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Abstract

In this paper we introduce a new partial order on a ring, namely
the diamond partial order. This order is an extension of a partial
order defined in a matrix setting in [J.K. Baksalary and J. Hauke,
A further algebraic version of Cochran’s theorem and matrix partial
orderings, Linear Algebra and its Applications, 127, 157–169, 1990].
We characterize the diamond partial order on rings and study its re-
lationships with other partial orders known in the literature. We also
analyze successors, predecessors and maximal elements under the di-
amond order.
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1 Introduction and Background

Let R be an associative ring with unity 1. For a given a ∈ R, we will denote

a{1} := {x ∈ R : axa = a}
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the set of all {1}-inverses of a. A particular {1}-inverse of a will be written
as a−, and the element a is regular if a{1} 6= ∅. As usual, R is a regular
ring if all elements of R are regular. A {1, 2}-inverse of a is a {1}-inverse
of a that is a solution of the ring equation xax = x, it will be denoted by
x ∈ a{1, 2}. The unique {1, 2}-inverse of a that commutes with a is called
the group inverse of a (when it exists) and denoted by a#. The set of group
invertible elements is denoted by R#.

An involution ∗ in R is an anti-isomorphism of degree 2 in R, that is to
say, (x∗)∗ = x, (x+ y)∗ = x∗ + y∗ and (xy)∗ = y∗x∗, for all x, y ∈ R. We will
use the following notation: aR = {ax : x ∈ R} and Ra = {xa : x ∈ R} the
principal ideals; ◦(a) = {x ∈ R : xa = 0} and (a)◦ = {x ∈ R : ax = 0}.

We say a ∈ R is Moore-Penrose invertible (with respect to ∗) if the equa-
tions axa = a, xax = x, (ax)∗ = ax, (xa)∗ = xa have a common solution.
If such a solution exists, then it is unique, and denoted by a†. The set of
Moore-Penrose invertible elements is denoted by R†.

We recall some well-known partial orders on a regular ring R:

• the minus partial order: a ≤− b iff a−a = a−b and aa− = ba−.

• the star partial order: a ≤∗ b iff a∗a = a∗b and aa∗ = ba∗, which in
turn is equivalent to a†a = a†b and aa† = ba† in R†.

• the left star partial order: a∗ ≤ b iff a∗a = a∗b and aR ⊆ bR.

• the right star partial order: a ≤ ∗b iff aa∗ = ba∗ and Ra ⊆ Rb.

• the sharp partial order in R#: a ≤# b iff a#a = a#b and aa# = ba#.

• the direct sum partial order: a ≤⊕ b iff bR = aR⊕ (b− a)R.

A detailed analysis of these partial orders has been done in [8] for a matrix
approach.

Throughout this paper, R will be a ring with involution and we will
assume R is ∗-regular, i.e., all elements have a Moore-Penrose inverse.

We define (see [3])

a ≤⋄ b iff aR ⊆ bR, Ra ⊆ Rb and aa∗a = ab∗a.

In Section 3 we are going to prove that the binary relation ≤⋄ defines a partial
order on R and, from now on, it is called the diamond partial order. It should

2



be mentioned that the diamond partial order has not been considered in the
literature, as far as we know, in the setting of rings.

We recall some well-known facts.

Lemma 1 Let a ∈ R and a−, a= ∈ a{1}. Then a−aa= ∈ a{1, 2}.

Lemma 2 Let a, b ∈ R. Then

(a) a ≤− b iff there exists b− such that bb−a = ab−b = ab−a = a.

(b) aR ⊆ bR iff Ra∗ ⊆ Rb∗ and Ra ⊆ Rb iff a∗R ⊆ b∗R.

(c) a∗R = a†R and Ra∗ = Ra†.

Proof. (a) (=⇒) By hypothesis we have: a−a = a−b and aa− = ba−. Then

bb−a = bb−aa−a = bb−ba−a = ba−a = aa−a = a,

ab−b = aa−ab−b = aa−bb−b = aa−b = aa−a = a,

and

ab−a = aa−ab−aa−a = aa−bb−ba−a = aa−ba−a = aa−aa−a = a.

(⇐=) We assume that there exists b− such that bb−a = ab−b = ab−a = a.
First, we notice that b− is a {1}-inverse of a since ab−a = a. If we now
define a− := b−ab−, Lemma 1 assures that a− ∈ a{1, 2}. Using the equalities
bb−a = ab−b = ab−a = a we obtain:

aa− = ab−ab− = ab− = bb−ab− = ba−

and
a−a = b−ab−a = b−a = b−ab−b = a−b

Hence, by definition, a ≤− b.
(b) Trivial by definition.
(c) It follows from the properties a∗ = a†(aa∗) = (a∗a)a† and a† =

a∗(aa∗)† = (a∗a)†a∗. �

We remark that

(I) ab†a = a =⇒ ab† and b†a are idempotent.
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(II) bb†a = a ⇐⇒ bb†aa† = aa†.

(III) ab†b = a ⇐⇒ a†ab†b = a†a.

(IV) If the equalities bb−a = ab−b = ab−a = a hold for some b− then
they hold for any choice of b−. Indeed, the independence of b− in
bb−a = ab−b = a follows directly from [9, Lemma 2.1]. For a {1}-
inverse b− of b, it is well known [10, pp. 26] that all {1}-inverses of b
are of the form b= = b−+(1−b−b)h+z(1−bb−) for some choice of h and
z. As bb−a = ab−b = ab−a = a it follows that ab=a = a. To sum up
we showed the independence of the equalities bb−a = ab−b = ab−a = a

to the choice of b−.

Lemma 3 [4, Corollary 4] Let x, y ∈ R such that y is idempotent. Then
x ≤− y iff x = x2 = xy = yx.

Proof. For the sake of completeness we include a proof.
(=⇒) Since xx− = yx− and x−x = x−y, we get x = xx−y = yx−x.

Then xy = xx−y2 = xx−y = x and yx = y2x−x = yx−x = x. Moreover,
x2 = xx−yx = xx−xy = xy.

(⇐=) From x2 = x we have that x is group invertible and x# = x. Taking
x− = x# we get xx− = x2 = yx = yx− and x−x = x−y is similar. �

A wide range of properties related to these orders and the generalized inverses
involved in each of them can be found in [1, 2, 3, 6, 7, 11, 12, 13].

This paper is organized as follows. In Section 2 we analyze some rela-
tionships between the diamond binary relation and the minus, left star, right
star, star and sharp partial orders. In Section 3 the diamond partial order
on rings is characterized. Section 4 is devoted to the study of successors and
predecessors under the diamond order. In addition, maximal elements under
the diamond partial order are found.

2 Relations between the diamond order and

other partial orders

Firstly, we notice that the equivalence a ≤⋄ b ⇐⇒ b − a ≤⋄ b does not hold
for the diamond partial order (see an example in [3]) whereas it remains valid
for the star and minus orders, as stated in the following result.
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Lemma 4 Given regular x, y ∈ R,

(a) x ≤− y iff y − x ≤− y.

(b) x ≤∗ y iff y − x ≤∗ y.

Proof. (a) If x ≤− y then by [5, Proposition 3 (i)]

y = x+ (1− xx+)s(1− x+x)

for some {1, 2}-inverse x+ of x and an arbitrary s ∈ R. Setting the idempo-
tents e = 1 − xx+ and f = 1 − x+x there exists (y − x)+ = fwe for some
w ∈ R. For this choice, (y−x)(y−x)+ = esfwe = (x+esf)fwe = y(y−x)+.
Similarly, (y − x)+y = fwe(x+ esf) = fwesf = (y − x)+(y − x).

Conversely, if y − x ≤− y then by the previous implication x = y − (y −
x) ≤− y.

(b) From x ≤∗ y we obtain the equalities (y − x)x∗ = x∗(y − x) = 0,
from which (y − x)(y − x)∗ = (y − x)y∗ and (y − x)∗(y − x) = y∗(y − x).
Since these are hermitian, the equalities (y − x)(y − x)∗ = y(y − x)∗ and
(y − x)∗(y − x) = (y − x)∗y hold.

Conversely, if y − x ≤∗ y then by the previous implication x = y − (y −
x) ≤∗ y. �

We also observe that neither of the implications aa∗a = ab∗a =⇒ aa†a =

ab†a (in M2(C) take a =

[

1 1
0 0

]

and b =

[

2 0
0 2

]

) nor aa†a = ab†a =⇒

aa∗a = ab∗a (in M2(C) take a =

[

1 1
0 0

]

and b =

[

1 0
0 1

]

) is valid in

general.
We remark that ∗ is isotone with respect to the diamond partial order.

That is to say a ≤⋄ b exactly when a∗ ≤⋄ b∗. This follows from Lemma 2.
As a consequence we have the following proposition.

Proposition 1 a ≤⋄ (a
†)∗ iff a is a partial isometry (i.e., a† = a∗).

Proof. If a ≤⋄ (a
†)∗ then aa∗a = aa†a = a, that is a∗ ∈ a{1}. Since aa∗ and

a∗a are hermitian and a∗aa∗ = a∗, we get a∗ = a†. The converse is trivial. �

Some equivalent conditions to aa∗a = ab∗a are given in the following
result.
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Lemma 5 Let a, b ∈ R. Then the following conditions are equivalent:

(a) aa∗a = ab∗a.

(b) a†ba† ∈ a{1}.

(c) a†ba† ∈ a{1, 2}.

(d) a†ba† = a†.

Proof. (a) =⇒ (b) Multiplying aa∗a = ab∗a on the left and right sides by
a† we get a∗ = a†aa∗aa† = a†ab∗aa† = a∗(a†ba†)∗a∗. Hence, a†ba† ∈ a{1}.

(b) =⇒ (a) Multiplying a = a(a†ba†)a on the left and right sides by a∗

we get a∗aa∗ = a∗aa†ba†aa∗ = a∗(aa†)∗b(a†a)∗a∗ = (aa†a)∗b(aa†a)∗ = a∗ba∗.
Thus aa∗a = ab∗a.

(b) =⇒ (c) It follows applying Lemma 1 with a− = a†ba† and a= = a†.
(c) =⇒ (b) is trivial.
(a) =⇒ (d) Multiplying firstly both sides of a∗aa∗ = a∗ba∗ by (a†)∗ we

have (a†)∗a∗aa∗(a†)∗ = (a†)∗a∗ba∗(a†)∗, that is (aa†)∗a(a†a)∗ = (aa†)∗b(a†a)∗.
Then a = aa†ba†a. Now multiplying both sides by a† we get a† = a†ba†.

(d) =⇒ (c) is trivial.
(c) =⇒ (d) Multiplying a(a†ba†)a = a on the left and right sides by a† we

get a†a(a†ba†)aa† = a†aa†, that is a†ba† = a†. �

Theorem 1 Let a, b ∈ R. Then the following conditions are equivalent:

(a) a ≤⋄ b.

(b) aR ⊆ bR, Ra ⊆ Rb and a†ba† ∈ a{1}.

(c) aR ⊆ bR, Ra ⊆ Rb and a†ba† ∈ a{1, 2}.

(d) aR ⊆ bR, Ra ⊆ Rb and a†ba† = a†.

Proof. It follows by the definition of the diamond partial order and Lemma
5. �

The implications a∗ ≤ b ⇒ a ≤⋄ b and a ≤⋄ b ⇒ a∗ ≤ b are not valid in
general. Similarly, for ≤ ∗ instead of ∗ ≤.
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Even for matrices over a field, the implication a ≤ ∗b ⇒ a ≤⋄ b might not

hold. Take, over the field Z13, the matrices A =

[

9 7
2 3

]

and B =

[

0 0
10 2

]

,

and the transposition as the involution. Then
[

9 7
]

= 10
[

10 2
]

,
[

2 3
]

= 8
[

10 2
]

and row space of A is a subspace of the row space of

B. As AA∗ = BA∗ then A ≤ ∗B. Nevertheless,

[

9
2

]

= α

[

0
10

]

+ β

[

0
2

]

has no solutions in Z13, and hence the column space of A is not a subspace
of the column space of B.

Needless to say a similar conclusion can be drawn for ∗≤, as A∗ ∗≤ B∗

and yet A∗ 6≤⋄ B∗ since the row space of A∗ is not a subspace of the row
space of B∗, where A and B are as the previous example.

Lemma 6 Let us consider the following statements:

(a) a ≤⋄ b.

(b) a∗ ≤ b and Ra ⊆ Rb.

(c) a ≤ ∗b and aR ⊆ bR.

Then (b) =⇒ (a) and (c) =⇒ (a).

Proof. (b) =⇒ (a) By definition a∗ ≤ b if and only if a∗a = a∗b and aR ⊆ bR.
Multiplying the equality on the right side by a∗ we get a∗aa∗ = a∗ba∗, that
is aa∗a = ab∗a. Thus a ≤⋄ b.

(c) =⇒ (a) The proof is similar to the previous one. �

Remark 1 Observe that in Lemma 6 neither (a) =⇒ (b) nor (a) =⇒ (c) as
the following example allows us to check in M2(C):

a =

[

1 0
0 0

]

and b =

[

1 1
1 0

]

.

Proposition 2 Let a, b ∈ R. Then

(a) a ≤∗ b =⇒ a ≤⋄ b.

(b) a ≤# b =⇒ a† ≤⋄ b
† ⇐⇒ a ≤− b.
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Proof. (a) Suppose a ≤∗ b, that is, aa∗ = ba∗ and a∗a = a∗b. Then
a∗(b − a)a∗ = 0, from which aa∗a = ab∗a. Furthermore, post-multiplying
aa∗ = ba∗ and pre-multiplying a∗a = a∗b by (a†)∗, we obtain a = ba∗(a†)∗ =
(a†)∗a∗b ∈ bR ∩Rb and as such aR ⊆ bR and Ra ⊆ Rb.

(b) It is well known that a ≤# b =⇒ a ≤− b and this last expression is
equivalent to a† ≤⋄ b

† (as we will see in Theorem 2). �

Note that, despite Theorem 2 has been not proved yet, we have included
Proposition 2 in this section to collect all the relationships between the dia-
mond partial order and the other ones.

Now, we remark that a ≤⋄ b does not imply a ≤∗ b. A counterexample
can be found by taking the real matrices

a =

[

1 0
0 0

]

, b =

[

1 1
0 1

]

.

We can also observe that a ≤# b does not imply a ≤⋄ b as the following
real matrices show:

a =

[

1 1
0 0

]

, b =

[

1 0
0 1

]

.

We close this section with the following remark.

Remark 2 The condition on the Moore-Penrose invertibility of a in (a) of
the previous Proposition cannot be dropped. We will present an example
using matrices over Z4 with the involution ∗ as transposition. Take A =
[

1 0
2 2

]

and B =

[

1 0
2 0

]

which satisfy A ≤∗ B, since AA∗ = BA∗, A∗A =

A∗B. Yet, A = B

[

x z

y w

]

would imply z = 0 and 0 = 2, and therefore

A ≤⋄ B does not hold. Note that A† does not exist as the (free) Z4-module
generated by the columns of A is not a submodule of the generated by the

columns of AA∗. Indeed, there are no solutions in Z4 for

[

0
2

]

= α

[

1
2

]

+

β

[

2
0

]

.
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3 Characterizations of the diamond partial

order

Now, we characterize the diamond partial order in terms of the minus partial
order.

Theorem 2 Let a, b ∈ R. Then the following statements are equivalent:

(a) a ≤⋄ b.

(b) a† ≤− b†.

(c) aa†bb† = aa†, b†ba†a = a†a, a†ba† = a†.

Proof. (a) =⇒ (b) and (c) By hypothesis and Lemma 2 we have: Ra† ⊆ Rb†

and a†R ⊆ b†R. Since a† = a†aa† ∈ a†R ∩Ra† ⊆ b†R ∩Rb†.
Since a† = b†x for some x ∈ R, b†ba† = b†bb†x = b†x = a†. Hence,

b†ba† = a† and so b†ba†a = a†a.
Since a† = yb† for some y ∈ R, a†bb† = yb†bb† = yb† = a†. Hence,

a†bb† = a† and so aa†bb† = aa†.
Lemma 5 assures that the condition a∗aa∗ = a∗ba∗ is equivalent to a† =

a†ba†. Finally, Lemma 2 implies that a† ≤− b† holds.
(b) =⇒ (a) From a†a = b†a and aa† = ab† we get a† = b†aa† ∈ b†R and

a† = a†ab† ∈ Rb†. Then a†R ⊆ b†R and Ra† ⊆ Rb†. Moreover, Lemma 2 (a)
assures that a† = a†ba†. Finally, Lemma 5 implies that a∗aa∗ = a∗ba∗.

(c) =⇒ (a) From aa†bb† = aa† we get a†bb† = a†, that is a† ∈ Rb†. Thus,
Ra∗ = Ra† ⊆ Rb† = Rb∗ and this implies aR ⊆ bR.

Similarly, b†ba†a = a†a yields Ra ⊆ Rb. Moreover, the equivalence be-
tween a†ba† = a† and aa∗a = ab∗a has been shown in Lemma 5. Hence,
a ≤⋄ b. �

We remark that in Theorem 2 (c) the hypothesis a†ba† = a† cannot be
dropped. Take the real matrices, with transposition as involution, A =
[

1 1
0 0

]

and B = I2, for which A 6≤⋄ B since AATA 6= A2 = A, and yet

AA†BB† = AA†, B†BA†A = A†A, but A†BA† 6= A†.

Theorem 2 allows us to assure that the diamond relation is a partial order.
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Corollary 1 The binary relation ≤⋄ is a partial order on the ring R.

Notice that neither of the implications a ≤⋄ b =⇒ a ≤− b nor a ≤− b =⇒
a ≤⋄ b are valid in general (see examples in [3, pp. 165]).

We recall that a ≤− b iff there exist idempotents e, f ∈ R such that
a = eb = bf . This will lead to the following result.

Theorem 3 Let a, b ∈ R. Then the following conditions are equivalent:

(a) a ≤⋄ b.

(b) (b† − a†)† ≤⋄ b.

(c) There exist idempotents e, f ∈ R such that a = (eb†)† = (b†f)†.

Proof. (a) ⇐⇒ (b) By Theorem 2, a ≤⋄ b iff a† ≤− b† and by Lemma 4
a† ≤− b† iff b† − a† ≤− b† which is equivalent to (b† − a†)† ≤⋄ b by Theorem
2.

(a) ⇐⇒ (c) a ≤⋄ b iff a† ≤− b† iff there exist idempotents e, f ∈ R such
that a† = eb† = b†f . That is a = (eb†)† = (b†f)†. �

We remark that a ≤⋄ b does not imply a† ≤⋄ b†, even though aR ⊆
bR and Ra ⊆ Rb imply Ra† = Ra∗ ⊆ Rb∗ = Rb† and a†R = a∗R ⊆
b∗R = b†R. The implication is not valid as aa∗a = ab∗a is not sufficient to
a†(a†)∗a† = a†(b†)∗a†. Take the rational matrices, with the transposition as

involution, A =

[

1 0
0 0

]

with A† =

[

1 0
0 0

]

, and B =

[

1 2
1 1

]

with B† = B−1 =
[

−1 2
1 −1

]

. Then A ≤⋄ B and yet A† 6≤⋄ B
−1.

Theorem 4 Let a, b ∈ R. Then a ≤⋄ b ⇐⇒ a† ≤⊕ b†.

Proof. It is well known that x ≤− y iff x ≤⊕ y [4, Lemma 3]. Then, this
item follows directly applying Theorem 2 with x = a†, y = b†. �

Neither the implication a ≤⋄ b =⇒ a ≤⊕ b nor a ≤⊕ b =⇒ a ≤⋄ b are
valid in general. Indeed, it follows from the fact that x ≤− y iff x ≤⊕ y.

Moreover, for the matrices

a =
1

2

[

1 1
0 0

]

, b =

[

1 0
0 1

]

,
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it is easy to see that a ≤⋄ b and however a �# b.
Defining aπ,r = 1− aa† and aπ,l = 1− a†a we obtain:

Lemma 7 Let R be a ring with unity and a, b ∈ R. Then the following
conditions are equivalent:

(a) a ≤⋄ b.

(b) bπ,r ≤⋄ a
π,r, bπ,l ≤⋄ a

π,l and (1− aπ,r)(1− ba†) = 0.

(c) bπ,r ≤− aπ,r, bπ,l ≤− aπ,l and (1− aπ,r)(1− ba†) = 0.

Proof. We first observe that (1− xx†)† = 1− xx† and (1− x†x)† = 1− x†x

for x ∈ {a, b}. Now, we apply Theorem 2. The following equivalences are
valid:

aa†bb† = aa† = bb†aa† ⇐⇒

⇐⇒ 1− bb† = (1− aa†)(1− bb†) = (1− bb†)(1− aa†) ⇐⇒ 1− bb† ≤− 1− aa†.

Similarly, it can be shown that b†ba†a = a†a is equivalent to bπ,l ≤⋄ a
π,l and

a†ba† = a† is equivalent to (1− aπ,r)(1− ba†) = 0. Hence, (a) ⇐⇒ (b). The
equivalence between (b) and (c) follows directly from Theorem 2. �

4 Successors and predecessors under the di-

amond partial order

Let us start this section with a result valid for the minus partial order.

Lemma 8 Let x, y ∈ R. Then the following conditions are equivalent:

(a) x ≤− y.

(b) There exists x= ∈ x{1, 2} such that y − x ∈ ◦(x=) ∩ (x=)◦.

Proof. If x ≤− y then x−x = x−y and xx− = yx− for some x− ∈ x{1}.
Taking x= = x−xx− we have that x= ∈ x{1, 2} with x=x = x=y and xx= =
yx=. So, (y − x)x= = 0 and x=(y − x) = 0 and this last two equalities are
equivalent to y − x ∈ ◦(x=) ∩ (x=)◦.

The converse is trivial. �

Given a ∈ R, in the following we find all the elements b ∈ R such that
a ≤⋄ b. Such elements b are called the successors of a.
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Theorem 5 Let a ∈ R. Then the following conditions are equivalent:

(a) There exists b ∈ R such that a ≤⋄ b.

(b) There exists h ∈ ◦((a†)=) ∩ ((a†)=)◦ such that b = (a† + h)†.

Proof. (a) =⇒ (b) If a ≤⋄ b then a† ≤− b†. Taking x = a†, y = b† in
Lemma 8 we have that there exists (a†)= ∈ a†{1, 2} such that b† − a† ∈
◦((a†)=) ∩ ((a†)=)◦. Setting h = b† − a†, we get b = (a† + h)†.

(b) =⇒ (a) Applying first Lemma 8 and then Theorem 2, we get the
result. �

Given b ∈ R, all the elements a ∈ R such that a ≤⋄ b are called the prede-
cessors of b. A partial solution of the problem of finding all the predecessors
of a fixed element is given in the following result.

Theorem 6 Let b, h ∈ R. If (b − h)† = b† − h† and h ≤∗ b then a = b − h

satisfies a ≤⋄ b.

Proof. Since h ≤∗ b, we have bh†h = h = hh†b. Hence, we get aa† = ab†

and a†a = b†a since

aa† = (b− h)(b− h)† = (b− h)b† − bh† + hh† = ab†,

a†a = (b− h)†(b− h) = b†(b− h)− h†b+ h†h = b†a.

Now, Theorem 2 finishes the proof. �

Other method to find predecessors of a given element b ∈ R has been
stated in Theorem 3 where the idempotents in the ring have to be previously
found.

Theorem 6 allows us to state a similar result to that in Lemma 4 for the
diamond partial order as follows.

Theorem 7 Let a, b ∈ R such that (b − a)† = b† − a†. Then b − a ≤∗ b iff
a ≤⋄ b.

Proof. By definition of star partial order and the assumption we have that
b−a ≤∗ b holds iff (b†−a†)(b−a) = (b†−a†)b and (b−a)(b†−a†) = b(b†−a†).
Some computations leads to a†a = b†a and aa† = ab†. Theorem 2 yields
a ≤⋄ b. The converse can be shown in a similar way. �
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Corollary 2 If (b− a)† = b† − a† for all element a, b ∈ R then the star and
diamond partial orders coincide, that is a ≤∗ b iff a ≤⋄ b.

Theorem 8 Let b ∈ R. The following statements are valid:

(a) If b† is idempotent then a ≤⋄ b iff (a†)2 = a† = a†b† = b†a†.

(b) If b is hermitian idempotent then a ≤⋄ b iff (a†)2 = a† = a†b = ba†.

Proof. (a) It follows directly from Theorem 2 and Lemma 3 taking x = a†,
y = b†.

(b) It is a particular case of (a). �

Now we characterize the intervals

[0, aπ,r] = {b ∈ R : 0 ≤⋄ b ≤⋄ a
π,r} and [0, aπ,l] = {b ∈ R : 0 ≤⋄ b ≤⋄ a

π,l}

for a fixed element a ∈ R.

Proposition 3 Let a ∈ R. Then

[0, aπ,r] = {b ∈ R : b† is idempotent and b† ∈ ◦a ∩ (a†)◦}.

and
[0, aπ,l] = {b ∈ R : b† is idempotent and b† ∈ ◦(a†) ∩ a◦}.

Proof. Since aπ,r is idempotent and hermitian, we apply Theorem 8 and
then b ≤⋄ aπ,r iff (b†)2 = b† = b†aπ,r = aπ,rb†. Multiplying b† = aπ,rb†

on the left side by a† we get a†b† = a†(1 − aa†)b† = (a† − a†aa†)b† = 0.
In the same way, multiplying b† = b†aπ,r on the right side by a we have
b†a = b†(1 − aa†)a = b†a − b†aa†a = 0. Hence b† is idempotent and
a†b† = b†a = 0. Similarly for the idempotent aπ,l. �

Lemma 9 If u ∈ R is a unit then u is maximal under the diamond partial
order.

Proof. Given a unit u and an arbitrary a ∈ R, if u ≤⋄ a then u−1 ≤− a†.
On account of [5, Proposition 3 (i)], a† = u−1 from which a = u is maximal. �
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Theorem 9 Let a ∈ R#. Then a is a unit iff a is maximal of R# under the
diamond partial order.

Proof. (=⇒) It follows directly from Lemma 9.
(⇐=) Take u = a + 1 − aa† with a ∈ R#. Then u is a unit with

u−1 = a# + 1 − aa†. Therefore, aR ⊆ uR = R and Ra ⊆ Ru = R. Also,
aa∗a = au∗a. These mean a ≤⋄ u. Since a is maximal then a = u is a unit
and the result follows. �
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