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PhD Thesis

Species distribution modelling in

fisheries science

Iosu Paradinas Aranjuelo

Supervisors:

David V. Conesa Guillén

Antonio López Qúılez
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Principio de Bayes social:

El principio ético liberal, es decir, el esfuerzo individual como principio de

igualdad, no se sostiene desde el momento en el que las distribuciones a priori

para cada individuo depende de su contexto social. Hace años que sabemos de

su influencia sobre las distribuciones a posteriori. Le llaman sensibilidad.

Previas iguales para tod@s...

... y dejemos las distribuciones a posteriori en manos de cada un@.
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Extended summary

Latest fisheries directives propose adopting an ecosystem approach to manage

fisheries (FAO, 2003). Such an approach aims to protect important ecosystems

based on the principle that healthy ecosystems produce more and thus en-

hance sustainability. Unfortunately, quantifying the importance of an ecosys-

tem is a difficult task to do due the immense number of interactions involved

in marine systems.

This PhD dissertation relies on the fact that good fisheries distribution

maps could play a very important role as they allow a visual and intuitive

assessment of different marine areas. Unfortunately, the limited amount of

data available and the inherent difficulties of modelling fishery data has re-

sulted in relatively low quality maps in the near past (see (Heesen et al., 2015)

and http://www.ices.dk/marine-data/maps/Pages/ICES-FishMap.aspx).

As a result, the spatial fisheries management framework requires competent

statistical approaches to quantify the importance of different marine areas

with an appropriate measure of uncertainty associated to the estimates.

The aim of this PhD is to provide competent spatial and spatio-temporal

modelling approaches that allow us characterise different fishery processes

that are relevant for their sustainable management. More specifically, the

objectives of this PhD are:

� To propose a spatial modelling framework that properly assess the

fishing-suitability of a fishing ground in terms of fishery discards.
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� To propose effective modelling frameworks to map the spatial or spatio-

temporal distribution of economically important fisheries. In this regard,

different modelling approaches are required to tackle different types of

fishery data:

– On-board or fishery dependent data is sampled preferentially, thus

corrections are needed when modelling target species. An objective

of this PhD has been, therefore, to test the use of Log-Gaussian Cox

Process models to correct the model components of preferentially

sampled fish abundance datasets.

– Survey or fishery independent data provide information to assess

changes in the macro-scale of fisheries distribution over the years.

Another objective of this PhD has been to propose useful mod-

elling structures to infer the spatio-temporal dynamism of different

fishery processes, e.g. spawning and nursery grounds.

� To propose an effective framework to fit appropriate model components

in two-part or Hurdle models.

� To assess the performance of point-referenced regression models in fish-

ery transect data, including Euclidean distance-based geostatistical mod-

els.

Our baseline statistical approach has been model based geostatistics. In

particular we have developed structures upon it to adequate for different fish-

ery processes and fishery data. Bayesian methods allow direct and intuitive

quantification of the uncertainty through explicit probabilistic inference. Fur-

thermore the Bayesian hierarchical model formulation allows defining complex

statistical models, such as geostatistical models, in a rather easy and intuitive

way. However, the computational cost of Bayesian methods can be a problem,

specially in big and complex datasets. To tackle the computational burden of

the proposed models, we have used the Integrated Nested Laplace Approxima-

tion (INLA) (Rue et al., 2009) method an the Stochastic Partial Differential

Equations (Lindgren et al., 2011) (SPDE) approach.
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In Chapter (1) we present the main problem in current fisheries man-

agement that motivated this PhD, the quantitative spatial assessment of our

fisheries. Then we briefly present the main types of spatial data followed by

a brief summary of the main species distribution modelling approaches, from

linear regression to geostatistical models. Next, we introduce the benefits

of Bayesian hierarchical models in spatial statistics and the different types

of Bayesian computing approaches. In this chapter, we specially describe

the INLA (Rue et al., 2009) method and the SPDE (Lindgren et al., 2011)

approach to deal with complex geostatistical structures at assumable com-

putational costs. Finally, we end up summarising the main model selection

scores used along this PhD dissertation.

The second Chapter (2) is dedicated to fishery discards, which spatial dis-

tribution has most of the times been assessed using biomass based units, e.g.

discards per unit effort (DPUE) (Feekings et al., 2012, 2013; Viana et al.,

2013a; Cosandey-Godin et al., 2014; Pennino et al., 2014). The fishing suit-

ability of a given area, however, should contrast the actual biomass benefit

against biomass loss of a fishing operation. To do so, we propose using spatial

beta regression to model discard proportions (discarded biomass divided by

the total catch of a fishing operation). Along the chapter, we review the differ-

ent approaches used in the past to model proportions and end up proposing a

Bayesian hierarchical spatio-temporal beta regression model to identify fishing

suitable areas.

The third Chapter (3) approaches the modelling of target species using

fishery dependent data. The main property of fishery dependent data is that

fishermen choose fishing locations based on their knowledge (best locations

to catch more target species biomass) and therefore our sample is subject to

the preferential sampling problem (Diggle et al., 2010). As a consequence, the

sampling process and the process being modelled are not stochastically inde-

pendent, which violates a basic statistical modelling assumption. To correct

for this bias, we make use of joint-modelling techniques between the marks

(caught abundances) and the point pattern of the fishery (selected fishing lo-

cations). This way we are able to combine information derived from the spa-
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tial distribution of the samples (point pattern), as a proxy to the fishermen’s

knowledge about the underlying fish abundance distribution, and information

coming from the fished abundances (marks). As a consequence, we manage to

better inform our models, overcoming the preferential sampling problem, thus

obtaining a better approximation of the underlying spatial field.

Chapter (4) deals with fishery survey data, which is the most widely used

data for fisheries management. Fishery survey data, or fishery independent

data, usually cover very wide areas and provide a macroscopic view of the

fishery over the years. As most species distribution datasets, fishery data

is also prone to zero observations at unfavourable conditions, resulting in

spatio-temporal semi-continuous datasets. This chapter is devoted, on the

one hand to improve the usual two-part modelling framework to deal with

the semi-continuous nature of the data and on the other hand to infer the

spatio-temporal behaviour of the fishery process under study. To do so, we

compare different spatio-temporal structures and end up using joint-modelling

techniques to fit better informed environmental effects in Hurdle models.

In Chapter (5) we investigate on the implications of point-referencing fish-

ery data, which in reality represent a transect between the starting and ending

points of the fishing operation (except purse seiners that fish almost static).

This could be specially problematic when applying geostatistics, based in Eu-

clidean distances, in small-scale study areas. In this chapter, we also propose

an algorithm, that recognize the transect nature of the data, to approximate

the underlying spatial field when enough data and enough cross-overs between

fishing operations are present.

Finally, Chapter (6) presents some concluding remarks and future lines of

research.

Consequently the main contributions of this study to the knowledge in

fisheries distribution modelling are:

� The spatial analysis of discard proportions instead of total discard biomass

units is a good alternative to assess the fishing-suitability of an area in

terms of discards.
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� The use of LGCP models to correct the analysis of preferentially sam-

pled data improves significantly the predictive capacity of the abundance

models. This allows us use on-board fishery data to model the spatial

distribution of targeted fisheries. The use of within-sample and similar

model selection scores, e.g. WAIC, DIC, LCPO, etc., can be misleading

as they fail to assess the out-of-sample predictive capacity.

� The spatio-temporal distributional behaviour of fisheries can be effec-

tively inferred by comparing a set of spatio-temporal structures.

� Joint modelling techniques can improve fitted effects in two-part or Hur-

dle models. Visual validation of the models is important in the model

selection process.

� The point-referenced representation of fishery transects allows fairly

good regression estimates fitting both; process-covariate relationships;

and geostatistical fields even in small-scale study areas with respect to

the size of the fishery transect.

� The remarkable flexibility of R-INLA in extending common hierarchical

models allows fitting complex structures that better resemble natural

sciences.

� The spatio-temporal representation of different fish species can effec-

tively improve our understanding of fish ecology. Therefore, extending

the hake and cod case studies of this thesis to other species could be

very valuable to EAFM policy makers.
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Chapter 1

Spatial statistics for

fisheries management

From ancient times, fishing has been a major source of food for humanity

and a provider of employment and economic benefits to those engaged in this

activity. However, with increased knowledge and the dynamic development

of fisheries, it was realized that living aquatic resources, although renewable,

are not infinite and need to be properly managed, if their contribution to the

nutritional, economic and social well-being of the growing world’s population

was to be sustained (FAO, 1999).

Nowadays, many of the world’s fish populations are overexploited and the

ecosystems that sustain them are degraded (FAO, 2002). The unintended

consequences of fishing, including habitat destruction, incidental mortality

of non-target species, evolutionary shifts in population demographics, and

changes in the function and structure of ecosystems are increasingly recog-

nized. Fishery management as it is today has proven to be ineffective in many

places (Walters and Maguire, 1996; Pauly et al., 2002). It generally focuses on

maximizing the catch of single target species and ignores habitat, predators

and prey of target species, as well as other ecosystem components. Today, we

1
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know that the social and economic costs of focusing on single species can be

substantial (Pikitch et al., 2004).

In this regard, a variety of advisory panels have recommended the Ecosys-

tem Approach to Fishery Management (EAFM) framework. The founding

principles and conceptual goals for EAFM emerge from a decades-long pro-

cess of elaboration of the foundations for sustainable development, aiming at

both human and ecosystem well-being (Garcia, 2003). In summary, EAFM

targets the conservation of full ecosystems rather than single species stocks

based on the principle that healthy ecosystems produce more.

A key instrument for the effective conservation of ecosystems is the im-

plementation of marine protected areas (MPA) (Hilborn et al., 2004; Claudet

et al., 2008). We know that MPAs boost fish productivity in its surround-

ing areas and that different fishing communities have increased their harvest

around the world this way (Mangi et al., 2011; Williams et al., 2009; Claudet

et al., 2008). Unfortunately, the creation of marine protected areas is still

a very controversial issue among most fishermen and politicians due to its

high initial economic cost and the rather unpredictable time required to ex-

perience its benefits. It is then understandable the amount of pressure held

on the scientific community to quantitatively characterize appropriate, highly

productive areas as proposed by FAO (2003).

Assessing the potential productivity of a marine area would be easy if we

were able to directly and continuously observe what is happening. Unfor-

tunately, this is infeasible in marine systems, thus we have to rely on data

collected through different sea sampling schemes: commercial landings, on-

board observers, fishery surveys, ... It is most often the case that the rather

scarce amount of data available does not provide enough information to as-

sess the importance of a given area by plain descriptive analysis. Therefore,

statistical methods are essential to create an effective marine spatial planning

under the EAFM framework.

In this regard, statistical models can allow us to understand the relation-

ships of the process under study with the environment and to quantify the

uncertainty related to our estimates. More precisely, marine spatial planning,
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as its name suggests, needs to quantify such relationships in a spatial frame-

work, which may require of spatial models to characterise the importance of

different marine areas. In this chapter, we discuss the different sorts of spatial

models. Lets start by describing the types of spatial data that are available

in the fishery world.

1.1 Spatial fishery data

In fisheries we have two broad types of data: fishery dependent data and

fishery independent data. The difference between the two types of data falls

on the sampling actor: whether we sample the fish caught by the commercial

fleet or we sample what the fish caught during scientific surveys. Each of the

sampling schemes has its pros and cons.

1.1.1 Fishery dependent data

Fishery dependent data refers to the data that is collected sampling the com-

mercial fleet. Typically, this data is collected by an on-board observer that

performs a stratified random sampling (European Comission, 2009) to collect

biological data, species composition, discards, etc.

According to European Comission (2009), the number of samples collected

each month in each fishery (fishing gear that targets an specific fish stock) is

proportional to the total fishing effort (number of fishing days) of that fishery

in that particular area. Therefore, in theory the sampling scheme should

translate into a good representation of each fishery both in time and space.

However, due to logistic and economic reasons the spatial distribution of the

data is generally too scarce and patchy to provide a good macro-scale spatial

representation of fish distribution.

On the meso-scale however, the spatial resolution of the samples is much

better. In this scale we can formulate different hypotheses of the fishery using

these data. Nevertheless, for modelling purposes, we should bear in mind

that fishing locations are not randomly distributed in space, but located in
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those places where fishers expect a better catch. This is often referred as a

preferential sampling problem (Diggle et al., 2010). Therefore, depending on

the specific process that we are willing to analyse, we need to adjust for the

preferential sampling problem or not. For instance, modelling the distribution

of cod in a cod fishery is subject to the preferential sampling problem but

modelling the quantity of discards (part of the fishing that is thrown back to

sea due to its low economic value) of different fisheries is not, because discards

are not targeted. We elaborate more about this along next chapter 2.

1.1.2 Fishery independent data

Fishery independent data refers to the data that is collected through scientific

surveys. Scientific surveys are not influenced by harvesting activities and

provide critical information on the status of fish stocks (Morgan and Burgess,

2005). The spatial sampling design is random and the quality of the data is

very high, i.e. number of fish per size, per sex and species measured.

In Europe, there are a good number of Fishery scientific surveys (STECF,

2007) that cover most of the European fishing grounds and stocks. Data

collected through scientific surveys are used for stock assessment purposes, yet

due to the immense economic cost of these surveys, the temporal resolution

is typically very low. For instance, most surveys are repeated only once per

year (e.g. Mediterranean Trawl Survey), maximum twice (e.g. International

Bottom Trawl Survey). Therefore, we must be aware of its temporal resolution

when analysing these data and be very careful with its conclusions.

So, in summary, the properties of fishery independent data are remarkable

for analysis, including spatial analysis in a macro-scale. However, they only

provide a temporal snapshot of the spatial distribution of fish over the year.

In chapter 3 we further elaborate on the modelling opportunities that fishery

survey data provide.



1.1 Spatial fishery data 5

1.1.3 Trawl data characteristics

Trawling is the most destructive and most used, fishing gear (Jones, 1992).

Therefore, a lot of on-board observer effort is put on commercial trawlers.

Many scientific surveys also use trawling gear to sample the ocean because it

provides a very representative sample of what there is in the bottom of the

sea.

Figure 1.1. An ilustration of a trawl fishing operation

A fishing trawl operation (Figure 1.1) constitutes a three-dimensional tran-

sect defined by: the length of the haul, the width of the gear and its height.

The essential difference with conventional transects in other disciplines is that,

in the fishery world, it is not known what has been observed where, in other

words, it is only known the total catch of the transect. As a consequence, it is

customary to represent the trawl operation as a point in space, generally the

centroid of the fishing operation.

Another important issue when dealing with fishery data is the fact that

not all fishing operations are the same (different duration, size of the fishing

gear, etc.), thus we have to deal with different so-called efforts. In order to

adjust for different efforts in fisheries, we usually work with catch per unit

effort (CPUE) units. As we have already mentioned, effort can be measured

in several ways (volumes, areas, time, etc.), the most usual one being time.

Most trawlers target species associated to the sea floor (so-called demersal

species), so per-volume effort should not provide more information than per-
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area effort. However, the reasons why per-time effort is the most popular are

that; 1) most of the times we do not know the width of the gear, e.g. when

sampling commercial vessels, and 2) scientific surveys usually use the same

gear in all trawling operations, thus time and area are proportional.

1.2 Types of spatial data

So far, we have summarised the different types of fishery data and the general

characteristics of a trawling operation. Now we give an overall overview of the

different types of spatial data so that we can then select the spatial treatment

that we want to give to our spatial fishery data.

When performing spatial statistics, our observations Y (s) are defined over

a spatial region s ∈ D and specific locations s = {s1, . . . , sn}. Depending

on the nature of the data and the spatial aggregation that we give to it,

we can differentiate three types of spatial data: areal, point-referenced and

point-pattern data.

1.2.1 Areal data

Areal data, also known as lattice data, represent an aggregation of observa-

tions over a predefined areal unit. The outcome of such aggregation Y (s) is

defined over some discrete region D with fixed number of locations s. There-

fore, D is divided into a finite collection of areal units with well defined

boundaries.

The hypothesis when modelling areal data is whether adjacent regions

share information in the sense that close areas have more in common than

distant areas. Modelling areal-data involves borrowing information from ad-

jacent regions. The most usual model structure in these sort of cases is the

conditional autoregressive model (Besag et al., 1991), best known as CAR or

BYM model after the authors initials. These models induce autoregressive

spatial autocorrelation through an adjacency structure of the areal units.

In fisheries for example, the North Sea has often been discretized on a
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lattice domain D (see Figure 1.2). Observations are then aggregated Y (s) at

each grid cell.

Figure 1.2. Winter adult herring distribution in the North Sea aggre-

gated by ICES statistical rectangles.

1.2.2 Point-referenced data

Point-referenced data, as its name suggests, is constituted by a random vari-

able Y (s) collected in a fixed set locations s over a continuous spatial field

Λ. Space is typically treated as two dimensional, defined by its longitude and

latitude, but it could also include altitude or depth to make it three dimen-

sional. In fisheries, and specially in trawl fisheries, the use two dimensions is

sensible because we only fish on the sea floor.

When modelling point-referenced, also known as geostatistical data, we

expect our data to be spatially correlated given our explanatory variables.

Our main purpose when modelling point-referenced data is to infer the spatial
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structure of our data to enhance prediction, using kriging techniques (Cressie,

1990) at unsampled locations.

Figure 1.3. Distribution of large fish in the Bering sea.

For example Ciannelli et al. (2012) modelled the distribution of large fish

in the Bering Sea (see Figure 1.3). Measurements Y (s) are taken in discrete

locations s of the continuous domain D. Obviously, the spatial dimension

could be extended to the spatio-temporal domain by adding the correlation of

fish abundance between time events (i.e. every hour, day, etc).

1.2.3 Point-pattern data

A point-pattern is a process where we observe the exact location at which

the subject of interest is, for example the distribution of vessels in the sea.

In this case, our interest is not to measure how “many” vessels there are in

a location, but to study the spatial arrangement of the vessels in space as a

proxy of fishing grounds for example.

In point-patterns, the spatial field Λ itself is random. This random spatial

field is what generates the point pattern, whose observations Y (s) are equal
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to one for all s, or maybe also provide some numerical information resulting

in a marked point-pattern. In point-patterns, the response Y is fixed (pres-

ence) and the set of locations s is randomly generated from the spatial field Λ.

The underlying question in point-pattern data is often related to the event of

clustering, where we usually want to determine whether the spatial distribu-

tion of the observed point pattern is homogeneous over space or is a clustered

process, and if clustered, what is it that drives the clustering.

Figure 1.4. Aerial view of commercial herring fishing taking place in

Sitka Sound, Alaska. Photo by Scott Dickerson.

An example of a point pattern could be the distribution fishing operations

in the ocean (see Figure 1.4). Λ represents the distribution of fish in the ocean

and s the locations where vessels have been fishing at a given moment. Some-

times, the purely spatial domain should be extended to the spatio-temporal

domain. If in the following day we observe a different distribution of vessels in

the same area st+1, has the spatial field Λt+1 changed? or is it just a different

realization of the same spatial field Λ?

1.3 Species distribution modelling

We have already seen the main problem in contemporary fisheries manage-

ment, the different types of data available in fisheries and the three different
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branches of spatial statistics to deal with different types of spatial data. Now,

we find it necessary to slightly relocate ourselves into the scope of this PhD;

Species distribution modelling in fisheries science.

Species distribution modelling (SDM) is the framework in which ecologists

allocate all the statistical procedures and/or models used to characterise the

distribution of species. The starting point for most SDM statistical models is

Y = Xβ + ε, (1.1)

where Y is the vector of the random sample corresponding to the values of

the response variable at some locations, X is a matrix with the values of the

covariates and β is a vector of parameters that quantifies the fixed effects of

our covariates X on our response variable Y . The final piece ε corresponds

to the vector of errors, each one meant to be normally distributed with mean

zero and constant variance N(0, σ2).

Based on this baseline model (1.1), we can elaborate and define more

appropriate models to describe the process under study. The progression of

the model depends on the nature of the response variable Y , its relationship

with the covariates X and the structure of the model residuals ε.

1.3.1 Different response variables

Depending on the sampling design and the nature of the process under study,

our response variable Y can be expressed in terms of different probability

distributions (different properties and distributional shapes of the data). The

most usual case is the ordinary linear model, where the data is assumed to

be normally distributed with a given mean and variance. However, many

processes such as counts or proportions do not fit such a continuous and un-

bounded distribution so we need to extend the linear model to the generalised

linear model (GLM) (Nelder and Wedderburn, 1972)

Y ∼ π(y), (1.2)

where π(y) is any given probability function that suits our data Y .
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GLMs extend the linear model to other probability distributions of the ex-

ponential family, e.g. binomial, Poisson, gamma, etc. This way, we can model

diverse types of measurements: animal counts through a Poisson distribution,

presence-absence of a given species through a Bernoulli distribution, biomass

data using the continuous and always positive gamma distribution, etc. The

bounded nature of the response variables in GLMs requires of a link function

that allows modelling the expected mean in the whole real line (−∞,∞) and

transform it to its original domain. More precisely,

g(µy) = Xβ (1.3)

being g() the link function that relates the mean µy with the linear predictor,

the most usual being the log and logit links.

1.3.2 Relationship with the covariates

In the previous subsection 1.3.1, we were modelling Y by applying linear

functions over the covariates X. However, it is most often the case that

process-covariate (environment) relationships show non-linear trends (Guisan

et al., 2002).

In this regard, Hastie and Tibshirani (1990) developed the generalised

additive models (GAM). GAMs are a semi-parametric extension of GLMs,

where we assume that the structure of the linear predictor is additive and

that some components are smooth. In GAMs, these smooth components are

typically modelled through different types of smoothing-splines (Eilers and

Marx, 1996), that allow fitting non-linear effects to the covariates

Y = β0 +

L∑
l=1

fl(xl) + ε (1.4)

where β0 is the intercept of the model and fl() are non-linear functions applied

to the covariates.
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1.3.3 Structure of model residuals

So far in SDM, we have described how to plug in different likelihood functions

to deal with processes of different nature through GLMs. We have also seen

the extension from GLMs to GAMs in order to allow fitting non-linear effects

to our covariates. With these, we can already apply a notable number of

models that typically do inference on the mean of the response variable µy.

Every statistical model has model residuals ε, i.e. the deviation of the

observed values Y from the fitted mean of the model

Y = β0 +

L∑
l=1

fl(xl) + ε, (1.5)

where model residuals ε should be independent given the model.

However, it is often the case that model residuals display non-independent

patterns or structures that our model covariates have not been able to explain.

The presence of correlated model residuals compromises the fit of the whole

model and its quantification of uncertainty (Næs and Mevik, 2001; Fortin and

Dale, 2009; Legendre et al., 2002). Therefore, we should try to get rid of these

unobserved structures.

Depending on the process under study and its sampling design, the un-

observed structure can take several correlation structures. For instance, if

we have repeated measurements of a process at each sampling site, we may

expect correlated residuals within site because within site measurements are

likely to be more similar among them than with other sites that have similar

characteristics. Therefore, assigning a random noise effect (iid) to each site

could solve the problem.

Similarly, if we sample this very same process over time, model residuals

may be temporally correlated. A usual way of dealing with this temporal

structure is by means of time series analysis techniques, which can introduce

different kinds of temporal correlation terms by, for example, applying Holt-

Winters exponential smoothing trends (Chatfield and Yar, 1988) or auto-

regressive integrated moving-average models (Wei, 1994) among others.
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In the spatial case, model residuals are also prone to spatial correlation

(Kneib et al., 2008; Carl and Kühn, 2007). In order to deal with such spatial

correlation, we rely on the principle that “near things are more related than

distant things” (Tobler, 1970). Again, depending on the nature of the data

and its spatial domain D, the spatial structure of the residuals can vary. In the

case of areal data, correlation structures are often specified using conditional

autoregressive models with a given order of neighbouring regions (Besag et al.,

1991). In the case of point-patterns and point-referenced data, the spatial

domain D is continuous, thus correlation functions need also to be continuous

over distance. We discuss more about continuous spatial fields and continuous

autocorrelation functions in the following section 1.4.

1.4 Continuous spatial autocorrelation and krig-

ing

As already mentioned in section 1.1, fishery data is typically represented as

a point in space, so we usually deal with a finite set of point-referenced data

Y (s) over a continuous, generally two-dimensional, fixed spatial domain D.

While, it is sensible to assume that the probability of presence is measurable

at all infinite possible sites in the domain, in practice the data are only a

partial realisation of the whole spatial process. In other words, we only have

measurements at a finite number of locations out of an infinite number of

possible locations. For example, Y (s) may represent the biomass of a given

species at sites s. The main problem that we face in these cases is that we have

to perform inference about the spatial structure of Y (s), i.e. infer a distance

based covariance function that best represents the underlying spatial field

of our data, and then predict at unsampled locations using kriging (Cressie,

1990) interpolation based on this covariance function.

The underlying spatial process is typically assumed to be a Gaussian field

(GF), which means that in a set of locations s, the vector of observations

Y (s) follows a multivariate Normal distribution with mean µ and a spatially
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structured covariance matrix Σ. The key for modelling these situations is

finding a distance based covariance function C() that represents the covariance

matrix Σ

Σab = Cov(y(sa), y(sb)) = C(y(sa), y(sb)) (1.6)

where sa, sb ∈ s.
In order to perform inference on the covariance function of our GF, we

usually assume that it fulfils two characteristics:

� The GF is second order stationary, which means that the field has con-

stant mean and its covariance function only depends on the distance

vector (sa, sb) ∈ R2, i.e. Cov(y(sa), y(sb)) = C(sa − sb).

� The GF is isotropic, which means that the covariance function does not

depend on the direction of the distance but just the Euclidean distance

between observations ||sa − sb|| ∈ R.

In the scope of this thesis we assume second-order stationary and isotropic

GFs, but obviously, not all GFs fulfil these two characteristics. For example,

when modelling the distribution of whales near the coast, we cannot expect the

GF to behave equally in all directions because no whales should be expected

on land. See pages 31-32 and 63-70 in Banerjee et al. (2014) for a more in

depth text on anisotropic and non-stationary processes respectively.

From now on, we will assume that the spatial correlation of the data is

a function of distance between points solely, i.e. the spatial correlation is

determined by an isotropic and second order stationary covariance function.

Over the years many covariance functions have been proposed (see Baner-

jee et al. (2014) for an extended description). Among all, the Matérn class of

covariance models, named by Stein (1999) after the Swedish forestry statis-

tician Bertil Matérn (Matérn, 2013), is the most flexible as it embraces a

number of covariance functions depending on the value of its smoothing pa-

rameter. The Matérn covariance between two points separated by ||sa − sb||
distance units and parametrised as given by Handcock and Wallis (1994) looks
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like this

C(sa, sb) = σ2 1

2ν−1Γ(ν)

(
2ν1/2||sa − sb||

r

)ν
Kν

(
2ν1/2||sa − sb||

r

)
, (1.7)

where ν is the smoothness parameter (ν > 0), Kν is a modified Bessel func-

tion of the second kind (Abramowitz and Stegun, 1964) and order ν, Γ is the

gamma function and r is the range parameter (r > 0), which measures the

distance at which the covariance is assumed to be zero (there is no autocorre-

lation). Depending on the smoothness parameter ν and range r, the Matérn

covariance function can take various shapes (Figure 1.5).

Figure 1.5. Different shapes of the Matérn covariance function depending

on its range r and smoothing parameter ν.

1.5 Bayesian hierarchical spatial modelling

Spatial modelling is essentially concerned with three issues: model specifica-

tion, estimation and inference of parameter estimates, and prediction. It is

well known that the Bayesian approach can more easily address model speci-

fication, and therefore inference and prediction as well (Banerjee et al., 2014;
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Wasserman, 2013). In fact, Bayesian statistics have more attractive features

as compared to the frequentist approach as we will elaborate through this

section.

Bayesian statistics is based on the Bayes’ conditional probability theorem:

p(A|B) =
p(B|A)p(A)

p(B)
(1.8)

where A and B are two random variables.

The Bayes’ probability theorem (1.8) can also be seen in the statistical

modelling framework as:

p(hypothesis|data) =
p(data|hypothesis)p(hypothesis)

p(data)
(1.9)

where typically the hypothesis is expressed in terms of the parameters of the

statistical model (θ). As opposed to the classical or frequentist field, param-

eters in Bayesian statistics are defined by probability distributions, not just

point estimates. p(data|hypothesis) represents the likelihood of the model and

p(hypothesis) the prior distribution of the parameters, i.e. the information

that we have about the parameters prior to the data that we are analysing in

our model.

Lately, Bayesian statistics are becoming increasingly popular among ecol-

ogists (Clark, 2005) for at least two reasons: on the one hand, its direct and

intuitive quantification of the uncertainty through explicit probabilistic infer-

ence is of great help for decision making purposes. On the other hand, as

mentioned before, Bayesian statistics allows defining complex statistical mod-

els in a rather easy and intuitive way as discussed in the next subsection 1.5.1.

However, the computational cost of Bayesian methods can be a problem, spe-

cially in big and complex datasets as we discuss in subsection 1.6.

1.5.1 The Bayesian hierarchical approach

Many datasets are organized into a hierarchy of successive levels. For example,

students are in classes, classes are in schools, schools are in cities, etc. This
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way, we can explain the expected outcome of a student as a sum of hierarchical

effects for the class, the school, city, etc.

In a similar way, when modelling, the hierarchical approach decomposes

(or accommodates) the complexity of the data into different levels. A good

example of hierarchical modelling may be the use of spatial latent fields that

model the remaining (unobserved) spatial correlation of the data, given the

covariates, by applying distance based functions. In this setting, we have

a set of parameters θ with their respective prior distributions that quantify

the fixed effects of our model (intercept, linear effects of the covariates, etc.).

However, the spatial latent field follows a distribution N(0,Σ) that depends on

some hyperparameters Ω (with their own prior distributions) that characterise

the structure of the spatial latent field. In this setting, it is evident that we

need one more level or stage in our model, a level to specify the distribution

of the latent variable.

Let Y be a normally distributed and spatially correlated process given the

observed covariates X. We can express Y in three stages.

First stage: Y |θ,W ∼ N(Xβ +W,ρ),

where Y is conditionally independent and normally distributed given the pa-

rameters (θ = β) and a spatial latent field (W ).

Second stage: W |Ω ∼ N(0,Ω),

where W is a latent Gaussian spatial model with hyperparameters Ω.

Third stage: priors on (β, ρ,Ω).

In other words, the first stage of the Bayesian hierarchical model specifies

the likelihood of the model by characterising the data Y given the parameters

θ = β of the model and the fitted latent process W . The second stage specifies

the latent process W through its hyperparameters Ω and the third stage

specifies the prior distributions of all the parameters and hyperparameters
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involved in the model.

A usual problem with this kind of hierarchical models is the fact that,

often, there is no closed expression for the marginal posterior distributions of

the parameters p(θ|Ω, Y ), so numerical approximations are needed.

1.6 Bayesian computing

As we have see, performing Bayesian inference means combining likelihood

p(Y |θ) and priors p(θ) to get the posterior distributions p(θ|Y ) of our param-

eters and hyperparameters (here just parameters for the sake of simplicity)

p(θ|Y ) ∝ p(Y |θ)p(θ). (1.10)

Note that, following Bayes’ theorem as in (1.8), we miss p(Y ) in the denom-

inator and in exchange we assign proportionality rather than equality. The

proportionality symbol ∝ expresses the fact that the product of the likelihood

function p(Y |θ) and the prior distributions p(θ) on the right hand side of

(1.10) must be scaled to integrate to one over the range of plausible parame-

ter values.

Unless the posterior distribution and the prior distribution belong to the

same family, in which case we have a conjugated model (see Gutiérrez-Peña

et al. (1997) for a review on conjugate models), the integrals involved in

getting the posterior distributions of the models are generally analytically

intractable. Consequently, we require of numerical approximations to get

these posteriors.

1.6.1 Markov Chain Monte Carlo

The most widely used computing tools in Bayesian statistics today follow

Markov chain Monte Carlo (MCMC) simulation methods. MCMC methods

are a class of algorithms that allow us to draw samples from some probability

distribution without having to know their exact density at any point. By
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means of this property, when applying MCMC, we are able to draw indepen-

dent samples from the posterior distributions in such a way that the number

of times visited a given value is proportional to its density in the posterior

distribution. Therefore, in MCMC we do not get a closed form of the poste-

rior but a sample of values from it. A key functional property of MCMC is

their ability to do inference on highly dimensional problems, by reducing such

dimension to low-dimensional (often unidimensional) problems.

There are many different MCMC algorithms available. In this section we

briefly describe only two of these (see Gamerman and Lopes (2006) for a more

detailed text on MCMC methods) to get an idea of what MCMC implies

as compared to the Integrate Nested Laplace Approximation (INLA) method

used in the following chapters.

Gibbs sampler

One of the attractive methods for setting up an MCMC algorithm is Gibbs

sampling. Suppose that the parameter vector of interest is θ = (θ1, . . . , θN ).

The joint posterior distribution of θ, which we denote by (θ|Y ), may be of

high dimension and difficult to summarize. Suppose we define the set of

conditional distributions:

(θ1|θ2, . . . , θl, Y )

(θ2|θ1, . . . , θl, Y )

. . .

(θl|θ1, . . . , θl−1, Y )

(1.11)

The Basic idea under Gibbs sampling is that we can set up a Markov chain

simulation algorithm from the joint posterior distribution by successfully sim-

ulating individual parameters from the set of l conditional distributions.

Metropolis-Hastings

Maybe, the most popular way of constructing a Markov chain is by using a

Metropolis-Hastings algorithm. A Metropolis-Hastings algorithm begins with



20 Chapter 1. Spatial statistics for fisheries management

an initial value θ0
l and specifies a rule for simulating the tth value in the

sequence θtl given its value in (t− 1). This rule consists of a proposal density,

which simulates a candidate value θl, and a computation of an acceptance

probability P , which indicates the probability that the candidate value is

accepted as the next value in the sequence:

1. Simulate a candidate value θ∗ from a proposal density p(θ∗l |θ
t−1
l )

2. Compute the ratio R =
h(θ∗l )p(θt−1

l |θ∗l )

h(θt−1
l )p(θ∗l |θ

t−1
l )

3. Compute the acceptance probability P = min{R, 1} Sample a value θtl
such that θtl = θ∗l with probability P; otherwise θtl = θt−1

l

where h(θl) is proportional to the desired probability distribution P (x).

Among other important MCMC features, such as monitoring convergence

of different chains, computational cost is maybe the most limiting factor of

Bayesian MCMC methods. When models become complex, specially models

with hierarchical structures, MCMC algorithms may be extremely slow or

even become computationally unfeasible (Gelfand, 2012; Taylor, 2015). This

computational crush occurs particularly in the case of spatial and spatio-

temporal models, which is usually known as the “big n problem” (Banerjee

et al., 2014; Lasinio et al., 2013). A good alternative to MCMC methods

able to reduce the computational costs of Bayesian inference is the Integrated

Nested Laplace Approximation (INLA) algorithm (Rue et al., 2009).

1.6.2 Integrated Nested Laplace Approximation

The INLA algorithm, proposed by Rue et al. (2009) and available in the

R-INLA software package, is a numerical approximation method (rather than

simulation as in MCMC) for Bayesian inference. The most remarkable feature

of INLA, as opposed to MCMC, is that it allows the posterior distributions to

be accurately approximated through Laplace approximations (Laplace, 1986;

Tierney and Kadane, 1986), even for complex models without becoming com-

putationally prohibitive (Rue et al., 2009).
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INLA is applicable to a very popular subset of structured additive re-

gression models named latent Gaussian models. Latent Gaussian models are

the subset of all the Bayesian hierarchical models with a structured additive

predictor which latent models have Gaussian prior distributions (as in step 2

of 1.5.1), but not necessarily their hyperparameters Ω. As most structured

Bayesian models follow such form (Gelman et al., 2004; Rue et al., 2009), we

can say that latent Gaussian models embrace a very wide range of statisti-

cal models: mixed models, survival models, random walk smoothing models,

spatial and spatio-temporal models, etc.

A key feature for the implementation of INLA is that many latent Gaussian

models admit conditional independence properties. This means that many

latent Gaussian fields can be expressed as a Gaussian Markov Random Field

(GMRF) with sparse precision matrix (Rue and Held, 2005), which allows

using computationally efficient numerical methods for sparse matrices (Rue

and Held, 2005).

How INLA works

As previously mentioned, INLA relies on Laplace approximation methods (La-

place, 1986; Tierney and Kadane, 1986) to numerically approximate posterior

distributions. This method performs Gaussian approximations of the parame-

ters by inferring their mode. Although posterior distributions do not necessar-

ily have to be Gaussian, INLA relies on the fact that for most real problems

and datasets, the conditional posterior of the latent field looks “almost” Gaus-

sian (Rue et al., 2009). This is clearly assisted by the, non-negligible, impact

of the Gaussian priors on the posteriors.

The approximation of model parameters θ and hyperparameters Ω in

INLA is computed in three steps:

1. The first step approximates the posterior marginal p(Ω|Y ) by using the
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Laplace approximation

p(Ω|Y ) =
p(θ,Ω|Y )

p(θ|Ω, Y

∝ p(Y |θ,Ω)p(θ|Ω)p(Ω)

p(θ|Ω, Y )

≈ p(Y |θ,Ω)p(θ|Ω)p(Ω)

p̃(θ|Ω, Y )

∣∣∣∣
θ=θ∗(Ω)

= p̃(θ|Ω, Y )

(1.12)

where p̃(θ|Ω, Y ) is the Gaussian approximation – given by the Laplace

method – of p(θ|Ω, Y ) and θ∗(Ω) is the mode for a given Ω.

2. The second step approximates p(θi|Ω, Y ) by using again Laplace ap-

proximations. Given that θ = (θi,θ−i)

p(θi|Ω, Y ) =
p((θi,θ−i)|Ω, Y )

p(θ−i|θi,Ω, Y )

∝ p(θi|Ω, Y )

p(θ−i|θi,Ω, Y )

≈ p(θ|Ω, Y )

p̃(θ−i|θi,Ω, Y )

∣∣∣∣
θ−i=θ∗

−i(θi,Ω)

= p̃(θ−i|θi,Ω, Y )

(1.13)

where p̃(θ−i|θi,Ω, Y ) is the Laplace Gaussian approximation of the

probability distribution p(θ−i|θi,Ω, Y ) and θ∗−i(θi,Ω) is its mode. This

strategy can be very computationally expensive since p̃(θ|Ω, Y ) has to

be recomputed for each value of θ and Ω. A more computationally

efficient but slightly less accurate approach is the so-called “simplified

Laplace approximation”. This method is based on a Taylor’s series ex-

pansion of the Laplace approximation p̃(θi|Ω, Y ). The result is then

corrected using a spline term to increase the fit of the required distribu-

tion.

3. The third step is to compute the marginal posterior distributions of

p(θi|Y ) by using p̃(θi|Ω, Y ) and p̃(Ω|Y ) from the previous two steps.

p(θi|Y ) ≈
∫
p̃(θi|Ω, Y )p̃(Ω|Y )dΩ, (1.14)
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where the integral can be solved numerically through a finite weighted

sum applied in certain integration points and then interpolating in be-

tween. For a more detailed text on the selection of integration points

see section 3.1(c) in Rue et al. (2009).

1.6.3 Spatial Gaussian fields in INLA: the SPDE ap-

proach

Spatial Gaussian Fields (GF) are widely used in geostatistical and point-

pattern problems. The biggest problem with spatial GFs is the so called

“big n problem” that concerns the computational costs required for perform-

ing algebra operations with dense covariance matrices Σ to infer the spatial

covariance function C that best suit Σ as in (1.6).

In the previous section, we have mentioned that INLA exploits the com-

putational properties of GMRFs (with sparse precision matrices) to fit a good

number of latent Gaussian models. Unfortunately, spatial GFs are continu-

ous, so do not satisfy the properties of a GMRF. Therefore, in principle, GFs

should not be applicable INLA.

In this regard, Lindgren et al. (2011) found an explicit link between GFs

and GMRFs through the Stochastic Partial Differential Equation (SPDE)

approach. This approach allows representing a spatial GF with Matérn co-

variance function by a GMRF. It is important to note that, while the compu-

tational cost of a two-dimensional GF is approximately n3, the computational

cost of a two-dimensional GMRF is n3/2. Furthermore, the GMRF property

allows us use the computationally efficient INLA approach.

The Stochastic Partial Differential Equation approach

As we have introduced, Lindgren et al. (2011)’s approximation of a GF re-

quires that its covariance function is of the Matérn family. Following Lindgren

et al. (2011)’s notation, we can reparametrise the Matérn covariance function
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in 1.5 for an stationary and isotropic GF as

C(d) =
σ2

2ν−1Γ(ν)
(κ||si − sj ||)νKν(κ||si − sj ||), (1.15)

where now κ is a scaling parameter that determines the effective range r of the

spatial effect by r =
√

8ν/κ, corresponding to the distance where correlations

are near 0.1.

The great discovery by Lindgren et al. (2011) falls on the fact that a GF

z(s) with Matérn covariance function is a solution to the linear fractional

SPDE

(κ2 −∆)α/2z(τs) =W(s), s ∈ Rd, α = ν + d/2, κ > 0, ν > 0, (1.16)

where ∆ is the Laplacian, τ controls the variance, d is the dimension of the

GF and W is a Gaussian spatial white noise process.

The link between the SPDE in 1.16 and the parameters of the Matérn

covariance function 1.15 is given by the following equations that involve the

smoothness parameter ν and the marginal variance σ2

f(n) =

ν = α− d/2

σ2 = Γ(ν)
Γ(α)()4π)d/2κ2ντ2

As we usually work in the two-dimensional framework (d = 2), it can be

rewritten as

f(n) =

ν = α− 1

σ2 = Γ(ν)
Γ(α)()4π)κ2ντ2

In R-INLA, the default value of α = 2 which translates into ν = 1 (see Fig-

ure 1.5), but 0 ≤ α < 2 are also available, although not fully tested (Lindgren

et al., 2011). For this particular case of the Matérn covariance function the

range r and the marginal variance of the field σ2 are approximately:

r =
√

8/κ

σ2 = 1/(4πκ2τ2)
(1.17)
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In R-INLA, the default parametrisation of the SPDE is in terms of log(τ) =

θ1 and log(κ) = θ2. Then a joint Gaussian prior distribution is given to θ1

and θ2.

As Lindgren et al. (2011) show, the solution to the SPDE can be approxi-

mated using the finite element method through a deterministic basis function

representation defined on a triangulation of the domain D (see Figure 1.6).

Such triangulation, typically named as mesh, of the study area is based on De-

launay triangulations (Delaunay, 1934), which as opposed to a regular grid, it

allows a flexible partition of the region into triangles, that can satisfy differ-

ent types of constraints to better accommodate different characteristics of the

study area. See Krainski et al. (2016) for a complete tutorial on how to create

a good mesh in R-INLA.

Figure 1.6. Left: example of a Gaussian Field z(s). Right: corresponding

finite element representation of the Gaussian Field z(s). Figure extracted

from Cameletti et al. (2013)

For the non-stationary case of the Gaussian field, e.g. cases where unmea-

sured covariates may affect the behaviour of the spatial correlation in different

locations, it is also possible to extend the SPDE approach by specifying spa-

tially varying hyperparameters κ(s) and τ(s) (Lindgren et al., 2011; Bolin and

Lindgren, 2011). We do not further describe the approach for non-stationary

Gaussian field because it is out of the scope of this PhD dissertation. If in-
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terested, Lindgren et al. (2011) discusses this case in section 3.2, while Bolin

and Lindgren (2011) shows an application in global ozone and lately Krainski

et al. (2016) has included a generic example on how to apply it in INLA.

Fitting an stationary geostatistical model in R-INLA

In what follows we briefly describe how to fit a generic two dimensional geo-

statistical model in R-INLA. To do so, we first need to define the SPDE model

over the triangulation of the study area:

# Sampled locations

loc <- cbind(longitude ,latitude)

# Construct boundary of sampled locations

boundary <- inla.nonconvex.hull(points=loc)

# Create the mesh

mesh <- inla.mesh.2d(boundary=boundary , loc=null)

# Create the SPDE model over the mesh

spde <- inla.spde2.matern(mesh, constr=TRUE)

Here the mesh is created without the sampling locations assigned to any

particular node of the mesh. If that was a requirement, we could do so by set-

ting the loc=loc statement inside the inla.mesh.2d() function. Similarly,

when creating the SPDE model an integrate-to-zero constraint can be ap-

plied by adding the constr=TRUE statement inside the inla.spde2.matern()

function. The rest of the parameters for the creation of the boundary, mesh

and SPDE model are the default implemented in R-INLA. See R-INLA help

documents for more details.

Then, it is necessary to create the indexation of the observations and create

weight matrices of the estimation locations into the nodes of the mesh

# Sampled locations indexation
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idx.mat.est <- inla.spde.make.A(mesh=mesh,loc=loc)

# Prediction locations indexation

idx.mat.prediction <- inla.spde.make.A(mesh=mesh,

loc=mesh$loc[,1:2)

where again the rest of parameters are set as default. These other parameters

are essential to add temporal and/or bloc indexations.

Lastly, before fitting the model using the inla() call function, we need to

stack the data set and the formula of the model

# stack data

est <- inla.stack(data=list(y=y), A=list(idx.mat.est),

effects=list(spat=1:spde$n.spde))

pred <- inla.stack(data=list(y=rep(NA,mesh$n),

A=list(idx.mat.pred),

effects=list(spat=1:spde$n.spde)))

data <- inla.stack(est,pred)

# Set formula

formula <- 1 + f(spat,model=spde)

where we fit a simple geostatistical model with an intercept and the geosta-

tistical term.

Starting from this simple ordinary kriging example, along the following

chapters we develop more complex geostatistical structures and regressors,

with linear and different sorts of non-linear effects, to identify the model that

best fit the process under study. For that we need to assess the quality of our

models based on model selection criteria.

1.7 Bayesian model selection scores

Bayesian models can be evaluated and compared in several ways (Schwarz,

1978; Akaike, 1998; Geisser, 1993; Berger and Pericchi, 1996; Gelman et al.,
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1996; Spiegelhalter et al., 2002; Watanabe, 2010; Vehtari et al., 2012; Gelman

et al., 2014). Arguably, the ultimate goal of every statistical model is to have

good predictive properties, thus we need to evaluate their predictive accuracy,

compare them and select the most appropriate model for our particular data

or problem.

Even if all of the models being considered have mismatches with the data,

it is informative to evaluate their predictive accuracy, compare them, and

consider where to go next. The challenge then is to estimate predictive model

accuracy, correcting for the bias inherent in evaluating a model’s predictions

of the data that were used to fit it.

The natural way of assessing the predictive quality of a model is un-

doubtedly cross-validation (Geisser and Eddy, 1979) but this requires several

repeated model fits and can be computationally prohibitive in complex mod-

els or simply not possible due to having little data. Therefore, for practical

reasons many other model selection scores have been proposed (Hooten and

Hobbs, 2015).

In this regard, R-INLA can compute, as by-product of the main com-

putations, few model selection scores: Deviance Information Criteria (DIC)

(Spiegelhalter et al., 2002), marginal likelihoods, conditional predictive ordi-

nate (CPO) (Geisser, 1993), the cross-validated probability integral transform

(PIT) (Czado et al., 2009) and the Watanabe Akaike Information Criterion

(WAIC)(Watanabe, 2010).

In R-INLA, these scores are automatically computed by including the fol-

lowing statement within the inla() call:

# compute DIC, CPO and WAIC scores

inla(..., control.compute=list(cpo = TRUE , waic = TRUE,

dic = TRUE))

For the purpose of this PhD dissertation, in what follows we end up this

chapter describing DIC, CPO and WAIC.
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1.7.1 Deviance Information Criterion

DIC is a within-sample predictive score, defined as

DIC = 2 ∗ E(D(θ))−D(E(θ)), (1.18)

where the Deviance is D(θ) = −2 ∗ log(p(y|θ)) and E(D(θ))−D(E(θ)) is the

effective number of parameters.

While the deviance benefits good fit, the effective number of parameters

penalizes the DIC score. However, DIC scores may underpenalize complex

models with many random effects (Plummer, 2008).

1.7.2 Cross-validatory Predictive Score (CPO) and and

its logarithmic score (LCPO)

CPO is a leave-one-out cross-validation score:

CPOi = p(yi|y−i), (1.19)

where Y−1 corresponds to the observations y with the ith observation removed.

Therefore CPO expresses the posterior probability of observing the value

of yi when the model is fitted to all data except yi. Based on the CPO values

of each observation, we can calculate the logarithmic score LCPO (Gneiting

and Raftery, 2007) as:

LCPO = −
∑
i

log(CPOi). (1.20)

Therefore smaller LCPO scores indicate a better predictive quality of the

model.

1.7.3 Watanabe-Akaike Information Criterion (WAIC)

WAIC is a within-sample predictive score, defined as:

WAIC =
∑
i

varpost(log(p(yi|θ))) (1.21)
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where we compute the posterior variance of the log predictive density for each

data point yi. Therefore, WAIC is fully Bayesian using posterior densities

more effectively than the DIC (Gelman et al., 2014) and CPO.
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Spatial beta regression to

identify fishing-suitable

areas

Fishery discards refer to the portion of the catch that is not retained on

board during commercial fishing operations and is returned to the sea (Catch-

pole et al., 2005). Discards include non-commercial species, non-marketable

commercial material and marketable organisms. Discarding patterns change

both in time and space as a consequence of changing economic, sociological,

environmental and biological factors (Gillis et al., 1995; Maynou and Sardà,

2001). So far, the only way of quantifying discards has been through on-board

sampling programmes, also known as fishery dependent data.

As we introduced at the beginning of the previous chapter, fishery de-

pendent data refers to fishery data collected on board of commercial vessels.

These data is usually collected through a stratified sampling scheme that sam-

ples proportionally to the number of fishing days performed by a given fishing

gear at a given fishing area (European Comission, 2009).

The original goal of these data is to get a spatially and temporally repre-

31
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sentative sample of fishers fishing activity. Unfortunately, due to logistic and

budgetary reasons such resolution is generally not enough to cover all national

fishing grounds. For example, the data that we will be using in this chapter

refers to one of the three locations sampled in the whole southern Spanish

Mediterranean. In Figure 2.1 we can see that there is a trade-off between

the macro and meso scale sampling, where large areas are not sampled at the

macro-scale but the spatial resolution at the meso-scale is pretty good.

Figure 2.1. On-board sampling locations in the souther Spanish Mediter-

ranean. Resolution is good at the meso-scale but the macroscopic spatial

coverage not as much.

Fishery dependent data, unlike fishery independent data, allow quantify-

ing fishery discards. Fishery discards have been a matter of debate over the

last decades. Unwanted catches and discards constitute a substantial waste of

natural resources that negatively affect the sustainable exploitation of marine

ecosystems and the financial viability of fisheries (Kelleher, 2005; Viana et al.,

2013b). As a consequence, the new EU Common Fisheries Policy plan (Euro-

pean Comission, 2013) proposed for 2014-2020, is controversial in its goal to

enforce the landing of fishing discards as a measure to encourage their reduc-

tion (Sardà et al., 2015). This measure implies that fishers will have to land

all regulated species regardless of their size and that landing quotas will be
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replaced by catch quotas. While many potential consequences of this policy

are still unclear for different fishing grounds and fisheries (Bellido et al., 2014;

Catchpole et al., 2005; Sigurðardóttir et al., 2015), it will undoubtedly have

a negative economic impact on the primary fishery sector (Catchpole et al.,

2014; Poseidon, 2013). Indeed, fishers will be obliged to land products of

little value, which will devalue the economic potential of their catch quotas.

Similarly, in those areas where the fishery is not managed by quotas (e.g.

Mediterranean Sea), fishers will have to keep the fish on-board which may

imply additional costs associated with handling the fish and reduced storage

capacity.

Under these circumstances, a possible consequence of the upcoming EU

fishing scenario is that it will motivate fishers to maximise revenues by fishing

in areas that minimise the catch of unwanted regulated fish species (Vilela

and Bellido, 2015). In this context, spatial analysis could help to identify

areas where by-catch and/or discards are minimised. By providing spatial or

spatio-temporal by-catch/discard predictive maps, both management bodies

and fishers could better asses the fishing suitability of a given area.

Several studies have assessed discard concentration areas based on the ex-

pected amount of total discards per unit effort (DPUE) (Feekings et al., 2012,

2013; Viana et al., 2013a; Cosandey-Godin et al., 2014; Pennino et al., 2014).

However, the use of DPUE units as a criterion to identify these areas can

lead to ecologically and economically misleading results for two main reasons.

Firstly, such an approach does not include the landed portion of the fishing

haul in the analysis, and so it does not identify whether the amount of discard

is disproportionate to the catch or not. This is crucial to quantify the eco-

nomic and ecologic balance between the marketed food biomass and the lost

biomass. Secondly, from a technical point of view, modelling discards involves

dealing with a wide range of commercial vessels with different characteristics

(e.g. length of the vessel, engine-power, etc.), haul duration, and other effort

characteristics. Consequently, calculating a standardised DPUE criterion may

be difficult or even infeasible in most cases.

A better approach may be to use discard and by-catch ratios, defined
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as the discarded or by-caught biomass divided by the total haul biomass.

By contrast to the DPUE criterion, discard ratios implicitly include benefit

versus loss, which allows us quantify both, the ecological impact in terms of

“food biomass vs. wasted biomass” and the economic impact by quantifying

the percentage of quota loss (if applicable) and percentage of storage room

occupied in the vessel by non-marketable fish. Therefore, discard ratios allow

a better identification of both, economically and ecologically, fishing-suitable

areas. In addition, technically speaking, discard/by-catch ratios are inherently

standardised to a wide range of effort variables (vessel size, fishing time, etc.)

apart from the most gear specific ones (hook size, mesh size, etc.).

Interestingly, proportions have been widely used in many descriptive stud-

ies on fishery discards (Tsagarakis et al., 2013); however, we found no fishery

study that applies statistical regression to them. Vilela and Bellido (2015)

proposed a random forest based algorithm to assess the fishing suitability of

an area. Their algorithm is based on a fishing-suitable/unsuitable (binomial)

response variable that is created by manually setting a cut-off discard ratio

that classifies hauls as suitable or unsuitable. It is therefore somewhat in-

tuitive that results using this method may be very sensitive to the cut-off

percentage set at the beginning of the analysis.

An easier and more straightforward approach is to directly apply regression

on discard or by-catch ratios using beta distribution. The beta distribution

has historically had a very wide range of applications (Gupta and Nadarajah,

2004), although not until recently has it been used in regression modelling

(Ferrari and Cribari-Neto, 2004).

2.1 Modelling proportions

Many ecological processes are spatially or spatio-temporally sampled and mea-

sured as proportions; one example is sea-grass coverage in a area. The tradi-

tional approach in ecology has been to, first transform proportional data to

approximate normality, and then analyse them using Gaussian linear models,

such as analysis of variance or linear regression.
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A very common transformation is the arcsine square root transformation.

This transformation can be useful to stabilise variances and normalise the data

but there are several reasons why it should be avoided. Firstly, model param-

eters cannot be easily interpreted in terms of the original response (Warton

and Hui, 2011; Ferrari and Cribari-Neto, 2004). Secondly, the efficacy of the

arcsine transformation in normalising proportional data is heavily dependent

on the sample size, and does not perform well at extreme ends of the distri-

bution (Warton and Hui, 2011; Wilson and Hardy, 2002). Thirdly, measures

of proportions typically display asymmetry, and hence inference based on the

normality assumption can be misleading (Ferrari and Cribari-Neto, 2004).

An alternative that is becoming more prevalent in ecological analyses is

the logistic regression, an analytical method designed to deal with binomial

proportional data (Steel et al., 1997; Wilson and Hardy, 2002; Warton and

Hui, 2011), i.e. proportions measured as x out of n. The logistic regression

provides a more biologically and ecologically interpretative analysis and is

not sensitive to sample size. Nonetheless, such binomial data is prone to

overdispersion, resulting in an incorrect quantification of the uncertainty when

applying the proposed binomial Generalised Linear Regression (GLM). In

these cases, the inclusion of a random intercept term using Generalised Linear

Mixed Models (GLMMs) may improve the assessment of uncertainty (Wilson

and Hardy, 2002).

When data are non-binomial, that is, observations do not follow the x out

of n pattern, the logistic regression is no longer applicable. As an alternative

approach, Warton and Hui (2011) suggested the logit transformation of the

data, which overcomes the problems of interpretability and shape of the poste-

rior estimates using the arcsine square root transformation is used. However,

any transformation of the data (yt) implies that regression parameters are

only interpretable in terms of the mean of yt and not the mean of the original

data. In this regard, beta regression (Ferrari and Cribari-Neto, 2004) provides

a natural approach to deal with non-binomial proportional data.

The beta distribution is a well known distribution that satisfies the charac-

teristics of proportions, bounded to the [0, 1] interval with asymmetric shapes.
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It has long been used in a wide range of applications involving proportions

and probabilities (Gupta and Nadarajah, 2004). However, only recently has it

been applied to regression modelling (Ferrari and Cribari-Neto, 2004; Smith-

son and Verkuilen, 2006; Liu and Kong, 2015), allowing bounded posterior

distributions and model parameters that are directly interpretable in terms of

the mean of the response.

Aside from the likelihood function, it is well known that changes in ecolog-

ical processes in time and space are driven by a set of factors and interactions.

Understanding these drivers is very often the ultimate goal among scientists

seeking to manage natural resources effectively. However, the immeasurable

complexity of ecological spatial processes often means that the spatial variabil-

ity of the data exceed the variability explained by the explanatory variables.

This phenomenon usually results in spatially autocorrelated model residuals

that can yield incorrect results and a restricted predictive capacity of the

models (Fortin and Dale, 2009; Legendre et al., 2002).

2.2 Beta regression

Traditionally the beta distribution is denoted by two scaling parameters Be(a, b).

However, in order to apply regression, it is necessary to reparametrize its den-

sity distribution in terms of its mean µ = a
a+b and dispersion ρ = a + b, so

that:

π(y) =
Γ(ρ)

γ(µρ)γ(ρ(1− µ))
yµρ−1(1− y)(1−µ)ρ−1, 0 < y < 1 (2.1)

where Γ is the gamma function, E(y) = µ and V ar(y) = µ(1−µ)
1+ρ . It is impor-

tant to note that, as opposed to the Gaussian distribution, the variance of the

beta distribution depends on the mean, which translates into maximum vari-

ance at the centre of the distribution and minimum at the edges, to support

the truncated nature of the beta distribution.

It is also important to note that the probability density (equation 2.1)

does not provide a satisfactory description of the data at both ends of the
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distribution, zero and one. An ad hoc solution may be to add a small error

value to the observations to satisfy this criterion (Warton and Hui, 2011);

otherwise zero and one inflated models are required (Liu and Kong, 2015).

Following the Be(µ, ρ) reparametrisation and the notation used in chap-

ter 1, a given set of observations y1, ..., yn that represent proportions can be

related to a set of covariates and functions using a similar approach to the

generalised linear model:

logit(µi) = ηi (2.2)

ηi = β0 +

nβ∑
j=1

βjzji +

L∑
l=1

fl(xl) + vi

where, ηi enters the likelihood through a logit link, β0 is the intercept of the

model, βj are the fixed effects of the model, fk() denote any smooth effects

(including spatial dependence effects) and vi are unstructured error terms

(random variables).

At the time of writing, a handful of R packages allow beta regression:

betareg (Grün et al., 2011), mgcv (Wood, 2011) and gamlss (Stasinopoulos

and Rigby, 2007) in the frequentist field and Bayesianbetareg (Marin et al.,

2014), zoib Liu and Kong (2015) and R-INLA (Martins et al., 2013) in the

Bayesian counterpart. zoib allows zero/one inflated beta regression but only

R-INLA allows a wide range of flexible hierarchical models to be fitted at a

user-friendly and computationally efficient environment.

2.3 Bayesian hierarchical spatial beta regres-

sion

Bayesian hierarchical methods are becoming very popular among ecologists

due to the complexity of the relationships involved in natural systems (Clark,

2005). Modelling these relationships often requires specifying sub-models in-

side the additive predictor that allow inferring a suspected hidden or latent

effect that characterise these relationships.
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A good example, as we saw in Chapter 1, may be the use of spatial latent

fields that apply distance-based functions to model the spatial dependence

of the data. In these cases, the main intensity of the process is driven by

a set of covariates Xβ, also called large-scale variation, to which a spatial

term is added based on a correlation function that helps us describe the

unobserved small-scale variation. Consequently, we end up with a spatial

correlation model, which depends on its own hyperparameters, as part of a

broader model that characterises the intensity of the process; in other words,

we have a hierarchical model with a spatial latent variable.

The most popular point-referenced spatial model, the geostatistical model,

has the characteristic that the spatial covariance function is continuous over

the range of the spatial effect. Based on this function, it is customary to

assume a Gaussian latent field W ∼ N(0, Q(κ, τ)) with covariance matrix Q

that depends on two hyperparameters, in the case of R-INLA, κ and τ . These

hyperparameters determine the range and the variance of the spatial latent

field. When we include this in the additive predictor of a beta distributed

process Y , we obtain a hierarchical model with at least three stages:

� First stage: Y |β,W ∼ Be(Xβ +W,ρ)

where Y are conditionally independent given W .

� Second stage: W |κ, τ ∼ N(0, Q(κ, τ))

where W is a Gaussian latent spatial model.

� Third stage: priors on (β, ρ, κ, τ)

As commented in the previosu chapter, a common problem with this kind

of hierarchical model is that there is no closed expression for the marginal

posterior distributions of the parameters p(β, ρ, κ, τ |Y ), so numerical approx-

imations are needed. In this thesis we use the INLA methodology (Rue et al.,

2009) instead of the more usual Markov Chain Monte Carlo (MCMC) meth-

ods due to its computational efficiency (Simpson et al., 2011). Furthermore,

inference and prediction under a geostatistical Gaussian field W entail the
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so-called “big n problem” (Banerjee et al., 2014). This problem is related to

the dense covariance matrix Q, which traduces into very high computational

costs.

In this vein, and as we saw in Section 1.6.3 of Chapter 1, the work by

Lindgren et al. (2011) provides a clever approximation of continuously in-

dexed Gaussian Fields with Matérn covariance function to Gaussian Markov

Random Fields (GMRF) using the stochastic partial differential equation ap-

proach. In other words, it allows the approximation of a continuous covari-

ance function and dense covariance matrix by, respectively, a computationally

efficient neighbourhood structure and a sparse covariance matrix. This ap-

proximation reduces the required number of computations from O(n3) (Stein

et al., 2004) to O(n3/2) (Cameletti et al., 2013) in the two dimensional spatial

domain.

2.4 Case study

2.4.1 Discard data

Trawl discard data were collected according to European Comission (2009),

which establishes a métier-based sampling programme of discards. Specif-

ically, this study was based on bottom trawl data collected in the central

Spanish Mediterranean Sea (Figure 2.2). Bottom trawlers in this area are seg-

regated into two different métiers due to the difference in catch composition

at different depths: the bottom otter trawl for demersal species métier (OTB-

DES) and the bottom otter trawl for deep-water species métier (OTB-DWS)

(see Pennino et al., 2014, for a more detailed description of the métiers).

The database, provided by the Instituto Español de Oceanograf́ıa (IEO,

Spanish Oceanographic Institute), contains a total of 391 hauls collected be-

tween March 2009 and December 2012, including catch and discard data dis-

aggregated by species. Two by-catch/discard proportion (henceforward simply

discard) response variables were created. A total discard proportion variable

was created to assess the global ecological impact of the fishery by substract-
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Figure 2.2. Map of the study area, located in the south-eastern part of

the Spanish Mediterranean Sea. Black dots represent the centroids of the

391 sampled hauls.

ing the total catch biomass to the discarded biomass. In addition, a discard

proportion of regulated species variable was created to account for the non-

profitable but also non-discardable fraction of the haul by substracting the

total catch to the regulated biomass that had been discarded.

Total discard proportion: Discard biomass
Total biomass

Regulated discard proportion: Regulated species discard biomass
Total biomass

Fishing haul characteristics, such as date, time, geolocation and depth

were extracted directly from the onboard observer database. Fishing geoloca-

tion and depth were computed using an average point between the start and

end point of each fishery operation. The total catch of each fishing haul, in
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kilograms, was also included as a potential predictor.

It is well known that fisheries are prone to seasonal patterns. However, the

spatio-temporal resolution of the data was rather small (see Table 2.1) for the

identification of spatio-temporal (interaction) changes of discards distribution.

Yet, the purely temporal resolution of the data along the year was good

however, so different temporal trends were included in the analysis:

� Similarly a ‘Ordinal day’ variable was created using the date package

(Therneau et al., 2014), which assign an integer value to each fishing

haul based on the date of the haul, starting from 1 (1st January) to 365

(31st December).

� The moon is another factor that is known to affect fish distribution. For

that, a ‘Moon phase’ variable was created using the phenology package

(Marc, 2015). This variable can take any continuous value between 0

and 100, where 0 and 100 represent full moon and 50 new moon.

Month
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Y
e
a
r

2009 0 0 11 11 10 11 11 8 1 4 4 8

2010 10 9 2 8 10 0 12 9 11 1 9 12

2011 12 8 8 7 7 11 12 10 1 14 14 11

2012 6 3 9 10 10 12 0 13 3 13 14 11

Table 2.1. Contingency table quantifying the monthly sampling resolu-

tion across the different years.

The six most discarded fish species were: bogue (Boops boops) repre-

senting about 12% of the total discards, followed by the axillary seabream

(Pagellus acarne) with 6%, the small-spotted catshark (Scyliorhinus canicula)

with 4.5%, horse-mackerel (Trachurus sp.) with a 3.8% and the common pan-

dora (Pagellus erythrinus) with 2.3%. Of these, the axillary seabream, the

horse mackerel and the common pandora must be landed under the new EU

discard ban.
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2.4.2 Modelling trawl fishery discards

The analysis of trawl discards included the total catch of each fishing haul,

the mean bathymetry of the haul, two temporal variables, a geostatistical

term and a vessel effect as possible predictors (Table 2.2). Based on the work

by Rochet and Trenkel (2005), who found that discard proportions are not

fully proportional to the catch, the total catch of each haul C = (c1, . . . , cn)

was introduced as a linear effect with vague normal prior distributions as

implemented by default in R-INLA. The vessel effect was assigned a random

noise effect as in (Pennino et al., 2014) to absorb the variability on discard

ratios due to different skipper’s decisions and similars.

The exploratory analysis revealed non-linear relationships between depth

and the discard proportion, so a second order random walk (RW2) latent

model was applied based on constant depth increments dj . These RW2 mod-

els, which perform as Bayesian smoothing splines (Fahrmeir and Lang, 2001),

can be expressed as a computationally efficient GMRF (Rue and Held, 2005),

and are therefore applicable in INLA. The smoothing of the bathymetric ef-

fect was selected visually by subsequently changing its prior distribution while

models were scaled to have a generalized variance equal to one (Sørbye and

Rue, 2014). The temporal effects also had RW2 smooth effects fitted but

with cyclic indexations where, for example, in the ordinary day variable 1st of

January comes after the 31st of December and so on. Finally, a geostatistical

latent model W was introduced to identify fine-scale hot spots.

Therefore, assuming that the discard proportion Yst at location s and

time t follows a beta distribution and including all the effects summarised in



2.4 Case study 43

Table 2.2, the final model can be expressed as

Yst ∼ Be(µij , φij), s = 1, . . . , S t = 1, . . . , T

logit(µst) = βccs + dj + et +Ws

βc ∼ N(0, 0.001)

∆2dj = dj − 2dj+1 + dj+2 ∼ N(0, ρD), j = 1, . . . , J (2.3)

logρD ∼ LogGamma(0.5, 0.00005)

∆2yt = yt − 2yt+1 + yt+2 ∼ N(0, ρD)

logρk ∼ LogGamma(1, 0.00005)

W ∼ N(0,Q(κ, τ))

(2 log κ, log τ) ∼ MN(µw,ρw)

where the mean of discard proportions enters the model through the logit link,

i indexes the location of each haul, j indexes different depths (dj , representing

the different values of bathimetry starting at d1 = 40 metres till dm=30 = 720

metres) and t has a cyclic indexation (T + 1 = t) for either the moon phase or

the ordinal day (e) of the haul.

This code allows us fit a second order random walk effects in R-INLA

# cluster covariate (haul.depth) into "n" groups

d <- inla.group(haul.depth,n=n)

# Bayesian spline in formula environment

Y ~ ... + f(d,model="rw2",prior=prior.depth,cyclic=FALSE/TRUE)

where the inla.group() function allows us to cluster the covariate of interest

in n number of groups. These clustering values will perform as the second

order transition nodes, denoted as dj in equation (2.3). The terms of the

form f(...) in the R-INLA formula environment account for the fj() terms

in expression (2.2)and the cyclic=FALSE/TRUE statement will allow us assign

cyclic or non-cyclic indexations to the fitted splines.

As we saw in Chapter 1, the two dimensional geostatistical latent model

W , introduced to identify fine-scale hot-spots, depends on two hyperparam-
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eters κ and τ that define the variance and the range of the spatial effect.

Specifically, and with the smoothing parameter of the Matérn (1.15) fixed

(ν = 1), the range of the spatial terms is approximately
√

8/κ and the vari-

ance 1/(4πκ2τ2). The priors for κ and τ are specified over the logτ and 2logκ.

In this case, default R-INLA prior distributions were used, where µκ is spec-

ified so that the range of the field is 20% of the longest distance in the field

and µτ is chosen so that the mean variance of the field is one. The rest of the

prior distributions in use are described in (2.3).

Variable Description Unit Effect

Total catch Total catch of the haul Kilograms Linear

Location Geolocation UTM Geostatistical

Depth Mean depth of the haul Meters Non-linear effect

Moon phase Moon phase of the haul Cyclic ordinal [0,100] Non-linear cyclic effect

Ordinal day Day of the year Cyclic ordinal [1,365] Non-linear cyclic effect

Vessel Sampled vessel ID - Random noise effect

Table 2.2. List of covariates included in the analysis and the effect

assigned to them. In the moon phase variable, values of 0/100 represent

full moon and 50 new moon. Similarly, 1 represents 1 January and 365

represents 31 December in the ordinal day variable.

2.4.3 Results

Final models for both response variables included a non-liner bathymetric

effect and the total catch of the haul as explanatory variables (Table 2.3).

Specifically, the total catch of the haul had a positive effect on the ex-

pected ratios of both the total discard (posterior mean = 0.0023; 95% CI

= [0.0018,0.0029]) and the regulated discard ratio (posterior mean = 0.038;

95% CI = [0.0027, 0.0049]).

Predicted total discard ratios showed a marked relationship with respect

to bathymetry (Figure 2.3). Highest total discard ratios were observed in
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Total discard Regulated discard

WAIC LCPO WAIC LCPO

T
em

p
o
ra

l

tr
en

d

I + M -66.86 -0.085 -1109.2 -1.418

I + OD -67.25 -0.086 -1109.3 -1.419

I -67.32 -0.086 -1110.4 -1.420

F
in

al
m

o
d
el

se
le

ct
io

n

I + D + V + C + S - - -1201.0 -1.534

I + D + C + S - - -1201.6 -1.535

I + D + V + C -273.9 -0.354 -1170.9 1.504

I + D + C -274.1 -0.355 -1165.3 -1.493

I + D -201.3 -0.268 -1117.3 -1.422

I + C -189.2 -0.243 -1145.7 -1.470

I + S -183.1 -0.23 -1164.9 -1.479

Table 2.3. Model comparison for the total discard and regulated discard

proportions. Missing values represent a bad fit of the spatial latent mod-

els, whose variance converged to nearly zero. Lower WAIC and LCPO

scores represent a better compromise between fit, parsimony and predic-

tive quality of the models. I = intercept, D = depth, V = vessel, M =

moon phase, OD = ordinal day, C = total catch and S = spatial effect.

shallow waters, between 40 and 200 m. Regulated species discards, however,

showed a maximum expected discard ratio in the 75-175 depth strata, while

remaining relatively low in shallower and deeper waters.

No relevant temporal patterns were found in the study area. Indeed, all

models with temporal effects, showed higher WAIC and LCPO scores than

those without them for both response variables (Table 2.3). Similarly, the
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model selection process dismissed the vessel random effect from both models,

suggesting that discard ratios were fairly homogeneous across the different

commercial vessels (Table 2.3).

The spatial effect was only included in the regulated discard ratios model

(Table 2.3). The estimated mean range was 0.53 (CI = [0.51,0.58]) and mean

variance of 1.35 (CI =[1.14,1.77]). Figure 2.4 displays the posterior mean

and standard deviation of the spatial component. This component showed

two main low discard areas (negative values in Figure 2.4), which translates

into lower expected discard ratios than those expected by the rest of variables.

Specifically, one low discard area is located in the shallow waters in front of the

Mar Menor lagoon and another along the central part of the 0.3 west meridian

(Figure 2.4). These two low discard areas could constitute two fishing-suitable

areas where expected levels of unwanted regulated species are lower than in

other zones of the study area with similar bathymetric conditions. Similarly,

a high discard hot-spot (positive values in Figure 2.4) was identified around

the latitude 37.7 north and longitude 0.7 west coordinate area.

The total discard ratio predictive map (Figure 2.5) confirmed the key role

of depth in the distribution of discard ratios. The posterior predictive map

of regulated discard ratios (Figure 2.5) showed a similar pattern but with the

added small-scale spatial variability provided by the spatial effect.

The predicted hot-spot of regulated discard ratios in the northern coastal

zone of the study area (Figure 2.5) is driven by the marginal bathymetric effect

due to the absence of observations in the area. Therefore, this discard hot-

spot should not be considered while new observations suggest the contrary.

Such uncertainty is displayed by the standard deviation map associated to

these predictions (Figure 2.5).

2.4.4 Discussion

The present study proposes a new framework to characterise fishing-suitable

areas under the upcoming EU discard ban. This study proposes using spatial

beta regression models applied to discard or by-catch ratios. Specifically, we
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(a) Total discard ratios (b) Regulated discard ratios

Figure 2.3. Fitted discard ratios with respect to the mean depth of the

observed hauls.

use total discard ratios and discard ratios of regulated species as a proxy to

assess the global ecological impact and economic impact on fishers respec-

tively.

The use of discard ratios is also a good alternative to the widely used dis-

cards per unit effort (DPUE) criterion. In contrast to DPUEs, discard ratios

represent benefit versus loss, and thus allow researchers to assess whether the

amount of discards is disproportionate to the catch or not. Discard ratios

allow assessing the economic impact by quantifying the percentage of quota

loss (if applicable) and percentage of storage room occupied in the vessel by

non-marketable fish when fishing in a given sub-area. Similarly, the ecologi-

cal impact can be quantified in terms of gained food biomass against wasted

biomass either by looking at total discard ratios or regulated species discard

ratios as a proxy to the amount of biomass removed from the system that

before the landing obligation would be returned to the system.

From a methodological perspective, results showed that discard ratios have
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(a) Mean (b) Standard deviation

Figure 2.4. Posterior mean and standard deviation of the spatial com-

ponent of the regulated species discard ratio.

a good standardising capability across different vessels. The random effect

assigned to absorb extra variability among vessels was dismissed during the

model selection process. Conversely, the study by Pennino et al. (2014), using

DPUEs in the same study area, found that this component was relevant in the

analysis. Our results using discard ratios compared to the results in Pennino

et al. (2014) could provide initial evidence of the good standardizing capacity

of discard ratios compared to the more usual DPUE units.

The resulting discard ratio predictive maps (Figure 2.5) provide intuitive

tools to assess the fishing suitability of a sub-area. Fishers and policy makers,

could combine information on the proportion of total and regulated species

discards to select economically and ecologically fishing-suitable areas. In this

regard, the Bayesian approach provides an added value, which is the straight-

forward quantification of the uncertainty in our predictions, visualised here

with the standard deviation maps.

The marginal spatial effect also provides a very informative tool for de-
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(a) Mean of the total discard ratio (b) Standard deviation of the total discard

ratio

(c) Mean of the regulated discard ratio (d) Standard deviation of the regulated dis-

card ratio

Figure 2.5. Posterior predictive mean and standard deviation of the total

discard ratios (top) and the regulated discard ratios (bottom).
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cision making since it represents the spatial fine-scale variability of discard

ratios given the effect of the covariates. In other words, the hot-spots of the

spatial effect identify areas where more discards are expected as compared

to other areas with similar environmental conditions. As a consequence, a

marine spatial planning framework could consider these areas for protection

so that discarded/wasted biomass is minimised. Inversely, and following the

same reasoning, cold-spots in the spatial effect characterise fishing-suitable

areas due to low expected discard biomass. Consequently, the map of the spa-

tial effect is particularly useful for policy makers to design an effective marine

spatial plan.

This study identified two main fishing-suitable sub-areas based on the

proportion of discarded regulated fish (Figure 2.4). Fishing in these sub-areas

could reduce fishers’ economic loss due to quota reduction (if applicable) or the

minimization of ship hold occupied by non-marketable species. Furthermore,

fishing in these sub-areas may minimise the ecological biomass loss generated

by the landing obligation. Under the landing obligation it is mandatory to

land some of the previously discarded biomass, which results in higher energy

removals from the system than before. Regarding the total proportion of

unwanted fish, results showed a clear longitudinal gradient related to the

bathymetry. Indeed discard ratios were higher in shallow waters (Figure2.3)

along the coastline (Figure 2.5) and may reflect the distribution of target

species of these métiers. As also highlighted by Pennino et al. (2014), the

depth-related variations of discard ratios are linked to differences in species

composition of fish communities and in the length-frequency distribution of

some species. Species replace each other according to their bathymetric and

geographical preferences. Thus, the bogue, the most discarded species, is

particularly abundant between 50 and 200 m, which may explain the increase

of total discard ratios in shallow waters.

Interestingly, and although fish distribution is known to vary seasonally,

none of the models found any temporal trend on the discard ratios of the study

area. Discard ratios, as well as the DPUE criterion, constitute the aggregation

of many different species and thus mixed species-specific distribution patterns.
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In this respect, a detailed species-specific study of discard could better identify

masked temporal and/or spatial patterns in this study.

Lastly, results confirmed that discard ratios consistently increase with the

amount of total catch, as shown previously by Pennino et al. (2014) and Ro-

chet and Trenkel (2005). In this regard, Rochet and Trenkel (2005) proposed

limited hold capacity of the vessels as a possible explanation for the increased

discard ratios when the catch is high. This could not be the case in this area

since the local fleet operates on the basis of day-trips and the total catch

seldom exceeds hold capacity. An alternative reason may be related to high

grading, where mid-priced fish species could be landed when the catch is low

to make the trip profitable but thrown away when the catch is good enough.

A more detailed study of these mid-priced fish species combined with sales

notes information could confirm this hypothesis.

2.5 Conclusions

In this chapter, we used a Bayesian hierarchical spatial beta model to analyse

spatio-temporally sampled proportion data. To this end, we used a simple

reparametrisation of the beta distribution to apply regression on the mean of

the process. The Bayesian approach allows a straightforward quantification

of uncertainty, which is important for decision making, while the hierarchical

structure allows a more natural model specification, especially when including

complex latent models such as geostatistical terms.

Beta regression overcomes all the drawbacks of the traditional data trans-

formations (Warton and Hui, 2011; Ferrari and Cribari-Neto, 2004). First,

it allows a direct interpretation of model parameters in terms of the original

data; second, the analysis is not sensitive to the sample size; and lastly, poste-

rior distributions are expected to concentrate well within the bounded range

of proportions. It is only when observations on the extremes of the distri-

bution are present, i.e. 0 and 1, that the beta distribution does not provide

a satisfactory description of the data. A possible solution to this problem

is to add some small value to the proportion, which introduces minimal bias
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while still satisfying the above criteria (Warton and Hui, 2011); otherwise,

zero and/or one inflated models may be required (Ospina and Ferrari, 2012),

now available in the zoib package (Liu and Kong, 2015) for R.

The incorporation of spatial random effects in beta regression models can

be very useful in a wide range of disciplines. For example mapping plant

coverage in ecology; mapping budget allocation in econometrics; mapping the

percentage of retirees in sociology, mapping sex-ratios in species, etc. Further-

more, combining the Bayesian spatial hierarchical modelling approach (Baner-

jee et al., 2014) and the temporal extension of Da-Silva and Migon (2016), the

beta regression framework can be extended to the spatio-temporal domain.

Consequently, it is possible to tackle problems such as the evolution of plant

epidemics (Stein et al., 1994), the spatio-temporal evolution of temperature

(Hengl et al., 2012) or the understanding of the spatial dynamism of species

over time, as in Paradinas et al. (2015). It must be taken into account that the

computational burden of these models can be even more demanding than in

the purely spatial domain, making R-INLA and its SPDE module two almost

necessary tools to deal with them.

The Bayesian hierarchical modelling approach is used due to its flexibility

in model formulation, which makes it suitable to deal with complex ecological

problems (Clark, 2005). Furthermore, the Bayesian formulation of posterior

parameters is particularly straightforward to implement as it relies on quite

direct probability rules (Clark, 2005). Similarly, the Bayesian approach is es-

pecially appealing for management purposes since it improves quantification

of uncertainty as compared to the classical approach. Under the Bayesian ap-

proach, the quantification of uncertainty in model predictions is incorporated

though the uncertainty associated to the estimated parameters, whereas in

the classical application, parameters are considered to be known.

The case study presented here applies spatial beta regression to identify

fishery discard hot-spots based on discard proportions, which, as opposed to

total discard units, assess the biomass benefit against the amount of wasted

biomass that constitute discards. Our results have identified at least one

high discard proportion hot-spot in the study area. Under a marine spatial
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planning framework that seeks to minimise the ecological impact of the fishing

activity, the characterisation of hot-spots could be specially useful for policy

makers, as it would allow them to protect those hot-spots as areas of special

interest.

To conclude, we would like to mention that the geostatistical beta regres-

sion approach proposed here to analyse proportions is not only applicable to

non-binomial proportional data but also to binomial proportional data, i.e.

proportions measured as x out of n. In fact, applying beta regression in these

cases may be an easier and more natural approach to avoid the usual prob-

lem of overdispersion in logistic regression than that proposed in Wilson and

Hardy (2002) using GLMMs.

The case study for identifying fishing-suitable areas with regards

to fishery discards has been accepted for publication in the ICES

journal of marine science and selected as Editor’s Choice (http://

www.oxfordjournals.org/our_journals/icesjms/editorial_board.html).

Similarly, the spatial beta regression approach for modelling ecologi-

cal proportions used in this section has been accepted for publication

in Revstat Statistical Journal.

http://www.oxfordjournals.org/our_journals/icesjms/editorial_board.html
http://www.oxfordjournals.org/our_journals/icesjms/editorial_board.html
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Chapter 3

Modelling preferentially

sampled fish distribution

Another key reason for the collection of fishery dependent data is to assess

the state of our stocks, i.e. targeted species. In the spatial framework, using

fishery dependent data to model the distribution of target species is prob-

lematic because sampling locations are deliberately chosen by the skipper to

maximize the catch of target species. As a consequence, fishery dependent

data lack observations in areas out of the optimum ecological niche of the

target species, resulting in preferentially biased samples for modelling their

spatial distribution. This property of the data is known in the literature as

the preferential sampling problem (Diggle et al., 2010).

The preferential sampling issue was not relevant in the previous Chapter

(2), where we modelled fishery discards using fishery dependent data, because

discards are a residual process of the fishery, which means that discards are

not targeted by the fishers. However, when our interest falls on the prediction

of targeted stocks distribution using fishery dependent data, then, the prefer-

ential sampling is indeed a problem. Fishers go fishing where they expect to

catch highest volumes of economically valuable fish, therefore our sample has
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no observations at environmentally unfavourable locations.

Typical geostatistical models, as that of the previous chapter, assume that

sampling locations are non-informative, which means that the sampling pro-

cess and the process being modelled are stochastically independent. When us-

ing preferentially sampled data however, this assumption is no longer correct

and standard geostatistical methods will potentially lead to biased results.

3.1 Modelling fish distribution under preferen-

tial sampling

As we already mentioned, predicting target species distribution using prefer-

entially sampled data requires full awareness of the scientist. Basically, under

these circumstances, our sampling distribution is not random any more and

thus basic model assumptions are violated. In order to overcome this problem

we need to correct for the fact that we have sampled where we expect to catch

more.

A sensible approach to do so may be to make use of fishers knowledge on

the distribution of target species. The basis of this approach is to assume that

fishers know the preferred habitats of these species and fish in those locations.

In other words, we believe that fishers have a good idea of the underlying

spatial field that we want to predict (distribution of target species) and choose

their best fishing locations accordingly.

As Rue et al. (2010) indicate in the discussion on Diggle et al. (2010)’s

paper, preferential sampling may be accounted for in a marked point process

model, in particular a log-Gaussian Cox process (LGCPs), which is an exam-

ple of a latent Gaussian model. As a result, it is plausible to perform Bayesian

inference based on INLA.

Among all spatial point processes, the class of Cox processes embrace

non-homogeneous Poisson processes that arise from a random spatial field Λ.

These models provide a statistically tractable class of models for aggregated

point patterns in which its spatial distribution can be associated to unknown
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conditions such as environmental variables, etc.

LGCPs are a particular class of Cox processes in which the logarithm of

the intensity surface is a Gaussian field. More formally:

log(Λ (s)) = V (s) , (3.1)

where V (s) is a Gaussian random field that is conditional to the unknown

conditions. In other words, given the random field, our observations are

independent and hence they form a non-homogeneous Poisson process.

In the case of fisheries preferential sampling, the amount of fish collected

in each location Y = (y1, . . . , yn) represents the intensity of the underlying

spatial field in the sampled locations. However, as fishers aim to fish as much

as possible, very few samples, if any, are available in those locations where the

intensity is low, thus kriging interpolation will be positively biased. In this

regard, a LGCP model applied over the sampling locations s = (s1, . . . , sn)

allows us to identify low fishing pressure areas, potentially due to the amount

of fish in those locations being low according to fishers knowledge. These

low fishing pressure areas, assumed to be low fish abundance areas according

to fishers knowledge, could be used to correct the absence of low abundance

observations in the kriging interpolation commented before. To incorporate

such information in the abundance model it is necessary to use joint modelling

techniques, which allow fitting shared model components between the two

linear predictors, the one for the observed abundances and the one for the

point process distribution.

So, in summary, sharing information between the fishers knowledge (selec-

tion of fishing locations) and the actual abundances of the spatial field could

help us improve posterior abundance estimates, specially in low abundance

areas. Therefore, on the one hand of a preferentially sampled model, we fit a

spatial point pattern s representing observers approximated knowledge about

the underlying Gaussian random field V (s) that forms a LGCP model with

an intensity function Λ(s) of the form:

Λ (s) = exp {β0Λ +Ws} , (3.2)
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where β0Λ
is the intercept of the LGCP and Ws is the spatial effect of the

model. Note that covariates and other types of correlations, not included here

for the sake of simplicity, could also be included in the additive predictor.

On the other hand, caught fish biomass Y represents the intensity of the

underlying species abundance at sampling locations, which are assumed to

follow an exponential family distribution such as a gamma distribution with

parameters µ and σ2.

log(µs) = β0m + αWs (3.3)

where the mean abundance is entered using a logarithmic link. Again β0m is

the intercept of the model and Ws is the spatial correlation term of the model

that is shared with the LGCP but scaled by α to allow for the differences

in scale between the abundances and the LGCP intensities. As well as in

the LGCP model, other covariates and correlation terms could be included as

well.

This way, the resulting spatial field of the preferentially sampled abun-

dances is corrected by incorporating information about the distribution of the

point pattern (that indirectly quantify fishermen’s knowledge).

3.2 Simulation study

To illustrate the preferential sampling method proposed by Rue et al. (2010)

based on Diggle et al. (2010)’s paper, we first apply this approach in a simu-

lated scenario to prove the effectiveness of the approach.

A simulated Gaussian random field with Mátern covariance function was

created over a 100 by 100 grid using the RandomFields package (Schlather

et al., 2015). Over this spatial field 100 locations were selected as sampling

locations. In order to mimic the preferential sampling scenario, these loca-

tions were selected based on the sum to one standardisation of exponential

abundances in each location using the function sample() in R (R Core Team,

2016):
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As a result, we got a simulated Gaussian random field (Figure 3.1) which

values range between 0 and 10.3. Locations were selected by applying an expo-

nential transformation over the intensities of the simulated field to create the

preferentially selected sample, i.e. the point-pattern process in (3.2). Then,

the abundances of the process were extracted from the simulated Gaussian

field (Figure 3.1) based on the locations of the point-pattern.

Figure 3.1. The simulated Gaussian field and point pattern that repre-

sent the sampling locations of the process under study.

In order to test for the applicability of the preferential sampling approach,

we compared the following two models:
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1. The non-preferential model of the abundances

Ys ∼ Ga(µs, ρ), s = 1, . . . , S

log(µs) = β0 +Ws

W ∼ N(0,Q(κ, τ))

(2 log κ, log τ) ∼MN(µw,ρw)

β0 ∼ N(0, 0)

(3.4)

where abundances are modelled through a geostatistical term (Ws).

2. The preferential sampling model

Λ (s) ∼ Po(λs), s = 1, . . . , S

Ys ∼ Ga(µs, ρ)

log(λs) = exp {β0Λ +Ws} ,

log(µs) = β0m + αWs

W ∼ N(0,Q(κ, τ))

(2 log κ, log τ) ∼MN(µw,ρw)

β0 ∼ N(0, 0)

(3.5)

where the common geostatistical term (Ws) is corrected by combining

information from both the LGCP and the abundance process scaled by

α in the second predictor to allow for differences in scale.

Within R-INLA the formula environment syntax required to share informa-

tion from both processes to fit a common spatial field in both predictors is

the following:

# Fitting a shared spatial effect

formula <- ... + f(point_pattern_spat, model=spde) +

f(abund_spatial, copy="point_pattern_spat",

fixed = FALSE)

where, and despite the copy syntax, geostatistical terms are fitted jointly and

scaled in the abundance model by an scalar (α in equation 3.5). If the scale of
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the predictors were the same, we could set this by passing the fixed = TRUE

statement instead.

The models discussed in equations (3.4 and 3.5) were fitted and compared

in terms of the Deviance Information Criterion (DIC) (Spiegelhalter et al.,

2002) as a measure of goodness-of-fit, the Log-Conditional Predictive Ordi-

nates (LCPO)(Roos and Held, 2011) as a leave-one-out predictive score and

the predictive Mean Absolute Error (MAE) (Willmott and Matsuura, 2005)

as a measure of the overall out-of-sample predictive score.

Model MAE DIC LCPO

1 Non-Preferential 1.92 90.58 0.66

2 Preferential sampling 0.96 78.50 0.56

Table 3.1. Model comparison based on the Deviance Information Cri-

terion (DIC), the Log-Conditional Predictive Ordinate (LCPO) and the

predictive Mean Absolute Error (MAE). In all cases, smaller scores repre-

sent better fit.

The best predictive model was the model with the preferential sampling

correction, which had better DIC and LCPO scores (Table 3.1), but most

importantly the out-of-sample MAE score was very much improved in the

preferential model (Table 3.1) as compared to the model without preferential

correction. Similarly, correlation between observed and predicted values was

about 0.93 in the preferential model and 0.72 in the model without the pref-

erential correction. Essentially, neither of the models was able to make good

predictions at low abundance locations (Figure 3.2) because there were no ob-

servations made there but the non-preferential model performed significantly

worse.

Figure 3.3 shows the posterior predictive mean of the simulated abundance

process without (a) and with (b) the preferential sampling correction. As

already mentioned before, and although both models show a similar predictive

spatial patterns, the preferentially corrected model predicted better at low
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Figure 3.2. Simulated abundance against predicted abundance in the

non-preferential model (left) and in the model with the preferential cor-

rection (right). The non-preferential model predicts worse than the pref-

erential model at low abundance areas.

abundance areas.

3.3 Case study: modelling red shrimp abun-

dance using red shrimp fishery data

In this section we present a practical application of the preferential approach

in a real case scenario. Specifically, within the fishery context, a red shrimp

fishery (Aristeus antennatus) was used. The red shrimp is a very important

stock that is fished exclusively by trawlers and is distributed in between the

300 and 900 metres of depth (Gorelli et al., 2014). The price of the red

shrimp at the market reach peaks of 200/kg during particular periods such

as Christmas or summer holidays. Therefore this is a very important fishery

in the Spanish Mediterranean that is named as "bottom otter trawl for deep-

water species" métier (OTB-DWS) under EC rules (European Comission,
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(a) Non-preferential sampling model (b) Preferential sampling model

Figure 3.3. Posterior predictive mean maps of the simulated abundance

process without (left) and with (right) the preferential sampling correction.

2009).

3.3.1 Red shrimp fishery data

Specifically, we analyzed data collected by onboard observers from 2009 to

2012 in the Gulf of Alicante (Spain). The data set includes 77 OTB-DWS

hauls collected in 9 different trawlers (Figure 3.4) and has been provided by

the Instituto Español de Oceanograf́ıa (IEO, Spanish Oceanographic Insti-

tute). The database provided contained information on the amount of red

shrimp hauled in kilograms, the location of the haul and its bathymetry.

3.3.2 Modelling red shrimp distribution

Following the ideas from Diggle et al. (2010) and Rue et al. (2010) we ap-

plied the preferential sampling model to a red shrimp stock in the Western

Mediterranean. The fitted effects for the abundance of red shrimp (Y ) were

corrected by jointly modelling the abundances model and the LGCP model,

which represents fishers knowledge about the distribution of red shrimp (be-
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Figure 3.4. OTB-DWS on-board sampling locations and red shrimp

(Aristeus antennatus) abundance in the Gulf of Alicante (Spanish Mediter-

ranean).

cause fishermen fish where they expect to fish most). Therefore, assuming

that the LGCP intensity follows a Poisson distribution and shrimp abundance

a gamma distribution at locations s, the model looks like this:

Λ (s) ∼ Po(λs), s = 1, . . . , S

Ys ∼ Ga(µs, ρ)

log(λs) = β0Λ + f(d) +Ws,

log(µs) = β0Y + αdf(d) + αwWs

W ∼ N(0,Q(κ, τ))

∆dj = dj − dj+1 ∼ N(0, ρD), j = 1, . . . ,m

β ∼ N(0, 0)

(2 log κ, log τ) ∼MN(µ, ρ)

ρD ∼ LogGam(2, 0.00001)

(3.6)
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where s indexes the location of each haul and j indexes different depths (dj ,

representing the different values of bathimetry observed in the study area

starting at d1 = 90 metres till dm=40 = 920 metres). Each predictor has

its own intercept (β0Λ
, β0Y ) but bathymetric f(d) and spatial effects Ws are

shared in both predictors. The bathymetric effect was assigned a first order

random walk (RW1) latent model based on constant depth increments, which

perform as Bayesian smoothing splines (Fahrmeir and Lang, 2001), and Ws

is a geostatistical term based on a Matérn covariance function, as described

in section 1.6.3, that depends on the hyperparameters κ and τ . These hyper-

parameters are linked to the range and the total variance of the effect (see

Section 1.6.3). Both, the bathymetric and the spatial effects were scaled by αd

and αw respectively to allow for the differences in scale between red shrimp

abundances and the LGCP intensities.

Every Bayesian model precise of prior distributions and as usual in Bayesian

notation we work with precisions, not variances. In this case, we used an in-

formative prior for the range of the spatial effect. Specifically we set the

multivariate normal prior of the spatial field so that the median of the prior

for the range is approximately half the maximum distance in the study area.

This was selected because the study area is rather small, and thus the default

prior mean range in R-INLA (20% of the study area) would have been, a

priori, too small. To do so, we used the following code to assign the desired

prior to the SPDE model:

# Desired median over prior of the range

range0 = max.size / 2

kappa0 = sqrt(8) / range0

tau0 = 1 / (sqrt(4 * pi) * kappa0 * sigma0)

spde = inla.spde2.matern(mesh,

B.tau = cbind(log(tau0),-1,+1),

B.kappa = cbind(log(kappa0),0,-1),

theta.prior.mean = c(0,0),

theta.prior.prec = c(0.1,1) )
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where max.size stand for the maximum distance in our study area.

It is also important to note that in equation (3.6) we specify the full model,

where both spatial and bathymetric effects are relevant to the distribution

of red shrimp and are shared between the abundance and LGCP models.

However, this may not necessarily be true, thus we fitted and compared all

the possible combinations of independent and shared effects.

3.3.3 Results

We run all the possible models derived from (3.6), the most relevant results are

presented in Table 3.2. While analysing the data we observed that both the

bathymetric and the spatial terms of the LGCP accounted for approximately

the same information. As a consequence, full models did not converge in the

point-pattern process, which restricted the model comparison in Table 3.2 to

correcting only one of the effects, either the bathymetric or the spatial effect.

Model DIC LCPO

1 Intc + Depth 673.49 4.38

2 Intc + Spatial 665.52 4.35

3 Intc + Depth + Spatial 657.76 4.29

4 Intc + Depth 674.77 4.40

5 Intc + Spatial 671.43 4.37

6 Intc + Depth + Spatial 661.06 4.34

Table 3.2. Model comparison for the abundance of the red shrimp (Aris-

teus antennus) based on DIC and LCPO scores. Intc = Intercept and

Bold terms = shared components

Finally, we selected model 6 in Table 3.2 which included a shared bathy-

metric effect and an independent spatial effect for the abundances that absorb

the spatial variability of the data given red shrimp’s bathymetric preference.
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As shown in Table 3.2, DIC and LCPO scores are slightly better for the

non-preferential full model (model 3). However, as Figure 3.5 shows, and de-

spite the spiky relationship of the preferential bathymetric effect (slightly over-

fitted by the RW1 latent model), the estimated effect for the bathymetry is far

more natural than the linear bathymetric effect fitted in the non-preferential

model. However, even if the preferential model improves the bathymetric

effect, new observations at deeper waters could further improve this rela-

tionship as other studies on the distribution of red shrimp suggest (Gorelli

et al., 2014). The non-preferentially corrected spatial effect (right panel in

Figure 3.6) accounted for the residual spatial heterogeneity derived from the

shared bathymetric effect in the abundance process.

Observing a more natural relationship in the corrected fitted effects (pref-

erential model) despite the worse model selection scores was not surprising.

The reason for this is that within-sample (DIC) or similar (LCPO) scores

are not able to properly measure the out-of-sample predictive capacity of the

model. Therefore, selecting the best predictive model based on these model

selection scores alone may be problematic because we may end up selecting

overfitted models.

(a) Non-preferential model (b) Preferential model

Figure 3.5. Bathymetric effect in the models without and with the

preferential sampling correction. Dashed lines represent the extrapolated

effect in the non-preferential linear effect.
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(a) Non-preferential model (b) Preferential model

Figure 3.6. Maps of the mean of the posterior distribution of the spatial

effect in the model without (left) and with (right) preferential sampling.

Figure 3.7 shows the posterior predictive mean of the red shrimp distri-

bution without and with the preferential bathymetric correction. Each map

shows a very different pattern, the non-preferential model is driven by the

linear positive bathymetric effect (posterior mean = 0.003; 95% CI = [0.0009,

0.0049]) that extrapolates to very high abundances at high depths. The pref-

erential model however, is able to correct this linearity of the data and provide

a more natural bathymetric distribution of red shrimp.

3.4 Conclusions

In this section we have presented a modelling approach that could be very use-

ful to assess the spatial distribution of fishery stocks using fishery dependent

data.

The simulated case study demonstrates the extent at which a preferentially

sampled processes can be corrected following Diggle et al. (2010)’s proposal.

In general, high-abundance areas are predicted fairly well but low abundance
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(a) Non-preferential model (b) Preferential model

Figure 3.7. Posterior predictive mean maps of the red shrimp (Aristeus

antennatus) species, without and with the preferential sampling correction.

areas tend to be overestimated due to the low number of samples (if any) at

unfavourable conditions.

The practical application on red shrimp, included here as a real world sce-

nario, shows that the preferential sampling phenomena can be driven either

by space or any other important covariate of the process, e.g. bathymetry in

this case. Resulting predictive maps significantly improve the prediction of

the target species when the model accounts for preferential sampling. Conse-

quently, we conclude that this approach could suppose a major step forward

in the understanding of target species meso-scale ecology given that most of

the available data today are fisheries dependent data.

The real case application also raised a very important issue regarding the

model selection process of preferentially sampled data. Conventional model

selection scores, e.g. DIC and LCPO, are likely to prefer non-corrected abun-

dance models as the fit of within-sample observations is not restricted to the

LGCP model. This situation may result in better within-sample predictive

capacity of the non-preferentially corrected models while the out-of-sample
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predictive capacity of the model is compromised due to overfit.

In fisheries, the application of these approaches to other fishery dependent

data collected under the EC regulation (European Comission, 2009) or any

other on-board sampling scheme around the world may help us implement the

EAFM framework at the meso-scale. The following step in modelling fishery

dependent data should assess the spatio-temporal distributional patterns of

the different fisheries. To do so however, the sparse spatio-temporal resolution

of the data to date should be improved.



Chapter 4

Spatio-temporal structures

with shared components

for species distribution

modelling

In the previous two chapters we have seen a couple of applications using fishery

dependent data. Now, in this chapter our goal is to squeeze the capacities of

fishery independent data to respond few ecological questions: which is the

spatial distribution of fish? Is it persistent or does it change over time? If

so, how? To test such hypothesises, along this chapter, we present a set of

spatio-temporal extensions of the usual geostatistical model.

Fishery research surveys play a very important role in the management

of our fisheries. Fishery survey data, or fishery independent data, usually

cover very wide areas and provide a macroscopic view of the fishery. This is a

very important feature for spatial management purposes because it allows us

to quantify the importance of areas in the macro-scale, which is the scale at
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which marine protected areas should be designed (Fenberg et al., 2012). An

important drawback of fishery surveys is that they are typically repeated only

once per year (e.g. MEDITS survey, Bertrand et al. (2002)) or twice per year

at most (e.g. IBTS, The International Bottom Trawl Survey Working Group

(2012)), so we must be very careful when drawing conclusions in this respect.

4.1 Assessing the temporal persistence of a spa-

tial process.

As introduced in the first chapter, the ecosystem approach to fisheries man-

agement (EAFM) aims the protection of productive ecosystems based on the

principle that healthy ecosystems produce more and will secure a sustainable

exploitation of fishery resources. Therefore, understanding the spatial pattern

of different life stages has attracted the main focus of attention. In fact, one

of the fundamental objectives of an Ecosystem Approach to Fisheries Man-

agement (EAFM) is to reduce any adverse impact on recruitment habitats,

primarily from fishing (Garofalo et al., 2011).

There is some controversy on how to define a nursery ground. Some def-

initions were proposed in the last decade (Beck et al., 2001; Dahlgren et al.,

2006). These definitions generally rely on direct measurements of juvenile

movement from nursery habitats to the adult population (Beck et al., 2001;

Gillanders et al., 2003). Unfortunately, direct measurements become infeasible

for deeper water species, whose nursery grounds tend to be located in deeper

waters as well. European hake (Merluccius merluccius) is one of such species

which recruits tend to inhabit the continental shelf and the upper slope at

80-250 m depths (Maynou et al., 2003; Recasens et al., 1998). As a result,

when dealing with these kind of species an alternative is needed. A good one

was introduced by Colloca et al. (2009), who suggested assessing the temporal

persistence of abundance hot-spots as a proxy to identify nursery areas.

But, how can we assess the persistence of a spatial process? Over the

years, visual assessment has been the way to go. However, and even if eye-
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sight seems like a sensitive approach, the seek of statistical support to assess

persistence motivated the work by Colloca et al. (2009). Their study fitted a

different Bayesian geostatistical model for each time event and then applied

aggregation curves using the posterior mean estimates of the models at the

different prediction points to assess the persistence of the process. Unfortu-

nately, their methodology is rather tedious to implement, does not consider

the uncertainty associated to the estimates and does little emphasis on the

quality of the model used to get the posterior predictive estimates, which play

a crucial role in the results of this methodology.

Therefore, the purpose of this study here presented is to propose a method

that assess the persistence of a spatial process by means of statistical inference

rather than using post-analysis algorithms (Colloca et al., 2009). To do so, we

propose comparing the goodness-of-fit of two different Bayesian hierarchical

spatio-temporal models.

4.1.1 Data

In this study, two different datasets are used to test our approach for

assessing the persistence of fish distribution (or any other spatial process).

4.1.1.1 Hake recruitment in the western Mediterranean Sea

On the one hand, we chose the European hake (Merluccius merluccius) be-

cause it constitutes one of the most important commercial species in the

Mediterranean Sea, suffering from high fishing pressure and currently over-

exploited (Lleonart, 2005). In fact, in many Mediterranean countries there

is still an important illegal market of small hake (Bellido et al., 2014). As a

result, the juvenile fraction is particularly exposed, especially to trawl fishery

after the bottom settlement stage, when they aggregate over nursery grounds.

Data on hake recruits were collected during the EU-funded MEDIter-

ranean Trawl Survey (MEDITS) (Bertrand et al., 2002) project, carried out

from spring to early summer (April to June) from 2000 to 2012. The MEDITS
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(a) Western Mediterranean GSA 06 (b) North Sea

Figure 4.1. Sampling locations of MEDITS (left) and IBTS (right) sur-

veys in the GSA 06 and North Sea respectively.

project uses a stratified sampling design based on depth (5 bathymetric strata:

10 − 50, 51 − 100, 101 − 200, 201 − 500 and 501 − 700 m) and Geographical

Sub-Area (GSA). Sampling stations were placed randomly within each stra-

tum at the beginning of the project. In all subsequent years sampling was

performed in similar locations. This study concerns the trawl-able grounds

of GSA 06 (see left panel in Figure 4.1) which borders the northern Iberian

Mediterranean coast. In total the dataset contains information on 1048 hauls

that have been georeferenced in the centroid of each fishing operation.

Only hake recruits were considered, defined as those individuals less than

15 cm in total length. This length limit was selected using the slicing method

(Lassen and Medley, 2001). A catch per unit effort (CPUE) response variable

(Kg per 30 min tow) was created. As it is usual when dealing with biomass

and analogous terms in other disciplines (e.g. rain volume), CPUEs showed

a semi-continuous behaviour: 38% of zero observations, while if present, hake

recruit abundance showed a right skewed distribution that ranges from 0.01

to 26.4 with its mean at 1.5 (Figure 4.2).
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Potentially relevant environmental variables were included in this study.

As mentioned before, bathymetry is a very important explanatory variable in

the distribution of hake (Maynou et al., 2003; Recasens et al., 1998). We also

included the type of substratum as a potentially relevant variable. Both vari-

ables were obtained as shapefiles from the IEO geoportal, accessible through

the website of the Spanish Institute of Oceanography (http://www.ieo.es).

The type of substratum shapefile include three levels: sand, mud and rock.

As for the bathymetry, we also included a quadratic term in order to account

for the bathymetric preference of hake recruits.

Figure 4.2. Histograms of observed CPUEs in hake recrutment between

2000 and 2012. Note that there is a 38% of zeros in the dataset.

4.1.1.2 Cod in the Northern Sea

On the other hand, we chose North Sea (NS) cod (Gadus morhua) because

it constitutes the most important commercial species in Northern latitudes

and it has suffered severe fishing pressure (Hutchings, 2000). Cod is known

to be homogeneously distributed in the NS during winter, while it migrates

north avoiding the warmer waters of the southern NS in summer (ICES,

2014). Therefore, we would expect our method to identify a non-persistent

http://www.ieo.es
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distribution between quarters of the year.

Data on cod biomass were collected through the EU-funded The Inter-

national Bottom Trawl Survey Working Group (2012) (IBTS) project. The

IBTS in the North Sea is carried out two times per year, first in winter an

then in summer (1st and 3rd Quarters). Sampling stations are more or less

repeated every year and distributed among different countries that converge

in the North Sea (Figure 4.1). The complete database is available on-line in

http://www.ices.dk/marine-data/data-portals/Pages/DATRAS.aspx.

The cod dataset used here contains a total of 10865 hauls, which were

collected twice a year (1st and 3rd Quarters) in between 2000 and 2014. This

study considered cod biomass through a catch per unit effort (CPUE) response

variable (Kg per 30 min tow). As with the hake, CPUEs showed a semi-

continuous behaviour; 29% of the observations were zero, while if present,

hake recruit abundance showed a right skewed distribution with mean 40.2

and median 11.2 (Figure 4.3). The dataset also contained information on

depth and the location of the starting and finishing points of the haul. Hauls

were finally georeferenced in the centroid of each fishing operation.

Figure 4.3. Histograms of observed CPUEs in NS cod between 2000 and

2014. Note that there is 29% of zeros in the dataset.

http://www.ices.dk/marine-data/data-portals/Pages/DATRAS.aspx
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4.1.2 Modelling semi-continuous data

The most popular approach is to model semi-continuous data as two in-

dependent sub-processes, known as two-part models or Hurdle models. In

these models, one sub-process determines whether the response is zero (using

presence-absence data), while the second determines the intensity when the

response is non-zero (Martin et al., 2005). Using this approach, one is able to

estimate the probability of presence and if present, estimate the abundance

(CPUE).

Let Y be the occurrence and Z the conditional-to-presence abundance

(biomass) process at locations s = s1, , sn. Then Ys and Zs can be modelled

as

Ys ∼ Ber(πs), s = 1, ....., n

logit(πs) = Xβ(y) +W (y)

Zs|Ys ∼ Ga(µs, ρ), s = 1, ....., n

log(µs) = Xβ(z) +W (z)

(4.1)

where the probability of occurrence, πs, is modelled through the usual logit

link, and the mean abundance µs through its logarithm in location s. Xβ

represents the fixed effects of the linear predictor and W represents the spatio-

temporal structure of the data. Note that y and z supra-indices are used to

point out that within the usual Hurdle model, both β and W are independent

between sub-processes (e.g. bathymetric effect). Also note that we have

chosen to work with a Gamma distribution in order to restrict abundance

estimates to the positive real line, although the use of other distributions

could be discussed.

4.1.3 Method to assess persistence of a spatial process

As we already introduced, the purpose of this study is to propose a method

that allows us to assess the persistence of a given spatial process by means of

statistical inference. For that, we propose two spatio-temporal decompositions

of W , from now on Wst with locations denoted by s and time by t:
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� The first structure consists of decomposing Wst into different spatial

realizations at each time unit. This structure is a good proxy to those

processes where the spatial structure vary considerably among different

time units and unrelatedly among neighbouring times. In particular,

Wst = Wst

W st ∼ N(0,Q(κ, τ))
(4.2)

where Wst is decomposed in a different spatial realization W st at each

time t. In this case, all W sts shared a common covariance function

(same κ and τ , as in 1.15) to avoid having too many hyperparameters

in the model. This structure is likely to favour the goodness-of-fit of

temporally inconsistent spatial processes, i.e. when the distribution of

fish vary substantially between time events.

� The other structure treats time as a zero mean Gaussian random noise

effect Vt. This structure may perform well in those cases where mean

intensities vary unrelatedly among time events but the spatial realization

is similar for every time unit, that is,

Wst = Ws + Vt

W ∼ N(0,Q(κ, τ))

Vt ∼ N(0, σ2)

(4.3)

where Wst is decomposed in a common spatial realization Ws along with

a random noise effect Vt that absorb different mean intensities at each

time t. This structure may accommodate better those processes where

the spatial structure is somewhat persistent in time.

4.1.4 Results

All models obtained by combining environmental variables with the different

decompositions of the spatio-temporal structure were fitted and compared. In

this case, model selection was based on the Deviance Information Criterion
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(DIC) and the Log-Conditional Predictive Ordinates (LCPO) (see Section 1.7

for more information).

4.1.4.1 Hake recruitment results

All models including a quadratic term for bathymetry had better DIC and

LCPO values than those including only a linear relationship. The type of

substratum was discarded from the model because estimates of all level cat-

egories were centred on zero and had very high standard deviations. Table

4.1 shows a selection of the most representative models based on the DIC

goodness-of-fit and LCPO predictive quality measures for the occurrence and

conditional-to-presence abundance sub-processes.

Occurrence Abundance

Model DIC LCPO DIC LCPO

Only covariates 638.4 0.31 2854.7 1.88

Common spatial effect without covariates 518.4 0.40 2631.7 1.70

Covariates + common spatial + iid for year 493.9 0.23 2594.9 1.69

Covariates + yearly spatial effect 627.1 0.30 2707.3 1.80

Table 4.1. Model comparison for the hake occurrence and conditional-

to-presence abundance models.

Following the principle of parsimony, the selected models for both occur-

rence and abundance were the models with the spatio-temporal decomposition

in equation (4.6), which share a common spatial effect for all observations and

a random noise effect for year in addition to the bathymetric effect. In other

words, the selected models are those suggesting temporal persistence hake

recruits spatial distribution.



80
Chapter 4. Spatio-temporal structures with shared components for species

distribution modelling

Hake recruit occurrence

The selected model for the occurrence of recruits revealed the highest proba-

bility of presence along the continental shelf and the upper slope (Figure 4.4).

Accordingly, hake recruitment showed an occurrence peak at between 40 and

180 m depth (Figure 4.5 left panel). However, the model also identified some

low probability patterns along the continental shelf, especially off the Mar

Menor, in the waters off Barcelona and the Palamós Canyon, in the northern

corner of the study area 4.1.

(a) Mean (b) Standard deviation

Figure 4.4. Posterior mean (left) and standard deviation (right) for the

hake occurrence probability.

The range of the spatial effect was estimated to be around 50 kilome-

tres in the conditional-to-presence abundance model. The median variance

of the unstructured temporal effect for year was three orders of magnitude

smaller than that of the spatial variance (Figure 4.6). Yearly mean estimates

of the unstructured random effect for year showed a possible pattern that
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(a) occurrence (b) abundance

Figure 4.5. Mean predicted values at different depths of the hake oc-

currence model (left) and the conditional-to-presence abundance (right).

Each boxplot corresponds to a 20 meter interval.

may represent non-independence among neighbouring years mean intensities

(Figure 4.7, right panel).

Hake recruit abundance

The highest abundance areas were also located along the continental shelf

and upper slope (Figure 4.8), coinciding with the estimated effect of the

bathymetry. The bathymetric peak abundance was around the 80 to 180

m strata derived from the predicted abundance estimates in Figure 4.5 (right

panel). As opposed to the occurrence probabilities, abundance hotspots were

much more localised. In fact, the sizes of these areas were around 10 km in

diameter (very appropriate for protection purposes).

The range of the spatial effect was estimated to be around 35 kilometres

in the conditional-to-presence abundance model. The median variance of the



82
Chapter 4. Spatio-temporal structures with shared components for species

distribution modelling

Figure 4.6. Estimated distribution of the variance for the spatial effect

(left) and independent random effect for year (right) in the hake occur-

rence model.

(a) Mean (b) Standard deviation

Figure 4.7. Yearly mean estimates of the unstructured random effect

for year in the hake occurrence model (left) and contitional-to-presence

abundance model (right).

unstructured temporal effect for year was three times smaller than that of the

spatial variance (Figure 4.9) and the estimates of the marginal unstructured

temporal effect showed no apparent correlation (Figure 4.7, left panel).
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(a) Mean (b) Standard deviation

Figure 4.8. Posterior mean (left) and standard deviation (right) for the

hake contitional-to-presence abundance.

Hake nursery grounds

As we have seen in the results, both the occurrence and conditional-to-

presence abundances preferred a persistent spatial realisation as proposed in

equation 4.6. The models identified at least 3 high abundance and occur-

rence areas. A small hotspot was located a few kilometres off the city of

Valencia, while the highest abundance hotspot was located some kilometres

to the north-east, around the Columbretes Islands. This hotspot extended

transversally to the bathymetric slope and connected through a moderate

density region to an other high density area north of the Ebro delta. These

2 highest abundance hotspots encompass around 650 km2 of the total 18000

km2 area of the 50 to 200 m depth strata in the GSA 06. The areas close to

the Palamós Canyon and Mar Menor showed relatively high abundance esti-

mates, while the estimated occurrences were not that high. This behaviour
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Figure 4.9. Estimated distribution of the variance for the spatial effect

(left) and independent random effect for year (right) in the hake conditi-

onal-to-presence abundance model.

suggests that the aggregation patterns are diffuse, and hence these areas were

not considered to be important nursery grounds.

4.1.4.2 Cod results

In the case of cod, the structure selection process was performed in two steps

according to the temporal resolution of the data. First, we assessed the persis-

tence of cod distribution along the year by applying the model comparison in

4.1.3 to assess whether the distribution of cod in the first and third quarters

of the year were consistent. Secondly, we assessed the persistence of the model

in between years as with the hake recruitment.

The bathymetric effect in this case was modelled applying a second order

random walk model (RW2), which performs like Bayesian smoothing splines

(Fahrmeir and Lang, 2001) to allow for non-linear effects to be fitted. Ta-

ble 4.2 shows the WAIC goodness-of-fit and LCPO predictive quality measures

of the models.

Following the principle of parsimony, the selected model for the occurrence

has different spatial realisations each quarter and a consistent distribution
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Occurrence Abundance

Model WAIC LCPO WAIC LCPO

Persistent between quarters 10879 0.502 63020 4.106

Inconsistent between quarters 10342 0.477 61989 4.048

Persistent among years 10324 0.476 61910 4.07

Inconsistent among years 10392 0.479 61794 4.42

Table 4.2. Model comparison for the cod occurrence and conditional-to-

presence abundance models.

between years. Regarding the conditional-to-presence abundance, results also

show different spatial patterns in winter and summer but the assessment of the

abundance spatial distribution over the years is less clear. While WAIC scores

clearly benefit the temporarily inconsistent structure in the abundance model,

LCPO scores prefer the annually persistent structure. This might occur due to

the presence of some very influential observations (e.g. accidental big school

catches). Modelling cod may require some extensions from the usual Hurdle

model to accommodate large aggregation observations (schooling effect) as we

will mention in the conclusions of this PhD dissertation as future study lines

in fisheries distribution modelling.

Cod occurrence

The selected model for cod occurrence revealed highest presence probabilities

in the north-east of Denmark both in winter and summer (Figure 4.10). How-

ever, in summer expected probabilities are higher in the northern part of the

study area and the south-west (English channel). Cod showed a occurrence

peak in between the 100 and 150 metres (Figure 4.12) in both quarters of the

year.



86
Chapter 4. Spatio-temporal structures with shared components for species

distribution modelling

(a) Q1 (b) Q3

Figure 4.10. Posterior mean of the spatial effect in winter (left) and

summer (right) for cod occurrence.

Cod abundance

Figure 4.11 show the mean spatial effect for each quarter assuming persistent

distributions along the years. Note, especially in the third quarter, the patchy

effect of the spatial field. This is likely to happen due to the presence of a

more complex spatio-temporal pattern in cod abundances, as suggested by the

WAIC scores.

Cod abundance revealed again very high values in the north-east of Den-

mark in both quarters. In summer, abundances are generally higher around

Denmark. In both quarters a significant cold-spot is observed in the north-

east of the United Kingdom. Cod showed an abundance peak in between the

80 and 150 metres (Figure 4.12) in both quarters of the year, while less cod is

expected in deeper waters over winter than in summer. This could be due to

cod’s preference to cold waters.
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(a) Q1 (b) Q3

Figure 4.11. Posterior mean of the spatial effect in winter (left) and

summer (right) for cod conditional-to-presence abundance.

4.1.5 Discussion

The methodology proposed in Section 4.1.3 assesses the persistence of a spatial

process by comparing 2 spatio-temporal structures, while density hotspots are

identified by combining information from independent occurrence and abun-

dance sub-models. Consequently, compared to the methodology proposed by

Colloca et al. (2009), this approach not only reduces the number of steps

needed to assess the persistence of the spatial process but also includes infor-

mation on absence observations through the occurrence sub-model, so as to

better characterise the spatial presence of hake recruits. In fact, areas where

high abundance estimates concur with low occurrence estimates have not been

highlighted as important nursery grounds in the hake recruitment scenario.

Results suggest a persistent spatial distribution of hake recruit occurrence

and abundance in the western Mediterranean while in the case of cod, different

distributions are inferred for winter and summer (inconsistent pattern), con-

firming an already know phenomenon (ICES, 2014). Results are slightly more

complicated to interpret when assessing the temporal persistence of cod dis-
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Figure 4.12. Fitted marginal bathymetric effects for cod. Winter occur-

rence (top-left), summer occurrence (top-right), winter abundance (bot-

tom-left) and summer abundance (bottom-right).
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(a) Mean (b) Standard deviation

Figure 4.13. Yearly mean estimates of the cod unstructured random

effect for year in winter (left) and summer (right).

tribution at each quarter. While the spatial distribution of the occurrence of

cod seem to be persistent over the years for each quarter, WAIC and LCPO

scores suggest different models in the case of the abundance process. This

phenomena may be related to the presence of a number of high abundance

hauls (schooling effect outliers) or, as suggest by the patchy spatial effect ob-

served in summer (Figure 4.11 right panel), because the distribution is not

completely persistent over time. These results could be suggesting the fact

that more complex spatio-temporal models are necessary.

Moreover, a quick look at the fitted yearly mean estimates of the un-

structured random effects for year (Figures 4.7 and 4.13) may show temporal

correlation patterns. In the following Section (4.2), we propose another two

spatio-temporal structures to further diagnose the spatio-temporal behaviour

of the process under study. In addition, we investigate on an approach to deal

with the independence/non-independence of the occurrence and conditional-

to-presence abundance sub-processes.
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4.2 Comparing different spatio-temporal struc-

tures and shared components fore spatio-

temporally sampled semi-continuous data.

In the previous section, we have proposed the comparison of two spatio-

temporal structures to assess the temporal persistence of a spatial process.

However, it is rather obvious that the spatio-temporal correlation structure

of a process can be much more complex. Unfortunately, in the case of fish,

fishery surveys do not generally allow intra-annual temporal analysis of the

spatial distribution since they are usually performed only once per year (with

the exception of the IBTS survey in the NS). However, every process in na-

ture evolves in time, and therefore if fishery surveys are carried out during a

reasonably long period of time, we might be able to see certain patterns. Like-

wise, the basic principle of time series analysis is that long runs of repeated

measurements over time can display temporal tendencies and, with regards to

the analysis performed in this chapter, fitted temporal random effects in Sec-

tion 4.1 suggest that hake recruitment and cod abundances may have inferable

temporal patterns too (see Figures 4.7 and 4.13).

In this regard, one of the pillars of this section is to propose a handful

of spatio-temporal model structures to approach different types of spatio-

temporal data/process scenarios. Specifically, we propose four generic spatio-

temporal structures, including both structures proposed in the previous sec-

tion. The idea behind these structures comparison is to, by means of goodness-

of-fit criteria, characterise the overall spatio-temporal beahviour of the pro-

cess under study: opportunistic, persistent or progressive (in the sense that

it evolves with time) patterns. Such an spatio-temporal understanding of

fisheries distribution can be essential to fisheries spatial management policy

makers.

The second pillar of this chapter is to tackle the fact that the assumption
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of independence between the two sub-processes of a Hurdle model is rather

unnatural. In fact, in nature, low intensities are expected to be linked to

low probabilities of occurrence and vice versa. Acknowledging this is fun-

damental to fit robust process-environment relationships and thus to species

distribution modelling. In this vein, this section proposes the use of shared

component modelling (SCM) techniques (Tsiatis and Davidian, 2004; Knorr-

Held and Best, 2001) to fit common process-environment effects by embracing

information from both the occurrence and conditional-to-presence abundance

sub-processes.

4.2.1 Gaussian latent spatio-temporal structures for species

distribution modelling

The distribution of species not only changes in space but also in time. De-

pending on the nature of the process under study and the available sampling

resolution, the spatio-temporal behaviour of the data can vary. Consequently,

and as we have done in the previous section (4.1), comparing different spatio-

temporal model extensions provides further description and/or understanding

of the species under study. This will result in an improved predictive capacity

of our models, which, in cases like the EAFM, may be crucial for management

purposes.

In order to incorporate other spatio-temporal and smoothing effects, the

sub-models (4.1) introduced in the previous section can be rewritten as:

Yst ∼ Ber(πst), s = 1, . . . , n

logit(πst) = α(y) +

I∑
i=1

f
(y)
i (xist) + U

(y)
st

Zst|Yst ∼ Ga(µst, ρ), s = 1, . . . , n

log(µst) = α(z) +

I∑
i=1

f
(z)
i (xist) + U

(z)
st

(4.4)

where t = 1, ...., T is the temporal index and s = 1, ..., nt is the spatial location

of each sub-process and potentially different at each t. Ust represents the
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spatio-temporal structure of the models, xist is the value of an explanatory

variable i at a given st and f represents any latent model applied to the

covariates (linear, non-linear, etc.).

Based on this structure we propose the comparison of four basic decompo-

sitions for Ust in (4.4), each one allowing different degrees of flexibility in the

temporal domain of the spatio-temporal model. Please note that two of these

structures were already proposed in the previous section, but for the reader’s

ease are written again:

� The most flexible structure consists of decomposing Ust into different

spatial realizations of the same spatial field for each time unit. This

structure may be a good proxy to those processes where the spatial

structure vary considerably among different time units and unrelatedly

among neighbouring times. In particular,

Ust = Wst

W t ∼ N(0,Q(κ, τ))
(4.5)

where Ust is decomposed in a different spatial realization W t at each

time t while sharing a common covariance function (same κ and τ) to

avoid having too many hyperparameters in the model. This structure

is likely to favour the goodness-of-fit of temporally inconsistent spatial

processes, as mentioned in the previous section (4.1).

In R-INLA, these flexible structure that fits different spatial realizations

at each time and shares hyperaparameters can be fitted by including the

following syntax in the formula environment:

## Fit different spatial realizations at each time

# that share the hyperparameters of the covariance

formula <- Y ~ ... + f(spat, model=spde,

replicate=s.replicate)

where s.replicate is the temporal indexation that has previously been

created using the inla.spde.make.A() function (as in Chapter 1).
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� Another structure treats time as a zero mean Gaussian random noise

effect Vt. This structure may perform well in those cases where mean

intensities vary unrelatedly among time events but the spatial realization

is similar for every time unit,

Ust = Wst + Vt

W ∼ N(0,Q(κ, τ))

Vt ∼ N(0, σ2)

(4.6)

where Ust is decomposed in a common spatial realization Wst along

with a random noise effect Vt that absorbs the different mean intensities

at each time t. This structure may better accommodate those processes

where the spatial structure is somewhat persistent in time but intensities

vary unrelatedly through time.

� Alternatively, the mean intensities at each time t could show a temporal

progression or tendency. Such a case would best fit in our third proposed

structure, which includes a mean temporal trend effect g(t) through a

linear or non-linear effect,

Ust = Wst + g(t)

W ∼ N(0,Q(κ, τ))
(4.7)

where Ust is decomposed in a common spatial realization Wst and a

temporal trend g(t) to absorb the temporal progression of the process.

Processes where the spatial distribution is persistent but mean intensi-

ties show a temporal tendency will benefit from this structure.

In R-INLA, the structures in the previous equations (4.6) and (4.7) are

fitted using the following syntax in the formula environment:

## Fit different spatial realizations at each time

# that share the hyperparameters of the covariance

formula <- Y ~ ... + f(spat, model=spde) +

f(time, model="XXX", prior = prior)
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where XXX can be any one dimensional model available in R-INLA (see

http://www.r-inla.org/models/latent-models for all the available

latent models). For example "iid" stands for the unstructured random

effect in equation (4.6).

� Our final proposed structure for Ust incorporates both spatial and tem-

poral correlation of the data to accommodate those cases where the

spatial realizations change in a related manner over time. In particular,

Ust = Wst +Rst

W t ∼ N(0,Q(κ, τ))

Rst =

K∑
k=1

ρkUs(t−k)

(4.8)

where Ust is decomposed in a common spatial realization Wst and an au-

toregressive temporal term Rst expressing the correlation among neigh-

bours of order K. This structure may be favoured when the spatial

realization varies between different times t but not as much as in (4.5).

Note also that this structure could be applied along with that in (4.7).

This spatio-temporally correlated model can be fitted using the following

syntax in the formula environment of R-INLA:

## Fit a spatio-temporal (spde + ar(p)) field

formula <- Y ~ ... + f(spat, model=spde,

group=s.group,control.group = list(

model="ar",order = p))

where s.group is the temporal indexation that has previously been cre-

ated using the inla.spde.make.A() function and p is the order of the

auto-regressive temporal correlation term.

http://www.r-inla.org/models/latent-models
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It is rather evident that we could have proposed several more complex

temporal structures. Unfortunately, as we previously mentioned, the temporal

resolution of spatio-temporal fisheries datasets is typically too low to fit highly

structured models. Nevertheless, comparing the goodness-of-fit of these four

basic spatio-temporal structures (4.5), (4.6), (4.7), and (4.8) allows us infer the

general spatial behaviour of the process over time, which can per se provide

very useful information for decision making.

4.2.2 Shared component analysis for Hurdle models

As we saw in the previous section 4.1, many spatio-temporally sampled abun-

dance processes are prone to zero value observations at non-favourable condi-

tions (e.g. rain, species abundance, plant coverage, chemical concentrations,

etc.), and are thus measured continuously in the [0,∞) interval, resulting in

semi-continuous datasets. The absence of distributions capable of plugging

into such datasets has persuaded scientists to apply two-part or Hurdle mod-

els (Martin et al., 2005) by decomposing the dataset into two independent

sub-processes, an occurrence process and a conditional-to-presence continuous

process. However, in nature both sub-processes are often related: low intensi-

ties are linked to low probabilities of occurrence and vice versa. Fitted effects

may then be incomplete due to substantial information being ignored in each

sub-process, such as zero observations in the abundance model and observed

abundances in the occurrence model.

The widely used approach in (4.4) formulates independent models for each

of the sub-processes of the two-part model. However, ecologically speaking,

the assumption of independence between the occurrence and abundance sub-

processes may not be a natural approach, and therefore fitted effects in each

independent sub-process could be biased due to the lack of substantial in-

formation when fitting such effects. For instance, this approach inherently

assumes that any abundance has equal weight in the probability of presence

and that zero observations have no impact on the abundance model. However,

from an ecological point of view, such assumptions are likely to be erroneous
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and should be tackled in some way to ensure that fitted process-environment

effects share information from both sub-processes. A good approach may be

the use of shared components in both linear predictors by means of joint

modelling.

Joint modelling has been used to address similar problems, e.g. to char-

acterize the relationship between a longitudinal process and a time-to event

process (Hogan and Laird, 1997; Henderson et al., 2000). This approach was

also introduced in spatial statistics by Knorr-Held and Best (2001) and further

developed by Held et al. (2005) to allow for more than two processes sharing

a model component. In the scope of two-part models, SCM may allow us to

combine information from the occurrence and abundance sub-processes and

therefore fit more robust model components.

In order to introduce SCMs in (4.4) and fit common model components

that share information from both sub-processes, we propose modelling both

sub-processes together:

logit(πst) = α(y) +

I∑
i=1

fi(xis) + Ust

log(µst) = α(z) +

I∑
i=1

θifi(xis) + θUUst

(4.9)

where notation is the same as in (4.4), but fitted effects, fi(xis) and Ust,

are now common and have been multiplied in one of the predictors by some

unknown parameters, θi and θU , in order to scale the effects between both

sub-processes. Note that it is not necessary for all effects to be shared, there

are thus as many models to compare as possible combinations of effects in our

linear predictors.

In summary, in this section we have proposed four different spatio-temporal

structures and a case dependent number of shareable effects θi, θU as an ap-

proach to tackle spatio-temporally sampled semi-continuous processes. This

may imply a high number of comparable model structures (summing approxi-

mately 4∗2i, where i is the number of terms in the linear predictor), and thus

a large number of relatively complex models to compare. R-INLA again (as it
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has been along all this thesis) becomes an ideal candidate to deal with these

models thanks to its computational efficiency as discussed in chapter 1.

4.2.3 Case study: hake recruitment

In this section we have used the recruitment dataset to compare all the result-

ing models obtained by implementing the four spatio-temporal structures and

the shared component analysis described in sections 4.2.1 and 4.2.2 respec-

tively. With respect to the bathymetric and temporal trend effects, we fitted

them by means of smooth second order random walk (RW2) latent models

(Rue and Held, 2005) that resemble Bayesian smoothing splines (Fahrmeir

and Lang, 2001). In the case of the fourth temporal structure in equation

(4.8), we only considered first order autoregressive (AR1) models due to the

rather short time series of thirteen years available.

Our lack of prior information about most model parameters led us to adopt

an objective Bayesian approach (Bayarri and Berger, 2004) and to assign

vague prior distributions as implemented by default in R-INLA. Only the prior

of the bathymetric RW2 precision was changed to a Loggamma(2, 0.00005)

to restrict its smoothing capacity and avoid overfit. This prior was selected

visually to allow a sensible process-covariate relationship after scaling the RW2

model to obtain a generalized variance equal to 1 (Sørbye and Rue, 2014). A

sensitivity analysis was performed to verify that the posterior distributions

concentrated well within the support of all the priors.

4.2.4 Results

All the resulting model structures were fitted and compared on the basis

of WAIC scores and LCPO scores. As highlighted in the WAIC scores of

Table 4.3, two structures performed reasonably better than the rest. Both

models include a first order autoregressive temporal term, with independent

bathymetric effects in the occurrence and the abundance sub-processes in

model 14, while model 15 fits a shared bathymetric effect to both.
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Model WAIC LCPO Model WAIC LCPO

1 X + W + Vt 1916.9 1.22 10 X + W + g(t) 1931.6 0.66

2 X + W + g(t) 1925.4 1.23 11 X + W + Vt 1931.6 0.65

3 X + Wt 1954.9 1.46 12 X + W + Vt 1975.6 0.72

4 X + W + Vt 1969.9 0.63 13 X + W + Vt 1979.6 0.69

5 X + W + Vt 1922.3 0.65 14 X + W + Rst 1836.2 1.27

6 X + W + Vt 1913.6 0.53 15 X + W + Rst 1839.9 0.62

7 X + W + g(t) 1917.1 0.54 16 X + W + Rst 2097.5 0.65

8 X + W + g(t) 1977.7 0.62 17 X + W + Rst 2098.1 0.80

9 X + W + Vt 1971.6 0.70

Table 4.3. Model fit scores for the most representative model structures.

X = bathymetry, W = spatial effect, Wt = yearly spatial realisations , Vt

= unstructured random effect for time, Rst = first order autoregressive

structure for time, g(t) = smooth temporal trend for time. Bold terms

= shared components. The highlighted WAIC scores represent the models

that perform best.
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Figure 4.14. Fitted smooth bathymetric effects in models 14 and 15

(Table 4.3). The solid line represents the mean of the effect and the

dashed lines its 95% credibility interval. The marked box highlights the

importance of SCM to fit a biologically more natural bathymetric effect

for hake recruit abundance.
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We finally selected model 15 over model 14 for a number of reasons. Firstly,

model 15 fits a biologically more natural bathymetric effect (see Figure 4.14),

where the abundance of hake recruits decreases gradually after the optimum

150-200 meter strata. Secondly, model 14 clearly overfits the bathymetric

effect of the abundance sub-process due to the lack of zero observations in

it (see highlighted box in Figure 4.14). Interestingly, even if WAIC scores

slightly prefer model 14 over model 15, the predictive LCPO scores clearly

benefit model 15. Lastly, model 14 is unable to predict hake recruit abundance

in the whole sampled depth range without extrapolation.

The selection of an autoregressive temporal term in the model suggests

that there is certain relation between temporally neighbouring points in space.

Moreover, such temporal correlation term allows a better informed interpola-

tion and thus a better representation of the distribution of hake recruitment

in the western Mediterranean. Indeed, as the posterior predictive maps in

Figures 4.15 and 4.16 show, the recruitment of hake is mainly concentrated

in the central and northern parts of the study area (as already discussed in

the previous section). We can observe smooth changes in abundance and the

distribution of hake recruitment hot-spots from year to year (see Figures 4.17

and 4.17), which may provide important insight for management purposes.

Concerning the spatial or spatio-temporal fields, shared components did

not improve fitted models, as also occurred in Quiroz et al. (2015). In our

case, the variability of the occurrence sub-process as a function of distance

differed too much from that of the abundance sub-process. Consequently, the

fitted joint spatial field failed to satisfy either sub-model, particularly so in

the case of the abundance sub-process. This can be seen in Figure 4.19, where

the fitted spatial covariance functions of the occurrence and the abundance

sub-processes are very different. The same occurred in the case of the autore-

gressive term, where the independent occurrence (posterior median = 0.98;

95% CI = [0.95,0.99]) and abundance estimates (posterior median = 0.87;

95% CI = [0.67,0.95]) also differed widely, and thus the shared component

(posterior median = 0.95; 95% CI = [0.87,0.98]) fitted neither of the two,

especially the abundance sub-process.
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(a) 2000 (b) 2001

(c) 2002 (d) 2003

(e) 2004 (f) 2005

Figure 4.15. Yearly hake recruitment posterior predictive mean abun-

dance maps (2000 to 2005).
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(a) 2006 (b) 2007

(c) 2008 (d) 2009

(e) 2010 (f) 2011

(g) 2012

Figure 4.16. Yearly hake recruitment posterior predictive mean abun-

dance maps (2006 to 2012).
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(a) 2000 (b) 2001

(c) 2002 (d) 2003

(e) 2004 (f) 2005

Figure 4.17. Yearly hake recruitment posterior spatial effect (2000 to

2005).
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(a) 2006 (b) 2007

(c) 2008 (d) 2009

(e) 2010 (f) 2011

(g) 2012

Figure 4.18. Yearly hake recruitment posterior spatial effect (2006 to

2012).
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Figure 4.19. Fitted Matérn covariance functions in the unit scale. The

solid line represents the joint covariance function, the dotted line repre-

sents the covariance function for independent occurrence model and the

dot-dashed line that for the independent abundance model.

4.2.5 Discussion

In this section we have presented a model structure comparison for spatio-

temporally sampled datasets as an approach to infer further information on

the distributional behaviour of a process over time. Furthermore, we have pro-

posed the use of SCM as an effective approach to dealing with fitted effects in

two-part models for semi-continuous data. By using the proposed approaches,

we have significantly improved the information available for the management

of hake recruitment in the western Mediterranean. The same approach could

be used to improve the fit and prediction of other spatio-temporally sampled

semi-continuous processes. In this regard, the INLA package for R (Rue et al.,

2009) not only provides a computationally efficient tool to fit complex models

but also a wide range of modelling possibilities in a reasonably user-friendly

environment.

Acknowledging the spatio-temporal behaviour of a natural resource is cru-
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cial for management purposes and decision making. For this reason, the spatio

temporal structures proposed in section 4.2.1 make it possible to identify four

basic, yet informative, spatio-temporal behaviours. Basically, these structures

allow us to distinguish the extent to which the spatial distribution of the

process under study varies along the sampled time intervals. For instance, if

the spatial distribution of the process varies unrelatedly from time to time,

different spatial realizations for each time will be necessary to fit our data. On

the contrary, if the spatial structure is reasonably persistent, a unique spatial

realization may be sufficient, to which either a zero mean random effect or

a temporal trend could be fitted to absorb the different mean intensities of

the process over time. Lastly, if the spatial realization varies over time but

in a structured manner, as in the hake recruitment example, a correlation

structure will suit best our data.

Regarding the use of SCM in semi-continuous processes, this study has

proved that fitted environment-process effects can be improved by combining

information on occurrence and conditional-to-presence abundance. However,

common model selection scores such as WAIC may benefit independent two-

part models over the use of shared components due to overfit effects in inde-

pendent two-part models. In such cases, cross-validation scores such as LCPO

may help us select the best model.

However, in the case of the spatial field, fitting a shared component in

semi-continuous processes may not always perform well. Generally speaking,

the variability of a presence-absence sub-process as a function of distance, may

not be comparable to that of the abundance sub-process, and hence SCM may

not improve two-part models as also occurred in Quiroz et al. (2015).

Lastly, we would like to mention the possibility of extending the spatio-

temporal structure comparison for modelling the distribution of species pro-

posed in here to other spatio-temporally sampled processes. Similarly, higher

order temporal structures could be proposed to infer more informative be-

haviours of the process under study when the temporal resolution of the data

allows.
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4.3 Conclusions

Fishery research surveys play a very important role in the management of our

fisheries. Fishery survey data, or fishery independent data, cover very wide

areas and allow us understand the macroscopic view of the fisheries. This

is specially relevant under a global fisheries spatial management framework,

i.e. the ecosystem approach to fisheries management (EAFM) (FAO, 2003),

because it allows us quantify the importance of marine areas in the macro-

scale, which is the scale at which marine protected areas should be designed

(Fenberg et al., 2012).

As we have seen along this chapter, spatial statistical models can play a

key role in the assessment of the EAFM. For instance, assessing the spatial

persistence of nursery areas and spawning areas of different fish species is of

great value (Beck et al., 2001; Gillanders et al., 2003; Colloca et al., 2009). In

this regard, the approach proposed in Section 4.1 to assess such persistence

has proven to work fairly well in both the hake recruitment and the cod

processes. In fact, in the case of the cod fishery, results confirmed what

fishery experts already knew, that cod has different spatial distributions in

summer and winter (ICES, 2014). Nevertheless, it is important to note that

the model comparison in Section 4.1 assesses a relative spatial persistence of

the process under study. An example of this may be the confusing model

selection scores obtained in the yearly spatial distribution of the cod fishery

and its resulting patchy distribution in the persistent model.

In Section 4.2, we have further developed the spatio-temporal in Sec-

tion 4.1 structure comparison by incorporating both a spatially persistent

model with a temporal mean trend effect and a spatio-temporally correlated

structure. This way, we have been able to infer further information on the

hake recruitment process of the Spanish Mediterranean, where even though

hake recruit hot-spots are located in similar places every year (relatively per-

sistent), some distributional changes are inferred. Similarly, and following the

slightly confusing results obtained with cod in Section 4.1, it is likely that the

spatio-temporally correlated model proposed in equation (4.8) will produce
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more meaningful results.

This chapter has also investigated on the fitted effects of Hurdle models

in SCM. From a biological point of view fitting independent occurrence and

conditional-to-presence abundance sub-processes in a Hurdle model is unnat-

ural at the very least because we expect that low intensities are linked to

low probabilities of occurrence and vice versa. In this vein, this chapter has

also proved that fitting shared components in the occurrence and conditional-

to-presence abundance processes significantly improve fitted process-covariate

relationships. The reason for this improvement relies on the fact that this way

zero abundance observations do influence the abundance model and likewise,

different abundance observations affect the occurrence probability.

Regarding model selection in shared spatial component models, usual

within-sample model selection scores such as WAIC may not perform well

(as also occurred in the case of preferential sampling problem of Section 3).

These scores may benefit independent two-part models over the use of shared

components due to overfitted effects in independent two-part models. In this

case, leave-one-out cross-validation scores such as LCPO performed better

in this study. Nevertheless, this topic requires further investigation as some

influential observations may have helped the leave-on-out predictive score to

identify the overfitting issue of independent Hurdle models.

In the case of the spatial field, fitting a shared component in semi-continuous

processes may not perform that well. Generally speaking, the variability of a

presence-absence sub-process as a function of distance, may not be compara-

ble to that of the abundance sub-process, and hence SCM may not improve

two-part models as also occurred in Quiroz et al. (2015).

The method to asssess the persistence of a spatial process over

time presented in Section 4.1 has been published in the Marine

Ecology Progress Series (MEPS) journal (http://www.int-res.com/

journals/meps/meps-home/) (Paradinas et al., 2015).

Similarly, the comparison of different spatio-temporal structures

http://www.int-res.com/journals/meps/meps-home/
http://www.int-res.com/journals/meps/meps-home/
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with shared components for species distribution modelling presented

in Section 4.2 has been sent for peer reviewed publication.
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Chapter 5

Point-referenced vs

transect data

Previous chapters faced fishery dependent and independent data by means of

model based geostatistics (Diggle et al., 1998), which rely in point-referenced

observations to calculate Euclidean distances among them. However, as all

fishery spatial studies have done to date, we obviated the fact that a trawling

operation represents a transect in space, not a point. Until now, we have used

the typical point-referenced representation at the centroid of the fishing opera-

tion. A priori, we assume that the error in the point-referenced representation

is negligible when the study area is big with respect to the transect size. But,

what if the study area is a small-scale fishing ground? Then the representa-

tion of the fishing operation by its centroid point could be problematic as can

be seen in Figure 5.1.

In this setup, we face two problems. On the one hand, a fishing transect

is likely to catch fish at different habitats (characterised by different depths

and types of substratum for example) while we typically do inference based

on the value of these covariates in the centroid of the fishing operation alone.

On the other hand, when applying geostatistics, the spatial random effect

111
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Figure 5.1. Transect and centroid representation of onboard sampling

data in the southern Spanish Mediterranean. Lines represent the transect

performed by the fishery operation. Red dots represent the centroid of

each fishing operation.

is characterised by a covariance matrix that is typically based on Euclidean

distances. However, as we can see in Figure 5.1, it is rather obvious that the

distance between two fishing hauls is not necessarily the distance between the

centroid points of the transects.

This chapter will investigate on the sensitivity of point-referenced repre-

sentation of fishery transects to approximate the underlying spatial fields and

examine the applicability of a new approach to estimate the underlying spatial

field when enough data is available.
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5.1 An algorithm to approximate the spatial

field by overlaying fishery transects

In this section we describe the steps of an algorithm that we propose to

approximate the underlying spatial field when enough data is available and

fishery transects cross over enough times as in Figure 5.1. The proposed

algorithm goes as follows:

1. Create a grid of the study area with the resolution of interest (n×m).

2. Draw a transect line between the starting and finishing points of the

fishing operation.

3. Set a d distance and divide the transect line into equidistant points of d

distance.

4. Assign proportional abundance from the catch to each point of the tran-

sect. For example, 1000 kilograms divided into 200 points results in 5

kilograms assigned to each of them.

5. Aggregate at each cell the number of points that fall in it.

6. Do the same with every haul by going back to step 1.

7. Finally, compute the mean abundance at each cell of the grid.

The principle behind this approach is that if enough data were available

and transects cross over enough, this algorithm could be able to approximate

the distribution of fish in the study area, i.e. the underlying spatial field.

To test the performance of this algorithm we have applied it into two types

of simulated spatial fields. Simulation study 1 (Section 5.2) tests the problem

derived from the application of geostatistics & kriging based on Euclidean

distances, while the real distance between two transects is way more com-

plex (see Figure 5.1). Simulation study 2 (Section 5.3) tests the fact that a

fishing transect can trawl at different habitats but we typically do inference
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based only on the centroid value of the covariates. Lastly, the method has

been tested in a real dataset (Section 5.4). In the simulation studies, results

were compared with point-referenced regression models to assess both, the

estimation error of the algorithm and the predictive error of point-referenced

regression models.

5.2 Simulation study 1

The first simulation study aims to investigate the fact that the Euclidean

distance between two transect centroids may not properly represent the dis-

tance between the two transects. As a consequence, applying geostatistics

over these point-referenced representations could lead to biased results. In

order to test for this, we have contrasted the results obtained by using the al-

gorithm proposed in Section 5.1 and those obtained by means of conventional

geostatistical methods in a set of simulated fields.

We have created three simulated Gaussian fields (GF) of different com-

plexities over a grid. These simulated fields have been created using the

RandomFields package for R and a Matérn covariance function. In all three

simulated GFs the smoothness parameter (ν) has been fixed to 2 and different

variance and scales have been used to allow for different types of fields to be

fitted. After the simulation, the intensities of each GF have been scaled to be

in between 0 and 1 for the sake of comparability.

By means of the different parametrisations of the Matérn, our aim has

Simulated field ν Var Scale

GF1 2 8 .5

GF2 2 12 .3

GF3 2 18 .1

Table 5.1. Different parametrisations of the 3 simulated Gaussian fields.
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been to create GFs with different levels of complexity and heterogeneity. The

smoothest simulated field has been the first simulated field, labelled as GF1

in the top-left panel of Figure 5.2. Then the second field, labelled as GF2

in the top-right panel of Figure 5.2 and lastly GF3 in the bottom panel

of Figure 5.2, has been the most complex of all. In summary, the level of

heterogeneity/complexity of the GFs increased from GF1 to GF3 (Figure 5.2).

(a) GF1 (b) GF2

(c) GF3

Figure 5.2. Simulated Gaussian fields using a Matérn covariance function

with different parameters summarised in Table 5.1
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5.2.1 Simulating fishing operations

The next step was to simulate fishing operations in the study area. This was

done by randomly choosing a set of starting and ending points spaced by

a minimum and maximum distance in between. In this case the minimum

and maximum haul lengths were approximately 10% and 50% of the longest

distance in the study area. The catch of each transect has been computed by

summing up the proportional catch at each cell using the same approach as

in step 3 of 5.1 but inversely.

5.2.2 Performance testing

The performance of both, the proposed algorithm (Section 5.1) and the usual

geostatistical approach (ordinary kriging in this case) applied over the cen-

troid of the fishing operation have been tested for the three simulated Gaus-

sian fields. The performance testing of both methods has been performed at

two levels; comparing the representation error of point-referenced data and

transect representation with the real values of the field; and comparing the

results obtained with both methods agaithe real field. To assess these, we

have used Mean Absolute Error (MAE) (Willmott and Matsuura, 2005) as a

measure of the overall out-of-sample predictive score..

Data representation errors

As Figure 5.3 shows, in all three cases the representation error of the point-

referenced geostatistical approach was smaller than that obtained by applying

the algorithm proposed in Section 5.1. However, as the complexity of the

underlying field increased, errors tended to get closer (see bottom panel in

Figure 5.3).

Prediction/estimation errors

Similarly, the mean absolute predictive errors of the kriging interpolation ap-

proach was smaller than the estimations obtained by applying the algorithm
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Figure 5.3. Mean absolute errors in the centroid data representation of

transects using the conventional point-referenced approach (in blue) and

the algorithm proposed in Section 5.1 (in black). Solid lines represent the

mean and dashed lines the 95% confidence intervals of the mean absolute

errors.
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(Figure 5.4). Nevertheless, as with the representation errors, when the com-

plexity of the underlying field increased errors tended to get closer (see bottom

panel in Figure 5.3).

Figure 5.4. Mean absolute errors of the results obtained using the con-

ventional point-referenced geostatistical approach (in red) and the algo-

rithm proposed in Section 5.1 (in black). These errors were computed

only in the cells were the algorithm had estimates. Solid lines represent

the mean and dashed lines the 95% confidence intervals of the mean abso-

lute errors.
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5.2.3 Resulting maps

Although mean absolute errors proved the better performance of geostatistical

& kriging methods over the transect superposition algorithm (5.1), at a rea-

sonable number of samples the resulting maps of the algorithm were not that

different from the real/simulated field. Figures (5.6, 5.8, 5.10) show the maps

obtained by applying Bayesian geostatistical models and Figures (5.5, 5.7,

5.9) the maps obtained by applying the algorithm proposed in this chapter at

N = 100, 300, 500, 750, 1300, 2000 number of simulated sampling hauls.

5.2.4 Discussion: simulated study 1

Results suggest that the use of geostatistics & kriging in small-scale fishing

grounds produce good predictive estimates despite the fact that the use of

Euclidean distances between fishery operations is not the most appropriate

measure. Furthermore, we have seen that point-referenced geostatistical re-

gression methods perform reasonably better than the algorithm (5.1) in most

cases. Only when the heterogeneity of the underlying spatial field is big (in the

scale of the transects), the estimation errors obtained through the proposed

algorithm are similar to the predictive errors of kriging.

It is important to note, however, that when enough data is available, the

proposed algorithm can approximate fairly well the underlying spatial field.

This is specially relevant due to the simplicity and almost null computational

requirement of the algorithm.

5.3 Simulation study 2

The second simulation study aims to investigate the fact that a fishery tran-

sect is likely to fish in different habitats (e.g. different bathymetries and types

of substratum) while, when setting up point-referenced models, only the val-

ues extracted in the centroid of the fishing operations are used. In order to

test for this issue, we have created a new simulated field and have contrasted

the results obtained by means of the algorithm proposed in Section 5.1 and
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Figure 5.5. Results obtained by applying the proposed algorithm in the

first simulated Gaussian field (top-left panel in Figure 5.2) at a different

number of simulated sampling hauls.

Figure 5.6. Results obtained by applying ordinary kriging in the first

simulated Gaussian field (top-left panel in Figure 5.2) at a different num-

ber of simulated sampling hauls.
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Figure 5.7. Results obtained by applying the proposed algorithm in the

second simulated Gaussian field (GF2) (top-right panel in Figure 5.2) at a

different number of simulated sampling hauls.

Figure 5.8. Results obtained by applying ordinary kriging in the sec-

ond simulated Gaussian field (GF2) (top-right panel in Figure 5.2) at a

different number of simulated sampling hauls.
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Figure 5.9. Results obtained by applying the proposed algorithm in the

third simulated Gaussian field (GF3) (bottom panel in Figure 5.2) at a

different number of simulated sampling hauls.

Figure 5.10. Results obtained by applying ordinary kriging in the third

simulated Gaussian field (GF3) (bottom panel in Figure 5.2) at a different

number of simulated sampling hauls.
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those obtained by means of conventional geostatistical methods in a determin-

istically simulated field.

The spatial field has been simulated using a three-level categorical variable

(category A = +4, category B = +10, category C = +6) to resemble the type

of substrate, and a non-linear continuous variable to resemble the bathymetric

effect on a marine species (Figure 5.11). Let Y be the simulated abundance

Y = βi + f(D) + ε, (5.1)

where i stands for each of the levels of the categorical variable (see right-panel

in Figure 5.11), f(D) stands for the smooth bathymetric effect (see left-panel

in Figure 5.11) and ε represents an added N(0, 1) error term in the simulation

process.

Figure 5.11. Simulated bathymetric (left panel) and substrate (right

panel) effects.

The resulting spatial field (bottom panel in Figure 5.12) has been created

over a bathymetric map (top-left panel in Figure 5.12) and a type of substrate

map (top-right panel in Figure 5.12) of two unidentified areas of the Spanish

Mediterranean.
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Figure 5.12. Simulated case study maps. Bathymetry map in the top-

left panel, type of substrate map in the top-right panel and the resulting

map by applying the equation (5.3) in the bottom panel.
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5.3.1 Simulating fishing operations

Fishing operations have been simulated using the same approach as in the

previous simulation study (Section 5.2). We randomly chose a set of starting

and ending points spaced by a minimum and maximum distance in between.

As before, the minimum and maximum haul lengths have been approximately

10% and 50% of the longest distance in the study area. The catch of each

transect has been computed by summing the proportional catch at each cell

using the same approach as in step 3 of 5.1 but the other way around.

5.3.2 Performance testing

In this case, we have only tested for the estimation/predictive capacity of

the transect superposition algorithm and point-referenced regression. The

point-referenced data representation errors were not tested because, as the

previous simulated study showed, it is clear that it performs better than the

proposed algorithm (Section 5.1). For that, we have modelled point-referenced

representations using Generalised Additive regression Models (GAM) using

the mgcv package and applied the algorithm in Section 5.1 to the data. Results

were once again compared with the simulated spatial field using mean absolute

errors.

As Figure 5.13 shows, the representation error of the point-referenced geo-

statistical approach was smaller than that obtained by applying the algorithm

proposed in Section 5.1.

5.3.3 Resulting maps

Although mean absolute errors proved once again the better performance of

point-referenced regression methods over the transect superposition algorithm

(5.1), at a reasonable number of samples the resulting maps of the algo-

rithm were not that different from the real/simulated field. Figure 5.15 shows

the maps obtained by applying the usual point-referenced model while Fig-

ures 5.14 shows the maps obtained through the algorithm proposed in this
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Figure 5.13. Mean absolute error of the results obtained using point-

referenced GAMs (in red) and the algorithm proposed in Section 5.1 (in

black). These errors were computed only in the cells were the algorithm

had estimates. Solid lines represent the mean and dashed lines the 95%

confidence intervals of the mean absolute errors.

chapter at N = 100, 300, 500, 750, 1300, 2000 number of simulated sampling

hauls.

5.3.4 Discussion: simulated study 2

Results suggest that applying point-referenced regression methods produce

good predictive estimates, despite the fact that in reality a fishery operation

can fish at different habitats, not only in that of the centroid of the operation.

Moreover, as in the simulation study 1, we have seen that point-referenced

regression methods perform reasonably better than the algorithm in most

cases.

Nevertheless, this study confirms that if enough data is available and cross-

over enough times, the proposed algorithm can approximate fairly well the

underlying spatial field. This is specially relevant due to the simplicity and

almost null computational requirement of the algorithm.
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Figure 5.14. Results obtained by applying the proposed algorithm in

the simulated field (bottom panel in Figure 5.12) at a different number of

simulated sampling hauls.

Figure 5.15. Results obtained by applying generalized additive models

in the simulated spatial field (bottom panel in Figure 5.12) at a different

number of simulated sampling hauls.
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5.4 Case study

In this section we have presented a practical application of the proposed algo-

rithm (5.1) against point-referenced regression models in a real case scenario.

To do so we have used on-board sampling data in a small-scale fishing ground.

Trawl discard data were collected according to the European Comission (2009)

decision as commented in chapter 2. More, specifically, this study has been

based on bottom trawl data collected in the southern Spanish Mediterranean

Sea. The database was comprised by the starting and ending points of the

fishing operations and the caught fish kilograms segregated by species.

The database contained a total of 218 observations and more than 100

species. For the purpose of this study we chose three economically important

fish species; the blackbellied angler Lophius budegassa; the surmullet Mullus

surmuletus; and the red mullet Mullus barbatus. Each species specific subset

had a different distribution of zero observations, i.e. semi-continuous nature.

For simplification reasons, only those hauls with non-zero abundance have

been used in each of the subsets acknowledging that resulting modelling maps

are not fully correct. As a consequence the size of the final subsets for each

species were: 91 samples for the blackbellied angler, 172 samples for the

surmullet and 174 samples for the red mullet.

The point-referenced modelling of fish distribution was performed using

ordinary kriging, i.e. a constant mean (intercept) and a geostatistical term:

Yji ∼ N(µji , ρj)

µji = αj +Wi

Wji ∼ N(0, Q(κj , τj))

α ∼ N(0, 0)

(2 logκ, log τ ) ∼MN(µ, ρ)

(5.2)

where j represents the species under study, i are the species specific obser-

vation locations, α represents the intercept of each of the models and W

represent the geostatistical terms of each of the models. Finally, the prior
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distributions of the models were the default implemented in R-INLA.

5.4.1 Results

The maps that result from the geostatistical models show obvious unnatural

behaviours due to; the simplicity of the models proposed in equation (5.2); the

stochastic reality of natural systems; the border effect; and the fact that we

dismissed all hauls with zero value observation in each species specific subset

of the data. However, acknowledging these factors, resulting maps give a good

enough perspective of fish distribution patterns to compare with the maps

generated by the algorithm.

Interestingly, results show quite similar patterns in the case of the black-

bellied angler (maps on the top of Figure 5.16) and the surmullet (maps on

the middle of Figure 5.16) for both methodologies. In the case of the red

mullet (maps on the bottom of Figure 5.16), both methods show a marked

hot-spot in the center of the study area that extends towards the west. This

western semi-high abundance area cannot be very well identified in the map

produced by the algorithm because there are not many fishing transects in the

area (see the non-trawled area in dark-blue) and the algorithm does smooth

its results, yet.

5.4.2 Discussion: real case scenario

This part of the study aimed to test the application of the proposed algorithm

in a real case scenario. For this purpose we have used an on-board dataset

located in a small fishing ground of the southern Spanish Mediterranean.

As expected, due to the low number of samples and their non-random

distribution, results were not as satisfactory as in the simulation studies (Sec-

tions 5.2,5.3). However, the general distributional pattern of both approaches

was rather similar.

As compared to the geostatistical approach, it is notorious that the algo-

rithm does not smooth the estimated abundances. A post smoothing treat-

ment, e.g. linear interpolation, of the resulting estimates could help us predict
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Figure 5.16. Results obtained by applying ordinary kriging (left) and the

proposed algorithm (right) in the blackbellied angler Lophius budegassa,

the surmullet Mullus surmuletus and the red mullet Mullus barbatus from

top to bottom respectively.
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at unsampled locations and smooth the discontinuous nature of its results.

Further research should assess the performance of different smoothing tech-

niques.

5.5 Conclusions

The aim of this chapter has been to test the performance of the point-

referenced representation of fishery transects and the predictive capacity of

usual kriging interpolation techniques based on Euclidean distances in small-

scale fishery data. In this vein, we have also proposed an alternative algorithm

to approximate the underlying spatial field by superposition of fishery tran-

sects in the study area.

To test the performance of these approaches we have used two simula-

tion studies. In all cases, the point-referenced representation and regression

have performed better than the transect algorithm. However as the com-

plexity/heterogeneity of the simulated spatial field increased (see GF3 in Fig-

ure 5.2), mean absolute errors tended to resemble more. The performance of

the algorithm and the geostatistical approach have also been tested and com-

pared in a real dataset of the southern Spanish Mediterranean. Again, results

have shown similar distributional patterns in both cases, although the results

obtained by the algorithm were not as smooth as in the simulation studies.

Further research on post spatial smoothing of the estimates could improve the

actual estimations and allow us predict at unsampled locations.

Regarding the usual point-referenced representation of fishery transects,

this chapter has allowed us to conclude that it performs rather well even

if the spatial scale of the study area is small compared to the size of the

transects. This conclusion applies to both; the characterization of process-

covariate relationships based on their value in the centroid of the haul; and

the use of geostatistical techniques based in Euclidean distances between the

centroids of the fishery transects.

Concerning the performance of the algorithm in Section 5.1, this chapter

showed that, even if the usual point-referenced regression method approximate
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better the underlying spatial field, the algorithm performs fairly well too. In

fact when the complexity of the underlying spatial field is high and enough

data is available, it can perform almost as well as the geostatistical approach.

Unfortunately, the proposed algorithm requires a good amount of data and a

good crossover rate of the fishery transects.

As a final remark, we would like to mention that, taking into account the

simplicity of the proposed algorithm, its overall performance is fairly good.

The simplicity of the method is specially relevant when self-updating tools

want to be created. In the commercial fishery world two sources of information

are available to geolocate fishing operations, the Vessel Monitoring System

(VMS) and the Automatic Identification System (AIS). These data, matched

with log-book or sales notes data of the vessels as a proxy of the catch, could

provide an immense database that could automatically provide updated fish

distribution maps using the algorithm.



Chapter 6

Conclusions and future

work

In this thesis, we have sought to explore different geostatistical model struc-

tures capable of answering the main questions raised by policy makers involved

in the spatial management of fisheries:

� Identify economically and ecologically fishing-suitable areas with regards

to fishery discards.

� Characterise spawning/nursery grounds in big marine spatial areas to

assess the design of marine protected areas.

� Integrate fishery dependent (on-board) data in the assessment of marine

spatial planning for target species.

To tackle these issues:

� We have proposed to assess the fishery discards spatial planning based

on fishery discard proportions instead of the usual discard per unit effort

units. To do so, we have used a Bayesian hierarchical spatial beta

regression model.

133
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� We have proposed the comparison of different spatio-temporal model

structures to assess the distribution behaviour of fish.

� We have proposed the use of shared components to fit more appropriate

process-covariate relationships in the usual species distribution Hurdle

models.

� We have tested the use of Log-Gaussian Cox Process models to correct

the model components of preferentially sampled fishery datasets (fishery

dependent data) as an approach to fit appropriate small/meso-scale fish

distribution maps.

� We have tested the performance of point-referenced regression models in

fishery transect data, including Euclidean distance-based geostatistical

models. Additionally, we have proposed an algorithm that approximate

the underlying spatial field when enough data are available.

And we conclude that:

� Fishery discard proportions perform better than usual discard per unit

effort units. Analytically, the across-vessel standardisation capacity of

discard proportions is better, which may improve the predictive capacity

of our models. Ecologically and economically, discard proportions allow

a better assessment of fishing suitable areas because they asses the bal-

ance between marketed food biomass and biomass loss due to discards.

Furthermore, Bayesian hierarchical spatial beta regression has proved to

be an effective approach to deal with spatially sampled proportion data.

� The comparison of different spatio-temporal structures allow us to effec-

tively infer the generic spatio-temporal behaviour of the species under

study. This is specially relevant to design effective marine protected ar-

eas, where assessing the spatial persistence of spawning/nursery areas is

particularly important.
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� The assumption of independent processes in two-part or Hurdle models

to deal with semi-continuous data is prone to overfit the data and there-

fore to produce incorrect predictions. In this regard, fitting shared com-

ponents in the occurrence and the conditional-to-presence abundance

processes can effectively improve fitted process-covariate relationships.

� The use of log-Gaussian Cox process models to incorporate fishermen’s

knowledge can effectively improve the predictive performance of prefer-

entially sampled fish distribution models.

� The use of standard model selection scores, e.g. DIC, WAIC, CPO, to

assess the predictive capacity of a model can be misleading when applied

over semi-continuous and/or preferentially sampled datasets. Therefore,

fishery experts knowledge is important to the model selection process.

� The point-referenced representation of fishery transects in the centroid

of the fishing operation performs well to both; represent the sampling

habitat of the transect; and apply Euclidean distance based geostatistics.

Future work

In overall, this PhD dissertation has proposed a number of model structures

that have quite effectively tackled some of the main challenges in fisheries

distribution modelling. However, the scope of research in the fishery field is

still extensive. Here is a list of topics that we consider of special interest to

fisheries science:

� Investigate new model structures that accommodate sporadic high catches

into the models, i.e. the schooling effect.

� Apply the models proposed in this thesis to all the marine species avail-

able in order to visually assess the ecosystemic importance of different

sub-areas.

� Propose multivariate models to investigate the relationship between two

or more species in space.
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� Investigate the performance of simple smoothing techniques to improve

the estimates and prediction of the proposed algorithm in Chapter 5.

� Create an automatic application that map the small/meso-scale distri-

bution of marine species using commercial fleet data. To do so we could

use the proposed algorithm and its hypothetic smoothing improvement

using; vessel monitoring system (VMS) or (AIS) data to locate the start-

ing and ending points of each fishing operation; and log-books or sales

notes data to approximate the catch of each fishing operation.
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Charton, A. Pérez-Ruzafa, F. Badalamenti, J. Bayle-Sempere, A. Brito,

F. Bulleri, et al. Marine reserves: size and age do matter. Ecology letters,

11(5):481–489, 2008. 2

F. Colloca, V. Bartolino, G. J. Lasinio, L. Maiorano, P. Sartor, G. Ardizzone,

et al. Identifying fish nurseries using density and persistence measures.

Marine Ecology, Progress Series, 381:287–296, 2009. 72, 73, 87, 107

A. Cosandey-Godin, E. T. Krainski, B. Worm, and J. M. Flemming. Applying

Bayesian spatiotemporal models to fisheries bycatch in the Canadian Arctic.

Canadian Journal of Fisheries and Aquatic Sciences, 72(2):186–197, 2014.

v, 33

N. Cressie. The origins of kriging. Mathematical geology, 22(3):239–252, 1990.

8, 13

C. Czado, T. Gneiting, and L. Held. Predictive model assessment for count

data. Biometrics, 65(4):1254–1261, 2009. 28

C. Q. Da-Silva and H. S. Migon. Hierarchical dynamic beta model. Revstat

Statistical Journal, pages 1–17, 2016. 52

C. P. Dahlgren, G. T. Kellison, A. Adams, B. M. Gillanders, M. S. Kendall,

C. A. Layman, J. A. Ley, I. Nagelkerken, and J. E. Serafy. Marine nurseries

and effective juvenile habitats: concepts and applications. Marine Ecology

Progress Series, 312:291–295, 2006. 72



140 BIBLIOGRAPHY

B. Delaunay. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matem-

aticheskii i Estestvennyka Nauk, 7(793-800):1–2, 1934. 25

P. J. Diggle, J. A. Tawn, and R. A. Moyeed. Model-based geostatistics.

Journal of the Royal Statistical Society: Series C (Applied Statistics), 47

(3):299–350, 1998. 111

P. J. Diggle, R. Menezes, and T. Su. Geostatistical inference under preferential

sampling. Journal of the Royal Statistical Society, Series C, 52:191–232,

2010. v, 4, 55, 56, 58, 63, 68

P. H. C. Eilers and B. D. Marx. Flexible smoothing with b-splines and penal-

ties. Statistical science, pages 89–102, 1996. 11

European Comission. Comission Decision 2010/93/EU, adopting a multian-

nual Community programme for the collection, management and use of data

in the fisheries sector for the period 2011-2013. Technical report, European

Comission, 2009. 3, 31, 39, 62, 70, 128

European Comission. Regulation (EU) No 1380/2013 of the European Parlia-

ment and the council, on the Common Fisheries Policy, amending Council

Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing

Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Coun-

cil Decision 2004/585/EC. Technical report, EC (European Comission),

2013. 32

L. Fahrmeir and S. Lang. Bayesian inference for generalized additive mixed

models based on Markov random field priors. Applied statistics, pages 201–

220, 2001. 42, 65, 84, 97

FAO. Indicators for sustainable development of marine capture fisheries, vol-

ume 8. FAO, 1999. 1

FAO. The state of world fisheries and aquaculture. Fisheries Department,

Rome, 2002. 1



BIBLIOGRAPHY 141

FAO. The ecosystem approach to fisheries. 2003. iii, 2, 107

J. Feekings, V. Bartolino, N. Madsen, and T. Catchpole. Fishery discards:

factors affecting their variability within a demersal trawl fishery. PLoS

One, 7(4):e36409, 2012. v, 33

J. Feekings, P. Lewy, N. Madsen, and C. T. Marshall. The effect of regulation

changes and influential factors on Atlantic cod discards in the Baltic Sea

demersal trawl fishery. Canadian Journal of Fisheries and Aquatic Sciences,

70(4):534–542, 2013. v, 33

P. B. Fenberg, J. E. Caselle, J. Claudet, M. Clemence, S. D. Gaines, J. A.
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