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Abstract

In previous papers, the authors introduced and characterized a

class of matrices called {K, s + 1}-potent. Also, they established a

method to construct these matrices. The purpose of this paper is to

solve the associated inverse problem. Several algorithms are developed

in order to find all involutory matrices K satisfying KAs+1K = A for

a given matrix A ∈ C
n×n and a given natural number s. The cases

s = 0 and s ≥ 1 are separately studied since they produce different

situations. In addition, some examples are presented showing the

numerical performance of the methods.
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1 Introduction

LetK ∈ C
n×n be an involutory matrix, that isK2 = In, where In denotes the

identity matrix of size n×n. In [9], the authors introduced and characterized
a new kind of matrices called {K, s + 1}-potent where K is involutory. We
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recall that for an involutory matrix K ∈ C
n×n and s ∈ {0, 1, 2, . . . }, a matrix

A ∈ C
n×n is called {K, s+1}-potent if KAs+1K = A. These matrices gener-

alize all the following classes of matrices: {s + 1}-potent matrices, periodic
matrices, idempotent matrices, involutory matrices, centrosymmetric matri-
ces, mirrorsymmetric matrices, 2 × 2 circulant matrices, etc. Some related
classes of matrices are studied in [15, 16, 18, 19, 20].

We emphasize that the role of centrosymmetric matrices is very important
in different technical areas. We can mention among them antenna theory,
pattern recognition, vibration in structures, electrical networks and quan-
tum physics (see [1, 4, 6, 7, 17, 21, 23]). It is observed that the computa-
tional complexity of various algorithms is reduced taking advantage of the
structure of these matrices. Also, mirror-symmetric matrices have important
applications in studying odd/even-mode decomposition of symmetric mul-
ticonductor transmission lines [13]. Additional applications of {K, s + 1}-
potent matrices are related to the calculation of high powers of matrices,
such as those needed in Markov chains and Graph Theory. Allowing nega-
tive values for s, Wikramaratna studied in [24] a new type of matrices for
generating pseudo-random numbers. Inspired by this idea, another applica-
tion, in image processing, has been considered in [12] where algorithms for
image blurring/deblurring are designed. The advantage of this method is
to avoid the computation of inverses of matrices and it can be applied, for
instance, to protect a part of an image.

The class of {K, s+1}-potent matrices is linked to other kind of matrices
such as {s+1}-generalized projectors, {K}-Hermitian matrices, normal ma-
trices, Hamiltonian matrices, etc. [10]. Moreover, some related results are
given in [3] from an algebraic point of view. Furthermore, in [11] the authors
developed an algorithm to construct the matrices in this class. This problem
is called the direct problem.

The aim of this paper is to solve the inverse problem, that is, to find all
the involutory matrices K for which a given matrix A is {K, s + 1}-potent.
For this purpose, several algorithms will be developed. The s = 0 and
s ≥ 1 cases are separately studied since they produce different situations. In
addition, some examples are presented showing the numerical performance
of the methods.

In what follows, we will need the spectral theorem:

Theorem 1 ([2]) Let A ∈ C
n×n with k distinct eigenvalues λ1, . . . , λk. Then

the matrix A is diagonalizable if and only if there are disjoint projectors
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P1, P2, . . . , Pk, (i.e., PiPj = δijPi for i, j ∈ {1, 2, . . . , k}) such that A =
∑k

j=1 λjPj and In =
∑k

j=1 Pj.

For a positive integer k, let Ωk be the set of all kth roots of unity. If we
define ω = e2πi/k then Ωk = {ω1, ω2, . . . , ωk}. The elements of Ωk will always
be assumed to be listed in this order. Define Λk = {0}∪Ωk = {λ0, λ1, . . . , λk}
so that λ0 = 0, and λj = ωj for 1 ≤ j ≤ k.

Let Ns = {0, 1, 2, . . . , (s+1)2−2} for an integer s ≥ 1. In [9], it was proved
that the function ϕ : Ns → Ns defined by ϕ(j) ≡ j(s+1) [mod ((s+1)2−1)]
is a permutation. Moreover, we notice that ϕ is an involution. It was also
shown that the eigenvalues of a {K, s + 1}-potent matrix A are included
in the set Λ(s+1)2−1 and such a matrix A has associated certain projectors.
Specifically, we will consider matrices Pj’s satisfying the relations

KPjK = Pϕ(j) and KP(s+1)2−1K = P(s+1)2−1, (1)

for j ∈ Ns, where P0, P1, . . . , P(s+1)2−1 are the eigenprojectors given in The-
orem 1. For simplicity in the notation, we are assuming that all of these
projectors Pj’s are spectral projectors for A. However, for any specific spec-
tral decomposition of A we must consider the (unique) spectral projectors
needed for that decomposition. The designed algorithms compute these spe-
cific eigenprojectors and, in Section 5, we show some examples with their
adequate spectral projectors. Those examples also illustrate all the studied
situations throughout the paper.

Theorem 2 ([9]) Let A ∈ C
n×n and s ≥ 1 be an integer. Then the following

conditions are equivalent:

(a) A is {K, s+ 1}-potent.

(b) A is diagonalizable, σ(A) ⊆ Λ(s+1)2−1, and the Pj’s satisfy condition (1),
where σ(A) denotes the spectrum of A.

(c) A(s+1)2 = A, and the Pj’s satisfy condition (1).

2 Obtaining the involutory matrices K for

s ≥ 1

It is well known that the Kronecker product is an important tool to solve some
matrix problems, as for example the Sylvester and Lyapunov equations. The
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Kronecker sum, obtained as a sum of two Kronecker products, is applied, for
example, to solve the two-dimensional heat equation, to rewrite the Jacobi
iteration matrix, etc. [22]. The notation ⊗ used in this paper refers to the
Kronecker product; and XT denotes the transpose of the matrix X [8]. For
any matrix X = [xij] ∈ C

n×n, let v(X) = [vk] ∈ C
n2×1 be the vector formed

by stacking the columns of X into a single column vector. The expression
[v(X)]{(j−1)n+1,...,(j−1)n+n}, for j = 1, . . . , n, denotes the jth column of X.

In what follows, we will need the following property: if A ∈ C
n×n and

B ∈ C
n×n then

Ker(A) ∩Ker(B) = Ker

([

A
B

])

, (2)

which is also valid for a finite number of matrices of suitable sizes, where
Ker(.) denotes the null space of the matrix (.).

We recall that when A is a diagonalizable matrix whose distinct eigenval-
ues are λ1, λ2, . . . , λl, the principal idempotents are given by

Pt =
pt(A)

pt(λt)
where pt(η) =

l
∏

i = 1

i 6= t

(η − λi). (3)

By using the function ϕ and the projectors introduced in (1), it is possible
to construct the matrix

M =















(P T
0 ⊗ In) + (In ⊗−Pϕ(0))

(P T
1 ⊗ In) + (In ⊗−Pϕ(1))

...
(P T

(s+1)2−2 ⊗ In) + (In ⊗−Pϕ((s+1)2−2))

(P T
(s+1)2−1 ⊗ In) + (In ⊗−P(s+1)2−1)















. (4)

For a given positive integer s, the square, complex matrix A is called a
potential {K, s + 1}-potent matrix if A(s+1)2 = A, or equivalently, if A is
diagonalizable and σ(A) is contained in Λ(s+1)2−1. Note that K is completely
unspecified here. Also note that it is generally much easier and faster to test
that A(s+1)2 = A than is to determine the spectrum of A and to determine
that A is diagonalizable.

Algorithm 1

Inputs: An integer s ≥ 1, and a matrix A ∈ C
n×n for some integer

n ≥ 2.
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Output: A decision on whether A is potentially {K, s+1}-potent
or not.

Step 1 If either A(s+1)2 = A or, A is diagonalizable and σ(A) ⊆
Λ(s+1)2−1, then “A is potentially {K, s + 1}-potent.” Go to
End.

Step 2 “A is not potentially {K, s + 1}-potent, and there is no
idempotent matrix K ∈ C

n×n such that A is {K, s + 1}-
potent.”

End

The algorithm presented below solves the inverse problem stated in the
introduction.

Algorithm 2

Inputs: An integer s ≥ 1, and a matrix A ∈ C
n×n for some integer

n ≥ 2.

Outputs: All the involutory matrices K ∈ C
n×n such that A is a

{K, s+ 1}-potent matrix, if any such K exist.

Step 1 Apply Algorithm 1 to A. If A is not potentially {K, s+
1}-potent, then no such involutory matrix K exists. Go to
End.

Step 2 Compute σ(A). Suppose that A has l distinct eigen-
values. Since σ(A) ⊆ Λ(s+1)2−1, there are l indices jt with
0 ≤ j1 < j2 < · · · < jl ≤ (s + 1)2 − 1 such that σ(A) =
{λj1 , λj2 , . . . , λjl}.

Step 3 Compute the principal idempotents associated with the
eigenvalues of A using (3).

Step 4 Compute ϕ(j1), ϕ(j2), . . . , ϕ(jl).

Step 5 Compute the submatrixMA ofM given by (4) containing
only those rows corresponding to eigenvalues of A.

Step 6 Find the general solution v to MAv = 0. The n2 × 1
vector v will depend on d = dim(ker(MA)) arbitrary param-
eters.
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Step 7 If v = 0, or equivalently, if d = 0, then go to Step 11.

Step 8 Treating v as v = v(K) for an n× n complex matrix K
containing d parameters, recover K from v.

Step 9 Determine the allowed values for the d arbitrary param-
eters so that K2 = In. If there are no allowed parameter
values, then go to Step 11.

Step 10 The output is the set of all of the matrices K whose
parameter values are allowed.

Step 11 ”There is no involutory matrix K ∈ C
n×n such that A

is {K, s+ 1}-potent.”
End

We will now justify Algorithm 2. Step 2 computes and orders the eigen-
values following the specified notation in the set Λ(s+1)2−1. Steps 3 and 4 are
justified by Theorem 1.

Next, we focus our attention on solving the nonlinear equations KPjK =
Pϕ(j) in the unknown K that appears in (1), that is, to find the common
solutions to

KPj = Pϕ(j)K, for j ∈ Ns and KP(s+1)2−1 = P(s+1)2−1K.

For this purpose, we use the Kronecker product and we take into account
that

v(KPj) = v(Pϕ(j)K) ⇐⇒ (P T
j ⊗ In)v(K) = (In ⊗ Pϕ(j))v(K),

for j ∈ Ns, and analogously,

v(KPj) = v(PjK) ⇐⇒ (P T
j ⊗ In)v(K) = (In ⊗ Pj)v(K),

for j = (s + 1)2 − 1. By property (2), it is clear that we have to find (non
trivial) solutions v(K) of the null space of the matrix

M =















(P T
0 ⊗ In) + (In ⊗−Pϕ(0))

(P T
1 ⊗ In) + (In ⊗−Pϕ(1))

...
(P T

(s+1)2−2 ⊗ In) + (In ⊗−Pϕ((s+1)2−2))

(P T
(s+1)2−1 ⊗ In) + (In ⊗−P(s+1)2−1)















.
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This last matrix is the expression given in (4). However, observe that only the
submatrix MA is needed to finalize our justification. This reasoning justifies
Steps 5, 6, 7 and 8. In Steps 9 and 10 the condition of K being involutory is
checked.

3 Alternative methods for obtaining K for

s ≥ 1

The Algorithm 2 has been designed from the relationship established between
the projectors Pj’s and the matrix K. Now the following algorithm provides
a simplified procedure in order to find all the involutory matrices K solving
the inverse problem.

Algorithm 3

Inputs: An integer s ≥ 1, and a matrix A ∈ C
n×n for some integer

n ≥ 2.

Outputs: All the involutory matrices K ∈ C
n×n such that A is a

{K, s+ 1}-potent matrix, if any such K exist.

Step 1 Apply Algorithm 1 to A. If A is not potentially {K, s+
1}-potent, then go to Step 7.

Step 2 Construct a diagonal matrix D and an invertible matrix
P such that A = PDP−1.

Step 3 Find the general n× n solution matrix J for the system
JD −Ds+1J = 0n×n. The set S of all such matrices J is a
subspace of Cn×n.

Step 4 If J = 0n×n, or equivalently S = {0n×n}, then Go to
Step 7.

Step 5 Let Sinvol denote the set of all J ∈ S such that J2 = In.
If Sinvol = ∅, then go to Step 7.

Step 6 The set of involutory matrices K such that A is {K, s+
1}-potent is obtained as {PJP−1 : J ∈ Sinvol}. Go to End.

Step 7 “There is no involutory matrix K ∈ C
n×n such that A is

{K, s+ 1}-potent.”
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End

Now we give a justification for Algorithm 3. Again, the purpose of the
inverse problem is to find all the involutory matrices K such that KAs+1K =
A. When such a K exists, Theorem 2 shows that A must be diagonalizable
with spectrum contained in Λ(s+1)2−1. Therefore, it must exist a nonsingular
matrix P ∈ C

n×n and a diagonal matrix D ∈ C
n×n such that A = PDP−1.

Moreover, we have:

(P−1KP )(P−1AP )(P−1KP ) = P−1KAKP = P−1As+1P = (P−1AP )s+1,

that is, D = P−1AP is {P−1KP, s+1}-potent provided that (P−1KP )2 = In.
Thus, the inverse problem can be reformulated as follows: we have to find all
the involutory matrices J ∈ C

n×n such that D is {J, s+ 1}-potent and then
calculate K = PJP−1. Hence, by definition, we need to solve the matrix
equation

Ds+1J = JD (5)

in the unknown J . This reasoning justifies the Step 3. We observe that the
linear system (5) is easy to be solved. Among all the matrices J ’s calculated
in Step 3, we have to discard those that are not involutory.

In Algorithms 2 and 3 we use spectral theory corresponding to the matrix
A. A variant of the method gives the next algorithm where the diagonaliza-
tion of the matrix A is not used.

Algorithm 4

Inputs: An integer s ≥ 1, and a matrix A ∈ C
n×n for some integer

n ≥ 2.

Outputs: All the involutory matrices K ∈ C
n×n such that A is a

{K, s+ 1}-potent matrix, if any such K exist.

Step 1 Construct the matrix Q = AT ⊗ In − In ⊗ As+1.

Step 2 Find the general solution v to Qv = 0. The n2×1 vector
v will depend on d = dim(ker(Q)) arbitrary parameters.

Step 3 If v = 0, or equivalently, if d = 0, then go to Step 7.

Step 4 Treating v as v = v(K) for an n× n complex matrix K
containing d parameters, recover K from v.
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Step 5 Determine the allowed values for the d arbitrary param-
eters so that K2 = In. If there are no allowed parameter
values, then go to Step 7.

Step 6 The output is the set of all of the matrices K whose
parameter values are allowed. Go to End.

Step 7 “There is no involutory matrix K ∈ C
n×n such that A is

{K, s+ 1}-potent.”
End

4 {K}-generalized centrosymmetric matrices

(s = 0)

We recall that a {K, 1}-potent matrix (s = 0) is also called a {K}-generalized
centrosymmetric matrix [10].

Let A ∈ C
n×n be a diagonalizable matrix with spectral decomposition

given by A =
∑k

i=1 λiPi as in Theorem 1. Theorem 15 in [10] assures that
if K ∈ C

n×n is an involutory matrix such that A is {K}-generalized cen-
trosymmetric then KPi = PiK, for all i ∈ {1, 2, . . . , k}. This fact allows us
to give the following Algorithm 5. Now, the matrix M defined in (4) has the
form

M =











P T
1 ⊗ In + In ⊗−P1

P T
2 ⊗ In + In ⊗−P2

...
P T
k ⊗ In + In ⊗−Pk











. (6)

Remark 1 Despite the fact that in this section we denote again by λi’s the
eigenvalues of A, it is important to observe that they do not have the property
of belonging to Λ(s+1)2−1 as it happens for s ≥ 1.

Algorithm 5

Input: A diagonalizable matrix A ∈ C
n×n for some n ≥ 2.

Outputs: All the involutory matrices K ∈ C
n×n such that A is a

{K}-generalized centrosymmetric matrix, if any such K exist.
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Step 1 Compute σ(A) and the spectral projectors associated
with the eigenvalues of A using (3).

Step 2 Compute M as in (6).

Step 3 Find the general solution v to Mv = 0. The n2×1 vector
v will depend on d = dim(ker(M)) arbitrary parameters.

Step 4 If v = 0, or equivalently, if d = 0, then go to Step 8.

Step 5 Treating v as v = v(K) for an n× n complex matrix K
containing d parameters, recover K from v.

Step 6 Determine the allowed values for the d arbitrary param-
eters so that K2 = In. If there are no allowed parameter
values, then go to Step 8.

Step 7 The output is the set of all of the matrices K whose
parameter values are allowed.

Step 8 “There is no involutory matrix K ∈ C
n×n such that A is

End

Algorithm 3 can be reformulated for the s = 0 case as follows.

Algorithm 6

Input: A diagonalizable matrix A ∈ C
n×n for some integer n ≥ 2.

Outputs: All the involutory matrices K ∈ C
n×n such that A is a

{K}-generalized centrosymmetric matrix, if any such K exist.

Step 1 Construct a diagonal matrix D and an invertible matrix
P such that A = PDP−1.

Step 2 Find the general n× n solution matrix J for the system
JD − DJ = 0n×n. The set S of all such matrices J is a
subspace of Cn×n.

Step 3 Set J be the matrices in Step 2 that satisfy J 2 = In.

Step 4 If J = 0n×n, or equivalently S = {0n×n}, then Go to
Step 7.
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Step 5 Let Sinvol denote the set of all J ∈ S such that J2 = In.
If Sinvol = ∅, then go to Step 7.

Step 6 The set of involutory matrices K such that A is {K}-
generalized centrosymmetric is obtained as {PJP−1 : J ∈ Sinvol}.
Go to End.

Step 7 ‘There is no involutory matrix K ∈ C
n×n such that A is

{K}-generalized centrosymmetric’.

End

Notice that the linear system in Step 2 is easy to be solved when all the eigen-
values of the matrix D are distinct. In this case, Step 3 forces the diagonal
entries of J ’s to be in {−1, 1}. Otherwise, when D has some repeated eigen-
value in consecutive places, the matrices J ’s will be block diagonal where all
the diagonal blocks are involutory.

Remark 2 We notice that Algorithm 4, designed for {K, s+ 1}-potent ma-
trices, also works for {K}-generalized centrosymmetric matrices.

In general, {K}-generalized centrosymmetric matrices are not diagonal-
izable as the following matrices show:

A =





−4 −2 −4
4 2 4
2 1 2



 , K =
1

9





7 −4 4
−4 1 8
4 8 1



 .

This fact leads us to consider the Jordan canonical form of the matrix
A ∈ C

n×n in order to develop a new algorithm to solve the inverse problem.
First, we write

A = QJAQ
−1 = Q diag(Jq1(λ1), · · · , Jqt(λt))Q

−1 (7)

where Q ∈ C
n×n is nonsingular and Jqi(λi) is a qi × qi Jordan block corre-

sponding to the eigenvalue λi with 1’s in the superdiagonal. Now, to find an
involutory matrix K ∈ C

n×n such that AK = KA is equivalent to find an
involutory matrix W ∈ C

n×n such that JAW = WJA, where K = QWQ−1.
By Theorem 5.16 in [5] (see also [14]) we can obtain that the general solution
W of JAW = WJA, partitioned into blocks as W = [Wij] where Wij ∈ C

qi×qj

for every i, j, has the following structure:
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(a) if λi 6= λj then Wij = O

(b) if λi = λj then

Wij =















Tij if qi = qj
[

Olij Tij

]

if qi < qj
[

Tij

Olij

]

if qi > qj

where Tij ∈ C
αij×αij is an arbitrary upper triangular Toeplitz matrix

with αij = min{qi, qj} and lij = |qi − qj|.

Algorithm 7

Inputs: A matrix A ∈ C
n×n for some n ≥ 2.

Outputs: All the involutory matrices K ∈ C
n×n such that A is a

{K}-generalized centrosymmetric matrix, if any such K exist.

Step 1 Construct JA and Q such that A = QJAQ
−1 as in (7).

Step 2 Construct Wij according to the previous items (a) and
(b).

Step 3 Let Sinvol denote the set of all W ∈ S such thatW 2 = In.
If Sinvol = ∅, then go to Step 5.

Step 4 The set of involutory matrices K such that A is {K}-
generalized centrosymmetric is obtained as {QWQ−1 : W ∈ Sinvol}.
Go to End.

Step 5 ‘There is no matrix K ∈ C
n×n such that A is {K}-

generalized centrosymmetric’.

End

We now explore the expression for the involutory matrix W that has
appeared in the analysis previous to Algorithm 7. It is well known that an
upper triangular Toeplitz matrix T ∈ C

n×n has the form

T (a0, a1, . . . , an−1) = a0In + a1Jn(0) + a2[Jn(0)]
2 + · · ·+ an−1[Jn(0)]

n−1,

where Jn(0) is an n × n Jordan block corresponding to the eigenvalue 0. A
simple computation indicates that such a matrix T is involutory if and only
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if T = ±In. This fact allows us to simplify the matrix W as ±Iq1 ⊕· · ·⊕±Iqt
when all its eigenvalues are distinct. A similar situation occurs when only
one of the eigenvalues of A, namely λi, has exactly one corresponding Jordan
block. In this case, the corresponding block to λi in the diagonal of W is
±Iqi . On the other hand, when JA = diag(Jq1(λ), Jq2(λ)), we can assure that:

• if q1 6= q2, the diagonal entries of the Toeplitz block T11 of W are equal
to 1 or −1; analogously, T22 has 1’s or −1’s in its diagonal.

• If q1 = q2 and ti denotes the diagonal entries of the (diagonal) blocks
Tii of W , for i = 1, 2, then t1 = ±t2.

5 Numerical examples and applications

Our algorithms can easily be implemented on a computer. We have used the
MATLAB R2014b package. In this section we present some numerical ex-
amples in order to show the performance of our algorithms and demonstrate
their applicability. The computational cost of Algorithms 1-5 is O(n3) while
the computational cost of Algorithm 6 is basically given by Step 1.

5.1 Case s ≥ 1

Example 1 For s = 4 and

A =





i 0 0
0 5 −2
0 15 −6



 ,

Algorithm 1 provides the solutions

K = I3, K = diag(1,−1,−1), K = diag(−1, 1, 1),

K = −I3, K =





1 0 0
0 −11 4
0 −30 11



 , K =





1 0 0
0 11 −4
0 30 −11



 ,

K =





−1 0 0
0 −11 4
0 −30 11



 , K =





−1 0 0
0 11 −4
0 30 −11



 ,
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with the projectors

P0 =





0 0 0
0 6 −2
0 15 −5



 , P6 =





1 0 0
0 0 0
0 0 0



 , P12 =





0 0 0
0 −5 2
0 −15 6



 .

Example 2 The same matrix A as in Example 1 is used. The form of the
matrices K’s obtained from the Algorithm 2 is

K =





z9 0 0
0 −5z1 + 6z5 2z1 − 2z5
0 −15z1 + 15z5 6z1 − 5z5



 ,

where z1, z5, z9 ∈ {−1, 1}.

Example 3 For s = 1 and the matrix

A =

[

−1 1
−1 0

]

,

the form of the matrices K’s obtained from the Algorithm 3 is

K =





−k22
k22+

√
4−3k2

22

2
−k22+

√
4−3k2

22

2
k22



 or K =





−k22
k22−

√
4−3k2

22

2
−k22−

√
4−3k2

22

2
k22





for any arbitrary k22 ∈ C. In this case, the eigenvalues of A are 1
2
± i

√
3
2

and
its corresponding eigenprojectors are

P1 =

[

1
2
+ i

√
3
6

−i
√
3
3

i
√
3
3

1
2
− i

√
3
6

]

, P2 =

[

1
2
− i

√
3
6

i
√
3
3

−i
√
3
3

1
2
+ i

√
3
6

]

.

5.2 Case s = 0

Example 4 For the matrix

A =





1 2 −5
0 −3 10
0 −2 6
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the form of the matrices K’s obtained from the Algorithm 4 is K = ±I3,

K =





1 −1
2
k13 + 1 k13

0 −1 0
0 0 −1



 , K =





−1 −1
2
k13 − 1 k13

0 1 0
0 0 1





K =





−1 −1
2
k13 k13

0 9 −20
0 4 −9



 , K = ±





1 −4 10
0 9 −20
0 4 −9





K =





1 −1
2
k13 k13

0 −9 20
0 −4 9





K =





−5k32/2− k33
k32(2+5k32+2k33)
2(1−2k32−k33)

(k33−1)(2+5k32+2k33)
2(1−2k32−k33)

−5/2 + 5k32 + 5k33/2 1 + 5k32/2 5(k33 − 1)/2
−1 + 2k32 + k33 k32 k33





K =





−5k32/2− k33
k32(2−5k32−2k33)
2(1+2k32+k33)

(k33+1)(2−5k32−2k33)
2(1+2k32+k33)

5/2 + 5k32 + 5k33/2 −1 + 5k32/2 5(k33 + 1)/2
1 + 2k32 + k33 k32 k33





for any arbitrary k13, k32, k33 ∈ C.

Example 5 For the matrix

A =





7 10 −15
−6 −10 18
−2 −4 8





the form of the matrices K’s obtained from the Algorithm 5 is K = ±I3,

K =





−11 −20 30
12 23 −36
4 8 −13



 , K =





11 20 −30
−12 −23 36
−4 −8 13





K =





−11 −18 + 3k23 24− 9k23
12 19− 3k23 −24 + 9k23
4 6− k23 −7 + 3k23



 , K =





1 −2 + 3k23 6− 9k23
0 5− 3k23 −12 + 9k23
0 2− k23 −5 + 3k23
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K =





−1 2 + 3k23 −6− 9k23
0 −5− 3k23 12 + 9k23
0 −2− k23 5 + 3k23



 , K =





11 18 + 3k23 −24− 9k23
−12 −19− 3k23 24 + 9k23
−4 −6− k23 7 + 3k23
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K =





−5− 6k33 + 2k32 −10− 8k33 + 3k32 + 3(1− k2
33)/k32 15 + 9k33 − 4k32 − 9(1− k2

33)/k32
6 + 6k33 − 4k32 12 + 7k33 − 6k32 − 3(1− k2

33)/k32 −18− 6k33 + 8k32 + 9(1− k2
33)/k32

2 + 2k33 − 2k32 4 + 2k33 − 3k32 − (1− k2
33)/k32 −6− k33 + 4k32 + 3(1− k2

33)/k32





K =





5− 6k33 + 2k32 10− 8k33 + 3k32 + 3(1− k2
33)/k32 −15 + 9k33 − 4k32 − 9(1− k2

33)/k32
−6 + 6k33 − 4k32 −12 + 7k33 − 6k32 − 3(1− k2

33)/k32 18− 6k33 + 8k32 + 9(1− k2
33)/k32

−2 + 2k33 − 2k32 −4 + 2k33 − 3k32 − (1− k2
33)/k32 6− k33 + 4k32 + 3(1− k2

33)/k32





for any arbitrary k23, k32, k33 ∈ C.
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a0 a1 a2 a3 a4 a5 a6 a7

1 0 0 0 0 0 1 0
−1 0 0 0 0 0 −1 0
1 0 0 a3 0 a5 −1 0

−1 0 a2 a3 0 a5 1 0
−1 −a7 a2 a3 0 −2a7

a2
1 a7

1 −a7 a2 a3 0 2a7
a2

−1 a7

−a6 −a7 −a2
6
−1

a4

a5a26−a5−2a4a6a7
a2
4

a4 a5 a6 a7

Table 1: Parameters to obtain all the matrices W ’s.

Example 6 For the matrix

JA =









2 1 0 0
0 2 0 0
0 0 2 1
0 0 0 2









,

the form of the matrices W ’s obtained from the Algorithm 6 is

W =

[

T (a0, a1) T (a2, a3)
T (a4, a5) T (a6, a7)

]

where the parameters are listed in Table 1.
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