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Abstract

This paper examines matrices A € C"*" such that RA = A*"' R where
RF = I, the identity matrix, and where s and k are nonnegative integers
with & > 2. Spectral theory is used to characterize these matrices. The
cases s = 0 and s > 1 are considered separately since they are analyzed
by different techniques.
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1 Introduction and Preliminaries

Let R; be the square matrix with ones on the cross diagonal and zeros else-
where; note that R; is often called the centrosymmetric permutation matriz. A
matrix A; that commutes with Ry is called a centrosymmetric matriz [12]. Any
square matrix Ry satisfying R3 = I, where [ is the identity matrix, is called an
involution or an involutory matriz. The real eigenvalues of nonnegative matri-
ces that commute with a real involution were studied in [13]. It is well-known
that if P is a permutation matrix, then P* = I for some positive integer k.
Matrices that commute with a permutation matrix P were studied in [8]. A
well-known and important class of matrices that commute with a permutation
matrix are the circulant matrices [3, 6], consisting of all matrices that commute
with Rg, where Rj3 is the irreducible permutation matrix with ones on the first
superdiagonal, a one in the lower left-hand corner, and zeros elsewhere. If A is
an n X n circulant matrix, then R3A = AR3 can be expressed as R3AR§71 =A
since Ry = I, the n x n identity matrix.
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A matrix R € C™*" such that R* = I,, for some positive integer k with k > 2
is called a {k}-involutory matriz [10, 11]. Throughout this paper, all matrices
R will be {k}-involutory. It is clear that when k = 2, such an R is either +1,,, or
else a nontrivial involution. Also, k = n is the smallest positive integer for which
Rj3 is {k}-involutory, and this guarantees that there are nontrivial, nondiagonal
{k}-involutory matrices for all integers k and n with n > 2 and 2 < k < n. The
matrix exp(2%) I,, is {k}-involutory for all positive integers n and all integers
k > 2, and, thus, it should be clear that there are {k}-involutory matrices for
which k& > n must occur. Finally, we always assume that R # I,,, and hence, if
R* =1, then k > 2.

This paper is focused on the study of the {R, s + 1, k}-potent matrices. A
matrix A € C"*" is called an {R,s + 1, k}-potent matriz if RA = A**1R for
some nonnegative integer s and some {k}-involutory matrix R. Note that the
cases, k =2 and s > 1, and k > 2 and s = 0, have already been analyzed in
[7, 14], respectively. Spectral properties of matrices related to the {R, s+ 1,k}-
potent matrices are presented in [4, 9]. Other similar classes of matrices and
their spectral properties have been studied in [5, 9, 10, 11].

In this paper characterizations of {R, s + 1, k}-potent matrices are given,
with the cases s > 1 and s = 0 treated separately. In the first case, the concept
of {t+1}-group involutory matrix will be used. These matrices were introduced
in [2] for ¢t = 2, and the definition can be extended for any integer ¢ > 2 as
follows: A matrix A € C"*" is called a {t + 1}-group involutory matriz if
A# = A*~! where A% denotes the group inverse of A. We recall that the group
inverse of a square matrix A is the only matrix A% (when it exists) satisfying:
AA#A = A, A#AA* = A# | AA# = A# A. Moreover, A% exists if and only if
rank(A?) = rank(A) [1].

2 Main results

Clearly, I,, and n X n zero matrix O are always {R,s + 1, k}-potent matrices.
For any given positive integers n, s and k (with k£ > 2), and for any given n x n
{k}-involutory matrix R, there exists a nontrivial {R, s + 1, k}-potent matrix.
Consider A = wl,, where w is a primitive s root of unity. Note that when s = 0,
A = Ris an {R, 1, k}-potent matrix that is nontrivial when R is nontrivial.
The question arising in this paper follows from the observation that if A €
C™*™ is an {R, s + 1, k}-potent matrix, then AGTD" — A To see this, note
that from RA = ASTIR, it follows that R?A = R(AA*R) = A*T'RAR =
ASFLASHIRASTIR = ... = AGHDGHDR2 and similarly, RFA = AG+HD Rk,
(The equality in the observation is uninformative when s = 0; the s = 0 case
will be addressed in Subsection 2.2.) The necessity of AGHD = Ais clear, but
is this condition sufficient to guarantee that a matrix A is an {R, s+1, k}-potent
matrix for an arbitrary {k}-involution R? Not surprisingly, since R does not
appear in the equality, the condition is not sufficient as the following example



demonstrates:
211 . .
A =exp 5 Is, R = diag(i,—1), s=1, k=4.

Consequently, we seek a complementary condition that in conjunction with
AG+HD" = A implies A is an {R, s + 1, k}-potent matrix.

2.1 The case s>1

Assume that A is an {R, s + 1, k}-potent matrix. Let ny = (s + 1)* — 1. Since
AG+D" = A the polynomial t+1D" — ¢, whose roots all have multiplicity 1,
is divisible by the minimal polynomial of A. Thus, A is diagonalizable with
spectrum o(A) C {0} U {wh,w?,... ;w1 w" = 1} where w = exp (%)

Hence, the spectral theorem [1] assures that there exist disjoint projectors
Fo, P, Pa,..., Py 1, Py,

such that

N N

A=>"w'P;  and > pi=1, (1)
j=1 j=0

where P;, = O if there exists jo € {1,2,...,ns} such that w/® ¢ o(A) and
moreover that Py = O when 0 ¢ o(A).

Pre-multiplying the previous expressions given in (1) by the matrix R and
post-multiplying by R~! gives

Ns
RAR™ =Y W/ RP;R™
j=1
and .
ZRP]R71 :In (2)
j=0
It is clear that the nonzero RP; R~! are disjoint projectors for each j = 0,1,. .., n.
From (1),

Ns
AT — ij(s-i-l)Pj
j=1

because the nonzero P; are disjoint projectors.

Let S = {1,2,...,n, — 1}. Now consider ¢ : S U {0} — S U {0} as the
function defined by ¢(j) = b;, where b; is the smallest nonnegative integer such
that b; = j(s + 1) [mod n,]. Then ¢ is a bijection [7]. It follows that

ns—1
ASTL — Z w%’(j)Pj + Pns

j=1



and since A is an {R, s + 1, k}-potent matrix,

AU = RART!.
Hence,
ng—1 ng—1
> WRPR '+ RP, R =Y wIP+P,.
i=1 j=1

Since ¢ is a bijection, for each i € S, there exists a unique j € S such that
i = ¢(j). From the uniqueness of the spectral decomposition, it follows that for
every i € S, there exists a unique j € S such that

RP.R"'=RP,, R '=P;. (3)

() J

It is clear that uniqueness also implies that

RP, R"'=P,.. (4)
Finally, from (1)

Py=1,— Z P;.

j=1
Taking into account (2) and the definition of the bijection ¢,
RPR™' =Py ()

because of the uniqueness of the spectral decomposition. Observe that in the
case where there exists jo € S such that w/° ¢ o(A), it has been indicated that
Pj, = O. In this situation, P<P(j0k) = RP;,R™! = O is also true.

Conversely, assuming A®+1)" = A and that the relationships on the projec-
tors obtained in (3), (4), and (5) hold, we can consider

A=>"wP (6)
j=1

It is now easy to check that AT! = RAR™!.
The matrices P;’s satisfying relations (3), (4), and (5) where

Py, Pr,..., Py,

are the projectors appearing in the spectral decomposition of A associated to
the eigenvalues
0,wh, ... w11,

are said to satisfy condition (P). Then, the complementary condition we were
looking for is condition (P).
These results are summarized in what follows. Before that, note

rank(A) = rank(A(s+1)k) < rank(A?) < rank(A)



when AGHD" = A Then, in this case, the group inverse of A exists, and it is
easy to check that A% = AGHD*=2 that is, A is a {(s + 1)*}-group involutory
matrix.

The main result of this subsection is now stated.

Theorem 1 Let R € C"*™ be a {k}-involutory matriz, s € {1,2,3,...}, ns =
(s+1)* — 1, and, A € C"*"™. Then the following conditions are equivalent:

1. Ais {R,s+ 1, k}-potent.
2. ATV = A and there exist Py, Py, Ps, . .., P, satisfying condition (P).
8. A is diagonalizable,

o(A) C {0} U{w! W, ... ,w" =1},

27
Ns

with w = exp ( ), and there exist Py, P1, P, ..., P, satisfying condition

(P).

4. Ais an {(s+1)F}-group involutory matriz and there exist Py, Py, Py, ..., P,
satisfying condition (P).

x

From the definition of an {R, s + 1, k}-potent matrix, if A is {R,s + 1,k}-
potent, then A is similar to A5t!. Hence, the uniqueness of the spectral de-
composition of A allows us to state the correspondence between the distinct
eigenvalues of A as well as between their corresponding projectors. Specifically:

Corollary 2 Let R € C"*" be a {k}-involutory matriz, s € {1,2,3,...}, and
A € C™*"™ with spectrum

o(A) ={ i, A2, ., A}, withm>1

where the A, are the distinct eigenvalues of A. Then A is {R,s+ 1, k}-potent if
and only if A is diagonalizable and for each i € {1,2,...,m} there is a unique
je{1,2,...,m} such that \; = Aj—“ and P;R = RP; where P, P, ..., P, are
the projectors satisfying condition (P).

Note that from condition (c) in Theorem 1 we know if o(A) ¢ {0} U
{0 Wt ... ,w(s+1)k_2} then A is not {R, s+1, k}-potent. Even more, Corollary

2 gives us another simple sufficient condition for A to not be { R, s+1, k}-potent.
The following example illustrates this situation. Let

1 0 0 -1 0 0
A=10 —i 1|, and R= 0 1 0
0 0 1 0 0 -1

It is obvious that the eigenvalues of A are its diagonal elements. Then, we can
conclude that A is not {R,3,2}-potent because cubing the eigenvalue —i of A
gives the value ¢ which is not an eigenvalue.

The general situation is given in the following result.



Corollary 3 Let R € C"*" be a {k}-involutory matriz and s € {1,2,3,...}.
If the matriz A € C" ™ has an eigenvalue A such that one of the following
conditions holds:

1. X3t ¢ g(A)
2. AR £ )
then A is not {R, s + 1, k}-potent.

Up to now we have considered s € {1,2,3,...} where the diagonalizability
of A is a consequence of the fact that A is {R, s + 1, k}-potent. The case s =0
is now examined.

2.2 The case s=0

This situation corresponds to those matrices A € C**™ such that RA = AR and
RF = I,,. Such matrices are called { R, k}-generalized centrosymmetric matrices
or, for consistency, {R, 1, k}-potent matrices. These matrices are in general not
diagonalizable, as is shown by the following example:

O = =
o = O
== O

0
., R=1|0
1

(=)
S O =
Qo
=
o

When the diagonalizability is assumed, the uniqueness of the spectral de-
composition (see [1], pp. 62) gives the following result.

Theorem 4 Let A € C"*™ be a diagonalizable matriz with m distinct eigen-
values, A\, Ao, ..., Am, and spectral decomposition A = Z:il i P;. Suppose
that R € C™" is {k}-involutory for some integer k > 2. Then A is an
{R, k}-generalized centrosymmetric matriz if and only if RP; = PR for all
ie{1,2,...,m}.

Note that all of the cases K < m, k = m, and kK > m can occur as the
following examples show:

1. If A = diag(1,2,3,2,1) and R is the 5 X 5 centrosymmetric permutation
matrix then AR = RA and k=2 <3 =h.

2. If A =diag(1,2) and R = diag(1,—1) then AR = RA and k =2 = h.
3.1 A=1I, and R =exp (3§2) I then AR =RAand k=25>1=h.

Suppose R € C"*" R¥ = I, and R has n distinct eigenvalues. Then k >
n, and R is diagonalizable. Further, AR = RA exactly when R and A are
simultaneously diagonalizable. Consequently, if A is an {R, k}-potent matrix
then A is diagonalizable. Further, when & = n, the spectrum of R is the complete
set of nt" roots of unity, so R is similar to the n x n circulant permutation matrix



Rs. That is, there is a nonsingular matrix @ such that QRQ ' = Rs. Further,
AR = RA exactly when QAQ ™! is a circulant matrix (see for example Theorem
3.1.1 in [3]). Next, we investigate the cases where R does not have n distinct
eigenvalues.

First, we present a classic result, and we include its proof for the sake of
completeness.

Lemma 5 For each {k}-involutory matriz R € C"*", there exists an integer t
with 1 <t <mn and a nonsingular matriz QQ € C™"*" such that the Jordan form
of R, Jr = Q7 RQ is the diagonal matriz Jr = diag(wi L, ,waln,, .- wily,,),
where the w; are distinct k" roots of unity and ny +ng + -+ +ny = n.

Proof. Assume that k£ > 1. Let w = exp (%) Since R* = I,,, the minimum
polynomial mg(\) of R divides \¥ — 1 = H§:1 (A —w’), and consequently,
every factor of mp()\) must be a distinct linear factor. It follows that R is
diagonalizable, and hence, that Jr has the specified form where the w; are
distinct elements from {w!,w?,...,w"*} whose sum of multiplicities is n. m

Theorem 6 Suppose that R € C**" is a {k}-involutory matriz with nonsin-
gular matriz Q@ and Jordan form Jr as given in the preceding lemma. Then
AR = RA for A € C™ ™ if and only if the blocks of Y = Q 'AQ satisfy
Yij = O when i # j, and Yy € C**™ is arbitrary for 1 < 4,57 < t.  The
matrices Y contain exactly

d= Z n?

Jj=1

arbitrary parameters, so C(R) = {A € C"*" : RA = AR} is a vector space of

dimension d. Further,
t

C(R) ~ P
i=1
where C™i*™ s the full matriz algebra of n; X n; matrices over the complez field
and where the isomorphism sends A to Q7 1AQ.

Proof. AR = RA if and only if Y = Q 'AQ satisfies Y.Jg = JgY. For
1<4,j<t,

Yij (wiln;) = (wiln,) Yij-
Since w; # w; when ¢ # j, Y;; = O. When ¢ = j, Y;; is an arbitrary n; x n;
matrix. Thus, Y is a direct sum of arbitrary submatrices containing 2321 n?
arbitrary entries. m
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