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Abstract

In this note, we investigate characterizations for k-generalized pro-
jections (i.e., Ak = A∗) on Hilbert spaces. The obtained results gener-
alize those for generalized projections on Hilbert spaces in [Hong-Ke
Du, Yuan Li, The spectral characterization of generalized projections,
Linear Algebra and its Applications, 400, (2005), 313–318] and those
for matrices in [J. Beńıtez, N. Thome, Characterizations and linear
combinations of k-generalized projectors, Linear Algebra and its Ap-
plications, In Press].
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In [2], it was defined a generalized projection as a complex matrix A
satisfying A2 = A∗. This concept was extended in [3] for infinite-dimensional
Hilbert spaces. For H a Hilbert space, we shall denote

B(H) = {A/ A is linear and bounded operator, A : H → H}.

If k is an integer greater than 1, we define a k-generalized projection as an
element A of B(H) such that Ak = A∗, where A∗ is the adjoint operator of A.
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Moreover, the n×n complex matrices such that Ak = A∗ (where A∗ denotes
its conjugate transpose) were characterized in [1].

We recall that A ∈ B(H) is said to be normal if AA∗ = A∗A, it is said to
be orthogonal projection if A2 = A = A∗, and A is called k-potent if Ak = A.
In particular, A is a projection if A2 = A and A is tripotent if A3 = A. In
addition, the spectrum of A will be denoted by σ(A).

The main purpose of this note is to give characterizations of the k-
generalized projections by using the spectral theorem for normal operators on
Hilbert spaces (see [4]). We quote this theorem for the sake of completeness.

Theorem 1 ([4]) Let H be a Hilbert space and A ∈ B(H). If A is normal
then there exists a unique resolution of the identity E on the Borel subsets
of σ(A) which satisfies

A =

∫
σ(A)

λdE(λ),

where E(λ) denotes the spectral projection associated with the spectral point
λ ∈ σ(A) and E(λ) = 0 if λ /∈ σ(A).

The main result of this note is the following.

Theorem 2 Let H be a Hilbert space and A ∈ B(H). Then the following
statements are equivalent.

(a) A is a k-generalized projection.

(b) A is normal and σ(A) ⊆ {0}∪ k+1
√

1, where k+1
√

1 denotes the unity roots
of order k + 1.

(c) A is normal and (k + 2)-potent.

In this case, one has

A =
⊕

λ∈ k+1
√

1

λE(λ), (1)

where E(λ) = 0 if λ /∈ σ(A) and ⊕ stands for the direct sum.

Proof. (a) ⇒ (b). Suppose that Ak = A∗. It is evident that AA∗ = A∗A,
i.e., A is normal. Theorem 1 assures that

A =

∫
σ(A)

λdE(λ) (2)
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and then 0 = Ak − A∗ =
∫

σ(A)
(λk − λ)dE(λ), which implies λk − λ = 0 for

all λ ∈ σ(A). The roots of this equation are 0 and k+1
√

1 since if λ = reiθ,
with r > 0 and −π ≤ θ < π, then we get rkeikθ = re−iθ and so r = 1 and
ei(k+1)θ = 1, i.e., λ = eiθ ∈ k+1

√
1. From (2), it is clear that (1) holds.

(b) ⇒ (c). If A is normal and σ(A) ⊆ {0} ∪ k+1
√

1 then (1) is true from
Theorem 1. Now, since λk+2 = λ for all λ ∈ σ(A),

Ak+2 =
⊕

λ∈ k+1
√

1

λk+2E(λ) =
⊕

λ∈ k+1
√

1

λE(λ) = A.

(c) ⇒ (a). If A is normal, from Theorem 1 one has that

A =

∫
σ(A)

λdE(λ). (3)

From Ak+2 = A we get that

0 = Ak+2 − A =

∫
σ(A)

(λk+2 − λ)dE(λ).

Hence, λk+2 − λ = 0 for all λ ∈ σ(A). Now, it is easy to deduce λk = λ for
all λ ∈ σ(A) and so, from (3) we obtain Ak = A∗.

This completes the proof. �

Theorem 2 in [3] and Theorem 2.1 in [1] can be obtained as corollaries of
Theorem 2.

Corollary 1 Let H be a Hilbert space and let A ∈ B(H) be a k-generalized
projection.

(I) If σ(A) ⊆ R and

(a) k is even then A is a projection.

(b) k is odd then A is a tripotent operator.

(II) If σ(A) ⊆ iR and

(a) k is a multiple of 4 then A3 = −A.

(b) k is not a multiple of 4 then A = O.
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Proof. By Theorem 2 we know that A is normal and σ(A) ⊆ {0} ∪ k+1
√

1.
(I) By hypothesis, σ(A) ⊆ {0} ∪ ( k+1

√
1 ∩ R). If k is even then σ(A) ⊆

{0, 1}, hence A2 = A. If k is odd then σ(A) ⊆ {−1, 0, 1}, hence A3 = A.
(II) In this case, σ(A) ⊆ iR ∩ ({0} ∪ k+1

√
1). If k is a multiple of 4 then

iR∩ ({0}∪ k+1
√

1) = {0, i,−i} and hence A3 +A = O. If k is not a multiple of
4 then iR ∩ ({0} ∪ k+1

√
1) = {0} and hence A = O. This conclude the proof.

�

It is well-known that: A is normal and σ(A) ⊆ R if and only if A = A∗

(i.e., A is self-adjoint). So, the hypothesis that “A is a k-generalized pro-
jection and σ(A) ⊆ R” is equivalent to “A is a k-generalized projection and
A∗ = A”. Analogously, the hypothesis that “A is a k-generalized projec-
tion and σ(A) ⊆ iR” is equivalent to “A is a k-generalized projection and
A∗ = −A” (i.e., A is skew self-adjoint).

Corollary 2 Let H be a Hilbert space and let A ∈ B(H) be a k-generalized
projection. The range of A (denoted by R(A)) is closed.

Proof. Since A is a k-generalized projection, by Theorem 2 we get that A is
normal and its spectrum is finite, so 0 is not a limited point of the spectrum
of the normal operator A, then R(A) is closed. This completes the proof. �

A similar result to Theorem 2 can be established for matrices and it
generalizes Corollary 4 in [3].

Corollary 3 Let H be a Hilbert space and let A ∈ B(H) be a k-generalized
projection. Then Ak+1 is an orthogonal projection.

Proof. From Theorem 2, we get Ak+2 = A and then (Ak+1)2 = Ak+2Ak =
AAk = Ak+1. Moreover, Ak+1 is an orthogonal projection because

(Ak+1)∗ − Ak+1 = (AkA)∗ − AkA = (A∗A)∗ − A∗A = 0,

since A∗A is self-adjoint. This completes the proof. �

It is clear that Corollary 2 and Corollary 3 generalize the results given in
Corollary 3 in [3].
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