Lie Algebra on the Transverse Bundle of a Decreasing Family of Foliations ## Leila Lebtahi Departamento de Matemática Aplicada Universidad Politécnica de Valencia Camino de Vera s/n 46022 Valencia, Spain E-mail: leilebep@mat.upv.es ## **Abstract** J.Lehmann-Lejeune in [Cohomologies sur le fibré transverse à un feuilletage, C.R.A.S. Paris, 295 (1982), 495-498] defined on the transverse bundle V to a foliation on a manifold M, a zero-deformable structure J such that $J^2=0$ and for every pair of vector fields X, Y on M: $[JX,JY]-J[JX,Y]-J[X,JY]+J^2[X,Y]=0$. For every open set Ω of V, J.Lehmann-Lejeune studied the Lie Algebra $L_J(\Omega)$ of vector fields X defined on Ω such that the Lie derivative L(X)J is equal to zero i.e., for each vector field Y on Ω : [X,JY]=J[X,Y] and showed that for every vector field X on Ω such that $X \in KerJ$, we can write $X = \sum [Y,Z]$ where \sum is a finite sum and Y,Z belongs to $L_J(\Omega) \cap (KerJ_{|\Omega})$. In this note, we study a generalization for a decreasing family of foliations. Keywords: Foliations; Fiber Bundles; Lie Algebra. Mathematics Subject Classification: 53C12; 55R10; 17B66 ## 1. INTRODUCTION Let M be a differentiable manifold endowed with a decreasing family F_i of k foliations (particular case of "Multifoliate Structures" of Kodaira Spencer [3]). We define a so-called "order k bundle V^k transverse to the foliations F_i ". This note is divided into three sections. In the first, we define V^k and we show that there exists a (1,1) tensor J of V^k such that $J^k \neq 0$, $J^{k+1} = 0$ and for every pair of vector fields X, Y on V^k : $$[JX, JY] - J[JX, Y] - J[X, JY] + J^{2}[X, Y] = 0$$. In section two, Ω being an open set of V^k , we denote by $L_J(\Omega)$ the Lie Algebra of vector fields X defined on Ω such that the Lie derivative L(X)J is equal to zero i.e., for each vector field Y on Ω : $$[X,JY] = J[X,Y]$$ In $L_J(\Omega)$, we find the canonicals lifts in V^k of the infinitesimal automorphisms of the k foliations on M. In section three, we define L_1 , subset of L_J , constituted by the vector field X on V^k such that $X \in KerJ$. We show that for every $X \in L_1(V^k)$, we can write $X = \sum_i \left[Y_i, Z_i \right]$ where \sum_i is a finite sum and Y_i, Z_i belongs to $L_1(V^k)$. #### 2. THE ORDER k BUNDLE TO k FOLIATIONS Let M be a differentiable manifold of dimension m endowed with k foliations $F_1, F_2, ..., F_k$, $k \ge 1$, of respective codimensions $p_1, p_1 + p_2,, p_1 + p_2 + ... + p_k$ such that $F_1 \supset F_2 \supset ... \supset F_k$ ($m = p_1 + p_2 + + p_k + p_{k+1}$, $p_1 > 0$, $p_i \ge 0$, $2 \le i \le k+1$). The order k tangent bundle of M is the manifold of dimension (k+1)m of the k – jets of origin 0 of differentiable mappings from IR to M denoted T^kM (cf. [1]). Let s and h be two integers such that $0 \le s \le h \le k$, $h \ge 1$. On the set of h-jets of differentiable mappings of origin 0 from IR to M, we define an equivalence relation. Let φ and ψ be two differentiable mappings from IR to M such that $\varphi(0) = \psi(0)$. Denote by $(u_1,u_2,...,u_m)$ the local coordinates of an open set $\hat{U}\subset M$, adapted to the k foliations (i.e. $u_1,u_2,...,u_{a(h)}$ are constants on the leaves of F_h , $1\leq h\leq k$), such that $\varphi(0)=\psi(0)=x_0\in\hat{U}$. We say that the h-jets of φ and ψ are equivalent if: $\frac{d^b \varphi_l}{d \rho^b}(0) = \frac{d^b \psi_l}{d \rho^b}(0)$, $1 \le b \le s$, $1 \le l \le a(k+1-b)$ and $s+1 \le b \le h$, $1 \le l \le a(k+1-s)$. This equivalence relation is independent of the open set \hat{U} of coordinates adapted to the k foliations containing x_0 . We denote by $(V^s)^h$ the quotient space of the h-jets of differentiable mappings from IR to M endowed with this equivalence relation. This is a manifold of dimension $\sum_{0 \le t \le s} a(k+1-t) + (h-s)a(k+1-s).$ For s = h, $(V^s)^s$ will be denoted, for simplicity, by V^s . We have the following diagram, where the arrows are the natural projections: V^k is called order k bundle transverse to the k foliations $F_1, F_2, ..., F_k$. The dimension of $$V^k$$ is $n = \sum_{0 \le t \le k} (t+1) p_{k+1-t} = \sum_{0 \le t \le k} a(k+1-t)$. **Remark 1:** $(V^s)^k$, $0 \le s \le k$, can be considered as a $V^{'k}$. In fact, it is sufficient to set: $p_1' = a(k+1-s)$; $p_i' = 0$, $2 \le i \le k+1-s$; $p_j' = p_j$, $k+2-s \le j \le k+1$. Thus $V^{'k}$ is the order k bundle transverse to the k foliations $F_1, F_2, ..., F_k$ of codimensions respectively $p_1, p_1 + p_2, ..., p_1 + p_2 + ... + p_{k+1}$ such that $F_1 \supset F_2 \supset ... \supset F_k$, where $F_i = F_1$ for $2 \le i \le k+1-s$. An element of V^k , i.e. an equivalence class of k – jets $j_0^k \varphi$ is uniquely expressed by the set $(u_l, u_{c(h)+r_h})$, l=1,...,m, $1 \le h \le k$, $1 \le r_h \le a(k-h+1)$, u_l being the coordinates of x_0 in $$\hat{U}$$ and $u_{c(h)+r_h}$ being defined by: $u_{c(h)+r_h} = \frac{1}{h!} \frac{d^h \varphi_{r_h}}{d \rho^h}(0)$. Thus, to every open set \hat{U} of M is associated an open set $U = \pi^{-1}(\hat{U})$ in V^k , where π is the canonical projection from V^k to M. On M, let $\{\hat{U}, u_i\}$ and $\{\hat{U}', u_i'\}$, $i=1,\dots,a(k+1)$, be two local coordinates charts adapted to the k foliations such that $\hat{U} \cap \hat{U}' \neq \varnothing$. We have, in $\hat{U} \cap \hat{U}'$, for $1 \le k \le k+1$, $a(k-1)+1 \le i \le a(k)$: $$u'_{i} = f_{i}(u_{1},...,u_{a(h)})$$ $$\partial_{i} = \sum_{a(h-1)+1 \le r \le a(k+1)} \partial_{i} f_{r} \partial'_{r} \quad \text{(we set } \partial_{i} = \frac{\partial}{\partial u_{i}}, \ \partial'_{r} = \frac{\partial}{\partial u'_{r}})$$ Let φ and ψ be two mappings from IR to M such that $\varphi(0)$ and $\psi(0) \in \hat{U} \cap \hat{U}'$. For ρ close enough to zero, $\varphi(\rho)$ (resp. $\psi(\rho)$) can be written with the local coordinates u_i (resp. u_i'): $(\varphi_1(\rho),....,\varphi_{a(k+1)}(\rho))$ (resp. $(\psi_1(\rho),....,\psi_{a(k+1)}(\rho))$). We have: $$\psi_i(\rho) = f_i(\varphi_1(\rho), ..., \varphi_{a(h)}(\rho))$$ where $a(h-1)+1 \le i \le a(h), 1 \le h \le k+1$, and $$\frac{1}{j!} \frac{d^{j} \psi_{r_{j}}(\rho)}{d\rho^{j}} = \frac{1}{j!} \frac{d^{j} [f_{r_{j}}(\varphi_{1}(\rho),, \varphi_{a(k+1-j)}(\rho))]}{d\rho^{j}} \quad \text{where } 1 \le j \le k, \quad 1 \le r_{j} \le a(k+1-j).$$ We set $$u_i = \varphi_i(0)$$, $u_i' = \psi_i(0)$ and $u_{c(j)+r_j} = \frac{1}{j!} \frac{d^j \varphi_{r_j}}{d \rho^j}(0)$, $u'_{c(j)+r_j} = \frac{1}{j!} \frac{d^j \psi_{r_j}}{d \rho^j}(0)$. We have, for $$1 \le h \le k$$, $a(h-1)+1 \le i \le a(h)$: $u'_{c(1)+i} = \sum_{1 \le i \le a(h)} \partial_j f_i \ u_{c(1)+j}$. We verify that for $1 \le q \le k$, $1 \le h \le k - q + 1$, $a(h-1) + 1 \le i \le a(h)$: $$\frac{1}{q!} \frac{d^q \psi_i(t)}{d \rho^q} = \sum \frac{\partial^l f_i}{\partial u_1^{i_1} ... \partial u_j^{i_j} ... \partial u_{a(h)}^{i_{a(h)}}} \prod_{1 \le j \le a(h)} \left[\prod_{1 \le r \le q} \frac{1}{b_j^r} ! \left(\frac{1}{r!} \frac{d^r \varphi_j}{d \rho^r} \right)^{b_j^r} \right]$$ where \sum is taken on all the possible families of integers ≥ 0 , i_j , b_j^r , $1 \leq j \leq a(h)$ such that $i_1 + \ldots + i_j + \ldots + i_{a(h)} = t$, $1 \leq t \leq q$, $$\sum_{1 \le r \le q} b_j^r = i_j \quad , \qquad \sum_{1 \le j \le a(h)} \left(\sum_{1 \le r \le q} r b_j^r \right) = q .$$ Thus if $U = \pi^{-1}(\hat{U})$ and $U' = \pi^{-1}(\hat{U}')$, we have in $U \cap U'$, for $1 \le h' \le k + 1$, $a(h'-1)+1 \le i' \le a(h')$, $1 \le q \le k$, $1 \le h \le k - q + 1$, $a(h-1)+1 \le i \le a(h)$: $$\begin{cases} u_{i'}^{'} = f_{i'}(u_{1}, \dots, u_{a(h')}) \\ u_{c(q)+i}^{'} = \sum_{j=1}^{n} \frac{\partial^{t} f_{i}}{\partial u_{1}^{i_{1}} \dots \partial u_{j}^{i_{j}} \dots \partial u_{a(h)}^{i_{a(h)}}} \prod_{1 \leq j \leq a(h)} \left[\prod_{1 \leq r \leq q} \frac{\left(u_{c(r)+j}\right)^{b_{j}^{r}}}{b_{j}^{r}!} \right], \\ \partial_{i'} = \sum_{a(h'-1)+1 \leq r' \leq a(k+1)} \partial_{i'} f_{r} \cdot \partial_{r'}^{'} \cdot \left[\partial_{c(q)+j} = \sum_{1 \leq h \leq k-q \atop 1 \leq h \leq k-s} \sum_{1 \leq h \leq k-s \atop a(h-1)+1 \leq j \leq a(h)} \sum_{j=1}^{n} \frac{\partial^{t} f_{i}}{\partial u_{1}^{i_{1}} \dots \partial u_{j}^{i_{j}} \dots \partial u_{a(h)}^{i_{j}}} \prod_{1 \leq j \leq a(h)} \left[\prod_{1 \leq r \leq q+s \atop r \neq q} \frac{\left(u_{c(r)+j}\right)^{b_{j}^{r}} \left(u_{c(q)+j}\right)^{b_{j}^{q}-1}}{b_{j}^{r}!} \right] \partial_{c(q+s)+i}^{'}$$ T^kM (which can be considered as a $(V^s)^k$ with s=0) is equipped with an order k nearly tangent structure J_0 of constant range km (cf. [1]). We define a vector field Z and a (1,1) tensor J on V^k in the following way: Let U and U' be two open sets of adapted local coordinates $(u_1,...,u_n)$, $(u_1,...,u_n)$, respectively. We set: $$Z^U = \sum_{1 \leq h \leq k} \ h \left(\sum_{1 \leq j \leq a(k+1-h)} \ u_{c(h)+j} \partial_{c(h)+j} \right), \qquad Z^{U'} = \sum_{1 \leq h \leq k} \ h \left(\sum_{1 \leq j \leq a(k+1-h)} \ u_{c(h)+j}' \partial_{c(h)+j}' \right),$$ $$\begin{cases} & \text{for each h,} \quad 0 \le h \le k: \\ & J^U \partial_{c(h)+a(k-h)+i} = 0, \qquad J^{U'} \partial_{c(h)+a(k-h)+i}' = 0, \qquad 1 \le i \le p_{k+1-h} \end{cases}$$ $$\text{for each h,} \quad 0 \le h \le k-1:$$ $$& = \partial_{c(h+1)+a(r-1)+i}$$ $$& = \partial_{c(h+1)+a(r-1)+i}$$ $$1 \le r \le k-h, \quad 1 \le i \le p_r$$ Using (1), we verify that we have, in $U \cap U'$, if $U \cap U' \neq \emptyset$: $$Z^U_{|U\cap U'}=Z^{U'}_{|U\cap U'},\quad J^U_{|U\cap U'}=J^{U'}_{|U\cap U'}\;.$$ Hence Z and J are, in fact, globally defined. Z is called the "field of the homotheties" on V^k . J is the projection on V^k of the nearly tangent operator J_0 of order k on T^kM . Its rank is constant and equal to $\sum_{1 \le t \le k} a(k+1-t)$: it verifies $J^{k+1} = 0$ and for every pair of vector fields X, Y on V^k : $$[JX, JY] - J[JX, Y] - J[X, JY] + J^{2}[X, Y] = 0$$. According to the remark 1, for $0 \le s \le k$, we have also defined a vector field Z_s and a (1,1) tensor J_s on $(V^s)^k$. In U (open set of adapted local coordinates $(u_1, ..., u_n)$ of $(V^s)^k$, where n is the $(V^s)^k$ dimension), we have: $$Z_s^U = \sum_{1 \leq h \leq s} \ h \left(\sum_{1 \leq j \leq a(k+1-h)} \ u_{c(h)+j} \partial_{c(h)+j} \right) \ + \sum_{1 \leq t \leq k-s} \ t \left(\sum_{1 \leq i \leq a(k+1-r)} \ u_{c(r)+ta(k+1-r)+i} \partial_{c(r)+ta(k+1-r)+i} \partial_{c(r)+i} \partial$$ For each h, $0 \le h \le s - 1$: $$\begin{split} J^U_s \, \partial_{c(h)+a(k-h)+i} &= 0, \quad 1 \leq i \leq p_{k-h+1} \ , \\ J^U_s \, \partial_{c(h)+a(r-1)+i} &= \partial_{c(h+1)+a(r-1)+i} \ , \ 1 \leq r \leq k-h \ , \ 1 \leq i \leq p_r \quad \text{and} \\ J^U_s \, \partial_{c(s)+ta(k+1-s)+i} &= \partial_{c(s)+(t+1)a(k+1-s)+i} \ , \ 0 \leq t \leq k-s-1 \ , \ 1 \leq i \leq a(k+1-s) \ , \\ J^U_s \, \partial_{c(s)+(k-s)a(k+1-s)+i} &= 0 \ , \quad 1 \leq i \leq a(k+1-s) \ . \end{split}$$ For $$s = k$$, $Z_s = Z$ and $J_s = J$. # 3. THE LIE ALGEBRA L_{I} Let Ω be an open set of V^k . We denote by $L_J(\Omega)$ the Lie Algebra of vector fields X defined on Ω such that the Lie derivative L(X)J is equal to zero (i.e. the infinitesimal automorphisms of the structure), which means that, for each vector field Y on Ω : [X,JY]=J[X,Y] Let U be an open set of adapted local coordinates $(u_1,...,u_n)$ and X a vector field on U. We easily verify that $X \in L_J(U)$ if and only if $$[X, J\partial_i] = J[X, \partial_i]$$ for each i, $1 \le i \le n$. In particular, for each i, $1 \le i \le n$, $\partial_i \in L_J(U)$. Finally, a vector field X on U belongs to $L_I(U)$ if and only if, for each h, $1 \le h \le k$, we have : $$[X, J^h \partial_i] = J^h [X, \partial_i] = [J^h X, \partial_i], \qquad 1 \le i \le n.$$ Let $X \in L_J(U) \cap (KerJ^s_{|U})$ be a vector field on U, $1 \le s \le k+1$. We set: $$X = \sum_{\substack{0 \leq h \leq k+1-s \\ 1 \leq l \leq p_k-h-s+2}} X_{c(h)+a(k-s-h+1)+l} \hat{\mathcal{O}}_{c(h)+a(k-s-h+1)+l} + Y \quad \text{ where } \ Y \in KerJ^{s-1}_{|U} \ \ (\text{for } s=1 \ , \ Y=0 \).$$ For each i, $1 \le i \le n$, we have : $\begin{bmatrix} J^s X, \partial_i \end{bmatrix} = 0 = J^s \begin{bmatrix} X, \partial_i \end{bmatrix} = J^{s-1} \begin{bmatrix} X, J \partial_i \end{bmatrix} = \begin{bmatrix} J^{s-1} X, J \partial_i \end{bmatrix}$, thus $X_{c(h)+a(k-s-h+1)+l}$, $0 \le h \le k+1-s$, $1 \le l \le p_{k-h-s+2}$, only depends on $(u_1,, u_{c(1)})$. For s = 1, that completely determines $X \in L_J(U) \cap (KerJ_{|U})$. Assume now $2 \leq s \leq k+1$: $\partial_{a(k-s+2)+j}$, where $1 \leq j \leq p_{k-s+3}+\ldots+p_{k+1}$, belongs to $KerJ^{s-1}_{|U|}$ thus $\left[X,J^{s-1}\partial_{a(k-s+2)+j}\right]=0=\left[J^{s-1}X,\partial_{a(k-s+2)+j}\right]$, hence we deduce that $X_{c(h)+a(k-s-h+1)+l}$, $0 \leq h \leq k+1-s$, $1 \leq l \leq p_{k-h-s+2}$, only depends on $(u_1,\ldots,u_{a(k-s+2)})$. $$\text{We set:} \quad \begin{cases} \tilde{X} = \sum_{\substack{0 \leq q \leq s-1 \\ 0 \leq h \leq k+1-s \\ 1 \leq l \leq p_k-h-s+2}} X_{c(h+q)+a(k+1-s-h)+l} \quad \partial_{c(h+q)+a(k+1-s-h)+l} \\ \text{where, for } \mathbf{q}, \quad 1 \leq q \leq s-1 \\ X_{c(h+q)+a(k+1-s-h)+l} = \sum_{\substack{1 \leq l \leq p_k-h-s+2 \\ 0 \neq l}} \frac{\partial^i X_{c(h)+a(k+1-s-h)+l}}{\partial u_1^{i_1} \dots \partial u_j^{i_j} \dots \partial u_r^{i_r}} \prod_{1 \leq j \leq r} \left[\prod_{1 \leq l \leq q} \frac{\left(u_{c(t)+j}\right)^{b_j^l}}{b_j^l!} \right] \end{cases}$$ where r = a(k - s + 2) and \sum is taken on all the possible families of integers ≥ 0 , i_j , b_j^t , $1 \leq j \leq r$, such that : $$i_1 + \dots + i_j + \dots + i_r = i$$, $\sum_{1 \le t \le q} b_j^t = i_j$, $1 \le i \le q$, , $\sum_{1 \le j \le r} \left(\sum_{1 \le t \le q} t b_j^t \right) = q$. In particular, $X_{c(h+q)+a(k+1-s-h)+l}$ is independent of $u_{c(q+1)+i}$, $1 \le i \le n-c(q+1)$. We verify that, for $$1 \le t \le q \le s-1$$, $1 \le j \le a(k-s+2)$, $\partial_{c(t)+j} X_{c(h+q)+a(k+1-s-h)+l} = \partial_j X_{c(h+q-t)+a(k+1-s-h)+l}$. For $$a(k-s+2)+1 \le i \le a(k+1)$$, $1 \le t \le k$: $\left[\widetilde{X}, J^t \partial_i\right] = 0 = J^t \left[\widetilde{X}, \partial_i\right]$ For $1 \le i \le a(k-s+2)$, $1 \le t \le s-1$: $\left[\widetilde{X}, J^t \partial_i\right] = J^t \left[\widetilde{X}, \partial_i\right]$. Indeed, $J^t \partial_i = \partial_{c(t)+i}$ then $$\begin{split} \left[\widetilde{X},J^t\partial_i\right] &= \left[\widetilde{X},\partial_{c(t)+i}\right] = -\sum_{0 \leq q \leq s-1} \ \partial_{c(t)+i} X_{c(h+q)+a(k+1-s-h)+l} \ \partial_{c(h+q)+a(k+1-s-h)+l} \\ &= -\sum_{0 \leq q \leq s-1} \ \partial_i X_{c(h+q-t)+a(k+1-s-h)+l} \ J^t\partial_{c(h+q-t)+a(k+1-s-h)+l} \\ &= J^t \Biggl(-\sum_{0 \leq q \leq s-1} \ \partial_i X_{c(h+q-t)+a(k+1-s-h)+l} \ \partial_{c(h+q-t)+a(k+1-s-h)+l} \Biggr) \\ &= J^t \Bigl[\widetilde{X},\partial_i\right]. \end{split}$$ For $1 \le i \le a(k-s+2)$, $s \le t \le k$: $\left[\widetilde{X}, J^t \partial_i\right] = 0$, and $J^t \left[\widetilde{X}, \partial_i\right] = \left[J^t \widetilde{X}, \partial_i\right] = 0$ because $J^t \widetilde{X} = 0$ for $s \le t \le k$. Thus $\tilde{X} \in L_J(U) \cap (KerJ^s_{|U|})$, and so does $X - \tilde{X}$. completely determines $L_J(U)$ by induction. We deduce that, for every open set Ω of V^k : $0 \leq h \leq k+1-s \,, \ 1 \leq l \leq p_{k-h-s+2} \,\,, \,\, X_{c(h)+a(k-s-h+1)+l} \quad only \,\, depends \,\, on \quad (u_1,....,u_{a(k-s+2)}) \,\, and \,\, for \,\, 1 \leq q \leq s-1 \,\,, \, X_{c(h+q)+a(k+1-s-h)+l} \quad is \,\, given \,\, by \,\, (3) \,.$ A(s,h,l) is hence completely determined by its non zero first component $X_{c(h)+a(k-s-h+1)+l}$; if s=1, it will be its only one non zero component. (4) We set: $$A_s^h(U) = \sum_{1 \le l \le p_k - h - s + 2} A(s, h, l)$$ where $1 \le s \le k + 1$, $0 \le h \le k + 1 - s$. **Remark 2:** To every vector field \hat{X} on M generating a one parameter local subgroup corresponds a one parameter subgroup on T^kM ; let $R\hat{X}$ be the associated vector field on T^kM ; $R\hat{X}$ is the "lift of \hat{X} in T^kM ". We immediately verify that: **Lemma 2:** Let s be $1 \le s \le k$. The following conditions are equivalent: - i) the vector field $R\hat{X}$ on T^kM is "projectable" on $(V^s)^k$, - ii) \hat{X} is an automorphism of the foliations F_{k+1-t} , $1 \le t \le s$. For \hat{X} , automorphisms of the foliations F_{k+1-t} , $1 \le t \le s$, we have: $P_s J_0(R\hat{X}) = J_s P_s(R\hat{X})$ where P_s is the natural projection from $T^k M$ to $(V^s)^k$. Then, the vector field on $\hat{U} = \pi(U)$, (see Lemma 1) $$\hat{X} = X_{c(h) + a(k+1-s-h) + l}(u_1,, u_{a(k-s+2)}) \partial_{a(k+1-s-h) + l}$$ where $1 \le s \le k+1$, $0 \le h \le k+1-s$, $1 \le l \le p_{k-h-s+2}$ is an automorphism of the foliations F_{k+1-t} , $1 \le t \le s-1$, and we have : $$A(s,h,l) = P_k \left(J_0^h(R\hat{X}) \right).$$ 4. $$L_1$$, SUBSPACE OF L_J Let Ω be an open set of V^k . We set : $L_1(\Omega) = L_J(\Omega) \cap (KerJ_{|\Omega})$. For $0 \le h \le k$, let $L_1^h(\Omega)$ be the set of the vector fields $X \in L_J(\Omega)$ such that, for every open set U of adapted local coordinates of V^k , $X_{|\Omega \cap U} \in A_1^h(U)$. We have a direct sum decomposition of $L_1(\Omega)$: $L_1(\Omega) = \bigoplus_{0 \le h \le k} L_1^h(\Omega)$. For $s \ge 2$, if we have two open sets U and U of adapted local coordinates, $A^h_s(U)_{|U \cap U|}$ is different from $A^h_s(U')_{|U \cap U|}$ in general. To avoid this problem, we consider a metric g on M. Let $\hat{\Omega}$ be an open set of M and Ω an open set of V^k : $\hat{\Omega} = \pi(\Omega)$. For $2 \le s \le k+1$, $0 \le h \le k+1-s$, we denote by $L^h_s(\hat{\Omega})$ the set of the automorphisms of the foliation F_{k-s+2} , tangent to the leaves of $F_{k+1-s-h}$ and orthogonal to the leaves of $F_{k-s-h+2}$. For $2 \le s \le k+1$, $0 \le h \le k+1-s$, J_0^h limited to $RL_s^h(\hat{\Omega})$ is injective. We set: (5) $$L_s^h(\Omega) = P_k \left(J_0^h \left(R L_s^h(\hat{\Omega}) \right) \right)_{\Omega}, \ 2 \le s \le k+1, \ 0 \le h \le k+1-s.$$ We have: $$L_J(\Omega) = \bigoplus_{1 \le s \le k+1} \left(\bigoplus_{0 \le h \le k+1-s} L_s^h(\Omega) \right).$$ Moreover, setting $L_s(\Omega) = \bigoplus_{1 \le t \le s} \left(\bigoplus_{0 \le h \le k+1-t} L_t^h(\Omega) \right)$ for $2 \le s \le k+1$ then $$L_s(\Omega) = L_J(\Omega) \cap (KerJ_{|\Omega}^s)$$. We easily verify that: **Lemma 3:** For every open set Ω of V^k , every $X \in L_s(\Omega)$ is a restriction of an element of $L_s(\pi^{-1}(\pi(\Omega)))$. **Lemma 4**: For every open set Ω of V^k , and for each $X \in L_s(\Omega)$, $1 \le s \le k+1$ and $Y \in L_J(\Omega)$, the bracket [X,Y] belongs to $L_s(\Omega)$. $L_s(\Omega)$ is an ideal of $L_J(\Omega)$. **Proof:** For every $X \in L_s(\Omega)$ and $Y \in L_J(\Omega)$, we have: $J^s_{|\Omega}[X,Y] = [J^s_{|\Omega}X,Y] = 0$. This completes the proof. \square **Lemma 5**: Let Ω be an open set of V^k , and $X \in L_1(\Omega)$ be a vector field on Ω . For each $x \in \Omega$, the germ at x of X is the germ at x of an $X' \in L_1(V^k)$. **Proof:** Let $x \in \Omega$, \hat{U} be an open set of M diffeomorphic to a Cartesian product of m open intervals of IR such that $y = \pi(x) \in \hat{U}$ and $\hat{U} \subset \pi(\Omega)$, and \hat{H} a function on M with compact support contained in \hat{U} , equal to 1 in a neighbourhood of y; to \hat{H} corresponds on V^k a function $H = \hat{H} \circ \pi$ with a support (no compact) contained in the open set of adapted local coordinates $U = \pi^{-1}(\hat{U})$, equal to 1 in a neighbourhood of x. Let $X \in L^h_1(\Omega)$ be a vector field on Ω , $0 \le h \le k$: X spread over $\pi^{-1}\big(\pi(\Omega)\big) \supset U$; in U, we can write X as: $X = \sum_{1 \le i \le p_{k+1-h}} X_{c(h)+a(k-h)+i}(u_1,...,u_m)$ $\hat{\sigma}_{c(h)+a(k-h)+i}$; $$X' = H \left(\sum_{1 \leq i \leq p_{k+1-h}} X_{c(h)+a(k-h)+i} \ \partial_{c(h)+a(k-h)+i} \right) \text{ belongs to } L_1^h(V^k) \,, \ 0 \leq h \leq k \,, \text{ and coincides}$$ with X in a neighbourhood of x. This completes the proof. \square <u>Remark:</u> In general, this property is not true for $X \in L_1(\Omega)$ and $X \notin L_1(\Omega)$. Let $X \in L_1(V^k)$ be a vector field on V^k ; its support ϕ is of the form $\pi^{-1}(\hat{\phi})$ where $\hat{\phi}$ is a closed set of M. We denote by ${}^cL_1(V^k)$ the set of the vector fields $X \in L_1(V^k)$ whose support $\phi = \pi^{-1}(\hat{\phi})$ is such that $\hat{\phi}$ is compact. **Theorem 1:** $$L_1^0(V^k) = [L_1^0(V^k), L_1^0(V^k)]$$, and if $p_{k+1} \neq 0$, then $L_1^h(V^k) = [L_1^0(V^k), L_1^h(V^k)]$, $1 \leq h \leq k$, $L_1(V^k) = [L_1(V^k), L_1(V^k)]$ and ${}^cL_1(V^k) = [{}^cL_1(V^k), {}^cL_1(V^k)]$. **Proof:** Let $(\hat{U}_{\alpha})_{\alpha \in I}$ be a covering of M by local coordinates open sets whose closure is compact and diffeomorphic to a Cartesian product of m open intervals of IR, which we suppose centred in the origin; according to [2], th. I. p. 17, it exists an open covering of M, locally finite, finer, $(\hat{U}_{\nu})_{\nu \in I}$ and a partition of I in a finite collection of subsets I_{μ} ($\mu = 1,, r$) such that, for each μ , the open sets I_{ν} where $\nu \in I_{\mu}$ are pairwise disjoint. Let $(\hat{\theta}_{\nu})_{\nu \in I}$ be a partition of unity subordinate to the covering (\hat{U}_{ν}) and $\theta_{\nu} = \hat{\theta}_{\nu} \circ \pi$ the partition of unity associated to V^k . Let $X \in L^0_1(V^k)$ (respectively $X \in L^h_1(V^k)$, $1 \le h \le k$) be a vector field on V^k ; We set, for each $v \in I$, $X_v = \theta_v X$; from lemma 1, $X_v \in L^0_1(V^k)$ (respectively $X_v \in L^h_1(V^k)$, $1 \le h \le k$). The support of X_v is of the form $\pi^{-1}(\hat{\phi}_v)$ where $\hat{\phi}_v$ is a compact set of M included in \hat{U}_v ; there exists an open set \hat{U}_v of M, with compact closure, such that $$\begin{split} \hat{\phi}_{\boldsymbol{v}} &\subset \hat{U}_{\boldsymbol{v}}^{'} \subset \overline{\hat{U}_{\boldsymbol{v}}^{'}} \subset \hat{U}_{\boldsymbol{v}} \quad \text{and} \quad \boldsymbol{C}^{\infty} \text{ functions on M, } \quad \hat{\beta}_{\boldsymbol{v}} \quad \text{and} \quad \hat{\gamma}_{\boldsymbol{v}} \quad \text{such that } \quad \hat{\beta}_{\boldsymbol{v} \left| \hat{\phi}_{\boldsymbol{v}} \right|} = 1 \,, \\ supp \, \hat{\beta}_{\boldsymbol{v}} &\subset \hat{U}_{\boldsymbol{v}}^{'} \,, \quad \hat{\gamma}_{\boldsymbol{v} \left| \hat{\phi}_{\boldsymbol{v}} \right|} = 1 \,, \quad supp \, \hat{\gamma}_{\boldsymbol{v}} \subset \hat{U}_{\boldsymbol{v}} \,; \quad \text{We set } \quad \beta_{\boldsymbol{v}} = \hat{\beta}_{\boldsymbol{v}} \circ \boldsymbol{\pi} \,, \quad \gamma_{\boldsymbol{v}} = \hat{\gamma}_{\boldsymbol{v}} \circ \boldsymbol{\pi} \,. \quad \text{Since } \hat{U}_{\boldsymbol{v}} \quad \text{is} \end{split}$$ contained in an \hat{U}_{α} , $U_{\nu}=\pi^{-1}(\hat{U}_{\nu})$ is contained in the open set of adapted local coordinates $U_{\alpha}=\pi^{-1}(\hat{U}_{\alpha})$. Let us then set : $X_{\nu}=\sum_{1\leq j\leq p_{\nu},\dots}X_{\nu,a(k)+j}(u_1,\dots,u_m)\ \hat{\sigma}_{a(k)+j}$ $(\text{respectively } X_{\nu} = \sum_{1 \leq i \leq p_{k+1-h}} X_{\nu,c(h)+a(k-h)+i}(u_1,...,u_m) \ \ \partial_{c(h)+a(k-h)+i} \ , \ 1 \leq h \leq k \)$ We set for $1 \le j \le p_{k+1}$: $T_{v,a(k)+j} = \beta_v \ \partial_{a(k)+j}$, $$Y_{v,a(k)+j} = \beta_v \left(\int_0^{u_{a(k)+j}} X_{v,a(k)+j}(u_1,...,u_{a(k)+j-1},t,u_{a(k)+j+1},...,u_{a(k+1)}) dt \right) \partial_{a(k)+j} dt$$ (respectively for $1 \le i \le p_{k+1-h}$, $1 \le h \le k$, $$Y_{\nu,c(h)+a(k-h)+i} = \gamma_{\nu} \left(\int_{0}^{u_{a(k)+1}} X_{\nu,c(h)+a(k-h)+i}(u_{1},...,u_{a(k)},t,u_{a(k)+2},...,u_{a(k+1)}) dt \right) \partial_{c(h)a(k-h)+i}.$$ The $2p_{k+1}$ (respectively, p_{k+1-h} , $1 \le h \le k$) vector fields on V^k , with supports contained in U_v , $T_{a(k)+j}$, $Y_{a(k)+j}$ where $1 \le j \le p_{k+1}$ (respectively $Y_{c(h)+a(k-h)+i}$ where $1 \le i \le p_{k+1-h}$, $1 \le h \le k$) belongs to $L_1^0(V^k)$ (respectively to $L_1^h(V^k)$, $1 \le h \le k$). We obtain: $$\sum_{1 \leq j \leq p_{k+1}} \left[T_{\nu,a(k)+j}, Y_{\nu,a(k)+j} \right] = \sum_{1 \leq j \leq p_{k+1}} X_{\nu,a(k)+j} \partial_{a(k)+j} = X_{\nu,a(k)+j} \partial_{a(k)+j} = X_{\nu,a(k)+j} \partial_{a(k)+j} \partial$$ (respectively, for $1 \le h \le k$, $$\sum_{1 \le i \le p_{k+1-h}} \left[T_{\nu,a(k)+1}, Y_{\nu,c(h)+a(k-h)+i} \right] = \sum_{1 \le i \le p_{k+1-h}} X_{\nu,c(h)+a(k-h)+i} \partial_{c(h)+a(k-h)+i} = X_{\nu}).$$ Since, if ν and $\nu' \in I_{\mu}$, $U_{\nu} \cap U_{\nu}' = \emptyset$, we can set : $$X_{\mu} = \sum_{v \in I_{\mu}} X_{v} \; ; \; \; \text{for} \; \; 1 \leq j \leq p_{k+1} \; , \; T_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} T_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{\mu}} Y_{v,a(k)+j} \; , \; \; Y_{\mu,a(k)+j} = \sum_{v \in I_{$$ $$(\text{respectively for } 1 \leq i \leq p_{k+1-h} \,, \; 1 \leq h \leq k \;, \; Y_{\mu,c(h)+a(k-h)+i} = \sum_{v \in I_{\mu}} Y_{v,c(h)+a(k-h)+i} \;).$$ We have: $$X_{\mu} = \sum_{1 \le j \le p_{k+1}} \left[T_{\mu,a(k)+j}, Y_{\mu,a(k)+j} \right]$$ (respectively $$X_{\mu} = \sum_{1 \leq i \leq p_{k+1-h}} \left[T_{\mu,a(k)+1}, Y_{\mu,c(h)+a(k-h)+i} \right], \ 1 \leq h \leq k \) \quad \text{where} \quad T_{\mu,a(k)+j}, \ Y_{\mu,a(k)+j}, Y_{\mu,a(k$$ $1 \leq j \leq p_{k+1} \quad \text{(respectively } Y_{\mu,c(h)+a(k-h)+i} \,, \, 1 \leq i \leq p_{k+1-h} \,\,, 1 \leq h \leq k \,\, \text{) belongs to} \,\, L^0_1(V^k) \,\, \text{(respectively to} \,\, L^h_1(V^k) \,\,, \, 1 \leq h \leq k \,\, \text{); hence the result, since} \,\, X = \sum_{1 \leq \mu \leq r} X_\mu \,\,.$ When $X \in {}^cL_1(V^k)$, it is enough to remark that the support of X only meets with a finite number of U_{ν} ; denote by B the finite part of I such that , if $\nu \in I - B$, $supp X \cap U_{\nu} = \emptyset$, thus: $$X = \sum_{\substack{1 \leq j \leq p_{k+1} \\ v \in B}} \left[T_{v,a(k)+j}, Y_{v,a(k)+j} \right] \qquad \text{(respectively} \quad \sum_{\substack{1 \leq i \leq p_{k+1}-h \\ v \in B}} \left[T_{v,a(k)+1}, Y_{v,c(h)+a(k-h)+i} \right], \quad 1 \leq h \leq k \text{)}.$$ This completes the proof. □ **Theorem 2**: Let $X \in L_1^0(V^k)$ (respectively, $X \in L_1^h(V^k)$, $1 \le h \le k$ if $p_{k+1} \ne 0$) be a vector field on V^k such that the support of X is contained in an open set Ω verifying $\Omega = \pi^{-1}(\pi(\Omega))$. Then $X = \sum_i [T_i, Y_i]$ where \sum_i is a finite sum, $T_i \in L_1^0(V^k)$, $Y_i \in L_1^0(V^k)$ (respectively $L_1^h(V^k)$, $1 \le h \le k$) and whose supports are included in Ω . **Proof :** With the same notations as in theorem 1, we have $\hat{\phi}_{v} \subset \hat{U}_{v} \cap \hat{\Omega}$ where $\hat{\Omega} = \pi(\Omega)$; so we can impose the restriction that $\overline{\hat{U}'_{v}} \subset \hat{U}_{v} \cap \hat{\Omega}$; then, the support of $T_{v,a(k)+j}$ and $Y_{v,a(k)+j}$, for $1 \leq j \leq p_{k+1}$, (respectively $Y_{v,c(h)+a(k-h)+i}$, for $1 \leq i \leq p_{k+1-h}$, $1 \leq h \leq k$) is in $U_{v} \cap \Omega$. As the covering (U_{ν}) is locally finite, for $1 \le j \le p_{k+1}$, $$supp \, T_{\mu,a(k)+j} = \bigcup_{v \in I_{\mu}} supp \, T_{v,a(k)+j} \subset \Omega \;, \qquad supp \, Y_{\mu,a(k)+j} = \bigcup_{v \in I_{\mu}} supp \, Y_{v,a(k)+j} \subset \Omega$$ (respectively, for $1 \le i \le p_{k+1-h}$, $1 \le h \le k$, $$\mathit{supp}\,Y_{\mu,c(h)+a(k-h)+i} = \bigcup_{v \in I_{\mu}} \mathit{supp}\,\,Y_{v,c(h)+a(k-h)+i} \subset \Omega\,), \text{ which proves the theorem.} \, \Box$$ **<u>Lemma 6:</u>** Let U be an open set of adapted local coordinates of V^k and s an integer such that $2 \le s \le k+1$. Suppose $p_{k-s+2} \ne 0$. Every element of $L_s(U)$ is a bracket finite sum of elements of $L_s(U)$ which means that: $[L_s(U), L_s(U)] = L_s(U)$. **Proof:** Let $X \in A_s^h(U)$, $2 \le s \le k+1$, $0 \le h \le k+1-s$ be a vector field on U (see (4)). We set, for $1 \le j \le p_{k-s-h+2}$: $$Y_{c(h)+a(k+1-s-h)+j} = \int_{\hat{u}_{a(k-s+2)}}^{u_{a(k-s+2)}} X_{c(h)+a(k+1-s-h)+j}(u_1, \dots, u_{a(k-s+2)-1}, t) dt, \quad \text{where}$$ $(u_1,....,\widehat{u}_{a(k-s+2)},...,u_n)$ and $(u_1,....,u_n)$ belongs to U (U is supposed diffeomorphic to a Cartesian product of n open intervals of IR), and denote by Y the vector field on $U \subset V^k$ determined by its non zero first component: $Y_{c(h)+a(k+1-s-h)+j}$. $Y \in A_s^h(U)$. We have in U: $$\left[\begin{array}{cc} \partial_{a(k-s+2)}, Y \end{array}\right] = X$$ so $\left[\begin{array}{cc} A_s^h(U), A_s^0(U) \end{array}\right] = A_s^h(U)$. This completes the proof. □ **Lemma 7**: Let U be an open set of adapted local coordinates $(u_1,...,u_n)$, $x \in U$ and s an integer such that $1 \le s \le k+1$. Suppose $p_{k-s+2} \ne 0$. For every $X \in A_s^h(U)$, $0 \le h \le k+1-s$, such that $j^3(X)(x) = 0$ (i.e. the 3-jet of each of the component functions of X is zero in x), there exists $Y_1,...,Y_r \in A_s^h(U)$, $T_1,...,T_r \in A_s^h(U)$ such that : $$X = \sum_{1 \le i \le r} [Y_i, T_i]$$ and $j^1(Y_i)(x) = j^1(T_i)(x) = 0$. **Proof:** From Lemma 1, it is sufficient to prove the result for $$\begin{split} X &= X_{c(h)+a(k+1-s-h)+l} (u_1, \dots, u_{a(k-s+2)}) \partial_{c(h)+a(k+1-s-h)+l} &+ \\ \sum_{1 \leq q \leq s-l} X_{c(h+q)+a(k+1-s-h)+l} & \partial_{c(h+q)+a(k+1-s-h)+l} & \text{where} & 1 \leq s \leq k+1 \,, \quad 0 \leq h \leq k+1-s \,, \end{split}$$ $1 \le l \le p_{k-h-s+2}$ and for $1 \le q \le s-1$, $X_{c(h+q)+a(k+1-s-h)+l}$ is given by (3). We can always suppose $u_i(x) = 0$, $1 \le i \le n$. We set t = a(k+1-s) + l, $1 \le l \le p_{k-s+2}$. 1) Consider $X \in A_s^0(U)$ and two vector fields Y and T belonging to $A_s^0(U)$: $$\begin{split} Y &= H \, \partial_t + \sum_{\substack{1 \leq r \leq s-1 \\ 1 \leq j \leq a(k-s+2)}} \left(\partial_j H \quad u_{c(r)+j} + \ldots \right) \quad \partial_{c(r)+t} \ , \\ T &= G \, \partial_t + \sum_{\substack{1 \leq r \leq s-1 \\ 1 \leq j \leq a(k-s+2)}} \left(\partial_j G \quad u_{c(r)+j} + \ldots \right) \quad \partial_{c(r)+t} \ . \end{split}$$ $$\left[Y,T\right] \in A^0_s(U) \colon \left[Y,T\right] = \left(H \, \partial_t G - G \, \partial_t H\right) \partial_t + \dots$$ It is sufficient to take: If $$X_t = u_t^4 \widetilde{X}(u_1, ..., u_{a(k-s+2)})$$, $H = u_t^2$, $G = u_t^2 \int_0^{u_t} \widetilde{X}(u_1, ..., u_{t-1}, x, u_{t+1}, ..., u_{a(k-s+2)}) dx$. If $$X_t = u_t^3 u_i \widetilde{X}$$ with $i \neq t$, $1 \le i \le a(k - s + 2)$, $$H = u_t u_i, \quad G = u_t \int_0^{u_t} x \widetilde{X}(u_1, \dots, u_{t-1}, x, u_{t+1}, \dots, u_{a(k-s+2)}) dx.$$ If $$X_t = u_t^2 u_i u_j \widetilde{X}$$ with $i \neq t$, $j \neq t$ $1 \leq i, j \leq a(k - s + 2)$, $$H = u_t \, u_i \,, \quad G = u_t \, u_j \int_0^{u_t} \widetilde{X}(u_1, \dots, u_{t-1}, x, u_{t+1}, \dots, u_{a(k-s+2)}) dx \,.$$ If $$X_t = u_t u_i u_j u_f \widetilde{X}$$ with $i \neq t$, $j \neq t$, $f \neq t$ $1 \leq i, j, f \leq a(k - s + 2)$, $$H = u_i u_j$$, $G = u_f \int_0^{u_f} x\widetilde{X}(u_1, ..., u_{t-1}, x, u_{t+1}, ..., u_{a(k-s+2)}) dx$ If $$X_t = u_i u_j u_f u_g \widetilde{X}$$ with $i \neq t$, $j \neq t$, $f \neq t$, $g \neq t$ $1 \leq i, j, f, g \leq a(k - s + 2)$, $$H = u_i \, u_j \,, \quad G = u_f u_g \int_0^{u_t} \widetilde{X}(u_1, \dots, u_{t-1}, x, u_{t+1}, \dots, u_{a(k-s+2)}) dx \,.$$ We can remark that in any case, we even have $j^2(G)(x) = 0$. 2) Consider $X \in A_s^h(U)$, $1 \le h \le k+1-s$ and two vector fields $Y \in A_s^0(U)$ and $T \in A_s^h(U)$, $1 \le h \le k+1-s$: $$\begin{split} Y &= H \, \partial_t + \sum_{\substack{1 \leq r \leq s-1 \\ 1 \leq j \leq a(k-s+2)}} \left(\partial_j H \quad u_{c(r)+j} + \ldots \right) \quad \partial_{c(r)+t} \quad , \\ T &= G \, \partial_{c(h)+a(k+1-s-h)+l} + \sum_{\substack{1 \leq r \leq s-1 \\ 1 \leq j \leq a(k-s+2)}} \left(\partial_j G \quad u_{c(r)+j} + \ldots \right) \quad \partial_{c(r+h)+a(k+1-s-h)+l} \; . \end{split}$$ $$[Y,T] \in A_s^h(U)$$: $[Y,T] = H \partial_t G \partial_{c(h)+a(k+1-s-h)+l} + \dots$ It is enough to take: $$\begin{split} \text{If} \quad & X_{c(h)+a(k+1-s-h)+l} = u_t^4 \widetilde{X}(u_1,....,u_{a(k-s+2)}) \;, \\ & H = u_t^2 \;, \quad G = \int_0^{u_t} x^2 \widetilde{X}(u_1,....,u_{t-1},x,u_{t+1},....,u_{a(k-s+2)}) dx \;. \end{split}$$ If $$X_{c(h)+a(k+1-s-h)+l} = u_t^3 u_i \widetilde{X}$$ with $i \neq t$, $1 \leq i \leq a(k-s+2)$, $$H = u_t^2$$, $G = u_i \int_0^{u_t} x\widetilde{X}(u_1, ..., u_{t-1}, x, u_{t+1}, ..., u_{a(k-s+2)}) dx$. $$\text{If} \quad X_{c(h)+a(k+1-s-h)+l} = u_t^2 u_i u_j \widetilde{X} \quad \text{with } i \neq t \ , \ j \neq t \quad 1 \leq i,j \leq a(k-s+2) \ ,$$ $$H = u_t^2$$, $G = u_i u_j \int_0^{u_t} \widetilde{X}(u_1, ..., u_{t-1}, x, u_{t+1}, ..., u_{a(k-s+2)}) dx$. If $$X_{c(h)+a(k+1-s-h)+l} = u_t u_i u_j u_f \widetilde{X}$$ with $i \neq t$, $j \neq t$, $f \neq t$ $1 \leq i, j, f \leq a(k-s+2)$, $$H = u_t \, u_i \,, \quad G = u_j u_f \int_0^{u_t} \, \widetilde{X}(u_1, \dots, u_{t-1}, x, u_{t+1}, \dots, u_{a(k-s+2)}) dx \,.$$ $$\begin{split} &\text{If} \ \ X_{c(h)+a(k+1-s-h)+l} = u_i u_j u_f u_g \widetilde{X} \ \ \text{with} \ \ i \neq t \ , \ \ j \neq t \ , \ \ f \neq t \ , \ \ g \neq t \ , \\ &1 \leq i,j,f,g \leq a(k-s+2) \ , \end{split}$$ $$H = u_i u_j$$, $G = u_f u_g \int_0^{u_t} \widetilde{X}(u_1, ..., u_{t-1}, x, u_{t+1}, ..., u_{a(k-s+2)}) dx$. Hence, in any case: $$j^{1}(H)(x) = j^{1}(Y)(x) = 0$$, $j^{1}(G)(x) = j^{1}(T)(x) = 0$, $j^{2}(G)(x) = 0$. This completes the proof. □ #### REFERENCES - [1] G. Catz, Sur le fibré tangent d'ordre 2, C.R.A.S. Paris, 278 (1974), 277-280. - [2] W. Greub, S. Halperin, R. Vaustone, Connections, Curvature and Cohomology, Vol. I: De Rham Cohomology of Manifolds and Vector Bundles," Academic Press, New York, 1972. - [3] K. Kodaira, D.C.Spencer, Multifoliate structures, Ann. of Math. 74 (1961), 52-100. - [4] J. Lehmann-Lejeune, Cohomologies sur le fibré transverse à un feuilletage, C.R.A.S. Paris, 295 (1982), 495-498.