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Abstract
J.Lehmann-Lejeune in [Cohomologies sur le fibré transverse a un feuilletage,
C.R.A.S. Paris, 295 (1982), 495-498] defined on the transverse bundle V to a foliation
on a manifold M, a zero-deformable structure J such that J2 =0 and for every pair
of vector fields X ,¥ on M: [JX,JY]-J[JX,Y]-J[X,JY]+J?[X,Y]=0 For
every open set Q of V, J.Lehmann-Lejeune studied the Lie Algebra L,(€2) of vector
fields X defined on Q such that the Lie derivative L(X)J is equal to zero i.e., for
each vector field Y on Q: [X,JY]=J[X,Y] and showed that for every vector field

X on Q such that X € KerJ , we can write X = Z[Y VA ] where Z is a finite
sumand Y,Z belongsto L;(2)N (KerJ‘Q) .

In this note, we study a generalization for a decreasing family of foliations.
Keywords: Foliations; Fiber Bundles; Lie Algebra.
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1. INTRODUCTION

Let M be a differentiable manifold endowed with a decreasing family F; of k& foliations

(particular case of "Multifoliate Structures" of Kodaira Spencer [3]). We define a so-called

"order k bundle V¥ transverse to the foliations F;". This note is divided into three sections.
In the first, we define V% and we show that there exists a (LI) tensor J of V¥ such that
JE£0 ,J K1 20 and for every pair of vector fields X ,Y on V*:

[x,Jy]-J[ux,Y]-J[X,JY]+ %X, Y]=0.

In section two, Q being an open set of V¥, we denote by L ,(€) the Lie Algebra of vector
fields X defined on Q such that the Lie derivative L(X)J is equal to zero i.e., for each vector
field Y on Q:

[x,J7]=J[x,Y]



In L,(Q), we find the canonicals lifts in V¥ of the infinitesimal automorphisms of the &
foliations on M.

In section three, we define L, subset of L, constituted by the vector field X on V¥ such that
X € KerJ . We show that for every X € L;(V'*), we can write Xzz [Y,Z;] where

Z is a finite sum and Y;, Z; belongs to L, (Vk) )

i

2. THE ORDER % BUNDLE TO k FOLIATIONS

Let M be a differentiable manifold of dimension m endowed with k foliations F|,F,,...,F,,
k>1, of respective codimensions DisDy+ Darees Dy + Dy + ot Dy such that F;, o F, >..OF,
(m:p1+p2+""+pk+pk+l’ D >0, piZO, 2<i<k+1 )

Notation: we set : a(h)=p,+ py +....+ p, for 1<h<k+1,
a(h)=0 for h<0,
cty=alk+D)+ak)+...+alk—t+2) for 1<t<k+1,
c(t)=0 for (<0

The order k tangent bundle of M is the manifold of dimension (k+1)m of the k — jets of origin 0
of differentiable mappings from IR to M denoted T*M (cf. [1]).

Let s and /4 be two integers such that 0<s<h<k, h>1.
On the set of A —jets of differentiable mappings of origin 0 from IR to M, we define an
equivalence relation. Let ¢ and y be two differentiable mappings from IR to M such that

P0)=(0).
Denote by  (u;,u,,...,u,,) the local coordinates of an open set UcM, adapted to the &

foliations (i.e. Up,Uy,..s Uy Are constants on the leaves of F,, 1<h<k), such that

P(0)=y(0)=x, €U .

d b(p d bl//
We say that the 4 —jets of ¢ and y are equivalent if: bl (0) = bl (0), 1<bh<s,
dp

1</<a(k+1-b) and s+1<b<h, 1<I<a(k+1-5).

This equivalence relation is independent of the open set U of coordinates adapted to the &
foliations containing Xy .

We denote by (V*)" the quotient space of the / — jets of differentiable mappings from IR to M
endowed with this equivalence relation.
This is a manifold of dimension Z alk+1-0)+ (h—s)alk+1-y).

0<t<s

For s = h, (V*)® will be denoted, for simplicity, by V*.

We have the following diagram, where the arrows are the natural projections:



VE e FhYE i D« Y« TPu

! !

vEL o R e ) 1V1)k_1 « TH'um

\ &—2 l2 k=2 1\k=2 lk—Z
V ... V) «~ ) «~ T""M
D

V¥ is called order & bundle transverse to the k foliations F,F,.. F.

The dimension of V* is n= Z(l +D) i = Z alk+1-t1).
0<t<k 0<r<k

Remark 1: (V°)F, 0<s <k, can be considered as a vk,

In fact, it is sufficient to set: piza(k+1—s); p;.=0, 2<i<k+1-s; p'j-zpj,
k+2-s<j<k+1.

Thus V¥ is the order k bundle transverse to the k foliations F,F,,...F, of codimensions
respectively pi, Pi +p'2, s pi +p'2 +---+P}c+1 such that F1 :)Fzy ! ...:)Fk', where
F =F for 2<i<k+l-s.

An element of V¥ i.e. an equivalence class of k —jets j(l)c @ 1is uniquely expressed by the set
(ul’uc(h)+rh ), I=1...m, 1<h<k, 1<r,<a(k—h+1), u, being the coordinates of x, in

1%,
h! dph

U and Ue(h being defined by : w54, = (0).

)+

Thus, to every open set U of M is associated an open set U = 7[‘1(0 ) in vk , Where 7 is

the canonical projection from V" to M.

On M, let {U,u[} and {U',u,} , i=1,...,a(k+1), be two local coordinates charts adapted to

the k foliations such that UnU'#J. We have, in UﬁU', for 1<h<k+1,
a(h-1)+1<i<a(h) :

u'i = f;(ul ,....,Ma(h))

, o . 0
0, = > 0,10, (we set aiza,arz—)

'
a(h-1)+1<r<a(k+1) i ou',.



Let @ and i be two mappings from IR to M such that @(0) and y(0) € UNU".

For p close enough to zero, @(p) (resp. y(p)) canbe written with the local coordinates u;

(resp. ) (@ (P)serrs Pairsny (P)) CESP. (W4 ()W iy () - We have:

Wi (P)= L:(@1(P)seess Paiy (P)) where a(h—-1)+1<i<a(h),1<h<k+1, and

14w, (p) 1 AL (@(P)ss Py (P)] _ ,
- ] =— / : where 1<j<k, 1<r <a(k+1-)).

jtodp’ ) dp’
' 14, \ L4y,
Weset u; =¢;(0), u;=y,;(0) and Ue(jyry = i 0), u (i, _ﬁ i 0).
Wehave, for 1<h<k, ath-D)+1<i<a(h) :  u'yyy,= D, 0,f; Uy, -

1< j<a(h)

We verify thatfor 1<qg <k, 1<h<k-q+1, a(h-1)+1<i<a(h):

Ldvo O n i {1 dp, Jb’

q' dp? 8uf‘...6u;f...8u;“((,f’)) 1<jca(ny |1srzq Dy 71 AP

where Z is taken on all the possible families of integers > 0, i s b]r-, 1< j<a(h) such that
4ot +otiy,g =t 1st<gq,

| TR ) DR

1<r<q 1<j<a(h)\ 1sr<q

Thus if U=7z"'U) and U'=z'(U"), we have in UNU', for 1<h'<k+l,
a(h'=1)+1<i'<a(h), 1<qg<k, 1<h<k-q+1, ath-1)+1<i<a(h):

Up = fir(Uysees Uy

b

, o'f, (“c(r)+j) '
Upigrei = ; = . |
o Z Gufl...au;’ ...au;"((,f)) 15‘/‘131(},) l!;é[q b} !
M 3o, = > 0, f.0,.

a(h'=1)+1<r'<a(k+1)

0

: ) (a0}
D D /i T ul c(r)+) c(g)+]

. ;. N r
0<5<k—q Ouy'..0u7 ..oul ) 1<i<aty | 1sr<gus b ! (b7 =1!
1<h<k-s r#q
a(h=1)+1<i<a(h)

c(q)+j

T*M (which can be considered as a (V*)* with s=0) is equipped with an order k nearly
tangent structure J,, of constant range km (cf. [1]). We define a vector field Z and a (1,1)

tensor Jon V¥ in the following way:

c(q+s)+i



Let U and U' be two open sets of adapted local coordinates (u,....,u,), (ui,....,u,;),
respectively. We set:

z%=3 ’{ > uc(h)*-jac(h)*-jJ’ z%=3 h{ > u;<h)+j5L<h)+jJ,

1<h<k  \1<j<a(k+1-h) 1sh<k  \1<j<a(k+1-h)

for each h, 0<h<k:

U U'~' .
70 wyratk-nyri =0 J7 O nyrath-my+i =05 1<i< ppay,
() for each h, 0<h<k-1:
U
J ac(h)+a(r—1)+i = ac(h+l)+a(r—l)+i
U . ]
J7 Octhyrarysi = Oc(hstyra(r1y+i 1<r<k-h, 1<i<p,

Using (1), we verify that we have, in U NU"',if UNnU'#J:

u _ U u o _ U
Z\UnU' B Z\UnU" J\UnU' B J\UnU' :

Hence Z and J are, in fact, globally defined. Zis called the "field of the homotheties" on
V% . J is the projection on V'* of the nearly tangent operator J, oforder kon T “M . Tts rank

is constant and equal to z a(k+1—-1): it verifies J*'=0 and for every pair of vector
1<t<k

fields X ,Y on V*:
[Jx,JY]-Jux,Y]-J[Xx,J7]+J?[x,¥Y]=0.

According to the remarkl, for 0<s<k, we have also defined a vector field Z, and a (1,1)
tensor J, on (V). In U (open set of adapted local coordinates (uy,....,u,) of (V*)*, where

n is the (V*)" dimension), we have:

U
Zy = Z h( Z uc(h)+jac(h)+j] + Z { Z uc(r)+la(k+1—r)+iac(r)+ta(k+l—r)+iJ

1shss  \U<j<a(k+1-h) I<t<k-s  \I<i<a(k+1-r)

For each h, 0<h<s-1:

Jgac(h)Jra(k—h)Jri =0, 1<i<pi s

IS 0 cnyratr-1ysi = Ochstyragr—tyvi » 1S7<k=h,1<i<p, and

IS 0 c(sytatiiosysi = Ocsysirstyathsiosysi » 0<t<k—=s—1, 1<i<a(k+1-s),

U .
Js Oc(syrth-syathsl-syvi =0 > 1<i<a(k+1-s).

Fors=k, Z,=7Z and J, =J.



3. THE LIE ALGEBRA L

Let Q be an open set of V¥ . We denote by L ,(Q) the Lie Algebra of vector fields X defined
on Q such that the Lie derivative L(X)J is equal to zero (i.e. the infinitesimal automorphisms

of the structure), which means that, for each vector field ¥ on €: [X ,JY ] =J [X Y ]

Let U be an open set of adapted local coordinates (u,,....,u,) and X a vector field on U . We
easily verify that X € L,(U) if and only if

[X,J@l-]:J[X,al-] foreachi, 1<i<n.
In particular, for eachi, 1<i<n, 0, € L,(U). Finally, a vector field X on U belongs to
L,;(U) ifandonlyif, foreachh, 1<A <k, we have:

[x,J"0,]=J"x,0,]=[ J"Xx,0,], 1<i<n.

Let XeLJ(U)m(KerJ‘i/) be a vector fieldon U, 1<s<k+1. We set:

z -1

X= XC(]’I)+ll(k—S—h+l)+laC(h)+ll(k—S—h+l)+l + Y Where YEKEI"J‘L (fOI‘ S:1, YZO).
0<h<k+l-s
I<I<pg—p—s+2

For each i, 1Si£n,wehave:[ JSX,al-]=0=JS[X,8i]=JS_l[X,J6l-]=[ Js_lX,Jal-],

thU.S Xc(h)+a(k—s—h+1)+l 9 0 S h S k + 1 -8 ) IS l S pk—h—S+2 Py OIlly depends on (ul"""uc(l)) .

For s =1, that completely determines X € L, (U)N (KerJ‘U) .

Assume now 2<s<k+1: Oy4_s2)+; » Where 1<j<p, . +..+p;,, , belongs to
KerJ‘i]_1 thus [X,Js_lﬁa(k_s+2)+j]= 0 =[ JS_IX,Ga(k_HZ)H] , hence we deduce that
X o yratk—s—hrys1 - 0Sh<k+1-s,1<I<p,, ., only depends on (uy,.....Uy(_y12)) -

X = Z Xc(h+q)+a(k+1—s—h)+l ac(l’t+q)-H/z(k-%—l—s—h)—%—l
0<g<s-1

0<h<k+1l-s

I<I<pp_p—s+2

(3) where, for q, 1<qg<s-1

We set:

X c(h+q)+a(k+l1—s—h)+l — Z

i ’
O'X c(hyrak+1-s—hy+l H H (”c(t)+/)

i i; i t
ouy'..0u} ..0u; 1<jsr | 1si<q b;!

where r=a(k—s+2) and Z is taken on all the possible families of integers > 0, i B b; ,
1< j<r, suchthat:

B+t +ot+i, =1, b =i, 1<i<q, , th’ |=q.
J 7 J

1<t<gq I<j<r\ 1st<q

In particular, X (4 g)+a(k+1-s—h)+ 18 independent of w1y, 1Si<n—c(g+1).



We verify that, for 1<t<¢g<s—-1, 1<j<alk—s+2),

ac(t)Jrj‘ch(thq)+a(k+lfsfh)+l = anc(h+q7t)+a(k+lfsfh)+l :

For a(k-s+2)+1<i<ak+1), 1<i<k : |[X,J'8,]=0=J'[%.0,]

For 1<i<a(k-s+2), 1<r<s—1:  |X,J'0,]=J"[%.0,]

Indeed, J'0; =Oc(1)+i then

[)N(J tai]:[)? =ac(z)+i] == > OepiX clhrgrratisios—hytl  Oc(hsqyraths—s—i)

0<g<s-1

t
== D 0iXmgtyratirisiyrl I Octhigtyratksis—h)il
0<g<s-1

== D 0iX thegotyrathiios—hyl Oc(higtyrathsl—s—hyil
0<g<s-1

-J'[%.0,]

For 1<i<a(k-s+2), s<t<k : [)?,J’a,.]= 0, and J’[)?,a,.] =[ J'X,8;]=0 because
J'X=0 for s<t<k.
Thus X e L,(U) N (Ker. E/), and so does X — X .

- ~ i .
But X-X= Y- ) X hrgyrathrios—nyst Oc(hgyratisi—s—nyet » thus X_XEKe’”J\ij - This

1<g<s-1

completely determines L ;(U) by induction.
We deduce that, for every open set Q of V*:

Lemma 1: X belongs to L,(Q) if and only if, for every open set U of adapted local

coordinates (u,....,u,)  such that QNU=#J, X\QmU is a vector field finite sum

A(s,h,l) = z X (hrqyratsi—s—hy+l ac(h+q)+a(k+l—s—h)+l , where I<s<k+1,
0<g<s-1

0<h<k+l-s, 1SI<pp o Xepyrathos—niiyn only depends on  (uy,....,u,;_s.2)) and for

I<g<s=1, Xeigyratkn s IS given by (3).

A(s,h,1) is hence completely determined by its non zero first component X ). q(k—s—n+1yr1 -

if s=1, it will be its only one non zero component.

(4) We set: A;’(U): z A(s,h,l) where 1<s<k+1, 0<h<k+1-5s.
I<I<pg—p—s42

Remark 2 : To every vector field X on M generating a one parameter local subgroup
corresponds a one parameter subgroup on T*M ; let RX be the associated vector field on
T*M ; RX isthe "lift of X in T¥M ™.

We immediately verify that:



Lemma 2: Let s be 1<s<k. The following conditions are equivalent:
i) the vector field RX on T*M is “projectable” on (V*)*,

ii) X isan automorphism of the foliations Fy__, , 1<t<s.
For X, automorphisms of  the foliations Fy_;,1<t<s, we have: P,J, (RX)=J,P,(RX)

where P, is the natural projection from "M to (V*)".

S

Then, the vector field on U = 7(U), (see Lemma 1)

A

X = Xc(h)+a(k+lfsfh)+l (uy """ua(k7s+2))aa(k+lfsfh)+l

where 1<s<k+1, 0<h<k+1-s, 1</<p,, .., is an automorphism of the foliations

Fi_, , 1<t<s-1,and we have :

A(s, 1) = B (J§ (RX)).

4.L,,SUBSPACE OF L,

Let 2 be an open set of vk We set : L(Q)=L,(Q)n (Keer) .

For 0<h <k, let Lfl (€2) be the set of the vector fields X e L, (€2) such that, for every open set

U of adapted local coordinates of V'* X\Qmu € Alh (U). We have a direct sum decomposition
of L(Q): L(Q)= & L'(Q).

0<h<k
For s > 2, if we have two open sets U and U'of adapted local coordinates, Af u )‘U Ut 18

different from A;’ w ')‘U ~v 1n general. To avoid this problem, we consider a metric g on M.

Let Q be an open set of M and Q an open set of V*: Q=x(Q). For 2<s<k+1,

0<h<k+1-s, we denote by LlsZ (Q) the set of the automorphisms of the foliation F__,,,

tangent to the leaves of F,,, ., and orthogonal to the leaves of F;_._,,,.

+1-s—
For 2<s<k+1, OShSk-i-l—S,Jél limited to RL?(Q) is injective.
We set :
h _ h h A
6 L) —Pk(JO (RLS(Q))JQ , 25s<k+1,0<h<k+1-s.
We have:
L(Q)= ® ( ® L';(Q)).

1<s<k+1\0<h<k+1-s

Moreover, setting L (Q)= @ ( S Lﬁ' (Q)) for 2<s<k+1 then

1<t<s \O<h<k+1-t

L(Q)=L,()nN (KerJ‘il) .
We easily verify that:



Lemma 3 : For every open set Q of V¥, every X e L (Q) is a restriction of an element of
L (7 ().

Lemma 4 : For every open set Q of vk, and for each X eL (Q)), 1<s<k+1 and
Y e L,(Q), the bracket [X,Y] belongs to L,(Q). L.(Q) is an ideal of L,(C).

Proof: Forevery X eL (Q) and Y eL,(Q), we have: J‘SQ[X,Y]: [J‘SQX,Y]ZO.

This completes the proof.O

Lemma 5 : Let Q) be an open set of vk and X e L, (Q) be a vector field on Q). For each
xeQ, thegermat x of X is the germ at x of an X'eLl(Vk).

Proof: Let xeQ, U be an open set of M diffeomorphic to a Cartesian product of m open
intervals of /R such that y=7(x)e U and U c 7(Q), and H a function on M with compact

support contained in U, equal to 1 in a neighbourhood of y; to H corresponds on V* a

function H=H oz with a support (no compact) contained in the open set of adapted local
coordinates U = 7~ (U ), equal to 1 in a neighbourhood of x .

Let X eLi'(Q) be a vector field on Q, 0<h<k: X spread over ﬂfl(ﬂ(Q))DU; in U, we

canwrite X as: X = z X nyrath-nyri st ) Ochyrate—ysi 5
1<i<ppii—p

X'= H{ z X hyrath—hy+i 8C(h)+a(k_h)+i] belongs to L!(V*), 0<h<k, and coincides
I<i<ppi-p

with X in a neighbourhood of x . This completes the proof. O

Remark: In general, this property is not true for X e L,(©2) and X ¢ L, (€2).

Let X el (Vk) be a vector field on V¥ ; its support @ is of the form ﬁ_l(¢?) where ¢3 is a
closed set of M. We denote by “L, (V'*) the set of the vector fields X e L (V'*) whose support
o= ﬁ_l(qg) is such that ¢? is compact.

Theorem I: L)(V*)=[ L"), L]("") ], and if py, #0, then
LS=[ L"), 1sh<k, LEYH=[ LLEY) ] and
‘L=[ ‘L. L]

Proof: Let (U a) , be a covering of M by local coordinates open sets whose closure is
ae

compact and diffeomorphic to a Cartesian product of m open intervals of /R, which we
suppose centred in the origin; according to [2], th. I. p. 17, it exists an open covering of M,

locally finite, finer, U and a partition of I in a finite collection of subsets 7, (u=1,....,r)
y Y ver P H

such that, for each , the open sets /, where v € [, are pairwise disjoint.



Let (é ) , be a partition of unity subordinate to the covering (0V)and 0, = év orr the

14

partition of unity associated to vk,

Let X e LX(V'") (respectively X € L'(V*), 1< h < k) be a vector field on vk,
We set, for each vel, X, =6,X ; from lemma 1, X, € L) (V") (respectively X, e Lj(V'*),
1<h<k). The support of X, is of the form 7r_1(¢3‘,) where ¢?v is a compact set of M included

~

in U,; there exists an open set U;, of M, with compact closure, such that

A

¢?‘, cU,cU,cU, and C”functions on M, S, and 7, g, =1,
W

~ A Y A

suppB, <U.,, 7 =1, suppj, <U,; We set B,=f,0m, y,=7,0m. Since U, is
o=

14
\4

contained in an U, U, = ! (UV) is contained in the open set of adapted local coordinates

-1 ~
U,=n"(U,).Let us then set : X, = Z Xy atyr; WUrseesthy) Oy s
1<j<py
(respectively X, = X ctnyratomyri @rseosthy) Ocysateomysi » 1S h<k)
I<i<py

We set for 1S]Spk+] Tv,a(k)+j =ﬂv aa(k)+j7
Ya(k)+j
Yv,a(k)+j =5, (.[0 Xv,a(k)f,- (1 seesUg(iys jto b Ug(iy4 11 ,---,ua(k+1))d’)aa(k)+j

(respectively for 1<i<p,. ., ,.,1<h<k,

Yv,c(h)+a(k—h)+z Yy

a(k)+1
J. Xv,c(h)+a(k—h)+i (U5 Ugkys b Ug(iye2 >+ U (k1) )df) ac(h)a(k—h)ﬂ' )-

The 2p,,, (respectively, p;.,_, . 1<h <k) vector fields on v*, with supports contained in
Uy, Tokyrj» Yayr; where 1< j< pp (respectively Y. o—p Where 1<Si<py, , .
1< h < k)belongs to L (V*) (respectively to L (V*), 1< h <k).

We obtain: Z [Tv,a(k)+j’Yv,a(k)+j:|= Z Xv,a(k)+j6a(k)+j =X,

1<j<pps1 1<j<pk+1
(respectively , for 1<h <k ,

z [Tv,a(k)ﬂ > Yv,c(h)+a(k7h)+i:| = z Xv,c(h)+a(kfh)+iac(h)+a(k7h)+i = Xv) .
ISiSkarl*h 1§l‘§pk+17h

Since,if v and v'e ], , U,NU, =@, wecan set:

X,u = z Xv; fOI‘lSjSpk+1 > Ty,a(k)+j Z Tva(k)+j d ya(k)+j Z Yva(k)+j ’

vel, ve[ vel

(respectively for 1<i< py ., ,, 1<Sh<k, Y, oyatk-nyi = Z Y, conyrate—nyri )-

vel,
We have: X = Z [T#,a(k)ﬂ,Y#,a(kHJ (respectively
1<j<pk+1
Xy= 2 [ Tuawrs Yuctyatioie |« 1Sh<k) where Ty s Voo

I1<i<ppii-p

10



1< j< pryy (respectively Y, chyrath—ny+i» 1<i< pii_y »1 < h<k)belongs to L?(Vk) (
respectively to Li' (Vk) , 1 < h <k); hence the result, since X = Z X,.

1Susr

When X € L, (Vk) , it is enough to remark that the support of X only meets with a finite
number of U, ; denote by B the finite part of I such that ,if ve I —B, supp X "U, =, thus:

X = Z [Tv,a(k)+j’Yv,a(k)+j:| (respectively Z |:T1'/,a(k)+]’Yv,c(h)Jra(kfh)Jri:| , 1Sh<k).

1<j<pk+1 I<i<ppi1-p
veB veB

This completes the proof.O0

Theorem 2 : Let X e L)(V*) (respectively, X e ! (V¥), 1<h<k if p,,,#0) be a vector
field on V* such that the support of X is contained in an open set Q verifying Q=" (z(Q)).
Then X =Z[TI,YI] where Z is a finite sum, T, e L(V*), Y, e L(V*) (respectively L} (V"),

1 < h < k) and whose supports are included in Q.

Proof : With the same notations as in theorem 1, we have 9’31/ c UV NQ where Q= 7(Q); so
we can impose the restriction that U_V c UV Q) ; then, the support of T, oty a0d Y, 4005
for 1</ < py.y, (respectively Y, i ageonysis fOr 1Si<ppyyy, 1Sh<k)isin U, NQ.

As the covering (U))) is locally finite, for 1< j<p, ,,

supp Ty qiye;= U supp T, 004, < Q, supp Yy qiye; = U supp Y, 0., < Q
ve[ﬂ vel,
(respectively, for 1<i<p, ., ,, 1<h<k,

supp Y, cnyrath-nyri = L{ supp Y, c(hyra(k—ny+i < ), which proves the theorem. o
ve
u

Lemma 6 : Let U be an open set of adapted local coordinates of VK and s an integer such that
2<s<k+1. Suppose p,_,,, #0. Every element of L (U)is a bracket finite sum of elements

of Ly(U) which means that: [Ls W), L, (U)] =L (U).

Proof : Let XeAf(U), 2<s<k+1, 0<h<k+1-s beavector field on U (see (4)).
Weset, for 1< j<p, . ,.-:

Ug(k—s+2) X

Yo hyratksi=s—iy+ j :J clhyratiri—s—hyej Ui Ug(p—siay1> DAL, where

Ug(k—s+2)

(ul,....,zfa(k_ﬁz),...,un) and (u,....,u,) belongs to U ( U is supposed diffeomorphic to a

Cartesian product of nopen intervals of IR ), and denote by Y the vector field on Uc V*
determined by its non zero first component : Y, 4y, q(k41-s—h)+j - ¥ € ANU).

Wehave in U: [ 0,45i0).Y |=X so [ A/U).AU) ]=4!U).
This completes the proof. O
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Lemma 7 : Let U be an open set of adapted local coordinates (uy,....,u,), x €U and s an
integer such that 1<s<k+1. Suppose p,_ .., #0. For every XeASh(U), 0<h<k+1-s,
such that j(X)(x)=0 (i.e. the 3 —jet of each of the component functions of X is zero in X),
there exists Y,,...Y, e A°(U), T,,...,T. € A"(U) such that :

X=Y [V.1,] and 0= (1)) =0.

1<i<r

Proof : From Lemma 1, it is sufficient to prove the result for
X =X c(hyratesi=s—my+1 Ul oo Ua(k—512))0 c(hyath+l-s—h)+l  +

z Xe(hrqyrathsi=s—nyri Ochrq)rathsios—hy+l where 1<s<k+l, 0<h<k+l-s,
1<g<s-1

1<I<py gy andfor 1Sg<s—1, X g\ raksi-s—m)+ 1S givenby (3).
We can always suppose u;(x)=0,1<i<n.

Weset t=a(k+1-s)+1,1<I<p,_.,.

1) Consider X € ASO (U) and two vector fields Y and T belonging to ASO w):

Y=Ho,+ Y (aJ.H U, )ac(,)ﬂ,

c(r)y+j "o
1<r<s-1

I<j<a(k-s+2)

T=Go,+ 3. (0,G typy;+-) Ooprrus-

c(ry+j T
1<r<s—1
1<j<a(k—s+2)
[v,7]e 42W): [v.T]=(H3,G-Go,H), +.....
It is sufficient to take:
4
If Xt =Uy; X(u1 ,....,Ma(k_s+2)) ,

H=u?, G=u?["X d
=u;, G=u; JO (U seees Uy 5 Xy U] eeees U g (g 12) )X
If X, =uu X withizt, 1<i<a(k—s+2),
U, >
H=u,u;, G=u, jo XX (U ey Uy gy XUy ey U (—g42) )AX -
If X, =ujuu X withizt, j=t 1<i,j<a(k-s+2),
Uy
H:utui, G:utujjo X(ul,....,ut_l,x,utﬂ,....,ua(k_s+2))dx.
I X, =uuuu X withi=t, j=t, f=t 1<i,j,f <a(k—s5+2),

Uy
H=u;u;, quf.[o XX (U] ey Up g5 Xy Uy geees U g f—s12) )X .

~

If X, =uwuupu,X withi#t, j#t, f#t,g#t 1<i,j,f,g<alk—-s+2),

U >
H =u;u;, G =MfMgJ.0 X(ul,....,ut_l,x,qu,....,ua(k_s+2))dx.

We can remark that in any case, we even have j*(G)(x)=0.
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2) Consider X € 4"(U), 1<h<k+1-s and two vector fields ¥ € 4°(U) and T e A"(U),
I<h<k+1-s:
Y=Ho,+ Y (0,H u

1<r<s—1
1<j<a(k—s+2)

T'=GOchyra(krios—hy+t T z (ajG uc(r)+j+"‘) O (r+hyralk+1-s—h)+l -

1<r<s-1
1<j<a(k-s+2)

[v.T]e 4} U): [¥.T]= H8,G0 phyrahsios—nyrs + -

c(r)+j c(r)+t »

+) 0

It is enough to take:
4
I X onyratkri=s—nyer =Ur X(UpsesUgr_si2)) »

2 U 2
H=u;/, G:.[o XX (U ey U g5 Xy Uy ey U (f—g42) )X

If Xc(h)+a(k+1—s—h)+l=ut3ui)w( Wlthlit, lSlSa(k_S+2),

2 U T
H=u;, G=u, .[0 XX (U ooy Up g5 Xy Uy yenees U g (f—s42) )X -

~

If Xc(h)+a(k+1—s—h)+l ZMI?ulM]X with l?ft, J #t 1< l,] < a(k—s+2),

2 Ut ¥
H=Mt , G:uiujjo X(ul,....,ut_l,x,qu,....,ua(k_s+2))dx.

I Xemysathsosmy =W up X withizt, j=t, f#t 1<i,j,f <a(k-s+2),

Uy~
H=u,u;, G:ujufjo XUy geees U5 Xy Uy e U g (f—s42) )X -

~

If Xc(h)+a(k+l—s—h)+l:uiujufng with l;tl‘, J?ﬁl,fil,g?ft,
1<i,j,f,g<alk—s+2),

U
H=uu;, G= Uil .[0 XU ooy Uy g5 XUy s U g (f—s12) )X .

Hence, in any case:

JHE)@) =] N))=0, j(G)x)=;(T)x)=0, ;j*(G)x)=0.
This completes the proof.O
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