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Abstract 

 

J.Lehmann-Lejeune in [Cohomologies  sur le  fibré  transverse  à  un feuilletage, 

C.R.A.S. Paris, 295 (1982), 495-498] defined on the transverse bundle V to a foliation 

on a manifold M, a zero-deformable structure J  such that 02 =J  and for every pair 

of vector fields X ,Y  on  M:  [ ] [ ] [ ] [ ] 0,,,, 2 =+−− YXJJYXJYJXJJYJX .For 

every open set Ω  of V, J.Lehmann-Lejeune studied the Lie Algebra ( )JL Ω  of vector 

fields X defined on Ω  such that the Lie derivative  ( )L X J  is equal to zero i.e., for 

each vector field Y on Ω :    [ ] [ ]YXJJYX ,, =  and showed that for every vector field 

X on Ω  such that KerJX ∈ , we can write [ ]∑= ZYX ,   where ∑ is a finite 

sum and ZY ,  belongs to )()( Ω∩Ω KerJLJ . 

In this note, we study a generalization for a decreasing family of foliations. 
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1. INTRODUCTION 

 

 

Let M be a differentiable manifold endowed with a decreasing family iF  of  k foliations 

(particular case of "Multifoliate Structures" of Kodaira Spencer [3]). We define a so-called 

"order k bundle 
kV  transverse to the foliations iF ". This note is divided  into  three sections.  

In the first, we define 
kV  and we show that there exists a )1,1(  tensor  J   of  kV   such that  

0≠kJ , 01 =+kJ  and for every pair of vector fields X ,Y  on  kV : 

[ ] [ ] [ ] [ ] 0,,,, 2 =+−− YXJJYXJYJXJJYJX . 

 

In section two, Ω   being an open set of kV , we denote by ( )JL Ω  the Lie Algebra of vector 

fields X defined on Ω  such that the Lie derivative  ( )L X J  is equal to zero i.e., for each vector 

field Y on Ω :     

[ ] [ ]YXJJYX ,, =  
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In ( )JL Ω , we find the canonicals lifts in 
kV  of  the infinitesimal automorphisms of the k 

foliations on M. 

In section three, we define 1L , subset of JL , constituted by the vector field X on 
kV such that 

KerJX ∈ . We show that  for every 1( )kX L V∈ , we can write [ ],i i

i

X Y Z=∑  where  

i

∑ is a finite sum and ii ZY ,  belongs to )(1
kVL . 

 

 

2. THE  ORDER   k  BUNDLE  TO  k  FOLIATIONS 

 

Let  M  be a differentiable  manifold of dimension m endowed  with  k  foliations 1 2, ,..., kF F F , 

k 1≥ , of respective codimensions 
1 1 2 1 2, ,...., ... kp p p p p p+ + + +  such that 1 2 ... kF F F⊃ ⊃ ⊃  

(
1 2 1.... k km p p p p += + + + + , 1 0p >  , 0ip ≥ , 2 1i k≤ ≤ +  ). 

 

Notation:   we set :  
1 2( ) .... ha h p p p= + + +                                  for     1 1h k≤ ≤ + , 

                                 ( ) 0a h =                                                           for     0h ≤ , 

                                 ( ) ( 1) ( ) .... ( 2)c t a k a k a k t= + + + + − +          for     1 1t k≤ ≤ + , 

                                 ( ) 0c t =                                                            for     0t ≤  

 

The order k tangent bundle of M is the manifold of dimension  (k+1)m of the −k jets of origin 0 

of differentiable mappings from IR to M denoted kT M (cf. [1]).  

 

Let s  and h  be two integers such that  khs ≤≤≤0 , 1≥h  . 

On the set of −h jets of differentiable mappings of origin 0 from IR to M, we define an 

equivalence relation. Let ϕ  and ψ   be two differentiable mappings from IR to M such that 

(0) (0)ϕ ψ= . 

Denote by  1 2( , ,..., )mu u u  the local coordinates of an open set Û M⊂ , adapted to the k  

foliations  (i.e.   1 2 ( ), ,..., a hu u u  are constants on the leaves of hF , 1 h k≤ ≤ ), such that   

0
ˆ(0) (0) x Uϕ ψ= = ∈ .  

We say that the −h jets of  ϕ  and ψ   are equivalent if: )0()0(
b

l
b

b

l
b

d

d

d

d

ρ

ψ

ρ

ϕ
= , 1 ,b s≤ ≤  

1 ( 1 )l a k b≤ ≤ + −  and   ,1 hbs ≤≤+   1 ( 1 )l a k s≤ ≤ + − . 

This equivalence relation is independent of the open set Û  of coordinates adapted to the k  

foliations containing 0x . 

 

We denote by  ( )s hV  the quotient space of the −h jets of differentiable mappings from IR to M 

endowed with this equivalence relation.  

This is a manifold of dimension   
0

( 1 )
t s

a k t
≤ ≤

+ − +∑ ( ) ( 1 )h s a k s− + − . 

For ,hs =  ( )s sV   will be denoted, for simplicity, by sV . 

 

We have the following diagram, where the arrows are the natural projections: 
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kV ←   kkV )( 1−   ← kkV )( 2−      ←← ..... kV )( 2      ←  kV )( 1     ←     MT k  

                                                                                                            

                 1−kV   ←   12 )( −− kkV   ←← ..... 12 )( −kV  ←   11)( −kV   ←     MT k 1−  

                                                                                                            

                                      2−kV       ←← ..... 22 )( −kV  ← 21)( −kV    ←      MT k 2−  

                                                                       

.

.

.
↓                  

.

.

.
↓                      

.

.

.
↓          

                                                                       ↓                  ↓                     ↓                    

                                                                        2V     ←    21)(V       ←     MT 2  

                                                                                                                      

                                                                                            1V         ←       TM  

                                                                                                                      

                                                                                                                      

                                                                                                                    M  
 

 
kV  is called order k  bundle transverse to the k foliations  kFFF ,...,, 21 . 

The dimension of  kV   is   ∑
≤≤

−++=
kt

tkptn
0

1)1(  
0

( 1 )
t k

a k t
≤ ≤

= + −∑ . 

 

Remark 1: ( )s kV , 0 s k≤ ≤ , can be considered as  a 
kV '
.  

In fact, it is sufficient to set: '
1 ( 1 )p a k s= + − ;  ' 0ip = ,  ski −+≤≤ 12 ;  

'
j jp p= , 

2 1k s j k+ − ≤ ≤ + . 

Thus  
kV '
 is the order k bundle transverse to the k foliations ' ' '

1 2, ,..., kF F F   of codimensions 

respectively  ' ' ' ' ' '
1 1 2 1 2 1, , ...., ... kp p p p p p ++ + + +   such  that ' ' '

1 2 ... kF F F⊃ ⊃ ⊃ ,  where  

' '
1iF F=   for   2 1i k s≤ ≤ + − . 

 

An element of  kV , i.e. an equivalence class of −k jets  ϕkj0  is uniquely expressed by the set  

),( )( hrhcl uu + , ml ,....,1= ,  1 h k≤ ≤ ,  1 ( 1)hr a k h≤ ≤ − + , lu  being the coordinates of 0x  in 

Û   and  
hrhcu +)(  being defined by :    

hrhcu +)(  = 
!

1

h
)0(

h

r
h

d

d
h

ρ

ϕ
. 

Thus, to every open set  Û  of  M  is associated an open set  1 ˆ( )U Uπ −=  in 
kV , where  π  is 

the canonical projection from  
kV  to M. 

 

On M, let { }ˆ , iU u   and { }'ˆ ', iU u ,  1,...., ( 1)i a k= + , be two local coordinates charts  adapted to 

the k foliations  such that ˆ ˆ 'U U∩ ≠ ∅ . We have, in ˆ ˆ 'U U∩ , for  1 1h k≤ ≤ + ,  

( 1) 1 ( )a h i a h− + ≤ ≤  : 

                                     ),....,(' )(1 haii uufu =  

                                     ∑
+≤≤+−

=∂
)1(1)1( karha

i rri f '∂∂     (we  set  
i

i
u∂
∂

=∂ ,  
r

r
u'

'
∂
∂

=∂ ) 
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Let ϕ  and ψ   be two mappings from IR to M such that (0)ϕ  and )0(ψ ∈ ˆ ˆ 'U U∩ .   

For ρ  close enough to zero, ( )ϕ ρ  ( resp. ( )ψ ρ ) can be  written with the local coordinates iu  

( resp. '
iu ): 1 ( 1)( ( ),...., ( ))a kϕ ρ ϕ ρ+  (resp. 1 ( 1)( ( ),...., ( ))a kψ ρ ψ ρ+ . We have:   

 

    1 ( )( ) ( ( ),...., ( ))i i a hfψ ρ ϕ ρ ϕ ρ=        where   ( 1) 1 ( )a h i a h− + ≤ ≤ ,1 1h k≤ ≤ + ,   and   

         

    
1 ( 1 )( ) [ ( ( ),...., ( ))]1 1

! !

j j

j j
r r a k j

j j

d d f

j jd d

ψ ρ ϕ ρ ϕ ρ

ρ ρ

+ −
=         where  1 ,j k≤ ≤   1 ( 1 ).jr a k j≤ ≤ + −  

 

We set    ),0(iiu ϕ=   ' (0)i iu ψ=    and        ( )

1
(0)

!

j

j

j
r

c j r j

d
u

j d

ϕ

ρ+ = ,      ( )

1
' (0)

!

j

j

j
r

c j r j

d
u

j d

ψ

ρ+ = . 

 

We have, for  1 h k≤ ≤ ,  ( 1) 1 ( )a h i a h− + ≤ ≤  :        (1) (1)

1 ( )

'c i j i c j

j a h

u f u+ +
≤ ≤

= ∂∑  . 

 

 

We verify that for  ,1 kq ≤≤   ,11 +−≤≤ qkh   )(1)1( haiha ≤≤+−  : 

( )1
1 ( )

( )1

! ... ... a hj

q t
i i

q iii
j a h

d t f

q d u u u

ψ
ρ

∂
=

∂ ∂ ∂
∑  

1 ( ) 1

1 1

!!

r
jbr

j

r r
j a h r q j

d

rb d

ϕ

ρ≤ ≤ ≤ ≤

 
     
   

∏ ∏  

where ∑ is taken on all the possible families of integers ,0≥  ,ji  ,rjb  1 ( )j a h≤ ≤   such that  

,........ )(1 tiii haj =++++  ,1 qt ≤≤  

1

r
j j

r q

b i
≤ ≤

=∑   ,     
1 ( ) 1

r
j

j a h r q

rb q
≤ ≤ ≤ ≤

 
=  

 
∑ ∑ . 

 

Thus if  1 ˆ( )U Uπ −=  and 1 ˆ' ( ')U Uπ −= , we have in 'U U∩ , for 1 ' 1,h k≤ ≤ +  

( ' 1) 1 ' ( ')a h i a h− + ≤ ≤ , ,1 kq ≤≤   1 1,h k q≤ ≤ − +   ( 1) 1 ( )a h i a h− + ≤ ≤ : 

 

( )
( )1

10

( 1) 1 ( )

'
' ' 1 ( ')

( )'
( )

1 ( ) 11 ( )

'
' ' ' '

( ' 1) 1 ' ( 1)

( )

1

( ,...., )

,
!... ...

(1)

... ..
1

r
j

a hj

j
s k q

a h i a h

i i a h

b
t

c r ji
c q i i rii

j a h r q jj a h

i i r r

a h r a k

t
i

c q j ii
j

u f u u

uf
u

bu u u

f

f

u u
h k s
≤ ≤ −

− + ≤ ≤

+
+

≤ ≤ ≤ ≤

− + ≤ ≤ +

+

=

 
∂  =  

∂ ∂ ∂   

∂ = ∂ ∂

∂
∂ =

∂ ∂
≤ ≤ −

∑ ∏ ∏

∑

∑ ∑
( ) ( )

( )

1

( ) ( ) '
( )

1 ( ) 1( )
! ( 1)!.

qr
j j

a h

r q

b b

c r j c q j

c q s ii r q
j a h r q s j ja h

u u

b bu
≠

−

+ +
+ +

≤ ≤ ≤ ≤ +












 
  ∂  −∂    

∏ ∏

 
kT M  (which can be considered as a ( )s kV   with  0=s )  is equipped with an order k  nearly 

tangent structure  0J  of constant range km  (cf. [ ]1 ). We define a vector field Z  and a )1,1(  

tensor J on  kV  in the following way: 
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Let U  and 'U  be two open sets of adapted local coordinates  1( ,...., ),nu u  ' '
1( ,...., ),nu u  

respectively.  We set: 

 

( ) ( )

1 1 ( 1 )

U
c h j c h j

h k j a k h

Z h u + +
≤ ≤ ≤ ≤ + −

 
= ∂  

 
∑ ∑ ,       ' ' '

( ) ( )

1 1 ( 1 )

,U
c h j c h j

h k j a k h

Z h u + +
≤ ≤ ≤ ≤ + −

 
= ∂  

 
∑ ∑  

 

' '
( ) ( ) ( ) ( ) 1

( ) ( 1) ( 1) ( 1)

' ' '
( ) ( 1) ( 1) ( 1)

for  each  h,     0 :

0, 0, 1

   for  each  h,    0 1:(2)

1 , 1

U U
c h a k h i c h a k h i k h

U
c h a r i c h a r i

U
c h a r i c h a r i r

h k

J J i p

h k

J

J r k h i p

+ − + + − + + −

+ − + + + − +

+ − + + + − +

≤ ≤

 ∂ = ∂ = ≤ ≤
 ≤ ≤ −
 ∂ = ∂
 ∂ = ∂ ≤ ≤ − ≤ ≤

 

 

 

Using  )1( , we verify that we have, in 'U U∩ , if  'U U∩ ≠ ∅ : 

'

''

U

UU

U

UU
ZZ

∩∩
= ,    

'

''

U

UU

U

UU
JJ

∩∩
=  . 

 

Hence Z  and J   are, in fact, globally defined. Z is called the "field of the homotheties" on  
kV . J  is the projection on kV of  the nearly tangent operator 0J   of order k on kT M . Its rank 

is constant and equal to
1

( 1 )
t k

a k t
≤ ≤

+ −∑ : it verifies   1 0kJ + =   and for every pair of vector 

fields X ,Y  on  kV : 

[ ] [ ] [ ] [ ] 0,,,, 2 =+−− YXJJYXJYJXJJYJX . 

 

 

According to the remark1, for 0 ,s k≤ ≤  we have also defined a vector field sZ  and a )1,1(  

tensor sJ  on ( )s kV .  In U  (open set of adapted local coordinates 1( ,...., )nu u  of ( )s kV , where 

n  is the ( )s kV  dimension), we have: 

 

( ) ( ) ( ) ( 1 ) ( ) ( 1 )

1 1 ( 1 ) 1 1 ( 1 )

U
s c h j c h j c r ta k r i c r ta k r i

h s j a k h t k s i a k r

Z h u t u+ + + + − + + + − +
≤ ≤ ≤ ≤ + − ≤ ≤ − ≤ ≤ + −

   
= ∂ + ∂      

   
∑ ∑ ∑ ∑             

 

 

For  each  ,h  0 1:h s≤ ≤ −   

( ) ( ) 0,
U
s c h a k h iJ + − +∂ =     11 k hi p − +≤ ≤  , 

irahcirahc
U
sJ +−+++−+ ∂=∂ )1()1()1()(  ,  1 r k h≤ ≤ − , 1 ri p≤ ≤    and      

iskatscisktasc
U
sJ +−++++−++ ∂=∂ )1()1()()1()(  ,  0 1t k s≤ ≤ − − ,  1 ( 1 )i a k s≤ ≤ + − , 

0)1()()( =∂ +−+−+ iskasksc
U
sJ  ,    1 ( 1 )i a k s≤ ≤ + − . 

 

For ks = ,  ZZ s =   and  JJ s = . 
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3. THE LIE ALGEBRA  JL  

 

Let Ω   be an open set of kV . We denote by ( )JL Ω  the Lie Algebra of vector fields X defined 

on Ω  such that the Lie derivative  ( )L X J  is equal to zero (i.e. the infinitesimal automorphisms 

of the structure), which means that, for each vector field Y on Ω :    [ ] [ ]YXJJYX ,, =  

             

Let U  be an open set of adapted local coordinates 1( ,...., )nu u  and X  a vector field on U . We 

easily verify that  ( )JX L U∈   if and only if   

[ ] [ ]ii XJJX ∂=∂ ,,       for each i,  1 i n≤ ≤ . 

In particular, for each i , ni ≤≤1 , ( )i JL U∂ ∈ . Finally, a vector field X  on U  belongs to 

( )JL U   if and only if,  for each h,  1 ,h k≤ ≤  we have :                              

[ ] [ ] [ ]ih
i

h
i

h XJXJJX ∂=∂=∂ ,,,  ,       ni ≤≤1 . 

 

Let ( ) ( )s
J U

X L U KerJ∈ ∩  be a vector field on U,  1 1s k≤ ≤ + . We set: 

1 2

( ) ( 1) ( ) ( 1)

0 1
l pk h s

c h a k s h l c h a k s h l

h k s

X X Y

≤ ≤ − − +

+ − − + + + − − + +
≤ ≤ + −

= ∂ +∑     where  1s
U

Y KerJ −∈   (for 1s = , 0Y = ). 

 

For each i, ni ≤≤1 , we have : [ ] [ ] [ ] [ ]is
i

s
i

s
i

s JXJJXJXJXJ ∂=∂=∂==∂ −− ,,,0, 11
, 

thus ( ) ( 1)c h a k s h lX + − − + +  , 0 1h k s≤ ≤ + − , 21 k h sl p − − +≤ ≤  , only depends on  1 (1)( ,...., )cu u . 

 

For 1=s  , that completely determines  ( ) ( )J U
X L U KerJ∈ ∩ . 

Assume now 2 1s k≤ ≤ + : jska ++−∂ )2(  , where  3 11 ....k s kj p p− + +≤ ≤ + +  , belongs to 

1−s
U

KerJ   thus   [ ] 0, )2(
1 =∂ ++−

−
jska

sJX [ ]jska
s XJ ++−
− ∂= )2(
1 ,  , hence we deduce that 

( ) ( 1)c h a k s h lX + − − + + , 0 1h k s≤ ≤ + − , 21 k h sl p − − +≤ ≤  , only depends on 1 ( 2)( ,...., )a k su u − + . 

 

 We set:      

( )

0 1

1 2

1

( ) ( 1 ) ( ) ( 1 )

( )( ) ( 1 )

( ) ( 1 )

1 11

0 1

(3) ,    q,     1 1

!... ...

q s

l pk h s

t
j

j r

c h q a k s h l c h q a k s h l

b
i

c t jc h a k s h l

c h q a k s h l i ti i
j r t q jj r

X X

h k s

where for q s

uX
X

bu u u

≤ ≤ −

≤ ≤ − − +

+ + + − − + + + + − − +

++ + − − +
+ + + − − +

≤ ≤ ≤ ≤

= ∂

≤ ≤ + −

≤ ≤ −

 
∂  =  
∂ ∂ ∂   

∑

∑ ∏ ∏

ɶ












 

 

where  ( 2)r a k s= − +   and  ∑ is taken on all the possible families of integers ,0≥  ,ji  ,tjb  

rj ≤≤1 ,  such that : 

   1 .... .... ,j ri i i i+ + + + =    j
t
j

qt

ib =∑
≤≤1

 ,   ,1 qi ≤≤   ,   
1 1

t
j

j r t q

tb q
≤ ≤ ≤ ≤

 
=  

 
∑ ∑ . 

 

In particular, lhskaqhcX +−−+++ )1()(   is independent of  iqcu ++ )1( , 1 ( 1)i n c q≤ ≤ − + . 
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We verify that, for  1 1t q s≤ ≤ ≤ −  ,  1 ( 2)j a k s≤ ≤ − + , 

( ) ( ) ( 1 )c t j c h q a k s h lX+ + + + − − +∂  ( ) ( 1 )j c h q t a k s h lX + − + + − − += ∂ . 

 

For  ( 2) 1 ( 1)a k s i a k− + + ≤ ≤ + ,  1 t k≤ ≤  :     [ ] [ ]it
i

t XJJX ∂==∂ ,
~

0,
~

 

For  1 ( 2)i a k s≤ ≤ − + ,  1 1t s≤ ≤ −  :      [ ] [ ]it
i

t XJJX ∂=∂ ,
~

,
~

.  

Indeed,  itci
tJ +∂=∂ )(   then  

[ ] [ ]itci
t XJX +∂=∂ )(,

~
,

~
 lhskaqhclhskaqhcitc

sq

X +−−++++−−++++
−≤≤

∂∂−= ∑ )1()()1()()(

10

 

                                         lhskatqhc
t

lhskatqhci

sq

JX +−−++−++−−++−+
−≤≤

∂∂−= ∑ )1()()1()(

10

 

                                         













∂∂−= +−−++−++−−++−+

−≤≤
∑ lhskatqhclhskatqhci

sq

t XJ )1()()1()(

10

 

                                         [ ]it XJ ∂= ,
~

. 

 

For  1 ( 2)i a k s≤ ≤ − + , s t k≤ ≤  : [ ] 0,
~

=∂ i
tJX , and  [ ]it XJ ∂,

~
 [ ] 0,

~
=∂= i

t XJ    because  

0
~

=XJ t
   for  kts ≤≤ .  

Thus  ( ) ( )s
J U

X L U KerJ∈ ∩ɶ ,  and so does  X X− ɶ .  

But X X− =ɶ  ( ) ( 1 ) ( ) ( 1 )

1 1

c h q a k s h l c h q a k s h l

q s

Y X + + + − − + + + + − − +
≤ ≤ −

− ∂∑ , thus 
1s

U
X X KerJ −− ∈ɶ .  This 

completely determines )(ULJ  by induction.  

We deduce that, for every open set Ω   of   kV : 

 

 

Lemma 1:  X   belongs to ( )JL Ω  if and only if, for every open set U  of adapted local  

coordinates 1( ,...., )nu u   such that  UΩ∩ ≠ ∅ , UX ∩Ω  is a vector field finite sum  

( ) ( 1 ) ( ) ( 1 )

0 1

( , , ) c h q a k s h l c h q a k s h l

q s

A s h l X + + + − − + + + + − − +
≤ ≤ −

= ∂∑  , where 1 1s k≤ ≤ + ,  

0 1h k s≤ ≤ + − , 21 k h sl p − − +≤ ≤  , ( ) ( 1)c h a k s h lX + − − + +   only depends on  1 ( 2)( ,...., )a k su u − + and for 

1 1q s≤ ≤ −  , ( ) ( 1 )c h q a k s h lX + + + − − +   is  given  by )3( . 

( , , )A s h l  is hence completely determined by its non zero first component ( ) ( 1)c h a k s h lX + − − + +  ;  

if  1s =  , it will be  its only one non zero component. 

 

 

(4)  We set:   ),,()(

21

lhsAUA

shkpl

h
s ∑

+−−≤≤

=     where  1 1s k≤ ≤ + ,  0 1h k s≤ ≤ + − . 

 

 

Remark 2 :  To every vector field  X̂  on M generating a one parameter local subgroup  

corresponds a one parameter subgroup on kT M ; let  XR ˆ  be the associated vector field on 
kT M ; XR ˆ  is the " lift of X̂  in kT M ". 

We immediately verify that: 
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Lemma 2:  Let  s  be   ks ≤≤1 . The following conditions are equivalent: 

i) the vector field XR ˆ  on kT M  is “projectable” on ( )s kV , 

ii) X̂  is an automorphism of the foliations tkF −+1  ,  1 t s≤ ≤ . 

For X̂ , automorphisms of   the foliations tkF −+1 ,1 t s≤ ≤ , we have:   0
ˆ ˆ( ) ( )s s sP J RX J P RX=   

where sP   is  the  natural projection from kT M  to ( )s kV . 

 

 

Then, the vector field on ˆ ( )U Uπ= , (see Lemma 1) 

( ) ( 1 ) 1 ( 2) ( 1 )
ˆ ( ,...., )c h a k s h l a k s a k s h lX X u u+ + − − + − + + − − += ∂  

 

where  1 1s k≤ ≤ + , 0 1h k s≤ ≤ + − , 21 k h sl p − − +≤ ≤  is an automorphism of the foliations 

tkF −+1  ,  1 1t s≤ ≤ − , and we have :   

( , , )A s h l ( )0
ˆ( )h

kP J RX= . 

 

 

4. 1L , SUBSPACE OF  JL  

 

Let Ω   be an open set of  kV . We set :  1( ) ( ) ( )JL L KerJ ΩΩ = Ω ∩ . 

For 0 h k≤ ≤ , let 1 ( )hL Ω  be the set of the vector fields ( )JX L∈ Ω  such that, for every open set 

U  of adapted local coordinates of kV , 1 ( )h
U

X A UΩ∩ ∈ . We have a direct sum decomposition 

of 1( )L Ω :   1 1
0

( ) ( )
h

h k
L L

≤ ≤
Ω = ⊕ Ω . 

For 2≥s , if we have two open sets U  and 'U of adapted local coordinates, 
'

( )h
s U U

A U ∩  is 

different from 
'

( ')h
s U U

A U ∩  in general. To avoid this problem, we consider a metric g  on M.  

 

Let Ω̂  be an open set of M and Ω  an open set of kV : ˆ ( )πΩ = Ω . For 2 1s k≤ ≤ + , 

0 1h k s≤ ≤ + − , we denote by )ˆ(Ωh
sL  the set of the automorphisms of the foliation 2k sF − + , 

tangent to the leaves of 1k s hF + − −  and orthogonal to the leaves of 2k s hF − − + .  

For  2 1s k≤ ≤ + , 0 1h k s≤ ≤ + − ,
hJ0  limited to )ˆ(Ωh

sRL  is injective. 

We set :   

)5(       )(Ωh
sL ( )( )ΩΩ= )ˆ(0

h
s

h
k RLJP  ,  2 1s k≤ ≤ + , 0 1h k s≤ ≤ + − . 

We have:   

( )
1 1 0 1

( ) ( )h
J s

s k h k s
L L

≤ ≤ + ≤ ≤ + −
Ω = ⊕ ⊕ Ω . 

 

Moreover, setting   ( )
1 0 1

( ) ( )h
s t

t s h k t
L L

≤ ≤ ≤ ≤ + −
Ω = ⊕ ⊕ Ω   for 2 1s k≤ ≤ +   then    

 

( ) ( ) ( )s
s JL L KerJ ΩΩ = Ω ∩ . 

We easily verify that: 
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Lemma 3 :  For every open set Ω  of  kV , every ( )sX L∈ Ω  is a restriction of an element  of 

( )1( ( )sL π π− Ω . 

 

Lemma 4 : For every open set Ω  of  kV , and for each ( )sX L∈ Ω , 1 1s k≤ ≤ +  and 

( )JY L∈ Ω , the bracket  [ ]YX ,  belongs to ( )sL Ω . ( )sL Ω   is  an ideal of  ( )JL Ω . 

 

Proof:  For every  ( )sX L∈ Ω   and  ( )JY L∈ Ω , we have:  [ ]=
Ω

YXJ s ,  [ ] 0, =
Ω

YXJ s
. 

This completes the proof.□  
 

 

Lemma 5 : Let Ω  be an open set of  kV , and 1 ( )X L∈ Ω  be a vector field on Ω . For each  

x∈Ω , the germ at x  of X  is the germ at x  of an  1' ( )kX L V∈ . 

 

Proof:  Let x∈Ω , Û  be an open set of M diffeomorphic to a Cartesian product of m open 

intervals of IR  such that ˆ( )y x Uπ= ∈  and ˆ ( )U π⊂ Ω , and Ĥ  a function on M with compact 

support contained in Û , equal to 1 in a neighbourhood of y ; to Ĥ  corresponds on kV  a 

function ˆH H π= �  with  a support (no compact) contained in the open set of adapted local 

coordinates 1 ˆ( )U Uπ −= , equal to 1 in a neighbourhood of x . 

Let 1 ( )hX L∈ Ω  be a vector field on Ω , 0 h k≤ ≤ : X spread over  ( )1 ( ) Uπ π− Ω ⊃ ; in U , we 

can write X as:   X =
1

( ) ( ) 1 ( ) ( )

1

( ,..., )

k h

c h a k h i m c h a k h i

i p

X u u

+ −

+ − + + − +
≤ ≤

∂∑  ;  

'X =
1

( ) ( ) ( ) ( )

1 k h

c h a k h i c h a k h i

i p

H X

+ −

+ − + + − +
≤ ≤

 
∂ 

 
 

∑   belongs to 1 ( )h kL V , 0 h k≤ ≤ , and coincides 

with X  in a neighbourhood of x . This completes the proof. □  
 

Remark: In general, this property is not true for ( )JX L∈ Ω   and  1 ( )X L∉ Ω . 

 

 

Let 1 ( )kX L V∈  be a vector field on kV ; its support φ  is of the form 1 ˆ( )π φ−  where φ̂  is a 

closed set of M. We denote by  1( )c kL V  the set of  the vector fields 1 ( )kX L V∈  whose support 

1 ˆ( )φ π φ−= is such that φ̂  is compact. 

 

Theorem 1:    [ ]0 0 0
1 1 1( ) ( ), ( )k k kL V L V L V= , and  if  1 0kp + ≠ , then  

[ ]0
1 1 1( ) ( ), ( )h k k h kL V L V L V= ,   1 h k≤ ≤ ,    [ ]1 1 1( ) ( ), ( )k k kL V L V L V=     and    

[ ]1 1 1( ) ( ), ( )c k c k c kL V L V L V= . 

 

Proof:  Let ( )ˆ
I

Uα α∈
 be a covering of M by local coordinates open sets whose closure is 

compact and diffeomorphic to a Cartesian product of m open intervals of IR , which we 

suppose centred in the origin; according to [ ]2 , th. I. p. 17, it exists an open covering of M, 

locally finite, finer, ( )ˆ
I

Uν ν∈
 and a partition of I in a finite collection of subsets Iµ  ( 1,....,rµ = ) 

such that, for each µ , the open sets Iν  where Iµν ∈  are pairwise disjoint. 
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Let ( )ˆ
I

ν ν
θ

∈
 be a partition of unity subordinate to the covering ( )Ûν and ˆ

ν νθ θ π= �   the 

partition of unity associated to 
kV . 

 

Let 0
1 ( )kX L V∈  (respectively 1 ( )h kX L V∈ , kh ≤≤1 ) be a vector field on 

kV ;  

We set, for each Iν ∈ , X Xν νθ= ; from lemma 1, 0
1 ( )kX L Vν ∈  (respectively 1 ( )h kX L Vν ∈ , 

1 h k≤ ≤ ). The support of Xν  is of the form 
1 ˆ( )νπ φ−  where ˆνφ  is a compact set of M included 

in Ûν ; there exists an open set 
'Ûν  of M, with compact closure, such that 

ˆ
νφ ⊂ 'Ûν ⊂ 'Ûν ⊂ Ûν  and C

∞
functions on M, ˆ

νβ  and  ν̂γ  such that 
ˆ

ˆ 1
φν

ν
β = , 

supp ˆ
νβ ⊂ 'Ûν , 

'ˆ

ˆ 1

Uν
ν

γ = , supp ν̂γ ⊂ Ûν ; We set  ˆ
ν νβ β π= � , ˆν νγ γ π= � . Since Ûν  is 

contained in an αÛ , 1 ˆ( )U Uν νπ −= is contained in the open set of adapted local coordinates 

1 ˆ( )U Uα απ −= . Let us then set :          νX =  
1

, ( ) 1 ( )

1

( ,..., )

k

a k j m a k j

j p

X u uν
+

+ +
≤ ≤

∂∑  

(respectively νX =  
1

, ( ) ( ) 1 ( ) ( )

1

( ,..., )

k h

c h a k h i m c h a k h i

i p

X u uν
+ −

+ − + + − +
≤ ≤

∂∑  , kh ≤≤1 ) 

 

We set  for  11 kj p +≤ ≤ :    , ( ) ( )a k j a k jTν νβ+ += ∂ ,  

( )( )

, ( ) , ( ) 1 ( ) 1 ( ) 1 ( 1) ( )
0

( ,..., , , ,..., )
a k ju

a k j a k j a k j a k j a k a k jY X u u t u u dtν ν νβ +
+ + + − + + + += ∂∫  

(respectively  for 11 k hi p + −≤ ≤  , 1 h k≤ ≤ , 

( )( ) 1

, ( ) ( ) , ( ) ( ) 1 ( ) ( ) 2 ( 1) ( ) ( )
0

( ,..., , , ,..., ) ).
a ku

c h a k h i c h a k h i a k a k a k c h a k h iY X u u t u u dtν ν νγ +
+ − + + − + + + − += ∂∫

 

The 12 kp + (respectively, 1k hp + −  , 1 h k≤ ≤ ) vector fields on 
kV , with supports contained in 

Uν , ( )a k jT + , ( )a k jY +  where  11 +≤≤ kpj  (respectively ( ) ( )c h a k h iY + − +  where 11 k hi p + −≤ ≤  , 

kh ≤≤1 ) belongs to 0
1 ( )kL V  ( respectively to 1 ( )h kL V , kh ≤≤1 ). 

We obtain: 

1

, ( ) , ( )

1

,

k

a k j a k j

j p

T Yν ν
+

+ +
≤ ≤

  = ∑
1

, ( ) ( )

1 k

a k j a k j

j p

Xν
+

+ +
≤ ≤

∂∑ Xν=  

(respectively , for kh ≤≤1  , 

                 

1 1

, ( ) 1 , ( ) ( ) , ( ) ( ) ( ) ( )

1 1

, )

k h k h

a k c h a k h i c h a k h i c h a k h i

i p i p

T Y X Xν ν ν ν
+ − + −

+ + − + + − + + − +
≤ ≤ ≤ ≤

  = ∂ = ∑ ∑ .  

 

Since, if ν  and ' Iµν ∈  , 'U Uν ν∩ = ∅ ,   we can set :    

I

X X

µ

µ ν
ν∈

= ∑ ;  for 11 +≤≤ kpj  , , ( ) , ( )a k j a k j

I

T T

µ

µ ν
ν

+ +
∈

= ∑ ,  , ( ) , ( )a k j a k j

I

Y Y

µ

µ ν
ν

+ +
∈

= ∑ ,   

(respectively for 11 k hi p + −≤ ≤ , kh ≤≤1 , , ( ) ( ) , ( ) ( )c h a k h i c h a k h i

I

Y Y

µ

µ ν
ν

+ − + + − +
∈

= ∑ ).   

We have: 

1

, ( ) , ( )

1

,

k

a k j a k j

j p

X T Yµ µ µ
+

+ +
≤ ≤

 =  ∑   (respectively 

1

, ( ) 1 , ( ) ( )

1

,

k h

a k c h a k h i

i p

X T Yµ µ µ
+ −

+ + − +
≤ ≤

 =  ∑  , kh ≤≤1 )   where  , ( )a k jTµ + , , ( )a k jYµ + , 
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11 +≤≤ kpj    (respectively , ( ) ( )c h a k h iYµ + − + , 11 k hi p + −≤ ≤  , kh ≤≤1 ) belongs to 0
1 ( )kL V  ( 

respectively to 1 ( )h kL V , kh ≤≤1 ); hence the result, since  

1 r

X X µ
µ≤ ≤

= ∑ . 

 

When 1( )c kX L V∈ , it is enough to remark that the support of X only meets with a finite 

number of Uν ; denote by B the finite part of I such that , if I Bν ∈ − , supp X Uν∩ = ∅ , thus: 

1 1

, ( ) , ( ),
j pk

a k j a k j

B

X T Yν ν

ν
≤ ≤ +

+ +

∈

 =  ∑   (respectively 
1 1

, ( ) 1 , ( ) ( ),
i pk h

a k c h a k h i

B

T Yν ν

ν
≤ ≤ + −

+ + − +

∈

  ∑ , 1 h k≤ ≤ ). 

This completes the proof.□  
 

 

Theorem 2 : Let 0
1 ( )kX L V∈  (respectively, 1 ( )h kX L V∈ , kh ≤≤1  if 1 0kp + ≠ ) be a vector 

field on kV such that the support of X  is contained in an open set Ω  verifying 1( ( ))π π−Ω = Ω . 

Then [ ],i i

i

X T Y=∑  where 
i

∑ is a finite sum, 0
1 ( )kiT L V∈ ,  0

1 ( )kiY L V∈  (respectively 1 ( )h kL V , 

kh ≤≤1 ) and whose supports are included in Ω .  

 

Proof : With the same notations as in theorem 1, we have ˆ ˆ ˆUν νφ ⊂ ∩Ω  where ˆ ( )πΩ = Ω ; so 

we can impose the restriction that 'Ûν ⊂ Ûν
ˆ∩Ω ; then, the support of , ( )a k jTν +  and , ( )a k jYν + , 

for 11 kj p +≤ ≤ , (respectively , ( ) ( )c h a k h iYν + − + , for 11 k hi p + −≤ ≤ , 1 h k≤ ≤ ) is in Uν ∩Ω .  

As the covering ( )Uν  is locally finite, for 11 kj p +≤ ≤ ,  

supp , ( )a k jTµ + =

µν I∈
∪ supp , ( )a k jTν + ⊂ Ω ,         supp , ( )a k jYµ + =

Iµν∈
∪ supp , ( )a k jYν + ⊂ Ω     

(respectively, for 11 k hi p + −≤ ≤ , 1 h k≤ ≤ ,   

 supp , ( ) ( )c h a k h iYµ + − +  = 

µν I∈
∪ supp Ω⊂+−+ ihkahcY )()(,ν ), which proves the theorem.□  

 

Lemma 6 : Let U be an open set of adapted local coordinates of  
kV and s an integer such that 

2 1s k≤ ≤ + . Suppose 2 0k sp − + ≠ . Every element of )(ULs is a bracket finite sum of elements 

of )(ULs  which means that:  [ ] )()(),( ULULUL sss = . 

 

Proof : Let ( )h
sX A U∈ , 2 1s k≤ ≤ + ,  0 1h k s≤ ≤ + −  be a vector field  on U (see (4)).  

We set, for 21 k s hj p − − +≤ ≤ :  

( 2)

( 2)
( ) ( 1 ) ( ) ( 1 ) 1 ( 2) 1( ,...., , )

a k s

a k s

u

c h a k s h j c h a k s h j a k s
u

Y X u u t dt
− +

− +
+ + − − + + + − − + − + −= ∫ ⌢⌣ , where 

1 ( 2)( ,...., ,..., )a k s nu u u− +

⌢⌣
 and 1( ,...., )nu u  belongs to U ( U is supposed diffeomorphic to a 

Cartesian product of n open intervals of IR ), and denote by Y the vector field on U kV⊂  

determined by its non zero first component : jhskahcY +−−++ )1()( .  ( )h
sY A U∈ .  

We have in U:     [ ]( 2) ,a k s Y X− +∂ =    so    [ ]0( ), ( ) ( )h h
s s sA U A U A U= .  

This completes the proof.□  
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Lemma 7 : Let U be an open set of adapted local coordinates 1( ,...., )nu u , Ux∈ and s an 

integer such that 1 1s k≤ ≤ + . Suppose 2 0k sp − + ≠ . For every ( )h
sX A U∈ , 0 1h k s≤ ≤ + − , 

such that 3( )( ) 0j X x =  (i.e. the −3 jet of each of the component functions of X is zero in x ), 

there exists 0
1,..., ( )r sY Y A U∈ , 1,..., ( )h

r sT T A U∈  such that :  

                    [ ]ii

ri

TYX ,
1

∑
≤≤

=       and      1 1( )( ) ( )( ) 0i ij Y x j T x= = . 

 

Proof : From Lemma 1, it is sufficient to prove the result for  

+∂= +−−+++−+−−++ lhskahcskalhskahc uuXX )1()()2(1)1()( ),....,(  

  ( ) ( 1 ) ( ) ( 1 )

1 1

c h q a k s h l c h q a k s h l

q s

X + + + − − + + + + − − +
≤ ≤ −

∂∑   where 1 1s k≤ ≤ + , 0 1h k s≤ ≤ + − ,  

21 k h sl p − − +≤ ≤    and for 1 1q s≤ ≤ −  ,  lhskaqhcX +−−+++ )1()(   is  given by )3( . 

 

We can always suppose   0)( =xui , ni ≤≤1 .  

 

We set  ( 1 )t a k s l= + − + , 21 k sl p − +≤ ≤ . 

 

1) Consider 0 ( )sX A U∈  and  two vector fields Y and  T  belonging to 0 ( )sA U :    

     

               ( )
1 ( 2)

( ) ( )

1 1

...

j a k s

t j c r j c r t

r s

Y H H u

≤ ≤ − +

+ +
≤ ≤ −

= ∂ + ∂ + ∂∑  ,          

               ( )
1 ( 2)

( ) ( )

1 1

...

j a k s

t j c r j c r t

r s

T G G u

≤ ≤ − +

+ +
≤ ≤ −

= ∂ + ∂ + ∂∑ . 

[ ] )(, 0 UATY s∈ :  [ ] ( ) ....., +∂∂−∂= ttt HGGHTY  

It is sufficient to take: 

If   ),....,(
~

)2(1
4

+−= skatt uuXuX , 

      
2
tuH = ,   ∫ +−+−= tu

skattt dxuuxuuXuG
0 )2(111

2 ),....,,,,....,(
~

. 

If   XuuX itt

~3=   with ti ≠ ,  )2(1 +−≤≤ skai , 

      it uuH = ,   ∫ +−+−= tu

skattt dxuuxuuXxuG
0 )2(111 ),....,,,,....,(

~
. 

If   XuuuX jitt

~2=   with ti ≠ , tj ≠   )2(,1 +−≤≤ skaji , 

      it uuH = ,   ∫ +−+−= tu

skattjt dxuuxuuXuuG
0 )2(111 ),....,,,,....,(

~
. 

If   XuuuuX fjitt

~
=   with ti ≠ , tj ≠ , tf ≠  )2(,,1 +−≤≤ skafji , 

      ji uuH = ,   ∫ +−+−= tu

skattf dxuuxuuXxuG
0 )2(111 ),....,,,,....,(

~
. 

If   XuuuuX gfjit

~
=   with ti ≠ , tj ≠ , tf ≠ , tg ≠   )2(,,,1 +−≤≤ skagfji , 

      ji uuH = ,   ∫ +−+−= tu

skattgf dxuuxuuXuuG
0 )2(111 ),....,,,,....,(

~
. 

We can remark that in any case, we even have   2 ( )( ) 0j G x = . 
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2) Consider ( )h
sX A U∈ , 1 1h k s≤ ≤ + −  and two vector fields 0 ( )sY A U∈  and  ( )h

sT A U∈ , 

1 1h k s≤ ≤ + −  :   

              ( )
1 ( 2)

( ) ( )

1 1

...

j a k s

t j c r j c r t

r s

Y H H u

≤ ≤ − +

+ +
≤ ≤ −

= ∂ + ∂ + ∂∑  , 

              ( )
1 ( 2)

( ) ( 1 ) ( ) ( ) ( 1 )

1 1

...

j a k s

c h a k s h l j c r j c r h a k s h l

r s

T G G u

≤ ≤ − +

+ + − − + + + + + − − +
≤ ≤ −

= ∂ + ∂ + ∂∑ . 

[ ] )(, UATY h
s∈ :  [ ] ....., )1()( +∂∂= +−−++ lhskahctGHTY  

 

It is enough to take: 

If   ),....,(
~

)2(1
4

)1()( +−+−−++ = skatlhskahc uuXuX , 

      
2
tuH = ,   ∫ +−+−= tu

skatt dxuuxuuXxG
0 )2(111

2 ),....,,,,....,(
~

. 

If   XuuX itlhskahc

~3
)1()( =+−−++   with ti ≠ ,  )2(1 +−≤≤ skai , 

      
2
tuH = ,   ∫ +−+−= tu

skatti dxuuxuuXxuG
0 )2(111 ),....,,,,....,(

~
. 

If   XuuuX jitlhskahc

~2
)1()( =+−−++   with ti ≠ , tj ≠   )2(,1 +−≤≤ skaji , 

      
2
tuH = ,   ∫ +−+−= tu

skattji dxuuxuuXuuG
0 )2(111 ),....,,,,....,(

~
. 

If  XuuuuX fjitlhskahc

~
)1()( =+−−++   with ti ≠ , tj ≠ , tf ≠  )2(,,1 +−≤≤ skafji , 

      it uuH = ,   ∫ +−+−= tu

skattfj dxuuxuuXuuG
0 )2(111 ),....,,,,....,(

~
. 

If  XuuuuX gfjilhskahc

~
)1()( =+−−++   with  ti ≠ ,  tj ≠ , tf ≠ , tg ≠ ,    

)2(,,,1 +−≤≤ skagfji , 

   ji uuH = ,   ∫ +−+−= tu

skattgf dxuuxuuXuuG
0 )2(111 ),....,,,,....,(

~
. 

Hence, in any case:  
1 1( )( ) ( )( ) 0j H x j Y x= = ,  1 1( )( ) ( )( ) 0j G x j T x= = ,   2 ( )( ) 0j G x = . 

This completes the proof.□  
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