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Abstract

In this paper, the existence of the Drazin (group) inverse of an
element a in a ring is analyzed when amk = kan, for some unit k and
m, n ∈ N. The same problem is studied for the case when a∗ = kamk−1

and for the {k, s+1}-potent elements. In addition, relationships with
other special elements of the ring are also obtained.
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1 Introduction

Let R be a ring with identity 1. An element k ∈ R is called involutory when
k2 = 1. We say u ∈ R is regular if there exists an element u− ∈ R such that
uu−u = u. An involution ∗ on R is an anti-automorphism of degree 2, that
is, (a∗)∗ = a, (a + b)∗ = a∗ + b∗ and (ab)∗ = b∗a∗ for all a, b ∈ R.
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An element a ∈ R is called hermitian if a∗ = a, unitary if aa∗ = a∗a = 1
and normal if aa∗ = a∗a.

We will make use of the right and left ideals generated by a, defined as
aR = {ax : x ∈ R} and Ra = {xa : x ∈ R} respectively.

The Drazin inverse of a, when it exists, is denoted by aD, and it is defined
as the unique solution to aDaaD = aD, aaD = aDa, ar+1aD = ar for some
nonnegative integer r. The smallest nonnegative integer r that fulfills ar ∈
ar+1R∩Rar+1 is called the Drazin index of a and is denoted by ind(a). When
ind(a) ≤ 1, we say a has a group inverse, denoted by a#. That is, a# satisfies
aa#a = a, a#aa# = a#, aa# = a#a.

An element a ∈ R is Moore-Penrose invertible if it exists a† ∈ R such
that aa†a = a, a†aa† = a†, (aa†)∗ = (aa†) and (a†a)∗ = a†a.

We say a ring R is Dedekind finite if uv = 1 implies vu = 1. A char-
acterization of a Dedekind finite ring R is the following: given two regular
u, v ∈ R, the conditions u ∼ v and uR ⊆ vR imply uR = vR, where u ∼ v

means uR ∼= vR as right R-modules.
Let k ∈ R be a unit and s ∈ N. An element a ∈ R is called {k, s + 1}-

potent if it satisfies
kas+1k−1 = a. (1)

Besides this special element, we will study the elements a ∈ R satisfying

amk = kan, m, n ∈ N for some unit k ∈ R (2)

and the elements a ∈ R satisfying

a∗ = kamk−1, m ∈ N, m > 1 for some unit k ∈ R. (3)

Furthermore, we will consider a ring version of k-EP [7]: given k ∈ R we say
a is k-EP if

aR = ka∗R. (4)

For related topics we refer the reader to [1, 4, 5, 6, 8].
This paper is organized as follows. In Section 2, some basic results about

{k, s + 1}-potent elements are presented. In Section 3, the index and the
existence of the Drazin inverse of an element a satisfying (2) is analyzed. In
addition, the same problem is studied for an element such that (3) holds.
Some representations for the Drazin inverses have been obtained. Relation-
ships with another special elements are found in Section 4. Finally, in Section
5, further remarks and open problems are presented.
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2 Basic properties

In the complex matrices approach, some results for {k, s+1}-potent matrices
have been given in [5].

The first question in the ring setting is related to the existence of the
{k, s + 1}-potent elements. It is easy to see that for each unit element k and
for each s ∈ N, we have {a ∈ R : kas+1k−1 = a} 6= ∅.

A important particular case is when k is involutory. How to use the
element k when k is involutory?

Lemma 1 Let k ∈ R be a unit, s ∈ N and a ∈ R. Then the following
conditions are equivalent:

(a) a is {k, s + 1}-potent.

(b) k−1ak = as+1.

(c) k−1a = as+1k−1.

(d) ak = kas+1.

Proof. The equivalences can be easily obtained from the definition. �

In addition, we present basic properties showing situations when the set
of {k, s + 1}-potent elements is closed under certain operations.

Lemma 2 Let k ∈ R be a unit, s ∈ N and a, b ∈ R be two {k, s + 1}-potent
elements. The following properties hold.

(a) If s = 1 then ab = −ba if and only if a + b is {k, 2}-potent.

(b) If ab = ba = 0 then a + b is {k, s + 1}-potent.

(c) If ab = ba then ab is {k, s + 1}-potent.

(d) If a is a unit then a−1 is {k, s + 1}-potent.

(e) If w ∈ R is a unit and kw = wk then waw−1 is {k, s + 1}-potent.

(f) If k is hermitian then a∗ is {k−1, s + 1}-potent.
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Proof. All these properties can be easily obtained by definition. �

By using unitary similarity the next results allow us to construct some
more examples from an initial one.

Lemma 3 Let k ∈ R be an involutory hermitian element, s ∈ N and a ∈ R

be {k, s + 1}-potent. If u ∈ R is unitary such that ku = uk then uau∗ is
{k, s + 1}-potent.

Proof. Since kas+1k−1 = a and k−1 = k = k∗ we get

k(uau∗)s+1k−1 = kuas+1u∗k∗ = ukas+1k∗u∗ = uau∗,

and then the result has been shown. �

We will now focus on the following question: Does any {k, s + 1}-potent
element has this form? That is, for two given {k, s + 1}-potent elements a

and b, is it possible to find a unitary u such that b = uau∗ and ku = uk?.
The answer is negative as the following counterexample shows: in the ring
of 2 × 2 complex matrices,

A =

[

0 0
0 −i

]

and B =

[

1 0
0 i

]

are {K, 5}-potent for K = I2, but it is easy to check that there is no unitary
matrix U such that B = UAU ∗. This example also solves the same problem
for nonsingular matrices (see Lemma 2 (e)).

Lemma 4 If a ∈ R is {k, s + 1}-potent then the following equalities hold

a(s+1)2 = k−1as+1k = k−2ak2.

Proof. It is clear that the definition yields to

a(s+1)2 = (as+1)s+1 = (k−1ak)s+1 = k−1as+1k. (5)

The second equality follows from (5) and the definition. �

Lemma 5 Let k ∈ R be involutory, s ∈ N and a ∈ R be {k, s + 1}-potent.
Then the following conditions hold:
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(a) kas+2 = as+2k.

(b) as+2 = (ka)2 = (ak)2.

(c) (ka)2s+1 = ka and (ak)2s+1 = ak.

Proof. We have that

kas+2 = kas+1a = aka = aas+1k = as+2k

which yields (a). By using this property we get

as+2 = kas+2k = kaas+1k = ka(ka) = (ka)2

which gives (b). In order to show (c) we use (b) to obtain

(ka)2s+1 = ka((ka)2)s = ka(as+2)s = ka(s+1)2 = ka.

�

3 Group and Drazin inverses

As a direct consequence of the definition of the group inverse we have the
following result which will be useful.

Lemma 6 Let a ∈ R and l ∈ {1, 2, 3, . . . }. Then al+2 = a if and only if
there exists a# and a# = al.

What about the index of a when amk = kan where k is a unit?

Theorem 1 Let R be a Dedekind finite regular ring. If a ∈ R is such that
amk = kan for some unit k with m,n ∈ N, m 6= n, then ind(a) ≤ min{m,n}.

Proof. Assume n > m. Applying the definition we get anR ⊆ amR =
amkR = kanR. It is easy to see that the function φ : kanR → anR defined
by φ(x) = k−1x is a (right) ideal isomorphism, that is kanR ' anR. Using
the finiteness of R, this ensures that amR = anR. Hence, by [2, Theorem 2]
ind(a) ≤ m. The case m > n is similar by using k−1am = ank−1. �

5



When m = n, if C(k) = {b ∈ R : bk = kb} is the centralizer of k, we
have that the problem amk = kam is reduced to am ∈ C(k).

In the previous theorem we may assume that appropriate powers of a are
regular instead of the general regularity condition. Nevertheless, we remark
that an element may be regular without having a regular power as showed
in [3].

In order to show the existence of the group inverse of an element a ∈ R

we give the following result.

Corollary 1 Let R be a Dedekind finite ring. If a ∈ R is regular and {k, s+
1}-potent then there exists the group inverse of a.

Proof. The existence of the group inverse of a is guaranteed by Theorem 1
because ind(a) ≤ 1. �

Lemma 7 Let a ∈ R be a {k,m}-potent element with m > 1. Let l ∈ N

such that m divides l + 2 and m 6= l + 2. Then the following conditions are
equivalent:

(a) a# = al.

(b) k2am = a
l+2

m k2.

(c) ka = a
l+2

m k.

Proof. We are going to show (a) ⇐⇒ (b). Suppose that (a) holds. By
Lemma 6, al+2 = a. Thus, by definition we get

kamk−1 = a = al+2 = k−1(kal+2k−1)k = k−1(kamk−1)
l+2

m k = k−1a
l+2

m k

Hence, k2am = a
l+2

m k2. Then, (b) is obtained.

Conversely, from k2am = a
l+2

m k2 and kamk−1 = a we get a = kamk−1 =
k−1a

l+2

m k. Then

al+2 = k(k−1a
l+2

m k)mk−1 = kamk−1 = a

Then, by Lemma 6 we get al = a#. The equivalence between (b) and (c) is
evident. �
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Corollary 2 If a ∈ R is {k, s + 1}-potent then the following conditions are
equivalent:

(a) There exists a# and a# = a(s+1)2−2.

(b) k2as+1 = as+1k2.

(c) ka = as+1k.

(d) k2a = ak2.

Proof. (b) ⇒ (d) Since k2as+1k−2 = as+1, we get

k−2ak2 = a(s+1)2 = (k2as+1k−2)s+1 = k2a(s+1)2k−2 = a

by Lemma 4.
(d) ⇒ (b) Since kak−1 = k−1ak, by (1) we get

k2as+1k−2 = kak−1 = k−1ak = as+1.

In order to show the equivalences (a) ⇔ (b) ⇔ (c) it is sufficient to apply
Lemma 7 with m = s + 1 and l = (s + 1)2 − 2. �

Lemma 8 If a ∈ R is {k, s + 1}-potent with k involutory then the following
(equivalent) conditions hold

(a) a(s+1)2 = a.

(b) a# = a(s+1)2−2.

In this case, a# is {k, s + 1}-potent.

Proof. In order to obtain item (a), it is sufficient to substitute k2 = 1 in
Lemma 4. The property a# = a(s+1)2−2 is derived from (a) and Lemma 6.
Moreover, by item (c) of Lemma 2, the fact that a# is {k, s + 1}-potent can
be obtained. �
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Remark 1 We observe that none of the equivalent conditions given in the
Lemma 8 imply that a is {k, s + 1}-potent. In fact, in the ring of 2 × 2
complex matrices, if s = 1 and

A =

[

1 0
0 α

]

with α ∈ C − {1} such that α3 = 1, it is clear that A4 = A and KA2K 6= A

for any involutory matrix K ∈ C
2×2. The same example can be used to assure

that neither in Lemma 7 nor in Corollary 2 the converse is true.

Theorem 2 Let k ∈ R be involutory, s ∈ N and a ∈ R be {k, s + 1}-potent.
Then

a# = (ka)2s−1k.

Proof. By Lemma 5 and Lemma 6, we have that (ka)# = (ka)2s−1. Now,
by using s times that a is {k, s + 1}-potent we get

(ka)2s−1 = ((ka)2)s−1ka = (as+2)s−1ka = (as+2)s−1as+1k = a(s+1)2−2k = a#k

by Lemma 8. Finally, a# = (ka)2s−1k. �

Lemma 9 If a, k ∈ R such that k is a unit and k2a = ak2. Then the
following conditions hold:

(a) a is {k, s + 1}-potent if and only if k−1as+1k = a.

(b) k2as+1 = as+1k2.

(c) if a is {k, s + 1}-potent then k2a# = a#k2.

Proof. Since k is a unit, the assumption k2a = ak2 implies that k−1ak =
kak−1. Then k−1as+1k = kas+1k−1, from which (a) and (b) can be deduced.
The third condition follows directly from Corollary 2. �

Theorem 3 Let R be a ring with k ∈ R such that kt = 1 for some t ∈ N,
t > 1. If a ∈ R satisfies that amk = kan with m,n ∈ N. Then

(a) am
t

= an
t

.
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(b) There exists aD and

aD =

{

am
t−n

t−1 if m > n
t
√

3

an
t−m

t−1 if n > m
t
√

3
.

Proof. (a) By definition

am
2

= (kank−1)m = (kamk−1)n = (k2k−1amkk−2)n = (k2ank−2)n = k2an
2

k−2

Following a similar reasoning up to the power t we obtain item (a) because
kt = 1.

(b) Assume that m > n
t
√

3. The existence of the Drazin inverse of a

follows from

an
t ∈ an

t

R ∩ Ran
t

= am
t

R ∩ Ram
t ⊆ an

t+1R ∩ Ran
t+1

since m > n. In order to compute the Drazin inverse of a it is necessary to
find (an

t

)#. We are going to check that (an
t

)# = am
t−2n

t

. In fact,

(an
t

)2am
t−2n

t

= am
t

= an
t

,

and
am

t−2n
t

an
t

am
t−2n

t

= am
t

am
t−3n

t

= an
t

am
t−3n

t

= am
t−2n

t

.

Then,
aD = an

t−1(an
t

)# = am
t−n

t−1.

The remaining case is obtained in a similar way. �

We recall that a ∈ R is EP if aa† = a†a. This is equivalent to a† exists
and aR = a∗R.

Lemma 10 If a ∈ R is a Moore-Penrose invertible then a∗R ∼= aR as right
R-modules.

Proof. The isomorphism is given by Ψ : a∗R → aR defined as Ψ(x) = (a†)∗x.
�

Proposition 1 Let R be a Dedekind finite ring and a ∈ R be a Moore-
Penrose invertible element which is k-EP . The following hold.
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(a) If ka∗ is regular then (ka∗)# exists and (ka∗)# = ka∗(wa†)2 for some w

such that a = ka∗w.

(b) If k is a unit then ka∗R = (ka∗)∗R.

(c) If ka∗ is Moore-Penrose invertible then ka∗ is EP .

Proof. (a) Since a† exists, we get a ∈ Ra∗a from which a∗ ∈ a∗aR = a∗ka∗R.
Therefore, ka∗ ∈ ka∗ka∗R = (ka∗)2R. As R is Dedekind finite, this implies
(ka∗)# exists by Theorem 2 (xi) in [2]. Assume w is such that a = ka∗w.
Since a∗ = a∗aa† = a∗ka∗awa†, we get the equality ka∗ = (ka∗)2wa†. From
this and [3, Lemma 3.3] we obtain the expression (ka∗)# = ka∗(wa†)2.

(b) Since k is a unit and a is k-EP , the equalities k∗aR = aR = ak∗R =
(ka∗)∗R hold.

(c) Suppose ka∗ is Moore-Penrose invertible. Lemma 10 implies that

ka∗R = aR ⊇ ak∗R = (ka∗)∗R ∼= ka∗R

hold. From the Dedekind finiteness of the ring we obtain (ka∗)∗R = ka∗R.
As (ka∗)† exists, the result follows. �

Another problem related to the previous ones is the following: a∗ =
kamk−1 where k is a unit and m > 1. The case m = 1 will be considered in
the next section.

Theorem 4 Let R be a Dedekind finite ring. If a ∈ R is regular and satisfies
a∗ = kamk−1 with k a unit and m > 1 then there exists a#. Moreover, if a†

exists then a∗ is k-EP , ka is group invertible with (ka)# = ka(am−1k−1(a∗)†)2

and a# = am
2−2 when k is hermitian or involutory.

Proof. Since a = (k−1)∗(am)∗k∗, we get a∗ = k((k−1)∗(am)∗k∗)mk−1 =
k(k−1)∗(am

2

)∗k∗k−1. Then

a = (k−1k∗)−1am
2

k−1k∗.

Denoting t = (k−1k∗)−1 we get that a is {t,m2}-potent. Corollary 1 assures
the existence of a# and Lemma 8 gives the desired expression.

Finally, from a∗ = kamk−1 and the existence of a# we obtain a∗R =
kamR = kaR, that is, a∗ is k-EP . Furthermore, the invertibility of k to-
gether with the existence of a† make ak regular. The group invertibility of ka

follows from Proposition 1. In addition, writing a∗ = kaw with w = am−1k−1,
the expression for (ka)# follows by Proposition 1. �
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4 Relationships with other elements in R

Let k ∈ R be an invertible element and a ∈ R. Let us consider the following
conditions:

(A) kas+1k−1 = a.

(B) as+3 = a.

(C) a# = as+1.

(D) as+1 = a∗.

(E) ka∗k−1 = a.

(F) aa∗ = a∗a = 1.

(G) a = kb for some b ∈ R such that b2 = 1.

The following theorems can be proved by using similar techniques to those
used in the previous results.

Theorem 5 The following statements hold:

(i) (A) + (E) =⇒ (D).

(ii) (A) + (D) =⇒ (E).

(iii) (D) + (E) =⇒ (A).

(iv) (A) + (D) + (E) = (A) + (E) = (A) + (D) = (D) + (E).

(v) (B) + (F) =⇒ (D).

Theorem 6 Let k ∈ R be an involutory element. The following statements
hold:

(i) (A) + (E) + a unit =⇒ as satisfies (F).

(ii) (F) + (G) =⇒ (E).

(iii) (E) + (F) =⇒ (G).

(iv) (E) + (G) =⇒ (F).
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(v) (E) + (F) + (G) = (E) + (F) = (E) + (G) = (F) + (G).

(vi) (A) + (G) =⇒ as+2 = 1.

(vii) (B) + (G) =⇒ (A).

Theorem 7 Let a ∈ R satisfying (F). Then following conditions are equiv-
alent:

(i) a is {k, s + 1}-potent.

(ii) there exists b ∈ R such that b is {k, s + 1}-potent and b∗ = a.

Theorem 8 Let a, k ∈ R such that k is involutory. Then following condi-
tions are equivalent:

(i) a is {k∗, s + 1}-potent.

(ii) there exists b ∈ R such that b is {k, s + 1}-potent and b∗ = a.

Theorem 9 Let a, k ∈ R such that k is hermitian involutory and a is {k, s+
1} potent. Then following conditions are equivalent:

(i) a satisfy (D).

(ii) there exists h ∈ R hermitian such that a = kh.

Proof. We assume that k2 = 1, k∗ = k and kas+1k = a. Then

as+1 = a∗ ⇐⇒ kak = a∗ ⇐⇒ a = k(a∗k) ⇐⇒ a = kh with h∗ = h

�

5 Final remarks and questions

In this paper, we consider results related to group and Drazin inverses of
elements in a ring with identity. Most of the results presented are already
known for complex matrices and some of them for bounded operators on
Hilbert spaces. However, we use a different technique in order to extend the
results. In complex matrix theory the main tool for providing the existence
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of the group or Drazin inverse is the rank. In the case of bounded operators
of Hilbert spaces, the method of operator matrices is a powerful tool. In this
paper, we apply a purely algebraic technique.

The ring R is ∗-reducing if the ∗-cancelation property holds for all a ∈ R,
that is, caa∗ = baa∗ implies ca = ba for all b, c ∈ R. In a ∗-reducing ring
R, it can be proved that for an idempotent element e ∈ R, the conditions e

normal and e hermitian are equivalent (because if ee∗ = e∗e then e# = e† = e

and so e∗ = e†e∗e = ee∗e = e2e∗ = ee∗). In addition, a more general result
can be stated in the matrix context but not in the wider context of rings as
we can see in the item (IV) below.

We note that given a unitary k, a is k∗-EP iff a∗ is k-EP .
In the approach of complex square matrices, the following results have

been proved in [5]:

(I) If A is a normal {K, s + 1}-potent matrix with K2 = I, then A∗ =
A(s+1)2−2. However, in rings theory (even commutative rings!) that re-
sult does not work. As a counterexample we consider the commutative
ring

R =

{[

x y

0 x

]

: x, y ∈ C

}

equipped with the involution ∗ : R → R given by
[

x y

0 x

]∗

=

[

x −y

0 x

]

.

In this case, considering the matrix A = aI2, s ≥ 3 the smallest
nonnegative integer satisfying as = 1 and K any nonsingular matrix
we get that A∗ = A 6= As−1 = A(s+1)2−2.

(II) If A is a {K, s+1}-potent matrix with K2 = I and there is a hermitian
matrix H such that A = KH then there exists a tripotent matrix B

satisfying A = KB. Again, in ring theory (even commutative rings!)
that result does not hold. As a counterexample we consider over the
commutative ring Z14 with the identity as the involution: a = 2, k = 1,
h = 2. In this case, ka4k−1 = a, a = kh with h∗ = h and however if
a = kb for some tripotent b ∈ Z14 then 2 = b = 23 = 8, which is a
contradiction.

(III) If A is a {K, s + 1}-potent matrix with K2 = I and there is a normal
matrix N such that A = KN then there exits a matrix T such that
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A = KT with T ∗ = T 2s−1. Once again, this result does not work in a
(commutative) ring. For that, if, in the ring Z14, we consider a = 2,
k = 1, s = 3 and b = 2 then the existence of t such that a = kt with
t∗ = t5 yields a contradiction.

(IV) If A is a {K, 2}-potent matrix with K2 = I then there is a normal
matrix N such that A = KN if and only if there is a hermitian matrix
H such that A = KH. In ring theory, this result does not work. As a
counterexample we consider the ring

R =

{[

x y

0 z

]

: x, y, z ∈ Z6

}

equipped with the involution ∗ : R → R given by

[

x y

0 z

]∗

=

[

z y

0 x

]

.

In this case, considering the matrix A =

[

3 0
0 1

]

and K =

[

1 3
0 5

]

we get that there is only one normal matrix N =

[

3 3
0 5

]

such that

A = KN which is not hermitian.

(V) If A is a normal {K, s + 1}-potent matrix with K2 = I, K∗ = K

satisfying As+3 = A then there is a hermitian matrix H such that
A = KH. Considering the same ring as in item (IV), it can be checked
that the result is false by taking

A =

[

1 0
0 3

]

, s = 1, K = I2.

(VI) If A is a normal K-centro-symmetric matrix (that is, AK = KA) with
K2 = I, K∗ = K then there is a normal matrix N such that A = KN .
This result is also valid in the ring (with involution) approach: If
a, k ∈ R satisfy k2 = 1, k∗ = k, a is normal and ak = ka then ka is
normal. In fact,

(ka)∗(ka) = a∗kka = ka∗ak = kaa∗k = (ka)(ka)∗.
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(VII) If A is a {K, s + 1}-potent matrix with K2 = I, K∗ = K satisfying
A∗ = A(s+1)2−1 then there is a normal matrix N such that A = KN .
This result is also valid in the ring (with involution) approach. In fact,
by using the similar notation as in (VI) we get

(ka)∗(ka) = a∗a = a(s+1)2 = (a(s+1)2)s+1 = (aa∗)s+1 = as+1(as+1)∗

and
(ka)(ka)∗ = as+1k(as+1k)∗ = as+1(as+1)∗.

We close this paper with the following questions:

• For the ring of complex matrices the following results are true: If A is
a normal {K, s + 1}-potent matrix with K2 = I, K∗ = K then there is
a normal matrix N such that A = KN . Given a general ring R, does
this statement remain valid?

• Can we drop the condition of the Dedekind finiteness of the ring in
selected previous results?
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