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perquè en puga ser tramitada la lectura i defensa pública.

Burjassot, 5 de Maig de 2017.

Ottmar Cronie Francisco Mart́ınez Ruiz Francisco Montes Suay





Acknowledgements

I would like to express my sincere appreciation and thanks to my advisor Paco Montes
for his continuous help and guidance. His words of wise were of great aid whenever
needed. Also, his patience, motivation and immense knowledge led me in all the time of
research. Paco, you have been a tremendous mentor for me. I would like to thank you
for encouraging my research and for allowing me to grow as a research scientist.

Also, I would like to thank my advisor Ottmar Cronie. You have taught me to seek
and find the fun part in research. I am grateful for all your advice and humbled to
call you my friend. Thank you for your continuous motivation and encouragement, but
also for the hard conversations which stimulated me to widen my research. And to my
advisor Paco Mart́ınez, who provided me with valuable data and advice. Without your
help, it would not have been possible to conduct this research.

I am also grateful to all the staff from the University of València (Spain), University
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Chapter 1

Introduction

The first attempts to introduce and interpret spatial data using statistics appeared
in the form of data maps. Halley (1686) superimposed on a map the locations and
directions of trade winds and monsoons situated around the tropics, and assigned a
physical explanation to them. Later on, Snow (1855) drew maps of London, showing
clusters of cholera cases from the 1854 Broad Street cholera outbreak. This is considered
to be the first use of maps for spatial analysis.

Spatial statistics methodology was not introduced until much later. Gosset (1907),
better known by his pen name Student, was interested in the study of the distribution
of particles in a liquid, and instead of analysing the spatial positions of the particles,
he aggregated the data into small areas. In the 1920’s and 1930’s, R. A. Fisher es-
tablished the principles of the replica method, random sampling and blocks control. In
the agricultural field, nearest neighbour algorithms (Altman, 1992) were used to conduct
and analyse different studies and spatial dependence was taken into account (Haapanene
et al., 2004). Currently, modern statistical methods are found in a wide range of research
fields such as cartography, geology, ecology, biology (botanical studies of plants distri-
bution, studies of biogeography), epidemiology (disease mapping), spatial econometrics,
remote sensing (computational geometry), astronomy (studies of placement of galaxies)
and many others.

Before proceeding with a description of spatial data, some comments on the data
quality and the impact it has on statistical analysis, are to be made. In order to carry out
a thorough study, it is important to have a complete and high-quality database. Some-
times one can stumble upon problems like typographical, encoding errors, incomplete
or duplicate data. Therefore, it is crucial that, before beginning any type of statistical
analysis, to always carry out a process of data validation in order to identify potential
errors and, preferably, correct them. Researchers also have to take into consideration the
right to privacy when collecting and processing data of personal nature. Studies which
show unfavourable results, for example, areas with high levels of air or noise pollution,
clusters with a high incidence of a disease, can cause discontent among the population.
Therefore, many institutions impede the access to data using alleged protective policies.
For researchers, the availability of data is very important, so the trust and support of

1
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the population are required.
Spatial data can be of continuous or discrete nature. It can be spatially aggregated

into small regions, or it can be represented as individual observations. Spatial locations
can be distributed in a regular or irregular manner into the spatial region.

Cressie (1991) proposed a classification of spatial data into three main groups: geo-
statistical data, lattice data and spatial point patterns. When a phenomenon is observed
as measurements at a finite set of predetermined fixed spatial locations, the result is
geostatistical data. When the spatial region (regular or irregular) is partitioned into
a finite number of bounded regions, with well-defined limits, and data is obtained as
aggregated observations in each of the defined regions, we get lattice data. And finally,
when the spatial pattern is obtained observing random occurrences of a phenomenon,
the data is called a point pattern.

Geostatistics was initially developed to predict mineral reserve using a limited num-
ber of spatial locations in a region. Thus, mining engineering has been one of the
first fields where geostatistics was used extensively. Here, the fundamental key in the
modelling of spatial relationships is the variogram which is estimated and modelled to
adequately describe the observed phenomenon. The main objective of the application
of geostatistics is usually to predict at a point or set of points in the observed region,
where no measurements have been made. Kriging is a geostatistical technique used to
interpolate the value of a random field at an unobserved location using the information
from nearby observations and is one of the most used techniques in spatial prediction.
Geostatistical methods are currently used in diverse disciplines, including petroleum ge-
ology, hydro-geology, hydrology, meteorology, oceanography, geochemistry, metallurgy,
geography, forestry, environmental control, landscape ecology, soil science, agriculture
and many others.

Lattice data sets are observed when the spatial region is partitioned into small re-
gions. Statistical models for this type of data usually incorporate the relationship be-
tween observations of neighbouring locations. One of the goals of the lattice data analysis
is obtaining an estimate of some measure of interest, in each region. Also, it may be
of interest to analyse possible spatial structure in the data (clustering, repulsion). An
example of lattice data is data collected by remote sensing satellites, which provide a
very useful data collecting tool. For example, weather information, weather patterns,
distribution of minerals or soil types can be observed using satellites, without the need
of field sampling. The surface of the Earth is divided into small rectangles called pixels
that are assigned a value of a given characteristic so that the data is received in the form
of a regular network and each pixel is identified using its centre.

Spatial point data refer to phenomena that occur continuously and randomly at
different locations in a region. A point pattern is the collection of locations of such events.
Point processes are the theoretical mechanisms that allow modelling the development
of the phenomena. One of the objectives of point pattern studies is to see whether
an observed spatial pattern has a certain type of structure or, on the contrary, if it is
simply the result of a (homogeneous) point process that acts independently in space.
If we consider the locations of longleaf pines in a forest, we can raise several questions.
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What is the biological meaning of the clustering of these trees? Are the tall trees
clustered in groups? Do tall trees interact with small trees? Point patterns analysis
aims at estimating parameters associated with specific models. Formal analysis of a
spatial point pattern requires the use of multiple statistical techniques. First and second
order summary functions are practical and useful tools to effectively describe and analyse
the spatial structure. Diggle (2014) (Chapter 7) illustrates model-fitting using summary
descriptions for several datasets.

Any phenomenon can be located in a geographic reference. Diseases, deaths, births,
risk exposure or other events, can be associated with the place where they occur, which
may be coordinates, addresses or areas. Adding a temporal component provides impor-
tant insights into the understanding of the statistical process. The first law of geography
by Waldo Tobler, everything is related to everything else, but near things are more re-
lated than distant, gives us a motivation for including neighbouring relation into any
spatial analysis. Adding the temporal component transforms the analysis into a dy-
namic and integrative task, where information represents more than just numbers or
static characteristics.

Space-time statistics are being used more and more in an attempt to explain the
behaviour of this wide range of events. The main reason for using space–time methods
is to reduce the initial variability of the risk by using and exchanging information between
neighbouring spatial locations and proximal temporal moments.

Spatio-temporal data can be presented using maps for each time period that help de-
tect high-risk areas or areas with unusual activity. Space-time epidemiology, for example,
enables the identification of individual and aggregate risk factors for health, becoming
an indispensable tool for decision making in public health. It also allows to dynamically
evaluate risk factors, analyse their impact on the population and estimate the potential
benefits that preventive measures are to public health.

It should be noted that in the context of spatio-temporal statistical analysis 2 +
1 is not equal to 3 because the temporal dimension is fundamentally different from
either spatial dimensions. Most spatial processes in nature are merely snapshots of
the evolution of spatio-temporal processes, but using solely spatio-temporal analysis
methods would be a mistake. The use of these techniques should be done when our
interest involves both components, spatial and temporal, and should not be carried out
using only statistical analyses of the two components separately.

Many real-life scenarios, such as the occurrence of earthquakes, disease incidents or
fires, give rise to data collections of events where each event, besides having a spatial
location and an event time, also carries further helpful information about the event in
question. In the language of point processes, this ‘extra’ information is referred to as the
mark of the event. To exemplify, in the case of earthquakes a mark could correspond to
the magnitude of an event. When a mark is attached to a space-time point in this fashion,
the random element/mechanism assumed to have generated the total collection of data is
referred to as a marked spatio-temporal point process (MSTPP), with the corresponding
data referred to as a marked spatio-temporal point pattern (Daley and Vere-Jones, 2003;
Diggle, 2014; Vere-Jones, 2009). Other applications of MSTPPs include occurrences of
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disease incidents, crimes, fires and many others.
A general structure of the thesis and contributions are presented as follows. Chapter

2 gives a basic step-by-step analysis for spatial data. Starting with a descriptive analysis
by testing complete spatial randomness and inhomogeneity, then introducing descriptive
analysis with covariates. This chapter presents a technique for constructing new Gibbs
models for spatial point patterns proposed by Baddeley et al. (2013). In this chapter,
the varicella spatial point pattern of all registered cases during 2013 in Valencia, Spain,
is analysed. Descriptive analysis is used to get a glimpse of the basic properties of the
point pattern. Covariate information such as the density of population (children under
14 years old) living in the study region, the distance to the nearest school, and the
composition of families (expressed as the average number of persons per family) is used
to describe the intensity of the process. The SatScan software (Kulldorff, 2010) is used
to identify main clusters of schools. This information is further fed into the model. A
comparison between different models is presented here, and also diagnostic methods to
choose the best model to fit the data. Therefore, the first contribution of this thesis
is the application of statistical analysis for spatial point patterns to epidemiology. As
previously mentioned, this chapter puts forward a spatial analysis for the varicella data
set through the use of hybrids of Gibbs models. The models presented in this chapter
manage to describe interactions at different scales and also the spatial inhomogeneity
considering covariate information. This chapter represents a minor but interesting con-
tribution to the literature of point processes.

The second contribution of this thesis is in the field of spatio-temporal lattice data.
Chapter 3 presents a second analysis of the varicella data set, only now in a lattice data
format. The first part of this chapter is dedicated to exploratory space-time data analyses
using a proposal of Rey (2014). The second part of the chapter puts forward statistical
methodology regarding space-time parametric and non-parametric models for lattice
data using a Bayesian framework. All these methods are applied to yearly varicella data.
This chapter represents an interesting compendium of space-time analysis techniques
applied to solve a specific epidemiological problem.

Chapter 4 proposes an extension of the area-interaction point process model (Badde-
ley and van Lieshout, 1995) to allow multi-scale interaction in a spatio-temporal frame-
work. This model allows for interaction between points at different spatio-temporal scales
and the inclusion of covariates. This chapter represents an important methodological
contribution where we define and give the Markov properties of our spatio-temporal
multi-scale area-interaction model. We then propose a modified Metropolis-Hastings
and birth-and-death simulation algorithms. For inference, we use the pseudo-likelihood
method and adapt the Berman-Turner procedure (Baddeley and Turner, 2000) to our
context. The final part of this chapter applies the new model to the varicella data set.
This chapter proposes a new model for analysing spatio-temporal point patterns and
gives all the theoretical details on how to fit, simulate and validate the spatio-temporal
multi-scale area-interaction model.

The fourth methodological contribution is presented in Chapter 5. This chapter aims
at developing point process tools which allow us to perform so-called second-order non-



5

parametric analyses of marked spatio-temporal point patterns. To analyse interaction
in marked spatio-temporal point processes (MSTPPs), Chapter 5 introduces marked
(cross) second-order reduced moment measures and K-functions for general inhomoge-
neous second-order intensity reweighted stationary MSTPPs. These summary statistics,
which allow us to quantify dependence between different mark-categories of the points,
are depending on the specific mark space and mark reference measure chosen. A new
test for independent marking is proposed and unbiased minus-sampling estimators are
derived for all statistics considered. In addition, we treat Voronoi intensity estimators for
MSTPPs. These new statistics are finally employed to analyse the Andaman sea earth-
quake dataset. We find that clustering takes place between main and fore-/aftershocks
at virtually all space and time scales. In addition, we find evidence that conditionally
on the space-time locations of the earthquakes, the magnitudes do not behave like an
iid sequence. Finally, Chapter 6 presents some future lines of research.





Chapter 2

Methods for statistical analysis of
spatial data

Formal analysis of a spatial point pattern requires the use of multiple statistical tech-
niques. First and second order summary statistics are practical and useful tools to
effectively describe and analyse the spatial structure of a point pattern. Spatial statisti-
cal models take into account spatial dependency in regression analysis, putting forward
information on spatial relationships between the covariates included in the model.

In this chapter we discuss the use of hybrids of Gibbs processes to model interactions
at different spatial scales and to provide the statistical modelling of a specific data
set. We introduce a dataset of varicella cases registered in Valencia, Spain. We also
introduce an overview of different Gibbs model applications available in the literature.
We then present tools for descriptive analysis, including complete spatial randomness
and descriptive analysis with covariates. Also, we give theoretical tools for defining
hybrid models and diagnostics methods. The novelty of this study is the epidemiological
application presented at the end of the chapter. Section 2.3 puts forward a step-by-step
statistical analysis for the varicella data. An important issue discussed in this chapter
is the importance of schools locations and their contribution to explaining the spatial
distribution of the disease. Finally, Section 2.4 gives some conclusions and a discussion
on different aspects of the analysis.

2.1 Introduction

One important class of models for spatial point pattern analysis is the class of (finite)
Gibbs point processes. Many theoretical applications of these models can be found in the
literature (Geyer, 1999; Baddeley and Turner, 2000; Møller and Waagepetersen, 2004;
Diggle, 2014). Moreover, Renshaw et al. (2009), Comas et al. (2009) and Comas and
Mateu (2011) present different applications in forestry. Funwi-Gabga and Mateu (2012)
use the area-interaction model to analyse the behaviour of the Gorilla horilla diehli
in the Kagwene Sanctuary in Cameroon. Uria-Diez et al. (2013) use area-interaction
and shot-noise Cox processes to model the distribution of three Carex remota cohorts

7
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in the north of Spain. Model-fitting, prediction, and simulation of Gibbs models are
implemented in the spatstat package (Baddeley et al., 2015) of R (R Core Team, 2014).
The most common use of Gibbs models is for single spatial scale interaction, which might
not be realistic in real-life situations. In practical scenarios, human interaction as well
as other phenomena like the disease spreading, exhibit spatial dependence at multiple
scales. As stated before, point process models are generally used when only one type
of spatial interaction (including only one scale of interaction) governs the structure of
the point pattern. When there are indications that the spatial structure varies with
ranges of distance, a global model is not suitable for describing the complex pattern of
such interactions. Baddeley et al. (2013) propose local behaviour models called hybrid
models. In their paper, the authors analyse human social interaction, studying the
spatial locations of people sitting on the grass in a park on a sunny afternoon. This
pattern clearly shows interaction at different scales. Another example of the multi-
scale use of Gibbs models is Picard et al. (2009). The authors propose a marked area-
interaction multi-scale model and apply the model to three examples from forestry that
present different types of structure at different scales: a pine pattern, a bivariate kimboto
pattern, and a marked pattern in Gabon, where the marks are represented by the tree
diameter.

Motivated by the possible local scale behaviour, we propose an epidemiological ap-
plication of hybrid models for a highly infectious disease, varicella.

In 1992 a multidisciplinary expert committee studied the threat of infectious dis-
eases and related the emergence and re-emergence of these diseases to several factors,
such as human demography, technological progress, economic development and land
use, international trade, microbial adaptation, and failure in implementing public health
measures (Lederberg et al., 1992). Later on, in relation to life-threatening infectious
diseases such as smallpox or HIV, Brachman (2003) discusses the fact that modelling
has become an important tool in how resources are distributed for purposes of control
and prevention. High spreading risk makes infectious diseases difficult to contain and
inhibit, in particular, airborne diseases, which are spread via air by coughing, sneezing,
or talking. Airborne diseases of concern to emergency responders include meningitis,
varicella (also known as chicken pox), tuberculosis or influenza. Airborne transmission
depends on various endemic variables. The efficacy of airborne disease transmission is
influenced by environmental factors (climate and geographical location) and/or socio-
economic and living conditions. All these factors influence airborne diseases and give
rise to complex multi-scale point patterns. In this chapter, we analyse the spatial point
pattern of varicella cases registered during 2013. A detailed description of varicella in
Valencia is given in Section 2.3.1.

The spatial point pattern of varicella reflects the complex structure inherited by
an infectious disease. This complexity makes it difficult to understand the real causes
behind its behaviour. Researchers in epidemiology usually make informal statements
about disease spread and its relation to covariate information. We make use of stochas-
tic processes in space, in particular of inhomogeneous spatial point processes, to provide
a formal statistical procedure to disentangle the local interactions of such complex struc-



2.2 Methods 9

tures and highlight the role of available covariate information.
Varicella can be associated with different socio-demographic variables. Alp et al.

(2005) show that the educational level influences the prevalence of anti-varicella anti-
bodies, this prevalence being lower for children that are not attending school, followed by
those who have at least attended elementary school. Cooper Robbinsa et al. (2011) pro-
vide a review of different studies on school-based vaccination. The effect school holidays
have on the transmission of varicella is studied in Jackson et al. (2014). The authors
show that reductions in contact between children during the summer break lead to a
lower transmission of varicella. Due to the nature of the disease, it is well known that
a relation exists between school locations and disease spread. However, to the best of
our knowledge, this has not been confirmed by formal procedures. We use techniques of
spatial point processes to analyse, check, and underline this relation.

2.2 Methods

2.2.1 Descriptive analysis

The intensity of a point process is the average density of points per unit area. It can
either be constant at each point of the process (homogeneous process), or it can vary from
one location to another (inhomogeneous process). In most applications, the intensity of
the underlying process is not constant. For a spatial location x ∈ R2 we denote by λ(x)
the intensity function.

Testing for complete spatial randomness (henceforth, CSR) is equivalent to examine
if a point pattern is a uniform Poisson point process with constant intensity λ. The basic
properties to follow are: (i) the number of points in any region has a Poisson distribution
with mean λ times the area of the region; (ii) given n points in a region, the locations
of these point are independent and uniformly distributed; (iii) the counts of two disjoint
regions are independent. We want to rule out the hypothesis of homogeneous Poisson
process (the ‘null hypothesis’). If this is not discarded then the original point pattern
has nothing ‘readable’ because the points are completely unpredictable and have no type
of dependence.

There are various methods for testing CSR. A classical test is the χ2 test based
on quadrat counts (Cressie and Read, 1984), but this testing procedure is very restric-
tive because it requires an equal-area partition of the region. A more general method,
using ‘random quadrats’ is discussed in Cressie (1991). A more powerful test is the
Kolmogorov-Smirnov test (Berman, 1986), in which the observed and the expected dis-
tribution of the values of some function T are compared. In this chapter we test for CSR
using summary statistics, the nearest neighbour function and the method of K-functions.

When rejecting the CSR null hypothesis there is a fundamental ambiguity between
inhomogeneity and clustering (Bartlett, 1964). Thus, the process could be an inhomo-
geneous Poisson process, a clustered process, a regular process or even a mixed process.
The next step we take is to test for inhomogeneity. An inhomogeneous Poisson process
is obtained when the constant intensity λ is substituted with a spatially varying func-
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tion, λ(x). For a visual inspection of the spatial point pattern and a first glimpse at
its properties, we compute and plot a nonparametric intensity estimation, using kernel
smoothing (Diggle, 1985). To test for inhomogeneity, we also use summary statistics as
the nearest neighbour function and the K-function.

For a stationary point process X, the nearest neighbour function, henceforth the G
function, is the cumulative distribution function of the distance dist(x,X \ x) from a
typical point x ∈ X. The K-function calculates the expected number of points within a
certain distance from an arbitrary point, except the chosen point, divided by the average
number of points per unit area Ripley (1976). For a nonstationary point process X, the
inhomogeneous G function (Van Lieshout, 2011), is the intensity-reweighted equivalent of
the nearest-neighbour distance distribution function G for homogeneous point processes.
An estimator for the G function using generating functionals is given in (Van Lieshout,
2011). For a nonstationary point process X, the inhomogeneous K-function (Baddeley
et al., 2000), a generalisation of the Ripley’s K-function, represents the expected value,
given that x is a point of X, of the sum of all terms 1/λ(y) over all points y in the
process separated from x by a distance less than a certain value, r. An estimator for the
inhomogeneous K-function is given in Baddeley et al. (2000). More details are available
in Chiu et al. (2013). The K-function works for pairwise interactions, while the G
function handles interactions of all orders.

From a practical point of view, it is of interest to relate the spatial structure with
covariate information. Thus we often need to determine if and how a point pattern
spatial distribution is associated with different types of covariates. Many times we want
to determine whether the intensity of a point process is higher in areas where a certain
feature of the population prevails.

Denote by Z(x) the set of covariates for a spatial location x, and consider the intensity
as a function of these covariates, λ(x) = ρ{Z(x)}. A more general formulation could be
λ(x) = ρ(x, Z(x)), that is, the inhomogeneity is partially explained by the covariates.
The function ρ describes the dependence between the intensity and the values of the
covariates. A non-parametric estimate for ρ is proposed by Baddeley et al. (2012),
providing a smoothing estimate of the intensity as a function of (continuous) spatial
covariates. This method estimates ρ(z) by the ratio between the (rescaled) density
estimate obtained by smoothing the values of the covariates Z at the data points and
the density estimate of the reference distribution of Z. This makes it possible to associate
the intensity of the process with each covariate separately.

The advantage of parametric modelling using inhomogeneous Poisson processes is
that it provides an easy method for analysing spatial point patterns via an intensity
function depending on two or more covariates. This can be done by comparing sum-
mary statistics computed for simulations of the corresponding inhomogeneous Poisson
processes with the intensity function depending on covariates, with the functions esti-
mated from the initial point pattern.
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2.2.2 Hybrid models for point process data

A spatial point pattern x, a realisation of a point process X, is an unordered set x =
{x1, . . . , xn}, n ≥ 0, xi ∈ W of points xi in a spatial ‘window’ W ⊂ Rd, d ≥ 1 (Baddeley
et al., 2013). Descriptive analysis is required to learn about the basic properties of
a spatial point pattern. With a view to finding further characteristics of the spatial
structure and association between points, models for point patterns can be considered.

An important class of models is the class of Gibbs models, with many applications
available in the literature (Ogata and Tanemura, 1984; Geyer, 1999; Daley and Vere-
Jones, 2003; Baddeley et al., 2006; Renshaw et al., 2009; Comas and Mateu, 2011; Funwi-
Gabga and Mateu, 2012; Diggle, 2014). These models are specified in terms of their
probability density. The probability density function for a Poisson process with intensity
1 is f(x) = 1. The uniform Poisson process with constant intensity λ > 0 has probability
density f(x) = αλn(x), where n(x) is the number of points in the configuration x and α
is the normalising constant, α = e(1−λ)|W |. We denote by h the unnormalised probability
density.

Defining new functional forms for h is not trivial. Baddeley et al. (2013) propose
techniques for defining new forms for h combining probability densities of known Gibbs
models. In order to define a new class of models, they specify a different unnormalised
probability density by multiplying the unnormalised probability densities h1, . . . , hn, n ≥
2 of n models. A hybrid density h(x) = h1(x) . . . hn(x), or equivalently log h(x) =
log h1(x) + · · ·+ log hn(x), is obtained. Note that the likelihood of a hybrid is a product
of component likelihoods, and the Papangelou conditional intensity of a hybrid is the
product of the conditional intensities of the components. However, these product forms
do not imply any kind of stochastic independence, since the usual factorisation lemma
does not apply.

The unnormalised hybrid density has to satisfy certain properties. The functional
form of h has to be integrable (its integral is finite); has to be locally stable (there is a
finite constant B such that h(x ∪ {u}) ≤ Bh(x), for all x ∈ x and u ∈ W ); has to be
Ruelle stable (there are finite constants A and M such that h(x) ≤ AMn(x)), meaning
that h is dominated by an unnormalised Poisson density; and h has to be hereditary,
or has to have hereditary positivity (for any configuration x, h(x) > 0 implies h(y) > 0
for all sub-configurations y ⊂ x). For more details, see Ruelle (1969) and Møller and
Waagepetersen (2004).

Gibbs models are generally applied to point processes with inhibitory patterns. Ex-
ceptions that fit aggregated models and are locally stable are the Widom-Rowlinson
penetrable sphere model (Widom and Rowlinson, 1970), the area-interaction processes
(Baddeley and van Lieshout, 1995), or the Geyer saturation process (Geyer, 1999). In
this section we present and discuss the details of the inhomogeneous Baddeley-Geyer
hybrid model (Baddeley et al., 2013).

We first define the unnormalised probability density for the stationary Geyer satu-
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ration process with parameters β, γ, r and s, given by

hG(x) = βn(x)
n(x)∏
i=1

γmin(s,t(xi,x\xi,r)) (2.1)

where β controls the intensity of the process, n(x) is the number of points in the pattern
and γ is the interaction parameter. Furthermore, t(xi,x\xi, r) is the number of neigh-
bours of xi in x within a radius r, that is, the number of points xj with j 6= i such that
||xi − xj || ≤ r. The parameter s > 0 is a saturation threshold which ensures that each
term in the product is bounded by γs, so that the density is integrable and Ruelle stable
for all values of γ > 0. The process is clustered if γ > 1 and is regular when γ < 1.

Considering the hybrid of several Geyer densities of form (2.1), the unnormalised
density of an inhomogeneous Baddeley-Geyer hybrid model is obtained by

h(x) = βn(x)
n(x)∏
i=1

m∏
j=1

γ
min(sj ,t(xi,x\xi;rj))
j ,

where r1, r2, . . . , rm are interaction ranges, s1, s2, . . . , sm are saturation parameters, and
γ1, γ2, . . . , γm are the interaction parameters.

We can introduce the effect of covariates by considering a local covariate effect
β(xi) = ρ{xi, Z(xi)}, where Z(xi) is a set of covariates for a spatial location xi ∈ x. The
resulting probability density is

h(x) =
n(x)∏
i=1

β(xi)
m∏
j=1

γ
min(sj ,t(xi,x\xi,rj))
j , (2.2)

that defines inhomogeneity in an elegant and straightforward way.
Estimating irregular parameters r1, . . . , rm and s1, . . . , sm in the inhomogeneous

Baddeley-Geyer hybrid model raises an important issue on which very little statistical
theory is available. Baddeley and Turner (2000) propose using profile pseudolikelihood.
We use their technique to estimate the irregular parameters for the hybrid model.

2.2.3 Diagnostics

The next step in the analysis is to check if the model fits well and if each assumption of
the model is appropriate. For a Poisson model, homogeneous or inhomogeneous, a χ2

goodness-of-fit test based on quadrat counts (Cressie and Read, 1984) or a Berman test
(Berman, 1986) can be applied. For hybrid models, no theory is available to support
these tests. As an alternative, goodness-of-fit for hybrid models relies on the summary
statistics functions. Baddeley et al. (2011) propose new tools for model validation. They
suggest the use of residual G and K functions to compare and decide the best fitted
model. In order to obtain these residual functions, we compute both the nonparametric
estimate of the G function, and the one based on the corresponding model. Then the
residual G function is obtained as the difference between the two measures. Likewise, we
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obtain the residual K-function. The residual G and K functions should be approximately
zero if the model fits well. These functions provide a suitable diagnostic for the goodness-
of-fit of a point process model.

Diagnostic plots based on residuals are another tool to measure the goodness-of-fit
of a model and also to identify outliers in the data. These plots display the residuals
from the fitted model. This diagnostic is followed up by Q-Q plots based on residuals
from the model.

2.3 Spatial analysis for the varicella point pattern

2.3.1 The study area and the varicella dataset

The varicella-zoster virus (VZV) is a highly contagious virus spread worldwide which
causes two clinical syndromes: varicella, also known as chickenpox, and herpes zoster,
otherwise known as shingles (WHO, 2008). A case of varicella is defined as a sudden
onset with moderate fever, minimum general symptoms and maculopapular skin rash for
a few hours that transforms into vesicles for 3 or 4 days leaving granular crusts (Servicio
de Vigilancia y Control Epidemiológico, 2007). The various phases coexist and injuries
are superficial.

Varicella is transmitted from person to person by direct contact with the rash or
inhalation of aerosolized droplets from respiratory tract secretions of patients with vari-
cella. Varicella occurs worldwide and is a highly contagious human disease, no animal or
insect source is known to exist. It is highly communicable and endemic in all countries
worldwide. In temperate climates, at least 90 % of the population develops varicella by
the age of fifteen and 95 % by the time they reach adulthood. Varicella is characterised
by fever and a generalised vesicular rash, consisting of 200 to 500 lesions (European
Centre for Disease Prevention and Control, 2014). The clinical course of varicella is gen-
erally mild in children. Adults may suffer from more severe symptoms and also have a
higher risk of complications. Children infected with human immunodeficiency virus also
may have severe, prolonged illness (Centers for Disease Control and Prevention, 2012).
The disease may be fatal, especially in neonates and immunocompromised individuals.
Complications include VZV-induced pneumonitis or encephalitis and invasive group A
streptococcal infections. Following infection, the virus remains latent in neural gan-
glia; upon subsequent reactivation, VZV may cause zoster (shingles), a disease affecting
mainly immunocompromised individuals and elderly people.

After recovery from varicella, patients usually have lifetime immunity. The first
symptoms of varicella generally appear after a 10-21 days incubation period. It is char-
acterised by an itchy, vesicular rash, fever and malaise. Varicella is generally self-limited
and vesicles gradually develop crusts. It usually takes about 7 to 10 days for all the
vesicles to dry out and for the crusts to disappear. This gives us a time period, from
infection to completely dried vesicles, between 17 and 31 days. Most people with vari-
cella make full recoveries, only 2-6 % of varicella cases develop complications (European
Centre for Disease Prevention and Control, 2014).
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Reported infection after household exposure ranges from 61%-100% (WHO, 2008;
Gershon et al., 2008) which indicates small range interaction. The epidemiology of the
disease is different in temperate and tropical climates. The reasons behind this behaviour
may be related to climate, population density and risk of exposure (WHO, 2014; Health
Department, 2014).

The diagnosis of varicella is primarily clinical. Laboratory tests are requested for
more complicated cases or for epidemiological purposes. Recent studies have shown that
varicella vaccination has influenced the incidence of the disease, decreasing the number,
size, and duration of the outbreaks.

Varicella is widely spread around the world, with an annual incidence estimated at
80-90 million cases a year. Since 1997, Spain has been one of the European countries
that reports every case of varicella. In Spain, chickenpox decreased during the time
period 2005-2007 (Peña Rey et al., 2009).

Throughout the thesis we will apply different statistical methodology to the data
set of varicella cases registered in Valencia, Spain, from 2008 to 2013, data gathered
by the General Direction of Public Health, Epidemiological Area, Vigilance Service and
Epidemiological Control, Generalitat Valenciana (Health Department, 2014).

Valencia is the capital of Autonomous Region of Valencia and the third largest city
in Spain after Madrid and Barcelona, with approximately 800, 000 inhabitants in the
administrative centre and an area of approximately 134 km2 (Statistics Office, 2013).
Valencia is located on the Mediterranean coast of Spain (39 ◦28’0”N, 0 ◦22’30”W). Figure
2.1 shows the location of the province of Valencia within Spain (left of the small subplot),
the location of the city of Valencia within the Province of Valencia (right of the small
subplot), and the city of Valencia itself (large subplot). Figure 2.2 (upper row) shows
all the districts of Valencia, the centre of the city consisting of districts 1, 2 and 3. The
majority of varicella cases were registered in districts 1 to 16, the remaining districts, 17,
18 and 19, are sparsely populated and far from the urban core, thus have been eliminated
from all the analyses. Consequently, the study region corresponds to districts 1 to 16 of
Valencia (see Figure 2.1, large subplot). Each of the 19 districts is divided in smaller
areas called boroughs. Valencia has a total of 87 boroughs, 70 of them corresponding
to districts 1 to 16. Figure 2.2 (lower row) shows the spatial distribution of all the
boroughs.

As stated before, Valencia has a total population of about 800, 000 peoples living in
the urban core. There are some general patterns of age distribution that can be observed.
The city centre tends to be populated by an elderly community, whereas areas situated
around the city centre and on the city’s outskirts encompass a younger population. As
an example of the age distribution, consider the Valencia population from 2010. Table
2.1 shows the percentage of population by age group living in the central area of the city
in comparison with the ones living in the periphery. We can see that for the first two age
groups the percentage of the population is higher in the periphery than in the central
urban area. Table 2.2 displays a temporal evolution of the population in districts 1 to
16 and the number of children under 15 years from 2008 to 2013. We observe a decrease
in population, as well as in the number of children under 15.
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Spain

Province of 
Valencia

-

Figure 2.1. Location of the city of Valencia. Universal Transverse Mercator (UTM)
coordinate system (distance in meters).

The dataset consists of varicella cases from 2008 to 2013, all residents in Valencia.
There was a total of 11, 214 varicella cases registered during this time period of six years.
Table 2.2 shows the temporal evolution of the total number of cases. We note the clear
decrease in the number of cases from 2, 545 varicella cases observed in 2008, to 921 cases
registered in 2013. The cases were recorded on a weekly basis.

Age group
0-4 5-14 15-24 25-34 35-44 45-54 55-64 65-74 > 75 Total

Centre 5 571 9 504 10 252 18 069 19 996 16 560 13 374 11 519 15 049 119 894
4.6% 7.9% 8.6% 15.1% 16.7% 13.8% 11.2% 9.6% 12.6%

Periphery 32 580 57 859 66 509 106 944 109 093 91 593 73 720 56 386 54 433 649 117
5.0% 8.9% 10.2% 16.5% 16.8% 14.1% 11.4% 8.7% 8.4%

Valencia 38 151 67 363 76 761 125 013 129 089 108 153 87 094 67 905 69 482 769 011

Table 2.1. Population by age group in 2010.

Throughout the thesis, the varicella dataset will be used to apply different types of
statistical analyses, from temporal to spatial and spatio-temporal analyses. Also, we will
be studying the statistical properties of the varicella dataset as lattice data, aggregated
into boroughs, and the underlying point process
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Figure 2.2. Valencia city map. (Top) Territorial division by districts. (Bottom)
Territorial division by boroughs.
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2008 2009 2010 2011 2012 2013
Population 768,790 773,856 769,011 759,211 757,938 752,992

Population under 15 116,929 118,367 118,471 118,144 118,487 111,765
Varicella cases 2,545 2,152 2,438 1,898 1,260 921

Table 2.2. Evolution of the Valencia population (districts 1 to 16) and the number of
varicella cases.

2.3.2 Descriptive analysis

With a view to apply spatial statistical methods for point patterns, we consider a subset
of the varicella dataset we presented in Section 2.3.1. An important issue that this
dataset emphasises is the presence of multiple points, which is caused due to an inherent
discrete assignment in observations. The point pattern is constructed by considering
the address of residence for each case, in particular, the building where a case resides.
Therefore, one point (building) can have multiple cases assigned. There are different
solutions for this problem. One can jitter all points by adding a small amount of noise
to all coordinates. This way we remove all duplicated locations. Another alternative
is to assign to each location only one varicella case, meaning, consider the locations
without taking into account the number of cases observed at the specific location. The
newly obtained point pattern is called the ground point pattern.

It is well known that varicella is primarily a disease of children. Therefore, it seems
reasonable to analyse only children under the age of 14. Considering all the above, the
subset we are analysing throughout this chapter consists of the ground point pattern of
all varicella cases (children under the age of 14) registered during 2013, in Valencia. We
need to mention that the analysis can be implemented similarly for any of the remaining
years.

Figure 2.3 (left) shows the spatial point pattern of the varicella cases together with
the quadrat counting of the points. The pattern of varicella is clearly not randomly
scattered, with areas with a higher number of cases than the average. Figure 2.3 (right)
shows the same amount of spatial points as the varicella cases uniformly distributed in
the region. This figure is a visual confirmation that the varicella pattern is not completely
spatially random.

Figure 2.4 (left) shows the empirical G function for the point pattern (solid line)
and the point-wise minimum and maximum envelopes obtained from 99 simulations of a
process under the CSR null hypothesis. Likewise, Figure 2.4 (right) shows the estimated
K-function for the point pattern (solid line) and the point-wise minimum and maximum
envelopes obtained by simulating a Poisson process 99 times. The hypothesis of complete
spatial randomness is clearly rejected.

As stated before, a rejection of the CSR hypothesis is an indicator that our process
can be an inhomogeneous Poisson process, a cluster process, or even a mixed process.

The intensity of the spatial point pattern has been estimated non-parametrically
using a Gaussian kernel intensity estimator. This method is sensitive to bandwidth
selection. Figure 2.5 (left) shows the kernel estimate for the bandwidth obtained using
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Figure 2.3. (Left) Spatial point pattern of varicella cases registered during 2013
in Valencia (Spain), together with quadrat plot for the point pattern. (Right) Point
pattern of independent uniform random points.
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Figure 2.4. (Left) Empirical G function (solid line) with pointwise maximum and min-
imum envelopes obtained under CSR null hypothesis (grey area). (Right) K-function
(solid line) with pointwise maximum and minimum envelopes obtained under CSR null
hypothesis (grey area).

a cross-validation method, as proposed by Diggle (1985). Figure 2.5 (right) shows the
intensity estimate for a bandwidth equal to 300. The latter provides a smoother estimate,
whereas the former gives a more uneven estimate.

Both estimates in Figure 2.5 show several areas where varicella incidence is high: one
in the north of Valencia, corresponding to the Rascanya district and a second one in the
west in the l’Olivereta district. The population living in these areas generally tends to
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have a lower income level in comparison with the central areas of the city.
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Figure 2.5. Kernel smoothing estimate of the varicella point pattern intensity. (Left)
Bandwidth = 153 (Diggle, 1985). (Right) Bandwidth = 300.

Figure 2.6 (left) shows the residual G function with the corresponding estimate ob-
tained under the hypothesis of inhomogeneity (the log-intensity depends on a linear
combination of the coordinates of the point locations). Likewise, Figure 2.6 shows the
residual K-function together with the corresponding envelopes. The irregular shape of
the G function indicates some type of aggregation in the data.
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Figure 2.6. (Left) Residual G function (solid line). (Right) Residual K-function (solid
line); and the corresponding envelopes obtained under the inhomogeneity assumption
previously described (grey area).

The next step in the analysis is to assess the interaction between the varicella pattern
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and external factors. Almost all types of diseases, and varicella in particular, depend on
the population. Whether it is a contagious disease or not, people living in a determined
area are the most important factor in initiating and transmitting a disease. Regions
with a high population, tend to register more cases, and scarcely populated areas tend
to have lower disease incidence. In order to make this correction, we consider the density
of population under 14 years as a covariate. Figure 2.7 (left) shows a kernel estimate
of this population density in the city of Valencia for the year 2013. We can see that
the spatial distribution of the population shows some sort of a pattern. The centre and
the outskirts of the city are areas where the density of population is low, whereas the
neighbourhoods surrounding the centre of the city are the most preferred to live in.

The location of the schools in Valencia can play a significant role in the analysis of
the disease. Figure 2.8 (right) shows the pattern of all daycare centres, preschools and
schools in Valencia. Varicella is primarily a children’s disease, and almost all children
either attend daycare centres, preschool or elementary school. Thus, the spatial point
pattern in Figure 2.8 is considered a major factor in the clustering of varicella cases.
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Figure 2.7. (Left) Kernel estimate of population density under 14 years, 2013. (Cen-
tre) Kernel estimate of the distance function to the nearest school in Valencia. (Right)
Kernel estimate of the average number of persons per family register.

We also consider the distance to the nearest school as a covariate. The distance
function of a set of locations (in our case the schools), s = {s1, . . . , sm},m > 0, si ∈ W ,
where W is the study region, is a mathematical function such that, for any spatial
location x the function value is the shortest euclidean distance from x to s. More
specifically,

dist(x) = min {||x− si||}, i = 1, . . . ,m, x ∈W. (2.3)

Figure 2.7 (centre) shows a graphical representation of the distance function defined
by (2.3). Areas, where the distance function has low values, match with neighbourhoods
with an elevated number of schools. Similarly, areas with high values of the distance
function are regions with fewer or no schools.

Estimating the school distance function can explain the relationship between the
disease and the pattern of schools. Alternatively, the schools can be considered focal
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points. The point pattern of all schools in Figure 2.8 shows areas where points tend
to cluster. The SatScan software (Kulldorff, 2010) is used to identify main clusters of
schools. A summary of the main identified clusters is presented in the left-hand-side
table of Figure 2.8. On the right-hand side of Figure 2.8 we see the spatial location
of all schools as black dots, together with the main clusters detected by the software,
encircled and labelled with an X. These six points can be interpreted as focal points
(sources) around which varicella cases tend to group. For each source, we calculate the
distance function in equation (2.3).

ID Northing (m) Easting (m) p-value

1 4374194.64 726012.70 2.22E-06
2 4374257.90 723723.00 4.16E-06
3 4372123.33 728467.68 1.30E-02
4 4371909.12 724210.03 2.50E-02
5 4370990.51 726351.50 4.59E-01
6 4369998.62 724372.88 4.59E-01 721142 723993 726845 729696 732548

4367028

4369415

4371802

4374190

4376577

Figure 2.8. (Left) Coordinates and corresponding p-values for the six main school
clusters detected using SatScan software. (Right) Pattern of all schools in Valencia
(black dots), together with the spatial locations of the main clusters (dots encircled
and labelled with an X).

Another factor taken into account is the composition of the families. Figure 2.7
(right) shows a kernel estimate of the average number of persons per family register,
meaning the average number of persons a family consists of.

As stated before, the population density in Figure 2.7 (left) shows the centre and
the peripheral areas of the city having less population than the areas surrounding the
central neighbours of Valencia. In the north of Valencia, there is also an area where
the population density is the highest. Figure 2.7 (right) shows a central area where the
number of persons per family is low. This intensity increases as we move toward the
peripheral neighbours of the city.

As explained before, the intensity can be considered as a function of the covariates,
λ(x) = ρ{Z(x)}. Figure 2.9 shows the non-parametric estimate of λ(x) for each indi-
vidual covariate together with point-wise two-standard-deviation confidence limits (grey
shading) (Baddeley et al., 2012). A clear relationship between the intensity of the pro-
cess and the three covariates can be observed. For areas where the population density is
low, the intensity of varicella cases is also low. Areas with high-density population are
more likely to have a higher relative risk of varicella. For the distance function defined
in Equation 2.3, Figure 2.9 (centre) shows a linear relation. The larger the distance
from schools, the lower the incidence of varicella observed. Figure 2.9 (right) shows the
high intensity of the relative risk of varicella in areas where small families live. As the
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number of family members increases, the risk of varicella decreases. This unusual and
unexpected behaviour will be further discussed.
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Figure 2.9. Non-parametric smoothed estimation of the intensity as a function of
spatial covariates. (Left) Population density under 14 years, 2013. (Centre) nearest
distance to school in Valencia. (Right) Average number of persons per family register.

The non-parametric estimates shown in Figure 2.9 could indicate that varicella risk is
higher in neighbourhoods where families have a medium-low cultural and socio-economic
status. We fit an inhomogeneous Poisson process where the log-intensity is a linear
function of the three covariates shown in Figure 2.7, and use the diagnostics described
in Section 2.2.3 to assess the fitted model. The coordinates of the spatial locations, x
and y, were not considered in this model, as they do not improve the overall fitting.

Estimate S.E. CI95.lo CI95.hi Ztest Zval
(Intercept) -4.11e+00 9.25e-01 -5.92e+00 -2.29e+00 *** -4.44e+00

population density 4.05e-01 3.61e-02 3.34e-01 4.76e-01 *** 1.12e+01
distance function -2.55e-03 3.68e-04 -3.27e-03 -1.83e-03 *** -6.94e+00

family register -3.40e+00 4.04e-01 -4.19e+00 -2.61e+00 *** -8.41e+00

Table 2.3. Estimated parameters for the inhomogeneous Poisson model.

Table 2.3 shows the estimated parameters for the inhomogeneous Poisson process.
All three covariates are significant and, as expected, population density has a positive
effect on the overall risk. The sign for the second covariate shows an inverse relation
between disease risk and the distance function. The parameter of the last covariate also
shows an inverse association between varicella risk and the family register, as shown in
Figure 2.9 (right). This would mean that for regions where large families live, varicella
incidence is low. This seems to contrast with the opinion of epidemiologists and will be
further discussed in Section 2.4.

Figure 2.10 shows the residual G and K functions for the inhomogeneous Poisson
process with intensity depending on the covariates. The sharpness and the peak of the
residual G function in Figure 2.10 (left) evidences ‘unexplained’ interaction at different
spatial scales, between 75 and 125 meters. The residual K-function shows that the model
does not fit well.

Figure 2.11 shows the cumulative raw errors for the inhomogeneous Poisson model.
The size of the errors is considerable, and they have a particular shape.
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Figure 2.10. (Left) Residual G function for the inhomogeneous Poisson process.
(Right) Residual K-function for the inhomogeneous Poisson process.
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Figure 2.11. Cumulative raw residuals for the x and y axis.

2.3.3 Inhomogeneous Baddeley–Geyer hybrid model

To explain the multi-scale spatial interaction, we considered a hybrid Baddeley-Geyer
process depending on the three covariates. We then added all subsets of focal points as
covariates to this initial model and compared the results, using model diagnostics. The
best model for the data includes all three covariates and four of the six focal points.
These four focal points are circled in red in Figure 2.8.

We selected the irregular parameters, using maximum profile pseudolikelihood. We
searched over a wide range of parameters 1 ≤ r ≤ 400 and s = 1, . . . , 20 and identified
three significant spatial interaction components. The optimum combination is obtained
for distances r0 = 47, r1 = 104, r2 = 286 meters and saturation parameters s0 = 1,
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s1 = 3, s2 = 2.

Estimate S.E. CI95.lo CI95.hi Ztest Zval
(Intercept) -7.55E+00 1.28E+00 -1.01E+01 -5.04E+00 *** -5.89E+00
population density 3.21E-01 4.71E-02 2.28E-01 4.13E-01 *** 6.81E+00
distance function -1.08E-03 5.05E-04 -2.07E-03 -9.20E-05 * -2.14E+00
family register -2.54E+00 5.85E-01 -3.69E+00 -1.39E+00 *** -4,34E+00
focal point 1 -8.12E-05 7.28E-05 -2.24E-04 6.14E-05 -1.12E+00
focal point 2 -4.82E-05 9.54E-05 -2.35E-04 1.39E-04 -5.05E-01
focal point 3 7.84E-05 9.34E-05 -1.05E-04 2.61E-04 8.40E-01
focal point 4 5.48E-05 5.74E-05 -5.78E-05 1.67E-04 9.54E-01
β1 2.66E-01 1.01E-01 6.78E-02 4.65E-01 ** 2.63E+00
β2 2.42E-01 4.16E-02 1.60E-01 3.24E-01 *** 5.81E+00
β3 4.97E-01 2.03E-01 9.89E-02 8.94E-01 * 2.45E+00

γ1 1.305
γ2 1.273
γ3 1.164

Table 2.4. The estimated parameters for the Baddeley-Geyer hybrid model.

To determine the accuracy of the fitted model, we used three complementary meth-
ods. First, we looked at the residual G and K functions. Second, we used diagnostic
plots to study the size of the errors. Finally, we simulated a point pattern from the fitted
model and compared it with the empirical initial pattern.

The interaction parameters for the hybrid model are γ1 = 1.305, γ2 = 1.273, and
γ3 = 1.643, which confirm that the point pattern shows spatial aggregation at different
spatial scales. Table 2.4 shows the estimates of the parameters for the fitted model. The
positive coefficient of the population density shows a positive effect of population density
on the incidence of varicella. The negative coefficient of the family register remains an
unusual concern.

To assess the fit of the model, we used the residual G and K functions. Figure 2.12
shows a comparison between these two functions for the inhomogeneous Poisson model
and the hybrid model. We see a definite improvement for the latter model. The values of
the two functions oscillate around zero and are inside the envelopes, which indicates the
model fits well. Using the same scales as in Figure 2.11, Figure 2.13 shows a diagnostic
for the residuals of the fitted model. The range of the raw residuals in Figure 2.13 has
substantially decreased compared to the residuals of the inhomogeneous Poisson process.
The qqplot in Figure 2.13 shows that the errors are approximately normal.

Figure 2.14 shows a comparison between the initial point pattern of varicella and a
simulation of the fitted hybrid model. We can see that the simulated pattern presents
areas with more points than the initial point pattern, but overall, it does correspond
quite well to the data pattern.
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Figure 2.12. (Left) Residual G function for the hybrid model. (Right) Residual
K-function for the hybrid model.
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Figure 2.13. (Top) Cumulative raw residuals for the x and y axis for the hybrid
model. (Bottom) Qqplot for the raw residuals for the hybrid model.
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Figure 2.14. (Left) Spatial distribution of varicella point pattern in Valencia, Spain,
cases registered during 2013. (Right) Simulation from the hybrid model.

2.4 Conclusions and discussion

This chapter presents an epidemiological application of hybrid of Gibbs models. The
novelty of this study is the actual use of the statistical methods in the analysis of vari-
cella data. The study considers intensity estimation including covariate information.
This analysis was designed to find specific characteristics and relations between varicella
incidence and the school point pattern. We conclude that there is a significant relation
between the location of schools and possible varicella outbreaks. The final fitted model
explains the behaviour of the disease and identifies aggregation at different scales: ap-
proximately 50, 100, and 290 meters. Equation (2.2) shows that every spatial scale rj is
bounded to its corresponding saturation parameter sj , thus making the interpretation
of these parameters more difficult.

We constructed the point pattern by considering the addresses of residence for each
case. As a result, we obtained points with multiple cases which would lead us to a marked
point process. We have studied the ground process, meaning the locations where the
cases were observed, without the marks, as a first step toward discovering statistical
properties of the pattern. The next natural step is to explore the properties of the
marked point process. This is one of the main focuses of our future work.

The final fitted model includes, besides the distance to the nearest school, the focal
points. We wanted to analyse the model without taking into consideration any focal
point. The reason we did this is, partly, because we already used school information
when we introduced the nearest-school distance function. We thought it was somehow
redundant to use this information again, by considering the focal points. Figure 2.15
shows the representation of the errors, using the same scale as in Figure 2.11 and 2.13
and a qqplot for the hybrid model without the focal points. If we take a careful look, the
shape of the errors changes, with certain areas of the study region exhibiting a clearly
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pronounced shape and high values. The qqplot shows that the errors are not normal. All
this indicates that the inclusion of focal points helps to correct the unusual behaviour of
the resulting residuals. Another way to verify this is to compute the cross K-function
between the pattern of varicella cases and the pattern obtained considering the six focal
points. Figure 2.16 shows the cross K-function estimate (solid line) and the envelopes
simulated assuming a stationary (spatially homogeneous) random spatial point process
(grey area). As this figure illustrates, the cases are not independently distributed with
respect to the focal points.
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Figure 2.15. Cumulative raw residuals for the x and y axis; qqplot for the raw
residuals. Hybrid model without the focal points.
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Figure 2.16. Cross K-function between the varicella and schools patterns.

Our fitted model explains one interesting feature that has been missed by other more
epidemiological approaches and therefore adds value to our research. The intensity of
incidence of varicella is low at peripheral areas even though families with a large number
of children live there. Let us compare Figure 2.5 (right) and Figure 2.7 (right), the
varicella point pattern estimate and the ‘average number of persons per family register’
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estimate. On one hand, we observe that for centrally situated areas (areas with an
older population) the average number of persons per family is low. As expected, the
intensity of the process in these areas is also low. On the other hand, as stated before,
the peripheral areas of the city correspond to low varicella incidence and large families.
This seems odd, but a deeper and careful analysis indicates that these peripheral areas
of the city are less populated, so less movement of people is expected, and the risk of
varicella being contagious is reduced. In addition, children living in large families are
quickly infected and become immune faster than those living in families with a reduced
number of members.

We have been able to identify such interactions between the incidence of varicella
cases and some available covariates. However, other covariates that have not been taken
into account here could also play a role. For example, some economic and demographic
variables could influence the risk of incidence.



Chapter 3

Methods for statistical analysis of
space-time lattice data

This thesis combines two epidemiological applications and two methodological proposals.
This chapter presents a second application, putting forward an analysis of aggregated
spatio-temporal data. This chapter represents an analysis based on different statistical
techniques used to analyse the varicella dataset introduced in Chapter 2, Section 2.3.1. In
addition to the spatial analysis in Chapter 2 where the spatial component of the process
in analysed, this chapter takes into account the temporal component in the dataset. We
aggregate the data into small areas (boroughs) and consider the yearly evolution of the
lattice data. The main objective in this chapter is to find a relation between the spatial
and temporal components of the process and confirm it by means of models. This chapter
proposes an exploratory space-time data analysis. Also, space-time parametric and non-
parametric models are applied to the data to identify the behaviour of the underlying
process. In Section 3.1 we take a look at an overview of some statistical models available
in the literature. Then we introduce the tools for exploratory space-time data analysis,
as proposed by Rey (2014) and space-time models. Exploratory space-time data analysis
methods are applied to the varicella dataset, together with space-time parametric and
non-parametric models, as proposed by Knorr-Held (2000).

3.1 Introduction

Parametric and non-parametric models with different types of interaction for analysing
space-time data have been proposed in the literature. Bernardinelli et al. (1995) proposes
a parametric space-time model assuming a linear time trend. The paper by Knorr-
Held (2000) suggests a model that combines the spatial model by Besag et al. (1991)
with dynamic models where the temporal trends are assumed to be non-linear and non-
stationary. In particular, the time-changing effects can be seen as the temporal analogue
of the spatially structured components in the Besag et al. (1991) model. This model
allows for space-time interactions where four types of interactions arise naturally as the
product of one of the two spatial effects with one of the two temporal main effects.

29
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Markov Chain Monte Carlo (MCMC) methods have given the community of users a
great tool to analyse these types of models for complex data. Recently, an approxima-
tion method for Bayesian inference, Integrated Nested Laplace Approximations (INLA)
(Rue et al., 2009), has been developed. It represents a very useful tool for reducing
computation time, providing Bayesian inference by means of the user-friendly library
R-INLA.

A broad range of applications have implemented parametric and non-parametric
models to detect particular space-time behaviour of patterns. Bernardinelli et al. (1995)
illustrate the use of parametric models by analysing the cumulative prevalence of insulin-
dependent diabetes mellitus in data gathered from all 18-year-old military recruits in
Sardinia during 1936-1971. Ugarte et al. (2009) present an evaluation of the performance
of the parametric and non-parametric space-time Bayesian models with a simulation
study and an application for mortality data due to colorectal cancer in males from
Navarra, Spain, corresponding to four 5-year time windows. Schrödle and Held (2011a)
apply space-time models using INLA to cases of coxiellosis among Swiss cows from 2005
to 2008. Different extensions of the parametric and non-parametric models have been
proposed by Schrödle and Held (2011b) and applied to counts of salmonellosis in cattle
reported to the Swiss Federal Veterinary Office from 1991 to 2008. Schrödle et al. (2011)
propose another application for these models to analyse reported cases of bovine viral
diarrhoea in Swiss cattle from 2003 to 2007. Blangiardo et al. (2013) study the pattern of
low birth weight for the 159 counties of US state of Georgia from 2000 to 2010, using the
parametric formulation in Bernardinelli et al. (1995) and the non-parametric formulation
in Knorr-Held (2000) with INLA.

This chapter presents a study of the spatial and temporal behaviour of varicella,
divided into two parts, an exploratory space-time data analysis (ESTDA) and an appli-
cation of space-time models.

3.2 Methods

3.2.1 Standardisation of rates

In epidemiology, the incidence rate of a disease is defined as the total number of observed
cases (individuals who change their status, going from being healthy to sick patients)
divided by the total number of people at risk (population at risk), both measured at the
same moment in time. Most diseases are affected by a number of demographic factors
such as age, sex, educational or socio-economic status. As a result, other variables have
a direct or indirect impact on the calculation of incidence rates.

Standardisation (and other adjustment procedures) is used to compare two or more
rates after eliminating the structural effects, leaving us with the residual effect, a good
indicator of disease incidence among populations. Age and sex are two of the most
common variables used for standardisation.

Indirect standardisation uses the age- and sex-specific rates for a standard population
and applies them to the population distribution in the areas of study to calculate the
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expected number of cases.
Internal standardisation calculates the rates, using the information provided by the

observed data.
Given the time component in the data, standardisation must be performed according

to the population living in the study area at any given moment in time. For example,
if we are handling daily, weekly or even monthly data, the standard population must
correspond to the annual population (if there are no significant shifts in the population
from one period of time to another).

Below, we exemplify internal standardisation for yearly observed data. We denote
by Ol the number of observed cases for a reference year, i0, and for the age and sex
group l = 1, . . . , L. We calculate the rate τl by dividing the number of cases Ol by the
population at risk from the age and sex group l for the year i0, denoted by Pl:

τl = Ol
Pl
.

To calculate the number of expected cases, we multiply τl by the population, Plk in each
area k = 1, . . . ,K corresponding to the age and sex group l and the corresponding year:

Ek = τlPlk

In matrix form, we assume a 1×L vector for every year in the study of the rate. We
multiply it with an L×K matrix corresponding to the population by age and sex group
and area of study, obtaining a 1×K vector

[
τ11 τ12 . . . τ1L

]
1×L


P11 P12 . . . P1K
P21 P22 . . . P2K
P31 P32 . . . P3K
. . . . . . . . . . . .
PL1 PL2 . . . PLK


L×K

=
[
E11 E12 . . . E1K

]
1×K

(3.1)

where E1k =
J∑
j=1

τ1jPjk.

Dividing the number of observed cases by the expected cases, we obtain the standard-
ised ratio (SR). The areas with SR more than 1 are those where the number of observed
cases is higher than would be expected if they behaved like the standard population;
by contrast, in areas with SR less than 1, the number of observed cases is lower than
expected.

3.2.2 Exploratory space-time data analysis

Spatial and spatio-temporal data exploration requires the setting of a neighbourhood
structure between geographic units that represents the configuration of the analysed
region. The units are usually administrative divisions established on a given territory.
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The neighbourhood structure depends on the criteria used to define the concept of
neighbour. If we define neighbours as the administrative units that share a border, an
approach that seems best suited for a grid (lattice) as irregular as the one of the different
boroughs of the city of Valencia, the contiguity matrix, W , has the following form:

wij =


0, i = j = 1, . . . , n;
1/ni, if j ∈ V (i), with ni = #V (i);
0, if j /∈ V (i),

where i and j represent whichever two of the n boroughs and V (i) the set of neighbours of
i. With this structure, no borough is its own neighbour, and the values in each row sum
to unity because the weights wij are standardised. For other neighbouring structures,
see Cliff and Ord (1973).

3.2.2.1 Moran index and Moran scatter plot

The first analysis of the geographical location data is to determine the existence of spatial
autocorrelation. One of the most popular measures is Moran’s index (Moran, 1950a,b),
which allows for the measurement of spatial autocorrelation between observations of a
variable X. Its most general expression for a non-standardised weight matrix W is

I =
n
∑
i

∑
j wij(xi − x̄)(xj − x̄)
S0
∑
i(xi − x̄)2 , (3.2)

where S0 = ∑
ij wij . If, as in our case, wij = 1/ni, then S0 = n and (3.2) takes the

following form:

I =
∑
i

∑
j∈V (i)

1
ni

(xi − x̄)(xj − x̄)∑
i(xi − x̄)2 . (3.3)

Under the hypothesis of randomness in the spatial distribution of the observed values
of X and asymptotic normality, its expectation E(I) = −1/(n − 1) and its variance
can be obtained. This allows for the construction of a hypothesis test to check for
spatial autocorrelation. However, there is an alternative Monte Carlo test based on
random permutations which avoids the problem of asymptotic normality. Both tests are
implemented in the spdep (Bivand, 2014) package in R (R Core Team, 2014).

Expression (3.3) gives us an interpretation of I in terms of a regression coefficient.
It can be rewritten as

I =
∑
i

∑
j∈V (i)

1
ni

(xi − x̄)(xj − x̄)∑
i(xi − x̄)2 =

∑
i(xi − x̄)

[
1
ni

∑
j∈V (i)(xj − x̄)

]
∑
i(xi − x̄)2 = cov(x, y)

var(x) ,

(3.4)



3.2 Methods 33

where y represents the average of the values of x in the neighbourhood of i, also called
first-order spatial lag because it refers to the neighbours sharing borders, which are at
distance 1. Unequivocally, I is the regression coefficient of Y on X and represents the
average spatial correlation of the data. Figure 3.1 shows a simulated example of this
type of regression.
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Figure 3.1. Moran scatter plot for a variable X and its spatial lag Y .

If there is no association between the values of x, the average of its neighbourhood
does not vary systematically with it. However, if there is a positive association, high
or low values of x surrounded by similar values, pairs of (xi, yi) would appear predom-
inantly in two of the quadrants into which the lines y = ȳ and x = x̄ divide the plane,
specifically in quadrants 1 and 3 as in the example shown in the graph. Each quadrant
has an associated autocorrelation type as indicated in the figure. Such graphs are called
Moran scatter plots. In classic notation, if L and H denote, respectively, lower or higher
values than the mean, the four quadrants of Figure 3.1 are denoted by the following
combinations HH, HL, LL and LH, where the first letter refers to the value of X and
the second to the average of its neighbours.

3.2.2.2 Directional Moran scatter plot

Moran’s index only provides spatial information on the behaviour of the variable. Since
we have information over time, our interest lies not so much in the static exploration
shown in Figure 3.1 but in the comparison of similar figures obtained for different time-
frames. This comparison provides an overview of the spatial dynamics but can mask
individual developments. The graphical part of this procedure is called directional Moran
scatter plot and is shown in Figure 3.2.

The upper row of Figure 3.2 shows Moran plots corresponding to two different time
instants of a certain variable X. In the bottom left-hand graph, both Moran plots are
jointly represented, and the transition between the two periods for each zone is repre-
sented by a motion vector whose direction is (−−→t1, t2). The characteristics of these motion



34 Chapter 3. Methods for statistical analysis of space-time lattice data

0 50 100 150 200

0
20

40
60

80
10

0

variable X in t=1
sp

at
ia

l l
ag

 o
f X

 in
 t=

1

0 50 100 150 200

0
20

40
60

80
10

0

variable X in t=2

sp
at

ia
l l

ag
 o

f X
 in

 t=
2

0 50 100 150 200

0
20

40
60

80
10

0

 

 

E

N

W

S

10

20

30

40

50

60

70

Figure 3.2. Upper row: simple Moran scatter plot. Lower row: directional Moran
scatter plot.

vectors can be summarised graphically by the radial plot in the lower right-hand part of
the figure, where the four quadrants now have a different meaning than their equivalents
in the original Moran plot. For example, movements in the NE direction indicate an
overall growth, both for the area and for its neighbours, as big as the magnitude of the
vector.

The graphical analysis can be completed with a test (Rey et al., 2011) to contrast
the spatial dependence of the observed motion against the null hypothesis that X and
its spatial lag Y evolve independently. The originator of the modern Monte Carlo test
is Barnard (1963). The test proposed here is based on M random permutations of
the observed values over the neighbours of each area, whose value is fixed. For each
permutation, the spatial lag and associated motion vectors are recalculated. Two tests
and their corresponding p-values can be applied:

Normal approximation.- Based on,

zi = ni − n̄∗i
sn̄∗i

,

where ni is the number of vectors from the quadrant i = 1, 2, 3, 4 in the original
radial plot, and n̄∗i and sn̄∗i are the mean and the standard deviation of the number
of observed vectors in i along the M random permutations. The associated p-value
is calculated from the distribution function of the standard normal.
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Non-parametric test.- Based on the range of ni between the values obtained in the
M random permutations. If mi is the number of permutations equal to or greater
than ni, the associated p-value is obtained by

p = mi + 1
M + 1 . (3.5)

3.2.2.3 Spatial Markov chain models

Markov chains were introduced by Quah (1993) for the study of regional income dis-
tribution as an alternative method to σ and β convergence (Barro and Sala-i-Martin,
2004). A transition probability matrix among the different classes of income is obtained,
allowing for the representation of the dynamics of its evolution. In Rey (1993), the
author extends the procedure, including the spatial structure.

If i = 1, 2, . . . ,m are the different states of the variable X at a time k, verifying the
condition

P (Xk = j|Xk−1 = i,Xk−2 = l, . . . , X0 = m) = P (Xk = j|Xk−1 = i) = pij ,

the probabilities pij are the elements of the transition matrix P of dimension m ×m.
Assuming temporal homogeneity, the maximum-likelihood estimation of the transition
probabilities is

p̂ij = nij∑
j nij

,

where nij is the observed number of transitions from i to j.
Considering the two states L and H mentioned above, Rey (1993, 2014) proposed to

separately estimate the transition matrices P (X), corresponding to the variable X, and
P (Y ) for the spatial lag of X. Both matrices have a dimension of 2 × 2. The matrix
of joint transitions of each area and its spatial lag, P (XY ), is also estimated. Their
dimension is 4 × 4, since they can jointly be in any of the four quadrants (states) in
Figure 3.1. Under the null hypothesis of independence or absence of spatial dynamics

P̂ (XY ) = P̂ (X)⊗ P̂ (Y ), (3.6)

where ⊗ is the Kronecker product.
A χ2 test with 4× (4− 1) = 12 degrees of freedom (Anderson and Goodman, 1957)

allows for testing (3.6). Its rejection means that the respective Markov chains are not
separable. That is, the evolution of the variable in a given area is not independent of
that of its neighbours.

3.2.3 Space-time models

The available literature offers a large range of space-time models for lattice data. Here,
we focus on the parametric models defined by Bernardinelli et al. (1995), the non-
parametric models described by Knorr-Held (2000) and some variations of them.
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Let Oij be the number of observed cases and Eij the expected number of cases for the
ith area and jth period of time. We assume the number of observed cases is modelled
as

Oij ∼ Poisson(rijEij),

where rij is the underlying disease rate.

3.2.3.1 Models with parametric time trend

A parametric formulation for space-time modelling was introduced by Bernardinelli et al.
(1995) and assumes the log-rate as a linear function of time

log(rij) = α+ (θi + φi) + (β + δi)tj , (3.7)

where α is the intercept, θi and φi two area effects adopting the standard Besag et al.
(1991) model with structured and unstructured components, β is the mean linear time
trend over all areas, and δi is the interaction between the time effect and the space effect.

With respect to the model identifiability, Bernardinelli et al. (1995) suggest a parametri-
sation in which ∑φi = 0 and ∑ δi = 0. Thus, δi is the difference between the area-
specific trend and the mean trend β. Therefore, a value of δi < 0 implies that the
area-specific trend is less steep than the mean linear time trend, whilst a value of δi > 0
implies that the area-specific trend is steeper than the mean trend.

To allow close regions to have similar incidence rates, the spatially structured com-
ponent θ is modelled as an intrinsic Gaussian Markov random field (iGMRF) where the
prior density of θ = (θ1, . . . , θn)T can be written as

π(θ|σ2
θ) ∝ exp

(
− 1

2σ2
θ

∑
i∼i′

(θi − θi′)2
)
, (3.8)

where i ∼ i′ represents all pairs of adjacent regions.
The parameter φi represents the unstructured residual, modelled using an exchange-

able prior: φi ∼ Normal(0, σ2
φ).

The parameter δi, the so-called differential trend, captures the interaction between
the linear time trend and the two spatial effects θ and φ. It can be interpreted as the
difference between the time trend of region i and the overall time trend β. It can be
specified as an independent and identically, mean-zero normally distributed effect or
specified as in (3.8).

3.2.3.2 Models with non-parametric time trend

The models described above assume a linear time trend in each region. Knorr-Held
(2000) proposes a model specification combining the spatial model by Besag et al. (1991)
with dynamic models. This allows for a non-parametric estimation of temporal trends,
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which neither assumes linearity nor stationarity and can be seen as the temporal analogue
of the spatially structured component in Besag et al. (1991). According to Knorr-Held
(2000), a non-parametric, additive space-time model can be written as

log(rij) = α+ θi + φi + ρj + γj + δij , (3.9)

where θi and φi have the same parametrisation as in (3.7), and ρj and γj represent the
structured and unstructured temporal effects. An independent mean-zero normal prior
which assumes no temporal structure is used for the temporal effect γ. In contrast, the
parameter ρ displays temporal structure. Schrödle and Held (2011b) suggest the use of
first- and second-order random walk. We consider a first-order random walk (RW1) for
ρ, with a prior in which effects for neighbouring time points tend to be alike.

π(ρ|σ2
ρ) ∝ exp

− 1
2σ2

ρ

T∑
j=2

(ρi − ρi′)2

, (3.10)

with precision matrix kρKρ, where kρ is an unknown scalar and Kρ is the structure
matrix:

Kρ =



1 −1
−1 2 −1

−1 2 −1
...

...
...

−1 2 −1
−1 2 −1

−1 1


. (3.11)

The parameter δ represents the space-time interactions. The specification of the prior
for δ depends on which spatial and temporal effects are assumed to interact. Knorr-Held
(2000) proposes four types of interaction as shown here in Table 3.1. Clayton (1996)
and Knorr-Held (2000) suggest specifying Kδ as the Kronecker product of the struc-
ture matrices of the corresponding effects which are assumed to interact. For example,
type II interaction assumes that the unstructured spatial component and the structured
temporal component of the model interact, meaning that δ follows a random walk (of
first or second order, depending on the specification), independently of all other areas.
Knorr-Held (2000) provides a symbolic representation that can help better understand
the four possible types of interaction.

In these non-parametric models, the parameters are not identifiable. We must set
a sum-to-zero constraint on all θi and ρj in order to ensure the identifiability of the
intercept α. To assure identifiability for the interaction term δ, specific sum-to-zero
constraints have to be used. Moreover, for type II, III and IV interaction more constraints
must be considered, taking into account the rank deficiency of the structure matrix of δ.
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Space-time interaction Kδ

Type I Kφ ⊗Kγ

Type II Kφ ⊗Kρ

Type III Kθ ⊗Kγ

Type IV Kθ ⊗Kρ

Table 3.1. Specifications for the four types of space-time interaction.

These constraints can be defined using the results of Rue and Held (2005), and applied
as in Schrödle and Held (2011b). The space-time models can be implemented using the
R-INLA library (Rue et al., 2009).

3.3 Space-time analysis for the varicella data

3.3.1 Exploratory analysis

Figure 3.3 shows the spatial distribution of the standardised incidence ratio (SIR) of
varicella in the boroughs of Valencia during the first year of the study, 2008, and the last
year of the study, 2013. Population changes within a year are minimal and do not affect
the ratio of calculated incidence. We can see an evolution of the spatial distribution of
varicella incidence from one year to another. Areas in the south and east of Valencia
are showing a decrease in incidence, and some of the boroughs in the centre of the city
show an increase. Higher values of SIR are observed in the periphery of the city, which
indicates varicella has a specific spatial behaviour. Table 3.2 shows the values for the
Moran’s index calculated for each year and reflects the existence of a spatial effect for
all years. So far, Figure 3.3 and Table 3.2 suggest spatial dependence but are not able
to show potential spatial dynamics and underlying movement patterns.
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Figure 3.3. Right: spatial distribution of varicella SIR in Valencia for 2008. Left:
spatial distribution of varicella SIR in Valencia for 2013.

The exploratory analysis using the directional Moran scatter plot summarised in
Table 3.3 will help us identify dynamics in the distribution of our data. Table 3.3 shows
the number of observed vectors in each of the four quadrants, the expected, which is the
average obtained from the M = 499 random permutations, and the associated p-value
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Asymptotic normality test Montecarlo test
Moran I Expectation Variance p-value observed rank p-value

SIR-08 0.1791 -0.0145 0.0050 3.09e-03 995 0.005
SIR-09 0.2612 -0.0145 0.0047 2.87e-05 1000 0.001
SIR-10 0.2489 -0.0145 0.0051 1.06e-04 1000 0.001
SIR-11 0.3617 -0.0145 0.0052 8.59e-08 1000 0.001
SIR-12 0.2381 -0.0145 0.0047 1.20e-04 999 0.001
SIR-13 0.3216 -0.0145 0.0042 1.06e-07 999 0.001

Table 3.2. Moran index for SIR of varicella values from 2008 to 2013.

calculated by (3.5) for the five year transitions. We have highlighted in grey those p-
values that lead to the rejection of the null hypothesis: the values of a borough and the
values of its neighbours evolve independently. These p-values are significant in most of
the transitions, except the last one, 2012-13, which does not reject independence in any
of the quadrants.
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Figure 3.4. Standardised Moran directional scatter plots for 2008-2013 and 2010-2011.

Figure 3.4 shows two radial directional Moran plots corresponding to the periods
2008-2013 and 2010-2011. Movement vectors directed towards NE suggest an increase in
the incidence of co-movements (movements of one borough together with its neighbours).
Movements towards SW reflect decreasing co-movements of the observed incidence and
its neighbours in the distribution. The length of the directional vectors stands for the
amount of change in varicella incidence. We will focus on the directions of the vectors,
capturing spatial dynamic distribution. Figure 3.4 seems to display more vectors in the
NE and SW directions reflecting co-movements of boroughs and their neighbours. This
could indicate spatial dependence in distribution dynamics in these two periods.

Table 3.3 shows that the most frequent type of movement along the study period
is in the NE and SW directions. This means that boroughs and their neighbours move
in the same direction within the distribution. Areas with high/low varicella incidence
will move in the same direction in terms of growth/decline as their neighbouring areas,
maintaining a high/low varicella rate. The last three rows of Table 3.3 summarise the
movements between the initial year, 2008, and the final year, 2013. We continue to
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N-E N-W S-W S-E
2008-09 observed 20 13 25 12

expected 15.4609 19.4128 18.5872 16.5391
p-value 0.0640 0.0080 0.0260 0.0420

2009-10 observed 27 12 19 12
expected 21.6734 17.8918 13.1082 17.3267
p-value 0.0520 0.0100 0.0280 0.0140

2010-11 observed 14 6 37 13
expected 10.0701 16.0261 26.9740 16.9299
p-value 0.0800 0.0000 0.0040 0.0360

2011-12 observed 26 12 27 5
expected 15.6573 20.7535 18.2465 15.3427
p-value 0.0020 0.0020 0.0060 0.0000

2012-13 observed 27 15 15 13
expected 23.6072 18.4689 11.5311 16.3928
p-value 0.1860 0.0620 0.1420 0.0980

2008-13 observed 23 11 23 13
expected 23.7214 18.5431 11.4569 16.2786
p-value 0.3380 0.0020 0.0020 0.1080

Table 3.3. Moran directional summary with non-parametric p-values.

see higher frequency in the NE and SW directions, but only the latter has a significant
p-value with many more cases than expected.

The lack of independence has important implications for varicella distribution, as
high or low aggregation is more likely to occur among neighbouring areas within a
similar varicella incidence. Therefore, interesting behaviour is not so much to be seen in
an individual borough, but rather in its interaction with neighbouring boroughs.

The analysis of the dynamics of the SIR values along the study period requires prior
clarification. The threshold for determining whether the state of the SIR of varicella in a
borough is L (low) or H (high) is not the average, but the value 1, so that SIR ≤ 1⇒ L
and SIR > 1 ⇒ H. With this approach, the estimates of the transition matrices that
appear on both sides of (3.6) are

P̂ (XY ) =


0.6145 0.1567 0.1084 0.1204
0.5000 0.1552 0.1034 0.2414
0.3636 0.0728 0.2727 0.2909
0.2958 0.1972 0.1690 0.3380


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and

P̂ (X)⊗ P̂ (Y ) =


0.5198 0.2213 0.1816 0.0773
0.3906 0.3504 0.1366 0.1224
0.3285 0.1398 0.3729 0.1588
0.2468 0.2214 0.2803 0.2515


The statistic to compare the matrices is χ0 = 45.7818, which for χ12 provides a

p-value p = 7.56504e − 06. This means that the SiRs of varicella in a borough and in
its surroundings evolve jointly, a result that will be taken into account in the following
space-time modelling.

3.3.2 Space-time models

The models described in Section 3.2.3 are now applied to varicella data. All computation
has been carried out using INLA (Rue et al., 2009). The data analysed in this section
represents the space-time process observed in 70 boroughs during a six-year time period,
from 2008 to 2013. Figure 3.5 shows the temporal evolution of the total number of
varicella cases from 2008 to 2013 (solid line). Also, it shows the temporal evolution of
the population (dotted line). A clear decrease in the number of cases can be seen during
the last four years.
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Figure 3.5. Evolution of the number of varicella cases (solid line) and evolution of the
population (dotted line) during the time period 2008-2013.

The number of varicella cases has decreased from over 2, 500 cases in 2008 to less
than 1, 000 cases in 2013. This decrease could be a direct consequence of Public Health
preventive measures. Moreover, the population have participated in the vaccination pro-
grammes implemented by the Spanish Government. Unfortunately, information regard-
ing vaccination is not available for the boroughs of Valencia thus can not be considered
in the analysis.

Parametric and non-parametric models have been fitted to the varicella data. De-
viance information criterion (DIC), a well-known Bayesian model choice criterion, has
been used to select the best model fit. DIC is defined as the sum of the posterior mean
of the deviance and the effective number of parameters. The smaller the DIC, the better
the trade-off between model fit and complexity. The logarithmic score (Gneiting and
Raftery, 2007) indicates the predictive quality of the model and can easily be obtained
in R; the smaller the resulting score, the better the predictive quality of the model is.
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Calibration refers to the statistical consistency between the probabilistic forecasts and
the observations (Czado et al., 2009). If the observations are drawn from the predictive
distribution, an ideal and desirable situation, the probability integral transform (PIT) has
a standard uniform distribution. The calibration of the models can be checked by plot-
ting the PIT-histograms as suggested by Czado et al. (2009). The closer the histograms
are to being uniform, the better the calibration is.

Bernardinelli model
(model 0)

DIC 4,036.88
Deviance 3,997.30

Effective number of parameters 66.57
Logarithmic score 5.28

Table 3.4. DIC and logarithmic score for the model with parametric time trend.

Interaction
Type I Type II Type III Type IV

(model 1) (model 2) (model 3) (model 4)
DIC 3,039.23 2,943.67 2,654.76 2,667.86

Deviance 2,600.96 2,543.04 2,356.02 2,373.55
Effective number of parameters 438.27 400.63 298.73 294.31

Logarithmic score 4.648 4.366 3.468 3.502

Table 3.5. DIC and logarithmic score for all models with non-parametric time trend.

Tables 3.4 and 3.5 show the previous criteria for the Bernardinelli model and the
non-parametric models. In view of the results of the two tables, the non-parametric
models represent a better fit for our data. Table 3.5 shows models 3 and 4 have the
smallest DIC, 2, 654.76 and 2, 667.86, and also the smallest logarithmic score, 3.468 and
3.502. Models 3 and 4 are models with interaction type III and IV. The PIT-histograms
in Figure 3.6 (lower row) are closest to being uniform. Both models can be chosen as
valid for modelling our data.

Figure 3.7 shows the estimated mode for the varicella-fitted relative risk in all 70
boroughs of Valencia, for models 3 and 4, for 2008 and 2013. The spatial distribution of
the estimated mode for model 3 is similar to the one estimated for model 4. For 2008,
Figure 3.7 (left, upper row) and Figure 3.7 (left, lower row) show two small areas (area 1
and 2) where the relative risk has a smoother estimation for model 4. The same applies
to 2013. Figure 3.7 (right, upper row) and Figure 3.7 (right, lower row) show a more
uniform estimation for model 4, in the central-north part of the city and in the south.

Figure 3.7 also shows a spatial structure for model 3 where areas with low varicella
risk and areas with high varicella risk tend to cluster together. We can identify areas
changing from high to low relative risk in the south of the city. In the centre of the city,
areas with low varicella risk do not experience changes during the period of the study.
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Figure 3.6. (Top) PIT-histograms for models with type I to II interaction. (Bottom)
PIT-histograms for models with type III to IV interaction.

High varicella risk boroughs are clustered in the western and eastern areas of Valencia.
A similar behaviour is observed for model 4. We can see that the varicella spatial pattern
varies over the years.

Figure 3.8 shows the estimated linear time trend for model 4 corresponding to the
La Creu Coberta borough in district 9 and the Cami Fondo borough in district 12. We
can see that model 4 manages to describe the underlying decrease in the rate.

The spatial structure shows a higher relative risk in economically disadvantaged
peripheral areas, or areas with a younger population. In 2008, Figure 3.7 shows an area
in the centre of Valencia where the relative risk of varicella is less than 0.7, spreading as
far as the north-west part of the city. In 2013, we identified low varicella risk areas in
the centre and eastern parts of Valencia. All these areas are boroughs with an elderly
population and a community more involved in the vaccination programmes.

3.4 Conclusions and discussion

We carried out an applied epidemiological and statistical study to see how an airborne
disease like varicella behaves spatially and temporally. We applied a wide range of de-
scriptive spatio-temporal tools and spatio-temporal models to analyse varicella. The
exploratory space-time data analysis showed an important relationship between the spa-
tial and the temporal component of the data. We used directional statistics in order to
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Figure 3.7. (Top) Distribution of the estimated relative risk of varicella according
to models 3 and 4 for 2008. (Bottom) Distribution of the estimated relative risk of
varicella according to models 3 and 4 for 2013.

obtain relevant information from movements within the space-time distribution. This
dynamic approach relates the spatial dependence to the statistical relationship between
an area and its neighbours across space and over time. Our results suggest boroughs do
not act independently, and we have identified a range of movements, mostly in the NE
and SW directions. This proves a strong spatio-temporal relationship between the small
areas of Valencia.

The space-time models confirm the existence of an interaction between the spacial
and the temporal component in our data. Both models with type III and type IV
interaction are identified as a good fit for our data. We consider model 4 a more complex
model capable of explaining all underlying space-time effects. The results from the
exploratory analysis also allow us to support this decision.

Epidemiologists confirm that there has been a decrease in the incidence of varicella
due to disease vaccination. Since 2006, the varicella vaccine has been included in the
children vaccination schedule of the Community of Valencia (CV) for 11-year-old children
with no previous history of vaccination or illness (two doses one month apart). The
Spanish Association of Paediatrics (SAP) had previously recommended two varicella
vaccine doses, one from 12 to 15 -months and a second one, from 4 to 6 years. Most
paediatricians carried out the vaccination this way until last year, when the vaccine was
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Figure 3.8. (Left) Linear time trend for borough 3 from district 9 corresponding to the
model with type IV interaction. (Right) Linear time trend for borough 4 from district
12 corresponding to the model with type IV interaction

withdrawn from pharmacies and SAP recommended not administering it until the age
of 12. Vaccination coverage is quite high: 39.12% for 2008, 39.29% for 2009, 42.83% for
2010, 49.54% for 2011, 53.41% for 2012 and 41.92% for 2013.

The coverage rates are quite parallel to the incidence rates of varicella; when varicella
vaccination increases, we observe a decrease in the incidence of the disease. The vaccines
given before the age of 11 in Valencia were not funded by Public Health; thus, parents
bought the vaccines on recommendation of paediatricians and then administered them
to their children in private clinics. The population living in the centre of the city of
Valencia generally tends to have a fairly high income level, and in those neighbourhoods,
more children were probably vaccinated than in peripheral areas. In mid-2013, the
varicella vaccine was withdrawn from pharmacies and SAP banned its administration.
In fact, data from 2014 confirmed that varicella incidence has once again risen. As we
already stated, most chickenpox cases occur before the age of 10, so when the vaccination
schedule starts at age 11, most children have already had chickenpox unless they have
been vaccinated, which was the case in the years encompassed by our study.

The next interesting step in the analysis of the varicella data is to examine the
spatio-temporal point pattern. This will be further discussed in Chapter 4.





Chapter 4

A multi-scale area-interaction
model for spatio-temporal point
patterns

This chapter presents an extension of the area-interaction model (Baddeley and van
Lieshout, 1995) to a space-time framework. This extension is an important contribution
to the field of statistical analysis of point patterns. The new model we introduce includes
different types of interaction at different spatio-temporal scales. We first present some
preliminaries in relation to notation and terminology. We follow by defining the proba-
bility density for the new model and the Markov properties. We then adapt simulation
algorithms, such as the Metropolis-Hastings and the birth-and-death algorithms, to our
context. Pseudo-likelihood method for inference and an extension of the Berman-Turner
procedure for the new spatio-temporal multi-scale area-interaction model are proposed
afterwards. All the proposed algorithms are illustrated using a simulated example. Vari-
cella data is used to show an application of the newly introduced model.

4.1 Introduction

Spatio-temporal patterns are increasingly observed in many different fields, including
ecology, epidemiology, seismology, astronomy and forestry. The common feature is that
all observed events have two basic characteristics: the location and the time of the event.
Here we are mainly concerned with epidemiology (Stallybrass, 1931), which studies the
distribution, causes and control of diseases in a defined human population. The locations
of the occurrence of cases give information on the spatial behaviour of the disease,
whereas the times, measured on different scales (days, weeks, years, period of times), give
insights on the temporal response of the overall process. An essential point to take into
consideration is that people are not uniformly distributed in space, hence information
on the spatial distribution of the population at risk is crucial when analysing spatio-
temporal patterns of diseases.

47
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Realistic models to fit epidemiological data should incorporate spatio-temporal inho-
mogeneity and allow for different types of dependence between points. One important
class of such models is the family of Gibbs point processes, defined in terms of their prob-
ability density function (Ripley, 1988, 1989; Van Lieshout, 2000), and, in particular, the
sub-class of pairwise interaction processes. Well-known examples of pairwise interaction
processes are the Strauss model (Strauss, 1975; Kelly and Ripley, 1990) or the hard core
process, a particular case of the Strauss model where no points ever come closer to each
other than a given threshold. However, pairwise interaction models are not a suitable
choice for fitting clustered patterns. A family of Markov point processes that can fit
both clustered and ordered patterns is that of the area- or quermass-interaction models
(Baddeley and van Lieshout, 1995; Kendall et al., 1999). These models are defined in
terms of stochastic geometric functionals and display interactions of all orders. Methods
for inference and perfect simulation are available in Kendall (1998); Häggström et al.
(1999); Møller and Helisová (2010); Dereudre et al. (2014).

Most natural processes exhibit interaction at multiple scales. The classical Gibbs
processes model spatial interaction at a single scale, nevertheless multi-scale generaliza-
tions have been proposed in the literature (Ambler and Silverman, 2010; Gregori et al.,
2003; Picard et al., 2009).

4.2 Preliminaries

A realization of a spatio-temporal point process consists of a finite number n ≥ 0 of
distinct points (xi, ti), i = 1, . . . , n, that are observed within a compact spatial domain
WS ⊆ R2 and time interval WT ⊆ R. The pattern formed by the points will be denoted
by x = {(xi, ti)}ni=1. For a mathematically rigorous account, the reader is referred to
Daley and Vere-Jones (2003, 2008).

We define the Euclidean norm ||x|| = (x2
1+x2

2)1/2 and the Euclidean metric dR2(x, y) =
||x−y|| for x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ R2. We need to treat space and time dif-
ferently, thus on R2 × R we consider the supremum norm ||(x, t)||∞ = max{||x||, |t|} and
the supremum metric d((x, t), (y, s)) = ||(x, t)− (y, s)||∞ = max{||x− y||, |t− s|}, where
(x, t), (y, s) ∈ R2 × R. Note that (R2 × R, d(·, ·)) as well as its restriction to WS ×WT is
a complete, separable metric space. We write B(R2 × R) = B(R2)⊗ B(R) for the Borel
σ-algebra and ` for Lebesgue measure. We denote by ⊕ the Minkowski addition of two
sets A,B ⊂ R2, defined as the set A⊕B = {a+ b : a ∈ A, b ∈ B}.

As stated in Section 4.1, Gibbs models form an important class of models able to fit
epidemiological data exhibiting spatio-temporal inhomogeneity and interaction between
points. In space, the Widom-Rowlinson penetrable sphere model (Widom and Rowlin-
son, 1970) produces clustered point patterns; the more general area-interaction model
(Baddeley and van Lieshout, 1995) fits both clustered and inhibitory point patterns. In
its most simple form, the area-interaction model is defined by its probability density

p(x) = αλn(x)γ−A(x) (4.1)

with respect to a unit rate Poisson process on WS . Here α is the normalizing constant, x
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is a spatial point configuration in WS ⊂ R2, n(x) is the cardinality of x and A(x) is the
area of the union of discs of radius r centered at xi ∈ x restricted to WS . The positive
scalars λ, γ and r > 0 are the parameters of the model. Note that, as emphasized
in Van Lieshout (2000), Gibbsian interaction terms can be combined to yield more
complex models. Doing so, Ambler and Silverman (2010); Gregori et al. (2003); Picard
et al. (2009) develop an extension of the area-interaction process which incorporates both
inhibition and attraction. We propose a further generalization of the area-interaction
model to allow multi-scale interaction in a spatio-temporal framework.

4.3 Space-time area-interaction processes

Let x be a finite spatio-temporal point configuration on WS ×WT ⊂ R2 × R, that is, a
finite set of points, including the empty set.

Definition 1. The spatio-temporal multi-scale area-interaction process is the point pro-
cess with density

p(x) = α
∏

(x,t)∈x
λ(x, t)

m∏
j=1

γ
−`(x⊕Gj)
j (4.2)

with respect to a unit rate Poisson process on WS ×WT , where α > 0 is a normalizing
constant, λ ≥ 0 is a measurable and bounded function, ` is Lebesgue measure restricted to
WS×WT , γj > 0 are the interaction parameters, Gj are some compact subsets of R2 × R
with size depending on j, j = 1, . . . ,m, m ∈ N, and ⊕ denotes Minkowski addition.

Note that when x is the empty set, p(x) = α. The interaction parameters have
the same interpretation as for the spatial area-interaction model (4.1). For fixed j ∈
{1, . . . ,m}, when 0 < γj < 1 we would expect to see inhibition between points at spatio-
temporal scales determined by the definition of the compact set Gj . On the other hand,
when γj > 1 we expect clustering between the points. We observe that (4.2) reduces to
an inhomogeneous Poisson process when γj = 1 for all j ∈ {1, . . . ,m}.

Covariates can be introduced in the model by letting the intensity function λ be a
measurable and bounded function λ(x, t) = ρ(Z(x, t)) of the covariate vector Z(x, t).

The new model proposed in (4.2) successfully extends the area-interaction model to
multi-scale interaction for spatio-temporal point patterns.

Lemma 1. The density (4.2) is measurable and integrable for all γj, j = 1, . . . ,m,
m ∈ N.

Proof. Consider a point configuration, x. Since ` is σ-finite and Gj is compact, the
map x 7→ `(x ⊕ Gj) is measurable for any j = 1, . . . ,m. It follows that the map x 7→
exp[−`(x⊕Gj) log γj ] is measurable for any j = 1, . . . ,m. The map x 7→

∏
xi∈x λ(xi, ti)

is also measurable by assumption, hence the density (4.2) is measurable.
To determine if (4.2) is integrable, we observe that 0 ≤ `(x⊕Gj) ≤ `(WS×WT ) <∞.

The function λ is integrable by assumption, hence (4.2) is dominated by an integrable
function, and therefore integrable.
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As a further simplification, for fixed j ∈ {1, . . . ,m}, consider the case where x⊕Gj =⋃
(x,t)∈x C

tj
rj (x, t) is the union of all cylinders with radius (rj , tj) centered in (x, t) taken

over all (x, t) ∈ x. We define the cylinder with radius (rj , tj) by

Ctjrj (x, t) = {(y, s) ∈WS ×WT : ||x− y|| ≤ rj , |t− s| ≤ tj}.

Then x⊕Gj is the set of all points within the cylinders Ctjrj (x, t) centered in points of x
and the expression (4.2) reads

p(x) = α
∏

(x,t)∈x
λ(x, t)

m∏
j=1

γ
−`(∪(x,t)∈xC

tj
rj

(x,t))
j , (4.3)

where (rj , tj) are pairs of irregular parameters (Baddeley et al., 2015) of the model and
γj are interaction parameters, j = 1, . . . ,m. The function λ is here assumed known for
simplicity, but could also depend on further parameters.

Figure 4.1. An illustration of possible x⊕G (cylinders around the points), where the
black dots represent points of the process.

Figure 4.1 shows an illustration of x ⊕ Gj . When 0 < γj < 1, point configurations
such as the one on the left are likely to be observed (inhibition between points), whereas
for large γj > 1, point configurations such as the one on the right are more likely to be
observed (attraction between points).

4.3.1 Markov properties

Let∼ on R2 × R be a symmetric and reflexive relation on R2 × R, i.e. for any (x, t), (y, s) ∈
R2 × R, (x, t) ∼ (y, s)⇔ (y, s) ∼ (x, t) and (x, t) ∼ (x, t). Two points (x, t) and (y, s) are
said to be neighbours if (x, t) ∼ (y, s). An example of a fixed range relation on R2 × R
is

(x, t) ∼ (y, s)⇔ (x, t)⊕G ∩ (y, s)⊕G 6= ∅, (4.4)

where G = Ct1r1 is a cylinder of radius (r1, t1).

Definition 2. A point process has the Markov property (Van Lieshout, 2000; Ripley
and Kelly, 1977) with respect to the symmetric, reflexive relation ∼, if, for all point
configurations x with p(x) > 0, the following conditions are fulfilled:
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1. p(y) > 0 for all y ⊆ x;

2. the likelihood ratio p(x ∪ {(y, s)})
p(x) for adding a new point (y, s) to a point config-

uration x depends only on points (x, t) ∈ x such that (y, s) ∼ (x, t), i.e. depends
only on the neighbours of (y, s).

Lemma 2. The spatio-temporal multi-scale area-interaction process (4.2) is a Markov
point process with respect to the relation (4.4) in the sense of Ripley and Kelly (1977).

Proof. Note that if p(x) > 0, since λ(x, t) > 0 for all (x, t) ∈ x, then whenever y ⊆ x,
also p(y) > 0. The likelihood ratio

p(x ∪ {(y, s)})
p(x) =

α

 ∏
(x,t)∈x

λ(x, t)

λ(y, s)
m∏
j=1

γ
−`((x∪{(y,s)})⊕Gj)
j

α
∏

(x,t)∈x
λ(x, t)

m∏
j=1

γ
−`(x⊕Gj)
j

= λ(y, s)
m∏
j=1

γ
−`(((y,s)⊕Gj)\(x⊕Gj))
j . (4.5)

Note that

((y, s)⊕Gj) \ (x⊕Gj) = ((y, s)⊕Gj) ∩

 ⋃
(x,t)∈x

(x, t)⊕Gj

c

= ((y, s)⊕Gj) ∩

 ⋃
(x,t)∼(y,s)

(x, t)⊕Gj

c , ∀j = 1, . . . ,m.

Thus (4.5) depends only on the newly added point (y, s) and its neighbors. Hence (4.2)
defines a Markov point process with respect to ∼.

It follows that the density p(·) in (4.2) is Markov at range 2 max{(rj , tj)}, j =
1, . . . ,m.

Define the Papangelou conditional intensity of a point process with density p defined
by

λ((y, s); x) = p(x ∪ {(y, s)})
p(x) ,

whenever p(x) > 0 and (y, s) 6∈ x. Then, for the spatio-temporal multi-scale area-
interaction process, by the proof of Lemma 2 we obtain that

λ((y, s); x) = λ(y, s)
m∏
j=1

γ
−`(C

tj
rj

(y,s)\
⋃

(x,t)∈x C
tj
rj

(x,t))
j , (4.6)
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or, upon transformation to a logarithmic scale,

log λ((y, s); x) = log λ(y, s)−
m∑
j=1

(log γj) `

Ctjrj (y, s) \
⋃

(x,t)∈x
Ctjrj (x, t)

 .
Note that λ(y, s) may be 0, thus making log λ(y, s) ill-defined.

Write ηj = log γj . Then, whenever well-defined,

log λ((y, s); x) = log λ(y, s)−
m∑
j=1

ηj

∫
WS×WT

1{(z, u) ∈ Ctjrj (y, s) \
⋃

(x,t)∈x
Ctjrj (x, t)} dz du

= log λ(y, s)−
m∑
j=1

∫
F

tj
rj

(y,s)

m∑
i=j

ηi 1{(z, u) /∈
⋃

(x,t)∈x
Ctiri

(x, t)} dz du,

(4.7)

where Ftjrj (x, t) is the difference between two concentric cylinders Ctjrj (x, t) and Ctj−1
rj−1(x, t).

r1 r2 ... rm

t1

t2

...

tm

γ1

γ2

...

γm

Figure 4.2. (Left) An illustration of F tj
rj where the blue annulus corresponds to

{(y, s) ∈WS×WT : rj−1 < ||x−y|| ≤ rj , |t−s| ≤ tj−1}, the two green annuli represent
{(y, s) ∈WS ×WT : rj−1 < ||x− y|| ≤ rj , tj−1 < |t− s| ≤ tj} and the two red cylinders
are {(y, s) ∈ WS × WT : ||x − y|| ≤ rj−1, tj−1 < |t − s| ≤ tj}. (Right) Multi-scale
behavior.
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Indeed,

Ftjrj (x, t) = Ctjrj (x, t) \ Ctj−1
rj−1(x, t)

=

(y, s) ∈WS ×WT :
rj−1 < ||x− y|| ≤ rj , |t− s| ≤ tj−1 or
rj−1 < ||x− y|| ≤ rj , tj−1 < |t− s| ≤ tj or
||x− y|| ≤ rj−1, tj−1 < |t− s| ≤ tj

 ,
with 0 = r0 < r1 < · · · < rm and 0 = t0 < t1 < · · · < tm. The left-most panel of
Figure 4.2 shows an illustration of F tjrj for fixed rj , tj . The blue annulus corresponds
to {(y, s) ∈ WS × WT : rj−1 < ||x − y|| ≤ rj , |t − s| ≤ tj−1}, the two green annuli
represent {(y, s) ∈ WS ×WT : rj−1 < ||x − y|| ≤ rj , tj−1 < |t − s| ≤ tj} and the two
red cylinders form {(y, s) ∈ WS ×WT : ||x − y|| ≤ rj−1, tj−1 < |t − s| ≤ tj}. If, for
(y, s), ||y − x|| > 2rm, |s− t| > 2tm,∀(x, t) ∈ x, then

log λ((y, s); x) = log λ(y, s)−
m∑
j=1

 m∑
i=j

ηi

 `(Ftjrj (y, s))

= log λ(y, s)−
m∑
j=1

ηj`(C
tj
rj (y, s)).

To conclude this discussion, note that, in accordance with Gregori et al. (2003),

p(x) = α
∏

(x,t)∈x
λ(x, t) exp [−

m∑
j=1

αj `(F
tj
rj (x))],

where αj = ∑
i≥j ηi and F

tj
rj (x)) = (x⊕Gj)\(x⊕Gj−1) As before, Gj = C

tj
rj .

The model in (4.2) with Papangelou conditional intensity defined by (4.7) allows for
models whose interaction behaviour varies across spatio-temporal scales, for example,
inhibition at small scales, attraction at larger scales and randomness beyond. The dif-
ferent spatio-temporal scales, (rj , tj), are defined according to Ftjrj . Indeed, a point (z, u)
in F

tj
rj (x) contributes a term αj to the energy (the negative of the exponential term) in

p(x). The right-most panel of Figure 4.2 shows a visual representation of this multi-scale
behavior.

An important property of Markov densities is the fact that the Papangelou con-
ditional intensity, λ((y, s); x), depends only on (y, s) and its neighbours in x, and is
computationally convenient. This property will be exploited in the next section to de-
sign simulation algorithms for generating realisations of the model.

4.4 Simulation

4.4.1 The Metropolis-Hastings algorithm

Consider a Markov point process on WS × WT ⊆ R2 × R defined by its density p(·).
The Metropolis-Hastings algorithm, first introduced in statistical physics (Barker, 1965;
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Metropolis et al., 1953), is a tool for constructing a Markov process with limit distribution
defined by p(·).

Metropolis-Hastings algorithms are discrete time Markov processes where transitions
are defined as the proposal of a new state that is accepted or rejected based on the
likelihood of the proposed state compared with the old state. We consider two types
of proposals: addition (birth) and deletion (death) of a point. The likelihood ratio of
the new state in comparison with the old state, for these type of transitions, is the
(reciprocal) conditional intensity.

More precisely, consider the point configuration x. We can propose either a birth or
a death with respective probabilities q(x) and 1− q(x) that depend on x. For a birth, a
new point u ∈WS ×WT is sampled from a probability density b(x, ·) and the new point
configuration x ∪ {u} is accepted with probability A(x,x ∪ {u}), otherwise the state
remains unchanged, x. For a death, the point x ∈ x chosen to be eliminated is selected
according to a discrete probability distribution d(x, ·) on x, and the proposal x \ {x} is
accepted with probability A(x,x \ {x}), otherwise the state remains unchanged.

In general, we can choose b(·, ·), d(·, ·) and q(·) as we prefer. However, an important
condition to consider is that of detailed balance, and therefore time-reversibility of the
Markov process,

q(x) b(x, u)A(x,x ∪ {u}) p(x) =
(1− q(x ∪ {u})) d(x ∪ {u}, u)A(x ∪ {u},x) p(x ∪ {u}). (4.8)

For simplicity, consider the case that births and deaths are equally likely and sampled
uniformly, that is, q ≡ 1/2, b ≡ 1/`(WS ×WT ) and d(x, ·) = 1/n(x), where n(x) is the
number of points in the point configuration x. Then (4.8) reduces to

1
2 ×

1
`(WS ×WT )A(x,x ∪ {u}) p(x) =

(
1− 1

2

) 1
n(x) + 1A(x ∪ {u},x) p(x ∪ {u})

1
`(WS ×WT )A(x,x ∪ {u}) p(x) = 1

n(x) + 1A(x ∪ {u},x) p(x ∪ {u})

A(x, x ∪ {u})
A(x ∪ {u},x) = `(WS ×WT )

n(x) + 1 × p(x ∪ {u})
p(x)︸ ︷︷ ︸

=r(x,u)

.

Thus, more likely configurations can be favored by settingA(x,x ∪ {u}) = min{1, r(x, u)},
and A(x ∪ {u},x) = min{1, 1/r(x, u)}. Therefore, using equation (4.6), for the spatio-
temporal multi-scale area-interaction process (4.2), the ratio r(x, u) for u = (y, s) reduces
to

r(x, u) = `(WS ×WT )
n(x) + 1 λ(y, s)

m∏
j=1

γ
−`(C

tj
rj

(y,s)\
⋃

(x,t)∈x C
tj
rj

(x,t))
j . (4.9)

In practice, we will use the logarithmic form of the conditional intensity as given
in equation (4.7). When the region WS ×WT is irregular we use rejection sampling to
generate a point uniformly at random from WS ×WT .
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4.4.2 Birth-and-death-processes

In this section we discuss methods for simulating (4.2) using birth-and-death processes
(Preston, 1977). The birth-and-death process is a continuous time Markov process where
the transition from one state to another is given by either a birth or a death. A birth is
the transition from a point configuration x ∈WS ×WT ⊆ R2 × R to x ∪ {u} by adding
the point u ∈WS×WT . A death is the transition from a point configuration x to x\{x}
by eliminating a point x ∈ x. We denote by b(x, u) du the transition rate for a birth and
by d(x, x) the transition rate of a death. The total birth rate from x is the integral

B(x) =
∫
WS×WT

b(x, u) du

and the total death rate is

D(x) =
∑
x∈x

d(x, x).

The process stays in state X(n) = x for an exponentially distributed random sojourn
time T (n) with mean 1/(B(x) +D(x)). The detailed balance equations are given by

b(x, u) p(x) = d(x ∪ {u}, u) p(x ∪ {u}). (4.10)

We consider the particular case when the death rate is constant (Ripley, 1977),
d(x, x) = 1. Hence, for the spatio-temporal multi-scale area-interaction process (4.2),
the birth rate is given by the conditional intensity (cf. equation (4.6))

b(x, (y, s)) = p(x ∪ {(y, s)})
p(x) = λ(y, s)

m∏
j=1

γ
−`(C

tj
rj

(y,s)\
⋃

(x,t)∈x C
tj
rj

(x,t))
j . (4.11)

For computation of the ratio in equation (4.11) we will use the logarithmic form of
the conditional intensity as in equation (4.7).

Following Van Lieshout (1995, 2000) we define an algorithm for simulating a birth-
and-death process and generate the successive states X(n) and the sojourn times T (n) as
detailed in Algorithm 1 which incorporates a rejection sampling step for computational
convenience. Define a threshold w(x), and, for u /∈ x, set

g(x, u) =
{
b(x, u), if b(x, u) ≥ w(x)
w(x), otherwise.

A common choice is to take w(x) equal to an upper bound to the conditional intensity.
Denote by G(x) the integral of g. We generate the sequence of (X(n), T (n)) as follows.

Algorithm 1. Initialize X(0) = x0 for some finite point configuration with density
function p(x0) > 0. For n = 0, 1, . . ., if X(n) = x, compute D = D(x), G = G(x) and
set T (n) = 0.
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• Add an exponentially distributed time to T (n) with mean 1/(D +G);

• with probability D/(D +G) generate a death X(n+1) = x \ {x} by eliminating one
of the current points x ∈ x at random according to distribution d(·, ·) and stop;

• else sample a point u from g(x, u)/G; with probability b(x, u)/g(x, u) accept the
birth X(n+1) = x ∪ {u} and stop; otherwise repeat the whole algorithm.

4.5 Inference

4.5.1 Pseudo-likelihood method

In this section, we assume that the function λ is known and denote by θ = (γ1, γ2, . . . , γm)
the interaction parameters in model (4.3). To estimate θ, we may use pseudo-likelihood
which aims to optimize

PL(x, θ) = exp
(
−
∫
WS

∫
WT

λθ((u, v); x) du dv
) ∏

(x,t)∈x
λθ((x, t); x \ {(x, t)}),

(4.12)

where λθ((u, v); x) is the conditional intensity that depends on θ (Besag, 1975).
For a Poisson process the conditional intensity is equal to the intensity function, hence

pseudo-likelihood is equivalent to maximum likelihood. In general, the pseudo-likelihood
PL(x, θ) is only an approximation of the true likelihood. However, no sampling is needed
and the computational load will be considerably smaller than for the maximum likelihood
method.

The maximum pseudo-likelihood normal equations are then given by

∂

∂θ
logPL(x, θ) = 0, (4.13)

where

logPL(x, θ) =
∑

(x,t)∈x
log λθ((x, t); x \ {(x, t)})−

∫
WS

∫
WT

λθ((u, v); x) du dv.

(4.14)

As seen in Section 4.3.1, the Papangelou conditional intensity of the spatio-temporal
multi-scale area-interaction model is

λθ((y, s); x) = λ(y, s)
m∏
j=1

γ
−`(C

tj
rj

(y,s)\∪j
x)

j ,

where ∪jx = ⋃
(x,t)∈x C

tj
rj (x, t); its logarithm reads

log λθ((y, s); x) = log λ(y, s)−
m∑
j=1

(log γj) `(C
tj
rj (y, s) \ ∪jx).
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Following Baddeley and Turner (2000) we denote by Sj(y, s) = `(Ctjrj (y, s) \ ∪jx) the

sufficient statistics, hence log λθ((y, s); x) = log λ(y, s) − θT
S1(y, s)
· · ·

Sm(y, s)

. This notation

will be further used in Algorithm 2.
Thus, equation (4.13) gives us the pseudo-likelihood equations

∂

∂θ

( ∑
(x,t)∈x

log λ(x, t)−
m∑
j=1

(log γj) `(C
tj
rj (x, t) \ ∪jx\{(x,t)})

−
−
∫
WS

∫
WT

λ(u, v)
m∏
j=1

γ
−`(C

tj
rj

(u,v)\∪j
x)

j du dv

)
= 0. (4.15)

For every parameter γi, i = 1, 2, . . . ,m, the equations (4.15) read

∑
(x,t)∈x

`(Ctiri
(x, t) \ ∪ix\{(x,t)}))

γi
=

=
∫
WS

∫
WT

λ(u, v)
`(Ctiri

(u, v) \ ∪ix)
γi

m∏
j=1

γ
−`(C

tj
rj

(u,v)\∪j
x)

j du dv. (4.16)

The major difficulty is to estimate the integrals on the right hand side of equations
(4.16). Baddeley and Turner (Baddeley and Turner, 2000) propose using the Berman-
Turner method to approximate the integral in (4.14) by∫

WS

∫
WT

λθ((u, v); x) du dv ≈
n∑
j=1

λθ((uj , vj); x)wj ,

where (uj , vj) are points in WS ×WT and wj are quadrature weights. This yields an
approximation for the log pseudo-likelihood of the form

logPL(x, θ) ≈
∑

(x,t)∈x
log λθ((x, t); x \ {(x, t)})−

n∑
j=1

λθ((uj , vj); x)wj . (4.17)

Note that if the set of points {(uj , vj), j = 1, . . . , n} includes all the points (x, t) ∈ x,
we can rewrite (4.17) as

logPL(x, θ) ≈
n∑
j=1

(yj log λj − λj)wj , (4.18)

where λj = λθ((uj , vj); x \ {(uj , vj)}), yj = zj/wj and

zj =
{

1, if (uj , vj) ∈ x (is a point),
0, if (uj , vj) /∈ x (is a dummy point).

(4.19)
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The right hand side of (4.18), for fixed x, is formally equivalent to the log-likelihood of
independent Poisson variables Yj ∼ Poisson(λj) taken with weights wj . Therefore (4.18)
can be maximized using software for fitting generalized linear models.

In summary, the method is as follows.

Algorithm 2. • Generate a set of dummy points and merge them with all the data
points in x to construct the set of quadrature points (uj , vj) ∈WS ×WT ;

• compute the quadrature weights wj;

• obtain the indicators zj defined in (4.19) and calculate yj = zj/wj;

• compute the values Sj(uj , vj) of the sufficient statistics at each quadrature point;

• fit a generalized log-linear Poisson regression model with parameters log λj given
by log λ(uj , vj)− θTS(uj , vj), responses yj and weights wj.

The coefficient estimates returned by Algorithm 2 give the maximum pseudo-likelihood
estimator θ̂ for θ.

In order to estimate the parameters θ = (γ1, γ2, . . . , γm) using the above method we
need to have values for the irregular parameters rj and tj for j = 1, . . . ,m. Baddeley
and Turner (2000) suggest fitting the model for a range of values of these parameters and
choose the values which maximize the pseudo-likelihood. Additionally, we recommend
first to compute some summary statistics, such as the pair correlation or auto-correlation
function, to narrow down the search.

We construct the quadrature scheme as a partition of WS ×WT dividing the spatio-
temporal area into cubes Ck of equal volume. In the centre of each cube Ck we place
exactly one dummy point. We then assign to each dummy or data point (uj , vj) a weight
wj = v/nj where v is the volume of each cube, and nj is the number of points, dummy
or data, in the same cube as (uj , vj). These weights are called the counting weights
(Baddeley and Turner, 2000).

We conclude this section by mentioning briefly an alternative way to define the
quadrature scheme (Algorithm 2). Indeed, Baddeley and Turner (2000) suggest the use
of a Dirichlet tessellation to generate the quadrature weights. A quadrature scheme
generated this way would mean that the weight of each point would be equal to the
volume of the corresponding Dirichlet 3-dimensional cell. The computational cost of
such a method is very high. Therefore we partition WS × WT into cubes of equal
volume, as described above.

4.5.2 Simulation and parameter estimation of a spatio-temporal area
interaction process

For illustration purposes, we simulate two multi-scale spatio-temporal area interaction
processes as defined in (4.3), one which exhibits small scale inhibition and large scale
clustering (simulation 1 ) and a second one which exhibits small scale clustering and
large scale inhibition (simulation 2 ).
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We consider the spatio-temporal domain WS × WT = ([0, 1] × [0, 1]) × [0, 1] and
in both cases take constant λ ≡ 50. For the irregular parameters we choose the same
spatio-temporal scales r1 = 0.03, r2 = 0.05, t1 = 0.03 and t2 = 0.05 for both simulations.
We use the Metropolis-Hastings algorithm described in Section 4.4.1 with 20, 000 itera-
tions implemented in the MPPLIB C++ library (Steenbeek et al., 2016). To estimate the
parameters we follow the steps in Algorithm 2. We partition WS ×WT into 103 = 1, 000
cubes of volume 10−3. In the center of each cube we place a dummy point, obtaining
a total of 1, 000 dummy points. We then compute the sufficient statistics for each data
and dummy point using the MPPLIB C++ library and apply Algorithm 2 to obtain the
estimates for the parameters. For the implementation of the pseudo-likelihood method
we use the statistical software R (R Core Team, 2014) together with the spatstat (Bad-
deley et al., 2015) package. The theoretical background for computing the ‘envelopes’,
that is the confidence interval bounds given as 2.5% and 97.5% in Tables 4.1 and 4.2 for
a Poisson process is exhaustively described in Kutoyants (1998).

Figure 4.3 (top left) shows the interaction parameters for simulation 1, 2πr2
1t1 log(γ1) =

−5 and 2πr2
2t2 log(γ2) = 5. This setting of parameters gives us the spatio-temporal point

configuration shown in the top right panel of Figure 4.3 which indeed shows small scale
inhibition between points and large scale clustering. The parameter estimates are shown
in Table 4.1.

Estimate 2.5 % 97.5 %
log λ 6.07 3.57 8.02

2πr2
1t1 log(γ1) = −5 -2.45 -5.48 0.37

2πr2
2t2 log(γ2) = 5 4.48 2.44 6.48

Table 4.1. Parameter estimates for simulation 1

For simulation 2 we choose interaction parameters 2πr2
1t1 log(γ1) = 5 and

2πr2
2t2 log(γ2) = −5, as shown in the bottom left panel of Figure 4.3. The bottom right

panel of Figure 4.3 shows a realization of the process with these parameters. We observe
small scale clustering and large scale inhibition between points. The estimates of the
parameters are given in Table 4.2.

Note that Figure 4.3 and Tables 4.1–4.2 correspond to a single realization of the
multi-scale area-interaction model and one should be hesitant to draw any conclusions
on the efficacy or otherwise of the pseudo-likelihood method from this illustration.

Estimate 2.5 % 97.5 %
log λ 8.25 4.56 10.50

2πr2
1t1 log(γ1) = 5 7.17 2.69 12.00

2πr2
2t2 log(γ2) = −5 -2.39 -6.40 1.19

Table 4.2. Parameter estimates for simulation 2
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r1=0.03 r2=0.05

t1=0.03

t2=0.05

2πr1
2t1log(γ1)=−5

2πr2
2t2log(γ2)=5

r1=0.03 r2=0.05

t1=0.03

t2=0.05

2πr1
2t1log(γ1)=5

2πr2
2t2log(γ2)=−5

Figure 4.3. (Top left) Model parameters for simulation 1. (Top right) A realization
of the first model. (Bottom left) Model parameters for simulation 2. (Bottom right) A
realization of the second model.
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4.6 Application. Varicella data

In this chapter we analyse varicella cases registered in Valencia, Spain, during 2013.
The spatial coordinates of the varicella cases are expressed in latitude and longitude.
First we transform them from longitude/latitude to UTM scale expressed in meters
(Snyder, 1987). We then re-scale the spatial coordinates to kilometers such that the
spatial study area reduces to [0, 9]× [0, 9]. The temporal component of the process takes
values from 0 to 51. For computational purposes to be explained later, we take the
interval [0, 52] as the time window. Therefore, we set the spatio-temporal study area to
WS ×WT = ([0, 9] × [0, 9]) × [0, 52] (km2× weeks). The spatio-temporal pattern of all
varicella cases thus obtained is shown in Figure 4.4. The x- and y-axis represent the
spatial coordinates in kilometres and the z-axis represents the time component in weeks.

Figure 4.4. Spatio-temporal pattern of weekly varicella cases in Valencia during 2013,
where the spatio-temporal study area is WS × WT = ([0, 9] × [0, 9]) × [0, 52] (km2×
weeks).

The main focus of our varicella data analysis is to quantify the interactions across
a range of spatio-temporal scales. We do so by using the spatio-temporal multi-scale
area-interaction model introduced in Section 4.3.

First we need to get some idea about a plausible upper bound to the values of the
irregular parameters (rj , tj), j = 1, . . . ,m, in model (4.3). To this end, we use summary
statistics for the spatial and temporal projections of the space-time point pattern shown
in Figure 4.4.

The left panel in Figure 4.5 shows the projection of all points onto the spatial region.
The sizes of the circles are proportional to time, the bigger the circle, the more recent
the event. Due to the projection, duplicate locations are observed, so we jitter the coor-
dinates uniformly on the spatial region around the duplicated points using a maximum
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jittering distance of 20 meters. To get a rough indication of the spatial interaction range,
we pretend that the pattern is stationary and isotropic, and estimate the pair correlation
function. The result is shown in the right panel of Figure 4.5. Recall that for a Poisson
process the pair correlation function is equal to 1. Values of the pair correlation function
lower than 1 indicate inhibition and values larger than 1 suggest clustering. Figure 4.5
suggests that the pair correlation function is approximately constant from 2 kilometers
onward, which indicates a maximum value for the ri of around 1 kilometer. On a cau-
tionary note, we need to keep in mind that the estimator only takes into account the
spatial pattern of points and assumes isotropy.

The left panel in Figure 4.6 shows the temporal evolution of varicella over the 52
weeks, where the small circles ◦ represent the number of registered cases. The right
panel displays the estimated auto-correlation function which measures the correlation
between the values of the series at different times as a function of the time lag between
them. Figure 4.6 suggests possible correlation for time lags as big as 10 weeks, however,
we take a larger time lag of 15 weeks. This gives us an estimate for the maximum value
for the ti of about 7.5 weeks. Note that caveats similar to the spatial case apply.

Now that we have estimated the maximum spatial and temporal range for the model,
the following step in our analysis is to consider covariate information. The most impor-
tant factor in the transmission of any kind of disease, and especially a highly contagious
one such as varicella, is the population. In areas with very low population we will prob-
ably not register as many varicella cases as in highly populated areas. Thus, the pattern
of varicella cases can drastically change from one area to another, depending on the spa-
tial distribution of the population, and from one week to the next one. We express the
spatio-temporal inhomogeneity term in equation (4.3) as a product λ(x, t) = λ(x)Z(t),
x ∈ [0, 9]2, t ∈ {0, . . . , 51}, between a non-parametric estimate of the population density
λ(x) and a re-scaled parametric estimate of the temporal component Z(t).

First consider the spatial component λ(x). The population data available to us
consist of the number of people living in each census section of the city of Valencia,
a total number of 559 sections (districts 1 to 16). We randomly generate within each
section p points, where p is equal to the number of people living in that particular
section. This way, we obtain a sample of the population for the city of Valencia. We
estimate its intensity by a kernel estimator, keeping in mind that the bandwidth has to
be chosen carefully, to get λ(x), x ∈WS .

We fit a harmonic regression (Halberg et al., 1967) to the pattern of the weekly
varicella counts

Z(t) = c0 +
3∑
j=1

(cj cos(2πjt/52) + dj sin(2πjt/52)) + c(a+ bt), (4.20)

where Z(t) denotes the number of varicella cases at time t, t = 0, . . . , 51, and c0, a, b, c,
cj , dj , j = 1, 2, 3, are the parameters of the model.

The left panel in Figure 4.6 shows the fitted regression curve. We observe a period at
the beginning of the year, from winter until spring, with large numbers of varicella cases,
and a second period starting around week 26, in which the number of cases decreases.
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These periods correspond roughly with the school term and the summer break. Also,
in 2013, in Spain, there were several holidays besides the summer and winter holidays.
On March 19, San Jose is celebrated and the period from the 24th to the 31st of March
corresponds to the Easter holidays. As a consequence we can observe in Figure 4.6 a
decrease during the 11th and 12th week. Towards the end of the year, the number of
cases picks up again as the Michaelmas term begins.

Finally, we re-scale the parametric estimate of the temporal component Z(t) by 100,
in order to avoid obtaining extreme values for the spatio-temporal inhomogeneity term
λ(x, t).

Since realizations of (4.3) do not contain points with equal time stamps, we jitter in
time as well as space. More precisely, the week index is replaced by a time stamp that
is uniformly distributed in the indicated week so that the temporal component falls in
WT = [0, 52]. To estimate the parameters, we follow the steps described in Algorithm 2.
For constructing the quadrature points we partition WS ×WT into 9 × 9 × 52 = 4, 212
cubes of equal volume 1 and place one dummy point in the center of each cube. Doing
so, we obtain a total of 5, 133 dummy and data points. We attribute to each point a
weight equal to the volume of the cube divided by the number of dummy and data points
inside the cube containing the point. We then compute the sufficient statistics Sj(·, ·)
corresponding to each point using the MPPLIB C++ library of Steenbeek et al. (2016). We
follow Algorithm 2 and obtain estimates for the parameters γ. The analysis and visual
representations have been carried out using the statistical software R (R Core Team,
2014) together with the spatstat (Baddeley et al., 2015), plot3D (Soetaert, 2016) and
rgdal (Bivand et al., 2016) packages.

Recall that we found indications for the maximum spatial range to be about 2 kilo-
meters, the maximum temporal range 15 weeks. As suggested in Baddeley and Turner
(2000) we fitted the model for a range of values (rj , tj), j = 1, . . . ,m, in the larger domain
[0, 2]× [0, 15] and for different m ∈ {3, 4, 5, 6, 7, 8} to choose the optimal combination.

r1=0.5 r2=1.0 r3=1.5

t1=5.0

t2=7.5

t3=12.5

γ1=1.59

γ2=0.84

γ3=1.09

km

weeks

Figure 4.7. Model parameters for the varicella data.
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We estimate m = 3, that is, three spatio-temporal scales and the corresponding
parameters. For the spatial scales we selected r1 = 0.5, r2 = 1 and r3 = 1.5 kilometers
and for the temporal scales t1 = 5, t2 = 7.5 and t3 = 12.5 weeks. Figure 4.7 shows
the multi-scale interaction in the data together with the estimated values of the model
parameters. Also, Table 4.3 shows the estimated parameters of the model together with
a confidence interval and a significance level.

Spatial scale (ri) Time scale (ti) Parameters (γi) 2.5% 97.5%
(Intercept) 1.20 1.09 1.31

0.5 5.0 1.57 1.39 1.78
1.0 7.5 0.84 0.74 0.95
1.5 12.5 1.10 1.00 1.23

Table 4.3. Parameter estimates for the varicella data.

As stated before, the time period from infection to completely dried vesicles is be-
tween approximately 17 and 31 days. In the fitted model we observe that for a spatial lag
of 0.5 kilometer and a temporal lag of 5 weeks there is clustering (significant γ1 = 1.57).
This means that for a period of five weeks and at rather small distance (as far as 0.5 kilo-
meters), a phenomenon of aggregation is observed between cases of varicella. The time
lag corresponds more or less with the period of 31 days indicated by the epidemiologists.
This is caused by the main feature of chickenpox, being a contagious disease.

The fitted model also exhibits inhibition for spatial lags as far as 1 kilometer and
temporal lags up to 7.5 weeks (significant γ2 = 0.84). This might be a result of the fact
that after recovery from varicella, patients usually have lifetime immunity. For higher
spatial and temporal lags the model suggests no interaction (γ3 ≈ 1), which corresponds
with the rough bounds we found before and is in accordance with the beliefs of the
epidemiologists. If you are situated far away from a varicella case, both in space and in
time, you are less susceptible to contract the disease due to the contagious factor. Also,
the probability of contracting the disease would be the same as the incidence of varicella.

To validate our model, we simulated a number of space-time multi-scale area-interac-
tion processes with the fitted parameters using the Metropolis-Hastings algorithm de-
scribed in Section 4.4.1 for 20, 000 iterations, which seems enough for the algorithm to
converge based on diagnostic plots. Figure 4.8 (left) shows one such simulation. Compar-
ing Figure 4.8, left and right, we note that the simulated spatio-temporal point pattern
is similar to the varicella point pattern.
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Figure 4.8. (Left) Realization from the model fitted to the varicella data. (Right)
Spatio-temporal pattern of weekly varicella cases in Valencia during 2013, where the
spatio-temporal study area is WS ×WT = ([0, 9]× [0, 9])× [0, 52] (km2× weeks).

4.7 Conclusions

In this chapter we developed an extension of the area-interaction model that is able to
incorporate different types of interaction at different spatio-temporal scales and proposed
methods to simulate this process. We discussed inference and demonstrated the pseudo-
likelihood method on simulated data. Additionally, we analysed a spatio-temporal point
pattern of varicella in the city of Valencia, Spain.



Chapter 5

The second-order analysis of
marked spatio-temporal point
processes

This chapter represents a significant methodological contribution to the field of point
processes, and in particular to the field of marked spatio-temporal point processes.
Our contribution introduces measures of second-order spatio-temporal interaction, which
quantify the interaction between categories of marked points.

The earthquake dataset presented in Section 5.6.1 has largely motivated the devel-
opment of the methodology in this chapter. We first introduce the notion of marked
spatio-temporal point process (MSTPP), together with a summary on mark spaces, ref-
erence measures and intensity functions. Next we give examples of some MSTPP models
which will be used for evaluation throughout the chapter. In Section 5.4, we intro-
duce second-order intensity-reweighted stationarity for MSTPP and define the marked
spatio-temporal second-order reduced moment measure together with the marked spatio-
temporal inhomogeneous K-function, KCD

inhom(r, t). In Section 5.4 we also provide some
representation results. We also propose estimators for intensity functions (a Voronoi
tessellation based approach), as well as for the new second-order summary statistics.
In addition, we consider ideas for testing independence assumptions of the marks. The
final section of the chapter presents the second-order analysis of the earthquake dataset.

5.1 Introduction

Classically, when analysing (marked) STPPs, the analysis has been based on conditional
intensity functions (CIs) (see e.g. (Ogata, 1998; Choi and Hall, 1999; Schoenberg et al.,
2002; Daley and Vere-Jones, 2003; Marsan and Lengliné, 2008)). In principle, a con-
ditional intensity function gives us the expected number of further events in a coming
infinitesimal period, given the history of events up to that point. The beauty and ap-
peal of CIs is that, when existing, they specify the whole distribution of the MSTPP.

67



68 Chapter 5. The second-order analysis of marked spatio-temporal point processes

As pointed out by e.g. Diggle (2014), however, not all MSTPP models have available/-
tractable CIs. Furthermore, much of the CI-based analysis is carried out within the
framework of a given class of models.

Recalling that we want to define a general fully non-parametric analysis, we will
proceed with a non-CI based approach, thus following a random set/random measure
formulation (see e.g. (Van Lieshout, 2000; Daley and Vere-Jones, 2003; Møller and
Waagepetersen, 2004; Chiu et al., 2013; Diggle, 2014)). In this context, when analysing
marked spatio-temporal point patterns, the first thing one starts with is to try to explain
where and when events of a given mark category of the data tended to happen. Since
where and when is a univariate property, in the sense that we are not dealing explicitly
with possible dependencies between the points, we are dealing with analysing intensity.
Before proceeding to propose specific models for the intensity structure, through the
observed point pattern, one usually starts by obtaining a non-parametric estimate of the
intensity function (see e.g. (Diggle, 2014)). The intensity function, in essence, reflects the
infinitesimal probability of finding a point of the MSTPP at a given spatial location, at
a given time, with a given mark. Note that it is different from the previously mentioned
conditional intensity, which is defined as a conditional equivalence. In the simplest of
worlds, we would simply assume homogeneity, i.e. that univariately it is equally likely to
observe an event, with any mark, at any space-time position. This is, however, not the
slightest realistic so we proceed by assuming inhomogeneity. Although the most natural
candidate for this type of non-parametric estimation is kernel estimation (Silverman,
1986; Van Lieshout, 2012; Diggle, 2014), due to the abrupt changes in activity of the
earthquakes, both spatially and temporally, we here make the choice to consider an
adaptive approach, namely a Voronoi intensity estimation approach (see e.g. (Barr and
Schoenberg, 2010)).

Having obtained a non-parametric estimate of the intensity function, so that we
have a description of the univariate properties, we may proceed to studying the inherent
dependence structure of the data-generating mechanism, i.e. the underlying MSTPP.
We here focus on second-order summary statistics, thus ignoring higher-order sum-
mary statistics, e.g. the spatio-temporal J-function and its components (Cronie and
van Lieshout, 2015) and the marked J-functions and their components (Van Lieshout,
2006; Cronie and van Lieshout, 2016). In the context of unmarked spatio-temporal
point processes, Diggle et al. (1995) extended Ripley’s K-function K(r) (Ripley, 1976;
Ripley and Kelly, 1977) to the stationary spatio-temporal context. Recall that this
function, K(r, t), gives us the expected number of further space-time points from an
arbitrary space-time point of the process, given that the points in question have space
and time separation r ≥ 0 and t ≥ 0, respectively. After the introduction of the spatial
inhomogeneous K-function Kinhom(r) (Baddeley et al., 2000), which is defined as an
integral of the pair correlation function, Gabriel and Diggle (2009) extended its defini-
tion to the spatio-temporal context, resulting in the function Kinhom(r, t). Note that
under inhomogeneity, given only one realisation, we cannot e.g. visually distinguish be-
tween regions of high intensity and clustering/aggregation. For general marks in the
purely spatial setting, Van Lieshout (2006) defined a marked version KCD(r) of Ripley’s
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K-function; loosely speaking it gives us Ripley’s K-function under the condition that
we restrict the interaction to take place between points with marks belonging to some
mark set (category) C and points with marks in a mark set D. In addition, inspired
by Van Lieshout (2006), Cronie and van Lieshout (2016) introduced a marked version
of the inhomogeneous K-function, KCD

inhom(r), which reduces to the multivariate version
introduced in Møller and Waagepetersen (2004), when we assume that the marks are
integer-valued (a multivariate/multi-type inhomogeneous point process). It reduces to
the one in Van Lieshout (2006) when we assume stationarity. Our contribution com-
bines the ideas of Gabriel and Diggle (2009) with those of Cronie and van Lieshout
(2016) to define a K-function KCD

inhom(r, t) for inhomogeneous MSTPPs, which reduces
to a combination of K(r, t) and KCD(r) when we assume stationarity. Loosely speak-
ing, KCD

inhom(r, t) describes the interaction, in a (Gabriel and Diggle, 2009) sense, between
points belonging to mark set C and points belonging to mark set D, for an inhomoge-
neous MSTPP. Note that for all summary statistics above, one of the main foci has been
to consider their non-parametric estimation. Here, as well we will allocate a significant
part of this chapter to the non-parametric estimation. Having developed KCD

inhom(r, t)
and its estimation schemes, it turns out that we may also devise some statistical testing
procedures which we will also look a bit closer at.

Once we have developed the statistical tools, we analyse the earthquake data with the
aim of quantifying the interactions, so that we may asses the space-times propagations
of the shocks.

5.2 Marked spatio-temporal point processes

In order to formally define a marked spatio-temporal point process Y , with locations xi
in Rd, event times ti in R and marks mi in some suitable mark spaceM, there are some
technical details that need to be tended to.

5.2.1 Preliminaries

The most natural way of measuring distances in Rd is provided by the Euclidean metric
dRd(x, y) = ‖x − y‖Rd , ‖x‖Rd = (∑d

i=1 x
2
i )1/2, x, y ∈ Rd. Hence, we measure distances

between spatial locations by means of dRd(·, ·) and between temporal locations by means
of dR(·, ·), i.e. absolute values. To combine the spatial and the temporal distances in a
good way, such that we treat space and time differently, we endow our space-time domain
Rd × R with the supremum norm ‖(x, t)‖∞ = max{‖x‖Rd , |t|} and the supremum metric

d∞((x, t), (y, s)) = ‖(x, t)− (y, s)‖∞ = max{dRd(x, y), dR(t, s)}
= max{‖x− y‖Rd , |t− s|},

where (x, t), (y, s) ∈ Rd × R. Hereby, we have combined two complete separable metric
(csm) spaces, into the spatio-temporal csm space (Rd × R, d∞(·, ·)) (Daley and Vere-
Jones, 2003).
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Note that the d∞-induced Borel σ-algebra B(Rd × R) = B(Rd)⊗B(R), the product σ-
algebra, since the underlying space is csm. Following Cronie and van Lieshout (2015), we
define a spatio-temporal point process as a simple point process in (Rd × R,B(Rd × R)).

Definition 3. A spatio-temporal point process with spatial locations in Rd and event
times in R is a point process in (Rd × R,B(Rd × R)).

Remark 1. If we would endow Rd × R = Rd+1 with the Euclidean distance

dRd+1((x, t, (y, s)) = ‖(x, t)− (y, s)‖Rd+1 = ((t− s)2 +
d∑
i=1

(x2
i − y2

i ))1/2,

we would encounter the problem that space and time are not treated differently. Indeed,
this space is topologically equivalent to (Rd × R, dRd+1(·, ·)) and we note that there are
other (less natural) ways of combining ‖ · ‖Rd and | · | such that Rd × R becomes a csm
space.

Depending on what kind of mark types we want to consider for the data, in the con-
struction of the related MSTPP model we have to choose an appropriate mark space and
for the purpose of integration also appropriate associated reference measure. E.g., having
recorded earthquakes we may either partition the magnitude scale, so that we consider
a multivariate STPP (see Section 5.4.5), or treat the marks as continuous. Depending
on the choice, the statistical analyses differ so the choice made can be important.

Formally, regarding the mark space M, we assume that it is a complete separable
metric (csm) space with corresponding metric d′(·, ·) and Borel sets B(M). We equip
(Rd × R)×M with the Borel sets B((Rd × R)×M), which become the product σ-
algebra B(Rd) ⊗ B(R) ⊗ B(M). It is mostly natural to generate this structure through
the metric

d((x1, t1,m1), (x2, t2,m2)) = max{d∞((x1, t1), (x2, t2)), d′(m1,m2)} (5.1)
= max{‖x1 − x2‖Rd , |t1 − t2|, d′(m1,m2)},

where (x1, t1,m1), (x2, t2,m2) ∈ (Rd × R)×M.
For a general discussion on mark spaces and their metric structures, see e.g.

(Van Lieshout, 2000), (Møller and Waagepetersen, 2004, Appendix B.3) and (Chiu et al.,
2013). When e.g. M ⊆ Rl, l ≥ 1, we let d′(m1,m2) = ‖m1 −m2‖Rl . In the case of our
application, naturally we will considerM⊆ R, i.e. d′(m1,m2) = |m1−m2|. For the case
where M is a finite collection of labels {1, . . . , k}, k ≥ 2, (let d′(m1,m2) = |m1 −m2|),
this is referred to as the multivariate/multi-type case.

For the purpose of e.g. integration over (Rd × R)×M, we need to endow the under-
lying space ((Rd × R)×M,B((Rd × R)×M)) with a reference measure. The choice of
reference measure may seem as a mathematical detail and of little practical importance
at first, but it will become clear that it plays a significant role also in the statistical
analysis. A fact that is often overlooked in statistical settings.
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We will choose as reference measure the product reference measure

`⊗ ν = `d+1 ⊗ ν = `d ⊗ `1 ⊗ ν,

where `d is the Lebesgue measure on Rd, d ≥ 1, and ν is some suitable finite reference
measure on the mark space. Throughout, (` ⊗ ν)n will represent the n-fold product
measure of `⊗ ν with itself.

When well-defined, we write∫
f(x, t,m)[`⊗ ν](d(x, t,m)) =

∫ ∫ ∫
f(x, t,m)ν(dm)dtdx

for the integral of some f : (Rd × R)×M→ R. When M = Rk, k ≥ 1, it is reasonable
to choose ν(·) as some suitable probability law and when M ⊆ Rk, k ≥ 1, is bounded,
we may simply let ν(·) = `k(·) (or normalise to have a uniform distribution as reference
measure). For other mark spaces, see e.g. (Chiu et al., 2013).

5.2.2 Marked spatio-temporal point processes

In analogy with Cronie and van Lieshout (2015), let the unmarked/ground process (Daley
and Vere-Jones, 2003) Yg of space-time events (xi, ti) be given by a spatio-temporal point
process (STPP), as defined in Definition 3. Informally, we assign marksmi ∈M (random
variables) to the points of Yg to obtain the marked spatio-temporal point process Y .

More formally, consider first the collection Nlf of all simple non-negative integer
valued measures ϕ(·) = ∑n

i=1 δ(xi,ti,mi)(·) = ∑n
i=1 1{(xi, ti,mi) ∈ ·}, 0 ≤ n ≤ ∞ (n = 0

corresponds to the null measure), on B((Rd × R)×M) which are locally finite, i.e. ϕ(B×
C) <∞ for bounded B ×C ∈ B((Rd × R)×M), with the additional property that the
(spatio-temporal) ground measure ϕg(·) = ϕ(·×M) is locally finite on B(Rd × R). Note
that the term simple refers to ϕ({(x, t,m)}) ∈ {0, 1} for any (x, t,m) ∈ (Rd × R)×M.
The support of such a measure ϕ(·) ∈ Nlf will also be denoted by ϕ, hence, ϕ =
{(xi, ti,mi)}ni=1 ⊆ (Rd × R)×M.

Let N be the smallest σ-algebra on Nlf to make the mappings ϕ 7→ ϕ(A) ∈ {0, 1, . . .}
measurable for bounded A ∈ B((Rd × R)×M). Denoting also the collection of all
supports by Nlf , we note that there analogously exists a σ-algebra N that is generated
by the mappings ϕ 7→ |ϕ ∩ A| ∈ {0, 1, . . .}, for bounded A ∈ B((Rd × R)×M) and all
supports ϕ.

Definition 4. A marked spatio-temporal point process (MSTPP) Y (·) = ∑N
i=1 δ(xi,ti,mi)(·),

0 ≤ N ≤ ∞, is a measurable mapping from some probability space (Ω,F ,P) into the mea-
surable space (Nlf ,N ). If N <∞ almost surely (a.s.) then Y is called a finite MSTPP.

By the above arguments we may treat a MSTPP Y as a random measure as well
as a random subset Y = {(xi, ti,mi)}Ni=1 of (Rd × R)×M and thus conveniently jump
between the two notions. By this duality, Y (A) and |Y ∩ A| may both be used to
denote the cardinality of the number of points of Y belonging to A ∈ B((Rd × R)×M).
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Note that by definition the ground process Yg = {(xi, ti)}Ni=1 is a well defined (spatio-
temporal) point process on Rd × R. We also write P (·) = P(Y ∈ ·) for the distribution
of Y , i.e. the probability measure that Y induces on (Nlf ,N ).

If {(xi, ti)}Ni=1 = Yg
d= Yg +(a, b) = {(xi+a, ti+b)}Ni=1 for any (a, b) ∈ Rd × R, where

d= denotes equality in distribution, we say that Y is stationary (Chiu et al., 2013; Daley
and Vere-Jones, 2003). In practise stationarity is rarely realistic.

5.2.3 Intensity functions

Let Y be a MSTPP with ground process Yg. We will next consider the joint distributional
properties of the points of Y , which we describe through the so-called product densities.

For any n ≥ 1, assume that the nth factorial moment measure α(n)(·) of Y exists
(as a locally finite measure on B((Rd × R)×M)n) and assume that α(n) is absolute
continuous with respect to (` ⊗ ν)n. Then its permutation invariant Radon-Nikodym
derivative ρ(n)(·) ≥ 0 (Chiu et al., 2013; Daley and Vere-Jones, 2003; Diggle, 2014),
the so-called nth intensity function/product density/factorial moment density, may be
defined through the so-called Campbell formula: For any measurable function f ≥ 0,

E

 ∑6=

(x1,t1,m1),...,(xn,tn,mn)∈Y
f((x1, t1,m1), . . . , (xn, tn,mn))

 = (5.2)

=
∫
. . .

∫
f((x1, t1,m1), . . . , (xn, tn,mn))×

× ρ(n)((x1, t1,m1), . . . , (xn, tn,mn))
n∏
i=1

ν(dmi)dxidti,

which includes the case where both sides are infinite. Here ∑6= denotes summation over
n-tuples ((x1, t1,m1), . . . , (xn, tn,mn)) of distinct points. Regarding the interpretation
of ρ(n)(·), by the simpleness of Y ,

P(Y (d(x1, t1,m1)) = 1, . . . , Y (d(xn, tn,mn)) = 1) =

= ρ(n)((x1, t1,m1), . . . , (xn, tn,mn))
n∏
i=1

ν(dmi)dxidti.

This is the infinitesimal probability of observing points of Yg in the space-time neigh-
bourhoods d(xi, ti) ⊆ Rd × R of (xi, ti), with associated marks mi ∈ dmi ⊆ M, where
[`⊗ ν](d(xi, ti,mi)) = ν(dmi)`(d(xi, ti)) = ν(dmi)dxidti, i = 1, . . . , n. Note that ρ(n)(·)
does not give us the joint density of all points of Y , unless we condition on the total
number of points Y ((Rd × R)×M) = N = n (Daley and Vere-Jones, 2003, Lemma
5.4.III).

To make the statistical analysis more practically feasible, we sometimes make the
additional pragmatic assumption that Yg may be treated as either of the point processes

YS = {x : (x, t) ∈ Yg} ⊆ Rd, (5.3)
YT = {t : (x, t) ∈ Yg} ⊆ R,
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with marks in R and Rd, respectively (c.f. Møller and Ghorbani (2012)). Note that e.g. in
the former case this holds when we have E[Yg(B×R)] <∞ for any bounded B ∈ B(Rd),
which in turn holds e.g. when Yg a.s. has no points outside Rd ×WT , for some bounded
WT ∈ B(R). The other case is analogous. Both are naturally permitted if Yg (and thus
Y ) is a finite point process, i.e. if N < ∞ a.s.. Hence, from a practical point of view it
is a very mild assumption.

Remark 2. Such additional marking is facilitated by the imposed space-time metric
d∞(·, ·) (Van Lieshout, 2000, p. 8).

Since the ground process Yg is well-defined by definition we may also define its nth
factorial moment measure

α(n)
g (B1 × · · · ×Bn) = α(n)((B1 ×M), . . . , (Bn ×M)), B1, . . . , Bn ∈ B(Rd × R),

assuming local finiteness. The next result, which is standard and a slight modification
of e.g. (Heinrich, 2013, Section 4.1.2), shows that ρ(n)(·) can be written as a product
of the ground product density ρ(n)

g (·) and a conditional density of the marks, given the
spatio-temporal locations. Note that ρ(n)

g ((x1, t1), . . . , (xn, tn))∏n
i=1 dxidti gives us the

probability of finding points of Yg in infinitesimal neighbourhoods of (xi, ti) ∈ Rd × R,
i = 1, . . . , n.

Lemma 3. If α(n)
g (·) exists, then

ρ(n)((x1, t1,m1), . . . , (xn, tn,mn)) =fM(x1,t1),...,(xn,tn)(m1, . . . ,mn)×

× ρ(n)
g ((x1, t1), . . . , (xn, tn)) (5.4)

almost everywhere (a.e.), where ρ(n)
g (·) is the nth product density of Yg and

fM(x1,t1),...,(xn,tn)(·) is the density of the conditional probability M (x1,t1),...,(xn,tn)(C), C ∈
B(Mn), of the marks of n points of Y , given that they have space-time locations
(x1, t1), . . . , (xn, tn) ∈ Rd × R.

When, in addition, YS is well defined,

ρ(n)
g ((x1, t1), . . . , (xn, tn)) = fTx1,...,xn

(t1, . . . , tn)ρ(n)
S (x1, . . . , xn),

and if YT is well defined,

ρ(n)
g ((x1, t1), . . . , (xn, tn)) = fSt1,...,tn(x1, . . . , xn)ρ(n)

T (t1, . . . , tn),

where ρ(n)
S (·) and ρ(n)

T (·) denote the respective nth product densities of YS and YT .

Proof. This follows by disintegration (Daley and Vere-Jones, 2003): there exists a family
of regular conditional probabilities {M (x1,t1),...,(xn,tn)(·) : (x1, t1), . . . , (xn, tn) ∈ Rd × R}
on B(M)n, usually referred to as the n-point mark distributions, such that for B ×C ∈
B((Rd × R)×M)n (Chiu et al., 2013, p. 118, p. 125)

α(n)(B × C) =
∫
B
M (x1,t1),...,(xn,tn)(C)α(n)

g (d((x1, t1), . . . , (xn, tn))).
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The imposed absolute continuity of α(n) with respect to (`⊗ν)n ensures thatM (x1,t1),...,(xn,tn)(·)
has Radon-Nikodym derivative fM(x1,t1),...,(xn,tn)(·) and α(n)

g (·) has Radon-Nikodym deriva-
tive ρ(n)

g (·).

Turning to the explicit univariate properties of Y , setting n = 1 we obtain the
intensity measure Λ(B×C) = α(1)(B×C) = E[Y (B×C)] =

∫
B×C λ(x, t,m)ν(dm)dxdt,

B × C ∈ B((Rd × R)×M), where, as indicated in (Vere-Jones, 2009), the intensity
function is given by

λ(x, t,m) = ρ(1)(x, t,m) = fM(x,t)(m)λg(x, t).

Here λg(x, t) = ρ
(1)
g (x, t) is the intensity function of the ground process. Also, when YS

and YT are well defined, λg(x, t) = fTx (t)λS(x) and λg(x, t) = fSt (x)λT (t), respectively,
where λS(·) and λT (·) are the respective intensity functions of YS and YT . Heuristically,
in order to obtain λg(x, t), we rescale P(YS ∩ dx 6= ∅) = λS(x)dx by the conditional
infinitesimal probability that this event, with spatial location in YS ∩ dx, occurs at time
t.

At times one makes the assumption that the intensity is constant as a function of
space, time or both. This is referred to as homogeneity.

Definition 5. If λg(x, t) = λT (t) only depends on t ∈ R, we say that Y is spatially
homogeneous, whereas if λg(x, t) = λS(x) only depends on x ∈ Rd, we say that Y is
temporally homogeneous.

We say that Y is (spatio-temporally) homogeneous if its ground process is homoge-
neous, i.e. if λg(x, t) ≡ λ > 0 and λ(x, t,m) = fM(x,t)(m)λ, and we call it inhomogeneous
otherwise.

Some things should be noted here. Firstly, stationarity implies homogeneity. Sec-
ondly, the functions λS(·) and λT (·) are non-unique since e.g. λg(x, t) = λT (t) = cλT (t)

c =
cλ̃T (t) for any c > 0. Also, statistically, homogeneity is a strongly simplifying assump-
tion and it is seldom realistic nor advised to assume that the data under consideration
is generated by a homogeneous process (unless one is very confident that the application
in mind behaves accordingly).

5.2.3.1 Separability

We next consider the notion of separability (Møller and Ghorbani, 2012; Gabriel and
Diggle, 2009), of which homogeneity is an example.

Definition 6. If the ground intensity can be expressed as a (non-unique) product λg(x, t) =
λ1(x)λ2(t) of two non-negative measurable functions λ1(·) and λ2(·), we say that Y is
separable.

When λS(·) and λT (·) exist we may e.g. set λ1(x) = λS(x) and λ2(t) = fT (t) =
λT (t)/

∫
R λT (s)ds, or λ1(x) = fS(x) = λS(x)/

∫
Rd λ1(y)dy and λ2(t) = λT (t) (note that

fS(x) and fT (t) are probability densities).
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It should be noted that separability mainly is a practical assumption, imposed to
simplify the analysis, and it is not always justified. It is mainly suitable when Yg has
a repetitive behaviour in the sense that the intensity may be treated as a temporal/s-
patial rescaling of an overall temporal/spatial intensity, where the rescaling happens
independently.

5.2.4 Pair correlation functions

Having defined the product densities, we may proceed to defining a further central
summary statistic for point processes, the pair correlation function (pcf) (Chiu et al.,
2013; Møller and Waagepetersen, 2004),

g((x1, t1,m1), (x2, t2,m2)) = ρ(2)((x1, t1,m1), (x2, t2,m2))
λ(x1, t1,m1)λ(x2, t2,m2) .

By expression (5.4), the pcf satisfies

g((x1, t1,m1), (x2, t2,m2)) =
fM(x1,t1),(x2,t2)(m1,m2)
fM(x1,t1)(m1)fM(x2,t2)(m2)

ρ
(2)
g ((x1, t1), (x2, t2))
λg(x1, t1)λg(x2, t2) (5.5)

=
fM(x1,t1),(x2,t2)(m1,m2)
fM(x1,t1)(m1)fM(x2,t2)(m2)

gg((x1, t1), (x2, t2)),

where gg(·) is the pcf of the ground process Yg. Due to expression (5.8) below, for a
Poisson process on (Rd × R)×M the pcf satisfies g(·) = gg(·) ≡ 1. Hence, for a MSTPP
Y with intensity λ(·) and g((x1, t1,m1), (x2, t2,m2)) > 1, there is clustering between
points of Y located around (x1, t1) and (x2, t2), with associated marks m1 and m2.
Similarly, g((x1, t1,m1), (x2, t2,m2)) < 1 indicates inhibition. Non-parametric estimates
of pcf:s are used extensively to analyse whether data exhibits interaction (Diggle, 2014).

5.2.5 Specific marking structures

Below follow some possible marking structures that may be imposed. We will consider
these in more depth further on and, in particular, we will see how they influence summary
statistics that we will derive. Hereby they also play a role in the statistical analysis.

5.2.5.1 Common mark distribution

Starting with the univariate properties, we next introduce the notion of a common
(marginal) mark distribution.

Definition 7. We say that a MSTPP Y has a common (marginal) mark distribution
M(C), C ∈ B(M), if all marks have the same marginal distributions; M (x,t)(·) ≡ M(·)
for any (x, t) ∈ Rd × R and fM(x,t)(·) ≡ fM(·), (x, t) ∈ Rd × R, for a common mark
density.
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If, in addition, M(·) and the reference measure ν(·) coincide, so that fM(x,t)(·) ≡ 1 and
λ(x, t,m) = λg(x, t), we say that the reference measure is given by the mark distribution
(Chiu et al., 2013, p. 119).

It should be emphasised that Y having a common mark distribution means that
all marks m1, . . . ,mN have the same marginal distribution M(·); they may, however,
very well be mutually dependent. Note that Y being homogeneous with a common
mark distribution results in λ(x, t,m) = fM(m)λ, so that λ(x, t,m) = λ if the reference
measure is given by the mark distribution.

5.2.5.2 Independent marks and random labelling

In order to provide a complete marking structure for Y we have to define all joint
distributions of the marks mi, i = 1, . . . , N (conditionally on the ground process). This
includes e.g. such elaborate structures as geostatistical marking (see e.g. (Illian et al.,
2008)). However, one possible simplifying assumption is to let the marks be independent.
Following e.g. (Daley and Vere-Jones, 2003, Def. 6.4.III), we consider the following two
definitions:

1. Y has independent marks if, given the ground process Yg, the marks are mutu-
ally independent random variables such that the distribution of a mark depends
only on the spatio-temporal location of the corresponding event. Here we have
fM(x1,t1),...,(xn,tn)(m1, . . . ,mn) = ∏n

i=1 f
M
(xi,ti)(mi) for any n ≥ 1.

2. If, in addition to independent marking, Y has a common mark distribution, i.e.
if the marks are independent and identically distributed, then we say that Y has
the random labelling property. Here fM(x1,t1),...,(xn,tn)(m1, . . . ,mn) = ∏n

i=1 f
M(mi)

for any n ≥ 1, where we recall the common mark density fM(·).

5.2.6 Palm distributions

In order to consider conditioning on the event that Y has a point somewhere in
(Rd × R)×M (this will needed for our summary statistics), we turn to Palm distribu-
tions (Daley and Vere-Jones, 2003; Van Lieshout, 2000; Chiu et al., 2013). The family of
reduced Palm distributions of Y , {P !(x,t,m)(·) : (x, t,m) ∈ Rd×R×M}, may formally be
defined as the family of regular probabilities (Daley and Vere-Jones, 2003) satisfying the
reduced Campbell-Mecke formula (see e.g. (Van Lieshout, 2000)): For any measurable
function f : (Rd × R×M)×Nlf → [0,∞),

E

 ∑
(x,t,m)∈Y

f((x, t,m), Y \ {(x, t,m)})

 = (5.6)

=
∫
Rd×R×M

E!(x,t,m) [f((x, t,m), Y )]λ(x, t,m)ν(dm)dxdt.
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Note that E!(x,t,m)[·] is the expectation corresponding to the probability measure
P !(x,t,m)(·) = P!(x,t,m)(Y ∈ ·). Concerning its interpretation, the MSTPP with distribu-
tion P !(x,t,m)(·) on (Nlf ,N ), the reduced Palm process at (x, t,m), may be interpreted
as the conditional MSTPP (Y |{Y ∩ {(x, t,m)} 6= ∅}) \ {(x, t,m)}. Under stationar-
ity, P !(x,t,m)(·) is constant as a function of (x, t,m), whereby one sets P !(x,t,m)(·) ≡
P !(0,0,m)(·).

5.2.6.1 Reduced Palm distributions with respect to the mark sets

It will sometimes be convenient to consider conditioning with respect to a whole mark set
C ∈ B(M), instead of just one specific mark value as in P !(x,t,m)(·). To do so, following
Cronie and van Lieshout (2016), we may define ν-averaged reduced Palm distributions.

Definition 8. The ν-averaged reduced Palm distribution (at (x, t) ∈ Rd × R), with
respect to C ∈ B(M), is defined as

P
!(x,t)
C (R) = P!(x,t)

C (Y ∈ R) = 1
ν(C)

∫
C
P !(x,t,m)(R)ν(dm), R ∈ N . (5.7)

Note that this is a probability measure since 0 ≤ P !(x,t,m)(·) ≤ 1. Expectation under
P

!(x,t)
C (·) is given by E!(x,t)

C [·] = 1
ν(C)

∫
C E!(x,t,m)[·]ν(dm), by Fubini’s theorem.

In the case that the reference measure is given by the mark distribution (recall
Definition 7),

P!(x,t)
C (Y ∈ ·) =

∫
C P

!(x,t,m)(·)M(dm)
M(C)

may be interpreted as the conditional distribution

P (Y \ ({(x, t)} ×M) ∈ ·|Y ∩ ({(x, t)} × C) 6= ∅) .

Under stationarity, where P!(0,0)
C (Y ∈ ·) = P!(x,t)

C (Y + (x, t) ∈ ·) for almost any (x, t) ∈
Rd × R, we refer to P !(x,t)

C (·) as the reduced Palm distribution with respect to the mark
set C (see (Van Lieshout, 2006) and (Chiu et al., 2013, p. 135)).

5.3 Examples of models

We next briefly recall and consider some properties of two particular models that we will
consider in this chapter.

Poisson processes are the benchmark models for absence of (spatio-temporal) inter-
action (Chiu et al., 2013; Diggle, 2014; Van Lieshout, 2000). For a Poisson process Y on
(Rd × R)×M, due to the independence of its points, the product densities and the pcf
satisfy

ρ(n)((x1, t1,m1), . . . , (xn, tn,mn)) =
n∏
i=1

λ(xi, ti,mi) =
n∏
i=1

fM(xi,ti)(mi)λg(xi, ti), n ≥ 1,

g((x1, t1,m1), (x2, t2,m2)) = gg((x1, t1), (x2, t2)) ≡ 1. (5.8)
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Hence, it may be regarded as independently marked (see Section 5.2.5). We stress that
this differs from a Poisson process Yg on Rd × R to which we assign marks according
to families {fM(x1,t1),...,(xn,tn)(·) : (x1, t1), . . . , (xn, tn) ∈ Rd × R}, n ≥ 1, of densities on
Mn; its pcf is given by fM(x1,t1),(x2,t2)(m1,m2)(fM(x1,t1)(m1)fM(x2,t2)(m2))−1. Indeed, the two
concepts coincide when we have independent marking for the latter (see e.g. (Haenggi,
2012, Theorem 7.5)).

Example 1 (Poisson process). We consider a spatio-temporal (ground) Poisson process
Yg = {(xi, yi, ti)}Ni=1 on WS ×WT = [0, 1]2 × [0, 1], with intensity function

λ(x1, y1, t1) = 5t1e5+0.5x1 , (x1, y1, t1) ∈WS ×WT .

Conditionally on the number of points, N , we further consider N independent Bernoulli
distributed random variables m1, . . . ,mN , with parameter p = 0.4, and assign these to Yg,
as marks. Hereby the mark space is M = {0, 1} and Y = {(x1, y1, t1,m1) : (x1, y1, t1) ∈
Yg} ⊆WS ×WT ×M is the resulting MSTPP. The reference measure considered is the
counting measure (see the Appendix for details on multivariate STPPs).

Figure 5.1 shows a realisation of such a process, together with spatial projections for
two different time intervals, [0, 0.5] (middle) and (0.5, 1] (right).
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Figure 5.1. (Left) Spatio-temporal Poisson process with intensity function
λ(x1, y1, t1) = 5t1e5+0.5x1 on [0, 1]2×[0, 1] with independent Bernoulli distributed marks
(parameter p = 0.4). (Centre) Spatial projections for the time interval [0, 0.5]. (Right)
Spatial projections for the time interval (0.5, 1]. HereM = {0, 1} and ‘type 1’ refers to
a point having mark 0.

Recall that a spatio-temporal log-Gaussian Cox process (LGCP) Yg (Møller et al.,
1998; Cronie and van Lieshout, 2015; Diggle, 2014) is a spatio-temporal Poisson process
for which the intensity function is given by the realisation of some (a.s. locally integrable
non-negative) random field X(x, t) = eµ(x,t)+Z(x,t), where Z(x, t) is a zero-mean Gaussian
random field on Rd × R. Such a random field Z is characterised by its expectation
function E[Z(x, t)] and its covariance function Cov(Z(x1, t1), Z(x2, t2)). The simplest
class of space-time covariance models are separable models, which are given by

Cov(Z(x1, t1), Z(x2, t2)) = Cov((x1, t1), (x2, t2)) = CovS(x1, x2) CovT (t1, t2),
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where CovS is a covariance function on Rd and CovT is a covariance function on R. If,
in addition, we assume stationarity in space and time, the covariance function depends
only on the space-time lag between the points, whereby

Cov(Z(x1, t1), Z(x1 + h, t1 + u)) = C(h, u) = CS(h)CT (u), (5.9)

where (h, u) ∈ Rd × R is the space-time lag between the points (Gneiting, 2002). To
simulate random fields, we employ the R package RandomFields (Schlather et al., 2015).

Example 2 (Independently marked LGCP). We consider a univariate spatio-temporal
LGCP, Yg = {(xi, yi, ti)}Ni=1, on the spatio-temporal domain WS ×WT = [0, 1]2 × [0, 1],
with mean function given by µ(x1, y1, t1) = log(750) − 0.5(y1 + t1) − σ2/2, where σ2 =
(1/4)2 = 1/16. We further consider a separable space-time covariance function for Z,
where the spatial covariance function is given by the stationary and isotropic Whittle-
Matérn covariance model:

CS(h) = σ2 21−ν

Γ(ν)(c‖h‖)νKν(c‖h‖),

where ν > 0 is a smoothness parameter, c is a nonnegative scaling parameter and Kν de-
notes the modified Bessel function of the second kind of order ν. The temporal covariance
function is constant and given by CT (u) = 1.

As in Example 1, we consider N independent random Bernoulli distributed marks,
with parameter p = 0.4, and obtain the MSTPP Y = {(x1, y1, t1,m1) : (x1, y1, t1) ∈
Yg} ⊆WS ×WT ×M, where we again consider the counting measure as mark reference
measure ν(·).
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Figure 5.2. (Left) Randomly labelled spatio-temporal log-Gaussian Cox process with
iid Bernoulli(0.4)-distributed marks. (Centre) Projection of the random intensity field
of the log-Gaussian Cox process Yg, at time t1 = 0.5. (Right) Projection of the random
intensity field of the log-Gaussian Cox process Yg, at spatial coordinate x1 = 0.5. Here
M = {0, 1} and ‘type 1’ refers to a point having mark 0.

Figure 5.2 shows a realisation of such an independently marked spatio-temporal log-
Gaussian Cox process (left), together with a temporal projection (t1 = 0.5) and spatial
projection (x1 = 0.5) of the Gaussian random field (middle and right).
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Example 3 (Bivariate spatio-temporal process). We consider a spatio-temporal Poisson
process, Y1, with the same intensity function as in Example 1, on the spatio-temporal
domain WS ×WT = [0, 1]2 × [0, 1]. In the same spatio-temporal observation window we
consider a spatio-temporal log-Gaussian Cox process, Y2, with mean function given by
µ(x1, y1, t1) = log(750) − 1.5(y1 + t1) − σ2/2, where σ2 = (1/4)2 = 1/16. We consider
the same spatio-temporal covariance function as in Example 2.

We assign the numerical mark 1 to all points coming from Y1 and the numerical mark
2 to the second component process, Y2. Hence, the mark space is M = {1, 2} and the
bivariate STPP Y is obtained by combining Y1 and Y2 into Y = Y1 ∪ Y2. Note that this
is a multivariate STPP and as usual it is natural to let ν(·) be given by the counting
measure.

Figure 5.3 shows a realisation of such a bivariate STPP. Figure 5.3 also shows pro-
jections of a realisation of the random intensity field of Y1, at time t1 = 0.5 (centre) and
at spatial coordinate x1 = 0.5 (right).
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Figure 5.3. (Left) A realisation of a bivariate spatio-temporal process. (Centre)
Projection of the random intensity field of Y2, at time t1 = 0.5. (Right) Projection of
the random intensity field of Y2, at spatial coordinate x1 = 0.5.

Example 4 (Geostatistically marked LGCP). We consider a spatio-temporal log-Gaussian
Cox process, Yg, on the spatio-temporal domain WS×WT = [0, 1]2×[0, 1], with underlying
mean function µ(x1, y1, t1) = log(750)− 0.5(y1 + t1) + σ2/2, where σ2 = (1/4)2 = 1/16.
As covariance function, we consider the separable spatio-temporal covariance function
described in Example 2. We then simulate a spatio-temporal Gaussian random field,
{R(x, y, t) : (x, y, t) ∈ [0, 1]2 × [0, 1]}, with covariance function given by the stationary
isotropic exponential model, C(h, u) = CS(h)CT (u) = exp(−h); here h ≥ 0 is the spatial
Euclidean distance between two points (a separable model). In order to assign marks to
Yg, we let mi = R(xi, ti) for all (xi, ti) ∈ Yg, whereby M = R and the mark reference
measure ν(·) is assumed to be the Lebesgue measure on R.

Figure 5.4 (left) shows a realisation of such a geostatistically marked spatio-temporal
log-Gaussian Cox process, where the size of a circle around a point is proportional to
the value of its continuous mark, together with the Gaussian random field of the marks
(right).
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Figure 5.4. (Left) A realisation of the above defined geostatistically marked spatio-
temporal log-Gaussian Cox process; the size of a point is proportional to the value of
its continuous mark. (Right) The Gaussian random field generating the marks.

5.4 Marked inhomogeneous second-order measures of spatio-
temporal interaction

As seen above, the intensity function of a MSTPP governs its univariate properties
and the pcf governs second-order interactions. We now proceed by defining cumulative
summary statistics/measures of spatio-temporal interaction for MSTPPs. The key idea
is the extension of the marked inhomogeneous K-function of Cronie and van Lieshout
(2016) to the spatio-temporal context.

5.4.1 Second order intensity-reweighted stationarity

A weaker form of stationarity that we impose when we consider the inhomogeneous
MSTPPs below is second-order intensity-reweighted stationarity (SOIRS) (see e.g. (Bad-
deley et al., 2000)).

Definition 9. We say that a MSTPP Y is second-order intensity-reweighted stationary
(SOIRS) if the pcf exists and satisfies

g((x1 + a, t1 + b,m1), (x2 + a, t2 + b,m2)) = g((x1, t1,m1), (x2, t2,m2))

a.e., for any (a, b) ∈ Rd × R.

Avoiding the degenerate case where λ(x, t,m) = λg(x, t) ≡ 0 a.e., we must require
that λg(x, t) > 0 a.e. (Baddeley et al., 2000). Furthermore, a homogeneous SOIRS point
process is second-order stationary. If in addition to SOIRS we have that

g((x1, t1,m1), (x2, t2,m2)) = g(‖x1 − x2‖Rd , |t1 − t2|,m1,m2), (5.10)
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i.e. the pcf is given by some function g(·) that spatio-temporally depends only on the
spatial distances and the temporal distances, we refer to Y as SOIRS with isotropy
(SOIRSI) (Gabriel and Diggle, 2009; Diggle, 2014). C.f. the isotropy part of (Møller and
Waagepetersen, 2004, p.34).

5.4.2 Marked spatio-temporal second-order reduced moment measures

As an alternative to the pcf as a marked measure of second-order spatio-temporal inter-
action, we may instead consider cumulative versions of it. Throughout we will assume
that Y is SOIRS (see Definition 9).

We start by defining the marked spatio-temporal second-order reduced moment mea-
sure (c.f. (Møller and Waagepetersen, 2004, Definition 4.5)), which is our main building
block. It describes how points of Y , with marks in some Borel set C ⊆ M, interact
with points of Y with marks in some Borel set D ⊆ M, when their spatio-temporal
separation vectors lie in some E ⊆ Rd × R.

Definition 10. Let B ⊆ Rd × R, `(B) > 0, be arbitrary and let C,D ⊆M be fixed Borel
sets with ν(C), ν(D) > 0. The marked spatio-temporal second-order reduced moment
measure of a SOIRS MSTPP Y is defined as

KCD(E) = 1
`(B)ν(C)ν(D)× (5.11)

× E

 ∑6=

(x1,t1,m1),(x2,t2,m2)∈Y

1{(x1, t1,m1) ∈ B × C}1{(x2, t2) ∈ (x1, t1)⊕ E}1{m2 ∈ D}
λ(x1, t1,m1)λ(x2, t2,m2)

 ,
for E ∈ B(Rd × R) (through measure extension of locally finite measures on the ring of
bounded Borel sets (see e.g. Halmos (1974))).

The marked spatio-temporal second-order reduced moment measure may also be
expressed using the pair correlation function.

Lemma 4. Given a SOIRS MSTPP Y and Borel mark sets C,D ⊆M, ν(C), ν(D) > 0,
the measure KCD(·) defined in (5.11) satisfies

KCD(E) = 1
`(B)ν(C)ν(D)

∫
B

∫
C

∫
(x1,t1)+E

∫
D
g((x1, t1,m1), (x2, t2,m2))dx2dt2dx1dt1

= 1
ν(C)ν(D)

∫
C

∫
D

[∫
E
g((0, 0,m1), (x, s,m2))dxds

]
ν(dm2)ν(dm1)

(5.12)

for any E ∈ B(Rd × R). Hence, expression (5.11) does not depend on the choice of B.

Proof. Define the non-negative measurable function f : ((Rd × R)×M)2 → R,

f((x1, t1,m1), (x2, t2,m2)) = 1{(x1, t1,m1) ∈ B × C}1{(x2, t2,m2) ∈ E ×D}
λ(x1, t1,m1)λ(x2, t2,m2)
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where B,E ∈ B(Rd × R) and C,D ∈ B(M). By the Campbell formula, Fubini’s theorem
and the translation invariance obtained under SOIRS,

ν(C)ν(D)KCD(E) = E

 ∑ 6=

(x1,t1,m1),(x2,t2,m2)∈Y
f((x1, t1,m1), (x2, t2,m2))


= 1
`(B)ν(C)ν(D)

∫
B

∫
C

∫
E

∫
D

ρ(2)((x1, t1,m1), (x2, t2,m2))
λ(x1, t1,m1)λ(x2, t2,m2) dx1dt1ν(dm1)dx2dt2ν(dm2)

= 1
`(B)

∫
B

∫
C

∫
(x1,t1)+E

∫
D
g((x1, t1,m1), (x2, t2,m2))ν(dm2)dx2dt2ν(dm1)dx1dt1

= 1
`(B)

∫
B

∫
C

∫
D

∫
(x1,t1)+E

g((0, 0,m1), (x2 − x1, t2 − t1,m2))dx2dt2ν(dm2)ν(dm1)dx1dt1

= 1
`(B)`(B)

∫
C

∫
D

∫
E
g((0, 0,m1), (z, s,m2))dzdsν(dm2)ν(dm1)

=
∫
C

∫
D

[∫
E
g((0, 0,m1), (u, v,m2))dudv

]
ν(dm1)ν(dm2).

This proves Equation (5.12) and that KCD(E) does not depend on the choice of B.

Since ρ(2)((x1, t1,m1), (x2, t2,m2)) = λ(x1, t1,m1)λ(x2, t2,m2) for a Poisson process
on (Rd × R)×M, by the Campbell formula we have that

KCD(E) = `(E).

Writing

YC = {(x, t) : (x, t,m) ∈ Y,m ∈ C} ⊆ Yg (5.13)

for the collection of points of Yg that have marks belonging to C ∈ B(M) (i.e. the
projection of Y on Rd × R), note that we do not necessarily have that YC ∩ YD = ∅,
since we have allowed that C ∩D 6= ∅. However, it may be highly unnatural to consider
C and D such that C ∩D 6= ∅.



84 Chapter 5. The second-order analysis of marked spatio-temporal point processes

5.4.2.1 Representation in terms of Palm distributions

Recalling E!(x,t)
C [·] from Definition 8, we may obtain a further representation and inter-

pretation of KCD(E). By the reduced Campbell-Mecke formula and (5.7),

KCD(E) = 1
`(B)ν(C)ν(D)× (5.14)

× E

 ∑6=

(x1,t1,m1),(x2,t2,m2)∈Y

1{(x1, t1,m1) ∈ B × C}1{(x2, t2) ∈ (x1, t1) + E}1{m2 ∈ D}
λ(x1, t1,m1)λ(x2, t2,m2)


= 1
`(B)ν(C)ν(D)

∫
B×C

E!(x1,t1,m1)

 ∑
(x2,t2,m2)∈Y ∩((x1,t1)+E)×D

1
λ(x2, t2,m2)

dx1dt1ν(dm1)

= 1
`(B)ν(D)

∫
B
E!(x1,t1)
C

 ∑
(x2,t2,m2)∈Y ∩((x1,t1)+E)×D

1
λ(x2, t2,m2)

dx1dt1.

In other words, KCD(E) may be obtained either through averaging over the mark space,
as in (5.12), or through averaging over the spatio-temporal domain, as in (5.14).

Let Y be stationary with ground intensity λg(x, t) ≡ λ > 0 and mark density
fM(x,t)(m) = fM(m), with respect to the mark reference measure ν(·). From (5.14),
we have that (see e.g. (Møller and Waagepetersen, 2004, Theorem C.1))

KCD(E) = (5.15)

= 1
`(B)ν(C)ν(D)

∫
B×C

E!(0,0,m1)

 ∑
(x2,t2,m2)∈Y ∩E×D

1
fM(m2)λ

dx1dt1ν(dm1)

= 1
λν(C)ν(D)

∫
C
E!(0,0,m1)

 ∑
(x2,t2,m2)∈Y ∩E×D

1
fM(m2)

 ν(dm1)

=
E!(0,0)
C

[∑
(x,t,m)∈Y ∩E×D f

M(m)−1
]

λν(D) ,

whereby KCD(E) = 1
λν(D)E

!(0,0)
C [Y (E ×D)] if ν(·) and M(·) are equal (or, equivalently,

fM(·) ≡ 1).

5.4.2.2 Changing the order of the mark sets

It may be noted that KCD(·) is not necessarily symmetric in C and D, i.e. it is not certain
that KCD(·) = KDC(·) in general. The next result provides some conditions under which
this is satisfied. The main function of the result is to indicate that estimators of marked
spatial dependence between points with marks in C and D, which are based on Definition
10, may look a bit different depending on the order chosen for C and D. In addition, it
may be used to test hypotheses for the marking of Y (see Section 5.5.3.1).
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Theorem 1. Let Y be a SOIRS MSTPP and consider any Borel mark sets C,D ⊆M,
C 6= D, with ν(C), ν(D) > 0. Either of

1. fM(x1,t1),(x2,t2)(m1,m2) = fM(x1,t1)(m1)fM(x2,t2)(m2), which includes Y being indepen-
dently marked (and thus randomly labelled),

2. Y has a common mark distribution M(·) and, conditional on the associated loca-
tions in Rd × R, any two marks mi, mj, i 6= j, are exchangeable random variables
(this includes them being pairwise independent),

implies that the measures KCD(·) and KDC(·) coincide.

Note that the conditional exchangeability in Theorem 1 refers to that, for almost
every (x1, t1) 6= (x2, t2),

M (x1,t1),(x2,t2)(C1 × C2) =
∫
C1×C2

fM(x1,t1),(x2,t2)(m1,m2)ν(dm1)ν(dm2)

=
∫
C1×C2

fM(x1,t1),(x2,t2)(m2,m1)ν(dm1)ν(dm2)

= M (x1,t1),(x2,t2)(C2 × C1), C1, C2 ∈ B(M).

Proof. Through (5.12) we see that KCD(·) = KDC(·) requires that

fM(x1,t1),(x2,t2)(m1,m2)
fM(x1,t1)(m1)fM(x2,t2)(m2)

a.e.=
fM(x1,t1),(x2,t2)(m2,m1)
fM(x1,t1)(m2)fM(x2,t2)(m1)

.

If Y is independently marked this is clearly satisfied. Turning to the second option, the
common mark distribution translates the above statement into

fM(x1,t1),(x2,t2)(m1,m2) a.e.= fM(x1,t1),(x2,t2)(m2,m1),

which holds by the exchangeability.

By de Finetti’s theorem, this is equivalent to saying that, conditionally on the ground
locations, pairwisely the marks can be expressed as mixtures of iid random variables.

Remark 3. As an alternative one could proceed by considering a symmetrised version
KDC(E) = (KCD(E) +KDC(E))/2, E ∈ B(Rd × R).

5.4.3 Marked spatio-temporal inhomogeneous K-functions

We have defined a marked inhomogeneous spatio-temporal measure, K, to quantify
second-order interactions. By specifying the set E we may obtain different measures
of spatio-temporal interaction between points with different mark classifications C and
D. In what follows we will look closer at such choices.
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Assume that Y is SOIRS and consider two mark sets C,D ∈ B(M), with ν(C), ν(D) >
0. A first natural candidate for E would be the closed, origin centred ball B[(0, 0), r] =
{(x, s) : d∞((0, 0), (x, s)) ≤ r} = {(x, s) : ‖x‖ ≤ r, |s| ≤ r} of radius r ≥ 0, where ‖ · ‖
is an abbreviation of ‖ · ‖Rd . Hereby we would obtain a direct extension of the marked
inhomogeneous K-function of Cronie and van Lieshout (2016) to the spatio-temporal
setting:

KCD
inhom(r) = KCD(B[(0, 0), r]) = 1

`(B)ν(C)ν(D)×

× E

 ∑
(x1,t1,m1)∈Y ∩B×C

∑
(x2,t2,m2)∈Y \{(x1,t1,m1)}

1{(x2, t2,m2) ∈ B[(x1, t1), r]×D}
λ(x1, t1,m1)λ(x2, t2,m2)


= 1
ν(C)ν(D)

∫
C

∫
D

∫
B[(0,0),r]

g((0, 0,m1), (x, s,m2))`(d(x, s))ν(dm2)ν(dm1).

However, since the spatial scale is different than the temporal scale, it is more natural
to treat space and time lags separately. Hence, we instead choose (x1, t1) +E to be the
closed cylinder Ctr(x1, t1), with centre (x1, t1) ∈ Rd × R, radius r ≥ 0 and height t ≥ 0,
i.e.

Ctr(x1, t1) = (x1, t1) + Ctr(0, 0) = {(x2, t2) ∈ Rd × R : ‖x1 − x2‖ ≤ r, |t1 − t2| ≤ t}.

Note that when d = 2, Ctr(0, 0) is obtained by taking a disk (2-dimensional Euclidean
ball) with radius r and stretching it in the t-dimension until it becomes the cylinder of
height 2t. Furthermore, B[(0, 0), r] = Crr (0, 0), whereby KCD

inhom(r) = KCD(Crr (0, 0)).

Definition 11. For any SOIRS MSTPP Y and mark sets C,D ∈ B(M), ν(C), ν(D) >
0, the marked inhomogeneous spatio-temporal K-function is defined as

KCD
inhom(r, t) = KCD(Ctr(0, 0)) (5.16)

= 1
`(B)ν(C)ν(D) ×

×E

 ∑
(x1,t1,m1)∈Y ∩B×C

∑
(x2,t2,m2)∈Y \{(x1,t1,m1)}

1{(x2, t2,m2) ∈ Ctr(x1, t1)×D}
λ(x1, t1,m1)λ(x2, t2,m2)


= 1

ν(C)ν(D)

∫
C

∫
D

∫
‖x‖≤r

∫ t

−t
g((0, 0,m1), (x, s,m2))dxdsν(dm2)ν(dm1)

for r, t ≥ 0 and any B ∈ Rd × R, `(B) > 0, by expression (5.12). Note that KCD
inhom(r, r) =

KCD
inhom(r).

To connect Definition 11 with K
Yg

inhom(r, t) = Kinhom(r, t), i.e. the inhomogeneous
spatio-temporal (ground) K-function in (Gabriel and Diggle, 2009; Møller and Ghor-
bani, 2012), we note that KMMinhom(r, t) reduces to KYg

inhom(r, t) if the reference measure is
given by the mark distribution (recall Definition 7). Furthermore, when Y is SOIRSI
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(recall (5.10)) with g((x1, t1,m1), (x2, t2,m2)) = g(‖x1 − x2‖, |t1 − t2|,m1,m2), by a
transformation (to hyper-spherical coordinates),

KCD
inhom(r, t) = 1

ν(C)ν(D)

∫
C

∫
D

∫
‖x‖≤r

∫ t

−t
g(‖x‖, |s|,m1,m2)dxdsν(dm2)ν(dm1)

= 1
ν(C)ν(D)

∫
C

∫
D

∫ t

−t

∫ r

0
ωdg(u, v,m1,m2)ud−1dudvν(dm2)ν(dm1)

and we note the resemblance with Kinhom(r, t).
To give the motivation behind KCD

inhom(r, t), recall that for a Poisson process on (R2×
R)×M we have that

KCD
inhom(r, t) = `(Ctr(0, 0)) = 2trdωd = 2trdπd/2/(Γ(d/2 + 1)),

where ωd = πd/2/(Γ(d/2 + 1)) is the (Lebesgue) volume of the d-dimensional Euclidean
unit ball and Γ(·) is the Gamma function. The Lebesgue measure for the ball of radius
r centered in the origin is `(B[0, r]) = ωdr

d, where ωd = (πd/2)/(Γ(d2 + 1)) is the volume
of the unit ball in Rd. Thus, the volume of the cylinder Ctr(0, 0) = {(y, s) ∈ Rd × R :
||y|| ≤ r and |s| ≤ t} is 2ωdrdt. Then is natural to think that

• If KCD
inhom(r, t) > 2ωdrdt we have an indication that points of Y with marks in D

have a tendency to cluster around the points with marks in C (in a pairwise sense),
having compensated for the inhomogeneity. This is referred to as clustering/ag-
gregation.

• When KCD
inhom(r, t) < 2ωdrdt, points with marks in D tend to avoid being close to

the points with marks in C (in a pairwise sense), taking the inhomogeneity into
account. This is called regularity/inhibition.

Here closeness is understood in terms of one of the points being inside the cylinder
neighbourhood Ctr of the other. In other words, we have defined a way of measuring
spatio-temporal interaction between points belonging to two mark sets C and D, in
terms of spatial lags r ≥ 0 and temporal lags t ≥ 0, in the presence of inhomogeneity.

5.4.4 Marked stationary spatio-temporal K-functions

Equation (5.15) leads us to the definition of the marked stationary K-function.

Definition 12. Given a stationary MSTPP Y with intensity λ > 0, under the assump-
tion that ν(·) = M(·), its marked stationary spatio-temporal K-function is given by

KCD(r, t) = 1
λν(C)ν(D)

∫
C
E!(0,0,m)

[
Y (Ctr(0, 0)×D)

]
ν(dm)

= E!(0,0)
C

[
Y (Ctr(0, 0)×D)

]
λν(D) ,
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for any C,D ∈ B(M) with ν(C), ν(D) > 0. This is a spatio-temporal version of the
form proposed by Van Lieshout (2006).

In the multivariate case, where λi(x, t) ≡ λi > 0, i ∈M, and C = {i} and D = {j},
we obtain

Kij(r, t) = 1
`(B)λj

E!(0,0,i)
[
Yj(Ctr(0, 0)

] ∫
B
dx1dt1 = E!(0,0,i) [Yj(Ctr(0, 0))

]
λj

= E!(0,0)
i

[
Yj(Ctr(0, 0))

]
λj

,

a spatio-temporal version of the classical multivariate stationary K-function (Diggle,
2014, p. 60). In particular, i = j results in the K-function of Diggle et al. (1995) for
Yi.

In other words, given that there is a typical point of Y , located at the origin, with
mark belonging to C, KCD(r, t) asks what the expected number of further points is,
which are located within the cylinder Ctr(0, 0) and have marks belonging to D. In the
multivariate case, assuming that i 6= j, λjKij

inhom(r, t) = E!(0,0,i) [Yj(Ctr(0, 0)
]

gives us the
expected number of points of Yj that fall within spatial distance r and temporal distance
time t of a typical point of Yi. Note that by the Slivniyak-Mecke theorem (Chiu et al.,
2013), E!(0,0)

C [Y (Ctr(0, 0) × D)] = E[Y (Ctr(0, 0) × D)] = λν(D)`(Ctr(0, 0)) for a Poisson
process Y , as has already been established in the more general SOIRS case. Hence,
KCD(r, t)− 2trdωd > 0 indicates clustering between points with marks in C and D and
KCD(r, t)− 2trdωd < 0 indicates regularity.

5.4.5 Multivariate spatio-temporal K-functions

As stated in Section 5.2, when the mark space is given by a finite set, sayM = {1, . . . , k},
k > 1, a marked point process Y is referred to as a multivariate STPP with components
Yi, i = 1, . . . , k, where Yi contains all the points of Yg with i as associated mark.

Following Cronie and van Lieshout (2016), we further find that for a multivariate
STPP, the ν-averaged reduced Palm distribution at (x, t) ∈ Rd × R, with respect to
C = {i}, is given by

P
!(x,t)
i (R) = P

!(x,t)
{i} (R) = P !(x,t,i)(R)ν({i})

ν({i}) = P !(x,t,i)(R), i ∈M = {1, . . . , k}, R ∈ N ,

and is thus independent of the specific choice of ν(·). By expression (5.14) it now follows
that

KCD(E) = 1
`(B)ν(D)

∫
B

∑
i∈C

E!(x1,t1)
i

∑
j∈D

∑
(x2,t2)∈Yj∩((x1,t1)+E)

ν(j)
λj(x2, t2)

dx1dt1

=
∑
i∈C

∑
j∈D

ν(j)
ν(D)

1
`(B)

∫
B
E!(x1,t1)
i

 ∑
(x2,t2)∈Yj∩((x1,t1)+E)

1
λj(x2, t2)

dx1dt1

K{i}{j}(E) = 1
`(B)ν(j)

∫
B
E!(x1,t1)
i

 ∑
(x2,t2)∈Yj∩((x1,t1)+E)

ν(j)
λj(x2, t2)

dx1dt1,
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for any C,D ⊆M, since λ(x, t, i) = λi(x, t)/ν(i), (x, t, i) ∈ Rd × R×M for a multivari-
ate MSTPP. Here E!(x1,t1)

i [·] = E!(x1,t1,i)[·] is the expectation under the reduced Palm
distribution of Yi. Note that we, in essence, scale each j-contribution by the probability
ν(j)/ν(D).

We may now define the i-to-j inhomogeneous spatio-temporal cross K-function:

Kij
inhom(r, t) = K{i}{j}(Ctr(x1, t1))

= 1
`(B)ν(j)

∫
B
E!(x1,t1)
i

 ∑
(x2,t2)∈Yj∩Ct

r(x1,t1)

ν(j)
λj(x2, t2)

dx1dt1 (5.17)

= 1
`(B)E

 ∑
(x1,t1)∈Yi∩B

∑
(x2,t2)∈Yj∩Ct

r(x1,t1)\{(x1,t1)}

1
λi(x1, t1)λj(x2, t2)


= 1
`(B)

∫
B
E!(x1,t1)
i

 ∑
(x2,t2)∈Yj∩Ct

r(x1,t1)

1
λj(x2, t2)

dx1dt1, (5.18)

c.f. (Møller and Waagepetersen, 2004, Definition 4.8). Note that when i = j, Kij
inhom(r, t)

reduces to the inhomogeneous spatio-temporal K-function of Yi, i.e. Ki
inhom(r, t). Also,

the i-to-any inhomogeneous spatio-temporal cross K-function is given by

Ki•
inhom(r, t) = K

{i}M
inhom(r, t) =

∑
j∈M

ν(j)
ν(M)

1
`(B)

∫
B
E!(x1,t1)
i

 ∑
(x2,t2)∈Yj∩Ct

r(x1,t1)

ν(j)
λj(x2, t2)

dx1dt1,

where each ν(j) = 1, j ∈M, if ν(·) is the counting measure on M.

5.4.5.1 Multivariate stationary spatio-temporal K-functions

Considering the stationary case, where λi(x, t) ≡ λi > 0, i ∈M, we have thatKij
inhom(r, t)

reduces to

Kij(r, t) = 1
`(B)λj

E!(0,0,i)
[
Yj(Ctr(0, 0)

] ∫
B
dx1dt1

= E!(0,0,i) [Yj(Ctr(0, 0)
]

λj
= E!(0,0)

i

[
Yj(Ctr(0, 0)

]
λj

, (5.19)

a spatio-temporal version of the classical multivariate stationary K-function (Diggle,
2014, p. 60). Assuming that i 6= j, note that λjKij

inhom(r, t) = E!(0,0,i) [Yj(Ctr(0, 0)
]

gives
us the expected number of points of Yj that fall within spatial distance r and temporal
distance time t of a typical point of Yi.

5.4.6 Further properties

5.4.6.1 Independent thinning

The first thing that may be pointed out is that when applying independent thinning
to Y , i.e. when we retain each (x, t,m) ∈ X according to some probability function
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0 ≤ p(x, t,m) ≤ 1, (x, t,m) ∈ (Rd × R)×M, the pcf of the thinned process coincides
with the original one (Baddeley et al., 2000). This implies that KCD(·) and KCD

inhom(r, t)
are not affected by this type of thinning.

5.4.6.2 Scaling

We next give a scaling result, which indicates the relationship between the two definitions
of K-functions.

Theorem 2. Consider C,D ∈ B(M) with ν(C) and ν(D) positive. For any β =
(βS , βT ) ∈ (0,∞)2 and a SOIRS MSTPP Y = {(xi, ti,mi)}Ni=1, define the rescaling

βY = {(βSxi, βT ti,mi)}Ni=1.

The marked inhomogeneous spatio-temporal K-function KCD
inhom(r, t;β) of βY satisfies

KCD
inhom(r, t; (βS , βT )) = KCD

inhom(r/βS , t/βT ; (1, 1)), r, t ≥ 0,

where KCD
inhom(r, t; (1, 1)) = KCD

inhom(r, t) is the marked inhomogeneous spatio-temporal
K-function of Y .

Proof. Denote the pcf of Y by gY (·). As in (Cronie and van Lieshout, 2015, Section
4.3.), through a change of variables and the Campbell formula we find that the pcf of
βY is given by

gβY ((x1, t1,m1), (x2, t2,m2)) = (βdSβT )−2ρ(2)((x1/βS , t1/βT ,m1), (x2/βS , t2/βT ,m2))
(βdSβT )−1λ(x1/βS , t1/βT ,m1)(βdSβT )−1λ(x2/βS , t2/βT ,m2)

= gY ((x1/βS , t1/βT ,m1), (x2/βS , t2/βT ,m2)).

Hence, by a change of variables,

KCD
inhom(r, t;β) =

= 1
ν(C)ν(D)

∫
C

∫
D

∫
‖x‖≤r

∫
|s|≤t

gY ((0, 0,m1), (x/βS , s/βT ,m2))dxdsν(dm2)ν(dm1)

= 1
ν(C)ν(D)

∫
C

∫
D

∫
‖βSx‖≤r

∫
|βT s|≤t

g((0, 0,m1), (x, s,m2))dxdsν(dm2)ν(dm1)

= KCD
inhom(r/βS , t/βT ).

Theorem 2 essentially tells us two things. To begin with, if we rescale the spatial
and/or the temporal domain, and thereby the space-time locations of Y , then KCD

inhom(·)
changes in a natural way. Secondly, we note that, equivalently,

KCD
inhom(r, t) = KCD

inhom(rβS , tβT ; (βS , βT )), r, t ≥ 0,
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whereby KCD
inhom(r, t) = KCD

inhom(r, r; (1, r/t)) = KCD
inhom(r; (1, r/t)), r ≥ 0. In other words,

KCD
inhom(r, t) may always be obtained through KCD

inhom(r) by applying proper scaling of
Yg, i.e. considering βY = {(xi, βT ti,mi)}Ni=1, where βT = r/t. There are practical
implications of this results; it is sufficient to define an estimator for KCD

inhom(r), r ≥ 0
(however, this is not the choice that we will make when we define our estimators).

It may be noted from the proof of Theorem 2 that we may obtain a more gen-
eral result, pertaining to KCD(E). More specifically, we have that the marked spatio-
temporal second-order reduced moment measure KCD(·;β) of βY satisfies KCD(E;β) =
KCD({(βSx, βT s) : (x, s) ∈ E}).

5.5 Statistical inference

The intensity function as well as our second-order summary statistics are probabilis-
tic entities used to quantify first and second-order properties of a given point process.
Turning to the real world, where we are given a marked spatio-temporal point pattern
{(xi, ti,mi)}ni=1, such as the earthquake data set, we are naturally interested in how
we can statistically estimate these quantities, to better understand the data-generating
mechanism in question. We do this by assuming that we have observed a realisation
of a SOIRS MSTPP Y . Its ground process, Yg, is formally defined on Rd × R but
in practice we treat it as only observed within some bounded spatio-temporal region
WS × WT ⊆ Rd × R, which is often referred to as the study region. We also restrict
ourselves to the case where only one single point pattern is observed but we point out
that most arguments below can be averaged over if one would have repetitions.

Being able to estimate the relevant quantities, we then proceed to considering dif-
ferent specific marking structures (recall Section 5.2.5). In particular we will consider
some related hypothesis testing.

5.5.1 Voronoi intensity estimation

Writing N = Y (WS × WT ×M), if we can assume homogeneity in space-time, with
ν(·) = M(·), so that λ(x, t,m) ≡ λ > 0, we simply estimate λ by means of N/[` ⊗
ν](WS ×WT ×M). This is, however, a scenario that is rarely or never seen in practise,
in particular not in the case of earthquakes.

As pointed out in (Vere-Jones, 2009, Section 3.2), when estimating the intensity func-
tion of a MSTPP, unless one can assume homogeneity, one should use a local/adapted/-
variable approach, as opposed to global smoothing techniques, such as single bandwidth
kernel estimators (Diggle, 2014; Van Lieshout, 2012; Silverman, 1986). Motivated by
Barr and Schoenberg (2010), and in particular their study of earthquakes (in a purely
spatial setting), we choose to consider a marked spatio-temporal version of the Voronoi
intensity estimator.

We start by defining the Voronoi estimators for λ(x, t,m) and λg(x, t). They are
constructed through Voronoi tessellations (see e.g. (Chiu et al., 2013)) generated by the
metrics d∞(·, ·) and d(·, ·) in expression (5.1).
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Definition 13. The spatio-temporal Voronoi intensity estimator is defined by

λ̂g(x, t) =
∑

(y,v)∈Yg∩WS×WT

1{(x, t) ∈ Vg(y,v) ∩WS ×WT }
`(Vg(y,v) ∩WS ×WT ) , (5.20)

where (x, t) ∈WS ×WT and the spatio-temporal Voronoi tessellation is given by

Vg = {Vg(x,t)}(x,t)∈Yg
=
{
(u, v) ∈ Rd × R : d∞((u, v), (x, t)) ≤ d∞((u, v), (y, s))

for any (y, s) ∈ Yg \ {(x, t)}
}

(x,t)∈Yg
.

Recalling the metric d′(·, ·) in (5.1), the marked spatio-temporal Voronoi tessellation
generated by Y is defined as V = {V(x,t,m)}(x,t,m)∈Y , where

V(x,t,m) =
{
(u, v, z) ∈ (Rd × R)×M : d((x, t,m), (u, v, z)) ≤ d((y, s, k), (u, v, z))

for any (y, s, k) ∈ Y \ {(x, t,m)}
}

(x,t,m)∈Y

=
{
(u, v, z) ∈ (Rd × R)×M : max{‖x− u‖Rd , |t− v|, d′(m, z)} ≤

≤ max{‖y − u‖Rd , |s− v|, d′(k, z)}
for any (y, s, k) ∈ Y \ {(x, t,m)}

}
(x,t,m)∈Y .

Furthermore, the marked spatio-temporal Voronoi intensity estimator is defined as

λ̂(x, t,m) =
∑

(xi,ti,mi)∈Y ∩WS×WT×M

1{(x, t,m) ∈ V(xi,ti,mi)}
[`⊗ ν](V(xi,ti,mi) ∩WS ×WT ×M) , (5.21)

for (x, t,m) ∈WS ×WT ×M.

Note the explicit dependence on the choice of space-time-mark metric and reference
measure above.

We next give the mass preservation and the unbiasedness of the estimators above.

Theorem 3. The estimators (5.21) and (5.23) are mass-preserving, i.e. they integrate
to the total number of points N , and unbiased as estimators of the expected total number
of points.

Proof. We only consider (5.21) since (5.23) is analogous. Starting with the mass-
preservation,∫

WS×WT×M
λ̂(x, t,m)ν(dm)dxdt =

=
∑

(xi,ti,mi)∈Y ∩WS×WT×M

∫
WS×WT×M 1{(x, t,m) ∈ V(xi,ti,mi)}ν(dm)dxdt

[`⊗ ν](V(xi,ti,mi) ∩WS ×WT ×M) = N.

Taking expectations on both sides yields

E
[∫
WS×WT×M

λ̂(x, t,m)ν(dm)dxdt
]

= E[N ] =
∫
WS×WT×M

λ(x, t,m)ν(dm)dxdt.
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5.5.1.1 Simplifying assumptions

Ideally, one does not impose too many conditions when finding the intensity estimate,
unless convinced that specific conditions such as separability hold. We will next look at
a few scenarios where we impose simplifying assumptions and we note that the need for
them often is related to computational expenses.

We here need to introduce the Voronoi cells of the projections of Y (assuming that
they are well defined). Recalling the projections YS and YT from (5.3) and defining the
projection YM of Y on M in an identical fashion, let

VS = {VSx }x∈YS
= {u ∈ Rd : ‖u− x‖Rd ≤ ‖u− y‖Rd for any y ∈ YS \ {x}}x∈YS

,

VT = {VTt }t∈YT
= {v ∈ R : |v − t| ≤ |v − s| for any s ∈ YT \ {t}}t∈YT

,

VM = {VMm }m∈YM
= {z ∈M : d′(m, z) ≤ d′(k,m) for any k ∈ YM \ {m}}m∈YM

,

VT×M = {VT×M(t,m) }(t,m)∈R×M

=
{
(v, z) ∈ R×M : max{|t− v|, d′(m, z)} ≤ max{|s− v|, d′(k, z)}
for any (s, k) ∈ YT × YM \ {(t,m)}

}
(t,m)∈YT×YM

. (5.22)

Some simplified setups are given by:

1. Separability and a common mark distribution:

λ̂(x, t,m) = 1
N2 λ̂S(x)λ̂T (t)λ̂M (m)

= 1
N2

∑
y∈YS∩WS

1{x ∈ VSy ∩WS}
`d(VSy ∩WS)

∑
v∈YT∩WT

1{t ∈ VTv ∩WT }
`1(VTv ∩WT )

∑
z∈YM

1{m ∈ VMz }
ν(VMz ) .

If we assume that the common mark distribution is given by ν(·), we set λM (m)/N ≡
1 above.

2. Non-separability and a common mark distribution:

λ̂(x, t,m) = f̂M(m)λ̂g(x, t) = λ̂M (m)
N

λ̂g(x, t).

If the mark distribution and the reference measure coincide, we set f̂M(m) ≡ 1
above.

3. Separability and time-mark dependence:

λ̂(x, t,m) = λ̂S(x)
N

∑
(v,z)∈YT×YM∩WT×M

1{(t,m) ∈ VT×M(v,z) ∩WT ×M}

[`1 ⊗ ν](VT×M(v,z) ∩WT ×M)
. (5.23)

The case of separability and space-mark dependence is analogous.

As a corollary to Theorem 3 (the proof is identical), we obtain mass preservation
and unbiasedness for the estimators above.

Corollary 1. All the estimators above are mass preserving and unbiased.
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5.5.2 Estimation of the second-order summary statistics

We next give the definitions of the estimators of our previously defined second-order
statistics. In order to account for edge effects (Cronie and Särkkä, 2011; Chiu et al., 2013;
Gabriel, 2014) when defining the estimators below, we apply a minus sampling/border
correction scheme. Denoting the boundaries of WS and WT by ∂WS and ∂WT , respec-
tively, we write W	rS = {x ∈ WS : dRd(x, ∂WS) ≥ r} = {x ∈ WS : BRd [x, r] ⊆ WS}
and W	tT = {s ∈ WT : dR(x, ∂WT ) ≥ t} for the eroded spatial and temporal domains,
respectively. Here BRd [x, r] is the closed ball in Rd with centre x and radius r.

Throughout we consider a SOIRS MSTPP Y , and assume that `d(W	rS ) > 0,
`1(W	tT ) > 0 and C,D ∈ B(M), with ν(C), ν(D) > 0.

Definition 14. The estimator K̂CD
inhom(r, t) of the marked inhomogeneous spatio-temporal

K-function KCD
inhom(r, t), r, t ≥ 0, based on Y ∩WS ×WT ×M, is defined by

`d(W	rS )`1(W	tT )ν(C)ν(D)K̂CD
inhom(r, t) = (5.24)

=
∑

(x1,t1,m1)∈Y ∩W	r
S ×W	t

T ×C

∑
(x2,t2,m2)∈Y ∩Ct

r(x1,t1)×D\{(x1,t1,m1)}

1
λ(x1, t1,m1)λ(x2, t2,m2) .

By replacing Ctr(x1, t1) by (x1, t1) +E in (5.24), E ∈ B(Rd × R), we obtain an estimator
K̂CD(E) of the marked spatio-temporal second-order reduced moment measure KCD(E).

Next, in Lemma 5, we turn to the unbiasedness of the estimators above

Lemma 5. The estimators in Definition 14 are unbiased. The variance of K̂CD(E) is
given in expression (5.25).

Proof. By the Campbell formula and expression (5.12),

E[K̂CD(E)] =
∫
W	r

S ×W	t
T ×C

∫
E×D g((x1, t1,m1), (x2, t2,m2))dx1dt1ν(dm2)dx2dt2ν(dm1)

`(W	rS )`(W	tT )ν(C)ν(D)

=
`
(
W	rS

)
`
(
W	tT

) ∫
C

∫
E×D g((0, 0,m1), (u, v,m2))dudvν(dm2)ν(dm1)
`(W	rS )`(W	tT )ν(C)ν(D)

= KCD(E),

which implies that (5.24) is unbiased. We next turn to the variance and for simplicity
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we write A = W	rS ×W	tT . It follows that

[`(A)ν(C)ν(D)]2K̂CD(E)2 =

=
∑

(x1,t1,m1),(x2,t2,m2),(x3,t3,m3),(x4,t4,m4)∈Y

1{(x1, t1,m1) ∈ A× C}1{(x3, t3,m3) ∈ A× C}
λ(x1, t1,m1)λ(x2, t2,m2)λ(x3, t3,m3)λ(x4, t4,m4)×

× 1{(x2, t2,m2) ∈ E ×D \ {(x1, t1,m1)}}1{(x4, t4,m4) ∈ E ×D \ {(x3, t3,m3)}}

=
∑

(x1,t1,m1)∈Y ∩A×C

∑
(x2,t2,m2)∈Y ∩E×D\{(x1,t1,m1)}

1
λ(x1, t1,m1)2λ(x2, t2,m2)2

+
∑

(x1,t1,m1)∈Y ∩A×C

∑6=

(x2,t2,m2),(x4,t4,m4)∈Y ∩E×D\{(x1,t1,m1)}

λ(x1, t1,m1)−2

λ(x2, t2,m2)λ(x4, t4,m4)

+
∑ 6=

(x1,t1,m1),(x2,t2,m2)∈Y ∩A×C

∑
(x3,t3,m3)∈Y ∩E×D\{(x1,t1,m1),(x2,t2,m2)}

λ(x3, t3,m3)−2

λ(x1, t1,m1)λ(x2, t2,m2)

+
∑ 6=

(x1,t1,m1),(x2,t2,m2)∈Y ∩A×C

∑ 6=

(x3,t3,m3),(x4,t4,m4)∈Y ∩E×D\{(x1,t1,m1),(x2,t2,m2)}

1∏4
i=1 λ(xi, ti,mi)

= S1 + S2 + S3 + S4.

By the Campbell formula,

E[S4] =
∫
A×C

∫
A×C

∫
E×D

∫
E×D

ρ(4)((x1, t1,m1), . . . , (x4, t4,m4))
λ(x1, t1,m1) · · ·λ(x4, t4,m4)

4∏
i=1

dxidtiν(dmi),

E[S3] =
∫
A×C

∫
A×C

∫
E×D

1
λ(x3, t3,m3)

ρ(3)((x1, t1,m1), . . . , (x3, t3,m3))
λ(x1, t1,m1) · · ·λ(x3, t3,m3)

3∏
i=1

dxidtiν(dmi),

E[S2] =
∫
A×C

∫
E×D

∫
E×D

1
λ(x1, t1,m1)

ρ(3)((x1, t1,m1), . . . , (x3, t3,m3))
λ(x1, t1,m1) · · ·λ(x3, t3,m3)

3∏
i=1

dxidtiν(dmi),

E[S1] =
∫
A×C

∫
E×D

1
λ(x1, t1,m1)λ(x2, t2,m2)g((x1, t1,m1), (x2, t2,m2))

2∏
i=1

dxidtiν(dmi),

whereby

Var(K̂CD(E)) =
∑4
i=1 E[Si]

[`(A)ν(C)ν(D)]2 −K
CD(E)2. (5.25)
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Clearly, in practise λ(·) is not known so each λ(xi, ti,mi) must be replaced by an
estimate λ̂(xi, ti,mi), which may obtained by e.g. the Voronoi estimation approach pre-
sented previously. In estimators such as K̂CD(E) and (5.24), Stoyan and Stoyan (2000)
advocate the Hamilton principle, which suggests replacing `d(W	rS )`1(W	tT )ν(C) by

∑
(x,s,m)∈Y ∩W	r

S ×W	t
T ×C

1
λ(x, s,m) ;

the latter is an unbiased estimator of the former, due to the Campbell formula. In
essence, we may have one of the following scenarios:

1. All of `d(W	rS ), `1(W	tT ), ν(C) and ν(D) are (assumed) known: employ (5.24) for
the estimation of KCD

inhom(r, t).

2. ν(C) and/or ν(D) is unknown but `d(W	rS )`1(W	tT ) is known: use the estimator

ν̂(C) = 1
`d(W	rS )`1(W	tT )

∑
(x,s,m)∈Y ∩W	r

S ×W	t
T ×C

1
λ(x, s,m)

in (5.24). This is all analogous for ν(D).

3. ν(C) and ν(D) are known explicitly but `d(W	rS )`1(W	tT ) is unknown, with the
ground intensity λg(·) (assumed) known explicitly: use the estimator

̂`d(W	rS )`1(W	tT ) =
∑

(x,s)∈Yg∩W	r
S ×W	t

T

1
λg(x, s)

in (5.24).

4. Neither of `d(W	rS ), `1(W	tT ), ν(C) and ν(D) are (assumed) known but the ground
intensity λg(·) is (assumed) known explicitly: estimate `d(W	rS )`1(W	tT )ν(C)ν(D)
by means of∑

(x,s,m)∈Y ∩W	r
S ×W	t

T ×C
λ(x, s,m)−1∑

(x,s,m)∈Y ∩W	r
S ×W	t

T ×D
λ(x, s,m)−1∑

(x,s)∈Yg∩W	r
S ×W	t

T
λg(x, s)−1

and plug this into (5.24).

Note that this, in fact, means that when we are given the intensity functions λ(x, t,m)
and λg(x, t), we do not need to explicitly know/provide ν(C) and ν(D). This setup
provides (ratio) unbiased estimators when the intensity is known. To evaluate the per-
formance of the four scenarios above, we employ each one to 99 realisations of the model
in Example 1 and generate min/max envelopes (Diggle, 2014). The results can be found
in Figure 5.5 and it seems that knowing the mark set measures is the most crucial part.
Note, however, that the most realistic practical scenario is number 2.
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Figure 5.5. The four Hamilton principle scenarios for the estimator (5.24); min-max
envelopes based on 99 realisations of the randomly labelled Poisson process in Example
1.
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5.5.2.1 Smoothing

Recall from Section 5.4.6.1 that KCD
inhom(r, t) is invariant under independent thinning.

This may be exploited to obtain a smoothing/thinning/bootstrapping scheme for the
estimation of KCD

inhom(r, t). More specifically, let K̂CD
inhom(r, t;Y p

i ), i = 1, . . . , n, be the
estimators generated by n independent thinnings Y p

i , i = 1, . . . , n, of Y , using retention
probability function p(x, t,m) ≡ p ∈ (0, 1). The resulting smoothed estimator is given
by

K̃CD
inhom(r, t) = 1

n

n∑
i=1

K̂CD
inhom(r, t;Y p

i ).

In essence, we are averaging over n different unbiased estimators of KCD
inhom(r, t); hereby

also K̃CD
inhom(r, t) is unbiased. A clear gain with this approach is that we even out the

negative effects of using only one misspecified plug-in intensity estimate, which has been
generated by only one sample, as is the case of K̂CD

inhom(r, t). The drawback is that we get
an increased variance. Regarding the choice of p ∈ (0, 1), we generally consider p = 0.5
to be a decent choice (unless the dataset is small, which requires additional caution).

Remark 4. In principle, one could consider bootstrap-type regions/envelopes for
KCD

inhom(r, t), based on K̂CD
inhom(r, t;Y p

i ), i = 1, . . . , n, provided that we choose some suit-
able function space metric (c.f. e.g. (Myllymäki et al., 2016)).

5.5.2.2 Multivariate versions

We next turn to the estimation of a multivariate SOIRS STPP Y . From the general
estimator in Definition 14, where C = {i} and D = {j}, i 6= j, we obtain

K̂ij
inhom(r, t) =

= 1
`d(W	rS )`1(W	tT )

∑
(x1,t1)∈Yi∩W	r

S ×W	t
T

1
λi(x1, t1)

∑
(x2,t2)∈Yj∩Ct

r(x1,t1)

1
λj(x2, t2) ,

and we see that this does not require explicit knowledge of ν(·). Although not necessary
here, it is common to assume that ν(·) is the counting measure on M.

Since λ(x, t, i) = λi(x, t)/ν(i), in practise, for each i ∈M = {1, . . . , k} we obtain an
estimate λ̂i(x, t) based on Yi, which we plug into the estimators above. One may e.g.
use either of the separable or non-separable ground process Voronoi intensity estimators
proposed previously.

5.5.2.3 Common mark distribution versions

When there is a common mark distribution M(·), which coincides with the reference
measure ν(·) (recall Definition 7), we may estimate ν(C)ν(D) = M(C)M(D), C,D ∈
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B(M), by ν̂(C)ν̂(D) = Y (WS ×WT × C)Y (WS ×WT ×D)/Yg(WS ×WT )2 to obtain

`d(W	rS )`1(W	tT )ν̂(C)ν̂(D)K̂CD
inhom(r, t) =

=
∑

(x1,t1)∈YC∩W	r
S ×W	t

T

∑
(x2,t2)∈YD∩Ct

r(x1,t1)\{(x1,t1)}

1
λg(x1, t1)λg(x2, t2) ,

where we plug in an estimate of λg(·) in practise. As before, we may perform Hamilton
principle correction by replacing `d(W	rS )`1(W	tT ) by ∑(x,s)∈Yg∩W	r

S ×W	t
T
λg(x, s)−1.

5.5.2.4 Homogeneous versions

In the stationary case, when the reference measure is given by the mark distribution (see
Definition 7), given the ground intensity λ > 0, from the general estimator in Definition
14 we obtain

K̂CD(r, t) =
∑

(x1,t1)∈YC∩W	r
S ×W	t

T
YD(Ctr(x1, t1) \ {(x1, t1)})

λ2`d(W	rS )`1(W	tT )ν(C)ν(D)
,

where we in practise replace λ by the estimate λ̂ = Yg(WS ×WT )/(`d(WS)`1(WT )) and
ν(C)ν(D) by ν̂(C)ν̂(D) = Y (WS ×WT × C)Y (WS ×WT ×D)/Yg(WS ×WT )2. In the
stationary and multivariate case we obtain

K̂ij
inhom(r, t) = 1

λiλj`d(W	rS )`1(W	tT )
∑

(x1,t1)∈Yi∩W	r
S ×W	t

T

Yj(Ctr(x1, t1)),

where λi is estimated by λ̂i = Yi(WS ×WT )/(`d(WS)`1(WT )), i ∈M = {1, . . . , k}.

5.5.3 Independence assumptions

We next look closer at how KCD
inhom(r, t) is affected by making different independence

assumptions that are related to the marking structure. Recalling the definitions from
Section 5.2.5, we start by looking at independent marking, which includes random la-
belling, to see how KCD

inhom(r, t) is affected. We then proceed to considering the scenario
where points of Y with marks that belong to different mark sets C and D are inde-
pendent. It should be noted that the main part of the results below, in essence, are
translated versions of the results in (Cronie and van Lieshout, 2016).

Lemma 6 below suggests finding evidence of independent marking by comparing
KCD

inhom(r, t) with its unmarked counterpart, i.e. considering KCD
inhom(r, t) − KYg

inhom(r, t),
where we recall the inhomogeneous K-function of the ground process, KYg

inhom(r, t) =∫
Ct

r(0,0) gg((0, 0), (x, s))dxds.

Lemma 6. Let C,D ⊆ M be Borel sets with ν(C), ν(D) > 0 and assume that Y has
independent marks. Then, Y and Yg have the same pcf’s (note the equivalence in SOIRS)
and KCD

inhom(r, t) = K
Yg

inhom(r, t).
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Proof. Recall that under the assumption of independent marks we have that
fM(x1,t1),...,(xn,tn)(m1, . . . ,mn) = ∏n

i=1 f
M
(xi,ti)(mi). Using Equation (5.5), we obtain that

g((x1, t1,m1), (x2, t2,m2)) =
fM(x1,t1),(x2,t2)(m1,m2)
fM(x1,t1)(m1)fM(x2,t2)(m2)

gg((x1, t1), (x2, t2))

= gg((x1, t1), (x2, t2)),

whereby Yg is SOIRS whenever Y is and

KCD
inhom(r, t) = 1

ν(C)ν(D)

∫
C

∫
D

∫
Ct

r(0,0)
g((0, 0,m1), (x, s,m2))dxdsν(dm2)ν(dm1)

=
∫
Ct

r(0,0)
gg((0, 0), (x, s))dxds.

We next evaluate Lemma 6 numerically, to ensure that our estimator is behaving
properly. In order to do so, we simulate 99 realisations of the model given in Example
2 and for the fixed temporal lags t ∈ {0.05, 0.10, 0.15, 0.30} we construct min/max-
envelopes (see e.g. Diggle (2014)) for K̂CD

inhom(r, t) − K̂
Yg

inhom(r, t), where C = {0} and
D = {1}, based on these 99 realisations. Figure 5.6 shows the envelopes obtained for the
different values of t and we see that our estimator is behaving properly since the envelopes
centre around 0. Also, in Figure 5.6 we find the estimates of KCD

inhom(r, t)−KYg

inhom(r, t)
for space lags r ∈ [0, 0.3] and time lags t ∈ [0, 0.3]. One can see that the values of the
estimated K̂CD

inhom(r, t)− K̂Yg

inhom(r, t) are close to 0.
Consider next the concept of independent components, which is the scenario where

the restrictions Y |C = Y ∩ (Rd × R × C) and Y |D = Y ∩ (Rd × R × D), with ground
processes YC and YD, are independent. This can be exemplified by considering a marked
bivariate process Y = (Y1, Y2), where each component Yj = {(xij , tij ,mij)}

Nj

i=1, j = 1, 2,
is a (dependently) marked process, but where Y1 and Y2 are mutually independent.
In essence, this is the merging of two mutually independent populations, which have
dependent marking structures within. Assessing possible dependence between Y |C and
Y |D, Lemma 7 below suggests comparing KCD

inhom(r, t) with 2ωdrdt; when D =M\C, it
further suggests comparing KCM

inhom(r, t) with ν(M\C)
ν(M) 2ωdrdt+ ν(C)

ν(M)K
CC
inhom(r, t).

Lemma 7. Let C,D ∈ B(M), with ν(C) and ν(D) > 0, and let be Y is SOIRS, with
Y |C and Y |D mutually independent. It follows that KCD

inhom(r, t) = 2ωdrdt and when
D =M\ C, we have that KCM

inhom(r, t) = ν(M\C)
ν(M) 2ωdrdt+ ν(C)

ν(M)K
CC
inhom(r, t).

Proof. Under the assumption of independence between Y |C and Y |D,

ρ(2)((x1, t1,m1), (x2, t2,m2)) =

=
{
ρ(2)((x1, t1,m1), (x2, t2,m2)) if (m1,m2) ∈ C × C or (m1,m2) ∈ D ×D,
λ(x1, t1,m1)λ(x2, t2,m2) if (m1,m2) ∈ C ×D or (m2,m1) ∈ C ×D.
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Figure 5.6. (Top) Envelopes for the estimate K̂CD
inhom(r, t) − K̂Yg

inhom(r, t), where C =
{0} and D = {1}, based on 99 realisations of the the model given in Example 2,
for fixed temporal lags t = 0.05 and t = 0.10. (Centre) Envelopes for the estimate
K̂CD

inhom(r, t) − K̂
Yg

inhom(r, t),t = 0.15 for fixed temporal lags t = 0.15 and t = 0.30.
(Bottom) The estimate K̂CD

inhom(r, t)− K̂Yg

inhom(r, t), for all space-time lags.
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Hence, in the former case,

KCD
inhom(r, t) = 1

ν(C)ν(D)

∫
C

∫
D

∫
Ct

r(0,0)
dudvν(dm1)ν(dm2) =

∫
Ct

r(0,0)
dudv = 2ωdrdt

and in the latter case,

KCM
inhom(r, t) = 1

ν(C)ν(M)

∫
C

∫
M\C

∫
Ct

r(0,0)
dudvν(dm1)ν(dm2) +

+ 1
ν(C)ν(M)

∫
C

∫
C

∫
Ct

r(0,0)
g((0, 0,m1), (u, v,m2))dudvν(dm1)ν(dm2)

= ν(C)ν(M\ C)
ν(C)ν(M) `(Ctr(0, 0)) +

+ ν(C)
ν(M)

1
ν(C)ν(C)

∫
C

∫
C

∫
Ct

r(0,0)
g((0, 0,m1), (u, v,m2))dudvν(dm1)ν(dm2)

= ν(M\ C)
ν(M) 2ωdrdt+ ν(C)

ν(M)K
CC
inhom(r, t).

To evaluate the above results numerically, we simulate 99 realisations of the model
in Example 3 and consider KCD

inhom(r, t)− 2ωdrdt, where C = {0} and D = {1}, for each
one. The corresponding envelopes, which cover 0, are illustrated in Figure 5.7.

5.5.3.1 Testing random labelling

We here offer an alternative to testing the hypothesis of random labelling in the context
of general MSTPPs, which does not require a particular shape of the study region, as
is the case in e.g. the (inhomogeneous) Lotwick-Silverman test (Lotwick and Silverman,
1982; Cronie and van Lieshout, 2016). Note that we merely indicate how such a test
may be constructed and that we do not formally test hypotheses here. For Monte-Carlo
tests (see e.g. (Diggle, 2014)) such as the one described here we note that there are
issues related to the choice of the number of simulations used to construct envelopes
(see e.g. (Myllymäki et al., 2016)); unless executed properly, it is wise not to draw
too strong conclusions and instead use them more loosely, as mere indicators of some
hypothesis. Although K̂CD

inhom(r, t) − K̂Yg

inhom(r, t) gives us an indication on whether we
have independent marking/random labelling, we cannot say exactly how large it has to
be for us to infer anything. Hence, we need some formal way of testing such a hypothesis.

To construct a test, with the hypotheses H0 : the marks are randomly labelled, and
H1 : the marks are not randomly labelled, we recall from Theorem 1 that a necessary
condition for H0 to hold is that KCD(E) = KDC(E) for any E ∈ B(Rd × R) and any
mark Borel sets C,D, with non-null ν-content. Hence, as test statistic we will use

∆(r, t) = KCD
inhom(r, t)−KDC

inhom(r, t), r, t ≥ 0.



5.5 Statistical inference 103

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
2

4
6

8
10

t=0.05

r

Kinhom(r,t)−2πr2t
max
min

CD

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

2
4

6
8

10

t=0.10

r

Kinhom(r,t)−2πr2t
max
min

CD

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
2

4
6

8
10

t=0.15

r

Kinhom(r,t)−2πr2t
max
min

CD

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
2

4
6

8
10

t=0.30

r

Kinhom(r,t)−2πr2t
max
min

CD

−0.10

−0.05

0.00

0.05

0.10

0.00 0.10 0.20 0.30
0.00

0.05

0.10

0.15

0.20

0.25

0.30

r

t

Figure 5.7. (Top) Envelopes for the estimated KCD
inhom(r, t) − 2πr2t, where C = {0}

and D = {1}, based on 99 realisations of the the model given in Example 3, for
fixed temporal lags t = 0.05 and t = 0.10. (Centre) Envelopes for the estimated
KCD

inhom(r, t) − 2πr2t, for fixed temporal lags t = 0.15 and t = 0.30. (Bottom) The
estimate K̂CD

inhom(r, t)− 2πr2t for all r and t.
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This may be exploited to construct a Monte-Carlo test, where the envelopes are generated
by resampling the marks of Y , without replacement, and for each such mark-permuted
version of Y estimate ∆(r, t). In essence, rejection of H0 is based on whether the estimate
of the original ∆(r, t), based on Y , sticks out of the envelopes for any r, t ≥ 0 and any
C,D.

Remark 5. Note that the resampling of the marks requires that we assume that there is a
common mark distribution, i.e. that we have random labelling. If one would have repeated
observations of Y , on the other hand, one would also be able to test for independent
marking.

Furthermore, an alternative which we will not mention any further here is to con-
sider, instead, resampling the marks with replacement.

We next evaluate the test above for a realisation of Example 4. More explicitly,
we estimate ∆(r, t) for the realisation found in Figure 5.4 and then permute the marks
in order to generate estimates ∆i(r, t), i = 1, . . . , 99, which in turn give rise to the
envelopes. As we can see in Figure 5.8, the estimate of ∆(r, t) for t = 0.20 moves outside
the envelopes, for certain values of r, which indeed would indicate that we do not have
random labelling.
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Figure 5.8. The estimated ∆(r, t) = KCD
inhom(r, t) − KDC

inhom(r, t), YC = {(x, t,m) ∈
[0, 1]× [0, 1]× [0, 0.5]}, YD = {(x, t,m) ∈ [0, 1]× [0, 1]× (0.5, 1]}, for the realisation in
Figure 5.4, together with ∆(r, t)-envelopes generated by 99 resamples/permutations of
the marks, for fixed temporal lag t = 0.20.

Through Theorem 1 and its proof we note that the stronger the (spatio-temporal) de-
pendence between the marks, the more clear the deviation of ∆(r, t) from the envelopes.
Note further that the larger the size of the sample, the better the performance of the
test, as one would expect.
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5.6 Second order analysis of the earthquake data

5.6.1 Earthquakes data set

An earthquake is characterised by the shaking of the surface of the Earth and can range
from being imperceptible to being devastating, with enormous damage and thousands
of people killed. Historical data of earthquakes have shown that, on a year to year basis,
there are some general patterns to be found. There are mainly three large areas of the
earth with significant activity: i) the world’s greatest earthquake belt, the circum-Pacific
seismic belt, also known as the Ring of Fire, ii) the Alpide, which extends from Java to
Sumatra through the Himalayas, to the Mediterranean, towards the Atlantic, and iii)
the submerged mid-Atlantic Ridge (USGS, 2012).

On the 26th of December 2004 a huge earthquake, the Sumatra-Andaman event hit
the Andaman sea with a magnitude of 8.8. As expected, and as most are aware of, the
consequences were terrible, resulting in both tremendous material damage as well as a
massive number of human lives ended. The epicentre of the earthquake was located
offshore, thus creating a huge tsunami which led to the tragedy where a large number of
people died. As stated in (Vigny et al., 2005), after the Sumatra-Andaman earthquake
there were further small co-seismic jumps detected up to over 3, 000 kilometres (km)
from the earthquake epicentre, within 10 minutes from the earthquake. Also, Vigny
et al. (2005) state that post-seismic motion continued for a long period, 50 days after
the earthquake in 2004 the island of Phuket moved 34 cm. Hence, the high magnitude
earthquakes tend to produce a sort of domino effect, with small aftershocks triggering
each other. Following this event, on the 28th of March 2005, another earthquake of 8.4
magnitude hit Nias, an area close to the Sumatra-Andaman region. This process started
slowly and spread in two directions, first toward the north for approximately 100 km and
then, after 40 seconds of delay, towards the south for about 200 km (Walker et al., 2005).
Later, on the 12th of September 2007, two more earthquakes occurred in the Mentawai
area, with magnitudes 8.5 and 8.1. According to Konca et al. (2008), the potential for
a large event in this area remains high.

Earthquakes are registered using a seismographic network and the most common
measure is the magnitude, which is a measure of the size of the earthquake source
(USGS, 2012). Earthquakes of magnitude 3 or lower are almost undetectable and rarely
felt. Earthquakes of magnitudes higher than 3 can cause landslides, which in turn can
have fatal outcomes. Shocks of magnitude 7 and higher can cause severe landscape
and building damage, and consequently human fatalities. When the epicentre of the
earthquake is located offshore, there is also the possibility of tsunami development.
Furthermore, often very large earthquakes are followed by a sequence of aftershocks,
where the magnitude of the aftershocks can vary and some large aftershocks can have
their own associated aftershock sequences (Harte, 2010).

Earthquake records often come in the format where an event (shock), in addition
to having a spatial location and an event time, also carries further helpful information,
such as magnitude.

In this thesis, and in particular, in Chapter 5, we analyse earthquake data from the
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Sumatra region, registered from 2004 to 2008. The data in question can be downloaded
freely from the R package PtProcess (Harte, 2010). It was originally extracted from the
preliminary determination of epicentres catalogue, provided by the US Geology Survey
(ftp://hazards.cr.usgs.gov/pde/). More specifically, it includes earthquakes regis-
tered in the area of Sumatra, Indonesia (part of the Alpide), with magnitudes (rounded
to one decimal) larger than or equal to 5. The spatial region considered has boundaries
89◦ E, 105◦ E, 16◦ N and 5◦ S. We will consider a change in the spatial coordinates from
longitude/latitude to UTM scale (Snyder, 1987). The time frame stretches from the
midnight of the 1st of January 2004 until the 30th of December 2008, the day of the last
registered shock. The first registered shock took place on the 16th of February 2004. A
total of 1, 248 earthquakes were recorded during this period. Figure 5.9 (left) shows the
spatial distribution of the point pattern of all 1, 248 earthquakes registered in the Suma-
tra area from the 16 February 2004 to 30 December 2008. The sizes of the black dots are
proportional to the magnitudes of the events. The red X:s represent the four important
earthquakes described previously. Figure 5.9 (right) shows the temporal development of
the magnitudes. Furthermore, Figure 5.10 shows all earthquakes annually.

Note that an aftershock is an earthquake following a previous large shock, the main
shock. The magnitude of an aftershock is smaller than the main shock. If the aftershock
is larger than the main shock, the aftershock is labelled as main shock and the original
main quake is labelled foreshock (USGS, 2012).

x
x

x
x

0

10

85 90 95 100 105 110
longitude

la
tit

ud
e

0.0 0.2 0.4 0.6 0.8 1.0

5

6

7

8

time

m
ag

ni
tu

de

Figure 5.9. (Left) Spatial locations and magnitudes of the 1248 earthquakes registered
in the Sumatra area. The sizes of the dots are proportional to the magnitudes. The red
X:s correspond to the four important earthquakes described above. (Right) Temporal
evolution of magnitude of all earthquakes.

Looking at Figure 5.9 (left) and Figure 5.10, we note that the earthquakes tend to
appear in the same spatial region each year, the region being a reflection of the seismic
belt. Hence, the spatial distribution of points in a given time period (Figure 5.10) may,
essentially, be treated as a rescaling of an overall spatial distribution (Figure 5.9 left).

ftp://hazards.cr.usgs.gov/pde/


5.6 Second order analysis of the earthquake data 107

2004 2005 2006

2007 2008

0

10

0

10

85 90 95 100 105 110 85 90 95 100 105 110
lon

la
t

magnitude

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7.2

7.3

7.5

8.1

8.4

8.5

8.8

Figure 5.10. Spatial locations and magnitudes of the earthquake data, annually, from
2004 to 2008.

This observation makes reference to space-time separability, concept which will be further
exploited in the analysis. Considering Figure 5.9 (right), we cannot exclude that there
is dependence between the event times and the magnitudes, which may be an effect of
earthquakes having fore-/aftershocks. Hence, we will not explicitly assume (first order)
independence between the temporal component and the mark component of the data.

5.6.2 Analysis

As stated in Section 5.6.1, earthquakes are a huge threat to mankind’s safety. Large
magnitude earthquakes have produced serious landscape damage, but also human casu-
alties; recall the effects of the huge Sumatra-Andaman event from 2004 with magnitude
8.8. The epicentre of the earthquake was located offshore, thus creating a huge tsunami
which led to the tragedy where a large number of people died. In their paper, Vigny
et al. (2005) state that, after the Sumatra-Andaman earthquake, post-seismic motion
was detected at more than 3, 000 km away, and as late as 50 days after. This is an
indication of a domino effect triggered by a big earthquake.

An aftershock is an earthquake following a previous large shock, the main shock.
A major event tends to displace the crust of a tectonic plate, thus giving rise to the
formation of aftershocks. The magnitude of an aftershock is smaller than the main
shock. If the aftershock is larger than the main shock, the aftershock is labelled main
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shock and the original main quake is labelled foreshock (USGS, 2012). We want to study
how far in space and time one may find aftershocks or foreshocks of different sizes.

The data analysed in this section, which consists of a total of n = 1248 earthquakes
registered from 2004 to 2008, includes all earthquakes with magnitude larger than or
equal to 5. The modified Mercalli intensity scale (USGS, 2012) classifies earthquakes
into twelve classes, where shocks with magnitude larger than 6 can cause severe building
and landscape damage, and human fatalities. Approximately 94.8% of all earthquakes
registered in the Sumatra area have magnitude ≤ 6. These events cause minor wreckage,
with limited damage to buildings and other structures. We want to study how far in
space and time aftershocks and foreshocks (earthquakes with magnitude ≤ 6) appear
after a big shock (magnitude > 6).

As previously mentioned, we have focused our analysis on developing point pro-
cess tools which allow us to carry out second-order non-parametric analyses; recall
that we consider the magnitudes as marks. Our objective is to analyse the interac-
tion between different types of earthquakes, classified according to their magnitudes.
More precisely, the K-function will give us information about the spatial and tem-
poral scales at which points with marks (magnitude) in a certain category C, e.g.
C = {magnitude larger than 6}, tend to cluster or tend to separate from points with
marks in some other category D, e.g. D = {magnitude less than or equal to 6}, in the
presence of inhomogeneity.

Formally, we consider a marked spatio-temporal point pattern Y = {(xi, yi, ti,mi)}ni=1
⊆ (WS × WT ) ×M, n = 1248. Here (xi, yi) ∈ R2 is the spatial location of the ith
event, ti ∈ R is the number of days passed since the midnight of 1 January 2004 until
the occurrence of the ith event, and mi is the associated magnitude. As explained in
Section 5.6.1, we transform the spatial latitude/longitude coordinates to UTM coor-
dinates expressed in metres and rescale them. We use the following rescaling. Define
a = min(yi) and b = max(yi). The new rescaled coordinates are x′i = (xi−a)/(b−a) and
y′i = (yi−a)/(b−a), respectively, and |b−a| = 2295032 metres. The spatial study region
becomes WS = [0, 0.7] × [0, 1]. We also rescale time. If c = min(ti) and d = max(ti),
then the rescaled temporal component is t′i = (ti − c)/(d − c), where d − c = 1779.242
days. The temporal window hereby becomes WT = [0, 1]. Theorem 2 in Section 5.4.6.2
tells us that if we rescale the spatial and/or the temporal domain, the actual K-function
estimates are obtained by simply scaling back the spatial and temporal lags. The largest
earthquake ever to be recorded was in 1960, in Chile (Kanamori, 1977), with a magnitude
of 9.5. Therefore, we set the magnitude scale to [0, 10]. Hence, we consider earthquakes
with magnitude greater than 6 as belonging to mark set C, and shocks with magnitude
less than or equal to 6 to D. Furthermore, as reference measure for the mark space we
use the Lebesgue measure on the mark space M = [0, 10].

Figure 5.11 shows the marked spatio-temporal point pattern of all 1248 earthquakes
registered in the Sumatra area from 16 of February 2004 until 30 of December 2008. Here
the marks are represented as circles, with the size being proportional to the magnitude
of the event. We suspect that the pattern is not regular since there are points that tend
to be close to other points at all scales (in other words, not just inhomogeneity), so there
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seems to be clustering. We can identify small shocks (small circles) gathering around big
earthquakes (large circles), but we cannot visually conclude anything significant. There
are some areas of the study region where isolated small events are observed. Figure 5.10
(last plot) shows the temporal evolution of the earthquakes’ magnitudes. This figure
hints that, temporally, big earthquakes are preceded and followed by smaller foreshocks
and aftershocks.

0.0 0.1 0.2   0.3  0.4 0.5 0.6 0.7
0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0

rescaled longitude
re

sc
al

ed
 la

tit
ud

e

re
sc

al
ed

 ti
m

e

Figure 5.11. The marked spatio-temporal pattern of the earthquake dataset. The
sizes of the circles are proportional to the magnitudes

Recall from Section 5.6.1 that we do not assume that there is first-order dependence
between the spatial and the temporal components, i.e. we think it is justified to assume
separability. In addition, as already mentioned above and indicated in Section 5.6.1,
we will assume that there is first-order dependence between the temporal component
and the marks. This leads us to the intensity estimator λ̂(x, t,m) given in expression
(5.23). This estimator requires that we use the Voronoi tessellation VT×M in (5.22). Our
numerical implementation of this max-metric tessellation turned out to be too slow for
the analysis of this data set. As an approximation, we chose to replace VT×M in (5.23)
by the Euclidean Voronoi tessellation

ṼT×M = {ṼT×M(t,m) }(t,m)∈R×M

=
{
(v, z) ∈ R×M : ‖(v, z)− (t,m)‖R2 ≤ ‖(v, z)− (s, k)‖R2

for any (s, k) ∈ YT × YM \ {(t,m)}
}

(t,m)∈YT×YM

and evaluated it numerically by means of the implementation found in the R package
spatstat (Baddeley and Turner, 2005). We believe that this approximation generates
intensity estimates of a similar kind (the difference will be particularly small when em-
ploying the smoothed KCD

inhom(r, t) estimate).



110 Chapter 5. The second-order analysis of marked spatio-temporal point processes

Figure 5.12 (left) shows the estimate of KCD
inhom(r, t)− 2πr2t for spatial lags r range

between 0 and 575 km, and temporal lags t range between 0 and 445 days. Figure 5.12
(right) shows the smoothed K-function estimate (retention probability p = 0.5 and 100
bootstrap samples), for the same spatial and temporal lags r and t. The behaviour
does not change significantly for different choices of p. Figure 5.13 shows the smoothed
K-function for three different smaller temporal scales, chosen as day, week and 50 days.

Figure 5.12 indicates clustering, since the K-functions are larger than 2πr2t, at all
spatio-temporal scales. This indicates that events in category D, meaning foreshocks
or aftershocks, tend to cluster around events in category C. The strongest clustering
between main shocks and foreshocks/aftershocks seems to occur at a temporal lag of
approximately 200− 300 days, at all spatial scales. There seems to be an almost linear
build-up of interaction and afterwards there seems to be a rapid decay in clustering. The
majority of the fore-/aftershocks seem to occur at spatial distances larger than 200 km
from a main shock. We emphasise that aftershocks are observed at distances quite far
from the main shock. Looking at Figure 5.13, there seem to be predominant inter-event
distances at which most fore-/aftershocks tend to occur; note the peaks around 300 and
500 km. Figure 5.13 (left) shows that within a day, aftershocks tend to travel far, even
as far as 500 km. Looking at the temporal lags in all three representations in Figure 5.13
we can see that there are fore-/aftershocks occurring in direct connection to the main
shock. We note that close in space and time there seem to be few fore-/aftershocks in
connection to a main earthquake.
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Figure 5.12. (Left) Estimated K-function for the Phuket data, KCD
inhom(r, t) − 2πr2t.

(Right) Smoothed K-function estimate, K̃CD
inhom(r, t)− 2πr2t.

In the literature it is sometimes considered that magnitude does not depend on the
spatio-temporal location of the event (USGS, 2012). We next briefly look for indications
of this belief by means of executing our random labelling test in Section 5.5.3.1, based on
99 permutations of the marks, where we have used 95% two-sided point-wise confidence
bands. We found that for small and medium t the estimate of ∆(r, t) stays within
the envelopes for all considered spatial lags r. For very large t, as indicated in Figure
5.14, we see that the estimate of ∆(r, t) sticks out of the envelope, thus indicating the
possibility of the marks not being randomly labelled. It is advised not to draw too strong
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Figure 5.13. (Left) Smoothed K-function estimate, K̃CD
inhom(r, t)− 2πr2t, for the time

frame of one day, (centre) one week and (right) 50 days.

conclusions, however, as indicated in Section 5.5.3.1.
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Figure 5.14. Estimate of ∆(r, t) = KCD
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inhom(r, t), for the earthquake
dataset, together with 95% two-sided point-wise Monte-Carlo confidence bands, for
fixed temporal lag t = 836 days.

5.7 Conclusion

In this chapter we have treated the second-order analysis of marked spatio-temporal
point processes. In particular, we have defined measures of second-order spatio-temporal
interaction, which allow us to quantify interactions between categories of marked points.
For all statistics defined we derive unbiased estimators. In addition, we have considered
an unbiased marked spatio-temporal Voronoi intensity estimation scheme, which allows
us to estimate the underlying intensity function in an adaptive fashion. The set-up
is quite general in the sense that the mark space as well as the corresponding mark
reference measure are allowed to be arbitrary. We also exploit our newly defined tools
to devise tests for particular marking structures.
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The motivation behind this work comes from the necessity to analyse the interaction
between main earthquakes and their fore-/aftershocks. We apply our methods to a well
studied earthquake dataset (Harte, 2010) and conclude that there are strong and far-
reaching interactions between main shocks and other shocks. Also, we see some evidence
that, given the spatio-temporal locations, the magnitudes are not behaving like an iid
sequence of random variables (random labelling).



Chapter 6

Future work

In this thesis we have studied different types of statistical analysis depending on the
problem we wanted to work on. We have analysed spatial, spatio-temporal and marked
spatio-temporal data. We have worked with aggregated data and point patterns. We
want to emphasize that the thesis is composed by two applications, Chapters 2 and 3 and
two methodological contributions, Chapters 4 and 5. This thesis represents a starting
point. Some of the current and future lines of research are presented down below.

As we have already mentioned, varicella is a highly infectious disease. We are certain
that, in addition to the effect of the population, there are other covariates that may
influence the spatio-temporal behaviour of the disease. Therefore, an important goal
for future work is to consider adding covariates that can improve our analyses. For
example, WHO (2014) suggests that there are some climatic factors that can influence the
epidemiology of varicella. Thus, covariates such as the monthly average temperatures,
weekly average levels of rainfall, average hours of sunshine, or other climate related
covariates, may provide useful information to the analysis of varicella. Also, additional
information on the income per capita or other socio-economical covariates might improve
our analysis.

Another interesting factor that could influence the spread of the disease is the location
of the river Turia. Epidemiologists believe any natural geographic barrier somehow
marks a difference, as children who live on one side of the river mostly go to schools
on that side of the river and those living on the opposite side attend schools on that
side. The role of schools and kindergartens in the transmission of chickenpox is crucial.
Considering that today most couples only have one or two children, transmission within
the family probably has less influence than school transmission (including childcare).

For future work, it would be interesting to apply the model presented in Chapter
4 to other diseases that may exhibit interaction at several scales in space and time. It
would also be very interesting to apply the model to data that are not necessarily related
to epidemiology. Earthquake patterns, for instance, tend to show aggregation but also
inhibition at different scales. Indeed, we believe that the proposed model may find
applications in a wide range of research fields, such as forestry, geology and sociology.

Other direct applications of the methodology presented in Chapter 5 can be found
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in e.g. epidemiology and criminology. We are currently looking at datasets related to
these fields. In particular, our dataset of varicella cases. Furthermore, we are analysing
crime data in Valencia, Spain. Note that for both applications it may be more relevant
to consider multivariate versions of the summary statistics.

We are currently also working on extending the ideas presented in Chapter 5 to
marked spatio-temporal point processes on linear networks (Ang et al., 2012). In addi-
tion, we are looking at combining the results of Cronie and van Lieshout (2015, 2016) in
the same way as done in Chapter 5, in order to obtain inhomogeneous marked spatio-
temporal versions of the nearest-neighbour distance distribution function, the empty-
space function and the J-function. We believe that these may be more powerful tools
for the purpose of non-parametric statistical analyses.
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Resumen

Los primeros intentos de introducir e interpretar datos espaciales aparecieron en forma
de mapas de datos. Halley (1686) superpuso en un mapa las ubicaciones y direcciones
de los alisios y monzones situados alrededor de los trópicos, y les asignó una explicación
f́ısica. Más adelante, Snow (1855) dibujó un mapa de Londres, mostrando los casos del
brote de cólera de la calle Broad de 1854. Se considera que este es el primer uso de
mapas que se hizo con fines de una análisis espacial de datos.

La metodoloǵıa de la estad́ıstica espacial no fue introducida hasta mucho más tarde.
Gosset (1907), conocido por su seudónimo Student, estaba interesado en el estudio de
la distribución de las part́ıculas en un ĺıquido y, en lugar de analizar las posiciones de
las part́ıculas, agregó los datos en pequeñas áreas. En los años 1920 y 1930, R. A.
Fisher estableció los principios del método de réplica, muestreo aleatorio y control de
bloques. En el campo agŕıcola se utilizaron algoritmos de vecinos más cercanos para
analizar diferentes estudios donde se tuvo en cuenta la dependencia espacial. Actual-
mente, los métodos estad́ısticos modernos se aplican en una amplia gama de campos de
investigación como cartograf́ıa, geoloǵıa, ecoloǵıa, bioloǵıa (estudios botánicos de dis-
tribución de plantas, estudios de biogeograf́ıa), epidemioloǵıa (mapas de enfermedades),
econometŕıa espacial, teledetección (geometŕıa computacional), astronomı́a (estudios de
localización de galaxias) y muchos otras.

Antes de proceder a una descripción de los datos espaciales, deben hacerse algunos
comentarios sobre la calidad de los datos y el impacto que tiene en el análisis estad́ıstico.
Para llevar a cabo un estudio, es importante tener una base de datos completa y de alta
calidad. A veces podemos encontrarnos con errores tipográficos, de codificación, datos
incompletos o duplicados. Por lo tanto, es crucial que, antes de comenzar cualquier tipo
de análisis estad́ıstico, se lleve a cabo siempre un proceso de validación de datos para
identificar posibles errores y, preferentemente, corregirlos. Los investigadores también
tienen que tener en cuenta el derecho a la privacidad cuando se recogen y procesan datos
de carácter personal. Los estudios que muestran resultados desfavorables, por ejemplo,
áreas con altos niveles de contaminación atmosférica o ruidosa, grupos con alta incidencia
de una enfermedad, pueden causar descontento entre la población, razón por la cual
muchas instituciones no permiten el acceso a los datos argumentando supuestas poĺıticas
de protección. Para los investigadores la disponibilidad de datos es muy importante, por
lo que se requiere la confianza y el apoyo de la población.

Los datos espaciales pueden ser de naturaleza continua o discreta. Puede agru-
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parse en regiones pequeñas, o pueden representarse como observaciones individuales.
Las ubicaciones espaciales pueden estar distribuidas de manera regular o irregular en
una región. De acuerdo con ello, Cressie (1991) propuso una clasificación de los datos
espaciales en tres principales grupos: datos geoestad́ısticos, datos agregados y patrones
puntuales. Cuando un fenómeno se observa como mediciones en un conjunto finito de
localizaciones fijas predeterminadas, el resultado son datos geoestad́ısticos. Cuando la
región espacial (regular o irregular) se divide en un número finito de áreas, con ĺımites
bien definidos, y los datos se obtienen como observaciones agregadas en cada una de las
regiones definidas, obtenemos datos agregados. Y finalmente, cuando el patrón espacial
se obtiene observando las localizaciones aleatorias de un fenómeno, estamos en presencia
de un patrón puntual.

La geoestad́ıstica fue desarrollada inicialmente para predecir la reserva mineral uti-
lizando un número limitado de ubicaciones en una región. Aśı, la ingenieŕıa minera ha
sido uno de los primeros campos en los que se utilizó ampliamente. La clave fundamental
en el modelado de las relaciones espaciales en este tipo de fenómenos es el variograma,
que se estima y modeliza para describir adecuadamente el fenómeno observado. El obje-
tivo principal en la aplicación de la geoestad́ıstica es generalmente predecir en un punto
o conjunto de puntos de la región observada en la que no se han hecho mediciones. Krig-
ing es una técnica de la geoestad́ıstica utilizada para interpolar el valor de un campo
aleatorio en una localización en donde no hay observaciones, utilizando la información de
observaciones cercanas, y es una de las técnicas más utilizadas en la predicción espacial.
Los métodos geoestad́ısticos se utilizan actualmente en diversas disciplinas, incluyendo
geoloǵıa del petróleo, hidrogeoloǵıa, hidroloǵıa, meteoroloǵıa, oceanograf́ıa, geoqúımica,
geometalurgia, geograf́ıa, silvicultura, control ambiental, ecoloǵıa del paisaje, ciencias
del suelo, agricultura y muchas otras.

Los datos agregados se observan cuando la región espacial se divide en áreas pequeñas.
Los modelos estad́ısticos para este tipo de datos usualmente incorporan la relación en-
tre observaciones vecinas. Uno de los objetivos del análisis de los datos agregados es
obtener una estimación de alguna medida de interés en cada área. También puede ser de
interés para analizar la posible estructura espacial en los datos (agrupación, repulsión).
Un ejemplo de datos agregados son los datos recopilados por satélites de teledetección,
que proporcionan una herramienta muy útil de recolección de datos. Por ejemplo, la
información meteorológica, los patrones climáticos, la distribución de minerales o tipos
de suelos pueden ser observados usando satélites, sin necesidad de muestreo de campo.
La superficie de la Tierra se divide en pequeños rectángulos llamados ṕıxeles a los que
se les asignan un valor de una caracteŕıstica dada, de modo que los datos se reciben en
forma de una red regular y cada ṕıxel se identifica utilizando su centro.

Los patrones puntuales se refieren a fenómenos que se producen de forma continua
y aleatoria en diferentes lugares de una región. Un patrón de puntos es la colección de
ubicaciones de tales eventos. Los procesos puntuales son los mecanismos teóricos que
permiten modelar el desarrollo de los fenómenos. Uno de los objetivos de los estudios
de patrones puntuales es ver si un patrón espacial observado tiene un cierto tipo de
estructura o, por el contrario, si es simplemente el resultado de un proceso puntual (ho-
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mogéneo) que actúa independientemente en el espacio. Si consideramos las localizaciones
de los pinos de hoja larga en un bosque, podemos plantear varias preguntas. ¿Cuál es
el significado biológico de la agrupación de estos árboles? ¿Se observa una agrupación
de los árboles altos? ¿Los árboles altos interactúan con árboles pequeños? El análisis
de patrones puntuales tiene como objetivo estimar parámetros asociados con modelos
espećıficos. El análisis formal de un patrón puntual requiere el uso de múltiples técnicas
estad́ısticas. Las funciones de resumen de primer y segundo orden son herramientas
prácticas y útiles para describir y analizar eficazmente la estructura espacial. Diggle
(2014) (Caṕıtulo 7) introduce una gran variedad de conjuntos de datos y los posibles
métodos para analizarlos.

Cualquier fenómeno puede localizarse utilizando una referencia geográfica. Las en-
fermedades, las muertes, los nacimientos, la exposición al riesgo u otros eventos, pueden
asociarse al lugar donde ocurren, que puede ser coordenadas, direcciones o áreas. Añadir
un componente temporal proporciona una mejor visión de la comprensión del proceso
estad́ıstico. La primera ley de geograf́ıa de Waldo Tobler, todas está relacionado con
todo lo demás, pero las cosas cercanas están más relacionadas entre si, nos da una moti-
vación para incluir la relación de vecindad en cualquier análisis espacial. La adición del
componente temporal transforma el análisis en una tarea dinámica e integradora, donde
la información representa más que sólo números o caracteŕısticas estáticas.

Los métodos estad́ısticos espacio-temporales se están utilizando cada vez más en un
intento de explicar el comportamiento de esta amplia gama de eventos. La principal
razón para usarlos es reducir la variabilidad inicial del riesgo mediante el uso e inter-
cambio de información entre localizaciones cercanas y momentos temporales próximos.

Los datos espacio-temporales se pueden presentar usando mapas para cada peŕıodo
de tiempo que ayudan a detectar áreas de alto riesgo o áreas con actividad inusual. La
epidemioloǵıa espacio-temporal, por ejemplo, permite identificar los factores de riesgo
individuales y agregados para la salud, convirtiéndose en una herramienta indispensable
para la toma de decisiones en salud pública. También permite evaluar dinámicamente los
factores de riesgo, analizar su impacto en la población y estimar los potenciales beneficios
de las medidas preventivas para la salud pública.

Cabe señalar que en el contexto del análisis estad́ıstico espacio-temporal, 2 + 1 no
es igual a 3, debido a que la dimensión temporal es fundamentalmente diferente de las
dimensiones espaciales. La mayoŕıa de los procesos espaciales en la naturaleza son sólo
instantáneas de la evolución de los procesos espacio-temporales, pero usar únicamente
métodos de análisis espacio-temporales seŕıa un error. El uso de estas técnicas debe
hacerse cuando nuestro interés involucra a ambos componentes, espacial y temporal, y
no debe llevarse a cabo utilizando únicamente análisis estad́ısticos de los dos componentes
por separado.

Muchos escenarios de la vida real como los terremotos, incidentes de enfermedades o
incendios, dan lugar a recopilaciones de datos en donde cada dato, además de tener una
localización espacial y una ocurrencia en el tiempo, también lleva otra información útil
sobre el evento en cuestión. En el lenguaje de los procesos puntuales, esta información
’extra’ se conoce como la marca del suceso. Para ejemplificar, en el caso de los terremotos
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una marca podŕıa corresponder a la magnitud del mismo. Cuando se asocia una marca
a un dato espacio-temporal de esta manera, el mecanismo aleatorio que supuestamente
generó la colección total de datos se denomina como un proceso puntual marcado espacio-
temporal (MSTPP), y los datos correspondientes se denominan patrón puntual marcado
espacio-temporal ((Daley and Vere-Jones, 2003; Diggle, 2014; Vere-Jones, 2009). Otras
aplicaciones de MSTPP incluyen, entre muchos otros, incidentes de ciertas enfermedades,
cŕımenes, incendios.

Una estructura general de la tesis y sus contribuciones es la siguiente:
El caṕıtulo 2 proporciona un análisis secuencial de los datos espaciales. Comienza

con un análisis descriptivo contrastando la aleatoriedad espacial completa y la inhomo-
geneidad, y continúa con un análisis descriptivos con covariables. Este caṕıtulo presenta
una técnica para construir nuevos modelos de Gibbs para patrones puntuales espaciales,
propuesta por Baddeley et al. (2013). En este caṕıtulo se analiza el patrón puntual de
todos los casos de varicela registrados durante 2013 en Valencia, España. El análisis
descriptivo se utiliza para obtener una visión de las propiedades básicas del patrón de
puntos. Se hace también uso de la información proporcionada por covariables, como la
densidad de la población (niños menores de 14 años) que vive en el área de estudio, la
distancia a la escuela más cercana y la composición de las familias (expresada como el
promedio de personas por familia), para describir la intensidad del proceso. El software
SatScan (Kulldorff, 2010) se utiliza para identificar los principales clusters de escuelas.
Esta información se introduce posteriormente en el modelo. Se presenta una comparación
entre diferentes modelos, aśı como métodos de diagnóstico para elegir el mejor modelo
para ajustar los datos. Esta primera contribución de la tesis es la aplicación del análisis
estad́ıstico para los patrones puntuales espaciales a la epidemioloǵıa. Como se mencionó
anteriormente, este caṕıtulo presenta un análisis espacial para el conjunto de datos de la
varicela a través del uso de h́ıbridos de los modelos de Gibbs. Los modelos presentados en
este caṕıtulo consiguen describir interacciones a diferentes escalas y también la inhomo-
geneidad espacial considerando la información de las covariables mencionadas. Se trata
de una contribución menor pero interesante a la literatura de los procesos puntuales.

Una segunda contribución atañe al campo de los datos espacio-temporales en ret́ıculo.
El caṕıtulo 3 presenta un segundo análisis del conjunto de datos de varicela en un for-
mato de datos agregados. En la literatura se han propuesto modelos paramétricos y no
paramétricos con diferentes tipos de interacción para analizar datos espacio-temporales.
Bernardinelli et al. (1995) propone un modelo paramétrico que asume una tendencia
lineal. El art́ıculo de Knorr-Held (2000) sugiere un modelo que combina el modelo espa-
cial definido por Besag et al. (1991) con modelos dinámicos en los que se asume que las
tendencias temporales son no lineales y tampoco estacionarias. En particular, los efectos
temporales pueden ser vistos como el análogo temporal de los componentes espaciales
estructurados en el modelo de Besag et al. (1991). Este modelo permite interacciones
espacio-temporales donde cuatro tipos de interacciones surgen naturalmente como el
producto de uno de los dos efectos espaciales con uno de los dos efectos temporales. Los
métodos de Markov Chain Monte Carlo (MCMC) han dado a la comunidad de usuarios
una gran herramienta para analizar estos tipos de modelos para datos complejos. Re-
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cientemente se ha desarrollado un método de aproximación para la inferencia bayesiana
(INLA) (Rue et al., 2009), que representa una herramienta muy útil al reducir el tiempo
de cómputo y presentar una interfaz muy fácil de usar por medio del paquete R-INLA.

Una amplia gama de aplicaciones han implementado modelos paramétricos y no
paramétricos para detectar el comportamiento espacio-temporal de los patrones. Bernar-
dinelli et al. (1995) ilustran el uso de modelos paramétricos mediante el análisis de la
prevalencia acumulada de la diabetes mellitus insulino-dependiente en los datos recogidos
a todos los reclutas militares de 18 años de edad en Cerdeña durante 1936-1971. Ugarte
et al. (2009) presenta una evaluación de los modelos bayesianos espacio-temporales
paramétricos y no paramétricos con un estudio de simulación y una aplicación para
datos de mortalidad por cáncer colorrectal en varones de Navarra, correspondientes a
cuatro ciclos de 5 años. Schrödle and Held (2011a) aplican modelos espacio-temporales
utilizando INLA a casos de coxiellosis en vacas suizas de 2005 a 2008. Diferentes exten-
siones de los modelos paramétricos y no paramétricos han sido propuestas por Schrödle
and Held (2011b) y aplicados a los recuentos de salmonelosis en el ganado bovino de
Suiza, desde 1991 hasta 2008. Schrödle et al. (2011) proponen otra aplicación de estos
modelos para analizar los casos de diarrea viral bovina en ganado suizo de 2003 a 2007.
Blangiardo et al. (2013) estudian el patrón de nacimientos con bajo peso para los 159
condados del estado de Georgia de los EE.UU. de 2000 a 2010, utilizando formulación
paramétrica (Bernardinelli et al., 1995) y formulación no paramétrica en (Knorr-Held,
2000) con INLA.

Las técnicas descritas en el caṕıtulo se aplican al estudio del comportamiento espacial
y temporal de los datos de varicela. El estudio de ha dividido en dos partes, un análisis
exploratorio de datos espacio-tiempo (ESTDA) y una aplicación de modelos espacio-
temporales. Para la primera parte del estudio, el análisis exploratorio espacio-temporal,
seguimos la propuesta de Rey (2014). En la segunda parte se propone una metodoloǵıa
estad́ıstica con modelos paramétricos y no paramétricos espacio-temporales para datos
agregados utilizando un marco bayesiano. Este caṕıtulo representa un compendio in-
teresante de técnicas de análisis espacio-temporales aplicadas para resolver un problema
epidemiológico espećıfico.

Los patrones espacio-temporales se observan cada vez más en muchos campos difer-
entes, como por ejemplo la ecoloǵıa, la epidemioloǵıa, la sismoloǵıa, la astronomı́a y la
silvicultura. El aspecto común es que todos los sucesos observados tienen dos carac-
teŕısticas básicas: la localización y el momento en el que se registra el evento. En el
caṕıtulo 4 nos interesa principalmente la epidemioloǵıa, que estudia la distribución, las
causas y el control de las enfermedades en una población humana definida. Las localiza-
ciones de los casos dan información sobre el comportamiento espacial de la enfermedad,
mientras que los tiempos, medidos en diferentes escalas (d́ıas, semanas, años, peŕıodo de
tiempo), dan una idea de la respuesta temporal del proceso global. Un punto esencial a
tener en cuenta es que las personas no están uniformemente distribuidas en el espacio.
La distribución espacial de la población en riesgo es crucial cuando se analizan patrones
espacio-temporales de enfermedades. Modelos realistas que se ajusten a los datos epi-
demiológicos deben incorporar la inhomogeneidad espacio-temporal y permitir diferentes
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tipos de dependencia entre los puntos. Una clase importante de modelos es la familia
de procesos puntuales de Gibbs, definida por su función de densidad de probabilidad
(Van Lieshout, 2000; Ripley, 1988, 1989), y en particular, la subclase de procesos de
interacción por pares. Ejemplos bien conocidos de procesos de interacción por pares son
el modelo de Strauss (Kelly and Ripley, 1990; Strauss, 1975) o el proceso hard-core, un
caso particular del modelo de Strauss en el que ningún punto se aproxima a otro más
allá de un umbral dado. Sin embargo, los modelos de interacción por pares no siempre
son una opción adecuada para ajustar los patrones agrupados. Una familia de proce-
sos puntuales de Markov que pueden analisar patrones puntuales es la de los modelos
área-interacción (Baddeley and van Lieshout, 1995; Kendall et al., 1999). Los métodos
para la inferencia y la simulación perfecta están disponibles en Dereudre et al. (2014);
Häggström et al. (1999); Kendall (1998); Møller and Helisová (2010). La mayoŕıa de
los procesos naturales exhiben interacción a múltiples escalas. Los procesos clásicos de
Gibbs modelan la interacción espacial en una sola escala, sin embargo las generaliza-
ciones multi-escala han sido propuestas en la literatura (Ambler and Silverman, 2010;
Gregori et al., 2003; Picard et al., 2009).

El caṕıtulo 4 propone una nueva extensión del modelo área-interacción para procesos
puntuales (Baddeley and van Lieshout, 1995) que permite la interacción a multi-escalas
en un marco espacio-temporal, permitiendo también la inclusión de covariables. El
contenido del caṕıtulo representa una contribución metodológica importante en la que
definimos y damos las propiedades de Markov de nuestro modelo. A continuación, pro-
ponemos una modificación de los algoritmos de simulación de Metropolis-Hastings y
birth-and-death. Para la inferencia utilizamos el método de la pseudo-verosimilitud y
adaptamos el procedimiento de Berman-Turner (Baddeley and Turner, 2000) a nuestro
contexto. La última parte del caṕıtulo aplica el nuevo modelo propuesto al conjunto de
datos de varicela.

Una segunda contribución metodológica se presenta en el caṕıtulo 5. Este caṕıtulo
tiene como objetivo desarrollar herramientas de proceso puntuales que nos permitan
realizar los llamados análisis no paramétricos de segundo orden de patrones puntuales
espacio-temporales marcados. Para analizar la interacción en este tipo de procesos se
introduce medidas de momentos reducidos de segundo orden marcados y K- funciones.

Clásicamente, al analizar los STPPs (marcados), el análisis se ha basado en funciones
de intensidad condicional (CIs) (véase, por ejemplo, (Choi and Hall, 1999; Daley and
Vere-Jones, 2003; Marsan and Lengliné, 2008; Ogata, 1998; Schoenberg et al., 2002)). En
principio, una función de intensidad condicional nos da el número esperado de sucesos
adicionales en el peŕıodo infinitesimal próximo, dada la historia de los eventos hasta ese
momento. El atractivo de las ICs es que, cuando existen, especifican toda la distribución
del MSTPP. Sin embargo, como se ha señalado por ejemplo en Diggle (2014), no todos los
modelos MSTPP tienen CIs disponibles/manipulables. Además, gran parte del análisis
basado en CI se lleva a cabo dentro del marco de una clase dada de modelos.

Recordando que queremos definir un análisis general no paramétrico, procederemos
con un enfoque no basado en CI, siguiendo aśı una formulación conjunto aleatorio/me-
dida aleatoria (ver, por ejemplo, (Chiu et al., 2013; Daley and Vere-Jones, 2003; Diggle,
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2014; Van Lieshout, 2000; Møller and Waagepetersen, 2004)). En este contexto, cuando
se analizan patrones de puntos espacio-temporales marcados, lo primero que se hace es
intentar explicar dónde y cuándo ocurrieron sucesos de una categoŕıa de marca dada.
Puesto que donde y cuándo es una propiedad univariante, en el sentido de que no es-
tamos tratando expĺıcitamente con las posibles dependencias entre los puntos, estamos
tratando de analizar la intensidad. Antes de proceder a proponer modelos espećıficos
para la estructura de intensidad, a través del patrón de puntos observados, se comienza
habitualmente obteniendo una estimación no paramétrica de la función de intensidad
(véase, por ejemplo, (Diggle, 2014)). La función de intensidad, en esencia, refleja la
probabilidad infinitesimal de encontrar un punto del MSTPP en una ubicación espacial
dada, en un momento dado, con una marca dada. Obsérvese que es diferente de la inten-
sidad condicional antes mencionada, que se define como una equivalencia condicional.
En el caso más sencillo simplemente asumiŕıamos la homogeneidad, es decir, que es
igualmente probable que observe un evento, con cualquier marca, en cualquier posición
espacio-temporal. Esto no es, sin embargo, un supuesto realista, aśı que procederemos
asumiendo inhomogeneidad.

Aunque el candidato más natural para este tipo de estimación no paramétrica es la
estimación kernel, como nuestro objetivo es aplicar el método al estudio y análisis de los
terremotos ocurridos en del mar de Andamán (región de Sumatra) en el periodo 2004-
2008, y debido a los abruptos cambios en la actividad que los terremotos muestran tanto
espacial como temporalmente, hemos optado por de considerar un enfoque adaptativo,
es decir, un enfoque de estimación de la intensidad de Voronoi (véase, por ejemplo, (Barr
and Schoenberg, 2010)). Habiendo obtenido una estimación no paramétrica de la función
de intensidad, de modo que tenemos una descripción de las propiedades univariantes,
podemos proceder al estudio de la estructura de dependencia inherente del mecanismo
generador de datos, es decir, el MSTPP subyacente. En el caṕıtulo 5 nos centramos
en los estad́ısticos resumen de segundo orden, ignorando aśı los estad́ısticos resumen
de orden superior, como por ejemplo la J- función espacio-temporal y sus componentes
(Cronie and van Lieshout, 2015) y la J- funcion marcada y sus componentes (Cronie
and van Lieshout, 2016; Van Lieshout, 2006).

Nuestra contribución combina las ideas de Gabriel and Diggle (2009) con las de
Cronie and van Lieshout (2016) para definir una K- función, KCD

rminhom(r, t) para los
MSTPPs no homogéneos. En términos generales, la KCD

inhom(r, t) describe la interacción,
en el sentido de (Gabriel and Diggle, 2009), entre puntos pertenecientes al conjunto de
marcas C y los puntos pertenecientes al conjunto de marcas D, para un MSTPP no
homogéneo. Obsérvese que para todos los estad́ısticos de resumen anteriores, uno de los
principales objetivos ha sido considerar su estimación no paramétrica. Una parte signi-
ficativa del caṕıtulo 5 está dedicado a la estimación no paramétrica. Estos estad́ısticos de
resumen, que nos permiten cuantificar la dependencia entre diferentes marcas-categoŕıas
de los puntos, dependen del espacio de las marcas y de la medida marcada de refer-
encia elegida. Se propone un nuevo test para el marcado independiente y se derivan
los estimadores de minus-sampling para todas las estad́ısticas consideradas. Además,
estudiamos los estimadores Voronoi de la intensidad de los MSTPPs. Estos nuevos es-



132 Chapter 6. Resumen

tad́ısticos se emplean finalmente para analizar el conjunto de datos de los terremotos
antes mencionados. Encontramos que el fenómeno de agrupamiento se observa entre los
terremotos principales y terremotos anteriores/posteriores en prácticamente todas las es-
calas de espacio y tiempo. Además, encontramos evidencia de que, condicionalmente en
las localizaciones espacio-temporales de los terremotos, las magnitudes no se comportan
como una secuencia independiente e idénticamente distribuida.

El trabajo presentado representa un punto de partida dé lo que podŕıan ser futuras
ĺıneas de investigación, algunas de las cuales describimos a continuación.

Como ya hemos mencionado, la varicela es una enfermedad altamente infecciosa.
Estamos seguros de que, además del efecto de la población, existen otras covariables que
pueden influir en el comportamiento espacio-temporal de la enfermedad. Por lo tanto,
una meta importante para un trabajo futuro es considerar la inclusión de covariables
que pueden mejorar nuestros análisis. Por ejemplo, WHO (2014) sugiere que existen
algunos factores climáticos que pueden influir en la epidemioloǵıa de la varicela. Aśı,
covariables tales como las temperaturas medias mensuales, los niveles medios semanales
de lluvia, las horas medias de sol u otras relacionadas con el clima, pueden proporcionar
información útil para el análisis de la varicela. Además, información adicional sobre los
ingresos per cápita u otras covariables socioeconómicas podŕıan mejorar nuestro análisis.

Otro factor interesante que podŕıa influir en la propagación de la enfermedad en
la ciudad de Valencia es la ubicación del ŕıo Turia, que la cruza de Oeste a Este y
la divide en dos partes de extensión parecida. Los epidemiólogos creen que cualquier
barrera geográfica natural marca algunas diferencias, ya que los niños que viven en un
lado del ŕıo van a escuelas en ese lado del ŕıo y los que viven en el lado opuesto asisten
a las escuelas de ese lado. El papel de las escuelas y guardeŕıas en la transmisión de la
varicela es crucial. Teniendo en cuenta que hoy en d́ıa la mayoŕıa de las parejas sólo
tienen uno o dos hijos, la transmisión dentro de la familia probablemente tiene menos
influencia que la transmisión escolar.

Para un trabajo futuro, seŕıa interesante aplicar el modelo presentado en el caṕıtulo
4 a otras enfermedades que pueden exhibir interacción en varias escalas en el espacio y
el tiempo. También seŕıa muy interesante aplicar el modelo a datos que no están nece-
sariamente relacionados con la epidemioloǵıa. Los patrones de terremotos, por ejemplo,
tienden a mostrar agregación, pero también inhibición a diferentes escalas. De hecho,
creemos que el modelo propuesto puede ser aplicado en una amplia gama de campos de
investigación, tales como la silvicultura, la geoloǵıa y la socioloǵıa.

Otras aplicaciones directas de la metodoloǵıa presentada en el caṕıtulo 5 se pueden
encontrar en, por ejemplo, epidemioloǵıa y criminoloǵıa. Actualmente estamos estu-
diando conjuntos de datos relacionados con estos campos. En particular, nuestro con-
junto de datos de casos de varicela. Además estamos analizando los datos sobre delitos
en Valencia, España. Téngase en cuenta que para ambas aplicaciones puede ser más
relevante considerar las versiones multivariantes de los estad́ısticos de resumen.

Actualmente estamos trabajando también en extender las ideas presentadas en el
caṕıtulo 5 a procesos puntuales espacio-temporales marcados en redes lineales (Ang
et al., 2012). Además, buscamos combinar los resultados de Cronie and van Lieshout
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(2015, 2016) de la misma manera que se hizo en el Caṕıtulo 5, para obtener versiones
espaciales y temporales no homogéneas de la función distribución de la distancia al
vecino más próximo, la función empty-space y la J- función. Creemos que estas pueden
ser herramientas más poderosas para el propósito de análisis estad́ıstico no paramétrico.
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