¹ On a matrix group constructed from an ${R, s+1, k}$ -potent matrix

Minerva Catral[∗] Leila Lebtahi[†] Jeffrey Stuart[‡] Néstor Thome[†] 3

⁴ April 4, 2014

⁵ Abstract

For a $\{k\}$ -involutory matrix $R \in \mathbb{C}^{n \times n}$ (that is, $R^k = I_n$) and $s \in \{0, 1, 2, 3, \dots\}$, a matrix $A \in \mathbb{C}^{n \times n}$ is called $\{R, s+1, k\}$ -potent if A satisfies $RA = A^{s+1}R$. In ⁸ this paper, a matrix group corresponding to a fixed $\{R, s+1, k\}$ -potent matrix is ⁹ explicitly constructed and properties of this group are derived and investigated. This 10 constructed group is then reconciled with the classical matrix group G_A that is ¹¹ associated with a generalized group invertible matrix A.

12 Keywords: $\{R, s+1, k\}$ -potent matrix; group inverse; matrix group.

¹³ AMS subject classification: Primary: 15A09; Secondary: 15A21

¹⁴ 1 Introduction

¹⁵ For a matrix $A \in \mathbb{C}^{n \times n}$, the group inverse, if it exists, is the unique matrix $A^{\#}$ satisfying ¹⁶ the matrix equations

$$
AA^{\#}A = A, \quad A^{\#}AA^{\#} = A^{\#}, \quad AA^{\#} = A^{\#}A. \tag{1}
$$

¹⁸ It is well known that $A^{\#}$ exists if and only if rank A^2 = rank A. Further information on group inverses and their applications can be found in [\[4\]](#page-9-0), and a collection of results on the importance of group inverses of certain classes of singular matrices in several application areas can be found in the recent book [\[5\]](#page-9-1). Theorem 7.2.5 in [\[4,](#page-9-0) pp. 124] states that a

[∗]Department of Mathematics and Computer Science, Xavier University, Cincinnati, OH 45207, USA. E-mail: catralm@xavier.edu.

[†]Instituto Universitario de Matemática Multidiscilpinar. Universitat Politècnica de València. E–46022 Valencia, Spain. E-mail: {leilebep,njthome}@mat.upv.es. This work has been partially supported by Ministerio de Economía y Competitividad of Spain, grant DGI MTM2010-18228.

[‡]Department of Mathematics, Pacific Lutheran University, Tacoma, WA 98447, USA. E-mail: jeffrey.stuart@plu.edu.

22 square matrix A of rank $r > 0$ belongs to a (multiplicative) matrix group G_A if and only ²³ if rank A^2 = rank A. In this case, $A \in \mathbb{C}^{n \times n}$ has the canonical form

$$
A = P \begin{bmatrix} C & O \\ O & O \end{bmatrix} P^{-1}, \tag{2}
$$

²⁵ where $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$ are nonsingular matrices. The matrix group G_A corre- $_{26}$ sponding to A is then given by

$$
G_A = \left\{ P \left[\begin{array}{cc} X & O \\ O & O \end{array} \right] P^{-1} : \ X \in \mathbb{C}^{r \times r}, \ \text{rank}(X) = r \right\}. \tag{3}
$$

28 The identity element in G_A is

$$
E = P \left[\begin{array}{cc} I_r & O \\ O & O \end{array} \right] P^{-1},
$$

30 where $I_r \in \mathbb{C}^{r \times r}$ is the identity matrix, and the inverse of A in this group is

$$
A^g = P \left[\begin{array}{cc} C^{-1} & O \\ O & O \end{array} \right] P^{-1}.
$$

³² Some results related to matrix groups on nonnegative matrices can be found in [\[1\]](#page-8-0).

33 Note that the inverse A^g of A in G_A satisfies the matrix equations in [\(1\)](#page-0-0), and by 34 uniqueness, $A^g = A^{\#}$; the identity element E in G_A satisfies $E = AA^{\#} = A^{\#}A$.

35 For $p \in \{2, 3, \ldots\}$, a matrix A is called $\{p\}$ -group involutory if the group inverse of A ³⁶ exists and satisfies $A^{\#} = A^{p-1}$; in such a case, an equivalent condition is that $A^{p+1} = A$ $37 \text{ (see } [2, 3]).$ $37 \text{ (see } [2, 3]).$ $37 \text{ (see } [2, 3]).$ $37 \text{ (see } [2, 3]).$

Throughout this paper we will use matrices $R \in \mathbb{C}^{n \times n}$ such that $R^k = I_n$ where $k \in \mathbb{C}^{n \times n}$ $\{2, 3, 4, \ldots\}$. These matrices R are called $\{k\}$ -involutory [\[11,](#page-9-2) [12,](#page-9-3) [14\]](#page-9-4), and they generalize 40 the well-studied *involutory matrices* $(k = 2)$. Note that the definition given in [\[11,](#page-9-2) [12\]](#page-9-3) 41 differs from that in [\[14\]](#page-9-4); in this paper we adopt the definition given in [14], namely that R ⁴² is $\{k\}$ -involutory does not require that k be minimal with respect to $R^k = I$.

Let $R \in \mathbb{C}^{n \times n}$ be a $\{k\}$ -involutory matrix and $s \in \{0, 1, 2, 3, \dots\}$. A matrix $A \in \mathbb{C}^{n \times n}$ 43 44 is called $\{R, s+1, k\}$ -potent if it satisfies

$$
RA = A^{s+1}R.\tag{4}
$$

46 These matrices generalize *centrosymmetric matrices* (that is, matrices $A \in \mathbb{C}^{n \times n}$ such that 47 $AJ = JA$ where J is the $n \times n$ antidiagonal matrix; see [\[13\]](#page-9-5)), the matrices $A \in \mathbb{C}^{n \times n}$ such 48 that $AP = PA$ where P is an $n \times n$ permutation matrix (see [\[10\]](#page-9-6)), and $\{K, s+1\}$ -potent 49 matrices (that is, matrices $A \in \mathbb{C}^{n \times n}$ for which $KAK = A^{s+1}$ where $K^2 = I_n$; see [\[7,](#page-9-7) [8\]](#page-9-8)). 50 For a study of $\{R, s+1, k\}$ -potent matrices we refer the reader to [\[6\]](#page-9-9) where, in particular, ⁵¹ the following characterization was given.

52 **Theorem 1.** [\[6,](#page-9-9) Theorem 1] Let $R \in \mathbb{C}^{n \times n}$ be a $\{k\}$ -involutory matrix, $s \in \{1, 2, 3, \dots\}$, $n_{s,k} = (s+1)^k - 1$, and $A \in \mathbb{C}^{n \times n}$. Then the following conditions are equivalent:

 $\begin{array}{c} 54 \end{array}$ (a) A is $\{R, s+1, k\}$ -potent.

55 (b) A is an ${n_{s,k}}$ -group involutory matrix and there exist disjoint projectors $P_0, P_1, \ldots, P_{n_{s,k}}$ 56 with

$$
A = \sum_{j=1}^{n_{s,k}} \omega^j P_j \qquad and \qquad \sum_{j=0}^{n_{s,k}} P_j = I_n,
$$

 $\omega^{2m} = e^{\frac{2\pi i}{n_{s,k}}}$, and $P_j = O$ when $\omega^j \notin \sigma(A)$ and $P_0 = O$ when $0 \notin \sigma(A)$, and such that the projectors $P_0, \check{P}_1, \ldots, P_{n_{s,k}}$ satisfy

60 (i) For each $i \in \{1, \ldots, n_{s,k} - 1\}$, there exists a unique $j \in \{1, \ldots, n_{s,k} - 1\}$ such 61 $that \, RP_iR^{-1} = P_j,$

62 (ii) $RP_{n_{s,k}}R^{-1} = P_{n_{s,k}},$ and

$$
i \in (iii) \, RP_0 R^{-1} = P_0.
$$

⁶⁴ (c) A is diagonalizable and there exist disjoint projectors $P_0, P_1, \ldots, P_{n_{s,k}}$ satisfying condi- $\begin{array}{lll} \text{65} & \text{tions (i), (ii), and (iii) given in (b).} \end{array}$

 \mathfrak{g}_{60} In [\[9\]](#page-9-10), a matrix group constructed from a given $\{K, s+1\}$ -potent matrix was presented σ and studied. The goal of this paper is to construct a matrix group corresponding to a given ⁶⁸ $\{R, s+1, k\}$ -potent matrix. We then reconcile this constructed group with the matrix group 69 G_A given in (3) .

$\frac{1}{2}$ First results

⁷¹ In this section we assume $s \geq 1$. We now establish properties of $\{R, s+1, k\}$ -potent ⁷² matrices.

 τ_3 Lemma 1. Suppose that $A \in \mathbb{C}^{n \times n}$ is an $\{R, s+1, k\}$ -potent matrix. Then the following ⁷⁴ properties hold.

$$
75 \quad (a) \ \ A^{(s+1)^k} = A.
$$

76 (b)
$$
A^{\#} = A^{(s+1)^k-2}
$$
 and the group projector $AA^{\#}$ satisfies $AA^{\#} = A^{(s+1)^k-1}$.

$$
\pi \quad (c) \ \ (A^{(s+1)^k-1})^j = A^{(s+1)^k-1} \ \text{for every } j \in \{1, 2, 3, \dots\}.
$$

⁷⁸ (d) $R^p A^j = A^{j(s+1)^p} R^p$ for every $p \in \{1, 2, ..., k\}, j \in \{1, 2, ..., (s+1)^k-1\}.$ In particular,

 R^p and $A^{(s+1)^k-1}$ commute, the matrices A^j are $\{R, s+1, k\}$ -potent and A is $\{R^p, (s+1), k\}$ 80 $1)^p - 1, k}$ -potent.

$$
e_1 \ (e) \ (A^j R^p)^m = A^{j[(s+1)^{mp}-1]/[(s+1)^p-1]} R^{mp}, \text{ for every } j \in \{1, 2, \ldots, (s+1)^k-1\}, \ p \in \{1, 2, \ldots, k\}, \ m \in \{1, 2, \ldots, k\}.
$$
 In particular,

$$
(*) \quad (e)' \ (A^s R)^m = A^{(s+1)^m-1} R^m \ \text{for every} \ m \in \{1, 2, \dots, k\}.
$$

 $\begin{array}{ll} \text{B4} & \text{(f) For every } j, \ell \in \{1, 2, \ldots, (s+1)^k-1\}, p, m \in \{1, 2, \ldots, k\}, (A^j R^p) (A^{\ell} R^m) = A^{\ell'} R^{p'}, \end{array}$ ⁸⁵ where $\ell' \equiv \ell(s+1)^p + j \pmod{(s+1)^k - 1}$ and $p' \equiv p + m \pmod{(k)}$.

$$
\begin{array}{lll}\n\text{as} & (g) \ (A^j R^p) A^{(s+1)^k - 1} = A^{(s+1)^k - 1} (A^j R^p) = A^j R^p, \text{ for every } j \in \{1, 2, \ldots, (s+1)^k - 1\}, \\
& p \in \{1, 2, \ldots, k\}.\n\end{array}
$$

⁸⁸ (h) For every $j \in \{1, 2, \ldots, (s + 1)^k - 1\}$, $p \in \{1, 2, \ldots, k\}$, the following equalities hold: $(A^{\ell}R^{k-p})(A^{j}R^{p}) = (A^{j}R^{p})(A^{\ell}R^{k-p}) = A^{(s+1)^{k}-1}$, where ℓ is the unique element of 90 $\{1, 2, \ldots, (s + 1)^k - 1\}$ such that $\ell \equiv -j(s + 1)^{k-p} \pmod{(s + 1)^k - 1}$.

91 (i)
$$
(AR)^{ks+1} = AR
$$
.

 p_{2} *Proof.* Statements (a) and (b) were proved in [\[6\]](#page-9-9). Using (a),

$$
(A^{(s+1)^k-1})^2 = A^{(s+1)^k} A^{(s+1)^k-2} = AA^{(s+1)^k-2} = A^{(s+1)^k-1},
$$

 α and now (c) follows by induction.

95 We next prove (d) . First note that

104

$$
RAR^{-1} = A^{s+1} \tag{5}
$$

implies $RA^{j}R^{-1} = A^{j(s+1)}$, for all $j \ge 1$. Thus, if A is $\{R, s+1, k\}$ -potent then so is A^{j} 97 98 for all $j \geq 1$. In particular, let $j = s + 1$. Then

$$
RA^{s+1}R^{-1} = A^{(s+1)^2},\tag{6}
$$

100 and [\(5\)](#page-3-0) and [\(6\)](#page-3-1) gives $R^2AR^{-2} = A^{(s+1)^2}$. By induction, $R^pAR^{-p} = A^{(s+1)^p}$ for all $p \ge 1$. 101 Since for all $j > 1$, A^j is also $\{R, s+1, k\}$ -potent, it follows that $R^pA^jR^{-p} = A^{j(s+1)^p}$ for 102 all $j \geq 1$ and all $p \geq 1$. This proves (d) .

 F_{103} For (e) , the equality is clear for $m = 1$. For $m = 2$, we have

$$
(A^{j}R^{p})^{2} = A^{j}R^{p}A^{j}R^{p}
$$

= $A^{j}A^{j(s+1)^{p}}R^{2p}$, by (d)
= $A^{j(1+(s+1)^{p})}R^{2p}$.

105 The general case $(A^{j}R^{p})^{m} = A^{j[1+(s+1)^{p}+(s+1)^{2p}+\ldots+(s+1)^{(m-1)p}]}R^{mp}$ follows by induction. The $\text{identity } [(s+1)^p-1][(s+1)^{(m-1)p}+\cdots+(s+1)^p+1]=(s+1)^{mp}-1 \text{ yields the result.}$ 107 For the proof of $(e)'$, it is enough to set $j = s$ and $p = 1$ in (e) .

108 Statement (f) follows easily from (d) . Next, by using (c) and (d) ,

$$
(A^{j}R^{p})A^{(s+1)^{k}-1} = A^{j}A^{(s+1)^{k}-1}R^{p} = A^{j-1}A^{(s+1)^{k}}R^{p} = A^{j-1}AR^{p} = A^{j}R^{p}
$$

to for every $j \in \{1, 2, \ldots, (s+1)^k - 1\}$ and $p \in \{1, 2, \ldots, k\}$. This proves one equality in (g) . ¹¹¹ The other equality can be directly shown as

$$
A^{(s+1)^k-1}(A^jR^p) = A^{(s+1)^k}A^{j-1}R^p = A^jR^p.
$$

For the proof of (h) , let $j \in \{1, 2, \ldots, (s+1)^k-1\}$. By (d) , there exists ℓ such that ¹¹⁴ $(A^{\ell}R^{k-p})(A^{j}R^{p}) = A^{(s+1)^{k}-1}$ if and only if $A^{\ell+j(s+1)^{k-p}} = A^{(s+1)^{k}-1}$. This last equality ¹¹⁵ holds if and only if $\ell \equiv -j(s+1)^{k-p}$ [mod $((s+1)^k-1)$]. Using this value of ℓ we can get $\ell(s+1)^p \equiv -j(s+1)^k \pmod{(s+1)^k-1}$. Now,

$$
\mu^{117} \qquad (A^j R^p)(A^\ell R^{k-p}) = A^j A^{\ell(s+1)^p} R^p R^{k-p} = A^{j(s+1)^k} A^{\ell(s+1)^p} = A^{j(s+1)^k + \ell(s+1)^p} = A^{(s+1)^k - 1},
$$

118 which leads to (h). Observe that $\ell \equiv -j(s+1)^{k-p} \pmod{(s+1)^k-1}$ is equivalent to $j(s+1)^k \equiv -\ell(s+1)^p \pmod{(s+1)^k-1}.$

120 Finally, by setting $j = p = 1$ and $m = k$ in (e) , we obtain

$$
(AR)^{ks+1} = [(AR)^k]^s AR = \left[A^{\frac{(s+1)^k - 1}{s}}\right]^s AR = A^{(s+1)^k - 1} AR = AR,
$$

122 where the last equality follows from (a) . This proves statement (i) , and completes the ¹²³ proof of Lemma [1.](#page-2-0) \Box

124 3 Construction of the matrix group

125 Using Lemma [1,](#page-2-0) we construct, from a given $\{R, s+1, k\}$ -potent matrix, a matrix group ¹²⁶ containing a cyclic subgroup of $\{R, s+1, k\}$ -potent matrices. Throughout this section we 127 assume $s \geq 1$.

Theorem 2. Suppose $A \in \mathbb{C}^{n \times n}$ is an $\{R, s+1, k\}$ -potent matrix, and assume that $A^i \neq A^j$ 128 129 for all distinct $i, j \in \{1, 2, ..., (s + 1)^k - 1\}$. Then the set

$$
^{130}
$$

$$
G = \{A^j R^p : j \in \{1, 2, \dots, (s+1)^k - 1\}, p \in \{1, 2, \dots, k\}\}
$$

¹³¹ is a group under matrix multiplication, and the following statements hold.

¹³² (a) A is an element of order $(s+1)^k-1$, and the set

$$
^{133}
$$

$$
S_A = \{A^j, j \in \{1, 2, \dots, (s+1)^k - 1\}\}\tag{7}
$$

¹³⁴ is a cyclic subgroup of G. Moreover, S_A is the smallest (in the inclusion sense) subgroup ¹³⁵ of G that contains A, $A^{\#}$, and $AA^{\#}$.

136 (b) A^sR and $A^{(s+1)^k-1}R^{k-1}$ are elements of order k of G.

$$
_{137} (c) (A^s R)A(A^s R)^{k-1} = A^{s+1}.
$$

¹³⁸ (d) The set S_A is a normal subgroup of G and all its elements are $\{R, s+1, k\}$ -potent ¹³⁹ matrices.

140 (e) The order of G is $k((s+1)^k-1)$ and G is not commutative.

 141 Proof. Properties $(f) - (h)$ in Lemma [1](#page-2-0) show that G is a group under multiplication with ¹⁴² identity element $A^{(s+1)^k-1}$.

143 Statement (a) follows from properties $(a) - (c)$ in Lemma [1](#page-2-0) and the assumption that 144 the powers A^i are distinct for $i \in \{1, 2, ..., (s + 1)^k - 1\}.$

By setting $m = k$ in property $(e)'$ in Lemma [1,](#page-2-0) we obtain $(A^sR)^k = A^{(s+1)^k-1}$. On the ¹⁴⁶ other hand, since $A^{(s+1)^k-1}$ and R^{k-1} commute by property (*d*) in Lemma [1,](#page-2-0)

$$
(A^{(s+1)^k-1}R^{k-1})^k = (A^{(s+1)^k-1})^k (R^k)^{k-1} = A^{(s+1)^k-1},
$$

 $_{148}$ proving statement (b).

149 By setting $m = k - 1$ in property $(e)'$ in Lemma [1,](#page-2-0) we obtain

$$
(A^s R)A(A^s R)^{k-1} = A^s R A^{(s+1)^{k-1}} R^{k-1} = A^s A^{(s+1)^{k-1}(s+1)} R R^{k-1} = A^{s+1}.
$$

 $_{151}$ proving statement (c) .

For the proof of statement (d), let $j, t \in \{1, 2, ..., (s + 1)^k - 1\}$, $p \in \{1, 2, ..., k\}$, and 153 $\ell \in \{1, 2, ..., (s + 1)^k - 1\}$ such that $j(s + 1)^k \equiv -\ell(s + 1)^p \pmod{(s + 1)^k - 1}$. Using 154 property (d) of Lemma [1,](#page-2-0) we obtain

$$
(A^{j}R^{p})A^{t}(A^{\ell}R^{k-p}) = A^{j}A^{t(s+1)^{p}}R^{p}A^{\ell}R^{k-p} = A^{j}A^{t(s+1)^{p}}A^{\ell(s+1)^{p}}R^{p}R^{k-p} = A^{t(s+1)^{p}}.
$$

156 Hence, S_A is a normal subgroup of G, and by setting $p = 1$ in property (d) in Lemma [1,](#page-2-0) ¹⁵⁷ we find that the elements of S_A are $\{R, s+1, k\}$ -potent matrices.

For the proof of statement (e), we show that the elements $A^{j}R^{p}, j \in \{1, ..., (s+1)^{k}-1\}$ 159 and $p \in \{1, \ldots, k\}$, are pairwise distinct.

First we show that for fixed $p \in \{1, \ldots, k-1\}$, $AR^p \neq A^j$ for any $j \in \{1, \ldots, (s+1)^k-1\}$. 161 Otherwise, $AR^pA = A^{j+1}$, and using property (d) in Lemma [1,](#page-2-0) $A(R^pA) = A(A^{(s+1)^p}R^p) =$ $A^{(s+1)^p}(AR^p) = A^{(s+1)^p+j}$. But then, $A^{j+1} = A^{(s+1)^p+j}$, contradicting the assumption that the powers A^i are pairwise distinct for $i \in \{1, \ldots, (s+1)^k-1\}$. Next, since for ¹⁶⁴ $p \in \{1, \ldots, k-1\}$, $AR^p \neq A^j$ for any $j \in \{1, \ldots, (s+1)^k-1\}$, it follows that for any $\ell \in$ $_{165}$ {1, 2, ..., $(s+1)^k-1$ } and $p \in \{1, \ldots, k-1\}$, $A^{\ell}R^p \neq A^j$ for any $j \in \{1, 2, \ldots, (s+1)^k-1\}$. 166 Finally, if $A^{j}R^{p} = A^{\ell}R^{m}$ for some $j, \ell \in \{1, 2, ..., (s + 1)^{k} - 1\}$ and $p, m \in \{1, ..., k\}$ ¹⁶⁷ with $(j, p) \neq (\ell, m)$, then $A^j R^{p-m} = A^{\ell}$, contradicting the previous assertion. Thus, the ¹⁶⁸ elements $A^{j}R^{p}, j \in \{1, ..., (s+1)^{k}-1\}$ and $p \in \{1, ..., k\}$, are pairwise distinct, and the ¹⁶⁹ order of G is $k[(s+1)^k-1]$. In order to show that G is not commutative, it is enough to 170 see that $(AR)(A^{s+1}R^{k-1}) = (A^{s+1}R^{k-1})(AR)$ gives $A^{(s+1)^2+1} = A^{(s+1)^{k-1}+s+1}$ which leads ¹⁷¹ to a contradiction. \Box

172 Theorem 3.1 (e) in [\[9\]](#page-9-10) states that for a $\{K, s+1\}$ -potent matrix, the associated matrix 173 group G either has order $(s+1)^2 - 1$ and is commutative, or has order $2((s+1)^2 - 1)$ and ¹⁷⁴ is not commutative; Theorem [2](#page-4-0) (e) now asserts that the former case does not occur. 175

176 We have shown that A, $A^{\#}$, and $AA^{\#}$ belong to S_A . Is $I_n - AA^{\#}$ also an element of 177 the group G ?

Proposition 1. If $A \in \mathbb{C}^{n \times n}$ is a nonzero $\{R, s+1, k\}$ -potent matrix then the eigenpro- 179 jection at zero does not belong to G, that is,

$$
I_n - AA^{\#} \notin G.
$$

181 Proof. If we suppose that $I_n - AA^{\#} \in G$ then there exist $j \in \{1, 2, \ldots, (s+1)^k-1\}, p \in G$ ¹⁸² $\{1, 2, \ldots, k\}$ such that $I_n - AA^{\#} = A^j R^p$. Pre-multiplying by A we get $A^{j+1} = O$, that is, 183 A is nilpotent. Since A is diagonalizable, we arrive at $A = O$, which is a contradiction. \Box

 184 Let H be the set defined by

$$
^{185}
$$

185 $H = \{A^{(s+1)^k-1}R^p : p \in \{1, 2, \ldots, k\}\}.$

186 Then under matrix multiplication, H is a cyclic subgroup of G that is not normal because ¹⁸⁷ if $g = A^{(s+1)^k-2}$ and $h = A^{(s+1)^k-1}R^p$ for $p \in \{1, 2, ..., k-1\}$ then $ghg^{-1} \notin H$.

188 Corollary 1. The group G is a semidirect product of H acting on S_A .

189 *Proof.* Every element $A^{j}R^{p}$ of G can be written as a product of an element of S_{A} and 190 an element of H as $A^{j}R^{p} = A^{j}(A^{(s+1)^{k}-1}R^{p})$ and this representation is unique. This 191 uniqueness follows from the fact that G has order $k((s+1)^k-1)$. \Box

Observe that $H \simeq \mathbb{Z}_k$, $S_A \simeq \mathbb{Z}_{(s+1)^k-1}$, and another way to see that G is isomorphic to a semidirect product of \mathbb{Z}_k acting on $\mathbb{Z}_{(s+1)^k-1}$ is by considering its representation in ¹⁹⁴ the form $\langle a, b | a^k = e, b^r = e, aba = b^m \rangle$ where m, r are coprime. Here $r = (s + 1)^k - 1$, 195 $a = A^s R$, $b = A$, $m = s + 1$.

¹⁹⁶ Moreover, notice that the result presented in Corollary [1](#page-6-0) describes the quotient group 197 G/S_A . In fact, the natural embedding $\iota : H \hookrightarrow G$, composed with the natural projection ¹⁹⁸ $\pi: G \to G/S_A$, gives an isomorphism between G/S_A and H, which is represented in [\(8\)](#page-6-1).

$$
\begin{array}{ccc}\nG & \xrightarrow{\pi} & G/S_A \\
\downarrow & & g \\
H\n\end{array} \tag{8}
$$

200 We next reconcile the matrix group G given in Theorem [2](#page-4-0) that is constructed from an 201 $\{R, s+1, k\}$ -potent matrix A, and the matrix group G_A given in [\(3\)](#page-1-0). We begin with the ²⁰² following lemma.

Lemma 2. Suppose that $R \in \mathbb{C}^{n \times n}$ is $\{k\}$ -involutory, $s \in \{1, 2, 3, \dots\}$, and $A \in \mathbb{C}^{n \times n}$ has 204 rank $r > 0$. Then A is $\{R, s+1, k\}$ -potent if and only if there exists a nonsingular matrix 205 $P \in \mathbb{C}^{n \times n}$ such that

$$
206\,
$$

$$
A = P \begin{bmatrix} C & O \\ O & O \end{bmatrix} P^{-1}, \qquad R = P \begin{bmatrix} R_1 & O \\ O & R_2 \end{bmatrix} P^{-1}, \qquad (9)
$$

²⁰⁷ where $R_1 \in \mathbb{C}^{r \times r}$, $R_2 \in \mathbb{C}^{(n-r) \times (n-r)}$ are $\{k\}$ -involutory, and $C \in \mathbb{C}^{r \times r}$ is nonsingular and 208 ${R_1, s+1, k}$ -potent.

²⁰⁹ Proof. Suppose that A is $\{R, s+1, k\}$ -potent. Then A has index at most 1 and so it has ²¹⁰ the form

$$
A = P \begin{bmatrix} C & O \\ O & O \end{bmatrix} P^{-1}, \tag{10}
$$

where $C \in \mathbb{C}^{r \times r}$ is nonsingular. We now partition R conformable to A as follows

$$
R = P \begin{bmatrix} R_1 & R_3 \\ R_4 & R_2 \end{bmatrix} P^{-1}.
$$
 (11)

Using expressions [\(10\)](#page-7-0) and [\(11\)](#page-7-1) we have that

$$
A^{s+1}R = P \left[\begin{array}{cc} C^{s+1}R_1 & C^{s+1}R_3 \\ O & O \end{array} \right] P^{-1}
$$

and

$$
RA = P \left[\begin{array}{cc} R_1C & O \\ R_4C & O \end{array} \right] P^{-1}.
$$

²¹⁴ Equating blocks,

$$
C^{s+1}R_1 = R_1C
$$
, $C^{s+1}R_3 = O$, and $R_4C = O$.

216 Since C is nonsingular, $R_3 = O$, $R_4 = O$, and so

$$
R = P \left[\begin{array}{cc} R_1 & O \\ O & R_2 \end{array} \right] P^{-1}.
$$

²¹⁸ Using $R^k = I_n$, this last expression implies that R_1 and R_2 are both $\{k\}$ -involutory. Hence, 219 C is $\{R_1, s+1, k\}$ -potent. \Box

- ²²⁰ The converse is trivial.
- $Recall that the elements of G_A have a canonical form as given in (3).$ $Recall that the elements of G_A have a canonical form as given in (3).$ $Recall that the elements of G_A have a canonical form as given in (3).$

Theorem 3. Suppose $A \in \mathbb{C}^{n \times n}$ is an $\{R, s+1, k\}$ -potent matrix, and suppose that $A^i \neq A^j$ 222 ²²³ for all pairwise distinct $i, j \in \{1, 2, ..., (s + 1)^k - 1\}$. If A and R are expressed as in [\(9\)](#page-6-2) 224 then

$$
G = \left\{ P \left[\begin{array}{cc} C^{j} R_{1}^{p} & O \\ O & O \end{array} \right] P^{-1} : j \in \{1, 2, \ldots, (s+1)^{k} - 1\}, p \in \{1, 2, \ldots, k\} \right\}.
$$

226 Moreover, G is a subgroup of G_A .

 227 Proof. The description of the elements of G follows from Theorem [2](#page-4-0) and Lemma [2.](#page-6-3) It is 228 clear that $G \subseteq G_A$. Since C is $\{R_1, s+1, k\}$ -potent, G is closed, hence G is a subgroup of \Box 229 G_A .

230 4 Final remarks: the case $s = 0$

231 For the case $s = 0$ in [\(4\)](#page-1-1), the matrix A satisfies $AR = RA$ where $R^k = I_n$. Notice that ²³² property [\(a\)](#page-2-1) in Lemma [1](#page-2-0) does not give any information. However, if there exists some 233 positive integer t such that $A^{t+1} = A$ and t is the smallest positive integer satisfying this property, then we can construct the group $G = \{A^{j}R^{p}, j \in \{1, 2, ..., t\}, p \in \{1, 2, ..., k\}\}\$ 235 having similar properties as in the case $s \geq 1$. If such an integer t does not exist, it is ²³⁶ impossible to construct the corresponding group, as the following example shows.

237 **Example 1.** Consider the matrices

$$
A = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0 \\ -\sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},
$$

²³⁹ for some $\alpha \in \mathbb{R}$, we have that $R^4 = I_3$, $AR = RA$ and

$$
A^{m} = \begin{bmatrix} \cos(m\alpha) & \sin(m\alpha) & 0\\ -\sin(m\alpha) & \cos(m\alpha) & 0\\ 0 & 0 & 2^{m} \end{bmatrix} \quad \text{for all } m \ge 2.
$$

 $_{241}$ In general, when $s = 0$ there is no relation between the existence of the group inverse of ²⁴² A and of A being $\{R, 1, k\}$ $\{R, 1, k\}$ $\{R, 1, k\}$ -potent. In Example 1 we have a $\{R, 1, 4\}$ -potent matrix that is 243 nonsingular whereas in Example 2 below the given $\{R, 1, 4\}$ -potent matrix does not have ²⁴⁴ a group inverse.

²⁴⁵ Example 2. Consider the matrices

$$
A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} i & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
$$

²⁴⁷ In this case, $AR = RA$, $R^4 = I_3$, but the group inverse of A does not exist.

²⁴⁸ References

²⁴⁹ [1] A.N. Alahmadi, Y. Alkhamees, S.K. Jain. On semigroups and semirings of nonnegative ²⁵⁰ matrices, Linear and Multilinear Algebra, 60, 5, 595–598, 2012.

- 251 [2] O.M. Baksalary, G. Trenkler. On K-potent matrices, *Electronic Journal of Linear* $A \leq B$, 26, 446-470, 2013.
- 253 [3] R. Bru, N. Thome. Group inverse and group involutory matrices, *Linear and Multi-*²⁵⁴ linear Algebra, 45 (2-3), 207–218, 1998.
- ²⁵⁵ [4] S.L. Campbell, C.D. Meyer Jr. Generalized Inverses of Linear Transformations. Dover, ²⁵⁶ New York, Second Edition, 1991.
- 257 [5] S.J. Kirkland, M. Neumann. Group Inverses of M-Matrices and Their Applications. ²⁵⁸ CRC Press, London, 2013.
- ²⁵⁹ [6] L. Lebtahi, J. Stuart, N. Thome, J.R. Weaver. Matrices A such that $RA = A^{s+1}R$ ²⁶⁰ when $R^k = I$, Linear Algebra and its Applications, 439, 1017–1023, 2013.
- ²⁶¹ [7] L. Lebtahi, O. Romero, N. Thome. Characterizations of $\{K, s+1\}$ -potent matrices ²⁶² and applications. Linear Algebra and its Applications, 436, 293–306, 2012.
- 263 [8] L. Lebtahi, O. Romero, N. Thome. Relations between $\{K, s + 1\}$ -potent matrices ₂₆₄ and different classes of complex matrices. *Linear Algebra and its Applications*, 438, ²⁶⁵ 1517–1531, 2013.
- ²⁶⁶ [9] L. Lebtahi, N. Thome. Properties of a matrix group associated to a $\{K, s+1\}$ -potent ²⁶⁷ matrix, Electronic Journal of Linear Algebra, 24, 34–44, 2012.
- $_{268}$ [10] J. Stuart, J. Weaver. Matrices that commute with a permutation matrix, *Linear Al* $qebra$ and its Applications, 150, 255–265, 1991.
- $_{270}$ [11] W. F. Trench. Characterization and properties of matrices with k-involutory symme-²⁷¹ tries, Linear Algebra and its Applications, 429, 2278–2290, 2008.
- $_{272}$ [12] W. F. Trench. Characterization and properties of matrices with k-involutory symme-²⁷³ tries II, Linear Algebra and its Applications, 432, 2782–2797, 2010.
- ²⁷⁴ [13] J. Weaver. Centrosymmetric (cross-symmetric) matrices, their basic properties, eigen-²⁷⁵ values and eigenvectors, American Mathematical Monthly, 2, 10, 711–717, 1985.
- $_{276}$ [14] M. Yasuda. Some properties of commuting and anti-commuting m-involutions. Acta ²⁷⁷ Mathematica Scientia, 32B(2), 631–644, 2012.