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Abstract

In this paper, we deal with {K, s 4+ 1}-potent matrices. These matrices gen-
eralize all the following classes of matrices: k-potent matrices, periodic ma-
trices, idempotent matrices, involutory matrices, centrosymmetric matrices,
mirrorsymetric matrices, circulant matrices, etc. Several applications of these
classes of matrices can be found in the literature. We develop algorithms in
order to compute {K,s + 1}-potent matrices and {K,s + 1}-potent linear
combinations of { K, s + 1}-potent matrices. In addition, some examples are
presented in order to show the numerical performance of the method.

Keywords: Potent matrices, Involutory matrices, Linear relation,
Eigenvalues

1. Introduction

In recent years, real applications for certain classes of matrices have been
developed. Specifically, the problem of multiconductor transmission lines
has been studied by means of mirror symmetric matrices in [7, 8]. Also,
Circulant matrices have been applied to solve problems in several areas such
as numerical computation, solid state-physics, image and signal processing,
coding theory, mathematical statistics, and molecular vibration [2, 3]. Some
applications of centrosymmetric matrices have been given in [1], for example,
for solving problems in pattern recognition, antenna theory, mechanical and
electrical systems, and quantum physics. In this last case, symmetric and
skew-symmetric eigenvectors have been used [9].
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Related to the aforementioned classes of matrices, another type was intro-
duced in [5], namely the {K, s + 1}-potent matrices. For a given involutory
matrix K € C" (K2 =1,) and s € {0,1,2,3,... }, we recall that a matrix
A e C™" is called {K, s+ 1}-potent if it satisfies

KA K = A (1)

When s = 0, the matrix A is called {K }-centrosymmetric. It can be seen
that {K, s+ 1}-potent matrices generalize all the following classes: k-potent
matrices, periodic matrices, idempotent matrices, involutory matrices, cen-
trosymmetric matrices, mirrorsymetric matrices, circulant matrices, etc.

In [5], the authors have given characterizations of { K, s + 1}-potent ma-
trices by using spectral theory. Later, in [6] that class of matrices was linked
to other kind of matrices (as {s + 1}-generalized projectors, { K }-Hermitian
matrices, normal matrices, etc.). In both papers, a theoretical point of view
has been used. Hence, it is interesting to know how to construct members
of this class in an effective form. One of the main aims of this paper is to
develop a numerical method to construct them.

Throughout this paper, K stands for an involutory matrix. We will denote
by Qy the set of all k™" roots of unity with & a positive integer, that is, if we
define wy = €™/ then Qp = {wy,w?, ..., wi}l.

The following function will be necessary. Let N, = {0,1,2,...,(s+1)?-2}
for s > 1, and let

v Ny — Ny

be the bijective function given by ¢(j) = b; where b; is the smallest nonneg-
ative integer such that b; = j(s + 1) [mod ((s 4+ 1)* — 1)] [5].

This paper is organized as follows. In Section 2, we present an algorithm
to compute {K, s + 1}-potent matrices. In Section 3, we obtain {K, s+ 1}-
potent matrices commuting with a given { K, s+ 1}-potent matrix. In Section
4, we develop an algorithm to obtain all of the {K,s + 1}-potent linear
combinations of {K, s + 1}-potent matrices. Finally, in Section 5, some
numerical examples are presented in order to show the numerical performance
of the method.

2. Algorithm for computing {K, s + 1}-potent matrices

We analyze two situations: s =0 and s > 1.



2.1. Case s> 1
Given an involutory matrix K € C"™™ and s € {1,2,3,...}, we want
to find a {K,s + 1}-potent matrix A € C™™. Since the cases with K =

+7,, correspond to the well-known relationship A**! = A, we will assume
throughout that K # +1,.

Since K is involutory, there is a nonsingular matrix 7" = [ ty ... iy }
such that O
. _[r -1
K=T [ o I, } T (2)

where the first r eigenvectors of K are associated with the eigenvalue —1.
Without loss of generality, we will assume that » < n — r. Otherwise, we
pick — K instead of K obtaining the same solution. It is well-known [5] that
the eigenvalues of A are included in the following set

s+1)2-2
A = {0,W(18+1)2_1, e ’w((sil))2—l’ 1}
and A is diagonalizable, i.e.

yi

A= Sdiag(\1,...,\,) St with S = [ S1 ... Sy } and S !'= :
T
Yn
It is easy to see that yl's; = &;; because S™'S = I,, where §;; indicates the
Kronecker delta. Then, denoting by P; = s, we have

(O iti#j
PZPJ_{Pi if i = j

and by using the fact SS™ = I, we get Y. | P, = I,,. So, matrix A can be
written as

A= zn: P (3)
i=1

When all the \;’s are different, expression (3) provides the spectral decompo-

sition of A. Otherwise, in order to obtain such a decomposition it is sufficient

to multiply the corresponding eigenvalue by the sum of all its associated P;’s.
Since K P, K = P,(; (by Theorem 2 in [5]), we can choose

Ksi = s,) and KTy = ypn (4)



in order to satisfy the equality At = KAK.

ALGORITHM 1
Inputs: K € C"*", s € {1,2,3,...}.
Outputs: A {K, s + 1}-potent matrix A € C™" and the projectors P;.

Step 1 Diagonalize K as in (2).

Step 2 It r > n —r, replace K with —K and rearrange as in Step 1.
Step 8 Fori=1,...,r, compute So; 1 =t; +t,; and so; = —t; + 1.
Step 4 Fori=2r+1,...,n,set s; =t;.

Step 5 Solve the linear systems Sy; =e; for i =1,...,n.

Step 6 Compute P; = s;yl fori=1,... n.

Step 7 Fori=1,...,r, compute Q; = wPy_q + w?MPy,.

Step 8§ Compute A =371, Qi+ 7 5.1 D).

End

In order to clarify this process, the most representative cases are pre-
sented in Table 1, where w := w(,;1)2_1. We consider the following different
involutory matrices K; = TD;T~! for i = 1,2, 3,4, 5 where D; = diag(—1, 1),
Dy = diag(—1,1,1), D3 = diag(—1,1,1,1), Dy = diag(—1,—-1,1,1), D5 =
diag(—1,—-1,1,1,1).



TABLE 1. The most representative cases.

| | Construction of s;’s | Construction of A;’s

D1 z; ; t—lt—l—j—ztg A= UJPl + w‘P(l)Pg
s1 =11+ 12

Do So = —t1 + to A=wP + wso(l)Pz + P3
s3 =13
s§1 =11+ 12

py| 2T hth A=wP +w?V Py + Py + P
s3 =13
Sq =14
s1 =11 +13

Da ii _ tQt-li-—;tS A=w(Pr + P3) + w0 (P2 + Py)
sS4 = —to + 1y
s1 =11+ 13
So = —t1 +t3

Ds s3 =1y + 14 A= w(P; + P3) 4w (Py + Py) + Ps
sS4 = —to + 1y
S5 =15

The only step in the algorithm that needs to be justified is Step 8. In
fact,

. n s+1
A8+1 = (Z(ngi_l + w“"(l)Pgi) -+ Z Pj>
i=1 Jj=2r+1

- Z(wtp(l)p%_l_i_wp%)_i_ Z P,

i=1 j=2r41

and by using expression (4) we get

T

KAK = Y (wWKPy,K+wVKPyK)+ > KPK

i=1 j=2r+1
= ) (WP +w*IP)+ > Py
i=1 j=2r+1



Although we have constructed only one { K, s+ 1}-potent matrix A, it is
clear that this method allows us to construct more of them (e.g., by changing
adequately the w’s in Q(s41)2-1).

2.2. Case s =10

This case corresponds to matrices A € C™" commuting with K. The
spectral theorem allows us to state that a diagonalizable matrix A € C™*" is
{ K }-centrosymmetric if and only if K'P; = P, where P; are the projectors
appearing in that decomposition. We could try a similar algorithm to the
previous one. However, by using a block decomposition it is easy to see that
a more straightforward method can be developed which gives an immediate
result. In fact, if matrix K is diagonalized as in (2), an easy computation
provides us the required { K }-centrosymmetric matrices:

A:T[)g‘ %]T—l (5)

where X4 € C™" and Y4 € C» )%= are arbitrary matrices.

3. Obtaining {K, s 4+ 1}-potent matrices commuting with a given
{K, s + 1}-potent matrix

Let s > 1. Our next objective is to find a {K,s + 1}-potent matrix
B € C™™ such that AB = BA for the {K, s + 1}-potent matrix A € C™*"
obtained by means of Algorithm 1. Since B is {K,s + 1}-potent, it must
be diagonalizable. Then, in order to satisfy the condition AB = BA both
matrices A and B have to be simultaneously diagonalizable [4], that is, A =
Sdiag(Ai, ..., \,) S™t and B = Sdiag(uy,. .., ptn) S~ where the p;, which
are in A, remain to be determined.

ALGORITHM 2

Inputs: The {K, s+ 1}-potent matrix A obtained in Algorithm 1 and the
projectors P;.

Outputs: A {K, s+ 1}-potent matrix B € C"*" commuting with A.

Step 1 Set pn:=w{y, )., where p & {1,¢(1),¢(p)}-

()

Step 2 Fori=1,...,r, compute W; = ulPo;_1 + pu » Py.
Step 8 Compute B =31 Wi+ ", . P
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End

Note that p is chosen in A from among the unused w’s in Algorithm 1.

In Step 2 it is clear that /1,# = w#®) The remaining construction for s > 1
follows as in Algorithm 1.
Using Algorithm 2 we have constructed one {K, s + 1}-potent matrix B.
It is clear that this method allows us to construct more of them from the
same starting matrix A (e.g., by changing adequately the p’s in Qs 41)2_1).
When s = 0, and X4 and Y, are as in (5), then

I xs 01
por[% 0 ]r

In this case, it is clear that we obtain all {K,1}-potent matrices B that
commute with an arbitrarily constructed {K,1}-potent matrix A provided
that X4 Xp = XpX4 and Y Yp = YpY,4 hold.

When s > 1, we note that matrix B = wA is {K, s + 1}-potent, where
w is a primitive s-root of unity. Similarly, when s = 0, B = oA is {K,1}-
potent for all &« € C. In the next section, in order to obtain non trivial linear
combinations of A and B, we will use Algorithm 2.

4. An algorithm for obtaining {K,s + 1}-potent linear combina-
tions

For the matrices A and B obtained by means of Algorithms 1 and 2, we
can construct the following linear relationship:

C = ClA + B (6>

where ¢; and ¢y are nonzero complex numbers to be determined. In this
section we find scalars ¢; and ¢y such that C'is a {K, s + 1}-potent matrix.
The value s = 0 does not give any interesting results because all ¢; and ¢y
satisfy the equality and so, we will assume that s > 1.

Since

A= Sdiag(\,...,\,) S and B = Sdiag(u,..., ) S,

by using (6), a simple computation yields to solve the following linear system:

M
C1 . .
MR

A o Tn

Al



where C' = Sdiag(v1,...,7,) S~ and each v; ranges freely over all values in
{0} U Q(S+1)2—1'
We now can design an algorithm to compute this class of linear relations.

ALGORITHM 3

Inputs: The {K, s + 1}-potent matrices A and B obtained in Algorithms
1 and 2, respectively.

Outputs: All values of ¢; and ¢y such that C' = c;A+cyBisa {K,s+1}-
potent matrix.

A1 M1
Step 1 Set M = oo
A iy
gi!
Step 2 Choose 71,...,7 € {0} UQs41)2—1 and set v =
Tn

Step 3 Solve the linear system M [ 2 ] = .

Step 4 Repeat Steps 2 and 3 for all possible choices of 7; in {0} U
52(3+1)2_1.

End

5. Numerical examples

Our algorithms can easily be implemented on a computer. We have used
the MATLAB R2010b package. In this section we present some numerical ex-
amples in order to show the performance of our algorithms and demonstrate
their applicability.

5.1. Case s>1

While the computational cost of Algorithm 1 is O(n?), Algorithm 2 has
computational cost of only O(n). Note that the computational cost of Algo-
rithm 3 is basically given by Step 3.



Now, we observe that the matrix M has at most rank equals 2. Then, in
order to solve the system

we have to choose two linearly independent equations (only one when rank(M) =
1). That is, we only have to solve at most a 2 x 2 linear system.

Example 1. For s=2, n=4, and

1.2989 —1.2069  3.5632  3.0460

1.3793 —2.7241  4.1379  4.8276
—0.2759  1.3448 —3.8276 —3.9655 |’

0.6437 —2.1379  4.5977  5.2529

K:

Algorithm 1 gives

—0.3820 — 0.07317  1.2435 — 0.0853¢ —0.9103 + 0.48777 —0.9834 + 1.1582¢
0.3657 + 0.5202:  0.6035 — 0.41457 —1.0241 — 0.3251% —1.0180 + 0.4064
—0.2845 - 0.1300z  0.4145 — 0.78037  0.0894 4 0.78847 —0.6421 + 0.9591¢
0.3657 + 0.5202:  —0.1036 + 0.2926¢ —1.0241 — 0.3251% —0.3109 — 0.3007¢

A:

Example 2. For the same K as in Example 1, Algorithm 2 gives

—0.3901 — 0.37867  0.6644 4 0.7763¢  0.2438 — 1.38807 —0.1280 — 0.63072
0.2601 +0.4095¢  0.1463 + 0.0857¢ —0.1626 — 1.38102 —0.5039 — 0.5238:
—0.0650 — 0.3754:  0.4938 — 0.5022:  0.0406 + 0.10967 —0.4044 4 0.14331
0.2601 + 0.4095¢ —0.5608 + 0.7928: —0.1626 — 1.38102  0.2032 — 1.2310¢

B =

Example 3. For the matrices A and B obtained in Examples 1 and 2, Al-
gorithm 3 gives ¢; = —‘/75 + ‘/752 and co = 0.

We now comment on the computational time in terms of n and s. For that
we have used a Intel Core 2 Duo 2GHz processor. For n = 10, 30, 50, ..., 500,
Figure 1 shows the computational time required for s = 1,5,100,200. We
can observe that, as expected, the computational time grows exponentially
with s and n. Moreover, computation time increases more rapidly with n
than with s.



5.2. Case s =10

In this case, the only interesting examples correspond to those constructed
in Subsection 2.2. The reason is that for every {K,1}-potent matrix com-
muting with A, all possible linear combinations are { K, 1}-potent matrices.

Example 4. If we consider the involutory matrix

1 7T —4 4
K:§ -4 1 8
4 8 1

all possible { K, 1}-potent matrices are

4a —4c—4b+4d+e —4da+4c—2b+2d+2e¢ —2a -+ 2c—4b+ 4d — 2e
A== —4da—2c+4b+2d+2¢ 4da-+2c+2b+d+4e 2a + ¢+ 4b + 2d — 4e
—2a —4c+2b+4d —2¢  2a+4c+ b+ 2d — 4e a+ 2c+ 2b+ 4d + 4e

for a,b,c,d,e arbitrary compler numbers.
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Figure 1: Time for obtaining A with n variable and s = 1,5, 100, 200
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