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Strong vacuum squeezing from 
bichromatically driven Kerrlike 
cavities: from optomechanics to 
superconducting circuits
Rafael Garcés & Germán J. de Valcárcel

Squeezed light, displaying less fluctuation than vacuum in some observable, is key in the flourishing 
field of quantum technologies. Optical or microwave cavities containing a Kerr nonlinearity are known 
to potentially yield large levels of squeezing, which have been recently observed in optomechanics 
and nonlinear superconducting circuit platforms. Such Kerr-cavity squeezing however suffers from 
two fundamental drawbacks. First, optimal squeezing requires working close to turning points of a 
bistable cycle, which are highly unstable against noise thus rendering optimal squeezing inaccessible. 
Second, the light field has a macroscopic coherent component corresponding to the pump, making it 
less versatile than the so-called squeezed vacuum, characterised by a null mean field. Here we prove 
analytically and numerically that the bichromatic pumping of optomechanical and superconducting 
circuit cavities removes both limitations. This finding should boost the development of a new 
generation of robust vacuum squeezers in the microwave and optical domains with current technology.

Quantum fluctuations are perhaps one of the most fascinating consequences of the quantum nature of light. Even 
in its ground state –the vacuum– the electromagnetic field exhibits fluctuations, which are the analogue of the 
zero-point fluctuations of a quantum mechanical harmonic oscillator. Being a constitutive part of the field, quan-
tum fluctuations cannot be removed and manifest as nontechnical –quantum– noise in optical experiments. Yet 
they can be engineered via interactions, as allowed by the pertinent Heisenberg uncertainty relations.

A useful way to characterise quantum fluctuations of light is in terms of the quadratures of the electromag-
netic field. Considering a single mode for simplicity, with annihilation and creation operators denoted by a and 
a†, we define a quadrature1 as qθ =  ae−iθ +  a†eiθ. Experimentally, quadratures are measured via homodyne detec-
tion, where the problem light and an intense laser beam of the same frequency (the local oscillator) are combined 
in a beam-splitter, and the difference between the intensities of the two output ports is measured. The quadrature 
angle θ is selected by varying the phase of the local oscillator. Two orthogonal quadratures form a canonical pair, 
with commutator [qθ, qθ+π/2] =  2i, and verify the Heisenberg uncertainty relation ∆ qθ ∆ qθ+π/2 ≥  1. For the vac-
uum ∆ qθ =  1 for all θ, which sets the so-called standard quantum limit; laser light, ideally represented by coherent 
states, is ultimately limited by such (phase-independent) uncertainty level. On the contrary squeezed states of 
light1,2 display a phase-dependent quadrature uncertainty, there being a “squeezing angle” θ =  θs for which ∆ θq s

 is 
minimum and less than 1, while ∆ >θ π+ /q 12s

.
Squeezed light plays a central role in the fields of quantum information with continuous variables3,4 and pre-

cision measurement5,6, hence disposing of a variety of squeezing sources is relevant. While optical parametric 
oscillators, working close to their oscillation threshold, are the best squeezers so far (the present benchmark7 
is 12.7 dB squeezing, or 95% reduction of vacuum noise), recent experiments with optomechanical (OM) and 
superconducting circuit (SCC) cavities point to their place in this context8–12: OM cavities have demonstrated 
1.7 dB squeezing10 (32% reduction), and SCC cavities have reached 10 dB squeezing (90% reduction)12. The 
generation of strong squeezing in these systems is based on the existence of a bistable cycle2,13–16, that appears due 
to the particular intensity-dependent nonlinearity. At the turning points of bistability a strong reduction of the 
fluctuations takes place in one quadrature of the light field; however, this squeezing generation presents two hand-
icaps: working close to the turning points makes the system highly unstable against noise2,17, and the presence of a 
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macroscopic mean field corresponding to the pump makes it less versatile than a squeezed vacuum state1,2. Unlike 
OM and SCC cavities, optical parametric oscillators generate a squeezed vacuum whose optimum is reached close 
to the parametric oscillation threshold, which does not suffer from the discontinuity problems of bistable loops. 
Such differences come from the different underlying physics in each case: while optical parametric oscillators are 
based on effective three-photon, or second order, interactions, the quoted experiments in OM and SCC cavities 
rely on effective four-photon, or third order–Kerr–interactions.

Light squeezing generation is a very active area of research, including single-atom sources18, and multi-mode 
configurations19–21. As well squeezing of matter waves has been considered22,23 and, very especially, of mechanical 
oscillators in OM systems24–30.

The Kerr effect modifies the refractive index of a medium proportionally to the circulating light intensity (it is 
a nonlinear optical effect), modifying accordingly the optical thickness of the medium. It is modelled by the 
Hamiltonian2,13 = − † †H a a aaK

Kerr 2� , where a is the photon annihilation operator, and K is the Kerr coupling 
constant. When a Kerr medium is placed inside a cavity (be it optical or microwave for our purposes), a shift of 
the resonances is produced porportionally to the intracavity photon number a†a, in which case K is the frequency 
shift per photon. The Kerr nonlinearity (and, in general, the four-wave mixing), is at the roots of classic squeezing 
experiments in quantum optics31, but its implementation has suffered from parasistic effects (e.g. spontaneous 
emission in atomic gases) that degrade the quality of squeezing. Clean implementations of the Kerr effect are 
observed in SCC containing Josephson junctions (due to their nonlinear inductance)12,32,33, where HKerr is the 
simplest interaction Hamiltonian. In OM systems, where electromagnetic and mechanical degrees of freedom 
interact, the Kerr interaction is effective as follows. The standard OM cavity model, which successfully accounts 
for most of the experiments to date34, involves a single cavity mode and a single mechanical oscillator (of fre-
quency ωm) interacting via radiation pressure. The corresponding interaction Hamiltonian reads34 HOM =  − ħg0x-
a†a, where x is the displacement of the mechanical oscillator from its equilibrium, measured in units of its 
zero-point fluctuation amplitude (xzpf), and g0 is the cavity resonance shift for a mechanical amplitude of xzpf 
(so-called vacuum OM coupling strength34)(Supplementary Information). Kerr and OM cavities are analo-
gous15,16,35 because the radiation pressure force FRP ≡  − ∂HOM/∂x =  ħg0a†a displaces the movable mechanical ele-
ment proportionally to the intracavity photon number a†a, similarly to the optical cavity length variation 
occuring in cavities containing optical Kerr media. HOM describes a large variety of OM cavities, including sus-
pended micromirrors and membranes, microtoroids, defected photonic crystals, nanorods, etc34.

The rationale behind this work is threefold. First, OM and SCC cavities can behave as Kerr cavities. Second, 
there is a recent prediction that Kerr cavities driven by two close frequencies36,37 do not show the classic bistable 
response of monochromatic driving15–17,34,38,39, but instead undergo a degenerate four-wave mixing bifurcation 
where the (non-injected) mean frequency starts oscillating spontaneously, similarly to the optical parametric 
oscillator threshold. Finally there is a well-known relationship between bifurcations and squeezing in optical 
cavities13. Therefore in this work we consider both OM and SCC Kerrlike cavities driven by bichromatic fields.

Results and Discussion
Model. When the two driving frequencies, which we denote by ωL ±  Ω , are sufficiently close to the same cavity 
resonance frequency ωcav, a single cavity mode is excited. Hence the corresponding SCC Kerr-cavity model coin-
cides with the standard one12,14,32,33, the only difference being in the form of the driving. As well, as shown in the 
Methods Section, the OM model reduces to a Kerrlike model when the mechanical resonance frequency ωm is 
simultaneously much larger than the cavity photon damping rate which we denote by 2κ (resolved-sideband 
limit), and the modulation frequency Ω , in which case the mechanical dynamics can be adiabatically eliminated. 
Considering the injection of two equally intense coherent lines, of normalised amplitudes ε κ ω= /P2 L�  (P is 
the total power coupled to the cavity), the Heisenberg-Langevin equation for the field, in a rotating frame at fre-
quency ωL, reads

κ ε/ = − + (∆ + ) + (Ω ) + Θ( ), ( )†da dt a i Ka a a t t2 sin 1

where ∆  =  (ωL −  ωcav) is the detuning between the (non-injected) mid-frequency of the driving and the cavity 
frequency, K is the Kerr coefficient of the SCC cavity32 or ω≡ /K g2 0

2
m is an effective Kerr coupling constant in 

the OM case, and Θ (t) is a noise term: in the SCC case κΘ( ) = ( )t a t2 in  with ain(t) a white Gaussian quantum 
noise coming from vacuum fluctuations entering the cavity; in the OM case κΘ( ) = ( ) + ( )t a t g x t a2 Tin 0 , being 
xT the mechanical displacement fluctuation caused by zero-point and thermal agitation (Methods Section). 
Equation (1) provides a unified description of SCC and OM cavities. It can be considered as the model equation 
for a Josephson amplifier14,32 or as an approximation for the OM cavity under the conditions set above, whose 
validity will be assessed later. Modulated OM cavities have been considered in the literature in order to obtain 
interesting mechanical effects40–43, which occur when the modulation frequency Ω  is a multiple of the mechanical 
frequency ωm. However we anticipate that such “harmonic” driving does not lead to light squeezing.

Next we analyse the dynamics of (1) in the semiclassical and linear approximations as usual: we split the oper-
ators into a mean field part, 〈 a〉  =  α(t), plus a fluctuation, i.e. a =  α(t) +  δa, and disregard nonlinear terms in the 
fluctuations.

Mean field solution. The mean field equation reads α κα α α ε/ = − + (∆ + | | ) + (Ω )d dt i K t2 sin2 , 
which has been studied in the context of optical pattern formation36,37. This equation admits periodic solutions of 
the form α α α( ) = ( ) ≡ ∑ ≠

Ωt t ek k
ik t

base 0 , which we call base solutions as they exist always. Note that they do not 
contain a constant term (k ≠ 0), meaning that there is no mean field at the optical frequency ωL; hence the type of 
squeezing we describe next around ωL is squeezed vacuum. αbase(t) can be computed numerically and can be a 
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complicated function of time in general. In order to gain analytical insight we consider the limit Ω  ≫  κ,|∆ |, in 
which case α ε( ) ≈ − ( /Ω) (Ω )t t2 cosbase  (Supplementary Information). The intracavity mean photon number 
in the base state is

α ε〈 〉 ≈ | ( )| = ( /Ω) + ( Ω ) , ( )†a a t t[1 cos 2 ] 2base
2 2

which shows a linear dependence with the injection power ε2, and hence no bistability. The base solution needs 
not be stable for all parameter settings, as a standard linear stability analysis reveals (Methods Section and 
Supplementary Information): for κ∆/ < − 3 (red detuning side), αbase(t) becomes unstable between a lower 
and an upper injection power. Expressed in terms of a normalised injection parameter µ ≡  Kε2/κΩ 2, αbase(t) is 
unstable for µ↓ <  µ <  µ↑, where

µ κ κ≡ − ∆/ ± (∆/ ) − / , ( )↑↓ [ 2 3 ] 3 32

defines a “tongue” on the plane µ −  ∆ /κ (Fig. 1). Just at µ =  µ↓ or µ =  µ↑, a bifurcation gives rise to the emer-
gence of a constant, bias component on top of αbase(t). Such component corresponds to an emission line at ωL, 
which comes from the degenerate four-wave mixing process (ωL +  Ω ) +  (ωL −  Ω ) →  ωL +  ωL. As a consequence 
the new component at ωL is phase locked to the base solution, displaying phase bistability between two opposite 
phase values36,37, as it happens in the degenerate optical parametric oscillator above threshold. We have verified 
this prediction by numerical integration of the Kerrlike model (1) as well as of the complete OM model without 
approximations, under different parametric conditions, finding very good quantitative agreement (Fig. 1).

Spectrum of squeezing. Our actual goal is to demonstrate strong vacuum squeezing at the degenerate 
four-wave mixing bifurcation, in particular when it is approached from outside the instability tongue. As there 
the mean field at frequency ωL is null, the squeezing we describe next corresponds to a squeezed vacuum. The 
quantity of interest is the so-called squeezing spectrum1,2 Sθ(ω), which measures the noise power spectral density 
(spectral variance) of the light quadrature qθ ≡  e−iθa +  eiθa† leaving the cavity, at a noise frequency ω. It is normal-
ised so that in the vacuum state S =  1, while if S(ωs) <  1 there is squeezing at the noise frequency ωs (S =  0 marks 

Figure 1. Semiclassical bifurcation diagram of the bichromatically driven optomechanical and 
superconducting circuit cavities. A positive Kerr coupling constant K has been used; for K <  0 the result is 
identical, upon swapping ∆  →  − ∆ . µ is proportional to the injection power and ∆ /κ is the ratio of the cavity 
detuning to the photon damping rate. The base solution becomes unstable inside the tongue (3), where the 
noninjected frequency ωL appears. The full, blue line represents the analytical prediction based on model (1).  
Symbols denote boundaries obtained from numerical integration of the mean field equations of the Kerr 
model (green diamonds), which actually represent a superconducting circuit cavity, and of the complete 
optomechanical model (orange circles). The insets show the optical power spectrum (logarithmic scale) for 
different injection parameters: (a) below the lower signal oscillation threshold (base solution), (b) a small signal 
at ωL emerges close above the lower signal oscillation threshold and (c) the signal is fully developed well inside 
the tongue. The red line denotes the location of the carrier frequency ωL and the two main peaks located at 
ωL ±  Ω  correspond to the driving. The modulation frequency Ω /κ =  4π. In the optomechanical case the actual 
parameters are ωm/κ =  30, Qm =  105.
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perfect squeezing: no fluctuation at all). The spectrum Sθ(ω) is measured experimentally by homodyning1,2,8–10,12 
the light leaving the cavity with a strong local oscillator signal of frequency ωL.

Analytical prediction. As shown in the Supplementary Information, ω ω ω( ) = ( ) + ( )θ θ θS S Svac mec , where ω( )θS vac  
comes from the field vacuum fluctuations, while ω( )θS mec  comes from mechanical fluctuations and is present only 
in the OM case. Just at the bifurcation (µ =  µ↑ or µ =  µ↓), the strongest squeezing is observed as expected. Its 
optimum value, obtained by adjusting the quadrature angle θ, follows from

ω κ
κ ω

ω κ κ κ
κ ω

( ) = −
+

,

( ) = −∆/ (∆/ ) −
+

+
,

( )
B

S

S n
Q
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3
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2
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where (remind: κ∆/ < − 3), the subscript B corresponds to µ =  µ↑↓, respectively, nT ≡  [exp(ħωm/kBT) −  1]−1 is 
the mean number of thermal phonons at temperature T, with kB the Boltzmann constant, and Qm is the mechan-
ical resonance quality factor. Svac has been computed ignoring thermal photons. This is an excellent approxima-
tion in the optical domain, and in the microwave domain at cryogenic temperatures. If thermal photons are 
considered the expression for Svac reads as in (4), but multiplied by (1 +  2nL), where nL ≡  [exp(ħωL/kBT) −  1]−1 is 
the mean number of thermal photons.

Perfect squeezing is ideally predicted in the SCC case at zero noise frequency, Soptimum(0) =  0, with a band-
width equal to 2κ. In the OM case Soptimum(0) >  0 because >S 0optimum

mec . Nevertheless Soptimum(0) can be much less 
than 1 in the OM case because of the large values of Qm ~ 105 −  106 attained in experiments34. Large nT values are 
obviously deleterious, however they can be made very small (nT ≪  1) via the so-called sideband cooling34,44–46, 
which has been used to improve optical squeezing in recent OM experiments10.

It is interesting to note that our result for the optimum squeezing attainable (4) coincides with the one that can 
be obtained in the usual Kerr-like systems with monochromatic driving, see the Methods Section. However the 
physical situation is very different in both cases: while in the bichromatic case analysed here Soptimum is reached at 
a continuous bifurcation point, in the monochromatic case it requires to work at the turning points of the bistable 
cycle, with all the associated problems discussed above. Another important difference is that in the monochro-
matic case the squeezing is produced at the injection frequency, where there is a strong mean field present.

Numerical results. In order to check that the different approximations used do not lead to artificially low levels 
of noise reduction, we have computed Sθ(ω) numerically from the full OM and the Kerr model equations using 
realistic parameter values (Supplementary Information), finding excellent agreement as shown in Fig. 2. In the 
SCC cavity case the results point to a monotonic improvement of the squeezing as Ω  is increased. In the OM 
case the mechanical resonance plays a clear role: the effect is lost for modulation frequencies Ω  close to ωm/2, 
and is clearly degraded as Ω  approaches ωm. These phenomena have their roots in the fact that the driving force 

Figure 2. Squeezing spectrum. The full, blue line represents the best squeezing spectrum of the OM cavity, 
according to the analytical prediction from model (1), for Ω /κ =  4π, ∆ /κ =  − 2, and nT =  0. Orange symbols 
denote the results of numerical simulations of the complete optomechanical problem for the same parameters 
as in Fig. 1, with ∆ /κ =  − 2 (close below point (b) in Fig. 1; µ =  0.837). The inset shows the dependence of 
the numerically obtained optimal squeezing on the modulation frequency Ω , of both superconducting circuit 
cavities (green diamonds) and optomechanical cavities (orange circles). Parameters as in Fig. 1. Within the left 
shadowed region the mechanism proposed here does not work (a minimum modulation frequency, around 
Ω /κ =  2π, is needed), while in the middle and right ones it does not only for the optomechanical cavity: the 
rightmost orange circle corresponds to Ω  =  29.9κ, slightly less than the mechanical resonance frequency 
ωm =  30κ; for Ω  =  ωm the effect is completely lost, while for Ω  >  ωm the scenario completely changes and a 
different description is needed.
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acting on the mechanical element is the photon number given in (2). Thus, for Ω  =  ωm/2 a resonant forcing of 
the mechanical oscillator occurs (1:1 resonance) and for Ω  =  ωm the mechanical element is driven at twice its 
frequency (2:1 resonance), known as parametric resonance. So, high levels of squeezing of light are predicted for 
Ω  <  ωm, excluding the regions around Ω  =  ωm/2 and Ω  =  ωm where the effect is lost; while for Ω  >  ωm the scenario 
completely changes and a different theoretical description is needed.

Conclusions
In summary, we have shown that a bichromatic driving of a Kerr-like system, such as an optomechanical cavity 
or a nonlinear superconducting circuit, can produce a strong reduction of the fluctuations for one quadrature of 
the electromagnetic field.

The bichromatic driving produces a change of the bistable behaviour that happens with a monochromatic 
driving to a kind of degenerate four-wave mixing process, where the injected signals at frequencies ωL +  Ω  and 
ωL −  Ω  give rise to a component at the non-injected frequency ωL, (ωL +  Ω ) +  (ωL −  Ω ) →  ωL +  ωL, at the bifur-
cation given by (3), see Fig. 1.

When approaching the bifurcation from outside the “tongue” (Fig. 1), we have shown that there is a strong 
optical quadrature squeezing when homodying the output field with a local oscillator at frequency ωL. As, outside 
the “tongue”, there is no mean field at that frequency, the predicted squeezing corresponds to a vacuum squeezing. 
The system has independent noise terms coming from electromagnetic vacuum field fluctuations and from 
mechanical thermal fluctuations in the OM case, so the spectrum of squeezing can be decomposed as 
= +θ θ θS S Svac mech (eq. (4)). When the best squeezing is reached, at the bifurcation and for ω =  0, the vacuum part 

becomes null Soptimum(0) =  0 and the mechanical part in the OM case is very small even for a moderate number of 
thermal phonons, due to the high mechanical quality factors (Qm) that can be attained in the experiments.

Methods
OM Kerrlike model. For the optomechanical case we begin with the usual Langevin equations, but with a 
bicrhomatic driving

ω/ = , ( )dx dt p 5m

γ ω γ η/ = − − + + ( ), ( )†dp dt p x g a a t2 2 6m m 0 m

κ ε κ/ = − + (∆ + ) + (Ω ) + ( ), ( )da dt a i g x a t a t2 sin 2 70 in

where the overdot indicates time derivative. Here ain(t) and η(t) are white Gaussian noises of zero mean, whose 
only non-null two-time correlations read

δ( ) ( ) = ( − ), ( )′ ′†a t a t t t 8in in

η η δ( ) ( ) = ( + ) ( − ), ( )′ ′t t n t t1 2 9T

where nT =  [exp(ħωm/kBT) −  1]−1 is the mean number of thermal phonons at temperature T, with kB the 
Boltzmann constant. This form for the mechanical noise correlator is valid in the mechanical high-Q limit 
(Qm =  ωm/γm ≫  1), which we assume.

The equations for the mechanical element (5, 6) can be formally solved in the Fourier domain, obtaining that

∫ω χ ω ω ω( ) = ( ) ( ) , ( )
ω−

−∞

+∞ ix t f e d 10
i t

m
1

m

where ω( )if  is the Fourier transform of the driving force γ η( ) = + ( )†f t g a a t2 20 m  and χ ω( ) = ω

ω ω γ ω− + im
m
2

m
2 2

m

 
is the mechanical susceptibility. In the limit ωm ≫  κ, Ω  the Fourier transform of the radiation pressure force term 
2g0a†a, contains only low frequencies as compared to ωm, since the cavity acts as a low-pass filter of width 2κ, so 
for this term we can make the approximation χm(ω) →  χm(0) =  1 in equation (10).

Thus, the displacement can be written as x =  2g0a†a/ωm +  xT where xT is a fluctuation due to the mechanical 
noise with autocorrelation ∫ ω χ ω( ) ( ′) = ( + ) ( )

γ

πω
ω

−∞

+∞ ( − ′)x t x t n d e1 2T T T
i t t

m
2m

m
2 .

After substitution of x in the field equation (7), the optomechanical Kerr-like approximation (eq. (1)) for our 
model is obtained. For more details see the Supplementary Information.

Fluctuation dynamics. The equations for the fluctuations δa =  a −  αbase(t) and δ α= − ( )† † ⁎a a tbase  are 
obtained trivially from equation (1) and by neglecting the nonlinear fluctuating terms, as well as the fast oscillat-
ing terms at 2Ω , in a kind of a rotating wave approximation. As discussed in the Supplementary Information the 
dynamical fluctuation equations can be cast in matrix form as:

δ
δ

κ
κ µ µ
µ κ µ

δ
δ

ξ

ξ
⎛
⎝
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⎞
⎠
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with ξ κ( ) = ( ) − (Ω ) ( )
ε

Ω
t a t i t x t2 2 cosg

Tin
0  a noise term, where the first part is common in both problems 

(SCC and OM systems) and the second term only appear in the OM case. Note that equation (11) corresponds to 
a parametric process in which µ plays the role of a parametric gain, and also of an extra detuning.

The stability analysis of the base solution follows by analysing the eigenvalues of the coefficient matrix in (11), 
which read λ κ κ µ κ µ= − ± −(∆/ + )(∆/ + )± [ 1 3 ]. When at least one of these eigenvalues becomes posi-
tive the base solution becomes unstable. The region of instability is given by the µ↑↓ parameter, computed making 
λ+ =  0.

The monochromatic driving case. The usual OM and SCC Kerr-like with monochromatic driving are described 
by a similar equation to (1), but changing the driving part ε (Ω )t2 sin , giving

κ ε/ = − + (∆ + ) + + Θ( ), ( )†da dt a i Ka a a t 12

with the same definitions as in the Model Section.
Its corresponding mean field equation reads dα/dt =  − κα +  i(∆  +  K|α|2)α +  ε, whose steady state solu-

tions αs can be easily computed making dα/dt =  0. Thus, the intracavity mean photon number is identified as 
〈 a†a〉  =  |αs|2 =  Is.

The system presents a bistable behaviour for κ∆/ < − 3. There is an interval of the driving intensity where 
there are two stable intracavity mean photon number solutions for the same value of the driving intensity. These 
two stable branches of solutions are connected by an unstable branch. The system destabilizes at the turning 
points of the bistable cycle given by

κ= − ∆ ± ∆ − , ( )
↑↓I

K
2 3

3 13s

2 2

and it is in these points where the best squeezing is obtained.
The fluctuation dynamics is given too by equation (11) but with the following changes: i) µ =  (K/κ)Is and ii) 

the noise term being ξ κ α( ) = ( ) + ( )t a t ig x t2 Tin 0 s .

Computation of the spectrum of squeezing. To compute the spectrum of squeezing we need to  
solve the system of equations for the fluctuation dynamics. We note that the left eigenvectors of the coefficient 
matrix in (11) can be written, near the bifurcation, as → = ( , )θ θ

±
− ± ±w e ei i , where θ+ =  − θ−. Thus projecting 

equation (11) onto ±
!"w  from the left yields decoupled equations for the intracavity quadrature fluctuations 

δ δ δ≡ ( + )θ θ
±

− ± ± †q e a e ai i ,

δ λ δ κ ζ/ = + ( ) + ( ), ( )± ± ± ±, ±d q dt q q t t2 14in

where ( ) = ( ) + ( )θ θ
±,

− ± ± †q t e a t e a ti i
in in in  is the corresponding quadrature vacuum noise and

ζ
ε

θ( ) = −
Ω

( ) (Ω ) ( ), ( )± ±t
g

t x t
2 2

sin cos 15T
0

is the mechanical noise coupled to that quadrature. Note that either θ± should be zero (amplitude quadra-
ture) mechanical noise would have no effect on that quadrature, as is well known for radiation pressure driven 
optomechanics.

We are interested in the spectral variance, called squeezing spectrum, of the outgoing detected quadrature, 
FORMULA, which is calculated from the two-time correlations δ ( ) = − ( )+,± ,±q t q tout in κδ ( )±q t2 , 

δ δ′ ≡ 〈 ′ 〉.± ± ±C t t q t q t( , ) ( ) ( ) (16)out, out,

After straightforward algebra can be written as

δ κ κ λ κ ω µ θ( , ) = ( − ) − ( + / ) + ( ) ( , ), ( )λ
±

′ ′
±

−
± ±

′′±C t t t t e I t t2 1 8 sin 17t t 2
m

2

where the last term is only valid for the OM case, with

∫ ∫( , ) = (Ω ) ′ (Ω ′) ( ) ( ′) . ( )
λ λ

±
′

−∞

( − )

−∞

( − )
′ ′ ′± ±I t t dt e t dt e t x t x tcos cos 18

t t t t t t
T T1 1 1 1 1 1

1 1

From equation (17) it can be seen that in the OM case the correlator is not stationary, due to the last term corre-
sponding to the mechanical noise. Thus, the spectrum of squeezing has to be computed using the following definition47

∫ ∫ω ω( ) = ′ ( , ′) ( − ′) ,
( )− /

/

− /

/
S

T
dt dt C t t t t1 cos[ ] 19T

T

T

T

2

2

2

2

where T is the measurement time. As shown in the Supplementary Information S(ω) can be worked out 
analytically.
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