UK), based on a membrane polarographic 

O2 detector, first described by Lewis C. Clark (Clark L.C. et al., 1953; Severinghaus J.W. 

and Astrup P.B., 1986). The system consists of a two electrode cell, a permeable 

membrane to O2 and an electrolyte. The electrodes are a silver/silver chloride anode 

and a platinum cathode, and conduction between both occurs by an electrolyte (3M 

KCl) in which they are immersed. Molecular O2 diffuses through the Teflon membrane 

which is permeable to gases into the sensor of the electrode. Applying a polarizing 

voltage (700 mV) the electrolyte ionizes and initiates a current flow and a series of 

electrochemical reactions (Fig.III.1): 

Platinum cathode        O2 + 2e- + 2H2O                     H2O2 + 2OH- (reduction) 

Silver anode                           4Ag + 4Cl-                        4AgCl + 4e- (oxidation) 

Figure III.1. Electrochemical reactions taking place in the Clark-type oxygen (O2) electrode. Oxidation 

of atmospheric O2 is the principle of the chemical reaction. 

O2 is consumed during the reaction, being its concentration in the respiration buffer 

(HBSS) proportional to the magnitude of current flow. O2 reduction generates a current 

which is the basis of the measurement and the trace obtained is thus a measure of the 

O2 consumption of the reaction mixture. The electrode is coupled with an integral 

thermoelectric temperature control that allows measurements at constant 

temperature.  



Mitochondria and ER interplay at the core of EFV-induced hepatic effects 

66 
 

Before performing the measurement, the electrode was calibrated in air-saturated 

respiration buffer, considering the atmospheric O2 concentration as maximal (200 µM 

O2). Electrode zero setting was performed by adding excess of the reducing agent 

sodium dithionite (Na2S2O4, Panreac) to the chamber. Mitochondrial respiration 

specificity was confirmed by adding directly to the chamber 1 mM potassium cyanide 

(KCN), an OxPhos specific inhibitor which inhibited O2 consumption induced by the 

treatments. The electrode is connected to a PC (Fig.III.2) for instrument control and 

data analysis with a Custom Windows® software, allowing to monitor O2 concentration 

in real time as well as the rate of consumption over different time periods.  

 

Figure III.2. Clark-type O2 electrode. 

O2 consumption was evaluated in intact cells. For this, cells were detached by 

trypsinization immediately before the measurement and counted using 

hemacytometer (Bright Line Counting Improved Neubauer Chamber, Hausser 

Scientific, Horsham, PA, USA). Then, 4 million cells were resuspended in 1 mL HBSS and 

taken to the respiration chamber where the suspension is constantly stirred and 

maintained at 37 °C.  

6. MEASUREMENT OF ATP CONCENTRATION 

Intracellular ATP concentration was assessed with a bioluminescent assay based on the 

luciferin oxidation to oxyluciferin, as described in Fig.III.3. 
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                                                           LUCIFERASE 

D-luciferin + O2                                          Oxyluciferin + CO2 + hγ 

                                                       ATP        AMP + PPi 

Figure III.3. Luciferase-mediated oxidation of luciferin to oxyluciferin. ATP concentration in the 

samples is directly proportional to the light emitted by this reaction (hγ). 

We used the “ATP Bioluminescence kit” (Roche Applied Science) and the assay was 

performed according to the manufacturer’s protocol. Briefly, cells were seeded in t-25 

flasks and treated (with 80% confluence) for 24 h with EFV, vehicle, TG, Rot, or a 

combination of these with the glucose analogue 2-Deoxy-D-glucose (2-DG, 10 mM) 

that inhibits glycolysis (Wick A.N. et al., 1957). Afterwards, cells were detached by 

trypsinization and centrifuged at 500 g for 5 min in a microcentrifuge (5415-R, 

Eppendorf, Hamburg, Germany) at 4 °C; cell pellets were then resuspended in 100 µL 

of dilution buffer provided by the kit. ATP standard curve was prepared (10-11-10-2 M) 

using ATP stock solution (10 mg/mL) provided by the kit and dilution buffer in order to 

minimize the background luminescence. Then, 20 µL of the standard solution or 25 µL 

of the sample were applied per well in a black 96-well plate with light bottom, in 

triplicate. Next, 20 or 25 µL of cell lysis buffer provided by the kit were added to each 

well (with standard or sample, respectively) and the plate was incubated for 5 min at 

RT. Luminescence was detected with plate reader Fluoroscan Ascent FL (Thermo Fisher 

Scientific) immediately after injecting 30 µL/well of the luciferase reagent by the 

luminoscan dispenser. 

In order to normalize the ATP concentration values with the protein amount of each 

sample, 10 µL/well of the cell lysate were removed before reading and total protein 

concentration was determined using the “BCA Protein Assay Kit” (Pierce Chemicals, 

Bouler, CO, USA, see section “7.2. Protein quantification: bicinchoninic acid (BCA) 

assay”). 

 

 

 



Mitochondria and ER interplay at the core of EFV-induced hepatic effects 

68 
 

7. ANALYSIS OF PROTEIN EXPRESSION 

For the protein expression analysis, cells were seeded in t-25 flasks and treatment was 

performed with 80%-confluent cultures. After this, cells were collected on ice to 

prevent protein degradation by the following procedure: medium was removed, cells 

were washed with 5 mL of PBS and immediately after detached with 0.5 mL of trypsin 

(1 min, 37 °C). In order to stop trypsinization, medium was added and the resulting cell 

suspension was centrifuged for 3 min at 500 g. Then, cell pellets were washed with 

cold PBS and centrifuged in a microcentrifuge, at 4 °C, for 5 min, at 500 g. 

Supernatants were discarded and cell pellets were stored at -80 °C until use. 

7.1. Protein extracts 

7.1.1. Whole-cell extracts 

Cell pellets were resuspended in 50-100 µL (depending on the size of the cell pellet) of 

complete lysis buffer whose composition was: 20 mM HEPES pH 7.4, 400 mM NaCl, 

20% (v/v) glycerol, 0.1 mM EDTA, 10 µM Na2MoO4 and 10 mM NaF. Immediately prior 

to use, 1 mM DTT, protease inhibitors (“Complete Mini” protease inhibitor cocktail, 

and “Pefabloc”, both purchased from Roche Applied Science) and 0.05% NP-40 were 

added. Thereafter, samples were vortexed at maximum speed, for 20 sec, incubated 

on ice, for 15 min, vortexed again at maximum speed, for 10 sec and subsequently 

centrifuged in a microcentrifuge at 16,000 g, for 15 min, at 4 °C. Supernatants (whole-

cell protein extracts) were collected and stored at -20 °C until future use. 

7.1.2. Whole-cell extracts with preserved phosphorylation 

In order to preserve phosphorylated proteins, cell pellets were lysed in 75-100 µL of 

PhosphoSafe (Novagen, Calbiochem, La Jolla, CA, USA), a lysis buffer which preserves 

the phosphorylation state of proteins, supplemented with 10X “Complete Mini” 

protease inhibitor cocktail. The resulting lysates were vortexed for 15 sec, incubated 

for 5 min at RT and centrifuged at 4 °C, for 5 min, at maximum speed. Supernatants 

(whole-cell extracts) were collected and stored at -20 °C until future use. 
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7.1.3. Mitochondria-enriched extracts 

We used confluent cell cultures plated in t-75 flasks. After the treatment, cells were 

detached with trypsin and collected with ice-cold PBS as stated before. Cell pellets 

were resuspended in 0.5 mL fractionation buffer (10 mM Tris-HCl pH 7.5, 0.25 M 

sucrose and 1 mM EDTA) and lysed on ice by a passage through a 23-gauge needle in a 

1 mL plastic syringe. Unbroken cells were pelleted by centrifugation at 4 °C, for 10 min, 

at 500 g. The supernatant was collected, transferred to a new eppendorf tube and 

centrifuged at 16,000 g, for 30 min, at 4 °C. The supernatant resulting from this 

centrifugation was collected representing the cytosolic fraction, whereas the pelleted 

mitochondrial fraction was washed with 1 mL fractionation buffer. Subsequently, 

another centrifugation step was performed, at 11,000 g for 10 min, and the pellet 

obtained was resuspended in 50 µL mitochondrial buffer (10 mM Tris-acetate pH 8.0, 5 

mM CaCl2, 0.5% NP-40, 1 mM DTT and protease inhibitor cocktail (Roche Applied 

Science)), thus giving rise to a mitochondria-enriched cellular fraction. Finally, obtained 

protein extracts were stored at -20 °C for further use. 

7.1.4. Isolation of mitochondria-associated membranes (MAMs) 

Subcellular fractioning, which included MAMs, was performed using cell pellets 

obtained from 12-14 confluent t-150 flasks per condition. Isolation was performed as 

described by Wieckowski M.R. et al., 2009 (Fig.III.4). Cells pellets were resuspended in 

20 mL of ice-cold isolation buffer (IB)-1 (225 mM mannitol, 75 mM sucrose, 0.1 mM 

EGTA and 30 mM Tris-HCl pH 7.4) and homogenized with a Teflon pestle at 4 °C. Next, 

serial centrifugations (at 4 °C) were performed: the homogenate was centrifuged at 

600 g for 5 min, the supernatant was then centrifuged again in the same conditions 

and the supernatant obtained was centrifuged at 7,000 g for 10 min. On the one hand, 

in order to proceed with further separation of cytosolic and ER fractions, the 

supernatant obtained was centrifuged at 20,000 g for 30 min at 4 °C. Further 

centrifugation of the obtained supernatant (100,000 g for 1 h) results in the isolation 

of ER (pellet) and cytosolic fraction (supernatant). On the other hand, the pellet 

containing mitochondria was resuspended gently in 20 mL of IB-2 (225 mM mannitol, 

75 mM sucrose and 30 mM Tris-HCl pH 7.4) and the resulting suspension was 

centrifuged at 7,000 g for 10 min at 4 °C. The mitochondrial pellet obtained thereby 
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was resuspended in IB-2 as before and centrifuged (10,000 g, 10 min, 4 °C). Thereafter, 

the crude mitochondrial pellet was gently resuspended in 2 mL of ice-cold 

mitochondria resuspending buffer (MRB; 250 mM mannitol, 5 mM HEPES (pH 7.4) and 

0.5 mM EGTA). The fractionation of crude mitochondria was performed with Percoll 

medium and centrifugation at 95,000 g for 30 min at 4 °C in a Beckman Coulter Optima 

L-100 XP ultracentrifuge (SW40 rotor, Beckman, Fullerton, CA, USA). MAMs and 

mitochondrial suspension were collected and centrifuged at 6,300 g for 10 min at 4 °C. 

Finally, the MAMs supernatant was centrifuged at 100,000 g for 1 h (70-Ti rotor, 

Beckman) at 4 °C and the mitochondrial pellet was resuspended in 20 mL of MRB and 

centrifuged at 6,300 g for 10 min at 4 °C. The pellet of MAMs and pure mitochondria 

were collected in MRB and stored at -20 °C for further use. 

 
Figure III.4. Schematic representation of the workflow during MAMs isolation. Different kind of pellets 

and fractions obtained during the isolation process are shown (from Wieckowski M.R. et al., 2009). 

The obtained subcellular protein fractions (0.5-6 µg/µL) were analysed by WB (see 

section “7.3. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 

and Western blot (WB)”). 
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These cellular subfractionation experiments were performed at Instituto de Biología 

Molecular y Celular de Plantas (IBMCP, UPV-CSIC, Valencia, Spain) with the assistance 

of Dr. Ricardo Flores Pedauyé (Research Professor, CSIC). 

7.2. Protein quantification: bicinchoninic acid (BCA) assay  

We used the bicinchoninic acid (BCA) assay to quantify the protein content in the cell 

extracts. This method is based on the well-known Biuret reaction (reduction of Cu2+ to 

Cu1+ by protein in an alkaline medium). Cu1+ ions bind to two molecules of BCA which 

generates purple-colored reaction product that exhibits a strong absorbance at 562 

nm and is nearly linear with increasing protein concentrations over a broad working 

range (Smith P.K. et al., 1985).  

“BCA Protein Assay Kit” (Pierce Chemicals) was used to perform the assay. In order to 

link the variation of absorbance with the amount of protein, a standard curve was 

prepared using bovine serum albumin (BSA, 2 mg/mL) with serial dilutions (1-0.0156 

mg/mL) that were prepared in the same buffer as the samples to minimize the 

background absorbance. Both the standard dilutions and the samples were assayed in 

duplicate. For this, 20 µL of standard or samples were applied per well in a 96-well 

plate and 200 µL/well of working reagent were added. As suggested in the 

manufacturer’s protocol, this reagent was always prepared fresh, mixing 50 parts of 

the BCA reagent A with 1 part of BCA reagent B. Then, the plate was incubated at 37 

°C, for 30 min, with gentle shaking and protected from light. The absorbance was 

measured at 570 nm using a “Multiscan” plate-reader spectrophotometer (Thermo 

Fisher Scientific). 

7.3. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

(SDS-PAGE) and Western blot (WB) 

SDS-PAGE and WB were performed using standard methods. 

7.3.1. Polyacrylamide gel electrophoresis (PAGE) 

SDS-PAGE was performed using “Mini-PROTEAN 3 Cell” System (Bio-Rad Laboratories, 

Hercules, CA, USA). Polyacrylamide gels were prepared with an 

acrylamide/bisacrylamide solution, ratio 37.5:1 (Sigma-Aldrich Chemicals). Resolving 
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gels, with different % of polyacrylamide, were prepared in 0.375 M Tris-HCl pH 8.8 and 

0.1% SDS, whereas stacking gels, containing 3.75% polyacrylamide, were prepared in 

0.125 M Tris-HCl pH 6.8 and 0.1% SDS. To catalyse the reaction of polymerization, we 

used ammonium persulfate (APS, Bio-rad) and N,N,N´,N´-Tetramethylethylendiamine 

(TEMED, Sigma-Aldrich Chemicals). Protein extracts, containing equal total protein 

amounts (20-50 µg), were prepared before loading by adding Laemmli loading buffer 

(0.5 mM Tris-HCl pH 6.8, 25% glycerol v/v, 0.5% v/v β-mercaptoethanol, 10% SDS and 

0.5% bromophenol blue) and boiled at 99 °C for 5 min to enable protein denaturation 

(Laemmli U.K., 1970). In order to determine the molecular weight of the polypeptides, 

a commercial molecular weight marker was loaded in parallel (“Precision Plus Protein 

Standard-Kaleidoscope”, Bio-Rad). Electrophoresis was performed with running buffer 

(25 mM Tris pH 8.3, 192 mM glycine and 0.1% SDS), at constant voltage of 120-150 V. 

7.3.2. Protein transfer to nitrocellulose membrane 

Resolved proteins were transferred from the polyacrylamide gel to a 0.2 µm Hybond 

ECL nitrocellulose membrane (Amersham, GE Healthcare, Little Chalfont, UK), using 

“Mini Trans-Blot Electrophoretic Transfer Cell” (Bio-Rad). The transfer was performed 

at 4 °C, during 1 h and constant electric current of 0.4 A, in transfer buffer (25 mM Tris 

pH 8.3, 192 mM glycine and 20% methanol). 

After the transfer, the nitrocellulose membrane was incubated in Ponceau solution 

(Sigma-Aldrich Chemicals), which reversibly stains proteins and is used as control of 

the amount of protein loaded and transfer quality. After removing Ponceau staining 

with Milli Q water, the membrane was incubated in fresh-made blocking solution (fat-

free milk powder or BSA, both at 5% in Tris-buffered saline-Tween (TBS-T)) with 

continuous gentle shaking, for 1 h, at RT. The composition of TBS-T was: 20 mM Tris-

HCl pH 7.2, 150 mM NaCl and 0.1% v/v Tween-20. Then, the membrane was incubated 

with the primary antibody, prepared in blocking solution containing 0.02% sodium 

azide (NaN3, Merck), overnight at 4 °C. Thereafter, the membrane was washed in TBS-

T, 3x10 min, at RT with vigorous shaking in order to remove excess antibody and 

incubated with the secondary antibody, prepared fresh in blocking solution, for 1 h, at 

RT. After this incubation another washing step followed (same conditions). Details 

about the antibodies used are enclosed in Tab.III.2. 
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PRIMARY ANTIBODIES 

PROTEIN ANTIBODY DILUTION MW (kDa) COMPANY 

CV subunit β Mouse monoclonal 1:1000 56.5 Thermo Fisher 

CIV subunit II Mouse monoclonal 1:1000 25.5 Thermo Fisher 

FACL4 Rabbit polyclonal 1:1000 79 Thermo Fisher 

Porin Rabbit polyclonal 1:1000 30 Abcam 

LONP1 Rabbit polyclonal 1:1000 106 Abcam 

FAM82A2 Rabbit polyclonal 1:2000 52 Abcam 

Grp75 Rabbit polyclonal 1:1000 74 Abcam 

ClpX Rabbit monoclonal 1:1000 69 Abcam 

Mitofusin 2 Mouse monoclonal 1:1000 86 Abcam 

DDIT3/CHOP Mouse monoclonal 1:1000 19 Abcam 

CI subunit ND1 Rabbit polyclonal 1:600 36 Abcam 

Actin Rabbit polyclonal 1:1000 40 Sigma-Aldrich 

Tubulin Mouse monoclonal 1:1000 56 Sigma-Aldrich 

TOM20 Rabbit polyclonal 1:1000 16 Proteintech 

Drp1 Rabbit monoclonal 1:1000 82 Cell Signaling 

p-Drp1(Ser616) Rabbit polyclonal 1:1000 82 Cell Signaling 

OPA1 Mouse monoclonal 1:1000 112 BD Biosciences 

Cytochrome c Mouse monoclonal 1:1000 12 BD Biosciences 

IP3R3 Mouse monoclonal 1:1000 304 BD Biosciences 

VAP B/C Rabbit polyclonal 1:1000 27 Santa Cruz 

LDH Rabbit polyclonal 1:1000 37 Santa Cruz 
 

SECONDARY ANTIBODIES 

ANTIBODY DILUTION COMPANY 

Peroxidase-labeled goat anti-rabbit IgG 1:5000 Vector laboratories 

Peroxidase-labeled goat anti-mouse IgG 1:2000 Thermo Fisher 

Table III.2. Primary and secondary antibodies used in WB experiments. 
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7.3.3. Chemiluminescence detection 

Immunolabeling was detected by enhanced chemiluminescent reagent (ECL from 

Amersham, GE Healthcare) or SuperSignal WestFemto (Pierce Chemicals) and 

visualized with a digital luminescent image analyser (FUJIFILM LAS 3000, Fujifilm, 

Tokio, Japan). Densitometric analyses were performed using Multi Gauge software. 

7.3.4. Stripping  

In order to probe the same membrane with other antibodies, we removed bound 

antibodies from the nitrocellulose membrane by a process called “stripping”. For this, 

after the completed immunoblot and visualization of the proteins, the membrane was 

washed in TBS-T for 10 min, at RT and then incubated with 0.5 M glycine pH 2.5 (for 1 

h, at RT and vigorous shaking) or stripping buffer (62.5 mM Tris-HCl pH 6.7, 100 mM β-

mercaptoethanol and 2% SDS) for 30 min, at 56 °C and vigorous shaking. Subsequently, 

the membrane was washed 3x10 min in TBS-T, at RT. After this, WB continued as in the 

standard protocol, starting with blocking the membrane with fresh-made blocking 

solution for 1 h, at RT, followed by primary and secondary antibody incubation, as 

described above. 

7.4. Immunoprecipitation and co-immunoprecipitation 

Immunoprecipitation of FAM82A2 (PTPIP51) or Porin and co-immunoprecipitation of 

VAP B/C or Grp75 were performed by standard procedures. Firstly, t-150 flasks of 

cultured cells were treated for 24 h, cells were then trypsinized and cellular pellets 

collected. Whole-cell extracts were obtained and total protein amount in them 

determined, as described in chapter “7.1. Protein extracts”. Then, whole-cell extracts 

containing 1-0.2 mg of total protein were diluted to 600 μL with complete lysis buffer 

and incubated with 1-2 μg of rabbit polyclonal antibody against FAM82A2 (Abcam) or 

against Porin (Proteintech), overnight, at 4 °C and with gentle shaking. Thereafter, the 

extracts were incubated with 60 μL of protein A-Sepharose CL-4B beads (GE 

Healthcare) for 4 h, at 4 °C and with gentle shaking. Further, the samples were 

centrifuged in a microcentrifuge at 300 g, for 1 min, at 4 °C and supernatant discarded. 

The obtained immunoprecipitates were then washed 3 times with 1 mL lysis buffer. 

Lastly, the samples were resuspended in 30 μL Laemmli loading buffer 2X and heated 
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at 99 °C, for 5 min and with shaking. After another centrifugation step 

(microcentrifuge, 300 g, 1 min, 4 °C), the supernatant was collected and loaded on a 

polyacrylamide gel. Next, a standard procedure for SDS-PAGE followed (see chapter 

“7.3. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

Western blot (WB)”). Immunoprecipitated and co-immunoprecipitated proteins were 

detected with the corresponding antibodies indicated in Tab.III.2. As a negative 

control, we used whole-cell extracts without immunoprecipitation. 

8. CHROMATIN IMMUNOPRECIPITATION (ChIP) ASSAY 

Analysis of the LONP1 gene with MatInspector software (Genomatix, Munich, 

Germany) identified several NF-κB binding sites in the promoter region of LONP1. To 

examine the potential role of NF-κB in the expression of LONP1, ChIP assay was 

performed with an antibody directed against NF-κB.  

In order to stabilize protein-DNA complexes, treated cell cultures (t-25 flasks) were 

crosslinked with 1% formaldehyde (at RT for 10 min and gentle agitation) and 

incubated with 0.125 M glycine (at RT for 2 min). Then, cells were washed three times 

and collected with ice-cold PBS. Next, cells were centrifuged (at 4 °C, for 5 min and 500 

g) and pellets were resuspended in 0.3 mL of SDS sonication buffer (1% SDS, 5 mM 

EDTA, 50 mM Tris-HCl pH 8.0 and protease inhibitor cocktail (Roche Applied Science)) 

and sonicated three times for 20 s (40 s in between) at maximum speed (Branson 

Digital Sonifier, Emerson Electric Co., MO, USA). After centrifugation at maximum 

speed for 10 min at 4 °C, supernatants (ChIP extracts) were collected (50 µL of one of 

them as Input) and immunoprecipitation was performed overnight at 4 °C with anti-

NF-κB antibody (3 μg/mL) or with control IgG antibody (secondary antibody for anti-

NF-κB) both from Thermo Fisher Scientific. Thereafter, samples were incubated with 

60 µL protein A-Sepharose CL-4B beads (GE Healthcare) overnight at 4 °C. After 

centrifugation at 1500 g for 2 min, precipitates were washed sequentially once with 

low-salt wash buffer (1 % Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8 and 150 mM 

NaCl), twice with high-salt wash buffer (1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl 

pH 8 and 500 mM NaCl) and once with LiCl wash buffer (0.25 mM LiCl, 1% NP-40, 0.1 % 

Tween 20, 1 mM EDTA and 10 mM Tris-HCl pH 8), for 5 min each. Precipitates were 
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then washed twice with TE buffer (10 mM Tris-HCl pH 8 and 1 mM EDTA) and 

extracted twice with elution buffer (1% SDS, 0.1 M NaHCO3). To reverse crosslinking, 

eluates and the Input were heated at 65 °C for 16 h in presence of 0.25 M NaCl. Finally, 

DNA fragments were purified with the “PureLink™ Quick PCR purification kit” (Thermo 

Fisher Scientific) according to the manufacturer’s protocol. Equal amounts of each 

sample were amplified using specific primers for the LONP1 promoter region -121 to -

307 (relative to the transcription starting site): 5’-CCACCAGCATCAACATCAG-3’ 

(forward) and 5’-CGCATGCTCAAGATTCAGG-3’ (reverse). PCR was performed using 

TaKaRa Taq™ (Takara Bio, Kusatsu, Japan). The reaction was performed as suggested in 

the manufacturer ́s protocol, in 10 μL final volume and the presence of 0.05 μL of 

Takara Taq, 1X PCR Buffer, 0.2 mM dNTP mixture and 10 μM of each primer (F and R). 

The reaction mixture was incubated in a 24-well thermocycler (GeneAmp PCR System 

2400, PerkinElmer, Waltham, MA, USA) under the following conditions: 95 °C for 4 

min; 95 °C for 30 s, 55 °C for 30 s, 72 °C for 15 min (40 cycles); 72 °C for 10 min; 4 °C ∞. 

PCR products were then separated by electrophoresis in 2% agarose gel and binding 

was determined by the relative intensity of Goldview (Goldview DNA safe stain, UVAT 

Bio, Valencia, Spain) fluorescence compared to the input control. 

9. PCR ANALYSES 

9.1. Determination of mtDNA copy number 

Total cellular DNA was isolated using the QIAamp® DNA Mini kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions. Briefly, cell pellet (4x106 cells) 

was resuspended in PBS to a final volume of 200 μL and 20 μL of Proteinase K and 200 

μL Buffer AL (provided with the kit) were added. After incubation at 56 °C for 10 min, 

ethanol (96-100%) was added to the samples in order to precipitate total cellular DNA. 

Next, the mixture was applied carefully to “QIAamp Spin Column” provided with the 

kit and, after several washings according to instructions, DNA was eluted with distilled 

water and quantified using the NanoDrop® ND-1000 spectrophotometer (NanoDrop 

Technologies, Wilmington, DE, USA). DNA purity was verified by standard 

electrophoresis using agarose gels.  
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For the amplification of mtDNA content, we used the following primers, which are 

complementary to sequences of the NDR1 gene: mtF3212 5′-

CACCCAAGAACAGGGTTTGT-3′ (forward) and mtR3319 5′-TGGCCATGGGTATGTTGTTTA-

3′ (reverse). mtDNA content was quantified relative to nuclear DNA (nDNA), for the 

amplification of which we used primers complementary to sequences of the nuclear 

gene cyclophylin A (CYPA): CypAF 5′CGTCTCCTTTGAGCTGTTTG-3′ (forward) and CypAR 

5’TCTGGTCGTTCTTCTAGTGG-3′ (reverse). PCR reactions were performed in a Carousel-

based LightCycler® 2.0 Real Time PCR System (Roche Applied Science). Both PCR 

reactions of mtDNA and nDNA were performed using 100 ng of total DNA mixed with 

LightCycler® FastStart DNA MasterPLUS SYBR Green I master mix (Roche Applied 

Science) following the instructions in the manual. Forward and reverse primers (0.2 

μM) were added in a final reaction volume of 10 μL. For mtDNA amplification, 

reactions were performed as follows: 5 min at 95 °C; 1 s at 95 °C, 5 s at 65 °C and 6 s at 

72 °C (40 cycles). For nuclear DNA amplification, reactions were performed as follows: 

10 min at 95 °C; 1 s at 95 °C, 5 s at 58 °C and 18 s at 72 °C (35 cycles). To quantify the 

amounts of the template, a standard curve for the analysed gene was included in each 

run. The specificity of the amplified products was verified by melting curve analysis 

and agarose gel electrophoresis. Data were calculated as number of DNA copies. 

9.2. Real time quantitative RT-PCR 

9.2.1. RNA isolation 

The experiment was performed using mRNA of t-25 flask cell cultures. Total RNA was 

isolated using the “RNeasy Mini Kit” (Qiagen) according to manufacturer’s instructions. 

Briefly, cellular pellets were resuspended in 350 μL lysis buffer and lysed by passage 

through a 20-gauge needle. Then, 350 μL of 70% ethanol was added and the samples 

were applied to a column which retains RNA. After the column had been washed 

appropriately, RNA was eluted in 30 μL of RNAse free-H2O. The concentration of the 

total RNA obtained was determined using NanoDrop® ND-1000 spectrophotometer.  

9.2.2. cDNA synthesis 

Complementary DNA (cDNA) was synthetized using 2 μg of total RNA using 

“PrimeScriptTM RT Reagent Kit” (Takara Bio). The reaction was performed as suggested 
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in the manufacturer ́s protocol, in 20 μL final volume and the presence of 1X 

PrimeScript Buffer, 1 μL PrimeScript RT Enzyme Mix I, 25 pmol Oligo dT Primer and 50 

pmol Random 6-mers. The reaction mixture was incubated in a 24-well thermocycler 

under the following conditions: 37 °C for 15 min, 85 °C for 5 s, 4 °C ∞. 

9.2.3. Quantitative RT-PCR 

Quantitative reverse transcriptase PCR (RT-PCR) was carried out in a Carousel-based 

LightCycler® 2.0 Real Time PCR System (Roche Applied Science), mixing 1 μL of cDNA 

with LightCycler® FastStart DNA MasterPLUS SYBR Green I master mix (Roche Applied 

Science) following the instructions in the manual. Forward and reverse primers (1 μM) 

were added in a final reaction volume of 10 μL. RT-PCRs were performed as follow: 30 

s at 95 °C; 5 s at 95 °C, 20 s at 60 °C (60 cycles); 15 s at 65 °C and 30 s at 40 °C. All 

reactions were performed in duplicate and together with a negative control (H2O 

instead of cDNA). The specificity of the amplified products was verified by melting 

curve analysis and standard electrophoresis on 1-2% agarose gels containing Goldview 

and using buffer TAE 1x (20 mM Tris, pH 7.8, 10 mM sodium acetate and 0.5 mM 

EDTA).  

We used specific primers for the human genes LONP1, ACTB, HSP90AA1, HASP90AB1, 

HSP90B1 (all of them from Integrated DNA Technologies, Coralville, IA, USA), MFN1, 

MFN2, OPA1, FIS1 and DRP1 (all of them synthesized by TIB Molbiol, Berlin, Germany). 

Primer sequences are shown in Tab.III.3. 
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GENE PRIMER SEQUENCES 

LONP1 
F: 5´-ATGGAGGACGTCAAGAAACG-3´ 

R: 5´-GATCTCAGCCACGTCAGTCA-3´ 

MFN1 
F: 5´-ACCGAGGAGGTGGCAAACAAAG-3´ 

R: 5´-GCTGGGTCTGAAGCACTAAGGC-3´ 

MFN2 
F: 5´-GGTGCTCAACGCCAGGATTCAG-3´ 

R: 5´-TGCCGCTCTTCACGCATTTCC-3´ 

OPA1 
F: 5´-GGCATGGCTCCTGACACAAAGG-3´ 

R: 5´-GCTGAATCCTGCTTGGACTGGC-3´ 

FIS1 
F: 5´-AAGGGAGCAAGGAGGAACAGCG-3´ 

R: 5´-ACAGCAAGTCCGATGAGTCCGG-3´ 

DRP1 
F: 5´-GACTTTGCTGATGCTTGTGGGC-3´ 

R: 5´-CTCTCCAGTTGCCTGTGGTTGG-3´ 

ACTB 
F: 5´-GGACTTCGAGCAAGAGATGG-3´ 

R: 5´-AGCACTGTGTTGGCGTACAG-3´ 

HSP90AA1 
F: 5´-ACATCTGCCTCTGGTGATGAG-3´ 

R: 5´-CCGAAGACGTTCCACAAAGG-3´ 

HASP90AB1 
F: 5´-TTTAGATGCCTGAGGAAGTGC-3´ 

R: 5´-GCTCTCATAGCGAATCTTGTCC-3´ 

HSP90B1 
F: 5´-TCTCCCCTTGAATGTTTCCCG-3´ 

R: 5´-TCATGTCCAGCGTTTTACGAAC-3´ 

Table III.3. Pairs of primers used for quantitative RT-PCR. 

To quantify the expression of our target genes, we used the housekeeping gene ACTB 

(β-actin) and results were normalized taking into consideration its expression. 

Calculations were based on the comparison of the threshold values (Ct) at a constant 

level of fluorescence. The model of quantification is described in Fig.III.5.  

R = 2 -[ΔCt sample - ΔCt control] 

Figure III.5. Relative quantification model of gene expression. 
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9.3. Microarrays 

The relative expression of different genes involved in inflammation and cellular stress 

(AIM2, CASP1, CASP5, CCL7, CXCL1, CXCL2, HSP90AA1, HSP90AB1, HSP90B1, IL18, IL1B, 

IL33, IL6, MAP3K7, NAIP, NLRP1, NLRP3, NOD2, P2RX7, PANX1, PTGS2, PYCARD, RIPK2, 

TNFSF11 and TRAF6) (Tab.III.4) was analysed in LX2 cells using a pre-validated set of 

real time PCR assays (PrimePCR assays Bio-Rad) applied in 96-well plate, following the 

instructions provided. The expression of two housekeeping genes, ACTB and GADPH, 

was also analysed in the same plates, and ACTB, as the gene with more stable 

expression, was chosen as to normalize data. All reactions were performed in a CFX96 

touch real-time PCR, and analysed with Biorad CFX Manager 3.1 software (Bio-Rad). 

Data are expressed as relative-fold change with respect to untreated (vehicle) sample, 

set to one.  

The same method was used to analyse the mRNA expression of CASP1, CCL2, CCL7, 

HSP90B1, IFNB1, IL18, IL1B, IRAK1, MAPK12, MAPK9, MEFV, MYD88, NAIP, NLRC4, 

NLRP12, NLRP3, P2RX7, PANX1, PSTPIP1, PTGS2, PYCARD, RIPK2, TNFA, TNFSF14 and 

TNFSF4 in U937-derived macrophages (Tab.III.4). The mRNA levels of two 

housekeeping genes, ACTB and HPRT1, was also measured, and the later one was 

chosen to normalize data. 

For the experiment, LX2 cells and macrophages were treated with vehicle, EFV 10 or 

25 μM for 24 h. Total RNA isolation and cDNA synthesis were performed as described 

in chapters “9.2.1. RNA isolation” and “9.2.2. cDNA synthesis”. Finally, PCR was carried 

out following the instructions provided. Briefly, 1 μL of cDNA was mixed with 10 μL of 

2x SsoAdvancedTM universal SYBR® Green supermix (Bio-Rad) in a final reaction 

volume of 20 μL. Then, the PCR reaction mix was transferred into the well of a 96-well 

plate containing lyophilized primers. PCRs were performed as follow: 2 min at 95 °C; 5 

s at 95 °C, 30 s at 60 °C (40 cycles); 5 s/step at 65-95 °C (0.5 °C increments). All 

reactions were performed together a positive PCR control assay, a RT control assay, a 

DNA contamination control assay and RNA quality assay provided by the 

manufacturer. 
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REFSEQ SYMBOL NAME 

NC_000001.10 AIM2 Absent in melanoma 2 

NC_000011.9 CASP1 Caspase 1 

NC_000011.9 CASP5 Caspase 5 

NC_000017.10 CCL2 Chemokine (C-C motif) ligand 2 

NC_000017.10 CCL7 Chemokine (C-C motif) ligand 7 

NC_000004.11 CXCL1 Chemokine (C-X-C motif) ligand 1 

NC_000004.11 CXCL2 Chemokine (C-X-C motif) ligand 2 

NC_000012.11 GADPH Glyceraldehyde-3-phosphate dehydrogenase 

NC_000023.10 HPRT1 Hypoxanthine phosphoribosyltransferase 1 

NC_000014.8 HSP90AA1 Heat shock protein 90kDa alpha (cytosolic), class A member 1 

NC_000006.11 HSP90AB1 Heat shock protein 90kDa alpha (cytosolic), class B member 1 

NC_000012.11 HSP90B1 Heat shock protein 90kDa beta (Grp94), member 1 

NC_000009.11 IFNB1 Interferon, beta 1, fibroblast 

NC_000002.11 IL1B Interleukin 1, beta 

NC_000007.13 IL6 Interleukin 6 (interferon, beta 2) 

NC_000011.9 IL18 Interleukin 18 (interferon-gamma-inducing factor) 

NC_000009.11 IL33 Interleukin 33 

NC_000023.10 IRAK1 Interleukin-1 receptor-associated kinase 1 

NC_000005.9 MAPK9 Mitogen-activated protein kinase 9 

NC_000022.10 MAPK12 Mitogen-activated protein kinase 12 

NC_000006.11 MAP3K7 Mitogen-activated protein kinase kinase kinase 7 

NC_000016.9 MEFV Mediterranean fever 

NC_000003.11 MYD88 Myeloid differentiation primary response gene (88) 

NC_000005.9 NAIP NLR family, apoptosis inhibitory protein 

NC_000002.11 NLRC4 NLR family, CARD domain containing 4 

NC_000017.10 NLRP1 NLR family, pyrin domain containing 1 
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NC_000001.10 NLRP3 NLR family, pyrin domain containing 3 

NC_000019.9 NLRP12 NLR family, pyrin domain containing 12 

NC_000016.9 NOD2 Nucleotide-binding oligomerization domain containing 2 

NC_000012.11 P2RX7 Purinergic receptor P2X, ligand-gated ion channel, 7 

NC_000011.9 PANX1 Pannexin 1 

NC_000015.9 PSTPIP1 Proline-serine-threonine phosphatase interacting protein 1 

NC_000001.10 PTGS2 Prostaglandin-endoperoxide synthase 2 

NC_000016.9 PYCARD PYD and CARD domain containing 

NC_000008.10 RIPK2 Receptor-interacting serine-threonine kinase 2 

NC_000006.11 TNFA Tumor necrosis factor 

NC_000001.10 TNFSF4 Tumor necrosis factor (ligand) superfamily, member 4 

NC_000013.10 TNFSF11 Tumor necrosis factor (ligand) superfamily, member 11 

NC_000019.9 TNFSF14 Tumor necrosis factor (ligand) superfamily, member 14 

NC_000011.9 TRAF6 TNF receptor-associated factor 6 

NC_000007.13 β-actin Actin, beta 

Table III.4. Genes analysed in the PrimePCR assay. 

These experiments were performed in the laboratory of Prof. Andrea Cossarizza, at 

University of Modena and Reggio Emilia (Modena, Italy), under the supervision of Prof. 

Marcello Pinti and Dr. Milena Nasi. 

10. LIGHT MICROSCOPY 

Cells were seeded in 48-well plates and, after the treatment, washed with HBSS. In 

order to analyse cellular morphology, bright field individual images (40x) of live-cells 

were captured with IX81 Olympus microscope (Olympus, Hamburg, Germany) using 

‘CellR’ software v.2.8.  
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11. FLUORESCENCE MICROSCOPY AND STATIC CYTOMETRY 

In order to avoid trypsinization and further manipulation of the cells which often 

provokes artefacts in flow cytometry, we employed a life cell fluorescence imaging 

method in which cells remain adherent and vital during the whole procedure. 

Fluorescence was detected with an IX81 Olympus fluorescence microscope and CellR 

software v.2.8 was employed to capture individual images. The fluorescent signal was 

quantified individually (per cell) by static cytometry software ‘ScanR’ version 2.03.2 

(Olympus). This technique allows to analyse and quantify numerous cell parameters 

automatically.  

All treatments were performed in duplicate in 48-well plates. Cells were then washed 

in HBSS and 16-30 images per well were immediately recorded. Nuclei were stained 

with the fluorochrome Hoechst 33342 (2.5 μM) for the last 30 min of the treatment, at 

37 °C and darkness. 

11.1. Cell proliferation/survival and cell cycle analysis 

Cells were treated, allowed to proliferate exponentially (24 h) and then counted 

according to mean Hoechst fluorescence (2.5 μM Hoechst 33342, 25 images per well). 

Hoechst area and total intensity of its fluorescence were also recorded for analysis of 

nuclear area (nuclear size) and cell cycle. 

11.2. Mitochondrial membrane potential (ΔΨm) 

Cells were treated and in the last 30 min of treatment, fluorochrome 5 μM TMRM was 

added to assess ΔΨm. As control of the experiment, 10 μM CCCP was used (Lou P.H. et 

al., 2007). Detection filters used were 540/10 nm for excitation and 590 nm for 

emission. 

11.3. Mitochondrial superoxide production 

Cells were treated and in the last 30 min of treatment, 2.5 μM MitoSOX was added to 

assess mitochondrial superoxide production. This fluorochrome accumulates within 

mitochondria (as it is attracted by the ΔΨm due to its positive charge) where it is 

oxidized by the superoxide ion only and not by other ROS, features that make it a 
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selective mitochondrial superoxide detector. As positive control we used 25 μM Rot. 

Detection filters used were 540/10 nm for excitation and 590 nm for emission. 

11.4. Mitochondrial mass 

To assess mitochondrial mass, 1 μM NAO was added in the last 30 min of treatment. 

This hydrophobic fluorescent probe binds specifically to cardiolipin which is located in 

the IMM, regardless of changes on the ΔΨm, marking specifically mitochondria of living 

cells (Wu C.W. et al., 2007). Detection filters used were 495 nm for excitation and 519 

nm for emission. 

11.5. Apoptosis 

Apoptosis was studied as bivariate Annexin V/Propidium iodide (PI) analysis (apoptosis 

detection kit, Abcam). After the treatment, the medium in a 48-well plate was 

replaced with HBSS containing 0.9 μL per well of Annexin V fluorescein (to detect 

phosphatidylserine exteriorization) and 2.5 μM Hoechst 33342 (to mark nuclei). 

Following incubation at 37 °C and darkness (20 min), 0.3 μL per well of the chromatin-

detecting dye PI was added (10 min) to label dead or damaged cells. Staurosporine 

(STS, 1 μM), a widely used protein kinase inhibitor, was employed as a positive pro-

apoptotic control (Lakhani S.A. et al., 2006). Detection filters used were 495 nm for 

excitation and 519 for emission for Annexin V and 540/10 nm for excitation and 590 

nm for emission for PI. 

12. CONFOCAL FLUORESCENCE MICROSCOPY 

We used a Leica TCS-SP2 confocal laser scanning unit (Leica Microsystems, Wetzlar, 

Germany) with argon and helium-neon laser beams and attached to a Leica DMIRBE 

inverted microscope. This equipment belongs to Unidad Central de Investigación de 

Medicina (UCIM, Universidad de Valencia, Valencia, Spain). Images were captured at 

63x magnification with HCX PL APO 40.0 x 1.32 oil UV objective. Image J program was 

used to analyze the images and the colocalization analysis was performed with the 

Colocalization Colormap plugin. 
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12.1. Analysis of mitochondrial morphology 

Cells plated on multi-well coverslips (Thermo Fisher Scientific) were treated and then  

stained with 2.5 μM Hoechst 33342 (to mark nuclei) and 1 μM NAO (to mark 

mitochondria) for the last 30 min of treatment. After washing with HBSS, life cell 

images were acquired. 

12.2. Immunofluorescence analysis 

After treatment in multi-well coverslips, cells were fixed with 4% formaldehyde for 15 

min at RT, and then rinsed with PBS 3 times for 5 min each to eliminate the 

formaldehyde. After fixation and blocking for 60 min at RT with blocking solution (PBS, 

5% normal goat serum and 0.3% TritonTM x-100), cells were incubated with primary 

antibodies, overnight at 4 °C. Samples were then rinsed 3 times with PBS for 5 min 

each and incubated with secondary antibodies (goat anti-rabbit Alexa Fluor 488 at 

1:500 and goat anti-mouse Alexa Fluor 594 at 1:600, both from Thermo Fisher 

Scientific) for 1 h at RT in the dark. All antibodies were diluted in antibody dilution 

buffer (PBS, 1% BSA and 0.3% TritonTM x-100). To mark nuclei, 5 µM of the 

fluorochrome Hoechst 33342 was added for the last 30 min. After washing with PBS, 3 

times for 5 min each, cells were maintained in HBSS and images were acquired. 

12.2.1. Translocation of p-Drp1 to mitochondria 

To analyse the translocation of p-Drp1 to mitochondria, after fixation and blocking, 

cells were incubated with the next primary antibodies: rabbit anti-phospho-Drp1 

(Ser616) at 1:200 (Cell Signaling) and mouse anti-TOM20 at 1:250 to mark 

mitochondria (BD Biosciences). 

12.2.2. Analysis of LONP1 presence in ER or mitochondria 

To study the presence of LONP1 in ER or mitochondria, cells were incubated with 

primary antibodies after fixation and blocking. We used rabbit anti-LONP1 at 1:50 

(Proteintech) and mouse anti-Calnexin at 1:750 to mark ER (Thermo Fisher Scientific) 

or mouse anti-TOM20 at 1:250 to mark mitochondria.  
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13. STATISTICAL ANALYSES 

Data were analysed using GraphPad Prism 6.0 software (GraphPad Software, La Jolla, 

CA, USA). Statistical analysis was performed by Student’s t-test or one-way ANOVA 

multiple comparison test followed by a Newman-Keuls test. In most cases, data are 

presented as % of control (untreated cells considered 100%). All values are expressed 

as a mean ± SEM (statistical significance in the case of EFV treatment was analysed vs. 

vehicle (MeOH) and represented as *P < 0.05, **P < 0.01 and ***P < 0.001, whereas 

TG, Rot, CCCP and STS were analysed separately and their significance was shown as: 

#P < 0.05, ##P < 0.01 and ###P < 0.001 vs. untreated cells or DMSO). 
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SECTION 1: ANALYSIS OF THE INVOLVEMENT OF 

MITOCHONDRIA IN THE EFFECTS INDUCED BY EFV  

1. Determination of the Hep3B rho⁰ phenotype 

Our group has already reported that EFV not only disrupts mitochondrial function in 

hepatic cells but also induces ER stress with the consequent activation of UPR. 

Notably, the effect of EFV on ER has been shown to involve mitochondria as it is 

radically reduced in cells with respiration-deficient mitochondria (Apostolova N. et al., 

2013). In order to better understand the implication of the mitochondria in the hepatic 

effect induced by EFV, we assessed the action of this drug on cells lacking functional 

mitochondria (rho⁰ phenotype), and compared it to that of the typical mitotoxic agent 

rotenone (Rot) and the widely employed ER stress inductor thapsigargin (TG). 

Firstly, after generation of rho⁰ cells, we analysed several markers of this phenotype, 

which is characterized by the absence of fully functional mitochondria. Electrochemical 

measurements of O2 consumption in intact cells using a Clark-type oxygen electrode 

revealed a major drop in the respiration of rho⁰ cells, which maintained only 15% of 

the basal levels recorded in WT cells (Fig.IV.1A). Also, the depletion of mtDNA and 

hence the rho⁰ state of these cells was controlled by quantitative genomic PCR analysis 

of the amount of mtDNA versus that of nuclear DNA. This experiment revealed that 

rho⁰ cells possessed roughly 30% of the mtDNA compared to WT cells (Fig.IV.1B), 

indicating a major depletion but meaning that they are not completely devoid of 

mtDNA or not fully “rho⁰” cells (Fig.IV.1B). 
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Figure IV.1. Determination of the Hep3B rho⁰ phenotype. (A) Electrochemical measurement of O2 

consumption with a Clark-type O2 electrode. Representative traces and histogram showing O2 

consumption in intact rho+ and rho⁰ cells  (4 × 106 cells were employed in each run). (B) Quantitative 

genomic PCR used to quantify the relative ratio of mtDNA/nDNA in rho+ and rho⁰ cells. Data represent 

mean ± SEM, n = 4, and were analysed by Student’s t-test (***P < 0.001 vs. WT cells). 

WB analysis using whole-cell protein extracts demonstrated the complete absence of 

subunit II of the mitochondrial Complex IV and a major reduction (80%) in expression 

of ND1, a Complex I subunit, both mtDNA-encoded proteins, while no alterations were 

observed in the expression of Porin and CV-β, mitochondrial proteins encoded by 

nuclear genes (Fig.IV.2). 
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Figure IV.2. WB analysis of mtDNA and nDNA-encoded proteins in Hep3B rho+ and rho⁰ cells. (A) 

Representative WB image and (B) histograms expressing quantification of Complex IV subunit II, 

Complex I subunit ND1, Complex V subunit β and Porin expression in total cell extracts; β-actin was 

used as a loading control. Data represent mean ± SEM, n = 4, and were analysed by Student’s t-test 

(**P < 0.01 vs. WT cells).  

2. Mitochondrial effect of EFV on respiration-deficient hepatic cells 

After generation of rho⁰ cells and confirmation of their phenotype, we evaluated the 

effect of EFV on mitochondria after 24 h of treatment in WT and mtDNA-depleted cells 

through three parameters indicative of mitochondrial function: mitochondrial 

superoxide (O2.-) production, ΔΨm and mitochondrial morphology/mass. 

2.1. Mitochondrial superoxide production 

Rho⁰ cells under basal conditions display a slightly higher mitochondrial O2.- 

production (MitoSOX fluorescence) than WT cells. After 24 h of treatment, all three 

stimuli (EFV, TG and Rot) induced an increase in mitochondrial O2.- production in 

Hep3B WT cells that was significantly lower (with TG and Rot) or even absent (with 

EFV) in cells lacking normal mitochondria (Fig.IV.3).  
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Figure IV.3. Analysis of superoxide production (O2.-, MitoSOX fluorescence) in Hep3B WT and rho⁰ 

cells treated for 24 h with increasing concentrations of EFV, vehicle, TG 2 μM or Rot 25 μM. Data 

represent mean ± SEM, n = 4-6, and were calculated as % of control value (untreated WT cells 

considered 100%) and analysed by Student’s t-test (**P < 0.01, ***P < 0.001 for EFV vs. vehicle and 

###P < 0.001 for Rot and TG vs. untreated cells). 

2.2. Analysis of mitochondrial membrane potential (ΔΨm) 

Assessment of ΔΨm (TMRM fluorescence) revealed a decrease in this parameter in 

untreated rho⁰ cells compared to rho+ under basal conditions (Fig.IV.4A). Cells exposed 

to EFV or Rot exhibited a similar drop in ΔΨm to that observed with 10 μM of the 

uncoupler of OxPhos CCCP, which was employed as a positive control. Importantly, this 

effect was present in rho⁰ cells and was even more pronounced with EFV 50 μM and 

Rot. Unlike EFV and Rot, TG provoked an increase in TMRM fluorescence in WT cells, 

an effect that was absent in rho⁰ cells. 

Many cell types have the ability to maintain ΔΨm under conditions of diminished 

mitochondrial respiration or OxPhos uncoupling through the reverse (ATP spending) 

activity of ATP synthase (complex V of ETC) (Faccenda D. and Campanella M., 2012). 

Taking this into account, we also assessed the effect of EFV on cells where glycolysis 

had been inhibited (by addition of 10 mM 2-DG). All three stimuli (EFV, TG and Rot) 

provoked a similar response although slightly more pronounced in cells treated with 2-

DG compared to WT. Moreover, while rho⁰ cells under basal conditions displayed only 

a slightly lower ΔΨm in comparison to WT cells, this difference was greater (about 50% 

reduction) when both cell populations were exposed to 2-DG. Both EFV and Rot, as 
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well as CCCP, were able to induce a similar ΔΨm decrease in 2-DG-exposed rho⁰ cells 

compared to the WT counterpart, whereas interestingly, in 2-DG-exposed rho⁰ cells 

the increase triggered by TG was absent (Fig.IV.4B). 

 
Figure IV.4. Analysis of mitochondrial membrane potential (ΔΨm, TMRM fluorescence) in Hep3B WT 

and rho⁰ cells. (A) Cells were treated for 24 h with increasing concentrations of EFV, vehicle, Rot 25 

μM or TG 2 μM, or (B) a combination of each one of these treatments with 2-DG 10 mM. CCCP 10 μM 

was used as a positive control. Data represent mean ± SEM, n = 4-6, and were calculated as % of 

control value (untreated WT cells considered 100%) and analysed by Student’s t-test (*P < 0.05, **P < 

0.01, ***P < 0.001 for EFV vs. vehicle and #P < 0.05, ##P < 0.01, ###P < 0.001 for Rot, TG and CCCP vs. 

untreated cells).  

2.3. Determination of intracellular ATP levels 

In parallel to the above experiments, we evaluated the intracellular ATP levels after 24 

h of treatment and this assessment revealed several interesting results. Firstly, in rho+ 

cells, all three stimuli led to an increase in the ATP level and clearly this effect was due 

to activation of glycolysis as it was abolished when cells were co-treated with 2-DG 

(Fig.IV.5A). In the case of EFV, we observed a concentration-dependent decrease in 

ATP in 2-DG-exposed WT cells. Rot provoked an even greater drop in the ATP level in 

these cells, whereas ATP levels were preserved in TG-treated cells. Secondly, the 

changes in intracellular ATP were generally less pronounced in rho⁰ cells compared to 

WT (Fig.IV.5B). Both EFV and Rot did not seem to induce an increase in ATP in cells 

with active glycolysis and the reduction in ATP levels previously described in 2-DG 

exposed cells was much smaller (or even absent). TG-treated cells seem to be less 
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affected by the rho⁰ phenotype in accordance to the action of this drug being primarily 

on ER and not mitochondria. 

 
Figure IV.5. Measurement of intracellular ATP levels with or without 2-DG 10 mM in Hep3B cells. (A) 

WT and (B) rho⁰ cells treated for 24 h with increasing concentrations of EFV, vehicle, Rot 10 μM or TG 

2 μM. Data represent mean ± SEM, n = 4-6, and were calculated as % of control (untreated cells 

without 2-DG considered 100%) and analysed by Student’s t-test. 

In accordance with its potential to produce lactic acidosis in human toxicology, 

methanol (the vehicle of EFV) by itself led to an increase in intracellular ATP, an effect 

that seem to be due to glycolysis as it was absent when cells were co-treated with 2-

DG. 

2.4. Analysis of mitochondrial mass and morphology 

In order to evaluate the mitochondrial mass and morphology, after 24 h-treatment 

cells were stained with the mitochondria-specific fluorochrome NAO. An increase in 

NAO fluorescence has been associated with mitochondrial damage in this model 

(Apostolova N. et al., 2010), and in the present study, we observed an increase in NAO 

fluorescence in WT cells exposed for 24 h to EFV (25 and 50 μM, but not 10 μM), TG or 

Rot (Fig.IV.6).  In the case of rho⁰ cells, only the highest concentration of EFV increased 

NAO fluorescence and the effect of TG was lower in rho⁰ than in WT cells. 
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Figure IV.6. Analysis of mitochondrial mass (NAO fluorescence) in Hep3B WT and rho⁰ cells treated for 

24 h with increasing concentrations of EFV, vehicle, Rot 25 μM or TG 2 μM. Data represent mean ± 

SEM, n = 4-6, and were calculated as % of control value (untreated WT cells considered 100%) and 

analysed by Student’s t-test (*P < 0.05, **P < 0.01, ***P < 0.001 for EFV vs. vehicle and #P < 0.05, ###P 

< 0.001 for Rot and TG vs. untreated cells). 

All three stimuli induced clear changes in the mitochondrial network, as shown in 

Fig.IV.7. While mitochondria in untreated cells were dispersed, EFV- and TG-treated 

cells emitted a more compact mitochondrial signal. Rot-exposed cells exhibited a 

granulated mitochondrial network with an intense signal around the nucleus. 

Importantly, the alterations in NAO fluorescence were less prominent in rho⁰ cells. In 

sharp contrast to WT cells, Hep3B cells lacking normal mitochondria showed either no 

increase or a lower increase in mean NAO fluorescence intensity when exposed to Rot 

and TG respectively. In the case of EFV, NAO fluorescence revealed a major difference 

between the different concentrations of the drug evaluated. As shown in Fig.IV.6, both 

EFV 25 and 50 μM increased NAO fluorescence in WT cells, whereas such an increase 

was detected in rho⁰ cells only with EFV 50 μM, which points to a more severe degree 

of mitochondrial damage that exceeded a certain threshold. 
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Fig.IV.7. Analysis of mitochondrial morphology in Hep3B WT and rho⁰ cells. Representative confocal 

microscopy images (63×) of cells treated for 24 h with EFV 25 μM, TG 2 μM or Rot 25 μM and stained 

with Hoechst 33342 (blue, nuclei) and NAO (green, mitochondria). 

3. Effect of EFV treatment on the viability of rho⁰ cells 

3.1. Study of cell morphology 

After studying the mitochondrial effect of EFV on respiration-deficient hepatic cells, we 

analysed the effect of the drug on the viability of rho⁰ cells. Light microscopy images of 

WT cells obtained after 24 h of treatment with EFV 25 μM, EFV 50 μM, TG 2 μM or Rot 

25 μM revealed alterations in cell size and morphology with all three stressors, with 

major differences between the treatments (Fig.IV.8). EFV 25 μM-treated cells were 

thinner than controls; this “spider net” appearance was particularly evident in cells 
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treated with TG, whereas Rot-treated cells were bigger, had a rounder shape and 

exhibited a high amount of aggregates (lipofuscin golden brown finely granular 

pigment granules). Moreover, cell number was markedly reduced in Rot- and TG-

treated samples. 

 

Figure IV.8. Study of cell morphology. Representative inverted light microscopy images (40×) of Hep3B 

WT and rho⁰ cells treated for 24 h with EFV 25 μM, EFV 50 μM, TG 2 μM or Rot 25 μM.  

3.2. Analysis of cell number, nuclear area and nuclear signal 

Previous studies by our group have shown that EFV exerts a cytotoxic effect on Hep3B 

cells. When a range of clinically relevant concentrations was evaluated (10-50 μM), the 

highest concentration (50 μM) was clearly associated with a major drop in cell viability, 
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expressed as a dramatic decrease in cell number, altered cell cycle and induction of 

apoptosis. Very importantly, the present study revealed that all these effects are less 

pronounced in rho⁰ cells; 24 h of treatment of Hep3B WT cells with EFV 50 μM led to a 

marked drop in cell number (a reduction of 60% with respect to vehicle-treated cells), 

whereas only a slight decrease (approximately 20%) was observed in rho⁰ cells 

undergoing the same treatment (Fig.IV.9A). A similar phenomenon was observed when 

chromatin condensation was assessed (mean nuclear fluorescence intensity and 

nuclear area through Hoechst 33342 fluorescence; Fig.IV.9B and C). WT cells exposed 

to EFV displayed increased Hoechst fluorescence and decreased nuclear area, 

modifications that were less evident or absent, respectively, in cells lacking functional 

mitochondria. A similar behaviour regarding both cell number and nuclear 

size/morphology was recorded with TG. In the case of exposure to Rot 25 μM, the 

increase in Hoechst fluorescence was absent in rho⁰ cells and the reduction in cell 

number was lower than that of WT cells. Unlike EFV and TG, Rot produced an increase 

in the nuclear area, a phenomenon also present in rho⁰ cells (Fig.IV.9C). 
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Figure IV.9. Cell viability analysis of Hep3B WT and rho⁰ cells treated for 24 h with increasing 

concentrations of EFV, vehicle, Rot 25 μM or TG 2 μM. Hoechst fluorescence data: (A) cell number, (B) 

nuclear signal and (C) nuclear area. Data represent mean ± SEM, n = 3-6, and were calculated as % of 

control fluorescence value (untreated WT cells considered 100%) and analysed by Student’s t-test (*P 

< 0.05, **P < 0.01, ***P < 0.001 for EFV vs. vehicle and #P < 0.05, ##P < 0.01, ###P < 0.001 for Rot and 

TG vs. untreated cells). The cell number of untreated cells in both cellular backgrounds (rho⁰ and rho+) 

was considered to be 100%.  

3.3. Cell cycle analysis 

The above results were supported by cell cycle analysis (Fig.IV.10). Firstly, Hep3B rho⁰ 

cells displayed slight differences in their cell cycle pattern compared to WT cells, 

expressed as decreased S and G2M populations with an increase in both subG1 and 

G1. All three stimuli - EFV (only 50 μM), TG and Rot - induced a change in the cell cycle 

of WT cells. EFV- and TG-exposed WT cells manifested an increase in their G2M cellular 
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population and a decrease in the S phase, modifications that were absent in rho⁰ cells. 

On the other hand, the effect of Rot was present in both rho⁰ cells and rho+ cells. 

 
Figure IV.10. Cell cycle analysis by static cytometry (Hoescht fluorescence) in Hep3B WT and rho⁰ cells 

treated for 24 h with EFV 50 μM, TG 2 μM or Rot 25 μM. Data represent mean ± SEM, n = 3, and were 

analysed by Student’s t-test (*P < 0.05, **P < 0.01, ***P < 0.001 vs. the corresponding value of the cell 

cycle phase in control cells).  

3.4. Cell death analysis 

In order to delve more deeply in the effect of EFV on cell viability, we assessed the 

presence of apoptotic and necrotic cells, in both parental cells and cells lacking 

functional mitochondria, after 24 h of treatment. The inducer of apoptosis STS (1 µM) 

was used as positive control. As expected, these experiments revealed that under 

basal conditions, rho⁰ cells have a higher percentage of all three cell death 

subpopulations: early or typically apoptotic (Ann+/PI−), late apoptotic and/or necrotic 

(Ann+/PI+) and typically necrotic or damaged (Ann−/PI+). As previously published, in 

Hep3B WT cells, EFV (particularly the highest concentration, EFV 50 μM) induced 

apoptosis and perhaps slightly also necrosis, effects that were shown to be largely 

diminished (apoptosis) or absent (necrosis) in respiration-deficient cells (Fig.IV.11). 

Interestingly, the effects of Rot and TG were somewhat different; they triggered 

apoptosis in WT cells and this effect seemed to be diminished in rho⁰ cells; however, 

their ability to induce necrosis seemed to be enhanced. 
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Figure IV.11. Cell death analysis of Hep3B WT and rho⁰ cells. Representative cytograms (bivariate 

Annexin V/PI analysis) of cells treated for 24 h with EFV 50 μM, vehicle, TG 2 μM, Rot 25 μM or 

staurosporine (STS 1 μM, used as a positive control), showing the existence of four cellular 

populations: AnnV−/PI−, AnnV+/PI−, AnnV−/PI+ and AnnV+/PI+ (upper panel). Histograms expressing 

quantification of AnnV+/PI−, AnnV−/PI+ and AnnV+/PI+ cellular populations in rho+ and rho⁰ cells 
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treated with increasing concentrations of EFV, TG 2 μM, Rot 25 μM and STS 1 μM (lower panel). Data 

represent mean ± SEM, n = 3, and were calculated as % of total number of nuclei counted and 

analysed by Student’s t-test (**P < 0.01 for EFV vs. vehicle and #P < 0.05, ###P < 0.001 for Rot, TG and 

STS vs. untreated cells).  

4. Effect of EFV treatment on HepaRG cells 

In order to confirm that despite its cancerous nature, Hep3B cells were an appropriate 

model for these pharmacological analyses, several experiments were also performed 

in WT HepaRG, a terminally differentiated hepatic cell line derived from human 

hepatic progenitor cells. Importantly, the responses observed in parental Hep3B and 

WT HepaRG cells were similar in the parameters studied. As shown in Fig.IV.12A and B, 

24 h-treatment with EFV led to a concentration-dependent increase in mitochondrial 

ROS production (MitoSOX fluorescence) paralleled by a decrease in cell number (nuclei 

stained with Hoechst 33342), although the effect was less pronounced in HepaRG than 

on Hep3B cells. Also, in comparison to Hep3B, HepaRG cells seemed to be particularly 

susceptible to Rot, in both parameters, and less susceptible to TG and EFV regarding 

mitochondrial ROS production.  

 
Figure IV.12. Effect of EFV treatment on HepaRG cells. Cells were treated for 24 h with increasing 

concentrations of EFV, vehicle, Rot 25 μM or TG 2 μM. (A) Mitochondrial O2.- production (MitoSOX 

fluorescence). (B) Cell viability expressed as cell number (nuclei according to Hoechst fluorescence). 

Data represent mean ± SEM, n = 4-6, and were calculated as % of control value (untreated cells 

considered 100%) and analysed by Student’s t-test (*P < 0.05, **P < 0.01, ***P < 0.001 for EFV vs. 

vehicle and ##P < 0.01, ###P < 0.001 for Rot and TG vs. untreated cells). 
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5. Analysis of LONP1 protein expression 

The induction of ER stress and UPR in EFV-treated hepatic cells is dependent on 

mitochondria as several markers of this stress response were found to be diminished 

in Hep3B cells lacking functional mitochondria (Apostolova N. et al., 2013). In order to 

further link the two effects of EFV (mitochondria and ER), we wanted to analyse the 

expression of LONP1, whose activation is thought to be an adaptive mechanism in 

both oxidative and ER stress, in WT and rho⁰ Hep3B cells. As shown in Fig.IV.13A, 24 h-

treatment with EFV led to a modest but consistent and concentration-dependent 

increase in LONP1 protein expression. TG and Rot also increased LONP1 expression but 

to a much lesser extent than EFV. The basal expression of LONP1 in rho⁰ cells was 

slightly higher than in rho+ cells. Importantly, in cells lacking functional mitochondria 

the level of LONP1 was not enhanced by any of the stressors (EFV, TG or Rot). In 

addition, the EFV-induced concentration-dependent increase in LONP1 protein levels 

detected in wild-type Hep3B cells was confirmed in HepaRG cells (Fig.IV.13B). 
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Figure IV.13. Western blot analysis of LONP1 expression in total cell extracts. Representative WB 

image and histogram expressing quantification of protein expression in (A) Hep3B rho+ and rho⁰ cells, 

treated for 24 h with increasing concentrations of EFV, vehicle, Rot 25 μM or TG 2 μM, or (B) HepaRG 

cells treated for 24 h with increasing concentrations of EFV or vehicle. Results are expressed as 

relative protein expression in relation to WT untreated cells (Hep3B), or untreated cells (HepaRG), 

which were considered 100%. Data represent mean ± SEM, n = 4-8, and were analysed by Student’s t-

test (**P < 0.01, ***P < 0.001 for EFV vs. vehicle and ###P < 0.001 for Rot and TG vs. untreated cells). 
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SECTION 2: ANALYSIS OF MITOCHONDRIAL DYNAMICS  

After studying the involvement of mitochondria in the development of EFV-induced 

toxicity in Hep3B cells (24h-treatment), we also analysed the mitochondrial dynamics 

in this model of dual mitochondrial/ER stress and compared it to TG, Rot and CCCP. 

1. Gene and protein expression of main regulators of mitochondrial 

dynamics 

Firstly, we analysed the gene and protein expression of several markers of 

mitochondrial fusion (Mfn1, Mfn2 and OPA1) and fission (Drp1 and Fis1) in cells 

treated with EFV, TG, Rot or CCCP for 24 h. As shown in Fig.IV.14A, immunoblot 

analysis using whole-cell extracts revealed no changes in the level of total Drp1 under 

any of the conditions assayed, whereas the effect in the case of p-Drp1 (Ser616) was 

differential. Moderate mitochondrial/ER stress, such as that triggered by EFV 10 and 

25 μM, incremented p-Drp1 levels, an increase that was not observed with severe 

stress (EFV 50 μM). In sharp contrast, a decrease in p-Drp1 expression was detected in 

cells exposed to TG, Rot or CCCP. Regarding OPA1, a concentration-dependent 

increase in the expression of its 80 kDa (s-OPA1) form was recorded with all stimuli 

(including EFV) manner. Unlike this effect, the expression of 100 kDa OPA1 (l-OPA1) 

showed no alterations with TG, Rot or the moderate concentrations of EFV (10 and 25 

μM), while a marked down-regulation was observed with treatment with EFV 50 μM or 

CCCP. Finally, the expression of Mfn2 was severely diminished with Rot and CCCP 

treatment, while no significant changes were recorded with either TG or EFV. 

Importantly, quantitative RT-PCR analysis showed that ER stress (TG treatment) is 

related to a major increase in the expression of several genes employed as markers of 

mitochondrial dynamics - MFN1, MFN2, OPA1, FIS1 and DRP1 (Fig.IV.14B). With the 

exception of DRP1, the expression of these genes was also enhanced with EFV in a 

concentration-dependent manner, whereas the classical mitochondrial stressors Rot 

and CCCP not only failed to trigger upregulation (MFN2, OPA1) but actually provoked 

the contrary effect (MFN1, FIS1 and DRP1). Considered together, these data provide 
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evidence of a differential expression of mitochondrial fusion and fission markers under 

conditions of ER stress and/or different types of mitochondrial dysfunction. 

 

 
Figure IV.14. Expression of main molecular mediators of mitochondrial dynamics in Hep3B cells. These 

were treated for 24 h with increasing concentrations of EFV, vehicles (MeOH or DMSO), TG 2 μM, Rot 

25 μM or CCCP 10 μM. (A) Immunoblot analysis showing representative WB image and histograms 
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expressing quantification of the main regulators of mitochondrial fusion and fission. (B) Gene 

expression analysed by quantitative RT-PCR. mRNA content was normalized with the expression of 

the housekeeping gene ACTB (β-actin). Data represent mean ± SEM, n = 4-8, and were calculated as % 

of control value (untreated cells considered 100%) and analysed by Student’s t-test (*P < 0.05, **P < 

0.01, ***P < 0.001 for EFV vs. MeOH and #P < 0.05, ##P < 0.01, ###P < 0.001 for TG, Rot or CCCP vs. 

DMSO). 

2. Location of proteins involved in mitochondrial fusion and fission  

Several proteins involved in mitochondrial dynamics have been related to 

mitochondria-associated ER membranes (MAMs), including p-Drp1 and Mfn2. In this 

regard, we determined their specific location by studying their presence in 

mitochondria-enriched and cytosolic protein extracts.  

2.1. Purity analysis of mitochondria-enriched and cytosolic protein 

extracts 

Firstly, we confirmed the purity of the extracts obtained by assessment of several 

mitochondrial (TOM20 (translocase of OMM 20), CIV-II and Porin) and cytosolic (LDH 

(lactate dehydrogenase), Tubulin and β-actin) proteins under basal conditions and 

after 24 h-treatments (Fig.IV.15).  
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Figure IV.15. Analysis of the purity of mitochondria-enriched and cytosolic protein extracts. (A) 

Representative WB image and (B) histograms expressing quantification of several mitochondrial 

(TOM20, CIV-II and Porin) and cytosolic (LDH, Tubulin and β-actin) proteins after 24 h of treatment. 

Data represent mean ± SEM, n = 3, and were calculated as % of vehicle in mitochondria-enriched 

extracts considered 100% and analysed by Student’s t-test (*P < 0.05 vs. vehicle). 

2.2. Protein analysis of p-Drp1 and Mfn2 in mitochondria-enriched 

and cytosolic extracts 

We then analysed the abundance of specific proteins related to mitochondrial 

dynamics. Intriguingly, cells under EFV treatment tend to exhibit a slightly increased 

expression of p-Drp1 and Mfn2 in the cytosolic fraction, while a clear decrease is seen 

in cells treated with classical mitochondrial (Rot and CCCP) or ER stressors (TG) 

(Fig.IV.16).  
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Figure IV.16. Study of p-Drp1 and Mfn2 protein expression in Hep3B cells. WB analysis in (A) 

mitochondria-enriched and (B) cytosolic extracts in cells treated for 24 h with increasing 

concentrations of EFV, vehicles (MeOH or DMSO), TG 2 μM, Rot 25 μM or CCCP 10 μM. A 

representative image and histograms of the data quantification are shown. Data represent mean ± 

SEM, n = 6, and were calculated as % of control (untreated cells considered 100%) and analysed by 

Student’s t-test (#P < 0.05, ##P < 0.01, ###P < 0.001 for TG, Rot or CCCP vs. DMSO). 
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We considered that a possible explanation for the observed response was that EFV 

triggered de novo synthesis of these proteins and the time frame of 24 h may not have 

been ample enough to have the protein inside mitochondria. However, this possibility 

was ruled out with the analysis of the expression of p-Drp1 after prolonged treatment 

(48 h), which revealed that a differential response continued to be present as can be 

seen in Fig.IV.17. The level of cell stress was crucial for this response; the highest 

concentration of EFV, which triggered severe mitochondrial damage, failed to produce 

the same effects as EFV 10 and 25 µM and exerted similar actions to those of the rest 

of the stimuli.  

 
Figure IV.17. Analysis of p-Drp1 protein expression after 48 h of treatment. Hep3B cells were treated 

with increasing concentrations of EFV, vehicles (MeOH or DMSO), TG 2 μM, Rot 25 μM or CCCP 10 μM.  

Representative WB images and histograms showing quantification of p-Drp1 in mitochondria-

enriched and cytosolic protein extracts. Data represent mean ± SEM, n = 4, and were calculated as % 

of control (untreated cells considered 100%) and analysed by Student’s t-test (#P < 0.05 for TG, Rot or 

CCCP vs. DMSO). 
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2.3. Analysis of the translocation of p-Drp1 to mitochondria  

The differential effect exerted by EFV in comparison to the rest of the stimuli was also 

confirmed by confocal microscopy experiments; there was an increase in the 

colocalization of p-Drp1 with the mitochondrial protein TOM20 in 10 or 25 µM EFV-

treated cells, which was absent with the rest of the treatments (Fig.IV.18).  

This experiment confirmed our previous findings of altered mitochondrial morphology. 

Using the expression of the OMM protein TOM20 as a marker, we detected enhanced 

presence of “fragmented” mitochondria (small rod-like or spherical mitochondria) in 

all treatments (Fig.IV.18A), an effect indicative of increased fission relative to fusion.  
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Figure IV.18. Translocation of p-Drp1 to mitochondria in Hep3B cells. (A) Representative confocal 

microscopy images (63x) and (B) histogram showing the index of correlation between p-Drp1 and 

mitochondria. Cells were treated for 24 h with increasing concentrations of EFV, vehicle, TG 2 μM, Rot 

25 μM or CCCP 10 μM, and labelled with Hoechst 33342 (blue, nuclei), anti-p-Drp1 Ser616 (green) and 

anti-TOM20 (red, mitochondria). Data represent mean ± SEM, n = 3, and were analysed by Student’s t-

test (*P < 0.05, ***P < 0.001 vs. vehicle). 
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SECTION 3: ANALYSIS OF MITOCHONDRIAL/ER CONTACT  

1. Study of mitochondria-associated ER membranes (MAMs) 

Mitochondria-associated membranes (MAMs) are specific domains of the ER that 

enable its direct interaction with mitochondria. As stated previously, several proteins 

involved in mitochondrial dynamics have been related to MAMs and we have observed 

that markers of mitochondrial dynamics (Drp1, OPA1 and Mfn2) are expressed 

differentially with the stimuli used, which points to specificity of the dual 

ER/mitochondrial stress in this model.  

1.1. Analysis of contacts between specific MAMs protein partners: 

PTPIP51-VAP B/C and Porin-Grp75 

In order to analyse the contact between specific MAMs protein partners, we 

performed coimmunoprecipitation experiments in this model of dual mitochondrial/ER 

stress and compared it to TG, Rot and CCCP. We assessed two protein pairs: i) PTPIP51 

and VAP B/C; and ii) Porin and Grp75. In both cases, the contact was enhanced in EFV-

treated cells, while no increase or a significant decrease were observed with the rest of 

the treatments (Fig.IV.19).  
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Figure IV.19. Study of Mitochondria-associated ER membranes (MAMs). Hep3B cells were treated for 

24 h with increasing concentrations of EFV, vehicles (MeOH or DMSO), TG 2 μM, Rot 25 μM or CCCP 10 

μM. (A, B) Analysis of contact between specific MAMs protein partners by coimmunoprecipitation 

using protein A sepharose beads. Representative WB images and histograms expressing quantification 

of (A) VAP B/C after immunoprecipitation of PTPIP51 and (B) Grp75 after immunoprecipitation of 

Porin. A negative control (without primary antibody) was used as control of the immunoprecipitation. 

Data represent mean ± SEM, n = 3-4, and were calculated as % of control (untreated cells considered 

100%) and analysed by Student’s t-test (#P < 0.05 for CCCP vs. DMSO). 

1.2. Analysis of protein expression of several MAMs participants 

In order to assess the general expression of several MAMs proteins (PTPIP51, VAP B/C 

and SIG-1R), we used whole cell extracts of cells treated for 24 h with EFV, TG, Rot or 

CCCP. Interestingly, the mitochondrial protein PTPIP51 displayed a major 

enhancement in EFV-exposed cells (Fig.IV.20A), an effect that was not evident with the 

rest of the stressors. In the case of VAP B/C protein expression, the effect was much 

less pronounced with EFV treatment and lacked concentration-dependence while TG 

also induced a slight increment (Fig.IV.20B). As can be seen in Fig.IV.20C, only TG 

increased the expression of SIG-1R.  In summary, these data point to an enhancement 

of MAMs in cells exposed to combined ER stress/mitochondrial dysfunction. 
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Figure IV.20. Analysis of protein expression of several MAMs components in Hep3B cells. WB analysis 

of (A) PTPIP51, (B) VAP B/C and (C) SIG-1R expression in whole cell extracts after treatment for 24 h 

with increasing concentrations of EFV, vehicles (MeOH or DMSO), TG 2 μM, Rot 25 μM or CCCP 10 μM. 

A representative image and histograms of the data quantification are shown. Data represent mean ± 

SEM, n = 3-4, and were calculated as % of control (untreated cells considered 100%) and analysed by 

Student’s t-test (*P < 0.05, **P < 0.01, for EFV vs. MeOH). 

Next, we analysed the protein expression and specific location of another MAMs 

participant, Grp75 (mitochondrial HSP70), by studying its presence in mitochondria-

enriched and cytosolic protein extracts of cells treated for 24 h with EFV, TG, Rot or 

CCCP. In this case, EFV treatment showed a similar pattern as that observed for p-Drp1 

and Mfn2, with increased cytosolic content and a tendency towards a drop in 

mitochondrial content. In contrast, upon treatment with the other three stimuli, levels 

of Grp75 inside mitochondria did not diminish (Fig.IV.21). 
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Figure IV.21. Study of protein expression and specific location of Grp75 in Hep3B cells. Representative 

WB images and histograms expressing quantification of Grp75 in (A) mitochondria-enriched and (B) 

cytosolic protein extracts. Cells were treated for 24 h with increasing concentrations of EFV, vehicles 

(MeOH or DMSO), TG 2 μM, Rot 25 μM or CCCP 10 μM. Data represent mean ± SEM, n = 4, and were 

calculated as % of control (untreated cells considered 100%) and analysed by Student’s t-test (*P < 

0.05, **P < 0.01 for EFV vs. MeOH and #P < 0.05 for TG vs. DMSO). 
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SECTION 4: ANALYSIS OF MITOCHONDRIAL LON 

PROTEASE 

Knowing that Grp75 is involved in mitochondrial proteostasis, we were interested to 

know whether a similar effect would be observed with another mitochondrial protein 

in charge of protein maintenance in this organelle, LONP1. 

1. Analysis of LONP1 in mitochondria-enriched and cytosolic extracts 

Firstly, we analysed LONP1 expression in cytosolic and mitochondria-enriched fractions 

of Hep3B cells treated with EFV, TG, Rot and CCCP for 24 h. This study revealed a very 

similar result to that exerted by Grp75: a decrease in the mitochondrial fraction and an 

increase in the extramitochondrial fraction (Fig.IV.22). Once again, this was not the 

case with the rest of the stimuli; while TG and Rot treatment enhanced lightly LONP1 

expression in both fractions, CCCP produced a drop or no change in mitochondria-

enriched and cytosolic extract, respectively.  
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Figure IV.22. Analysis of LONP1 presence in mitochondria and cytosol. Representative WB images and 

histograms expressing quantification of LONP1 protein expression in (A) mitochondria-enriched and 

(B) cytosolic protein extracts. Hep3B cells were treated for 24 h with increasing concentrations of EFV, 

vehicles (MeOH or DMSO), TG 2 μM, Rot 25 μM or CCCP 10 μM. Data represent mean ± SEM, n = 4, 

and were calculated as % of control (untreated cells considered 100%) and analysed by Student’s t-

test (*P < 0.05, **P < 0.01 for EFV vs. MeOH and #P < 0.05 for TG, Rot or CCCP vs. DMSO). 

2. Gene and protein expression of LONP1 

2.1. Hep3B cells 

As shown in Fig.IV.13, 24 h of treatment with EFV led to a modest but consistent and 

concentration-dependent increase in LONP1 expression in both wild-type Hep3B and 

HepaRG cells. We then compared this effect to that exerted by TG, Rot or CCCP and 

found a similar upregulation with these three stimuli (Fig.IV.23A). Moreover, we 

assessed the gene expression of LONP1 and observed that all 4 stimuli produced an 

increment of LONP1 mRNA, although to varying extents: while the increase in the case 

of Rot and CCCP was modest, that induced by TG was remarkable (Fig.IV.23B). 
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Figure IV.23. Analysis of protein and gene expression of LONP1 in Hep3B cells. Cells were treated for 

24 h with increasing concentrations of EFV, vehicles (MeOH or DMSO), TG 2 μM, Rot 25 μM or CCCP 10 

μM. (A) Representative WB image and histogram expressing quantification of LONP1 in whole cell 

protein extracts. (B) Quantitative RT-PCR analysis of LONP1. Data represent mean ± SEM, n = 4, and 

were calculated as % of control (untreated cells considered 100%) and analysed by Student’s t-test 

(**P < 0.01, ***P < 0.001 for EFV vs. MeOH and #P < 0.05, ###P < 0.001 for TG, Rot or CCCP vs. DMSO). 

Next, we wished to study the expression of a LONP1 substrate, Aco2 (MM protein 

which is preferentially degraded by LONP1 after oxidative modification). As can be 

seen in Fig.IV.24, no changes were observed with EFV, Rot and CCCP, while in the case 

of TG, an increase, albeit statistically non-significant, could be observed. 
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Figure IV.24. WB analysis of Aco2 expression in whole cell protein extracts. Hep3B cells were treated 

for 24 h with increasing concentrations of EFV, vehicles (MeOH or DMSO), TG 2 μM, Rot 25 μM or 

CCCP 10 μM. A representative image and histogram of the data quantification are shown. Data 

represent mean ± SEM, n = 5, and were calculated as % of control (untreated cells considered 100%) 

and analysed by Student’s t-test. 

2.2. U-251MG cells 

Our group has reported that EFV also alters mitochondrial function in cultured neurons 

and glial cells (Funes H.A. et al., 2014). To confirm that EFV affects cellular respiration 

as it does in Hep3B, we studied the O2 consumption and mitochondrial O2.- production 

in the glial cell line U-251MG exposed to EFV 25 μM for 6 h. Given that EFV induces 

nitric oxide (NO) generation in U-251MG cells, we performed the same assessments in 

cells co-treated with EFV and an inhibitor of NO production (L-NAME 50 μM). We 

observed that EFV compromised O2 consumption and induced mitochondrial O2.- 

production and that both effects were alleviated in cells where NO generation was 

pharmacologically inhibited (Fig.IV.25).  
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Figure IV.25. Analysis of mitochondrial function in U-251MG (glioblastoma) cells. Cells were exposed 

to EFV 25 μM or a combined treatment of EFV 25 μM + L-NG-nitroarginine methyl ester (L-NAME) 50 

μM for 6 h. (A) O2 consumption in intact cells (Clark-type O2 electrode). (B) Determination of O2.- 

production (MitoSOX fluorescence). Data represent mean ± SEM, n = 3-5, and were calculated as % of 

control (untreated cells considered 100%) and analysed by Student’s t-test (**P < 0.01, ***P < 0.001 

vs. vehicle). +P < 0.05 represent the significance of the data obtained with EFV 25 μM vs. EFV 25 μM + 

L-NAME.  

Next we studied the expression of LONP1 in U-251MG cells treated for 24 h with EFV, 

TG 2 µM, Rot 25 µM or CCCP 10 µM. This experiment revealed a similar result to that 

observed in Hep3B cells. EFV treatment concentration-dependently increased LONP1 

expression and enhanced presence on LONP1 mRNA was also detected with the other 

three stimuli however, to a different extent - in the case of Rot and CCCP the increase 

was modest, but that induced by TG was remarkable (Fig.IV.26). 
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Figure IV.26. Quantitative RT-PCR analysis of LONP1 in U-251MG cells. U251MG cells were treated for 

24 h with increasing concentrations of EFV, vehicle, TG 2 μM, Rot 25 μM or CCCP 10 μM.  Data 

represent mean ± SEM, n = 4, and were calculated as % of control (untreated cells considered 100%) 

and analysed by Student’s t-test (***P < 0.001 for EFV vs. vehicle and ##P < 0.01, ###P < 0.001 for TG, 

Rot or CCCP vs. untreated cells). 

3. Regulation of LONP1 upregulation 

Our group has already reported that EFV and TG increase CHOP expression in Hep3B 

cells treated for 24 h (Apostolova N. et al., 2013). In order to assess the regulation of 

LONP1 upregulation by CHOP, we transiently silenced this transcription factor and 

examined the protein level of LONP1 in whole cell extracts by WB. We confirmed the 

expected increase in CHOP with all three stimuli (in accordance with the previously 

published work) and found out that siCHOP cells exhibited similar LONP1 levels as 

siControl, which would suggest that this transcription factor is not involved in the 

regulation of LONP1 expression (Fig.IV.27).  



RESULTS 

125 
 

 
Figure IV.27. Analysis of LONP1 expression in Hep3B cells where CHOP/DDIT3 has been silenced by 

siRNA. Representative WB image and histogram expressing quantification of LONP1 expression in 

cells transfected with siRNA Control or siCHOP and treated for 24 h with EFV, vehicle (MeOH or 

DMSO), TG 2 μM or Rot 25 μM. Data represent mean ± SEM, n = 5, and were calculated as % of control 

of siControl cells (considered 100%) and analysed by Student’s t-test. 

Another transcription factor that we speculated could be involved in upregulation of 

LONP1 expression in our model was NF-κB. In order to test this possibility, we 

performed ChIP assay, a technique used for probing protein-DNA interactions within 

the natural chromatin context of the cell. These experiments revealed that EFV 

treatment concentration-dependently increased the contact between NF-κB and the 

promoter of LONP1 (Fig.IV.28).  
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Figure IV.28. Analysis of the recruitment of NF-κB to the promoter of LONP1. Representative image of 

semiquantitative PCR after chromatin immunoprecipitation (ChIP) with anti-NF-κB; a non-related 

antibody anti-IgG and a sample of the input chromatin were used as controls. Hep3B cells were 

treated for 24 h with EFV, vehicle (MeOH or DMSO), TG 2 μM, Rot 25 μM or CCCP 10 μM. Data were 

calculated as % of control (untreated cells considered 100%). 

Knowing that EFV (similarly to TG) also induces a concentration-dependent increase in 

cytosolic Ca2+ concentration in hepatic cells (Apostolova N. et al., 2013), we aimed to 

assess the expression of LONP1 in cells pre-treated with the Ca2+ chelator BAPTA 10 

µM. As can be observed in Fig.IV.29, after 24 h-treatment all 4 stimuli produced an 

increment of LONP1 mRNA but this effect was significantly lower in cells treated with 

BAPTA, which suggests that Ca2+ is involved in the upregulation of LONP1 expression 

induced by EFV, TG and Rot.     
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Figure IV.29. Quantitative RT-PCR analysis of LONP1 in cells treated in the presence or absence of 

BAPTA. Hep3B cells were treated with BAPTA 10 µM for 1 h followed by treatment with increasing 

concentrations of EFV, vehicles (MeOH or DMSO), TG 2 μM, Rot 25 μM or CCCP 10 μM for 24 h. Data 

represent mean ± SEM, n = 3, and were calculated as % of control of cells without BAPTA (considered 

100%) and analysed by Student’s t-test (*P < 0.05, **P < 0.01 for EFV vs. MeOH and ##P < 0.01, ###P < 

0.001 for TG vs. DMSO). +P < 0.05, ++P < 0.01 represent the significance of the data comparing the 

corresponding treatment with vs. without BAPTA. 

4. Analysis of the expression of mitochondrial ClpX protease and several 

HSP90 chaperones 

In order to assess the specificity of LONP1 upregulation, we analysed the expression of 

several other proteins involved in cellular proteostasis. ClpX, another ATP-dependent 

protease located in the MM, was assessed with WB in whole cell extracts of Hep3B 

cells treated for 24 h with all 4 stimuli. As can be observed in Fig.IV.30, neither of the 

treatments altered the expression of ClpX. 



Mitochondria and ER interplay at the core of EFV-induced hepatic effects 

128 
 

 
Figure IV.30. WB analysis of ClpX expression in total cell extracts. Hep3B cells were treated for 24 h 

with increasing concentrations of EFV, vehicles (MeOH or DMSO), TG 2 μM, Rot 25 μM or CCCP 10 μM. 

A representative image and histogram of data quantification are shown. Data represent mean ± SEM, 

n = 4, and were calculated as % of control (untreated cells considered 100%) and analysed by 

Student’s t-test.  

We also studied the gene expression of HSP90 chaperones (HSP90AA1, HSP90AB1 and 

HSP90B1) which also have key role in protein quality control. After 24 h-treatment, 

EFV 25 µM induced a slightly increase in HSP90AB1 expression while TG increased 

remarkably the expression of all HSP90s (Fig.IV.31). 

   
Figure IV.31. Gene expression of HSP90 chaperones analysed by quantitative RT-PCR. Hep3B cells 

were treated for 24 h with increasing concentrations of EFV, vehicles (MeOH or DMSO) and TG 2 μM. 

Data represent mean ± SEM, n = 4. They were calculated as mRNA content in relation to that of 

control (untreated cells considered 100%), after normalization with the expression of the 

housekeeping gene ACTB (β-actin), and analysed by Student’s t-test (*P < 0.05 for EFV vs. MeOH and 

#P < 0.05, ##P < 0.01, ###P < 0.001 for TG vs. DMSO). 
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Given this result, we wished to analyse the effect of EFV on several stress-related 

chaperones as part of PrimePCR assay in which we studied the expression of different 

genes involved in inflammation and cellular stress. Data obtained with Hep3B were 

below the limit of detection and therefore the results obtained in individual RT-PCRs 

could not be corroborated. However, this experiment was also performed in human 

hepatic stellate cells (HSCs) LX2 and U937-derived macrophages. As can be seen in 

Fig.IV.32, EFV 25 μM induced an increase in the expression of HSP90AA1 and 

HSP90AB1 in LX2 cells and, in the expression of HSP90B1, in the case of macrophages. 

The effect of EFV on these stress-related chaperones is more pronounced in LX2 cells 

and U937-derived macrophages than in Hep3B. 
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Figure IV.32. Relative expression of different genes involved in inflammation and cellular stress 

analysed by real time RT-PCR assays. LX2 cells and U937-derived macrophages were treated with 

vehicle, EFV 10 or 25 µM for 24 h. Data represent mean ± SEM, n = 3, and were calculated as relative-

fold change with respect to vehicle, set to one, and analysed by one-way ANOVA multiple comparison 

test followed by a Newman-Keuls test (*P < 0.05, **P < 0.01, ***P < 0.001 vs. vehicle). 

5. Role of LONP1 in the effects induced by EFV on Hep3B cells 

As stated previously, our group has already reported that EFV disrupts mitochondrial 

function, activates the adaptive response of autophagy and induces ER stress/UPR in 

hepatic cells (Blas-García A. et al., 2010; Apostolova N. et al., 2011c; 2013). After 

observing that the expression of LONP1 increases with ER stress (TG), mitochondrial 

dysfunction (CCCP or Rot) or both (EFV), we aimed to study the role of this protein in 

the effects induced by EFV by means of transiently silencing LONP1 by siRNA. For this, 

Hep3B cells were transfected with LONP1 siRNA and then treated for 24 h with EFV, TG 

or Rot. 

5.1. Autophagy and ER stress 

We assessed the protein levels of CHOP, LC3 and p62 in whole cell extracts by WB. 

Firstly, we verified the efficacy of LONP1 silencing in siLONP1 cells by analysing LONP1 

protein expression. Also, we confirmed the expected increase of CHOP and LONP1 

with all three stimuli, as well as LC3-II and p62 with EFV and TG in siControl cells (in 

accordance with our previously published work). We found that siLONP1 cells 

exhibited similar CHOP levels as siControl. However, the effect of all three stimuli on 

p62 expression was slightly lower in siLONP1 cells than siControl. Regarding LC3-II, no 

changes were observed in the effect of TG when we silenced LONP1 but, surprisingly, 

the effect of EFV treatment on LC3-II expression was absent when LONP1 was silenced 

(Fig.IV.33). This result suggests that LONP1 could be involved in autophagy regulation 

under dual ER/mitochondrial stress. 
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Figure IV.33. Role of LONP1 in the effects of EFV on hepatic cells. Representative WB images and 

histograms expressing quantification of the expression of CHOP, LC3, p62 and LONP1 in cells 

transfected with siRNA Control or siLONP1 and treated for 24 h with increasing concentrations of EFV, 

vehicles (MeOH or DMSO), TG 2 μM or Rot 25 μM. Data represent mean ± SEM, n = 4, and were 

calculated as % of control (untreated siControl cells considered 100%) and analysed by Student’s t-test 

(*P < 0.05, **P < 0.01 for EFV vs. MeOH and ##P < 0.01 for TG vs. DMSO). 
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5.2. Mitochondrial function 

Mitochondria function was studied through three parameters: O2.- production, ΔΨm 

and mitochondrial mass. As can be seen in Fig.IV.34, no changes were observed in ΔΨm 

(TMRM fluorescence) and mitochondrial morphology/mass (NAO fluorescence) when 

LONP1 was silenced. In contrast, EFV 25 µM induced a significantly higher increase in 

mitochondrial O2.- production (MitoSOX fluorescence) in siLONP1 cells. This result 

confirms the protective role of LONP1 under oxidative stress.  

 
Figure IV.34. Role of LONP1 in mitochondrial function. Analysis of (A) O2.- production (MitoSOX 

fluorescence), (B) ΔΨm (TMRM fluorescence) and (C) mitochondrial mass (NAO fluorescence) in Hep3B 

cells transfected with siRNA Control or siLONP1 and treated for 24 h with increasing concentrations of 

EFV and vehicle (MeOH). Data represent mean ± SEM, n = 4, and were calculated as % of control 

(untreated siControl cells considered 100%) and analysed by Student’s t-test (**P < 0.01 for EFV vs. 

MeOH and #P < 0.05 for siLONP1 vs. siControl cells). 
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6. Effect of other antiretroviral drugs on LONP1 expression 

6.1. Newer antiretroviral drugs: DRV, RAL and RPV 

EFV excellence has been challenged by the arrival of newer antiretrovirals, such as the 

IP darunavir (DRV), the II raltegravir (RAL) and the NNRTI rilpivirine (RPV). They have a 

better toxicological profile than EFV while producing similar levels of efficacy and 

virological suppression. In view of our previous report that EFV induces mitochondrial 

toxicity in hepatic cells, we wished to assess the effect of these drugs on mitochondria 

through the O2.- production and ΔΨm, for which we used a range of clinically relevant 

concentrations of each drug and compared the effect to that produced by EFV 25 µM. 

As can be seen in Fig.IV.35, none of the newer compounds induced significant changes 

in O2.- production (MitoSOX fluorescence) or ΔΨm (TMRM fluorescence) at 24 h of 

treatment, although a slight reduction of ΔΨm was produced by RAL.  
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Figure IV.35. Effect of newer antiretroviral drugs (DRV, RAL and RPV) on mitochondrial function in 

hepatic cells. Quantitative analysis of (A) mitochondrial O2.- production (MitoSOX fluorescence) and 

(B) ΔΨm (TMRM fluorescence) by fluorescence microscopy, after 24 h of treatment with increasing 

concentrations of each drug, vehicle or EFV 25 μM. Data represent mean ± SEM, n = 4-6, and were 

calculated as % of control (untreated cells considered 100%) and analysed by Student’s t-test (*P < 

0.05, **P < 0.01, ***P < 0.001 vs. untreated cells). 

In order to examine into more detail the specificity of the effect of EFV, we also 

assessed the expression of LONP1 in Hep3B cells treated for 24 h with clinically 

relevant concentrations of each drug and compared the effect to that induced by EFV 

25 µM. In contrast to EFV that produced a significant increase as expected, none of the 

newer antiretrovirals altered the expression of LONP1 (Fig.IV.36). 
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Figure IV.36. Effect of newer antiretroviral drugs (DRV, RAL and RPV) on LONP1 expression in hepatic 

cells. Representative WB images and histograms expressing quantification of protein expression in 

total cell extracts after 24 h of treatment with increasing concentrations of each drug, vehicles (MeOH 

or DMSO) or EFV 25 μM. Data represent mean ± SEM, n = 4, and were calculated as % of control 

(untreated cells considered 100%) and analysed by Student’s t-test (*P < 0.05, **P < 0.01 for EFV vs. 

MeOH). 
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6.2. Purine analogues ABC and ddI 

NRTIs are essential components of HIV therapy with well-documented long-term 

mitochondrial toxicity in hepatic cells. We evaluated the acute effects of clinically 

relevant concentrations of the widely used NRTIs (ABC and ddI) on mitochondrial 

function after 1 h of treatment. The purine analogues ABC and ddI produced an 

immediate and concentration-dependent reduction of ΔΨm in Hep3B cells (Fig.IV.37). 

While ddI produced a profound reduction of ΔΨm at all the concentrations evaluated, 

ABC influenced this parameter, but to a lesser extent, reaching statistical significance 

only at the highest concentration. 

 
Figure IV.37. Analysis of ΔΨm in Hep3B cells treated with increasing concentrations of the purine 

analogues ABC and ddI. ΔΨm was assessed by measuring TMRM fluorescence after 1 h of treatment 

with increasing concentrations of (A) ABC and (B) ddI. Data represent mean + SEM, n = 5, and were 

calculated as % of control (untreated cells considered 100%) and analysed by Student’s t-test (**P < 

0.01, ***P < 0.001 vs. vehicle). 

Secondly, we studied the effect of ABC and ddI on LONP1 expression in Hep3B cells. 

Purine analogues did not alter the expression of LONP1 after 24 h of treatment 

(Fig.IV.38).  
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Figure IV.38. Effect of ABC and ddI on LONP1 expression. Representative WB image and histogram 

expressing quantification of protein expression in total cell extracts in Hep3B cells treated for 24 h 

with increasing concentrations of ABC or ddI, vehicles (H2O or MeOH) or EFV 25. Data represent mean 

± SEM, n = 6, and were calculated as % of control (untreated cells considered 100%) and analysed by 

Student’s t-test (*P < 0.05 for EFV vs. MeOH).  

6.3. Analysis of LONP1 expression with LPV and RTV 

Our group has already reported that LPV and RTV, two widely used PI in HIV therapy, 

induce ER stress without evident mitotoxicity in Hep3B cells (Apostolova N. et al., 

2013). In order to study the effect of these drugs on LONP1 expression, cells were 

treated for 24 h with increasing concentrations of LPV or RTV, EFV 25 µM or TG 2 µM. 

As can be seen in Fig.IV.39, LPV produced a concentration-dependent increase of 

LONP1 protein and gene expression, similar to that produced by EFV and TG, whereas 

RTV lacked any effect.  
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Figure IV.39. Effect of LPV and RTV on LONP1 expression. Hep3B cells were treated for 24 h with 

increasing concentrations of LPV or RTV, vehicles (MeOH or DMSO), EFV 25 μM or TG 2 μM. (A) 

Representative WB image and histogram expressing quantification of LONP1 in whole cell protein 

extracts. (B) Quantitative RT-PCR analysis of LONP1 expression. Data represent mean ± SEM, n = 4, 

and were calculated as % of control (untreated cells considered 100%) and analysed by Student’s t-

test (*P < 0.05, **P < 0.01 for EFV and LPV vs. MeOH and ##P < 0.01, ###P < 0.001 for TG vs. DMSO). 

7. Analysis of extramitochondrial location of LONP1 

Having observed that LONP1 presence in the extramitochondrial fraction increases 

following EFV treatment (Fig.IV.22), we sought to analyse its intracellular location.  

7.1. Analysis of LONP1 presence in mitochondria and ER 

As stated previously, the activation of LONP1 is thought to be an adaptive mechanism 

in both oxidative and ER stress. For this reason, firstly, we wanted to study the 

presence of LONP1 in mitochondria and ER. We performed double-staining 

immunocytochemistry experiments by confocal fluorescence microscopy using the 

chaperone Calnexin as a protein marker for ER and TOM20 for mitochondria. On the 

one hand, confocal microscopy analysis for LONP1 and TOM20 revealed an increased 
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overlapping between these two signals in Hep3B cells treated with EFV 10 and 25 µM, 

while a decrease was observed in cells treated with TG and no changes were produced 

with Rot and CCCP (Fig.IV.40). On the other hand, colocalization analysis between the 

LONP1 signal and the ER revealed an increased, concentration-dependent overlapping 

in cells exposed to EFV, while TG induced a significant decrease, and no changes were 

observed with Rot and CCCP (Fig.IV.41). 
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Figure IV.40. Analysis of LONP1 presence in mitochondria by confocal microscopy. Hep3B cells were 

treated for 24 h with increasing concentrations of EFV, vehicles (MeOH or DMSO), TG 2 μM, Rot 25 

μM or CCCP 10 μM, and stained with Hoechst 33342 (blue, nuclei), anti-TOM20 (red, mitochondria) 

and anti-LONP1 (green) antibodies. (A) Representative confocal microscopy images (63x with 3x 

optical zoom) and (B) histogram showing the index of correlation between LONP1 and mitochondria. 

Data represent mean ± SEM, n = 3, and were analysed by Student’s t-test (*P < 0.05, ***P < 0.001 for 

EFV vs. MeOH and ##P < 0.01 for TG vs. DMSO). 
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Figure IV.41. Analysis of LONP1 presence in ER by confocal microscopy. Hep3B cells were treated for 

24 h with increasing concentrations of EFV, vehicles (MeOH or DMSO), TG 2 μM, Rot 25 μM or CCCP 10 

μM, and stained with Hoechst 33342 (blue, nuclei), anti-Calnexin (red, ER) and anti-LONP1 (green) 

antibodies. (A) Representative confocal microscopy images (63x with 3x optical zoom) and (B) 

histogram showing the index of correlation between LONP1 and Calnexin. Data represent mean ± 

SEM, n = 3, and were analysed by Student’s t-test (**P < 0.01, ***P < 0.001 for EFV vs. MeOH and ###P 

< 0.001 for TG vs. DMSO). 

7.2. Assessment of the purity of different cell fractions 

LONP1 presence in mitochondria is depleted under dual ER stress/mitochondrial 

dysfunction such as that induced by EFV (Fig.IV.22) while its presence in 

extramitochondrial location (cytosol and ER) is increased (Fig.IV.22 and Fig.IV.41). 

These results and knowing that Calnexin itself is considered a MAMs protein, made us 

speculate about LONP1´s location in MAMs. In order to assess this possibility, we next 

obtained subcellular fractions (crude mitochondria, ER, cytosol and MAMs) of Hep3B 

cells treated with EFV, TG or CCCP and explored the presence of several marker 

proteins. The grade of purity of the samples was assessed by studying the abundance 

of specific proteins in the untreated cell extracts (Fig.IV.42) and the obtained results 

were similar to those reported elsewhere (Wieckowski M.R. et al., 2009).  While Porin, 

a MAMs protein was detected both in crude mitochondria and MAMs fractions, MAMs 

lacked Cytochrome c, a MM protein, as expected. Also, the OMM protein TOM20 was 

especially detected in crude mitochondria and a small amount could also be found in 

MAMs fraction. The mitochondrial protein and reported MAMs component FACL4 was 
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highly abundant in crude mitochondria and MAMs, but was also detected in the ER 

and the cytosol. Virtually all LONP1 was located in the mitochondria, as anticipated 

(Fig.IV.42).  

 

Figure IV.42. Analysis of the purity of different cell fractions (mitochondrial, ER, cytosolic and MAMs) 

in untreated Hep3B cells. Representative WB image showing the expression of several mitochondrial 

(Porin, Cytochrome c, TOM20, LONP1), ER (IP3R3), cytosolic (Tubulin) and MAMs (FACL4, Grp75) 

proteins in basal conditions.  

7.3. Protein analysis of LONP1, Grp75 and PTPIP51 in cytosolic, ER, 

mitochondrial and MAMs fraction 

Subsequently, we compared the presence of two mitochondrial proteins recognized as 

MAMs members (Grp75 and PTPIP51) under different pharmacological treatments and 

contrasted this with the expression of LONP1 (Fig.IV.43). PTPIP51 was detected only in 

the crude mitochondria fraction, while EFV induced a major increment in its 

expression, in accordance with the experiments using whole cell extracts (Fig.IV.20A). 

Grp75 was present in all four fractions, as shown in Fig.IV.43, and EFV increased its 

presence notably in the cytosol, ER and MAMs. Interestingly, the pattern of LONP1 

expression was very similar to that of Grp75, pointing to the possibility that LONP1 is 

itself a MAMs protein whose presence in MAMs is greatly incremented under 

combined ER/mitochondrial stress. 
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Figure IV.43. WB analysis of LONP1, Grp75 and PTPIP51 in cytosolic, ER, mitochondrial and MAMs 

fractions obtained from Hep3B cells treated for 24 h with EFV 25 µM, TG 2 μM or CCCP 10 μM. 

Ponceau staining of proteins was used as a loading control to normalize the results. 
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The current pharmacological approach for treatment of HIV infection, cART, has 

significantly prolonged the survival of HIV-infected people in developed countries, 

transforming AIDS into a chronic illness. Compared to previous combined regimens, 

current options are associated with increased viral suppression and lower rates of 

treatment discontinuation due to their improved convenience and tolerability. 

However, some of the agents used in this treatment have also been responsible for the 

emergence and development of side effects, some of which can be severe. This, 

together with the fact that the treatment once started has to be taken throughout life, 

has generated a growing interest in the long-term adverse effects and in the 

mechanisms responsible for them. EFV is among the most widely used drugs in this 

therapeutic combination. Although generally considered safe, there is a concern about 

the side effects induced by EFV-containing therapies, such as rash, neuropsychiatric 

disturbances, lipid and metabolic alterations and hepatotoxicity (Tashima K.T. et al., 

2003; Gutiérrez F. et al., 2005; Maggiolo F., 2009; Loko M.A. et al., 2011; Echenique I.A. 

and Rich J.D., 2013; Patil R. et al., 2015). In particular, a positive association between 

plasma concentrations of EFV and the appearance of liver side effects is logical and 

well documented (Kappelhoff B.S. et al., 2005; Brück S. et al., 2008; Pandit A. et al., 

2012; Echenique I.A. and Rich J.D., 2013; Patil R. et al., 2015). In addition, there is a 

higher risk of this adverse effect in patients with already elevated liver enzymes levels 

and/or coinfected with HBV and/or HCV (Brück S. et al., 2008; Núñez M., 2010; 

Hernandez M.D. and Sherman K.E., 2011; Joshi D. et al., 2011; Healy S.A. et al., 2013). 

Due to the properties of cART and the interindividual variability among patients, it is 

very difficult to assess the adverse effects induced by each drug separately; for this 

reason, in vitro studies have become a key tool. Although an in vitro cellular model, as 

the one employed in the present study, cannot fully reflect the hepatic alterations 

induced by the drug in a living organism and particularly those related to systemic 

effects, cultured cells can provide relevant knowledge regarding specific drug-induced 

subcellular responses and provide a starting point for in vivo studies or clinical 

approximations. In this work, the experimental parameters used were as similar as 

possible to the physiological conditions. The human hepatoma cell line Hep3B was 

chosen due to the fact that it has an active P450 system (Zhu X.H. et al., 2007), 
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necessary for the metabolism of EFV. To determine if the observed effects were 

dependent on the cell line used, some experiments were performed using HepaRG 

cells, terminally differentiated hepatic cells derived from a human hepatic progenitor 

cell line with many characteristics of primary human hepatocytes. In some 

experiments, we also used the human glioma cell line U-251MG, human hepatic 

stellate cells (HSCs) LX2 and U937 human monocytes, in which our group had 

previously studied the effect of EFV. The concentrations of EFV used (10, 25 and 50 

μM) were chosen taking into account the significant interindividual variability 

described for its pharmacokinetics. The recommended daily dose of EFV for adults 

(600 mg) usually results in a Cmax of 12.9 ± 3.7 µM and a Cmin of 5.6 ± 3.2 µM in plasma 

(Staszewski S. et al., 1999), although several clinical studies have shown that 20%-40% 

of patients exhibit higher levels, even up to 73.6 μM (Burger D. et al., 2006; Carr D.F. et 

al., 2010; Gounden V. et al., 2010). In addition, analysis of plasma EFV concentration of 

843 patients included in the EuroSIDA trial revealed that 14.1% of them had 

supratherapeutic plasma concentrations and that the highest EFV concentration 

recorded was 80.75 μM (van Luin M. et al., 2009). In addition, there are numerous 

publications that describe interactions with certain drugs coadministered during cART, 

which result in a significant increase in EFV Cmax (Sustiva Technical Data Sheet, 

endorsed by the European Medicines Agency, 2012). It has also been described that 

patients with HIV-HCV coinfections present up to twice the plasma concentrations 

present in patients infected with HIV alone (Dominguez S. et al., 2010). 

In vitro studies have attributed a hepatotoxic action to EFV that involves (i) 

interference with mitochondrial function resembling that induced by the 

pharmacological inhibitor of mitochondrial complex I rotenone (Rot) and (ii) presence 

of ER stress with activation of UPR, manifestations triggered by the classic ER stressor 

thapsigargin (TG) (Apostolova N. et al., 2010; 2011c; Blas-García A. et al., 2010; 

Apostolova N. et al., 2013). However, several studies have reported differences in the 

actions of the aforementioned compounds that imply specificity for EFV. In this 

context, it has seen that TG not only affects the ER but also undermines mitochondrial 

function in rat liver cells (Korge P. and Weiss J.N., 1999; Hom J.R. et al., 2007), which is 

confirmed by the present findings. In contrast, Rot does not mimic the actions of EFV 
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or TG regarding ER stress/UPR in hepatic cells (Apostolova N. et al., 2013). 

In this work, firstly, we wished to investigate the implication of the mitochondria in 

EFV-induced effects by evaluating the action of this drug (24 h-treatment) on cells 

significantly depleted of functional mitochondria (“rho⁰” throughout the manuscript), 

and comparing it to the effect of Rot and TG on the same model. Rho⁰ cells are 

respiration-deficient and display an aberrant mitochondrial phenotype with distorted 

cristae. It is evident that rho⁰ cells are an artificial cellular model of non-respiring 

mitochondria; however, despite certain limitations, rho⁰ cells are still used as a robust 

approach to generate a respiration-deficient model in culture, which enables the 

evaluation of the mitochondrial dependence or independence of the interference 

exerted by different stimuli including drugs. Of note, quantitative PCR analysis 

revealed that 30% of the mtDNA remained meaning that the established phenotype 

was not fully “rho⁰”. Depletion of mtDNA is a characteristic of the so-called 

mitochondrial diseases, although the amount of remaining mtDNA and its correlation 

with the severity of these diseases present great variations among patients. A 

minimum critical proportion of mtDNAs is necessary (a threshold level) before 

biochemical defects and tissue dysfunction become apparent and it varies in the range 

of 60-90% mutant to wild-type mtDNA. Although the threshold level can partly explain 

the disease phenotypes and clinical severity observed in patients, an exact correlation 

is lacking. Mitochondrial diseases with a major hepatic component (hepatocerebral 

mtDNA depletion syndromes or isolated hepatic disease) display a significant decrease 

in liver mtDNA content with most cases usually presenting 20% or less mtDNA 

compared to age-matched healthy control individuals (Dimmock D.P. et al., 2008; 

Müller-Höcker J. et al., 2011). It is generally assumed that in mtDNA-depleted cells, the 

reduced abundance of mtDNA-encoded proteins mirrors the replicative failure of 

mtDNA. However, liver mitochondrial proteins are soon degraded when they are not 

properly assembled; therefore, the expression of mtDNA-encoded proteins may be 

relatively low compared to the depletion in mtDNA, which seems to be the case in our 

model. Moreover, the number of mtDNA copies relative to nDNA does not always 

reflect the degree of mitochondrial dysfunction; therefore, functional assays such as 

measurements of the activity of the specific ETC complexes or evaluation of the overall 
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respiration deficit are needed. The depletion of mtDNA-encoded proteins in the 

present work was confirmed by studying the protein expression of two mtDNA-

encoded proteins, subunit II of cytochrome c oxidase (complex IV) and subunit ND1 of 

complex I; rho⁰ cells, however, maintain an intact nuclear genome, which conferred a 

comparable protein expression of the β subunit of complex V, β-actin and Porin in the 

parental and mitochondrial DNA-depleted cells. The presence of mitochondria with 

severely diminished respiration resulted in a differential cellular response to EFV in all 

the parameters studied. When exposed to EFV, rho⁰ cells did not display a significant 

increase in ROS generation, and the increase in the mitochondrial signal (NAO 

fluorescence) was absent in cells treated with EFV 25 μM and only visible in those 

treated with 50 μM, presumably due to the crossing of a threshold in the stress 

response. Such a threshold may also account for the effect observed regarding ΔΨm 

where, interestingly, exposure to EFV induced a slightly less evident reduction in rho⁰ 

cells than in WT, with the exception of treatment with 50 μM. Importantly, the 

deleterious effect of EFV 50 μM on cell number, its triggering of cell cycle arrest and 

induction of cell death (via apoptosis) was, once again, largely ameliorated in rho⁰ 

cells. Fluorescence microscopy experiments confirmed that the cell morphology and 

specifically mitochondrial appearance were less modified in cells lacking functional 

mitochondria. Many cell types have the ability to maintain ΔΨm under condition of 

diminished mitochondrial respiration through the reverse activity of ATP synthase, and 

it was the case of our model. While rho⁰ cells under basal conditions displayed only a 

slightly lower ΔΨm than WT cells, about 50% reduction was observed when glycolysis 

was inhibited.  

TG induced similar changes as EFV in WT cells with the exception of ΔΨm. We found 

not a decrease but an increase in it, which is in keeping with the results of other 

studies showing a lack of ΔΨm dissipation during ER stress triggered by TG (Zhdanov 

A.V. et al., 2011; Jipu R. et al., 2012). However, to our knowledge ours is the first study 

to address the mitochondrial action of TG in cells with greatly diminished respiration. 

As with EFV, the overall effect of TG on mitochondria and cell viability was largely 

reduced in rho⁰ cells. However, the effect of TG on cell survival in respiration-depleted 

cells is more complex as these cells exhibit a higher percentage of necrotic/damaged 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhdanov%20AV%5BAuthor%5D&cauthor=true&cauthor_uid=20820851
https://www.ncbi.nlm.nih.gov/pubmed/?term=Jipu%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23077953
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(but not apoptotic) cells compared to WT. 

The effects of Rot on WT cells were similar to those of EFV, except for that concerning 

the nuclear area (Hoechst fluorescence), which in the case of Rot was found to 

increase. Diminished nuclear area (chromatin condensation and nuclear 

fragmentation) is a hallmark of apoptosis, and the precise relevance of this slight 

increment in Rot-treated cells is unknown. An increase in nuclear area after treatment 

with Rot was also present in rho⁰ cells but it was higher than in WT cells. Another 

singularity of Rot treatment was observed in the cell cycle analysis. Unlike EFV and TG, 

which altered the cell cycle in rho+ but not rho⁰ cells, Rot produced a similar alteration 

in both populations. These effects point to the presence of a mitochondria-

independent action of Rot in this cell line used, which may also be concentration 

related. Rot at concentrations similar to those employed in the present work has been 

shown to arrest mammalian cells in metaphase by binding directly to tubulin and 

preventing microtubule assembly (Meisner H.M. and Sorensen L., 1966). Alternatively, 

the interference with the cell cycle may be due to the cancerous nature of the cell line 

in question, as completion of the cell division in cells with a high metabolic drive and 

high proliferation rate, such as cancer cells, is particularly sensitive to inhibition of 

mitochondrial function. This result is related to the fact that in a similar manner to TG, 

the percentage of Ann−/PI+ cells in the Rot-treated samples is enhanced in rho⁰ cells. In 

summary, the stress response triggered by clinical concentrations of EFV is diminished 

in cells lacking functional mitochondria and this effect shows certain differences when 

compared to that elicited by other cytotoxic compounds that compromise 

mitochondria. 

Mitochondria play a pivotal role in the development of drug-induced toxicity. The fact 

that the deleterious effects of drugs can be alleviated in cells with diminished 

mitochondrial respiration opens a new horizon for understanding mitochondria’s 

involvement in cellular survival. It is tempting to speculate on the concept of a mtDNA 

threshold and the level of drug-induced or mediated injury. This idea is endorsed by 

the data obtained in a rho subline of human hepatoma SK-Hep-1 cells showing 

resistance to bile acid-induced concentration-dependent activation of apoptosis 

(Marin J.J. et al., 2013). Similar phenomena have been described, such as a protective 



Mitochondria and ER interplay at the core of EFV-induced hepatic effects 

154 
 

effect of membrane depolarization of isolated rat liver mitochondria, which was shown 

to attenuate permeability transition pore opening and oxidant production induced by 

tert-butyl hydroperoxide (Aronis A. et al., 2002). Effects such as these, which involve 

alterations in basal mitochondrial function, may account for the idiosyncratic hepatic 

reactions triggered by anti-HIV drugs and may also explain the different degrees of 

susceptibility to liver damage seen in patients undergoing antiretroviral therapy. In the 

case of EFV, its mitochondrial effects in the clinic may be directly affected by several 

factors. Firstly, the concomitant administration of other mitochondriotropic drugs may 

have a crucial role in the effects of EFV on mitochondria. Indeed, EFV is never 

administered individually but as an element within cART together with two NRTIs; 

importantly, these drugs are known to possess mitotoxic potential due to their ability 

to inhibit mitochondrial DNA polymerase γ (Pol-γ hypothesis) and therefore their 

administration may generate a different type of mitochondria with a distinct 

susceptibility to EFV. Secondly, the intrinsic genetic variability such as that induced by 

the mtDNA haplogroup may account for the drug-induced mitotoxicity both under 

basal or stress conditions. Mitochondrial haplogroups and subhaplogroups have been 

associated with certain toxicities of NRTI drugs (Hendrickson S.L. et al., 2009; Hulgan T. 

et al., 2011; Kampira E. et al., 2013); however, to the best of our knowledge, no such 

correlations have been made with EFV. In all, a very intriguing picture is emerging of 

patient-specific mitochondrial function as a factor that influences the mitotoxic 

potential of anti-HIV drugs. 

In order to understand the role of mitochondria in the ER stress induced by EFV, we 

studied the mitochondrial dynamics that depends among other processes on the 

interaction between these organelles. Regulation of mitochondrial 

dynamics/morphology is paramount for proper mitochondrial functioning (Vannuvel K. 

et al., 2013). While mitochondrial fusion facilitates the exchange of vital metabolites 

and mtDNA between different mitochondria to ensure their functional maintenance 

(Nakada K. et al., 2009), mitochondrial fission is required to ensure biogenesis, to 

respond to changes in local energy demands and to separate/eliminate damaged or 

old mitochondria through a selective autophagic process called mitophagy (Archer S.L., 

2013). Mitochondrial fusion and fission are tightly controlled processes that require 
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several highly evolutionary conserved GTPases: mitofusins, anchored in the OMM 

(Santel A. and Fuller M.T., 2001); OPA1, located in the IMM (Smirnova E. et al., 1998); 

and Drp1 (Otera H. and Mihara K., 2011). During the import of OPA1 into the MM, the 

MTS domain is cleaved to form the mature OPA1 isoform (l-OPA1), which undergoes 

further processing events generating shorter isoforms (s-OPA1) (Ishihara N. et al., 

2006). L-isoform has a mitochondrial fusion-stimulating activity, a feature that is lost 

following proteolytic cleavage into the s-isoform (Ishihara N. et al., 2006). There is 

evidence that mitochondrial dysfunction, characterized by low mitochondrial ATP 

production and ΔΨm dissipation, is associated with loss of the long isoform (Vannuvel 

K. et al., 2013). This is in line with our results, which demonstrate that 

mitochondrial/ER stressors reduce the l-OPA1/s-OPA1 ratio, which is particularly 

evident under the conditions that cause massive ΔΨm loss. The master regulator of 

mitochondrial division in most eukaryotic organisms, Drp1, is mostly cytosolic, with 

only approximately 3% associated to the OMM (Smirnova E. et al., 2001). In order to 

promote fission, Drp1 is recruited to mitochondria, where it oligomerizes around the 

mitochondrion, thus constricting it. Many studies have failed to report an increase in 

fission through the alteration of protein levels of Drp1, which is in line with the results 

shown here. On the contrary, it seems that post-translational modifications target 

Drp1 to mitochondria and enable it to mediate fission. One such regulation is 

phosphorylation at Ser616, which occurs through cyclin B1/CDK1 (Taguchi N. et al., 

2007) and triggers mitotic Drp1-dependent mitochondrial fission. Under oxidative 

stress conditions, it has been seen that Ser579 in human Drp1 isoform 3 (corresponding 

to Ser616 in the human Drp1 isoform 1) is phosphorylated, leading to mitochondrial 

fragmentation and impaired mitochondrial function (Qi X. et al., 2011). Since this 

modification does not directly affect its GTPase activity, the increase in fission may be 

mediated by alterations in Drp1 interactions with other proteins. In the present model, 

the dual effect of ER stress/mitochondrial dysfunction led to an increase in p-Drp1 

expression, its colocalization with mitochondria, as well as in the expression of the 

recruitment protein Fis1, effects that were not achieved with the rest of the stimuli 

(except TG that only increased Fis1 expression). In conclusion, it is crucial to 

understand that different stimuli which produce ER stress and/or different types of 

mitochondrial dysfunction regulate markers of mitochondrial dynamics in a differential 
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way. These results reveal that EFV induce mitochondrial fission and decrease fusion in 

hepatic cells, and it is in accordance with a recent in vitro study in human T lymphocyte 

cells incubated with plasma, which show that EFV-containing therapy leads to a 

decrease in mitochondrial fusion (Morén C. et al., 2015). 

In recent years, it has become evident that mitochondria and ER are spatially 

connected through specific and tightly regulated contact sites, MAMs. The 

composition and function of these structures are still far from being understood; 

however, current knowledge suggests that MAMs enable a two-way supply of 

fundamental metabolites/messengers, such as lipids or Ca2+, while modulating the 

bioenergetic fate of the cell (Giorgi C. et al., 2009; van Vliet A.R. et al., 2014). Many 

proteins have been shown to participate in MAMs, and it is evident that the 

composition of these structures adapts in response to multiple internal and external 

stimuli (Bui M. et al., 2010). One of the most widely described complexes involves 

VDAC1 (Porin) and IP3R, which physically interact through the chaperone Grp75 

(Szabadkai G. et al., 2006). Another MAMs protein partner that regulate Ca2+ 

homeostasis is that formed by VAP B/C and PTPIP51 (De Vos K.J. et al., 2012). In 

addition, abundant evidence points to the fact that the dynamics of both ER and 

mitochondria depend on the formation and dissolution of ER–mitochondrial contacts 

(Scorrano L., 2013). In line with this, several studies have shown that ER tubule wraps 

around mitochondria and recruits Drp1 locally to form a tight ring around the OMM 

and constrict it at that site (Friedman J.R. et al., 2011). Also, Mfn2 - present at both the 

ER and mitochondrial surface - (de Brito O.M. and Scorrano L., 2008), not only enables 

intermitochondrial contacts, but also regulates ER shape and ER-mitochondrial 

tethering (Chen H. et al., 2003; De Brito O.M. and Scorrano L., 2008; Munoz J.P. et al., 

2013). In this regard, we have observed that cells under combined mitochondrial/ER 

stress (EFV treatment) tend to exhibit a slightly increased expression of p-Drp1 and 

Mfn2 in the cytosolic fraction. Intriguingly, a clear decrease was seen in cells treated 

with Rot, TG and CCCP. These results confirm that mitochondrial dynamics is regulated 

in a differential way by the stimuli used. In addition, we have seen that VAP B/C-

PTPIP51 and Porin-Grp75 complexes are enhanced with EFV, while no increase or a 

significant decrease were observed with the rest of the stimuli (TG, Rot and CCCP). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Mor%C3%A9n%20C%5BAuthor%5D&cauthor=true&cauthor_uid=25921514
https://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Vos%20KJ%5BAuthor%5D&cauthor=true&cauthor_uid=22131369
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Also, the mitochondrial protein PTPIP51 displayed a major enhancement in EFV-

exposed cells, an effect that was not evident with the rest of the stressors. In the case 

of VAP B/C protein expression, the effect was much less pronounced with EFV 

treatment while TG also induced a slight increment. These data are in line with the 

finding that EFV treatment increases cytosolic content of Grp75 and lightly decreases 

its mitochondrial content. In contrast, the other stimuli did not diminish the levels of 

Grp75 inside mitochondria. Therefore, these data together point to an enhancement 

of MAMs in cells exposed to combined ER stress/mitochondrial dysfunction. 

Very importantly, the fact that EFV exerts an effect on both mitochondria and ER 

creates a new scenario for understanding liver toxicity. The induction of ER stress and 

UPR in EFV-treated hepatic cells is dependent on mitochondria as several markers of 

this stress response (increased expression of protein markers such as Grp78 and CHOP, 

and higher content of ER) were found to be diminished in Hep3B cells lacking 

functional mitochondria (Apostolova N. et al., 2013). In order to further link the two 

effects of EFV (mitochondria and ER), we analysed the expression of LONP1, whose 

activation is thought to be an adaptive mechanism in both oxidative and ER stress. The 

present work is the first to describe the upregulation of this protein by EFV. This is 

relevant, as an upregulation of LONP1 has been associated with HIV treatment, in 

particular with the development of lipodystrophy in patients receiving cART (Pinti M. 

et al., 2010), but has not been related to EFV until now. As expected, in line with the 

rest of the mitochondrial parameters evaluated, EFV-triggered LONP1 upregulation 

was absent in respiration-deficient cells, which supports the involvement of 

mitochondria in the onset of EFV-induced ER stress. We also found an upregulation of 

LONP1 gene and protein expression with the other three stimuli, although to varying 

extents: while the increase in the case of Rot and CCCP was modest, that induced by 

TG was remarkable. Of note, the upregulation of LONP1 induced by all four stimuli in 

Hep3B cells was also seen in human glial cells. 

LONP1 is located in the MM, and has been implicated in numerous processes, 

including degradation of oxidatively damaged mitochondrial proteins (Bota D.A. and 

Davies K.J., 2002), assembly of ETC complexes (Fukuda R. et al., 2007) and regulation 

of mtDNA maintenance, transcription and replication (Matsushima Y. et al., 2010). 
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Although the role of LONP1 in protein quality control is one of its best demostrated 

physiological functions, interestingly, it does not appear to be required for mediating 

the UPRmt (Fig.V.1). In cultured mammalian cells and worms, ClpXP plays a central role 

in controlling and responding to the UPRmt (Zhao Q. et al., 2002; Aldridge J.E. et al., 

2007; Haynes C.M. et al., 2007; 2010; Haynes C.M. and Ron D., 2010). By contrast, 

LONP1 does not appear to be an essential participant in this stress response pathway 

(Yoneda T. et al., 2004; Horibe T. and Hoogenraad N.J., 2007; Aldridge J.E. et al., 2007). 

In cultured mammalian cells, the accumulation of an aggregation-prone protein within 

the MM leads to the transcriptional upregulation of ClpP (Zhao Q. et al., 2002; Aldridge 

J.E. et al., 2007; Horibe T. and Hoogenraad N.J., 2007). The CLPP gene carries UPRmt 

elements (MURE1 and MURE2) in its promoter region, whereas the LONP1 gene lacks 

these promoter sequences. In C. elegans, studies show that ClpXP is required to 

initiate the UPRmt stress response pathway leading to the transcriptional upregulation 

of UPRmt genes in the nucleus such as ClpP and the mitochondrial DnaJ-like protein 

Tid1 (Haynes C.M. et al., 2007; 2010; Haynes C.M. and Ron D., 2010). By contrast, 

LONP1 does not play a notable role in UPRmt, as knocking down the worm homolog 

has no effect on this cell stress response pathway (Yoneda T. et al., 2004). 

Although LONP1 does not appear to have a major function in the UPRmt, its role in the 

ER stress-induced UPR (UPRER) has been suggested (Fig.V.1). LONP1 expression is 

upregulated in response to protein misfolding or increased protein burden in the ER, 

induced by agents that activate the UPRER such as tunicamycin (a glycosylation 

inhibitor), TG (as we have seen in this work) or brefeldin A (an inducer of retrograde 

traffic of Golgi proteins to the ER) (Hori O. et al., 2002). Results show that UPRER-

stimulated LONP1 overexpression is dependent on PERK, which is specifically activated 

by UPRER (Hori O. et al., 2002). In addition, hypoxia, which also induces ER stress, has 

been shown to upregulate LONP1. When O2 availability is low, HIF-1α binds to hypoxia 

response elements (HRE) in the promoter of the LONP1 gene leading to LONP1 

upregulation and Cox4-1 degradation (Fukuda R. et al., 2007). Although the UPRER is 

traditionally viewed as a signaling pathway responsible for regulating ER proteostasis, 

it is becoming increasingly clear that PERK can also regulate mitochondrial proteostasis 

and function in response to pathologic insults that induce ER stress (Han J. et al., 2013; 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhao%20Q%5BAuthor%5D&cauthor=true&cauthor_uid=12198143
https://www.ncbi.nlm.nih.gov/pubmed/?term=Aldridge%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=17849004
https://www.ncbi.nlm.nih.gov/pubmed/?term=Haynes%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=17925224
https://www.ncbi.nlm.nih.gov/pubmed/?term=Haynes%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=21048161
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ron%20D%5BAuthor%5D&cauthor=true&cauthor_uid=21048161
https://www.ncbi.nlm.nih.gov/pubmed/?term=Yoneda%20T%5BAuthor%5D&cauthor=true&cauthor_uid=15280428
https://www.ncbi.nlm.nih.gov/pubmed/?term=Horibe%20T%5BAuthor%5D&cauthor=true&cauthor_uid=17848986
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hoogenraad%20NJ%5BAuthor%5D&cauthor=true&cauthor_uid=17848986
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhao%20Q%5BAuthor%5D&cauthor=true&cauthor_uid=12198143
https://www.ncbi.nlm.nih.gov/pubmed/?term=Horibe%20T%5BAuthor%5D&cauthor=true&cauthor_uid=17848986
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hoogenraad%20NJ%5BAuthor%5D&cauthor=true&cauthor_uid=17848986
https://www.ncbi.nlm.nih.gov/pubmed/?term=Haynes%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=17925224
https://www.ncbi.nlm.nih.gov/pubmed/?term=Haynes%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=21048161
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ron%20D%5BAuthor%5D&cauthor=true&cauthor_uid=21048161
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Rainbolt T.K. et al., 2014). It is well known that PERK is enriched in MAMs, localizing 

this ER stress sensor to ER-mitochondrial contact sites (Verfaillie T. et al., 2012; Liu 

Z.W. et al., 2013). Studies show that PERK-deficient cells display defects in regulating 

ETC, abnormal increase in ROS and defects in mtDNA biogenesis (Rainbolt T.K. et al., 

2014). Regulation of intrinsic apoptosis is also impaired in PERK-deficient cells. In 

addition, PERK activation induces the downstream expression of mitochondrial quality 

control factors such as LONP1 (Hori O. et al., 2002; Venkatesh S. et al., 2012; Han J. et 

al., 2013) and it has been seen that this process requires the activity of ATF4. This 

transcription factor induces the expression of cellular proteostasis genes such as CHOP 

(Zinszner H. et al., 1998). In line with this, we have observed that CHOP does not seem 

to be involved in the regulation of LONP1 expression, but it seems to be controlled by 

NF-κB, as suggested by other studies (Pinti M. et al., 2011). Our group has recently 

reported that EFV (similarly to TG) increase cytosolic Ca2+ concentration in hepatic cells 

(Apostolova N. et al., 2013) and in this context, Ca2+ seems to be also involved in the 

upregulation of LONP1 under these treatments. 

 
Figure V.1. Regulation of LONP1 in the ER and mitochondrial unfolded protein responses. On the one 

hand, the consequences of the unfolded protein response in the ER (UPRER). The accumulation of 
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unfolded or misfolded proteins in the ER lumen activates PERK which leads to the selective reduction 

of cytosolic protein synthesis, which includes proteins imported into mitochondria. The reduction in 

proteins imported into the MM may result in a stoichiometric imbalance of mitochondrial proteins 

that must assemble to form functional complexes. PERK activation also induces the expression of 

LONP1 through ATF4, but the transcription factors implicated remain to be identified. In addition, 

signals from the cytosol or the mitochondrion may transcriptionally upregulate the LONP1 gene by an 

unknown mechanism. Alternatively, accumulation of unfolded proteins in the ER may activate LONP1 

expression by binding to a putative UPRE (unfolded protein response element), which has yet to be 

identified. Hypoxia is a physiological inducer of ER stress that has been shown to upregulate LONP1 

expression by the activation of HIF-1α, which binds to HREs (hypoxia response element) within the 

promoter of LONP1. Finally, the resulting increase of LONP1 may function to re-establish 

mitochondrial homeostasis. On the other hand, the consequences of the unfolded protein response in 

the mitochondria (UPRmt). Accumulation of unfolded or misfolded proteins lead to the UPRmt, which 

is initiated by ClpXP-dependent degradation of protein substrates thereby generating peptides that 

are effluxed from the MM to the cytosol by the HAF-1 transporter located in IMM. These peptides 

activate transcription factors which, binding to MURE and CHOP sequences, upregulate the 

expression of UPRmt-related genes such as CLPP, but not LONP1. The increased expression of CLPP 

relieves mitochondrial stress and re-establishes mitochondrial homeostasis. Figure modified from 

Venkatesh S. et al., 2012. 

Abundant evidence demonstrates that mitochondria function in close collaboration 

with the ER, but precisely how this is affected by distinct pathophysiological conditions 

remains to be determined. On examining the role of LONP1 we have found that its 

content in the mitochondrion is depleted upon dual ER stress/mitochondrial 

dysfunction, while its extramitochondrial presence is increased. Having observed that 

LONP1 presence is increased in the cytosol and that this protease colocalize with the 

ER protein calnexin, which is considered a MAMs component, we speculated about 

LONP1’s location in MAMs. The analysis of subcellular fractions (cytosol, ER, 

mitochondria and MAMs) revealed that LONP1 is mainly present in mitochondria in 

basal conditions but, under ER stress and/or different types of mitochondrial 

dysfunction, it is present in all four fractions and notably in the cytosol, ER and MAMs 

with EFV treatment. In summary, surprisingly, LONP1 presence decreased in 

mitochondria in parallel with an increase in ER and MAMs under dual ER 

stress/mitochondrial dysfunction. This, however, is not the case when cells are 

exposed to classical mitotoxic stimuli such as Rot or CCCP, which underlines, once 
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more, the importance of the role of ER stress in this phenomenon. In addition, 

interestingly, the pattern of LONP1 expression was very similar to that of Grp75, 

pointing to the possibility that LONP1 is itself a MAMs protein whose presence in 

MAMs is greatly incremented in our model. The fact that the ER stress sensor PERK is 

enriched in MAMs and induces LONP1 expression, supports the novel function of 

LONP1 in the interconnection between mitochondrial dysfunction and ER stress. In 

addition, the evidence presented here is in line with a recent proteomic analysis of 

MAMs during RNA virus infection, which identified LONP1 as a mitochondrial antiviral-

signaling protein (MAVS)-interacting protein (Horner S.M. et al., 2015). MAVS, itself 

considered a MAMs component, is recognized as a crucial participant in the innate 

immune response to RNA virus infection in mammalian cells. The fact that LONP1 

regulation occurs in the presence of an antiretroviral drug, as shown by our results, 

significantly bolsters the findings of said study and opens a new and very promising 

route for research. 

There is a growing body of evidence that pinpoints LONP1 as a human stress protein 

whose levels increase after exposure to multiple independent stressors. In light of our 

results, it is tempting to speculate on LONP1´s location during these specific cellular 

insults. Moreover, LONP1 is regarded as MM protease hence its upregulation upon the 

mentioned stress stimuli would be assumed to enhance its canonical mitochondrial 

function. What exactly is its putative role in the MAMs is unknown and remains to be 

explored. 

Based on our results, we analysed the specificity of the LONP1 upregulation under dual 

ER stress/mitochondrial dysfunction studying the expression of another protein 

involved in the mitochondrial proteostasis, ClpX. Neither of the treatments altered the 

expression of this protease, while the expression of HSP90 chaperones was increased 

with both EFV and TG in hepatic cells. In this work we have also studied the role of 

LONP1 in the effects induced by EFV. Besides confirming the protective role of LONP1 

under oxidative stress, we have also seen that this protease could be involved in the 

autophagy regulation under dual ER/mitochondrial stress. These results are similar to 

that observed with the protease HTRA2 (localized in the IMS) whose loss in HeLa and 

murine cells results in ROS increase, higher frequency of mtDNA mutations, 
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accumulation of unfolded elements of ETC and OxPhos impairment (Moisoi N. et al., 

2009, Goo H.G. et al., 2013). Interestingly, HTRA2 proteolytic activity also contributes 

to regulate both basal and ER stress-induced autophagy activation (Li B. et al., 2010). It 

is known that beyond UPRmt, mitochondrial fusion and mitophagy provide additional 

levels of quality control in the mitochondrial stress response however, the connection 

between them remains unclear. The expression of unfolded proteins in the MM causes 

the accumulation of PINK1 on energetically healthy mitocondria in mammalian cells, 

resulting in mitophagy and subsequent reduction of unfolded protein load (Jin S.M. 

and Youle R.J., 2013). Also, PINK1 accumulation is greatly enhanced by the knockdown 

of the LONP1 protease. It suggests that the accumulation of unfolded proteins in 

mitochondria is a physiological trigger of mitophagy. In conclusion, our result suggests 

that LONP1 could be involved in the autophagy activation under dual ER/mitochondrial 

stress, pointing out the specificity and complexity of EFV’s actions. 

On the other hand, the primacy of EFV is being challenged by newer drugs that, 

although not significantly more effective at lowering viral load and restoring immune 

function, are claimed to have a better toxicological profile and to result, consequently, 

in greater patient tolerance and adherence, critical factors to the success of any ART in 

an age when HIV has become a lifelong illness. In accordance with this, we set out to 

study the expression of LONP1 in cultured hepatic cells exposed to short term 

treatment with clinically relevant concentrations of the newer antiretroviral drugs 

(RAL, DRV and RPV). Firstly, we analysed their mitochondrial toxicity and we observed 

that none altered mitochondrial function (superoxide production and ΔΨm were not 

significantly affected) in contrast to EFV. In addition, it has been seen that they do not 

alter protein expression of LC3-II and CHOP, in contrast to EFV (Blas-García A. et al., 

2014). In line with this, as expected, they did not increase the expression of LONP1 

either. The effect of the widely used NRTIs (ABC and ddI) on LONP1 expression was 

also studied in this work. These drugs are known to possess mitotoxic potential due to 

their ability to inhibit mitochondrial DNA Pol-γ (Martin J.L et al., 1994; Walker U.A. et 

al., 2002; Apostolova N. et al., 2011b). They did not alter LONP1, while they produced 

a reduction of ΔΨm, which underlines, once more, the importance of the role of ER 

stress in this phenomenon. It has been reported that the widely used PIs (LPV and RTV) 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Blas-Garc%C3%ADa%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25011651
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induce ER stress without evident mitotoxicity in Hep3B cells (Apostolova N. et al., 

2013). Our results show that LPV induced a concentration-dependent increase of 

LONP1 protein and gene expression, similar to that produced by EFV and TG. In 

summary, in contrast to EFV, neither of the antiretrovirals used increased the 

expression of LONP1, except LPV. These results support the involvement of ER stress in 

the upregulation of LONP1 in our model of dual ER stress/mitochondrial dysfunction. 

Alterations of LONP1 levels have been associated with HIV treatment (Pinti M. et al., 

2010), however, it has been difficult to attribute the effect observed on LONP1 

expression to a single drug, since cART is a very complex therapy. Pinti and colleagues 

have shown that NRTIs, and in particular stavudine, determine LONP1 upregulation in 

SW872 liposarcoma cells; this increase is caused by higher levels of ROS (Pinti M. et al., 

2010). To our knowledge, ours is the first study to assess the effect of these anti-HIV 

drugs on the expression of LONP1. 

Our results lead to several conclusions: firstly, the stress response triggered by clinical 

concentrations of EFV in hepatic cells is diminished in those lacking functional 

mitochondria. These findings (i) highlight the participation of this organelle in the 

effects induced by EFV on hepatic cells and (ii) reveal both similarities and differences 

when compared to the responses invoked by two other distinct mitochondrial 

stressors, pointing out the specificity and complexity of EFV’s actions. Secondly, 

mitochondrial dynamics and mitochondria/ER contact are differentially regulated upon 

different types of mitochondrial and ER stress. Thirdly, LONP1 is transcriptionally 

upregulated under these conditions; and, fourthly, and most importantly, LONP1 plays 

a role in the interorganellar crosstalk between the ER and mitochondria as a MAMs 

component itself (Fig.V.2). We believe that these findings contribute in a considerable 

way to the growing knowledge regarding mitochondria-ER inter-regulations. Indeed, 

we hope they are a starting point for a more comprehensive understating of the role 

of LONP1 under complex stressful conditions. Also, the effects of EFV described here 

may throw light on the hepatic stress induced by its clinical use. 
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Figure V.2. Mitochondria and ER interplay at the core of EFV-induced hepatic effects. The stress 

response (altered mitocondrial function and cell viability) triggered by EFV in hepatic cells is 

diminished in those lacking functional mitocondria (rho⁰ cells), which supports the participation of 

this organelle in the dual ER stress/mitochondrial dysfunction induced by EFV. In this context, our 

study reveals several findings: (1) EFV alters mitochondrial dynamics, induce mitochondrial fission 

(increasing Fis1, p-Drp1 and its translocation to mitochondria) and decrease fusion (decrease l-

OPA1/s-OPA1 ratio) in hepatic cells;  (2) EFV enhances mitochondria/ER interaction, as shown by 

increasing MAMs protein partners (VAP B/C-PTPIP51 and Porin-Grp75) and expression of them; and 

(3) EFV upregulates LONP1 expression, while its content in the mitochondrion is depleted upon dual 

ER stress/mitochondrial dysfunction, its extramitochondrial presence (ER and MAMs) is increased. 

This finding suggests that LONP1 plays a role in the interorganellar crosstalk between the ER and 

mitochondria as a MAMs component itself. The upregulation of LONP1 could be regulated by NF-κB 

and the increased cytosolic Ca2+ concentration, both ER stress outcomes. 
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1. The stress response triggered by clinical concentrations of EFV in cultured human 

hepatic cells is diminished in those lacking functional mitochondria. EFV-treated 

rho⁰ cells exhibited a substantial reduction in the parameters indicative of 

mitochondrial interference and the cytotoxic effect was less pronounced than in 

wild-type cells. The effect of EFV was both similar and different from those of 

two distinct mitochondrial stressors, TG and Rot, depending on the parameter 

studied. These findings suggest that the hepatic action of EFV involves acute 

interference with mitochondria. 

2. EFV alters mitochondrial dynamics, induces mitochondrial fission and decreases 

fusion in cultured human hepatic cells. Markers of mitochondrial dynamics were 

expressed differentially upon different types of mitochondrial and ER stress, 

which points to a specificity of the dual ER/mitochondrial stress induced by EFV. 

3. Mitochondria/ER contact is enhanced in cultured human hepatic cells exposed to 

EFV as shown by co-immunoprecipitation experiments of MAMs protein 

partners. This effect was not observed with other distinct mitochondrial/ER 

stressors supporting, once more, the specificity of EFV’s effects. 

4. The highly conserved mitochondrial protease LONP1 is upregulated at mRNA and 

protein levels in cultured human hepatic cells under different types of 

mitochondrial and ER stress. Upon treatment with EFV, its content in the 

mitochondrion is depleted while its extramitochondrial presence (ER and MAMs) 

is increased, which suggests that LONP1 plays a role in the interorganellar 

crosstalk between the ER and mitochondria as a MAMs component itself. 

5. NF-κB and cytosolic Ca2+ seem to regulate LONP1 gene expression in cultured 

human hepatic cells treated with EFV. Neither of the distinct mitochondrial/ER 

stressors alters the expression of the mitochondrial protease ClpX, while the 

expression of HSP90 chaperones is increased with EFV and TG. 

6. LONP1 is involved in the EFV-induced autophagy activation in hepatic cells since 

the effect of EFV treatment in LC3-II expression was absent when LONP1 was 

silenced. 
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7. Neither of the newer antiretroviral drugs (RAL, DRV and RPV) or the widely used 

NRTIs (ABC and ddI), which possess mitotoxic potential, increases the expression 

of LONP1. In contrast, the PI LPV, that induces ER stress without evident 

mitotoxicity in hepatic cells, increases LONP1 expression, which underlines the 

importance of the role of ER stress in this phenomenon. 
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1. La respuesta a estrés provocada por concentraciones clínicas de EFV en células 

hepáticas humanas cultivadas disminuye en aquellas que carecen de 

mitocondrias funcionales. Las células rho⁰ tratadas con EFV mostraron una 

reducción importante en los parámetros indicativos de interferencia mitocondrial 

y el efecto citotóxico fue menos pronunciado que en las células wild-type. El 

efecto de EFV fue tanto similar como diferente de aquellos producidos por dos 

factores estresantes mitocondriales distintos, TG y Rot, dependiendo del 

parámetro estudiado. Estos hallazgos sugieren que la acción hepática de EFV 

implica una interferencia aguda con la mitocondria. 

2. EFV altera la dinámica mitocondrial, induce la fisión mitocondrial y disminuye la 

fusión en células hepáticas humanas cultivadas. Los marcadores de la dinámica 

mitocondrial se expresaron diferencialmente ante diferentes tipos de estrés 

mitocondrial y de RE, lo que apunta a una especificidad del doble estrés  

mitocondrial/RE inducido por EFV. 

3. El contacto mitocondria/RE aumenta en células hepáticas humanas cultivadas 

expuestas a EFV, como demuestran los experimentos de co-inmunoprecipitación 

de complejos proteicos de las MAMs. Este efecto no se observó con otros 

factores distintos de estrés mitocondrial/RE apoyando, una vez más, la 

especificidad de los efectos de EFV. 

4. La proteasa mitocondrial altamente conservada LONP1 es regulada 

positivamente a nivel de ARNm y de proteína en células hepáticas humanas 

cultivadas bajo diferentes tipos de estrés mitochondrial y de RE. Tras el 

tratamiento con EFV, disminuye su contenido en la mitocondria, mientras que su 

presencia extramitocondrial (RE y MAMs) aumenta, lo que sugiere que LONP1 

juega un papel en la comunicación entre el RE y la mitocondria como 

componente en sí de las MAMs. 
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5. El NF-κB y el Ca2+ citosólico parecen regular la expresión génica de LONP1 en 

células hepáticas humanas cultivadas tratadas con EFV. Ninguno de los distintos 

factores de estrés mitocondrial/RE altera la expresión de la proteasa 

mitocondrial ClpX, mientras que la expresión de las chaperonas HSP90 aumenta 

con EFV y TG. 

6. LONP1 participa en la activación de la autofagia inducida por EFV en células 

hepáticas, ya que no se observó el efecto del tratamiento con EFV en la expresión 

de LC3-II cuando se silenció LONP1. 

7. Ninguno de los nuevos fármacos antirretrovirales (RAL, DRV y RPV) o de los 

ampliamente utilizados ITIAN (ABC y ddI), que poseen potencial mitotóxico, 

aumenta la expresión de LONP1. Por el contrario, el IP LPV, que induce estrés de 

RE sin evidente mitotoxicidad en células hepáticas, aumenta la expresión de 

LONP1, lo que destaca la importancia del papel del estrés de RE en este 

fenómeno. 
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